WorldWideScience

Sample records for science center kurchatov

  1. Status of Activities on Rehabilitation Of Radioactively Contaminated Facilities and the Site of Russian Research Center ''Kurchatov Institute''

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. G.; Ponomarev-Stepnoi, N. N.; Melkov, E. S; Ryazantsev, E. P.; Dikarev, V. S.; Gorodetsky, G. G.; Zverkov, Yu. A.; Kuznetsov, V. V.; Kuznetsova, T. I.

    2003-02-25

    This paper describes the program, the status, and the course of activities on rehabilitation of radioactively contaminated facilities and the territory of temporary radioactive waste (radwaste) disposal at the Russian Research Center ''Kurchatov Institute'' (RRC KI) in Moscow as performed in 2001-2002. The accumulation of significant amounts of radwaste at RRC KI territory is shown to be the inevitable result of Institute's activity performed in the days of former USSR nuclear weapons project and multiple initial nuclear power projects (performed from 1950's to early 1970's). A characterization of RRC KI temporary radwaste disposal site is given. Described is the system of radiation control and monitoring as implemented on this site. A potential hazard of adverse impacts on the environment and population of the nearby housing area is noted, which is due to possible spread of the radioactive plume by subsoil waters. A description of the concept and project of the RRC KI temporary radwaste disposal site is presented. Specific nature of the activities planned and performed stems from the nearness of housing area. This paper describes main stages of the planned activities for rehabilitation, their expected terms and sources of funding, as well as current status of the project advancement. Outlined are the problems faced in the performance and planning of works. The latter include: diagnostics of the concrete-grouted repositories, dust-suppression technologies, packaging of the fragmented ILW and HLW, soil clean-up, radioactive plume spread prevention, broad radiation monitoring of the work zone and environment in the performance of rehabilitation works. Noted is the intention of RRC KI to establish cooperation with foreign, first of all, the U.S. partners for the solution of problems mentioned above.

  2. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  3. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  4. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  5. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  6. Supernova Science Center

    Energy Technology Data Exchange (ETDEWEB)

    S. E. Woosley

    2008-05-05

    The Supernova Science Center (SNSC) was founded in 2001 to carry out theoretical and computational research leading to a better understanding of supernovae and related transients. The SNSC, a four-institutional collaboration, included scientists from LANL, LLNL, the University of Arizona (UA), and the University of California at Santa Cruz (UCSC). Intitially, the SNSC was funded for three years of operation, but in 2004 an opportunity was provided to submit a renewal proposal for two years. That proposal was funded and subsequently, at UCSC, a one year no-cost extension was granted. The total operational time of the SNSC was thus July 15, 2001 - July 15, 2007. This document summarizes the research and findings of the SNSC and provides a cummulative publication list.

  7. Center for Rehabilitation Sciences Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Rehabilitation Sciences Research (CRSR) was established as a research organization to promote successful return to duty and community reintegration of...

  8. Center for Environmental Health Sciences

    Data.gov (United States)

    Federal Laboratory Consortium — The primary research objective of the Center for Environmental Health Sciences (CEHS) at the University of Montana is to advance knowledge of environmental impacts...

  9. ROSAT Science Data Center

    Science.gov (United States)

    Murray, Stephen; Pisarski, Ryszard L. (Technical Monitor)

    2001-01-01

    This report provides a summary of the Smithsonian Astrophysical Observatory (SAO) ROSAT SCIENCE DATA CENTER (RSDC) activities for the recent years of our contract. Details have already been reported in the monthly reports. The SAO was responsible for the High Resolution Imager (HRI) detector on ROSAT. We also provided and supported the HRI standard analysis software used in the pipeline processing (SASS). Working with our colleagues at the Max Planck in Garching Germany (MPE), we fixed bugs and provided enhancements. The last major effort in this area was the port from VMS/VAX to VMS/ALPHA architecture. In 1998, a timing bug was found in the HRI standard processing system which degraded the positional accuracy because events accessed incorrect aspect solutions. The bug was fixed and we developed off-line correction routines and provided them to the community. The Post Reduction Off-line Software (PROS) package was developed by SAO and runs in the IRAF environment. Although in recent years PROS was not a contractual responsibility of the RSDC, we continued to maintain the system and provided new capabilities such as the ability to deal with simulated AXAF data in preparation for the NASA call for proposals for Chandra. Our most recent activities in this area included the debugging necessary for newer versions of IRAF which broke some of our software. At SAO we have an operating version of PROS and hope to release a patch even though almost all functionality that was lost was subsequently recovered via an IRAF patch (i.e. most of our problems were caused by an IRAF bug).

  10. Science and Literacy Centers

    Science.gov (United States)

    Van Meeteren, Beth Dykstra; Escalada, Lawrence T.

    2010-01-01

    In recent years, science has taken a backseat to reading and mathematics in many primary classrooms. Imaginative teachers have coped with this loss of science time by creatively integrating science topics into reading instructional materials (Douglas, Klentschy, and Worth 2006). In this article, the author describes an effective physical science…

  11. A short review of critical experiments performed at the Kurchatov Institute

    Energy Technology Data Exchange (ETDEWEB)

    Gagarinski, A.Yu.; Glushkov, Y.S.; Ponomarev-Stepnoi, N.N. [Kurchatov Institute (Russian Federation)

    1997-06-01

    Since the 1950s, the Institute of Atomic Energy (now the Russian Research Center Kurchatov Institute) has investigated nuclear reactors intended for various purposes. A summary of the present state of these assemblies is given in an attachment to the paper. A second attachment provides a brief description of critical experiments for small nuclear power systems intended for decentralized power generation. The critical assemblies for these experiments were moderated by water and zirconium hydride, and fuel elements ranged in enrichment from 5% to 95% uranium 235. 7 refs.

  12. The MAVEN Science Data Center

    Science.gov (United States)

    De Wolfe, A. W.; Harter, B.; Kokkonen, K.; Staley, B.; Christofferson, R.

    2015-12-01

    The Mars Atmospheric and Volatile Evolution (MAVEN) mission has been collecting data at Mars since September 2014. MAVEN's science data is hosted at the Science Data Center at the Laboratory for Atmospheric & Space Physics (LASP), where we use many different technologies to provide the science community with access to the data. Our website contains applications built with Highcharts, AngularJS, D3.js, and PostgreSQL to access and visualize data and metadata, allowing visitors to the site to preview the science data, see variations in data volume over the mission, search a timeline of mission events and perform complex queries to discover science data. This presentation will summarize the current data available, the data access mechanisms we provide, the benefits of the various technologies we've chosen and the lessons we've learned along the way.

  13. Recharge Yourself at a Science Center!

    Science.gov (United States)

    Cullinan, Kathy

    1995-01-01

    Describes one teacher's experience working at a science center during a leave of absence from teaching. Discusses the Center of Science and Industry (COSI) in Columbus, OH. COSI is a science and technology center where visitors can see and interact with hundreds of exhibits and demonstrations on topics related to science, industry, health, and…

  14. Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-08

    For more than 30 years the Los Alamos Neutron Science Center (LANSCE) has provided the scientific underpinnings in nuclear physics and material science needed to ensure the safety and surety of the nuclear stockpile into the future. In addition to national security research, the LANSCE User Facility has a vibrant research program in fundamental science, providing the scientific community with intense sources of neutrons and protons to perform experiments supporting civilian research and the production of medical and research isotopes. Five major experimental facilities operate simultaneously. These facilities contribute to the stockpile stewardship program, produce radionuclides for medical testing, and provide a venue for industrial users to irradiate and test electronics. In addition, they perform fundamental research in nuclear physics, nuclear astrophysics, materials science, and many other areas. The LANSCE User Program plays a key role in training the next generation of top scientists and in attracting the best graduate students, postdoctoral researchers, and early-career scientists. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) —the principal sponsor of LANSCE—works with the Office of Science and the Office of Nuclear Energy, which have synergistic long-term needs for the linear accelerator and the neutron science that is the heart of LANSCE.

  15. National Space Science Data Center Master Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  16. Kansas Water Science Center bookmark

    Science.gov (United States)

    ,

    2017-03-27

    The U.S. Geological Survey Kansas Water Science Center has collected and interpreted hydrologic information in Kansas since 1895. Data collected include streamflow and gage height, reservoir content, water quality and water quantity, suspended sediment, and groundwater levels. Interpretative hydrologic studies are completed on national, regional, statewide, and local levels and cooperatively funded through more than 40 partnerships with these agencies. The U.S. Geological Survey provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. These collected data are in the National Water Information System https://waterdata.usgs.gov/ks/nwis/rt, and all results are documented in reports that also are online at https://ks.water.usgs.gov/. Follow the USGS Kansas Water Science Center on Twitter for the most recent updates and other information: https://twitter.com/USGS_KS.

  17. The LIGO Open Science Center

    Science.gov (United States)

    Vallisneri, Michele; Kanner, Jonah; Williams, Roy; Weinstein, Alan; Stephens, Branson

    2015-05-01

    The LIGO Open Science Center (LOSC) fulfills LIGO's commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use the data. In August 2014, the LOSC published the full dataset from Initial LIGO's “S5” run at design sensitivity, the first such large-scale release and a valuable testbed to explore the use of LIGO data by non-LIGO researchers and by the public, and to help teach gravitational-wave data analysis to students across the world. In addition to serving the S5 data, the LOSC web portal (losc.ligo.org) now offers documentation, data-location and data-quality queries, tutorials and example code, and more. We review the mission and plans of the LOSC, focusing on the S5 data release.

  18. The LIGO Open Science Center

    CERN Document Server

    Vallisneri, Michele; Williams, Roy; Weinstein, Alan; Stephens, Branson

    2014-01-01

    The LIGO Open Science Center (LOSC) fulfills LIGO's commitment to release, archive, and serve LIGO data in a broadly accessible way to the scientific community and to the public, and to provide the information and tools necessary to understand and use the data. In August 2014, the LOSC published the full dataset from Initial LIGO's "S5" run at design sensitivity, the first such large-scale release and a valuable testbed to explore the use of LIGO data by non-LIGO researchers and by the public, and to help teach gravitational-wave data analysis to students across the world. In addition to serving the S5 data, the LOSC web portal (losc.ligo.org) now offers documentation, data-location and data-quality queries, tutorials and example code, and more. We review the mission and plans of the LOSC, focusing on the S5 data release.

  19. High Energy Astrophysics Science Archive Research Center

    Data.gov (United States)

    National Aeronautics and Space Administration — The High Energy Astrophysics Science Archive Research Center (HEASARC) is the primary archive for NASA missions dealing with extremely energetic phenomena, from...

  20. The Southeast Fisheries Science Center (SEFSC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Southeast Fisheries Science Center (SEFSC) is headquartered in Miami, FL. The SEFSC is responsible for scientific research on living marine resources that occupy...

  1. Joint Interdisciplinary Earth Science Information Center

    Science.gov (United States)

    Kafatos, Menas

    2004-01-01

    The report spans the three year period beginning in June of 2001 and ending June of 2004. Joint Interdisciplinary Earth Science Information Center's (JIESIC) primary purpose has been to carry out research in support of the Global Change Data Center and other Earth science laboratories at Goddard involved in Earth science, remote sensing and applications data and information services. The purpose is to extend the usage of NASA Earth Observing System data, microwave data and other Earth observing data. JIESIC projects fall within the following categories: research and development; STW and WW prototyping; science data, information products and services; and science algorithm support. JIESIC facilitates extending the utility of NASA's Earth System Enterprise (ESE) data, information products and services to better meet the science data and information needs of a number of science and applications user communities, including domain users such as discipline Earth scientists, interdisciplinary Earth scientists, Earth science applications users and educators.

  2. Geologic Hazards Science Center GIS Server

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Geologic Hazards Science Center (GHSC) in Golden, CO maintains a GIS server with services pertaining to various geologic hazard disciplines involving...

  3. Fort Collins Science Center-Fiscal year 2009 science accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2010-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey Fort Collins Science Center?many of whom are at the forefront of their fields?possess a unique blend of ecological, socioeconomic, and technological expertise. Because of this diverse talent, Fort Collins Science Center staff are able to apply a systems approach to investigating complicated ecological problems in a way that helps answer critical management questions. In addition, the Fort Collins Science Center has a long record of working closely with the academic community through cooperative agreements and other collaborations. The Fort Collins Science Center is deeply engaged with other U.S. Geological Survey science centers and partners throughout the Department of the Interior. As a regular practice, we incorporate the expertise of these partners in providing a full complement of ?the right people? to effectively tackle the multifaceted research problems of today's resource-management world. In Fiscal Year 2009, the Fort Collins Science Center's scientific and technical professionals continued research vital to Department of the Interior's science and management needs. Fort Collins Science Center work also supported the science needs of other Federal and State agencies as well as non-government organizations. Specifically, Fort Collins Science Center research and technical assistance focused on client and partner needs and goals in the areas of biological information management and delivery, enterprise information, fisheries and aquatic systems, invasive species, status and trends of biological resources (including human dimensions), terrestrial ecosystems, and wildlife resources. In the process, Fort Collins Science Center science addressed natural-science information needs identified in the U

  4. The Goddard Earth Sciences and Technology Center (GEST Center)

    Science.gov (United States)

    2002-01-01

    The following is a technical report of the progress made under Cooperative Agreement NCC5494, the Goddard Earth Sciences and Technology Center (GEST). The period covered by this report is October 1, 2001 through December 31, 2001. GEST is a consortium of scientists and engineers, led by the University of Maryland, Baltimore County (UMBC), to conduct scientific research in Earth and information sciences and related technologies in collaboration with the NASA Goddard Space Flight Center (GSFC). GEST was established through a cooperative agreement signed May 11, 2000, following a competitive procurement process initiated by GSFC.

  5. DOE - BES Nanoscale Science Research Centers (NSRCs)

    Energy Technology Data Exchange (ETDEWEB)

    Beecher, Cathy Jo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-14

    These are slides from a powerpoint shown to guests during tours of Center for Integrated Nanotechnologies (CINT) at Los Alamos National Laboratory. It shows the five DOE-BES nanoscale science research centers (NSRCs), which are located at different national laboratories throughout the country. Then it goes into detail specifically about the Center for Integrated Nanotechnologies at LANL, including statistics on its user community and CINT's New Mexico industrial users.

  6. Polar Science Weekend: A University / Science Center Collaboration

    Science.gov (United States)

    Stern, H. L.; Moritz, R. E.; Lettvin, E.; Schatz, D.; Russell, L.

    2008-12-01

    Polar Science Weekend (PSW) is a four-day event featuring hands-on activities, live demonstrations, and a variety of exhibits about the polar regions and current polar research, presented by scientists from the University of Washington's Polar Science Center, and held at Seattle's Pacific Science Center. PSW was conceived and organized jointly by the Polar Science Center and Pacific Science Center, which is Washington State's most well-attended museum. The first PSW in March 2006 drew over 5000 visitors, and subsequent PSWs in 2007 and 2008 have both surpassed that figure. The success of this university / science center partnership has made PSW an annual event, and has served as a model for Pacific Science Center's Portal to the Public program, in which partnerships with other scientific institutions have been built. Researchers at the Polar Science Center (PSC) study the physical processes controlling high-latitude oceans, atmosphere, sea ice, and ice sheets, and are involved in numerous IPY projects. PSC scientists also engage in many outreach efforts such as classroom visits and public lectures, but PSW stands out as the highlight of the year. The partnership with Pacific Science Center brings access to facilities, publicity, and a large audience that would not otherwise be readily available to PSC. Pacific Science Center, constructed for the 1962 World's Fair in Seattle, serves more than one million visitors per year. Pacific Science Center's mission is to inspire a lifelong interest in science, math and technology by engaging diverse communities through interactive and innovative exhibits and programs. PSW helps to advance this mission by bringing students, teachers, and families face-to-face with scientists who work in some of the most remote and challenging places on earth, to learn first-hand about polar research in a fun and informal setting. This is made possible only by the partnership with PSC. In this talk we will present descriptions and photos of PSW

  7. Pragmatic Metrics for Monitoring Science Data Centers

    Science.gov (United States)

    Moses, J. F.; Behnke, J.

    2003-12-01

    Science data metrics and their analysis are critical components to the end-to-end data and service flow for science data centers. The Earth Science Data and Information System Project has collected records of EOS science data archive, processing and distribution metrics from NASA's Distributed Active Archive Centers since 1996. The ESDIS Science Operations Office and the DAAC data centers have cooperated to develop a DAAC metrics reporting capability called the EOSDIS Data Gathering and Reporting Systems (EDGRS). This poster illustrates EDGRS processes and metrics data applications. EDGRS currently accesses detailed archive and distribution metrics from nine DAAC sites and transfers results to a centralized collection system on a routine basis. After automated quality checks the records are immediately made available through a web-based Graphic User Interface. Users can obtain standard graphs and prepare custom queries to generate specific reports for monitoring science data processing progress. Applications are illustrated that explore methods for performing data availability studies and performance analyses. Improvements are planned to support granule-level science data accounting and characterization of product distribution.

  8. Molecular Science Research Center 1992 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  9. Science for What Public? Addressing Equity in American Science Museums and Science Centers

    Science.gov (United States)

    Feinstein, Noah Weeth; Meshoulam, David

    2014-01-01

    Science museums and science centers exist (in large part) to bring science to the public. But what public do they serve? The challenge of equity is embodied by the gulf that separates a museum's actual public and the more diverse publics that comprise our society. Yet despite growing scholarly interest in museums and science centers, few…

  10. Communications among data and science centers

    Science.gov (United States)

    Green, James L.

    1990-01-01

    The ability to electronically access and query the contents of remote computer archives is of singular importance in space and earth sciences; the present evaluation of such on-line information networks' development status foresees swift expansion of their data capabilities and complexity, in view of the volumes of data that will continue to be generated by NASA missions. The U.S.'s National Space Science Data Center (NSSDC) manages NASA's largest science computer network, the Space Physics Analysis Network; a comprehensive account is given of the structure of NSSDC international access through BITNET, and of connections to the NSSDC available in the Americas via the International X.25 network.

  11. Los Alamos Neutron Science Center (LANSCE) Nuclear Science Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Ronald Owen [Los Alamos National Laboratory; Wender, Steve [Los Alamos National Laboratory

    2015-06-19

    The Los Alamos Neutron Science Center (LANSCE) facilities for Nuclear Science consist of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center, and a proton reaction area. The neutron beams produced at the Target 4 complement those produced at the Lujan Center because they are of much higher energy and have shorter pulse widths. The neutron sources are driven by the 800-MeV proton beam of the LANSCE linear accelerator. With these facilities, LANSCE is able to deliver neutrons with energies ranging from a milli-electron volt to several hundreds of MeV, as well as proton beams with a wide range of energy, time and intensity characteristics. The facilities, instruments and research programs are described briefly.

  12. Fernbank Science Center Forest Teacher's Guide-1967.

    Science.gov (United States)

    Cherry, Jim; And Others

    This guide is designed primarily to familiarize teachers with the types of programs available through the Fernback Science Center. Instructional programs involving the use of the Fernbank Forest are outlined. Programs for secondary students include Plant Taxonomy, Field Ecology, Winter Taxonomy of Plants, and Climax Forest Succession. Elementary…

  13. Goddard Earth Sciences and Technology Center (GEST)

    Science.gov (United States)

    2002-01-01

    This document summarizes the activities of the Goddard Earth Sciences and Technology Center (GEST), a consortium of scientists and engineers led by the University of Maryland, Baltimore County (UMBC), during the contract reporting period. Topics covered include: new programs, eligibility and selection criteria, Goddard Coastal Research Graduate Fellowship Program and staffing changes.

  14. Fort Collins Science Center: Policy Analysis and Science Assistance

    Science.gov (United States)

    Lamb, Berton L.

    2004-01-01

    Most resource management decisions involve the integrated use of biological, sociological, and economic information. Combining this information provides a more comprehensive basis for making effective land management and conservation decisions. Toward this end, scientists in the Policy Analysis and Science Assistance Branch (PASA) of the Fort Collins Science Center (FORT) contribute expert knowledge for natural resources management by conducting biological, social, economic, and institutional analyses of conservation policies and management practices.

  15. The Lederman Science Center:. Past, Present, Future

    Science.gov (United States)

    Bardeen, Marjorie G.

    2012-08-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  16. The Lederman Science Center: Past, Present, Future

    Energy Technology Data Exchange (ETDEWEB)

    Bardeen, Marjorie G.; /Fermilab

    2011-11-01

    For 30 years, Fermilab has offered K-12 education programs, building bridges between the Lab and the community. The Lederman Science Center is our home. We host field trips and tours, visit schools, offer classes and professional development workshops, host special events, support internships and have a strong web presence. We develop programs based on identified needs, offer programs with peer-leaders and improve programs from participant feedback. For some we create interest; for others we build understanding and develop relationships, engaging participants in scientific exploration. We explain how we created the Center, its programs, and what the future holds.

  17. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, James; Hammadi, Omran Al; DeWolfe, Alexandria; Staley, Bryan; Schafer, Corey; Pankratz, Chris

    2017-04-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft. With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  18. Spitzer Science Center within an Enterprise Architecture

    Science.gov (United States)

    Handley, T.

    2007-10-01

    The Spitzer Science Center's (SSC) evolutionary development approach, coupled with a flexible, scaleable hardware and software architecture has been key in Spitzer's ability to handle an explosion of data products, evolving data definitions, and changing data quality requirements. Spitzer is generating (depending on the campaign and instrument) about 10 TB of pre-archive data every 14 to 20 days. This generally reduces to between 3 TB and 6 TB of standard products, again depending on the campaign and instrument. This paper will discuss (1) the Spitzer Science Center's responses to evolving data, quality, and processing requirements and (2) how robust or not was the original architecture to allow Spitzer to accommodate on-going change.

  19. Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums

    Science.gov (United States)

    Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris

    2014-01-01

    Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…

  20. Fort Collins Science Center - Fiscal Year 2008 Science Accomplishments

    Science.gov (United States)

    Wilson, Juliette T.

    2009-01-01

    Public land and natural resource managers in the United States are confronted with increasingly complex decisions that have important ramifications for both ecological and human systems. The scientists and technical professionals at the U.S. Geological Survey (USGS) Fort Collins Science Center (FORT) contribute a unique blend of ecological, socioeconomic, and technological expertise to investigating complicated ecological problems that address critical management questions. In Fiscal Year 2008 (FY08), FORT's scientific and technical professionals continued research vital to the science and management needs of U.S. Department of the Interior agencies and other entities. This annual report describes select FY08 accomplishments in research and technical assistance involving biological information management and delivery; aquatic, riparian, and managed-river ecosystems; invasive species; status and trends of biological resources (including human dimensions and social science); terrestrial ecosystems; and fish and wildlife resources.

  1. Molecular Science Research Center, 1991 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1992-03-01

    During 1991, the Molecular Science Research Center (MSRC) experienced solid growth and accomplishment and the Environmental, and Molecular Sciences Laboratory (EMSL) construction project moved forward. We began with strong programs in chemical structure and dynamics and theory, modeling, and simulation, and both these programs continued to thrive. We also made significant advances in the development of programs in materials and interfaces and macromolecular structure and dynamics, largely as a result of the key staff recruited to lead these efforts. If there was one pervasive activity for the past year, however, it was to strengthen the role of the EMSL in the overall environmental restoration and waste management (ER/WM) mission at Hanford. These extended activities involved not only MSRC and EMSL staff but all PNL scientific and technical staff engaged in ER/WM programs.

  2. Plasma Display at the Liberty Science Center

    Science.gov (United States)

    Bruder, Dan; Gilligan, Nick; Tarman, Lisa; Ferris, Pamella; Morgan, James; Delooper, John; Zwicker, Andrew

    2009-11-01

    The Liberty Science Center (LSC) is the largest (300,000 sq. ft.) education resource in the New Jersey -- New York City region. PPPL in collaboration with the LSC has had a display at the center since 2007 More than 1.5 million visitors have come to the museum since the plasma display has been introduced. The plasma display has had significant use during that time frame. During the summer of 2009 a redesigned plasma exhibit was created by a student teacher-team using the lessons learned from the existing exhibit. The display includes a DC glow discharge tube with a permanent external magnet allowing visitors to manipulate the plasma and see how plasma can be used for fusion research. The goal of the display is to allow an individual to see a plasma and understand the potential benefits of fusion energy.

  3. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  4. USGS Colorado Water Science Center bookmark

    Science.gov (United States)

    ,

    2016-12-05

    The U.S. Geological Survey Colorado Water Science Center conducts its water-resources activities primarily in Colorado in cooperation with more than 125 different entities. These activities include extensive data-collection efforts and studies of streamflow, water quality, and groundwater to address many specific issues of concern to Colorado water-management entities and citizens. The collected data are provided in the National Water Information System, and study results are documented in reports and information served on the Internet.

  5. The Brazilian Science Data Center (BSDC)

    Science.gov (United States)

    de Almeida, Ulisses Barres; Bodmann, Benno; Giommi, Paolo; Brandt, Carlos H.

    Astrophysics and Space Science are becoming increasingly characterised by what is now known as “big data”, the bottlenecks for progress partly shifting from data acquisition to “data mining”. Truth is that the amount and rate of data accumulation in many fields already surpasses the local capabilities for its processing and exploitation, and the efficient conversion of scientific data into knowledge is everywhere a challenge. The result is that, to a large extent, isolated data archives risk being progressively likened to “data graveyards”, where the information stored is not reused for scientific work. Responsible and efficient use of these large data-sets means democratising access and extracting the most science possible from it, which in turn signifies improving data accessibility and integration. Improving data processing capabilities is another important issue specific to researchers and computer scientists of each field. The project presented here wishes to exploit the enormous potential opened up by information technology at our age to advance a model for a science data center in astronomy which aims to expand data accessibility and integration to the largest possible extent and with the greatest efficiency for scientific and educational use. Greater access to data means more people producing and benefiting from information, whereas larger integration of related data from different origins means a greater research potential and increased scientific impact. The project of the BSDC is preoccupied, primarily, with providing tools and solutions for the Brazilian astronomical community. It nevertheless capitalizes on extensive international experience, and is developed in full cooperation with the ASI Science Data Center (ASDC), from the Italian Space Agency, granting it an essential ingredient of internationalisation. The BSDC is Virtual Observatory-complient and part of the “Open Universe”, a global initiative built under the auspices of the

  6. The IMAGE science and mission operations center

    Science.gov (United States)

    Burley, R. J.; Green, J. L.; Coyle, S. E.

    2000-01-01

    The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) will produce forefront science by quantifying the response of the magnetosphere to the time variable solar wind. It will acquire, for the first time, a variety of three-dimensional images of magnetospheric boundaries and plasma distributions extending from the magnetopause to the inner plasmasphere. The images will be produced on time scales needed to answer important questions about the interactions of the solar wind and the magnetosphere. The IMAGE team will provide open access to all IMAGE data. Thus there will be no proprietary rights or periods. All IMAGE data products will be archived and available to the scientific research community. The IMAGE mission will operate with a near 100% duty cycle with all instruments in their baseline operational modes. A Science and Mission Operations Control Center or SMOC has been developed at the NASA Goddard Space Flight Center (GSFC) to be the main data and command processing system for IMAGE. The IMAGE Level-0 data will be processed into Level 0.5 and Level-1 data and browse products within 24 hours after their receipt of raw data in the SMOC. These data products will be transferred to the NSSDC, for long-term archiving, and posted immediately on the world-wide-web for use by the international scientific community and the public.

  7. Interior's Climate Science Centers: Focus or Fail

    Science.gov (United States)

    Udall, B.

    2012-12-01

    After a whirlwind two years of impressive and critical infrastructure building, the Department of Interior's Climate Science Centers are now in a position to either succeed or fail. The CSCs have a number of difficult structural problems including too many constituencies relative to the available resources, an uneasy relationship among many of the constituencies including the DOI agencies themselves, a need to do science in a new, difficult and non-traditional way, and a short timeframe to produce useful products. The CSCs have built a broad and impressive network of scientists and stakeholders. These entities include science providers of the universities and the USGS, and decision makers from the states, tribes, DOI land managers and other federal agencies and NGOs. Rather than try to support all of these constituencies the CSCs would be better served by refocusing on a core mission of supporting DOI climate related decision making. The CSCs were designed to service the climate science needs of DOI agencies, many of which lost their scientific capabilities in the 1990s due to a well-intentioned but ultimately harmful re-organization at DOI involving the now defunct National Biological Survey. Many of these agencies would like to have their own scientists, have an uneasy relationship with the nominal DOI science provider, the USGS, and don't communicate effectively among themselves. The CSCs must not succumb to pursuing science in either the traditional mode of the USGS or in the traditional mode of the universities, or worse, both of them. These scientific partners will need to be flexible, learn how to collaborate and should expect to see fewer resources. Useful CSC processes and outputs should start with the recommendations of the 2009 NRC Report Informing Decisions in a Changing Climate: (1) begin with users' needs; (2) give priority to process over products; (3) link information producers and users; (4) build connections across disciplines and organizations

  8. The National Space Science and Technology Center (NSSTC)

    Science.gov (United States)

    2003-01-01

    The National Space Science and Technology Center (NSSTC), located in Huntsville, Alabama, is a laboratory for cutting-edge research in selected scientific and engineering disciplines. The major objectives of the NSSTC are to provide multiple fields of expertise coming together to solve solutions to science and technology problems, and gaining recognition as a world-class science research organization. The center, opened in August 2000, focuses on space science, Earth sciences, information technology, optics and energy technology, biotechnology and materials science, and supports NASA's mission of advancing and communicating scientific knowledge using the environment of space for research. In addition to providing basic and applied research, NSSTC, with its student participation, also fosters the next generation of scientists and engineers. NSSTC is a collaborated effort between NASA and the state of Alabama through the Space Science and Technology alliance, a group of six universities including the Universities of Alabama in Huntsville (UAH),Tuscaloosa (UA), and Birmingham (UAB); the University of South Alabama in Mobile (USA);Alabama Agricultural and Mechanical University (AM) in Huntsville; and Auburn University (AU) in Auburn. Participating federal agencies include NASA, Marshall Space Flight Center, the National Oceanic and Atmospheric Administration, the Department of Defense, the National Science Foundation, and the Department of Energy. Industries involved include the Space Science Research Center, the Global Hydrology and Climate Center, the Information Technology Research Center, the Optics and Energy Technology Center, the Propulsion Research Center, the Biotechnology Research Center, and the Materials Science Research Center. This photo shows the completed center with the additional arnex (right of building) that added an additional 80,000 square feet (7,432 square meters) to the already existent NSSTC, nearly doubling the size of the core facility. At

  9. Center for Study of Science, Technology and Policy

    International Development Research Centre (IDRC) Digital Library (Canada)

    TTI Phase 2 Institutional Support: Center for Study of Science, Technology and Policy. This funding will enhance the Center for Study of Science, Technology and Policy's (CSTEP) role as a credible public policy institution in India by strengthening its ability to provide high-quality, influential, and policy-relevant research.

  10. Science Center in Winterthur Lernen am Phänomen

    Science.gov (United States)

    Junge, Michel

    2005-07-01

    Science Center sollen die Naturwissenschaften und insbesondere die Physik erfahrbar machen, mit Phänomenen faszinieren und den Besucher selbst experimentieren lassen. Das Technorama im schweizerischen Winterthur war eines der ersten Science Center in Europa. Von hier einige Impressionen und Ideen.

  11. TTI Phase 2 Institutional Support: Center for Study of Science ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    TTI Phase 2 Institutional Support: Center for Study of Science, Technology and Policy. This funding will enhance the Center for Study of Science, Technology and Policy's (CSTEP) role as a credible public policy institution in India by strengthening its ability to provide high-quality, influential, and policy-relevant research.

  12. 15 CFR 950.6 - Environmental Science Information Center (ESIC).

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Environmental Science Information... REGULATIONS OF THE ENVIRONMENTAL DATA SERVICE ENVIRONMENTAL DATA AND INFORMATION § 950.6 Environmental Science...-NOAA publication series. (b) Queries should be addressed to: Environmental Science Information Center...

  13. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  14. LANSCE: Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Kippen, Karen Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-02

    The principle goals of this project is to increase flux and improve resolution for neutron energies above 1 keV for nuclear physics experiments; and preserve current strong performance at thermal energies for material science.

  15. Materials Centered Science and Manipulative Skill

    Science.gov (United States)

    Struve, Nancy L.; And Others

    1974-01-01

    Evaluated were effects of experience with two physical science units adapted for use by the visually impaired on the manipulative skills of 14 visually impaired low income students from 9 to 19 years of age. (DB)

  16. National Center for Advancing Translational Sciences

    Science.gov (United States)

    ... announced 13 awards to develop 3-D tissue chip research platforms Director's Corner Christopher P. Austin, M. ... Coordinating Center (DMCC) for Rare Diseases Clinical Research Network (RDCRN) (U01) NOT-TR-18-003 More Open ...

  17. The WFIRST Science Archive and Analysis Center

    Science.gov (United States)

    Heap, Sara R.; Szalay, Alexander S.; WFIRST Science Archive Team

    2017-06-01

    The Wide Field Infrared Survey Telescope (WFIRST) is a 2.4 m telescope with a large field of view (~ 0.3 deg2) and fine angular resolution (0.11''). WFIRST's Wide Field Instrument (WFI) will obtain images in the Z, Y, J, H, F184, W149 (wide) filter bands, and grism spectra of the same large field of view. The data volume of the WFIRST Science Archive is expected to reach a few Petabytes. We describe plans to enable users to find the data of interest and, if needed, to analyze the data in situ using sophisticated software tools provided by the archive. As preparation, we are building a mini-archive that will help us to define realistic science requirements and to design the full WFIRST Science Archive.

  18. Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is the home (archive) of Precipitation, Atmospheric Chemistry and Dynamics, and...

  19. HLRW management during MR reactor decommissioning in NRC 'Kurchatov Institute'

    Energy Technology Data Exchange (ETDEWEB)

    Chesnokov, Alexander; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Stepanov, Vyacheslav; Smirnov, Sergey; Potapov, Victor; Fadin, Sergey; Volkov, Victor; Shisha, Anatoly [NRC ' Kurchatov institute' , Moscow (Russian Federation)

    2013-07-01

    A program of decommissioning of MR research reactor in the Kurchatov institute started in 2008. The decommissioning work presumed a preliminary stage, which included: removal of spent fuel from near reactor storage; removal of spent fuel assemble of metal liquid loop channel from a core; identification, sorting and disposal of radioactive objects from gateway of the reactor; identification, sorting and disposal of radioactive objects from cells of HLRW storage of the Kurchatov institute for radwaste creating form the decommissioning of MR. All these works were performed by a remote controlled means with use of a remote identification methods of high radioactive objects. A distribution of activity along high radiated objects was measured by a collimated radiometer installed on the robot Brokk-90, a gamma image of the object was registered by gamma-visor. Spectrum of gamma radiation was measured by a gamma locator and semiconductor detector system. For identification of a presence of uranium isotopes in the HLRW a technique, based on the registration of characteristic radiation of U, was developed. For fragmentation of high radiated objects was used a cold cutting technique and dust suppression system was applied for reduction of volume activity of aerosols in air. The management of HLRW was performed by remote controlled robots Brokk-180 and Brokk-330. They executed sorting, cutting and parking of high radiated part of contaminated equipment. The use of these techniques allowed to reduce individual and collective doses of personal performed the decommissioning. The average individual dose of the personnel was 1,9 mSv/year in 2011, and the collective dose is estimated by 0,0605 man x Sv/year. Use of the remote control machines enables reducing the number of working personal (20 men) and doses. X-ray spectrometric methods enable determination of a presence of the U in high radiated objects and special cans and separation of them for further spent fuel inspection. The

  20. 76 FR 63615 - Environmental Science Center Microbiology Laboratory; Notice of Public Meeting

    Science.gov (United States)

    2011-10-13

    ...] Environmental Science Center Microbiology Laboratory; Notice of Public Meeting AGENCY: Environmental Protection... at the EPA Environmental Science Center Microbiology Laboratory. DATES: The meeting will be held on...

  1. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  2. Molecular Science Research Center annual report

    Energy Technology Data Exchange (ETDEWEB)

    Knotek, M.L.

    1991-01-01

    The Chemical Structure and Dynamics group is studying chemical kinetics and reactions dynamics of terrestrial and atmospheric processes as well as the chemistry of complex waste forms and waste storage media. Staff are using new laser systems and surface-mapping techniques in combination with molecular clusters that mimic adsorbate/surface interactions. The Macromolecular Structure and Dynamics group is determining biomolecular structure/function relationships for processes the control the biological transformation of contaminants and the health effects of toxic substances. The Materials and Interfaces program is generating information needed to design and synthesize advanced materials for the analysis and separation of mixed chemical waste, the long-term storage of concentrated hazardous materials, and the development of chemical sensors for environmental monitoring of various organic and inorganic species. The Theory, Modeling, and Simulation group is developing detailed molecular-level descriptions of the chemical, physical, and biological processes in natural and contaminated systems. Researchers are using the full spectrum of computational techniques. The Computer and Information Sciences group is developing new approaches to handle vast amounts of data and to perform calculations for complex natural systems. The EMSL will contain a high-performance computing facility, ancillary computing laboratories, and high-speed data acquisition systems for all major research instruments.

  3. A New Center for Science Education at UC Berkeley's Space Sciences Laboratory

    Science.gov (United States)

    Hawkins, I.

    1998-01-01

    The Space Sciences Laboratory at UC Berkeley has established a new Center for Science Education through the Laboratory's Senior Fellow program. The Center has a two-fold mission: (1) science education research through collaborations with UCB Graduate School of Education faculty, and (2) education and outreach projects that bring NASA research to the K-14 and general public communities. The Center is the host of two major education and outreach programs funded by NASA - The Sun-Earth Connection Education Forum (SECEF) and the Science Education Gateway (SEGway) Project. The SECEF - a collaborative between UC Berkeley and NASA's Goddard Space Flight Center - is one of four Forums that have been funded through the Office of Space Science as part of their Education Ecosystem. SEGway is a partnership between science research centers, science museums, and teachers, for the purpose of developing Internet-based, inquiry activities for the K-12 classroom that tap NASA remote sensing data. We will describe the Center for Science Education's history and vision, as well as summarize our core programs.

  4. Visitor empowerment and the authority of science: Exploring institutionalized tensions in a science center

    Science.gov (United States)

    Loomis, Molly

    This research explored the relationships among societal, organizational, and visitor assumptions about learning in a science center. The study combined a sociocultural theory of learning with a constructivist theory of organizations to examine empirical links among the history of the Exploratorium (founded in 1969 and located in San Francisco, California), its organizational practices, and family activity at its exhibits. The study focused on three perspectives on science learning in a science center: (1) the societal perspective, which traced assumptions about science learning to the history of science centers; (2) the organizational perspective, which documented the ways that assumptions about science learning were manifested in historic museum exhibits; and (3) the family perspective, which documented the assumptions about science learning that characterized family activity at historic exhibits. All three perspectives uncovered a tension between the goals of supporting public empowerment on the one hand and preserving scientific authority on the other. Findings revealed this tension to be grounded in the social context of the organization's development, where ideas about promoting democracy and preserving the authority of science intersected. The tension was manifested in museum exhibits, which had as their task addressing the dual purposes of supporting all visitors, while also supporting committed visitors. The tension was also evident in the activity of families, who echoed sentiments about potential for their own empowerment but deferred to scientific authority. The study draws on critiques of a hidden curriculum in schools in order to explore the relationship between empowerment and authority in science centers, specifically as they are conveyed in the explicit and underlying missions of the Exploratorium. Findings suggest the need for science centers to engage in ongoing critical reflection and also lend empirical justification to the need for science

  5. Collection and Collaboration: Science in Michigan Middle School Media Centers

    Science.gov (United States)

    Mardis, Marcia; Hoffman, Ellen

    2007-01-01

    In many ways, science classrooms and school library media centers are parallel universes struggling with their own reform issues and with documenting their own positive impacts. As the trend toward data-driven decisions grows in the school setting, it is increasingly important for every component of the learning environment to have demonstrable…

  6. Goddard Earth Science Data and Information Center (GES DISC)

    Science.gov (United States)

    Kempler, Steve

    2016-01-01

    The GES DIS is one of 12 NASA Earth science data centers. The GES DISC vision is to enable researchers and educators maximize knowledge of the Earth by engaging in understanding their goals, and by leading the advancement of remote sensing information services in response to satisfying their goals. This presentation will describe the GES DISC approach, successes, challenges, and best practices.

  7. Strategic plan for science-U.S. Geological Survey, Ohio Water Science Center, 2010-15

    Science.gov (United States)

    ,

    2010-01-01

    This Science Plan identifies specific scientific and technical programmatic issues of current importance to Ohio and the Nation. An examination of those issues yielded a set of five major focus areas with associated science goals and strategies that the Ohio Water Science Center will emphasize in its program during 2010-15. A primary goal of the Science Plan is to establish a relevant multidisciplinary scientific and technical program that generates high-quality products that meet or exceed the expectations of our partners while supporting the goals and initiatives of the U.S. Geological Survey. The Science Plan will be used to set the direction of new and existing programs and will influence future training and hiring decisions by the Ohio Water Science Center.

  8. [Science and society. Guidelines for the Leopoldina Study Center].

    Science.gov (United States)

    Hacker, Jörg

    2014-01-01

    In order to adequately perform its many diverse tasks as a scholars' society and as the German National Academy of Sciences, the Deutsche Akademie der Naturforscher Leopoldina needs to view itself in a historical context. This can only happen as part of a culture of remembrance which fosters the memory of the Leopoldina's past and subjects this to a critical analysis in the context of the history of science and academies. The newly founded Leopoldina Study Center for the History of Science and Science Academies is to be a forum that pursues established forms of historical research at the Leopoldina, organizes new scientific projects, and presents its findings to the public. The aim is to involve as many Leopoldina members as possible from all of its disciplines, as well as to collaborate with national and international partners.

  9. NASA's astrophysics archives at the National Space Science Data Center

    Science.gov (United States)

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  10. Status of the TESS Science Processing Operations Center

    Science.gov (United States)

    Jenkins, Jon M.; Twicken, Joseph D.; Campbell, Jennifer; Tenebaum, Peter; Sanderfer, Dwight; Davies, Misty D.; Smith, Jeffrey C.; Morris, Rob; Mansouri-Samani, Masoud; Girouardi, Forrest; hide

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) science pipeline is being developed by the Science Processing Operations Center (SPOC) at NASA Ames Research Center based on the highly successful Kepler Mission science pipeline. Like the Kepler pipeline, the TESS science pipeline will provide calibrated pixels, simple and systematic error-corrected aperture photometry, and centroid locations for all 200,000+ target stars, observed over the 2-year mission, along with associated uncertainties. The pixel and light curve products are modeled on the Kepler archive products and will be archived to the Mikulski Archive for Space Telescopes (MAST). In addition to the nominal science data, the 30-minute Full Frame Images (FFIs) simultaneously collected by TESS will also be calibrated by the SPOC and archived at MAST. The TESS pipeline will search through all light curves for evidence of transits that occur when a planet crosses the disk of its host star. The Data Validation pipeline will generate a suite of diagnostic metrics for each transit-like signature discovered, and extract planetary parameters by fitting a limb-darkened transit model to each potential planetary signature. The results of the transit search will be modeled on the Kepler transit search products (tabulated numerical results, time series products, and pdf reports) all of which will be archived to MAST.

  11. Informal science educators network project Association of Science-Technology Centers Incorporated. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-09

    Funding from the Department of Energy and the Annenberg/CPB Math and Science Project have helped the Association of Science-technology Centers Incorporated (ASTC) to establish and sustain an on-line community of informal science educators nationwide. The Project, called the Informal Science Educators Network Project (ISEN), is composed primarily of informal science educators and exhibit developers from science centers, museums, zoos, aquariums, botanical gardens, parks, and nature centers. Although museum-based professionals represent the majority of subscribers to ISEN, also involved are some classroom teachers and teacher educators from colleges and universities. Common to all ISEN participants is a commitment to school and science education reform. Specifically, funding from the Department of Energy helped to boot strap the effort, providing Barrier Reduction Vouchers to 123 educators that enabled them participate in ISEN. Among the major accomplishments of the Project are these: (1) assistance to 123 informal science educators to attend Internet training sessions held in connection with the Project and/or purchase hardware and software that linked them to the Internet; (2) Internet training for 153 informal science educators; (3) development of a listserv which currently has over 180 subscribers--an all-time high; (4) opportunity to participate in four web chats involving informal science educators with noted researchers; (5) development of two sites on the World Wide Web linking informal science educators to Internet resources; (6) creation of an on-line collection of over 40 articles related to inquiry-based teaching and science education reform. In order to continue the momentum of the Project, ASTC has requested from the Annenberg/CPB Math and Science project a no/cost extension through December 1997.

  12. Center for Advanced Signal and Imaging Sciences Workshop 2004

    Energy Technology Data Exchange (ETDEWEB)

    McClellan, J H; Carrano, C; Poyneer, L; Palmer, D; Baker, K; Chen, D; London, R; Weinert, G; Brase, J; Paglieroni, D; Lopez, A; Grant, C W; Wright, W; Burke, M; Miller, W O; DeTeresa, S; White, D; Toeppen, J; Haugen, P; Kamath, C; Nguyen, T; Manay, S; Newsam, S; Cantu-Paz, E; Pao, H; Chang, J; Chambers, D; Leach, R; Paulson, C; Romero, C E; Spiridon, A; Vigars, M; Welsh, P; Zumstein, J; Romero, K; Oppenheim, A; Harris, D B; Dowla, F; Brown, C G; Clark, G A; Ong, M M; Clance, T J; Kegelmeyer, l M; Benzuijen, M; Bliss, E; Burkhart, S; Conder, A; Daveler, S; Ferguson, W; Glenn, S; Liebman, J; Norton, M; Prasad, R; Salmon, T; Kegelmeyer, L M; Hafiz, O; Cheung, S; Fodor, I; Aufderheide, M B; Bary, A; Martz, Jr., H E; Burke, M W; Benson, S; Fisher, K A; Quarry, M J

    2004-11-15

    Welcome to the Eleventh Annual C.A.S.I.S. Workshop, a yearly event at the Lawrence Livermore National Laboratory, presented by the Center for Advanced Signal & Image Sciences, or CASIS, and sponsored by the LLNL Engineering Directorate. Every November for the last 10 years we have convened a diverse set of engineering and scientific talent to share their work in signal processing, imaging, communications, controls, along with associated fields of mathematics, statistics, and computing sciences. This year is no exception, with sessions in Adaptive Optics, Applied Imaging, Scientific Data Mining, Electromagnetic Image and Signal Processing, Applied Signal Processing, National Ignition Facility (NIF) Imaging, and Nondestructive Characterization.

  13. AMS data production facilities at science operations center at CERN

    Science.gov (United States)

    Choutko, V.; Egorov, A.; Eline, A.; Shan, B.

    2017-10-01

    The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on the board of the International Space Station (ISS). This paper presents the hardware and software facilities of Science Operation Center (SOC) at CERN. Data Production is built around production server - a scalable distributed service which links together a set of different programming modules for science data transformation and reconstruction. The server has the capacity to manage 1000 paralleled job producers, i.e. up to 32K logical processors. Monitoring and management tool with Production GUI is also described.

  14. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    Science.gov (United States)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-02-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and ``iron'' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper.

  15. The Fermi Science Support Center Data Servers and Archive

    Science.gov (United States)

    Reustle, Alexander; Fermi Science Support Center

    2018-01-01

    The Fermi Science Support Center (FSSC) provides the scientific community with access to Fermi data and other products. The Gamma-Ray Burst Monitor (GBM) data is stored at NASA's High Energy Astrophysics Science Archive Research Center (HEASARC) and is accessible through their searchable Browse web interface. The Large Area Telescope (LAT) data is distributed through a custom FSSC interface where users can request all photons detected from a region on the sky over a specified time and energy range. Through its website the FSSC also provides planning and scheduling products, such as long and short term observing timelines, spacecraft position and attitude histories, and exposure maps. We present an overview of the different data products provided by the FSSC, how they can be accessed, and statistics on the archive usage since launch.

  16. Abstracts of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development (2016

    Directory of Open Access Journals (Sweden)

    Vitor Reis

    2017-06-01

    Full Text Available The papers published in this book of abstracts / proceedings were submitted to the Scientific Commission of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development, held on 11 and 12 November 2016, at the University of Évora, Évora, Portugal, under the topic of Exercise and Health, Sports and Human Development. The content of the abstracts is solely and exclusively of its authors responsibility. The editors and the Scientific Committee of the International Congress of Research Center in Sports Sciences, Health Sciences & Human Development do not assume any responsibility for the opinions and statements expressed by the authors. Partial reproduction of the texts and their use without commercial purposes is allowed, provided the source / reference is duly mentioned.

  17. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    Science.gov (United States)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  18. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  19. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Todd R. Allen, Director

    2011-04-01

    The Office of Science, Basic Energy Sciences, has funded the INL as one of the Energy Frontier Research Centers in the area of material science of nuclear fuels. This document is the required annual report to the Office of Science that outlines the accomplishments for the period of May 2010 through April 2011. The aim of the Center for Material Science of Nuclear Fuels (CMSNF) is to establish the foundation for predictive understanding of the effects of irradiation-induced defects on thermal transport in oxide nuclear fuels. The science driver of the center’s investigation is to understand how complex defect and microstructures affect phonon mediated thermal transport in UO2, and achieve this understanding for the particular case of irradiation-induced defects and microstructures. The center’s research thus includes modeling and measurement of thermal transport in oxide fuels with different levels of impurities, lattice disorder and irradiation-induced microstructure, as well as theoretical and experimental investigation of the evolution of disorder, stoichiometry and microstructure in nuclear fuel under irradiation. With the premise that thermal transport in irradiated UO2 is a phonon-mediated energy transport process in a crystalline material with defects and microstructure, a step-by-step approach will be utilized to understand the effects of types of defects and microstructures on the collective phonon dynamics in irradiated UO2. Our efforts under the thermal transport thrust involved both measurement of diffusive phonon transport (an approach that integrates over the entire phonon spectrum) and spectroscopic measurements of phonon attenuation/lifetime and phonon dispersion. Our distinct experimental efforts dovetail with our modeling effort involving atomistic simulation of phonon transport and prediction of lattice thermal conductivity using the Boltzmann transport framework.

  20. Challenges for Data Archival Centers in Evolving Environmental Sciences

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Gu, L.; Santhana Vannan, S. K.; Beaty, T.

    2015-12-01

    Environmental science has entered into a big data era as enormous data about the Earth environment are continuously collected through field and airborne missions, remote sensing observations, model simulations, sensor networks, etc. An open-access and open-management data infrastructure for data-intensive science is a major grand challenge in global environmental research (BERAC, 2010). Such an infrastructure, as exemplified in EOSDIS, GEOSS, and NSF EarthCube, will provide a complete lifecycle of environmental data and ensures that data will smoothly flow among different phases of collection, preservation, integration, and analysis. Data archival centers, as the data integration units closest to data providers, serve as the source power to compile and integrate heterogeneous environmental data into this global infrastructure. This presentation discusses the interoperability challenges and practices of geosciences from the aspect of data archival centers, based on the operational experiences of the NASA-sponsored Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) and related environmental data management activities. Specifically, we will discuss the challenges to 1) encourage and help scientists to more actively share data with the broader scientific community, so that valuable environmental data, especially those dark data collected by individual scientists in small independent projects, can be shared and integrated into the infrastructure to tackle big science questions; 2) curate heterogeneous multi-disciplinary data, focusing on the key aspects of identification, format, metadata, data quality, and semantics to make them ready to be plugged into a global data infrastructure. We will highlight data curation practices at the ORNL DAAC for global campaigns such as BOREAS, LBA, SAFARI 2000; and 3) enhance the capabilities to more effectively and efficiently expose and deliver "big" environmental data to broad range of users and systems

  1. 2004 research briefs :Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  2. Life Sciences Division and Center for Human Genome Studies 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cram, L.S.; Stafford, C. [comp.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  3. 2003 research briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2003-08-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems and Materials Modeling and Computational Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  4. 2005 Research Briefs : Materials and Process Sciences Center.

    Energy Technology Data Exchange (ETDEWEB)

    Cieslak, Michael J.

    2005-05-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  5. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  6. Windowsill Science Centers: Turn Your Classroom Windowsill into the Perfect Lab for Easy-To-Do Science Investigations!

    Science.gov (United States)

    Kepler, Lynne

    Favorite science topics like seeds and plants, evaporation, light and shadow, and animal observation are the subjects of the eight windowsill science centers included in this book. Each of the science centers includes a discussion of the process skills that students will use, several hands-on activities, explanation of key concepts and vocabulary,…

  7. Five-year external reviews of the eight Department of Interior Climate Science Centers: Southeast Climate Science Center

    Science.gov (United States)

    Rice, Kenneth G.; Beier, Paul; Breault, Tim; Middleton, Beth A.; Peck, Myron A.; Tirpak, John M.; Ratnaswamy, Mary; Austen, Douglas; Harrison, Sarah

    2017-01-01

    In 2008, the U.S. Congress authorized the establishment of the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Department of Interior (DOI). Housed administratively within the U.S. Geological Survey (USGS), NCCWSC is part of the DOI’s ongoing mission to meet the challenges of climate change and its effects on wildlife and aquatic resources. From 2010 through 2012, NCCWSC established eight regional DOI Climate Science Centers (CSCs). Each of these regional CSCs operated with the mission to “synthesize and integrate climate change impact data and develop tools that the Department’s managers and partners can use when managing the Department’s land, water, fish and wildlife, and cultural heritage resources” (Salazar 2009). The model developed by NCCWSC for the regional CSCs employed a dual approach of a federal USGS-staffed component and a parallel host-university component established competitively through a 5-year cooperative agreement with NCCWSC. At the conclusion of this 5-year agreement, a review of each CSC was undertaken, with the Southeast Climate Science Center (SE CSC) review in February 2016. The SE CSC is hosted by North Carolina State University (NCSU) in Raleigh, North Carolina, and is physically housed within the NCSU Department of Applied Ecology along with the Center for Applied Aquatic Ecology, the North Carolina Cooperative Fish and Wildlife Research Unit (CFWRU), and the North Carolina Agromedicine Institute. The U.S. Department of Agriculture Southeast Regional Climate Hub is based at NCSU as is the National Oceanic and Atmospheric Administration (NOAA) Southeast Regional Climate Center, the North Carolina Institute for Climate Studies, the North Carolina Wildlife Resources Commission, the NOAA National Weather Service, the State Climate Office of North Carolina, and the U.S. Forest Service Eastern Forest Environmental Threat Assessment Center. This creates a strong core of organizations operating in

  8. Florida Integrated Science Center (FISC) Coral Reef Research

    Science.gov (United States)

    Poore, D.Z.

    2008-01-01

    Coral reefs provide important ecosystem services such as shoreline protection and the support of lucrative industries including fisheries and tourism. Such ecosystem services are being compromised as reefs decline due to coral disease, climate change, overfishing, and pollution. There is a need for focused, integrated science to understand the complex ecological interactions and effects of these many stressors and to provide information that will effectively guide policies and best management practices to preserve and restore these important resources. The U.S. Geological Survey Florida Integrated Science Center (USGS-FISC) is conducting a coordinated Coral Reef Research Project beginning in 2009. Specific research topics are aimed at addressing priorities identified in the 'Strategic Science for Coral Ecosystems 2007-2011' document (U.S. Geological Survey, 2007). Planned research will include a blend of historical, monitoring, and process studies aimed at improving our understanding of the development, current status and function, and likely future changes in coral ecosystems. Topics such as habitat characterization and distribution, coral disease, and trends in biogenic calcification are major themes of understanding reef structure, ecological integrity, and responses to global change.

  9. Presearch Data Conditioning in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Chandrasekaran, Hema; Jenkins, Jon M.; Gunter, Jay P.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Presearch Data Conditioning (PDC) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this component are to correct systematic and other errors, remove excess flux due to aperture crowding, and condition the raw flux light curves for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) targets across the focal plane array. Long cadence corrected flux light curves are subjected to a transiting planet search in a subsequent pipeline module. We discuss the science algorithms for long and short cadence PDC: identification and correction of unexplained (i.e., unrelated to known anomalies) discontinuities; systematic error correction; and excess flux removal. We discuss the propagation of uncertainties from raw to corrected flux. Finally, we present examples of raw and corrected flux time series for flight data to illustrate PDC performance. Corrected flux light curves produced by PDC are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and will be made available to the general public in accordance with the NASA/Kepler data release policy.

  10. The Role of Informal Science Centers in Science Education: Attitudes, Skills, and Self-efficacy

    Directory of Open Access Journals (Sweden)

    Irit Sasson

    2014-09-01

    Full Text Available Informal learning relates to activities that occur outside the school environment. These learning environments, such as visits to science centers provide valuable motivational opportunities for students to learn science. The purpose of this study was to investigate the role of the pre-academic center in science education and particularly to explore its effects on 750 middle-school students' attitudes toward science, their scientific thinking skills and self-efficacy. Pre and post-case based questionnaires were designed to assess the students’ higher order thinking skills – inquiry, graphing, and argumentation. In addition, a five-point Likert scale questionnaire was used to assess students' attitudes and self-efficacy. The research results indicated a positive effect of the pre-academic science center activities on scientific thinking skills. A significant improvement in the students' inquiry and graphing skills was found, yet non significant differences were found in argumentation skill. The students significantly improved their ability to ask research questions based on reading a scientific text, and to describe and analyze research results that were presented graphically. While no significant differences were found between girls and boys in the pre-questionnaire, in the post-questionnaire the girls' scores in inquiry skill were significantly higher than boys' scores. Increases in students' positive attitudes toward science and self-efficacy were found but the results were not statistically significant. However, the program length was found to be an important variable that affects achievement of educational goals. A three-dimension-based framework is suggested to characterize learning environments: organizational, psychological, and pedagogical.

  11. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  12. Actionable Science Lessons Emerging from the Department of Interior Climate Science Center Network

    Science.gov (United States)

    McMahon, G.; Meadow, A. M.; Mikels-Carrasco, J.

    2015-12-01

    The DOI Advisory Committee on Climate Change and Natural Resource Science (ACCCNRS) has recommended that co-production of actionable science be the core programmatic focus of the Climate Science Center enterprise. Efforts by the Southeast Climate Science Center suggest that the complexity of many climate adaptation decision problems (many stakeholders that can influence implementation of a decision; the problems that can be viewed at many scales in space and time; dynamic objectives with competing values; complex, non-linear systems) complicates development of research-based information that scientists and non-scientists view as comprehensible, trustworthy, legitimate, and accurate. Going forward, organizers of actionable science efforts should consider inclusion of a broad set of stakeholders, beyond formal decisionmakers, and ensure that sufficient resources are available to explore the interests and values of this broader group. Co-produced research endeavors should foster agency and collaboration across a wide range of stakeholders. We recognize that stakeholder agency may be constrained by scientific or political power structures that limit the ability to initiate discussion, make claims, and call things into question. Co-production efforts may need to be preceded by more descriptive assessments that summarize existing climate science in ways that stakeholders can understand and link with their concerns. Such efforts can build rapport and trust among scientists and non-scientists, and may help stakeholders and scientists alike to frame adaptation decision problems amenable to a co-production effort. Finally, university and government researchers operate within an evaluation structure that rewards researcher-driven science that, at the extreme, "throws information over the fence" in the hope that information users will make better decisions. Research evaluation processes must reward more consultative, collaborative, and collegial research approaches if

  13. DOI Climate Science Centers--Regional science to address management priorities

    Science.gov (United States)

    O'Malley, Robin

    2012-01-01

    Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.

  14. Health science center faculty attitudes towards interprofessional education and teamwork.

    Science.gov (United States)

    Gary, Jodie C; Gosselin, Kevin; Bentley, Regina

    2018-03-01

    The attitudes of faculty towards interprofessional education (IPE) and teamwork impact the education of health professions education (HPE) students. This paper reports on a study evaluating attitudes from health professions educators towards IPE and teamwork at one academic health science center (HSC) where modest IPE initiatives have commenced. Drawing from the results of a previous investigation, this study was conducted to examine current attitudes of the faculty responsible for the training of future healthcare professionals. Survey data were collected to evaluate attitudes from HSC faculty, dentistry, nursing, medicine, pharmacy and public health. In general, positive HSC faculty attitudes towards interprofessional learning, education, and teamwork were significantly predicted by those affiliated with the component of nursing. Faculty development aimed at changing attitudes and increasing understanding of IPE and teamwork are critical. Results of this study serve as an underpinning to leverage strengths and evaluate weakness in initiating IPE.

  15. Scheduling at the Los Alamos Neutron Science Center (LANSCE)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, F.R.

    1999-02-01

    The centerpieces of the Los Alamos Neutron Science Center (LANSCE) are a half-mile long 800-MeV proton linear accelerator and proton storage ring. The accelerator, storage ring, and target stations provide the protons and spallation neutrons that are used in the numerous basic research and applications experimental programs supported by the US Department of Energy. Experimental users, facility maintenance personnel, and operations personnel must work together to achieve the most program benefit within defined budget and resource constraints. In order to satisfy the experimental users programs, operations must provide reliable and high quality beam delivery. Effective and efficient scheduling is a critical component to achieve this goal. This paper will detail how operations scheduling is presently executed at the LANSCE accelerator facility.

  16. ATHENA: Remote Sensing Science Center for Cultural Heritage in Cyprus

    Science.gov (United States)

    Hadjimitsis, Diofantos G.; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriakos; Cuca, Branka; Lasaponara, Rosa; Masini, Nicola; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2016-04-01

    The Cultural Heritage (CH) sector, especially those of monuments and sites has always been facing a number of challenges from environmental pressure, pollution, human intervention from tourism to destruction by terrorism.Within this context, CH professionals are seeking to improve currently used methodologies, in order to better understand, protect and valorise the common European past and common identity. "ATHENA" H2020-TWINN-2015 project will seek to improve and expand the capabilities of the Cyprus University of Technology, involving professionals dealing with remote sensing technologies for supporting CH sector from the National Research Center of Italy (CNR) and German Aerospace Centre (DLR). The ATHENA centre will be devoted to the development, introduction and systematic use of advanced remote sensing science and technologies in the field of archaeology, built cultural heritage, their multi-temporal analysis and interpretation and the distant monitoring of their natural and anthropogenic environment in the area of Eastern Mediterranean.

  17. Mobile Gaming and Student Interactions in a Science Center: The Future of Gaming in Science Education

    Science.gov (United States)

    Atwood-Blaine, Dana; Huffman, Douglas

    2017-01-01

    This article explores the impact of an augmented reality iPad-based mobile game, called The Great STEM Caper, on students' interaction at a science center. An open-source, location-based game platform called ARIS (i.e. Augmented Reality and Interactive Storytelling) was used to create an iPad-based mobile game. The game used QR scan codes and a…

  18. The Stocker AstroScience Center at Florida International University

    Science.gov (United States)

    Webb, James R.

    2014-01-01

    The new Stocker AstroScience Center located on the MMC campus at Florida International University in Miami Florida represents a unique facility for STEM education that arose from a combination of private, State and university funding. The building, completed in the fall of 2013, contains some unique spaces designed not only to educate, but also to inspire students interested in science and space exploration. The observatory consists of a 4-story building (3 floors) with a 24” ACE automated telescope in an Ash dome, and an observing platform above surrounding buildings. Some of the unique features of the observatory include an entrance/exhibition hall with a 6-ft glass tile floor mural linking the Florida climate to space travel, a state-of-the art telescope control that looks like a starship bridge, and displays such as “Music from the universe”. The observatory will also be the focus of our extensive public outreach program that is entering its 20 year.

  19. HEASARC - The High Energy Astrophysics Science Archive Research Center

    Science.gov (United States)

    Smale, Alan P.

    2011-01-01

    The High Energy Astrophysics Science Archive Research Center (HEASARC) is NASA's archive for high-energy astrophysics and cosmic microwave background (CMB) data, supporting the broad science goals of NASA's Physics of the Cosmos theme. It provides vital scientific infrastructure to the community by standardizing science data formats and analysis programs, providing open access to NASA resources, and implementing powerful archive interfaces. Over the next five years the HEASARC will ingest observations from up to 12 operating missions, while serving data from these and over 30 archival missions to the community. The HEASARC archive presently contains over 37 TB of data, and will contain over 60 TB by the end of 2014. The HEASARC continues to secure major cost savings for NASA missions, providing a reusable mission-independent framework for reducing, analyzing, and archiving data. This approach was recognized in the NRC Portals to the Universe report (2007) as one of the HEASARC's great strengths. This poster describes the past and current activities of the HEASARC and our anticipated developments in coming years. These include preparations to support upcoming high energy missions (NuSTAR, Astro-H, GEMS) and ground-based and sub-orbital CMB experiments, as well as continued support of missions currently operating (Chandra, Fermi, RXTE, Suzaku, Swift, XMM-Newton and INTEGRAL). In 2012 the HEASARC (which now includes LAMBDA) will support the final nine-year WMAP data release. The HEASARC is also upgrading its archive querying and retrieval software with the new Xamin system in early release - and building on opportunities afforded by the growth of the Virtual Observatory and recent developments in virtual environments and cloud computing.

  20. Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests

    Science.gov (United States)

    Ryker, S. J.

    2014-12-01

    The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on

  1. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  2. 78 FR 50102 - Notice of Inventory Completion: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-08-16

    ..., 1924, the Rochester Museum & Science Center (then Rochester Museum of Arts and Sciences) purchased the... on the box as an old style Tlingit design probably dating to the late 1700s. This documentary...

  3. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of Landsat 7 scenes created for aesthetic purposes rather than scientific...

  4. Person-centered pain management - science and art.

    Science.gov (United States)

    Braš, Marijana; Đorđević, Veljko; Janjanin, Mladen

    2013-06-01

    We are witnessing an unprecedented development of the medical science, which promises to revolutionize health care and improve patients' health outcomes. However, the core of the medical profession has always been and will be the relationship between the doctor and the patient, and communication is the most widely used clinical skill in medical practice. When we talk about different forms of communication in medicine, we must never forget the importance of communication through art. Although one of the simplest, art is the most effective way to approach the patient and produce the effect that no other means of communication can achieve. Person-centered pain management takes into account psychological, physical, social, and spiritual aspects of health and disease. Art should be used as a therapeutic technique for people who suffer from pain, as well as a means of raising public awareness of this problem. Art can also be one of the best forms of educating medical professionals and others involved in treatment and decision-making on pain.

  5. Temperature, salinity and nutrient data from bottle casts from the North Atlantic and Norwegian Sea from the AKADEMIK KURCHATOV and CRILION from 29 November 1970 to 20 September 1975 (NODC Accession 0000429)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bottle and other data were collected from the North Atlantic and Norwegian Sea from the AKADEMIK KURCHATOV and CRILION from 29 November 1970 to 20 September 1975....

  6. Current meter, and other data from current meter from the AKADEMIK KURCHATOV as part of the GARP (Global Atmospheric Research Program) Atlantic Tropical Experiment (GATE) project, 29 July 1974 - 15 August 1974 (NODC Accession 7601678)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current meter, and other data were collected using current meter from the AKADEMIK KURCHATOV from July 29, 1974 to August 15, 1974. Data were submitted by a station...

  7. The Wilkins Institute for Science Education: A science-centered magnet school

    Science.gov (United States)

    Wilkins, Gary Dean

    The problem that this study addressed is that excellent science instruction is not consistently provided by traditional public schools. This study utilized a review of the literature, interviews, surveys, and focus groups. This study provides the basis for the proposed design of a school that can be the solution to the problem. Conducted in 1995, the Third International Mathematics and Science Study (TIMSS) showed that our efforts to improve U.S. education have had some successes, but overall have been ineffective in raising U.S. performance from a middle-of-the-pack position. At the end of secondary schooling, which in the U.S. is 12 th grade, U.S. performance was among the lowest in both science and math, including our most advanced students (National Center for Educational Statistics, 2001). For this research project I surveyed 412 students and 218 parents or guardians. I conducted interviews and focus groups with 10 participants who were science teachers or educators, and 10 participants who were scientists. The surveys presented 12 factors, believed to be valued as part of an excellent science education, which were security, social activities, sports, computers, reading and writing, hands-on equipment, industry support, and cafeteria. The survey participants rated each factor from most to least important. The focus groups and the interviews covered science education in general, as well as these same 12 topics. Students and parents agreed that qualified instructors is the item that is most important to provide quality science instruction. Students and parents disagreed most on the item reading and writing, which students ranked 9th, but parents ranked 2nd, a difference of 7 rankings. Considering only the item that was ranked number 1, students identified sports most often as most important, but parents disagreed and ranked this 8th, a difference of 7 ranks. After this dissertation is completed, it is my intent to benefit students with the implementation of the

  8. The National Centers for Ocean Sciences Education Excellence Network: Building Bridges Between Ocean Scientists and Science Education

    Science.gov (United States)

    Scowcroft, G.; Hotaling, L. A.

    2009-12-01

    Since 2002 the National Centers for Ocean Sciences Education Excellence (COSEE) Network, funded by the National Science Foundation with support from the National Oceanic and Atmospheric Administration, has worked to increase the understanding of the ocean and its relevance to society. The Network is currently comprised of twelve Centers located throughout the United States and a Central Coordinating Office. COSEE focuses on innovative activities that transform and broaden participation in the ocean science education enterprise. A key player in the national ocean literacy movement, COSEE’s objectives are to develop partnerships between ocean scientists and educators and foster communication and coordination among ocean science education programs nationwide. COSEE has grown into the nation's most comprehensive ocean science and education network with over 200 partners, including universities and research institutions, community colleges, school districts, informal science education institutions, and state/federal agencies. Each Center is a consortium of one or more ocean science research institutions, informal science education organizations, and formal education entities. The mission of the National COSEE Network is to engage scientists and educators to transform ocean sciences education. Center activities include the development of catalytic partnerships among diverse institutions, the integration of ocean science research into high-quality educational materials, and the establishment of pathways that enable ocean scientists to interact with educators, students, and the public. In addition to the work and projects implemented locally and regionally by the Centers, Network-level efforts occur across Centers, such as the national promotion of Ocean Literacy Principals and encouragement of our nation’s youth to pursue ocean related areers. This presentation will offer several examples of how the National COSEE Network is playing an important and evolving role in

  9. Grid Integration Science, NREL Power Systems Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, Benjamin [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-25

    This report highlights journal articles published in 2016 by researchers in the Power Systems Engineering Center. NREL's Power Systems Engineering Center published 47 journal and magazine articles in the past year, highlighting recent research in grid modernization.

  10. Lujan at Los Alamos Neutron Science Center (LANSCE)

    Data.gov (United States)

    Federal Laboratory Consortium — The Lujan Neutron Scattering Center (Lujan Center) at Los Alamos National Laboratory is an intense pulsed neutrons source operating at a power level of 80 -100 kW....

  11. 78 FR 11680 - Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2013-02-19

    ... National Park Service Notice of Intent To Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Rochester Museum... Rochester Museum & Science Center. DATES: Representatives of any Indian tribe that believes it has a...

  12. Narrative as a learning tool in science centers : potentials, possibilities and merits

    NARCIS (Netherlands)

    Murmann, Mai; Avraamidou, Lucy

    2014-01-01

    In this theoretical paper we explore the use of narrative as a learning tool in informal science settings. Specifically, the purpose of this paper is to ex-plore how narrative can be applied to exhibits in the context of science centers to scaffold visitors science learning. In exploring this idea,

  13. Role of Suzanne Mubarak Science Exploration Center in Motivating Physics Learning (abstract)

    Science.gov (United States)

    Mohsen, Mona

    2009-04-01

    The role of Science Exploration centers to promote learning ``beyond school walls'' is demonstrated. The Suzane Mubarak Science Exploration Center (www.smsec.com) at Hadaek El Kobba, Cairo, was inaugurated in 1998 with the assistance of Zusane Mubarak, the first lady of Egypt and the minister of education. It was the first interactive science and technology center in Egypt. After 10 years, the number of centers has increased to 33 nationwide. Since its inauguration the center has received over 3 million visitors. Through different facilities, such as the internet, science cities, multimedia, and virtual reality programs, basic principles of science are simplified and their technological applications in our daily lives are explored. These facilities are fully equipped with new media such as video conferencing, videotapes, overhead projectors, data shows, and libraries, as well as demonstration tools for basic science. The main objectives of the science exploration centers are discussed such as: (1) curricula development for on-line learning; (2) integration of e-learning programs into basic science (physics, mathematics, chemistry, and biology) and (3) workshops and organizations for students, teachers, and communities dealing with basic science programs.

  14. The Swiss Data Science Center on a mission to empower reproducible, traceable and reusable science

    Science.gov (United States)

    Schymanski, Stanislaus; Bouillet, Eric; Verscheure, Olivier

    2017-04-01

    Our abilities to collect, store and analyse scientific data have sky-rocketed in the past decades, but at the same time, a disconnect between data scientists, domain experts and data providers has begun to emerge. Data scientists are developing more and more powerful algorithms for data mining and analysis, while data providers are making more and more data publicly available, and yet many, if not most, discoveries are based on specific data and/or algorithms that "are available from the authors upon request". In the strong belief that scientific progress would be much faster if reproduction and re-use of such data and algorithms was made easier, the Swiss Data Science Center (SDSC) has committed to provide an open framework for the handling and tracking of scientific data and algorithms, from raw data and first principle equations to final data products and visualisations, modular simulation models and benchmark evaluation algorithms. Led jointly by EPFL and ETH Zurich, the SDSC is composed of a distributed multi-disciplinary team of data scientists and experts in select domains. The center aims to federate data providers, data and computer scientists, and subject-matter experts around a cutting-edge analytics platform offering user-friendly tooling and services to help with the adoption of Open Science, fostering research productivity and excellence. In this presentation, we will discuss our vision of a high-scalable open but secure community-based platform for sharing, accessing, exploring, and analyzing scientific data in easily reproducible workflows, augmented by automated provenance and impact tracking, knowledge graphs, fine-grained access right and digital right management, and a variety of domain-specific software tools. For maximum interoperability, transparency and ease of use, we plan to utilize notebook interfaces wherever possible, such as Apache Zeppelin and Jupyter. Feedback and suggestions from the audience will be gratefully considered.

  15. Integrating pediatric hospitalists in the academic health science center: practice and perceptions in a Canadian center.

    Science.gov (United States)

    Mahant, Sanjay; Mekky, Magda; Parkin, Patricia

    2010-04-01

    The integration of hospitalists in academic settings has been identified as a challenge to the hospitalist movement. The Division of Pediatric Medicine, Hospital for Sick Children, Toronto, was established in 1981, providing a rich resource to examine this field in the academic context and inform academic program development. To explore the characteristics, practice, perceptions, and contributions of pediatric hospital medicine in an academic health science center (AHSC). A cross-sectional survey of physicians attending on the pediatric medicine inpatient unit (PMIU) (n = 20). Clinical activity included attending on the PMIU, consultation and comanagement outside the PMIU, and outpatient care of "hospital intense" patients. There was a high level of engagement in research, education, and quality improvement activities. Perceived advantages to a career as a hospitalist included: working in a team; generalist approach to care; stability relative to community practice; intellectually stimulating and rewarding work; and growing area for scholarship. Perceived disadvantages to a career as a hospitalist included: burnout; recognition and respect; and lack of long-term relationships with patients. Themes regarding barriers to establishing a career as a hospitalist in an AHSC were as follows: burnout; time and skills to develop an academic niche; balance between clinical and academic priorities; and system for career advancement. The contributions of pediatric hospitalists to the academic mission were diverse. Fellowship training, faculty development, and balance between time allocated to direct patient care and academic pursuits should be defined. This will help ensure career development, viability, and realization of excellence in the academic context. (c) 2010 Society of Hospital Medicine.

  16. Center forTelehealth and Cybermedicine Research, University of New Mexico Health Sciences Center: a model of a telehealth program within an academic medical center.

    Science.gov (United States)

    Alverson, Dale C; Dion, Denise; Migliorati, Margaret; Rodriguez, Adrian; Byun, Hannah W; Effertz, Glen; Duffy, Veronica; Monge, Benjamin

    2013-05-01

    An overview of the Center for Telehealth and Cybermedicine Research at the University of New Mexico Health Sciences Center was presented along with several other national and international programs as part of the of a symposium-workshop on telehealth, "Sustaining and Realizing the Promise of Telemedicine," held at the University of Michigan Health System in Ann Arbor, MI, May 18-19, 2012 and hosted by the University of Michigan Telemedicine Resource Center and its Director, Rashid Bashshur. This article describes our Center, its business plan, and a view to the future.

  17. Program Analysis and Design Requirements for tne National Science Center

    Science.gov (United States)

    1991-02-01

    center. At Indianapolis, visitors are offered rental strollers for small children. Rental lockers were available at the Ontario center. Museum Store... issues and physics which are "invisibie" they are very difticult to engage from an on hand point of view. Therefore, they are not very successful, nor

  18. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Belleview Public Schools Anthony, Margaret, Northwest Elementary School Appel, Alice, No. 70 Elementary School Appleman, Daniel E., Geologist ...Patricia A., Geologist Research Center National Air and Space Museum Jacobs, Betsy, Director of Children’s Education Brooklyn Botanic Garden Jacobs...John, President Amateur Astronomers Association of New York City Pear, Lou, Science Coordinator West Hill School Pearsall, Robert, Kingston Elementary

  19. U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan

    Science.gov (United States)

    Jones, Sonya A.; Dalton, Melinda S.

    2012-01-01

    Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response

  20. Western Mineral and Environmental Resources Science Center--providing comprehensive earth science for complex societal issues

    Science.gov (United States)

    Frank, David G.; Wallace, Alan R.; Schneider, Jill L.

    2010-01-01

    Minerals in the environment and products manufactured from mineral materials are all around us and we use and come into contact with them every day. They impact our way of life and the health of all that lives. Minerals are critical to the Nation's economy and knowing where future mineral resources will come from is important for sustaining the Nation's economy and national security. The U.S. Geological Survey (USGS) Mineral Resources Program (MRP) provides scientific information for objective resource assessments and unbiased research results on mineral resource potential, production and consumption statistics, as well as environmental consequences of mining. The MRP conducts this research to provide information needed for land planners and decisionmakers about where mineral commodities are known and suspected in the earth's crust and about the environmental consequences of extracting those commodities. As part of the MRP scientists of the Western Mineral and Environmental Resources Science Center (WMERSC or 'Center' herein) coordinate the development of national, geologic, geochemical, geophysical, and mineral-resource databases and the migration of existing databases to standard models and formats that are available to both internal and external users. The unique expertise developed by Center scientists over many decades in response to mineral-resource-related issues is now in great demand to support applications such as public health research and remediation of environmental hazards that result from mining and mining-related activities. Western Mineral and Environmental Resources Science Center Results of WMERSC research provide timely and unbiased analyses of minerals and inorganic materials to (1) improve stewardship of public lands and resources; (2) support national and international economic and security policies; (3) sustain prosperity and improve our quality of life; and (4) protect and improve public health, safety, and environmental quality. The MRP

  1. A cross-case analysis of three Native Science Field Centers

    Science.gov (United States)

    Augare, Helen J.; Davíd-Chavez, Dominique M.; Groenke, Frederick I.; Little Plume-Weatherwax, Melissa; Lone Fight, Lisa; Meier, Gene; Quiver-Gaddie, Helene; Returns From Scout, Elvin; Sachatello-Sawyer, Bonnie; St. Pierre, Nate; Valdez, Shelly; Wippert, Rachel

    2017-06-01

    Native Science Field Centers (NSFCs) were created to engage youth and adults in environmental science activities through the integration of traditional Native ways of knowing (understanding about the natural world based on centuries of observation including philosophy, worldview, cosmology, and belief systems of Indigenous peoples), Native languages, and Western science concepts. This paper focuses on the Blackfeet Native Science Field Center, the Lakota Native Science Field Center, and the Wind River Native Science Field Center. One of the long-term, overarching goals of these NSFCs was to stimulate the interest of Native American students in ways that encouraged them to pursue academic and career paths in science, technology, engineering, and mathematics (STEM) fields. A great deal can be learned from the experiences of the NSFCs in terms of effective educational strategies, as well as advantages and challenges in blending Native ways of knowing and Western scientific knowledge in an informal science education setting. Hopa Mountain—a Bozeman, Montana-based nonprofit—partnered with the Blackfeet Community College on the Blackfeet Reservation, Fremont County School District #21 on the Wind River Reservation, and Oglala Lakota College on the Pine Ridge Reservation to cooperatively establish the Native Science Field Centers. This paper presents a profile of each NSFC and highlights their program components and accomplishments.

  2. Recent experimental and analytical results on hydrogen combustion at RRC {open_quotes}Kurchatov Institute{close_quotes}

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeev, S.B.; Efimenko, A.A.; Kochurko, A.S.; Sidorov, V.P. [Kurchatov Institute, Moscow (Russian Federation)

    1996-03-01

    A review of hydrogen combustion research at Kurchatov Institute is presented. Criterion for spontaneous detonation onset possibility and its application to severe accidents in a nuclear power plant is discussed. Theoretical and experimental results on spontaneous detonation onset conditions are summarized. Three series of large scale turbulent jet initiation experiments have been carried out in KOPER facility (50 m{sup 3} and 150 m{sup 3}). Series of jet initiation experiments in initially confined H{sub 2} - air mixtures have been carried out in KOPER facility (20-46 m{sup 3}). Turbulent deflagration/DDT experiments were carried out in large scale confined volume of 480 m{sup 3} in RUT facility. Results showed, that the characteristic volume size should be used for conservative estimates in accident analysis. Series of experiments on detonation transition from one mixture to another of lower sensitivity has been carried in DRIVER facility. The experiments were aimed on the estimation of the minimum size of a detonation kernel. The received results are in a good agreement with the 7 cell width criterion. Results of combined hydrogen injection/ignition experiments are presented. The experiments are aimed on the investigation of possible consequences of deliberate ignition at dynamic conditions. Analysis of the experimental data showed applicability of 7 cell width criterion to dynamic conditions. The sum of the results on the scaling of spontaneous detonations is discussed in connection with the strategy of hydrogen mitigation at severe accidents.

  3. Educational Outreach at the MIT Plasma Science and Fusion Center

    Science.gov (United States)

    Rivenberg, Paul; Thomas, Paul

    2006-10-01

    At the MIT PSFC, student and staff volunteers work together to increase the public's knowledge of fusion science and plasma technology. Seeking to generate excitement in young people about science and engineering, the PSFC hosts a number of educational outreach activities throughout the year, including Middle and High School Outreach Days. The PSFC also has an in-school science demonstration program on the theme of magnetism. The Mr. Magnet Program, headed by Mr. Paul Thomas, has been bringing lively demonstrations on magnetism into local elementary and middle schools for 15 years. This year Mr. Magnet presented the program to nearly 30,000 students at over 67 schools and other events, reaching kindergartners through college freshmen. In addition to his program on magnetism, he is offering an interactive lecture about plasma to high schools. The "Traveling Plasma Lab" encourages students to learn more about plasma science while having fun investigating plasma properties using actual laboratory techniques and equipment. Beyond the classroom, Paul Thomas has provided technical training for Boston Museum of Science staff in preparation for the opening of a Star Wars exhibit. His hands-on demos have also been filmed by the History Channel for a one-hour program about Magnetism, which aired in June 2006.

  4. Systems Sustainability: Implementation of Enhanced Maintenance Programs at the Kurchatov Institute, the All-Russian Research Institute of Experimental physics and the All-Russian Scientific Institute for Technical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coppinger, M.; Pikula, M.; Randolph, J.D.; Windham, M.

    1999-09-20

    Implementation of quality maintenance programs is essential to enhancing sustainable continuous operations of United States funded Materials Protection, Control and Accountability (MPC and A) equipment/systems upgrades at various Russian nuclear facilities. An effective maintenance program is expected to provide assurances to both parties for achieving maximum continuous systems operations with minimum down time. To be effective, the program developed must focus on minimum down time for any part of a system. Minimum down time is realized through the implementation of a quality maintenance program that includes preventative maintenance, necessary diagnostic tools, properly trained technical staff, and an in-house inventory of required spare parts for repairing the impacted component of the system. A centralized maintenance management program is logistically essential for the success of this effort because of the large volume of MPC and A equipment/systems installed at those sites. This paper will discuss current programs and conditions at the Russian Research Center-Kurchatov Institute, the All-Russian Scientific Institute for Technical Physics and the All-Russian Research Institute of Experimental Physics and will address those steps necessary to implement an upgraded program at those sites.

  5. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 3

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the Earth as Art Three exhibit, which provides fresh and inspiring glimpses of different parts of...

  6. Earth Resources Observation and Science (EROS) Center's Journey of Lewis and Clark Gallery

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages the this gallery of Landsat-derived images of one of the most remarkable and productive scientific...

  7. About Region 3's Laboratory and Field Services at EPA's Environmental Science Center

    Science.gov (United States)

    Mission & contact information for EPA Region 3's Laboratory and Field Services located at EPA's Environmental Science Center: the Office of Analytical Services and Quality Assurance & Field Inspection Program

  8. Earth Resources Observation and Science (EROS) Center's Earth as Art Image Gallery 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Earth Resources Observation and Science (EROS) Center manages this collection of forty-five new scenes developed for their aesthetic beauty, rather than for...

  9. National Climate Change and Wildlife Science Center, Version 2.0

    Science.gov (United States)

    O'Malley, R.; Fort, E.; Hartke-O'Berg, N.; Varela-Acevedo, E.; Padgett, Holly A.

    2013-01-01

    The mission of the USGS's National Climate Change and Wildlife Science Center (NCCWSC) is to serve the scientific needs of managers of fish, wildlife, habitats, and ecosystems as they plan for a changing climate. DOI Climate Science Centers (CSCs) are management by NCCWSC and include this mission as a core responsibility, in line with the CSC mission to provide scientific support for climate-adaptation across a full range of natural and cultural resources. NCCWSC is a Science Center application designed in Drupal with the OMEGA theme. As a content management system, Drupal allows the science center to keep their website up-to-date with current publications, news, meetings and projects. OMEGA allows the site to be adaptive at different screen sizes and is developed on the 960 grid.

  10. Master's Level Graduate Training in Medical Physics at the University of Colorado Health Sciences Center.

    Science.gov (United States)

    Ibbott, Geoffrey S.; Hendee, William R.

    1980-01-01

    Describes the master's degree program in medical physics developed at the University of Colorado Health Sciences Center. Required courses for the program, and requirements for admission are included in the appendices. (HM)

  11. Teaching professional writing in an academic health sciences center: the Writing Center model at the Medical University of South Carolina.

    Science.gov (United States)

    Smith, Tom G; Ariail, Jennie; Richards-Slaughter, Shannon; Kerr, Lisa

    2011-01-01

    Writing is taught as professional competency in higher education generally, but the health science education literature emphasizes writing as a pedagogical means rather than a professional end. The Medical University of South Carolina established a Writing Center in 1994 to teach professional writing. This report describes the rationale for profession-specific, graduate-level writing instruction; summarizes the Writing Center model; and reports usage data. Students have reported improvement in particular texts and said they would be better able to complete writing tasks in the future. Interventions modeled after the Writing Center and staffed with professionally trained writing teachers may provide a means to pool resources to teach writing as professional competency. The Writing Center has provided the expertise to teach professional writing without demanding curricular revision.

  12. Connecting Science Notebooking to the Elementary Library Media Center

    Science.gov (United States)

    Fontichiaro, Kristin; Buczynski, Sandy

    2009-01-01

    The term "inquiry" can be viewed from two perspectives. Inquiry refers to the abilities students develop when designing and conducting investigations and the understanding they gain through this process about the nature of science. Inquiry also refers to teaching and learning strategies that enable students to master content concepts. Library…

  13. 75 FR 57967 - Science Advisory Board to the National Center for Toxicological Research Notice of Meeting

    Science.gov (United States)

    2010-09-23

    ... HUMAN SERVICES Food and Drug Administration Science Advisory Board to the National Center for Toxicological Research Notice of Meeting AGENCY: Food and Drug Administration, HHS. ACTION: Notice. This notice... least one portion of the meeting will be closed to the public. Name of Committee: Science Advisory Board...

  14. HELLENIC NATIONAL DOCUMENTATION CENTER "OPEN SCIENCE: ISSUES AND PERSPECTIVES" CONFERENCE REPORT, JUNE 2017

    OpenAIRE

    Sant-Geronikolou Stavroula

    2017-01-01

    National Documentation Center (NDC) 15th June Day Conference on “Open Science: Issues and Perspectives” Report offering a critical overview of the event's effectiveness in familiarizing a wide variety of professionals with the Open Access (OA)/Open Science (OS) related issues through providing them with an essential baseline knowledge of the technology-driven publication and data management changing landscape.

  15. Justice-Centered Science Pedagogy: A Catalyst for Academic Achievement and Social Transformation

    Science.gov (United States)

    Morales-Doyle, Daniel

    2017-01-01

    Longstanding inequities in science education across the lines of race and class remain the most intractable problem in the field. Justice-centered science pedagogy is introduced as a theoretical framework built on the traditions of critical pedagogy and culturally relevant pedagogy to address these inequities as components of larger oppressive…

  16. Data and spatial studies of the USGS Texas Water Science Center

    Science.gov (United States)

    Burley, Thomas E.

    2014-01-01

    Hydrologists, geographers, geophysicists, and geologists with the U.S. Geological Survey (USGS) Texas Water Science Center (TXWSC) work in the USGS Water Mission Area on a diverse range of projects built on a foundation of spatial data. The TXWSC has developed sophisticated data and spatial-studies-related capabilities that are an integral part of the projects undertaken by the Center.

  17. Inquiring Astronomy: Incorporating Student-Centered Pedagogical Techniques in an Introductory College Science Course

    Science.gov (United States)

    French, Debbie A.; Burrows, Andrea C.

    2017-01-01

    Increases in student-centered pedagogy have been more prevalent in K-12 education than in collegiate undergraduate science education. The purpose of this study was to determine the effects of using student-centered pedagogy advocated in K-12 education on introductory astronomy students' content knowledge, interest, and recall of content taught in…

  18. National Space Science Data Center and World Data Center A for Rockets and Satellites - Ionospheric data holdings and services

    Science.gov (United States)

    Bilitza, D.; King, J. H.

    1988-01-01

    The activities and services of the National Space Science data Center (NSSDC) and the World Data Center A for Rockets and Satellites (WDC-A-R and S) are described with special emphasis on ionospheric physics. The present catalog/archive system is explained and future developments are indicated. In addition to the basic data acquisition, archiving, and dissemination functions, ongoing activities include the Central Online Data Directory (CODD), the Coordinated Data Analysis Workshopps (CDAW), the Space Physics Analysis Network (SPAN), advanced data management systems (CD/DIS, NCDS, PLDS), and publication of the NSSDC News, the SPACEWARN Bulletin, and several NSSD reports.

  19. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  20. The efficacy of student-centered instruction in supporting science learning.

    Science.gov (United States)

    Granger, E M; Bevis, T H; Saka, Y; Southerland, S A; Sampson, V; Tate, R L

    2012-10-05

    Transforming science learning through student-centered instruction that engages students in a variety of scientific practices is central to national science-teaching reform efforts. Our study employed a large-scale, randomized-cluster experimental design to compare the effects of student-centered and teacher-centered approaches on elementary school students' understanding of space-science concepts. Data included measures of student characteristics and learning and teacher characteristics and fidelity to the instructional approach. Results reveal that learning outcomes were higher for students enrolled in classrooms engaging in scientific practices through a student-centered approach; two moderators were identified. A statistical search for potential causal mechanisms for the observed outcomes uncovered two potential mediators: students' understanding of models and evidence and the self-efficacy of teachers.

  1. Neutron Tomography at the Los Alamos Neutron Science Center

    Energy Technology Data Exchange (ETDEWEB)

    Myers, William Riley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    Neutron imaging is an incredibly powerful tool for non-destructive sample characterization and materials science. Neutron tomography is one technique that results in a three-dimensional model of the sample, representing the interaction of the neutrons with the sample. This relies both on reliable data acquisition and on image processing after acquisition. Over the course of the project, the focus has changed from the former to the latter, culminating in a large-scale reconstruction of a meter-long fossilized skull. The full reconstruction is not yet complete, though tools have been developed to improve the speed and accuracy of the reconstruction. This project helps to improve the capabilities of LANSCE and LANL with regards to imaging large or unwieldy objects.

  2. Recalculating the steady state conditions of the V-1000 zero-power facility at Kurchatov Institute using Monte Carlo and nodal diffusion codes

    Energy Technology Data Exchange (ETDEWEB)

    Sahlberg, Ville [VTT Technical Research Centre of Finland Ltd, VTT (Finland)

    2017-09-15

    Continuous-energy Monte Carlo reactor physics code Serpent 2 was used to model the critical steady state conditions measured in V-1000 zero-power critical facility at Kurchatov Institute (KI), Moscow in 1990-1992. The Serpent 2 results were compared to measurements and Serpent 2 was used to generate group constants for reactor dynamics code HEXTRAN. The results of a HEXTRAN calculation of the steady state were compared to Serpent 2. The relative power density distribution of the SERPENT2 calculations compared with the measurements was within the statistical accuracy. The comparison of HEXTRAN and Serpent 2 node-wise relative power density distributions showed an accuracy of ±10%.

  3. USGS science in Menlo Park -- a science strategy for the U.S. Geological Survey Menlo Park Science Center, 2005-2015

    Science.gov (United States)

    Brocher, Thomas M.; Carr, Michael D.; Halsing, David L.; John, David A.; Langenheim, V.E.; Mangan, Margaret T.; Marvin-DiPasquale, Mark C.; Takekawa, John Y.; Tiedeman, Claire R.

    2006-01-01

    In the spring of 2004, the U.S. Geological Survey (USGS) Menlo Park Center Council commissioned an interdisciplinary working group to develop a forward-looking science strategy for the USGS Menlo Park Science Center in California (hereafter also referred to as "the Center"). The Center has been the flagship research center for the USGS in the western United States for more than 50 years, and the Council recognizes that science priorities must be the primary consideration guiding critical decisions made about the future evolution of the Center. In developing this strategy, the working group consulted widely within the USGS and with external clients and collaborators, so that most stakeholders had an opportunity to influence the science goals and operational objectives.The Science Goals are to: Natural Hazards: Conduct natural-hazard research and assessments critical to effective mitigation planning, short-term forecasting, and event response. Ecosystem Change: Develop a predictive understanding of ecosystem change that advances ecosystem restoration and adaptive management. Natural Resources: Advance the understanding of natural resources in a geologic, hydrologic, economic, environmental, and global context. Modeling Earth System Processes: Increase and improve capabilities for quantitative simulation, prediction, and assessment of Earth system processes.The strategy presents seven key Operational Objectives with specific actions to achieve the scientific goals. These Operational Objectives are to:Provide a hub for technology, laboratories, and library services to support science in the Western Region. Increase advanced computing capabilities and promote sharing of these resources. Enhance the intellectual diversity, vibrancy, and capacity of the work force through improved recruitment and retention. Strengthen client and collaborative relationships in the community at an institutional level.Expand monitoring capability by increasing density, sensitivity, and

  4. Five-year external reviews of the eight Department of Interior Climate Science Centers: Alaska Climate Science Center

    Science.gov (United States)

    Shasby, Mark; Dolloff, C. Andrew; Hicke, Jeffrey A.; Marcot, Bruce G; McCarl, Bruce; McMahon, Gerard; Morton, John M.

    2017-01-01

    This report primarily addresses the first two purposes of the review while providing comments on the third as identified by the science review team (SRT). A separate report of recommendations for the recompetition, based upon compiled observation from all three reviews conducted in 2016, was submitted to NCCWSC on April 15, 2016 to assist with the development of recompetition documents. To further address host-university administrative competencies and efficiencies, separate interviews of host-university faculty and administrators were conducted by NCCWSC staff in conjunction with the on-site component of the reviews.

  5. Tribal engagement strategy of the South Central Climate Science Center, 2014

    Science.gov (United States)

    Andrews, William J.; Taylor, April; Winton, Kimberly T.

    2014-01-01

    The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.

  6. “Not Designed for Us”: How Science Museums and Science Centers Socially Exclude Low-Income, Minority Ethnic Groups

    Science.gov (United States)

    Dawson, Emily

    2014-01-01

    This paper explores how people from low-income, minority ethnic groups perceive and experience exclusion from informal science education (ISE) institutions, such as museums and science centers. Drawing on qualitative data from four focus groups, 32 interviews, four accompanied visits to ISE institutions, and field notes, this paper presents an analysis of exclusion from science learning opportunities during visits alongside participants’ attitudes, expectations, and conclusions about participation in ISE. Participants came from four community groups in central London: a Sierra Leonean group (n = 21), a Latin American group (n = 18), a Somali group (n = 6), and an Asian group (n = 13). Using a theoretical framework based on the work of Bourdieu, the analysis suggests ISE practices were grounded in expectations about visitors’ scientific knowledge, language skills, and finances in ways that were problematic for participants and excluded them from science learning opportunities. It is argued that ISE practices reinforced participants preexisting sense that museums and science centers were “not for us.” The paper concludes with a discussion of the findings in relation to previous research on participation in ISE and the potential for developing more inclusive informal science learning opportunities. PMID:25574059

  7. Informing Science (IS and Science and Technology Studies (STS: The University as Decision Center (DC for Teaching Interdisciplinary Research

    Directory of Open Access Journals (Sweden)

    Teresa Castelao-Lawless

    2001-01-01

    Full Text Available Students of history and philosophy of science courses at my University are either naïve robust realists or naïve relativists in relation to science and technology. The first group absorbs from culture stereotypical conceptions, such as the value-free character of the scientific method, that science and technology are impervious to history or ideology, and that science and religion are always at odds. The second believes science and technology were selected arbitrarily by ideologues to have privileged world views of reality to the detriment of other interpretations. These deterministic outlooks must be challenged to make students aware of the social importance of their future roles, be they as scientists and engineers or as science and technology policy decision makers. The University as Decision Center (DC not only reproduces the social by teaching standard solutions to well-defined problems but also provides information regarding conflict resolution and the epistemological, individual, historical, social, and political mechanisms that help create new science and technology. Interdisciplinary research prepares students for roles that require science and technology literacy, but raises methodological issues in the context of the classroom as it increases uncertainty with respect to apparently self-evident beliefs about scientific and technological practices.

  8. Science museums, centers and professional development: Teachers' self reflection on improving their practice

    Science.gov (United States)

    Ogbomo, Queen O.

    The purpose of this qualitative case study research was to ascertain the significance of the professional development programs workshops organized by a science museum and a science center in two Midwestern cities. The research investigated the effect the workshops had on the instructional practice of the participating elementary science teachers. More specifically, this study was guided by the following research question: How do the professional development programs at museums help teachers change the way they teach and consider science in their classroom? The core of this study consists of case studies of six elementary school teachers who were identified as a result of their participation in the museum and science center workshops and an instructor from the museum and another instructor from the science center. Teachers' self-efficacy regarding the teaching of science was sought through a Likert-style survey and triangulated with classroom observations and interviews of individual teachers. The findings of this study revealed two overarching themes: one, that the workshops were beneficial and two, that it did not improve instructional practice. The following are the factors identified as reasons for the workshops being beneficial: (1) the opportunity to build their content knowledge, (2) opportunity to experience and discuss the materials: (3) opportunity to collaborate with colleagues: (4) workshop materials and resources are linked to state goals: and (5) that they promote teacher confidence. The teachers who thought the workshops did not improve their instructional practice gave the following reasons: (1) they already had a strong background in science: (2) there was no follow-up activity: (3) the loss of a full day of teaching: and (4) the time constraint to implement what was learned. Though this study utilized a small sample of teachers, those involved in this study felt they acquired knowledge that would be either beneficial to them or to their students

  9. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  10. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  11. WFIRST: STScI Science Operations Center (SSOC) Activities and Plans

    Science.gov (United States)

    Gilbert, Karoline M.; STScI WFIRST Team

    2018-01-01

    The science operations for the WFIRST Mission will be distributed between Goddard Space Flight Center, the Space Telescope Science Institute (STScI), and the Infrared Processing and Analysis Center (IPAC). The STScI Science Operations Center (SSOC) will schedule and archive all WFIRST observations, will calibrate and produce pipeline-reduced data products for the Wide Field Instrument, and will support the astronomical community in planning WFI observations and analyzing WFI data. During the formulation phase, WFIRST team members at STScI have developed operations concepts for scheduling, data management, and the archive; have performed technical studies investigating the impact of WFIRST design choices on data quality and analysis; and have built simulation tools to aid the community in exploring WFIRST’s capabilities. We will highlight examples of each of these efforts.

  12. Semantic Web Data Discovery of Earth Science Data at NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Hegde, Mahabaleshwara; Strub, Richard F.; Lynnes, Christopher S.; Fang, Hongliang; Teng, William

    2008-01-01

    Mirador is a web interface for searching Earth Science data archived at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC). Mirador provides keyword-based search and guided navigation for providing efficient search and access to Earth Science data. Mirador employs the power of Google's universal search technology for fast metadata keyword searches, augmented by additional capabilities such as event searches (e.g., hurricanes), searches based on location gazetteer, and data services like format converters and data sub-setters. The objective of guided data navigation is to present users with multiple guided navigation in Mirador is an ontology based on the Global Change Master directory (GCMD) Directory Interchange Format (DIF). Current implementation includes the project ontology covering various instruments and model data. Additional capabilities in the pipeline include Earth Science parameter and applications ontologies.

  13. Forging Educational Partnerships Between Science Centers and Ocean, Earth and Atmospheric Scientists

    Science.gov (United States)

    Miller, M. K.

    2006-12-01

    When most people think about science education, they usually consider classrooms as ideal venues for communicating and disseminating knowledge. But most learning that we humans engage in happens outside of the classroom and after we finish our formal education. That is where informal science education picks up the ball. The forums for these learning opportunities are diverse: museum exhibits, the Web, documentaries, and after school settings are becoming increasingly important as venues to keep up with the ever changing world of science. . The Exploratorium and other science centers act as transformers between the world of science and the public. As such they are ideal partners for scientists who would like to reach a large and diverse audience of families, adults, teens, and teachers. In this session, Senior Science Producer Mary Miller will discuss the ways that the Exploratorium engages working scientists in helping the museum-going public and Web audiences understand the process and results of scientific research.

  14. GLOBE Observer and the Association of Science & Technology Centers: Leveraging Citizen Science and Partnerships for an International Science Experiment to Build Climate Literacy

    Science.gov (United States)

    Riebeek Kohl, H.; Chambers, L. H.; Murphy, T.

    2016-12-01

    For more that 20 years, the Global Learning and Observations to Benefit the Environment (GLOBE) Program has sought to increase environment literacy in students by involving them in the process of data collection and scientific research. In 2016, the program expanded to accept observations from citizen scientists of all ages through a relatively simple app. Called GLOBE Observer, the new program aims to help participants feel connected to a global community focused on advancing the scientific understanding of Earth system science while building climate literacy among participants and increasing valuable environmental data points to expand both student and scientific research. In October 2016, GLOBE Observer partnered with the Association of Science & Technology Centers (ASTC) in an international science experiment in which museums and patrons around the world collected cloud observations through GLOBE Observer to create a global cloud map in support of NASA satellite science. The experiment was an element of the International Science Center and Science Museum Day, an event planned in partnership with UNESCO and ASTC. Museums and science centers provided the climate context for the observations, while GLOBE Observer offered a uniform experience and a digital platform to build a connected global community. This talk will introduce GLOBE Observer and will present the results of the experiment, including evaluation feedback on gains in climate literacy through the event.

  15. Center for Materials Science, Los Alamos National Laboratory. Status report, October 1, 1990--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Parkin, D.M.; Boring, A.M. [comps.

    1991-10-01

    This report summarizes the progress of the Center for Materials Science (CMS) from October 1, 1990 to September 30, 1991, and is the nineth such annual report. It has been a year of remarkable progress in building the programs of the Center. The extent of this progress is described in detail. The CMS was established to enhance the contribution of materials science and technology to the Laboratory`s defense, energy and scientific missions, and the Laboratory. In carrying out these responsibilities it has accepted four demanding missions: (1) Build a core group of highly rated, established materials scientists and solid state physicists. (2) Promote and support top quality, interdisciplinary materials research programs at Los Alamos. (3) Strengthen the interactions of materials science and Los Alamos with the external materials science community. and (4) Establish and maintain modern materials research facilities in a readily accessible, central location.

  16. Translating social and behavioral science research to the AIDS epidemic: a center for AIDS research perspective.

    Science.gov (United States)

    Curran, James W; Hoxie, James A

    2013-06-01

    Integration of innovative social and behavioral science with public health approaches for HIV prevention and treatment is of critical importance for slowing the global HIV epidemic. Strengthening and focusing social and behavioral research linking testing and treatment strategies to populations at greatest risk for HIV is crucial. The Social and Behavioral Science Research Network(SBSRN), originated in 2006, involves twenty NIH-funded CFAR Centers and is responding to this challenge.

  17. Network Science Center Research Team’s Visit to Addis Ababa, Ethiopia

    Science.gov (United States)

    2012-08-01

    metal and old axles. The new model will primarily be constructed of bamboo which is abundant in Ethiopia and is a very durable material. Another...by China State Construction Engineering 3 | P a g e Network Science Center, West Point www.netscience.usma.edu 845.938.0804 Corporation as a...sustainable development. Construction of Road Interchange in Addis Ababa The hub is also supported by Center for Creative Leadership (CCL

  18. The effect of playing a science center-based mobile game: Affective outcomes and gender differences

    Science.gov (United States)

    Atwood-Blaine, Dana

    Situated in a hands-on science center, The Great STEM Caper was a collaborative mobile game built on the ARIS platform that was designed to engage 5th-9th grade players in NGSS science and engineering practices while they interacted with various exhibits. Same gender partners sharing one iPad would search for QR codes placed at specific exhibits; scanning a code within the game would launch a challenge for that exhibit. The primary hypothesis was that in- game victories would be equivalent to "mastery experiences" as described by Bandura (1997) and would result in increased science self-efficacy. Gender differences in gameplay behaviors and perceptions were also studied. The study included two groups, one that played the game during their visit and one that explored the science center in the traditional way. The Motivation to Learn Science Questionnaire was administered to participants in both groups both before and after their visit to the science center. Participants wore head-mounted GoPro cameras to record their interactions within the physical and social environment. No differences in affective outcomes were found between the game and comparison groups or between boys and girls in the game group. The MLSQ was unable to measure any significant change in science self-efficacy, interest and enjoyment of science, or overall motivation to learn science in either group. However, girls outperformed boys on every measure of game achievement. Lazzaro's (2004) four types of fun were found to be a good fit for describing the gender differences in game perceptions and behaviors. Girls tended to enjoy hard fun and collaborative people fun while boys enjoyed easy fun and competitive people fun. While boys associated game achievement with enjoyment and victory, girls perceived their game achievement as difficult, rather than enjoyable or victorious.

  19. The Magnetospheric Multiscale (MMS) Mission Science Data Center: Technologies, Methods, and Experiences in Making Available Large Quantities of Science Data

    Science.gov (United States)

    Pankratz, C. K.; Kokkonen, K.; Larsen, K. W.; Panneton, R. S.; Putnam, B.; Schafer, C.; Baker, D. N.; Burch, J. L.

    2016-12-01

    On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of four satellites completed their six-month commissioning period and began routine science data collection. Science operations for the mission is conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, Colorado, USA. The MMS Science Data Center (SDC) is a component of the SOC responsible for the data production, management, dissemination, archiving, and visualization of the data from the extensive suite of 100 instruments onboard the four spacecraft. As of March 2016, MMS science data are openly available to the entire science community via the SDC. This includes hundreds of science parameters, and 50 gigabytes of data per day distributed across thousands of data files. Products are produced using integrated software systems developed and maintained by teams at other institutions using their own institutional software management procedures and made available via a centralized public web site and web services. To accomplish the data management, data processing, and system integration challenges present on this space mission, the MMS SDC incorporates a number of evolutionary techniques and technologies. This presentation will provide an informatics-oriented view of the MMS SDC, summarizing its technical aspects, novel technologies and data management practices that are employed, experiences with its design and development, and lessons learned. Also presented is the MMS "Scientist-in-the-Loop" (SITL) system, which is used to leverage human insight and expertise to optimize the data selected for transmission to the ground. This smoothly operating system entails the seamless interoperability of multiple mission facilities and data systems that ultimately translate scientist insight into uplink commands that triggers optimal data downlink to the ground.

  20. Department of Energy Nanoscale Science Research Centers: Approach to Nanomaterial ES&H

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-05-12

    The following non-mandatory guidance is intended for the Nanoscale Science Research Centers (NSRCs) funded by the Basic Energy Sciences program office under the U.S. Department of Energy's Office of Science. It describes practices thought appropriate to the management of environmental, safety and health (ES&H) concerns associated with laboratory-scale operations involving the design, synthesis, or characterization of engineered nanomaterials, In general, it is intended to apply to precursors, intermediates, and wastes used during, or resulting from synthesizing such nanomaterials. In general, it is not intended to apply to materials for which an occupational exposure limit has been established.

  1. Potential interaction and potential investigation of science center exhibits and visitors' interest

    Science.gov (United States)

    Busque, Laurier

    This research consisted of studying the characteristics of interaction and investigation potential present in museum or science center exhibits. Categories (strong and weak) for the characteristics of interaction potential and investigation potential were established. Fifteen exhibits were chosen from the Museum of Science (Ottawa) and from two science centers (Sudbury and Toronto); these were representative of the established characteristics and categories. A test was constructed that measured the interest in an exhibit in a museum or a science center. The final analysis of the test (20 items) reflects a coefficient of homogeneity (Cronbach alpha) of 0.97 (n = 278). In terms of the characteristics of interaction potential and investigation potential, a significant difference among the ranks of interest was not found once they were regrouped under the categories of strong and weak. The hypothesis of a relationship between the interaction potential and visitors' interest in an exhibit in a museum or science center and the hypothesis of a relationship between the investigation potential and the interest aroused were both rejected. In regards to the interaction potential, median ranks of interest in exhibits of 8.6 for the strong category and of 7.5 for the weak category were observed. In terms of the investigation potential, median ranks of interest of 7.0 for the strong category and of 9.1 for the weak category were observed. In the case of investigation potential, even if the difference is not significant, there is an indication that the strong investigation potential seems to have the effect of creating disinterest in the presentation of an exhibit in a museum or in a science center. In the context of new museum and science centers, the view of developing exhibits which are primarily objects which stimulate interest must be maintained. If this is done with exhibits that arc interactive and have an investigative approach, it is necessary for those in charge of

  2. The National Space Science Data Center guide to international rocket data

    Science.gov (United States)

    Dubach, L. L.

    1972-01-01

    Background information is given which briefly describes the mission of the National Space Science Data Center (NSSDC), including its functions and systems, along with its policies and purposes for collecting rocket data. The operation of a machine-sensible rocket information system, which allows the Data Center to have convenient access to information and data concerning all rocket flights carrying scientific experiments, is also described. The central feature of this system, an index of rocket flights maintained on magnetic tape, is described. Standard outputs for NSSDC and for the World Data Center A (WDC-A) for Rockets and Satellites are described.

  3. Collections management plan for the U.S. Geological Survey Woods Hole Coastal and Marine Science Center Data Library

    Science.gov (United States)

    List, Kelleen M.; Buczkowski, Brian J.; McCarthy, Linda P.; Orton, Alice M.

    2015-08-17

    The U.S. Geological Survey Woods Hole Coastal and Marine Science Center has created a Data Library to organize, preserve, and make available the field, laboratory, and modeling data collected and processed by Woods Hole Coastal and Marine Science Center staff. This Data Library supports current research efforts by providing unique, historic datasets with accompanying metadata. The Woods Hole Coastal and Marine Science Center’s Data Library has custody of historic data and records that are still useful for research, and assists with preservation and distribution of marine science records and data in the course of scientific investigation and experimentation by researchers and staff at the science center.

  4. 75 FR 23801 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ..., NY, that meet the definitions of ``sacred objects'' and ``objects of cultural patrimony'' under 25 U... of cultural patrimony. Officials of the Rochester Museum & Science Center have determined, that... that can be reasonably traced between the sacred objects/objects of cultural patrimony and the...

  5. 77 FR 19698 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... meet the definition of both sacred objects and objects of cultural patrimony and repatriation to the... the definition of both sacred objects and objects of cultural patrimony under 25 U.S.C. 3001. This... National Park Service Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center...

  6. 77 FR 19699 - Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2012-04-02

    ... meet the definition of both sacred objects and objects of cultural patrimony and repatriation to the... the definition of both sacred objects and ] objects of cultural patrimony under 25 U.S.C. 3001. This... National Park Service Notice of Intent to Repatriate Cultural Items: Rochester Museum & Science Center...

  7. Patterns in Parent-Child Conversations about Animals at a Marine Science Center

    Science.gov (United States)

    Rigney, Jennifer C.; Callanan, Maureen A.

    2011-01-01

    Parent-child conversations are a potential source of children's developing understanding of the biological domain. We investigated patterns in parent-child conversations that may inform children about biological domain boundaries. At a marine science center exhibit, we compared parent-child talk about typical sea animals with faces (fish) with…

  8. 77 FR 31329 - Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop

    Science.gov (United States)

    2012-05-25

    ..., (207) 228-1625. SUPPLEMENTARY INFORMATION: The Stock Structure of Atlantic Cod in the Gulf of Maine... National Oceanic and Atmospheric Administration Northeast Fisheries Science Center, Woods, Hole, MA; Public Meeting/Workshop AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric...

  9. Trend of knowledge production of research centers in the field of medical sciences in iran.

    Science.gov (United States)

    Falahat, K; Eftekhari, Mb; Habibi, E; Djalalinia, Sh; Peykari, N; Owlia, P; Malekafzali, H; Ghanei, M; Mojarrab, Sh

    2013-01-01

    Establishment of medical research centers at universities and health-related organizations and annually evaluation of their research activities was one of the strategic policies which followed by governmental organization in last decade in order to strengthening the connections between health research system and health system. The aim of this study is to scrutinize the role of medical research centers in medical science production in Iran. This study is a cross sectional which has been performed based on existing reports on national scientometrics and evaluation results of research performance of medical research centers between years 2001 to 2010. During last decade number of medical research centers increased from 53 in 2001 to 359 in 2010. Simultaneous scientific output of medical research centers has been increased especially articles indexed in ISI (web of science). Proper policy implementation in the field of health research system during last decades led to improving capacity building and growth knowledge production of medical science in recent years in Iran. The process embedding research into the health systems requires planning up until research products improves health outcomes and health equity in country.

  10. Using science centers to expose the general public to the microworld

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, E. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Science and Technology Interactive Center, Aurora, IL (United States)

    1994-08-01

    Despite the remarkable progress in the past decades in understanding our Universe, we particle physicists have failed to communicate the wonder, excitement, and beauty of these discoveries to the general public. I am sure all agree there is a need, if our support from public funds is to continue at anywhere approximating the present level, for us collectively to educate and inform the general public of what we are doing and why. Informal science education and especially science and technology centers can play an important role in efforts to raise public awareness of particle physics in particular and of basic research in general. Science Centers are a natural avenue for particle physicists to use to communicate with and gain support from the general public.

  11. Bringing You the Moon: Lunar Education Efforts of the Center for Lunar Science and Education

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.; Halligan, E.; LaConte, K.

    2012-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute. In addition to research and exploration activities, the CLSE team is deeply invested in education and public outreach. Overarching goals of CLSE education are to strengthen the future science workforce, attract and retain students in STEM disciplines, and develop advocates for lunar exploration. The team's efforts have resulted in a variety of programs and products, including the creation of a variety of Lunar Traveling Exhibits and the High School Lunar Research Project, featured at http://www.lpi.usra.edu/nlsi/education/.

  12. Islamic World Science Citation Center (ISC): Evaluating Scholary Journals Based on Citation Analysis.

    Science.gov (United States)

    Mehrad, Jaffar; Arastoopoor, Sholeh

    2012-03-01

    Citation analysis is currently one of the most widely used metrics for analyzing the scientific contribution in different fields. The Islamic World Science Citation Center (ISC) aims at promoting technical cooperation among Muslim scientists and their respected centers based on these theories. It also facilitates the accessibility of knowledge and research contribution among them. This paper aims at revealing some of the outmost features of ISC databases, in order to give a fairly clear view of what it is and what are its products. The paper consists of three major parts. After an introduction about the Islamic World Science Citation Center, the paper deals with major tools and products of ISC. In the third part ISCs' journal Submission system is presented as an automatic means, by which users can upload journals' papers into the respected databases. Some complementary remarks have been made regarding the current state of ISC and its future plans.

  13. Turning Visitors into Citizens: Using Social Science for Civic Engagement in Informal Science Education Centers

    Science.gov (United States)

    Bunten, Alexis; Arvizu, Shannon

    2013-01-01

    How can museums and other informal learning institutions cultivate greater civic engagement among the visiting public around important social issues? This case study of the National Network of Ocean and Climate Change Interpreters' (NNOCCI) professional learning community illustrates how insights from the social sciences can be productively…

  14. U.S. Department of the Interior South Central Climate Science Center

    Science.gov (United States)

    Shipp, Allison A.

    2012-01-01

    On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.

  15. Participant or professor centered learning? A comparative study in Applied Social Sciences

    Directory of Open Access Journals (Sweden)

    Waldemar Hazoff Júnior

    2008-07-01

    Full Text Available The quantitative approach in the Business courses has distressed students searching for humanistic contents in Applied Social Sciences area of knowledge. One can observe this in the Materials and Patrimonial Properties Management course taught during the Business Administration program. This situation becomes still worse when the course is offered on Fridays evenings. This study dealt with four classes (morning and evening sessions in two private institutions. The course was taught according to two procedures: a professor centered, and b participant centered. The same activities were scheduled in a distinctive way. The results indicated that the students' achievement were (statistically significant at 1% superior in the participant centered procedure (P2 in comparison to the professor centered procedure (P1. Very low investments for designing and planning the didactic materials made possible to produce better achievement of the students.

  16. Associations of Middle School Student Science Achievement and Attitudes about Science with Student-Reported Frequency of Teacher Lecture Demonstrations and Student-Centered Learning

    Science.gov (United States)

    Odom, Arthur Louis; Bell, Clare Valerie

    2015-01-01

    The purpose of this study was to examine the association of middle school student science achievement and attitudes about science with student-reported frequency of teacher lecture demonstrations and student-centered learning. The student sample was composed of 602 seventh- and eighth-grade students enrolled in middle school science. Multiple…

  17. Northwest Climate Science Center: Integrating Regional Research, Conservation and Natural Resource Management

    Science.gov (United States)

    Mote, P.; Bisbal, G.

    2012-12-01

    The Northwest Climate Science Center (NW CSC) was established in 2010, among the first three of eight regional Climate Science Centers created by the Department of the Interior (DOI). The NW CSC is supported by an academic consortium (Oregon State University, University of Idaho, and the University of Washington), which has the capacity to generate and coordinate decision-relevant science related to climate, thus serving stakeholders across the Pacific Northwest region. The NW CSC has overlapping boundaries with three Landscape Conservation Cooperatives (LCCs): the Great Northern, the Great Basin, and the North Pacific. Collaboration between the NW CSC and these three LCCs addresses the highest priority regional climate science needs of Northwest natural and cultural resource managers. Early in 2012, the NW CSC released its first Strategic Plan for the period 2012-2015. The plan offers a practical blueprint for operation and describes five core services that the NW CSC provides to the Northwest community. These core services emphasize (a) bringing together the regional resource management and science communities to calibrate priorities and ensure efficient integration of climate science resources and tools when addressing practical issues of regional significance; (b) developing and implementing a stakeholder-driven science agenda which highlights the NW CSC's regional leadership in generating scenarios of the future environment of the NW; (c) supporting and training graduate students at the three consortium universities, including through an annual 'Climate science boot camp'; (d) providing a platform for effective climate-change-related communication among scientists, resource managers, and the general public; and (e) national leadership in data management and climate scenario development.

  18. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  19. 75 FR 23799 - Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... National Park Service Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center... to repatriate one cultural item in the possession of the Rochester Museum & Science Center, Rochester... of the museum, institution, or Federal agency that has control of the cultural item. The National...

  20. 75 FR 23800 - Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center, Rochester, NY

    Science.gov (United States)

    2010-05-04

    ... National Park Service Notice of Intent to Repatriate a Cultural Item: Rochester Museum & Science Center... to repatriate one cultural item in the possession of the Rochester Museum & Science Center, Rochester... of the museum, institution, or Federal agency that has control of the cultural item. The National...

  1. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    Science.gov (United States)

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  2. Teacher perceptions of the Centers for Ocean Sciences Education Excellence: Central Gulf of Mexico program

    Science.gov (United States)

    Sempier, Tracie Tingle

    The 12 Centers for Ocean Sciences Education Excellence (COSEE) are funded by the National Science Foundation and are designed to promote creative ways of disseminating marine science research and its importance to the public. The focus of this study is the COSEE Central Gulf of Mexico program which encourages active partnerships between research scientists and teachers. In these collaborative partnerships, teachers and scientists work together to create educational products and disseminate best practices in ocean sciences education. The purpose of this study was to determine whether the lesson plans and curricula created through the Centers for Ocean Sciences Education Excellence: Central Gulf of Mexico program (COSEE:CGOM), which are the products of this collaboration, were being used effectively in the classroom. The study addressed issues such as teacher perceptions of collaboration with scientists, effectiveness of COSEE:CGOM curriculum implementation in producing more ocean literate students, and teachers' varying views concerning how to successfully implement new COSEE:CGOM knowledge and concepts into their classrooms in order to improve student scientific understanding. In addition, the study examined frequency of use of COSEE:CGOM lesson plans and identified predictor variables that can produce a model for understanding factors hindering or enhancing lesson plan use. Further, participant perceptions of using peer-teaching as a method for disseminating COSEE:CGOM information in their districts were addressed.

  3. Science discourse in a middle-grade classroom attempting learning community-centered science instruction

    Science.gov (United States)

    Templin, Mark Arnold

    This dissertation focuses on the development of students' scientific literacy discourse in a middle grade science classroom as the teacher attempted to establish a learning community. Instructional design features included a change in teacher and students' roles such that authority over many classroom decisions was shared and students were encouraged to design their own investigations within the context of extended learning projects. The study followed the progress of two groups of four students, representing diversity in academic performance, gender, and ethnicity, over the course of four months. Target group discourse was recorded once every other school day and then transcribed. Accompanying field notes were written. Classroom artifacts, including a complete set of daily lesson plans, instructional materials, and student products, were collected. The interpretive framework, which highlighted different discourse practices and the instructional moves that supported them, evolved during data analysis as it was repeatedly tried out against the empirical materials through stages of data reduction, display, conclusion drawing, and verification. Analysis of the teacher's practice indicated that he initiated and maintained a classroom learning community by encouraging students to (a) think about their thinking by responding to questions that promoted such reflection; (b) share their reflections and other written products with each other and revise them through peer review; (c) decide for themselves which science content was relevant to their investigations; (d) share problem solving strategies; and (e) debate the meaning of terms so that a common understanding of science concepts could be developed. The teacher modeled and asked questions to promote these reflective and collaborative practices, successively withdrawing his active involvement in group dialogue as the term progressed. Analysis of students' discourse indicated that students increasingly developed

  4. SANs and Large Scale Data Migration at the NASA Center for Computational Sciences

    Science.gov (United States)

    Salmon, Ellen M.

    2004-01-01

    Evolution and migration are a way of life for provisioners of high-performance mass storage systems that serve high-end computers used by climate and Earth and space science researchers: the compute engines come and go, but the data remains. At the NASA Center for Computational Sciences (NCCS), disk and tape SANs are deployed to provide high-speed I/O for the compute engines and the hierarchical storage management systems. Along with gigabit Ethernet, they also enable the NCCS's latest significant migration: the transparent transfer of 300 Til3 of legacy HSM data into the new Sun SAM-QFS cluster.

  5. Center for Nuclear Medicine Research in Alzheimer`s Disease Health Sciences Center, West Virginia University. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Environmental Assessment (EA) of the Center for Nuclear Medicine Research in Alzheimer`s Disease (CNMR) at the Health Sciences Center, at West Virginia University in Morgantown, West Virginia for the construction and operation was prepared by DOE. The EA documents analysis of the environmental and socioeconomic impacts that might occur as a result of these actions, and characterizes potential impacts on the environment. In the EA, DOE presents its evaluation of potential impacts of construction and operation of the CNMR on health and safety of both workers and the public, as well as on the external environment. Construction impacts include the effects of erosion, waste disposal, air emissions, noise, and construction traffic and parking. Operational impacts include the effects of waste generation (domestic, sanitary, hazardous, medical/biological, radioactive and mixed wastes), radiation exposures, air emissions (radioactive, criteria, and air toxics), noise, and new workers. No sensitive resources (wetlands, special sources of groundwater, protected species) exist in the area of project effect.

  6. A research plan based on high intensity proton accelerator Neutron Science Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Mizumoto, Motoharu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    A plan called Neutron Science Research Center (NSRC) has been proposed in JAERI. The center is a complex composed of research facilities based on a proton linac with an energy of 1.5GeV and an average current of 10mA. The research facilities will consist of Thermal/Cold Neutron Facility, Neutron Irradiation Facility, Neutron Physics Facility, OMEGA/Nuclear Energy Facility, Spallation RI Beam Facility, Meson/Muon Facility and Medium Energy Experiment Facility, where high intensity proton beam and secondary particle beams such as neutron, pion, muon and unstable radio isotope (RI) beams generated from the proton beam will be utilized for innovative researches in the fields on nuclear engineering and basic sciences. (author)

  7. User guide: Earth resources observation and science (EROS) center science processing architecture (ESPA) on demand interface

    Science.gov (United States)

    Jenkerson, Calli

    2013-01-01

    Landsat data have been produced, archived, and distributed by the U.S. Geological Survey (USGS) since 1972. Scientists and users rely on these data for historical study of land surface change, but shoulder the burden of post-production processing to create applications-ready data sets. In compliance with guidelines established through the Global Climate Observing System, USGS has embarked on production of higher-level Landsat data products to support land surface change study. Terrestrial variables such as surface reflectance and land surface temperature will be offered as Climate Data Records (CDR). Derivations of spectral indices from surface reflectance are also produced, to further ease user application in land remote sensing science. Higher level products, such as leaf area index, burned area extent, snow covered area, and surface water extent representing Essential Climate Variables (ECV) will be available soon.

  8. U.S. Geological Survey Virginia and West Virginia Water Science Center

    Science.gov (United States)

    Jastram, John D.

    2017-08-22

    The U.S. Geological Survey (USGS) serves the Nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. In support of this mission, the USGS Virginia and West Virginia Water Science Center works in cooperation with many entities to provide reliable, impartial scientific information to resource managers, planners, and the public.

  9. Assessment of Translational and Interdisciplinary Clinical Research at an Oklahoma Health Sciences Center.

    Science.gov (United States)

    Dao, Hanh Dung; Kota, Pravina; James, Judith A; Stoner, Julie A; Akins, Darrin R

    2015-03-01

    In response to National Institutes of Health initiatives to improve translation of basic science discoveries we surveyed faculty to assess patterns of and barriers to translational research in Oklahoma. An online survey was administered to University of Oklahoma Health Sciences Center, College of Medicine faculty, which included demographic and research questions. Results: Responses were received from 126 faculty members (24%). Two-thirds spent ≥ 20%time on research; among these, 90% conduct clinical and translational research. Identifying funding; recruiting research staff and participants; preparing reports and agreements; and protecting research time were commonly perceived as at least moderate barriers to conducting research. While respondents largely collaborated within their discipline, clinical investigators were more likely than basic science investigators to engage in interdisciplinary research. While engagement in translational research is common, specific barriers impact the research process. This could be improved through an expanded interdisciplinary collaboration and research support structure.

  10. Experiments and contexts in the interactive exhibitions of centers and museums of science

    Directory of Open Access Journals (Sweden)

    Maura Ventura Chinelli

    2009-12-01

    Full Text Available Here is described a research that meant to indentify, through analysis of experiments and contexts in interactive expositions held by centers and museums of science, the necessary conditions for grasping the scientific culture in the post-positivist conception. The project was developed with the participation of students in training courses for teachers on a proposal based on the principles and methods of action research, in order to form skills that lead to interferences in the professional future. The results show that the samples of interactive exhibits are organized according to the classic paradigm: they offer opportunities for experimentation that produce observational data supposedly neutral and maintain separate nature and human being. In conclusion, we have those exhibits contribute to bringing the visitors closer to the positivistic science, not contributing to bring them closer to the concept of science based on the contemporary paradigm of complexity.

  11. Engaging a middle school teacher and students in formal-informal science education: Contexts of science standards-based curriculum and an urban science center

    Science.gov (United States)

    Grace, Shamarion Gladys

    This is a three-article five chapter doctoral dissertation. The overall purpose of this three-pronged study is to engage a middle school science teacher and students in formal-informal science education within the context of a science standards-based curriculum and Urban Science Center. The goals of the study were: (1) to characterize the conversations of formal and informal science educators as they attempted to implement a standards-based curriculum augmented with science center exhibits; (2) to study the classroom discourse between the teacher and students that foster the development of common knowledge in science and student understanding of the concept of energy before observing science center exhibits on energy; (3) to investigate whether or not a standards-driven, project-based Investigating and Questioning our World through Science and Technology (IQWST) curriculum unit on forms and transformation of energy augmented with science center exhibits had a significant effect on urban African-American seventh grade students' achievement and learning. Overall, the study consisted of a mixed-method approach. Article one consists of a case study featuring semi-structured interviews and field notes. Article two consists of documenting and interpreting teacher-students' classroom discourse. Article three consists of qualitative methods (classroom discussion, focus group interviews, student video creation) and quantitative methods (multiple choice and open-ended questions). Oral discourses in all three studies were audio-recorded and transcribed verbatim. In article one, the community of educators' conversations were critically analyzed to discern the challenges educators encountered when they attempted to connect school curriculum to energy exhibits at the Urban Science Center. The five challenges that characterize the emergence of a third space were as follows: (a) science terminology for lesson focus, (b) "dumb-down" of science exhibits, (c) exploration distracts

  12. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Schoenberg, Kurt F [Los Alamos National Laboratory

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  13. Psychologists in academic health centers: traditions and innovations in education, science, and practice.

    Science.gov (United States)

    Robiner, William N; Seime, Richard J

    2008-03-01

    Psychologists, interns, and postdoctoral fellows convened in Minneapolis May 3-5, 2007 for the 3rd National Conference of the Association of Psychologists in Academic Health Centers (APAHC): "Psychologists in Academic Health Centers: Traditions and Innovations in Education, Science, and Practice." This paper reviews the development and organization of the conference, which built upon the two previous conferences of the Association of Medical School Psychologists. The articles in this special issue are based on a selected number of the 32 conference presentations, covering a range of timely topics that reflect the conference theme. Participants' positive perceptions and satisfaction with the conference reveal the value of such conferences focused on the activities, interests, opportunities, and challenges of psychologists who work in academic health centers (AHCs) and teaching hospitals. Moreover, the content and success of the conference underscores the importance of APAHC as an organization serving the needs and promoting the interests of psychologists affiliated with AHCs.

  14. Zavoisky and the Discovery of EPR

    Indian Academy of Sciences (India)

    Author Affiliations. K M Salikhov1 N E Zavoiskaya2. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Sibirsky Trakt, 10/7 Kazan, 420 029, Tatarstan Russian Federation; Kurchatov Institute, Kurchatov Square, 1 Moscow, 123 182 Russian Federation ...

  15. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Science.gov (United States)

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  16. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. [Science cultures in the global perspective. Thoughts on content design and operation of the Leopoldina Study Center].

    Science.gov (United States)

    Labisch, Alfons

    2014-01-01

    The Leopoldina Center for the Study of the History of Science and Science Academies is a place to openly discuss the cooperation between science and society across all of the disciplines represented at the Leopoldina and beyond. This dialogue shall, by all means, also include researchers who are not members of the Leopoldina and people from outside of the academia who are interested in the topic. Like the Leopoldina, its Study Center builds bridges: between various academic disciplines, across generations and in local, national, and international communities. All interested members of the Leopoldina--not just members from the humanities, the social sciences or the behavioral sciences, but also scientists from the areas of the natural sciences, technology, the life sciences and physicians--are kindly invited to incorporate their research interests, with regard to the history and theory of their respective academic disciplines, in the research portfolio of the Leopoldina Study Center. In so doing, the Leopoldina Center for the Study of the History of Science and Science Academies should and will become a source of energy for permanent reflection and innovation when contemplating the issues of science and society.

  18. Organizational factors that influence information technology diffusion in academic health sciences centers.

    Science.gov (United States)

    Ash, J

    1997-01-01

    To identify the organizational factors which influence the diffusion of end user online literature searching, the computer-based patient record, and electronic mail systems in academic health sciences centers in the United States. A total of 1335 individuals working in informatics and library areas at 67 academic health sciences centers in the U.S. were surveyed. Multivariate techniques were used to evaluate the relationship between the set of six organizational factors and two measures of innovation diffusion. A Guttman-like scale was developed to measure infusion, or depth or sophistication, of each of the three innovations at each institution. Diffusion was measured by a question previously developed for another study. Six independent variables were measured via five formerly developed scales and one new one. The overall response rate was 41%. The set of organizational variables produced significant results in the diffusion of each of the three innovations, with individual variables influencing diffusion to varying degrees. The same set produced significant results in relation to infusion only for online searching. There was little or no correlation between infusion and diffusion for each innovation. Organizational attributes are important predictors for diffusion of information technology innovations. Individual variables differ in their effect on each innovation. The set of attributes seems less able to predict infusion. It is recommended that both infusion and diffusion be measured in future studies because there is little relation between them. It is further recommended that individuals charged with implementing information technology in the health sciences receive training in managing organizational issues.

  19. Energy Frontier Research Centers: Science for Our Nation's Energy Future, September 2016

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-09-01

    As world demand for energy rapidly expands, transforming the way energy is collected, stored, and used has become a defining challenge of the 21st century. At its heart, this challenge is a scientific one, inspiring the U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) to establish the Energy Frontier Research Center (EFRC) program in 2009. The EFRCs represent a unique approach, bringing together creative, multidisciplinary scientific teams to perform energy-relevant basic research with a complexity beyond the scope of single-investigator projects. These centers take full advantage of powerful new tools for characterizing, understanding, modeling, and manipulating matter from atomic to macroscopic length scales. They also train the next-generation scientific workforce by attracting talented students and postdoctoral researchers interested in energy science. The EFRCs have collectively demonstrated the potential to substantially advance the scientific understanding underpinning transformational energy technologies. Both a BES Committee of Visitors and a Secretary of Energy Advisory Board Task Force have found the EFRC program to be highly successful in meeting its goals. The scientific output from the EFRCs is impressive, and many centers have reported that their results are already impacting both technology research and industry. This report on the EFRC program includes selected highlights from the initial 46 EFRCs and the current 36 EFRCs.

  20. High-Throughput Small-Molecule Crystallography at the ‘Belok’ Beamline of the Kurchatov Synchrotron Radiation Source: Transition Metal Complexes with Azomethine Ligands as a Case Study

    Directory of Open Access Journals (Sweden)

    Vladimir A. Lazarenko

    2017-10-01

    Full Text Available This paper concisely describes capabilities of the ‘Belok’ beamline at the Kurchatov synchrotron radiation source, related to high-throughput small-molecule X-ray crystallography. As case examples, a series of four novel transition metal complexes with azomethine ligands were selected. The complexes demonstrate somewhat unexpected changes in the coordination geometry and nuclearity in response to the introduction of substituents in the ligand’s periphery.

  1. Lunar and Meteorite Sample Education Disk Program — Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, J.; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-03-01

    NASA’s Lunar and Meteorite Sample Education Disk Program has Lucite disks containing Apollo lunar samples and meteorite samples that are available for trained educators to borrow for use in classrooms, museums, science center, and libraries.

  2. An Analysis of Cloud Computing with Amazon Web Services for the Atmospheric Science Data Center

    Science.gov (United States)

    Gleason, J. L.; Little, M. M.

    2013-12-01

    NASA science and engineering efforts rely heavily on compute and data handling systems. The nature of NASA science data is such that it is not restricted to NASA users, instead it is widely shared across a globally distributed user community including scientists, educators, policy decision makers, and the public. Therefore NASA science computing is a candidate use case for cloud computing where compute resources are outsourced to an external vendor. Amazon Web Services (AWS) is a commercial cloud computing service developed to use excess computing capacity at Amazon, and potentially provides an alternative to costly and potentially underutilized dedicated acquisitions whenever NASA scientists or engineers require additional data processing. AWS desires to provide a simplified avenue for NASA scientists and researchers to share large, complex data sets with external partners and the public. AWS has been extensively used by JPL for a wide range of computing needs and was previously tested on a NASA Agency basis during the Nebula testing program. Its ability to support the Langley Science Directorate needs to be evaluated by integrating it with real world operational needs across NASA and the associated maturity that would come with that. The strengths and weaknesses of this architecture and its ability to support general science and engineering applications has been demonstrated during the previous testing. The Langley Office of the Chief Information Officer in partnership with the Atmospheric Sciences Data Center (ASDC) has established a pilot business interface to utilize AWS cloud computing resources on a organization and project level pay per use model. This poster discusses an effort to evaluate the feasibility of the pilot business interface from a project level perspective by specifically using a processing scenario involving the Clouds and Earth's Radiant Energy System (CERES) project.

  3. High Performance Computing in Science and Engineering '17 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael; HLRS 2017

    2018-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  4. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  5. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  6. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  7. CMS Usage of the Open Science Grid and the US Tier-2 Centers

    CERN Document Server

    Mohapatra, A

    2009-01-01

    The CMS experiment has been using the Open Science Grid, through its US Tier-2 computing centers, from its very beginning for production of Monte Carlo simulations. In this talk we will describe the evolution of the usage patterns indicating the best practices that have been identified. In addition to describing the production metrics and how they have been met, we will also present the problems encountered and mitigating solutions. Data handling and the user analysis patterns on the Tier-2 and OSG computing will be described.

  8. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    Science.gov (United States)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  9. Earth Science Data Archive and Access at the NASA/Goddard Space Flight Center Distributed Active Archive Center (DAAC)

    Science.gov (United States)

    Leptoukh, Gregory

    1999-01-01

    The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify

  10. On Becoming a Humanities Curriculum: the Center for Medical Humanities and Ethics at the University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Jones, Therese; Verghese, Abraham

    2003-10-01

    The authors describe the development and implementation of a new longitudinal and integrated humanities curriculum in the School of Medicine at the University of Texas Health Science Center at San Antonio. Included are a history of ethics and humanities education in the medical school leading to the creation of the Center for Medical Humanities and Ethics in July 2002; an articulation of the Center's basic principles; a curricular blueprint outlining the core objectives and methodologies, such as a narrative approach of this required, four-year humanities curriculum for undergraduate medical students; and an overview of course materials and activities.

  11. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  12. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Science.gov (United States)

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  13. Studies of fission fragment properties at the Los Alamos Neutron Science Center (LANSCE

    Directory of Open Access Journals (Sweden)

    Tovesson Fredrik

    2017-01-01

    Full Text Available Nuclear data related to the fission process are needed for a wide variety of research areas, including fundamental science, nuclear energy and non-proliferation. While some of the relevant data have been measured to the required accuracies there are still many aspects of fission that need further investigation. One such aspect is how Total Kinetic Energy (TKE, fragment yields, angular distributions and other fission observables depend on excitation energy of the fissioning system. Another question is the correlation between mass, charge and energy of fission fragments. At the Los Alamos Neutron Science Center (LANSCE we are studying neutron-induced fission at incident energies from thermal up to hundreds of MeV using the Lujan Center and Weapons Neutron Research (WNR facilities. Advanced instruments such as SPIDER (time-of-flight and kinetic energy spectrometer, the NIFFTE Time Projection Chamber (TPC, and Frisch grid Ionization Chambers (FGIC are used to investigate the properties of fission fragments, and some important results for the major actinides have been obtained.

  14. Faculty development to improve teaching at a health sciences center: a needs assessment.

    Science.gov (United States)

    Scarbecz, Mark; Russell, Cynthia K; Shreve, Robert G; Robinson, Melissa M; Scheid, Cheryl R

    2011-02-01

    There has been increasing interest at health science centers in improving the education of health professionals by offering faculty development activities. In 2007-08, as part of an effort to expand education-related faculty development offerings on campus, the University of Tennessee Health Science Center surveyed faculty members in an effort to identify faculty development activities that would be of interest. Factor analysis of survey data indicated that faculty interests in the areas of teaching and learning can be grouped into six dimensions: development of educational goals and objectives, the use of innovative teaching techniques, clinical teaching, improving traditional teaching skills, addressing teaching challenges, and facilitating participation. There were significant differences in the level of interest in education-related faculty development activities by academic rank and by the college of appointment. Full professors expressed somewhat less interest in faculty development activities than faculty members of lower ranks. Faculty members in the Colleges of Medicine and Dentistry expressed somewhat greater interest in faculty development to improve traditional teaching skills. The policy implications of the survey results are discussed, including the need for faculty development activities that target the needs of specific faculty groups.

  15. The XID Results Database of the XMM-Newton Survey Science Center

    Science.gov (United States)

    Michel, L.; Motch, C.

    2011-07-01

    (Written on behalf of the Survey Science Center of the XMM-Newton satellite) The Survey Science Center (SSC) of the XMM-Newton satellite has carried out several large optical campaigns aiming at the spectroscopic identification of samples of about a thousand X-ray sources at various X-ray flux levels and towards different Galactic directions. In addition, the SSC has obtained multi-color wide-field imaging for hundreds of XMM-Newton fields. Building learning samples for the statistical identification of all 2XMM sources was one of the main drivers for undertaking these observing campaigns. However, as demonstrated by the amount of papers published, these collections of data also constitute a very valuable resource which can be used for addressing a wide range of astrophysical issues. We describe the content and architecture of the XID results database recently opened by the SSC and containing a first installment of these data. The interface provides easy selection and browsing through catalogs and access to all optical images and spectral data associated with any given X-ray source as well as all relevant XMM-Newton data. The database was created using the database generator Saada and, together with the XCat-DB already deployed at the Observatoire de Strasbourg, provides another example of the flexibility, ease of use and scalability offered by Saada.

  16. Oak Ridge National Laboratory`s (ORNL) ecological and physical science study center: A hands-on science program for K-12 students

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, S.P. [Oak Ridge National Lab., TN (United States)

    1994-12-31

    In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site student science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.

  17. Student-reported satisfaction with academic enhancement services at an academic health science center.

    Science.gov (United States)

    Gaughf, Natalie White; Foster, Penni Smith; Williams, Dara A

    2014-01-01

    Although support services are needed to address students' concerns associated with academic demands, there is little research exploring these interventions within health sciences education. The current study examined students' perceptions of academic enhancement services at an academic health science center. Academic enhancement services provided to students included assessment of learning approaches and problems interfering with academic performance. Specific services may have addressed the transition to professional school, study skills assessment and training, time management and organization, testing strategies, clarifying career goals and interests, increasing self-confidence and coping with self-doubt, coping with depression and/or anxiety, stress management, relationship issues, and/or loss and bereavement. All students receiving academic enhancement services received a survey for programmatic improvement at the end of each semester. The online survey was voluntary and anonymous and solicited feedback about the students' experiences. Sixty-three percent of respondents (N = 104; 62% female, 38% male; 62% White, 27% Black/African American, 10% Asian; 2% Hispanic) reported receiving a one-session intervention, while 34% received 2-6 sessions. Eighty-three percent of respondents reported that academic enhancement services improved their situation and 89% reported overall satisfaction. The individual services rated as most helpful addressed time management, study skills training, increasing self-confidence, and testing strategies. It is recommended that health science centers (i) consider providing brief-term academic enhancement services to students addressing time management/organization, study skills, self-confidence, and testing strategies and (ii) engage in empirical investigations of these academic interventions.

  18. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    Science.gov (United States)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  19. Generalized bibliographic format as used by the Ecological Sciences Information Center

    Energy Technology Data Exchange (ETDEWEB)

    Allison, L.J.; Pfuderer, H.A.; Collier, B.N.

    1979-03-01

    The purpose of this document is to provide guidance for the preparation of computer input for the information programs being developed by the Ecological Sciences Information Center (ESIC)/Information Center Complex (ICC) of the Oak Ridge National Laboratory (ORNL). Through the use of a generalized system, the data of all the centers of ICC are compatible. Literature included in an information data base has a number of identifying characteristics. Each of these characteristics or data fields can be recognized and searched by the computer. The information for each field must have an alphanumeric label or field descriptor. All of the labels presently used are sets of upper-case letters approximating the name of the field they represent. Presently, there are 69 identified fields; additional fields may be included in the future. The format defined here is designed to facilitate the input of information to the ADSEP program. This program processes data for the ORNL on-line (ORLOOK) search system and is a special case of the ADSEP text input option.

  20. The P50 Research Center in Perioperative Sciences: How the investment by the National Institute of General Medical Sciences in team science has reduced postburn mortality.

    Science.gov (United States)

    Finnerty, Celeste C; Capek, Karel D; Voigt, Charles; Hundeshagen, Gabriel; Cambiaso-Daniel, Janos; Porter, Craig; Sousse, Linda E; El Ayadi, Amina; Zapata-Sirvent, Ramon; Guillory, Ashley N; Suman, Oscar E; Herndon, David N

    2017-09-01

    Since the inception of the P50 Research Center in Injury and Peri-operative Sciences (RCIPS) funding mechanism, the National Institute of General Medical Sciences has supported a team approach to science. Many advances in critical care, particularly burns, have been driven by RCIPS teams. In fact, burns that were fatal in the early 1970s, prior to the inception of the P50 RCIPS program, are now routinely survived as a result of the P50-funded research. The advances in clinical care that led to the reduction in postburn death were made by optimizing resuscitation, incorporating early excision and grafting, bolstering acute care including support for inhalation injury, modulating the hypermetabolic response, augmenting the immune response, incorporating aerobic exercise, and developing antiscarring strategies. The work of the Burn RCIPS programs advanced our understanding of the pathophysiologic response to burn injury. As a result, the effects of a large burn on all organ systems have been studied, leading to the discovery of persistent dysfunction, elucidation of the underlying molecular mechanisms, and identification of potential therapeutic targets. Survival and subsequent patient satisfaction with quality of life have increased. In this review article, we describe the contributions of the Galveston P50 RCIPS that have changed postburn care and have considerably reduced postburn mortality.

  1. Web Services Implementations at Land Process and Goddard Earth Sciences Distributed Active Archive Centers

    Science.gov (United States)

    Cole, M.; Bambacus, M.; Lynnes, C.; Sauer, B.; Falke, S.; Yang, W.

    2007-12-01

    NASA's vast array of scientific data within its Distributed Active Archive Centers (DAACs) is especially valuable to both traditional research scientists as well as the emerging market of Earth Science Information Partners. For example, the air quality science and management communities are increasingly using satellite derived observations in their analyses and decision making. The Air Quality Cluster in the Federation of Earth Science Information Partners (ESIP) uses web infrastructures of interoperability, or Service Oriented Architecture (SOA), to extend data exploration, use, and analysis and provides a user environment for DAAC products. In an effort to continually offer these NASA data to the broadest research community audience, and reusing emerging technologies, both NASA's Goddard Earth Science (GES) and Land Process (LP) DAACs have engaged in a web services pilot project. Through these projects both GES and LP have exposed data through the Open Geospatial Consortiums (OGC) Web Services standards. Reusing several different existing applications and implementation techniques, GES and LP successfully exposed a variety data, through distributed systems to be ingested into multiple end-user systems. The results of this project will enable researchers world wide to access some of NASA's GES & LP DAAC data through OGC protocols. This functionality encourages inter-disciplinary research while increasing data use through advanced technologies. This paper will concentrate on the implementation and use of OGC Web Services, specifically Web Map and Web Coverage Services (WMS, WCS) at GES and LP DAACs, and the value of these services within scientific applications, including integration with the DataFed air quality web infrastructure and in the development of data analysis web applications.

  2. The effect of student-centered and teacher-centered instruction with and without conceptual advocacy on biology students' misconceptions, achievement, attitudes toward science, and cognitive retention

    Science.gov (United States)

    Gallop, Roger Graham

    The purpose of this study was to investigate the effect of student-centered and teacher-centered instructional strategies with and without conceptual advocacy (CA) on ninth-grade biology students' misconceptions (MIS), biology achievement (ACH), attitudes toward science (ATT), and cognitive retention of scientific method and measurement, spontaneous generation, and characteristics of living things. Students were purposively selected using intact classes and assigned to one of four treatment groups (i.e., student-centered instruction without CA, student-centered instruction with CA, teacher-centered instruction with CA, and teacher-centered instruction without CA). A modified quasi-experimental design was used in which students were not matched in the conventional sense but instead, groups were shown to be equivalent on the dependent measure via a pretest. A 5-day treatment implementation period addressed science conceptions under investigation. The treatment period was based on the number of class periods teachers at the target school actually spend teaching the biological concepts under investigation using traditional instruction. At the end of the treatment period, students were posttested using the Concepts in Biology instrument and Science Questionnaire. Eight weeks after the posttest, these instruments were administered again as a delayed posttest to determine cognitive retention of the correct biological conceptions and attitudes toward science. MANCOVA and follow-up univariate ANCOVA results indicated that student-centered instruction without CA (i.e., Group 1) did not have a significant effect on students' MIS, ACH, and ATT (F = .029, p = .8658; F = .002, p =.9688, F = .292, p = .5897, respectively). On the other hand, student-centered instruction with CA (i.e., Group 2) had a significant effect on students' MIS and ACH (F =10.33, p = .0016 and F = 10.17, p = .0017, respectively), but did not on ATT (F = .433, p = .5117). Teacher-centered instruction with

  3. The Rhode Island Nuclear Science Center conversion from HEU to LEU fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tehan, Terry

    2000-09-27

    The 2-MW Rhode Island Nuclear Science Center (RINSC) open pool reactor was converted from 93% UAL-High Enriched Uranium (HEU) fuel to 20% enrichment U3Si2-AL Low Enriched Uranium (LEU) fuel. The conversion included redesign of the core to a more compact size and the addition of beryllium reflectors and a beryllium flux trap. A significant increase in thermal flux level was achieved due to greater neutron leakage in the new compact core configuration. Following the conversion, a second cooling loop and an emergency core cooling system were installed to permit operation at 5 MW. After re-licensing at 2 MW, a power upgrade request will be submitted to the NRC.

  4. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  5. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    Science.gov (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  6. Results of the pilot proof of the inquiry activities conducted in the science center

    Science.gov (United States)

    Kireš, Marián; BilišÅanská, Mária

    2017-01-01

    The science center SteelPARK Košice offers more than 60 interactive exhibits focused on presenting scientific principles and technical solutions connected to the production and manufacture of steel, research of its properties and its various industrial uses. We are trying to enhance the attractivity of the modern style of the exhibitions and its potential to engage students of ground and middle schools in acquiring new knowledge and capabilities, by means of the inquiry science center. Two laboratory measurements, for 5 three-person teams are provided once a month. During the introductory discussion on the activity, they are asked to answer a series of conceptual questions, which help determine their level of understanding at the beginning of the exercise. The measurements are based in guided inquiry, where the work progress is given a forehand, but the desired result is not. Every activity is focused on developing specific research capabilities. This is being monitored through a self-evaluation card, which every participants is required to fill out immediately after completing the activity. The work is tutored by a lecturer from the students of didactics. During two years and running 15 different activities, we have been able to gather information from more than 6000 students of ground and middle schools. Specific physics measurements, their respective conceptual questions, worksheets and final reports are being presented in this article. We evaluate the present level of conceptual understanding based on the acquired data and give recommendation to teachers on ways to improve the student's capabilities. The teacher, by way of observing the activity, the work of the lecturer and the students, is able to form an understanding of the inquiry activity for their own school practice, for which he/she can use all available methodical and work materials.

  7. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  8. Siachen Science Center: A concept for cooperation at the top of the world

    Energy Technology Data Exchange (ETDEWEB)

    Biringer, K.L.

    1998-03-01

    India and Pakistan have engaged in a long-running military dispute in the Siachen Glacier region of the northern Kashmir since 1984. In recent years, several unsuccessful attempts have been made to end the conflict. Despite continuing hostilities, there remains a strong interest in resolving the dispute and eliminating the human and financial costs associated with maintaining troops on the highest battlefield in the world. One resolution to the problem could be the establishment of a scientific research center in the region. The military forces in the region would be replaced with scientists and engineers from both countries who would advance knowledge in science and engineering by operating a high-altitude research station for the study of basic sciences, engineering, and human physiology. The high altitude, remote location, and unique geology would provide an unprecedented opportunity for ground-breaking research. The paper discusses options for such research and precedents, such as the Antarctic Treaty, for research in other hostile environments. 7 figs.

  9. Center of Excellence for Geospatial Information Science research plan 2013-18

    Science.gov (United States)

    Usery, E. Lynn

    2013-01-01

    The U.S. Geological Survey Center of Excellence for Geospatial Information Science (CEGIS) was created in 2006 and since that time has provided research primarily in support of The National Map. The presentations and publications of the CEGIS researchers document the research accomplishments that include advances in electronic topographic map design, generalization, data integration, map projections, sea level rise modeling, geospatial semantics, ontology, user-centered design, volunteer geographic information, and parallel and grid computing for geospatial data from The National Map. A research plan spanning 2013–18 has been developed extending the accomplishments of the CEGIS researchers and documenting new research areas that are anticipated to support The National Map of the future. In addition to extending the 2006–12 research areas, the CEGIS research plan for 2013–18 includes new research areas in data models, geospatial semantics, high-performance computing, volunteered geographic information, crowdsourcing, social media, data integration, and multiscale representations to support the Three-Dimensional Elevation Program (3DEP) and The National Map of the future of the U.S. Geological Survey.

  10. Intestinal Parasitological infection of employee in food manufacture anddistribution centers of Ilam University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    R Nasrifar

    2005-10-01

    Full Text Available Backgrand and Aims: Food centers' employee may be carrier of bacteria (eg. Salmonella, E coil,taphylococcus aureus and intestinal parasitical infection. With regard the importance of the roleof manufacturer and distribnter of food materials in enviromental health, the status and assessmentof these infections is necessary.Method:182 employee of food manufacture and distribntion centers' of Ilam University ofMedical Sciences were examined. 3 feaces sample were obtained from each porson in 3 days andby five different laboratory method (i.e. scoth-tape, direct thechuics, Ether formaline, Telmen'Flotation were examined. Date analysis was dane by SPSS Version, and chi square test.Results: 49.2 percent of employee had positive parasitical infection, which 45.1 percent hadprotoza and 9.7 percent had intestinal helminth. The most infections of protoza were due toEntamoeba coli, Endolimax nane, giardia Lamblia, blastocystis hominis, Chilomastix mesniliand Iodamoeba buetschlii. The most infection of intestinal heliminth were Oxyuris VermicularisHymenolepis nana, Ascaris Lumbericoides, Tricocephal, Tricosterongylus.Conclusion: The high occurance of intestinal protoza may be due to Low level of public healthand, not favouring of hygine basis in food manufacture and distribution rlaces.

  11. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.; Ingram, L.

    2007-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course from COSEE-California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project has leveraged these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort is one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach and promoting the broader impact of research; and provide diverse role models

  12. Introducing a Web API for Dataset Submission into a NASA Earth Science Data Center

    Science.gov (United States)

    Moroni, D. F.; Quach, N.; Francis-Curley, W.

    2016-12-01

    As the landscape of data becomes increasingly more diverse in the domain of Earth Science, the challenges of managing and preserving data become more onerous and complex, particularly for data centers on fixed budgets and limited staff. Many solutions already exist to ease the cost burden for the downstream component of the data lifecycle, yet most archive centers are still racing to keep up with the influx of new data that still needs to find a quasi-permanent resting place. For instance, having well-defined metadata that is consistent across the entire data landscape provides for well-managed and preserved datasets throughout the latter end of the data lifecycle. Translators between different metadata dialects are already in operational use, and facilitate keeping older datasets relevant in today's world of rapidly evolving metadata standards. However, very little is done to address the first phase of the lifecycle, which deals with the entry of both data and the corresponding metadata into a system that is traditionally opaque and closed off to external data producers, thus resulting in a significant bottleneck to the dataset submission process. The ATRAC system was the NOAA NCEI's answer to this previously obfuscated barrier to scientists wishing to find a home for their climate data records, providing a web-based entry point to submit timely and accurate metadata and information about a very specific dataset. A couple of NASA's Distributed Active Archive Centers (DAACs) have implemented their own versions of a web-based dataset and metadata submission form including the ASDC and the ORNL DAAC. The Physical Oceanography DAAC is the most recent in the list of NASA-operated DAACs who have begun to offer their own web-based dataset and metadata submission services to data producers. What makes the PO.DAAC dataset and metadata submission service stand out from these pre-existing services is the option of utilizing both a web browser GUI and a RESTful API to

  13. Delivering climate science about the Nation's fish, wildlife, and ecosystems: the U.S. Geological Survey National Climate Change and Wildlife Science Center

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.

  14. Delivering Climate Science for the Nation's Fish, Wildlife, and Ecosystems: The U.S. Geological Survey National Climate Change and Wildlife Science Center

    Science.gov (United States)

    Beard, T. Douglas

    2011-01-01

    Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).

  15. Beyond the center: Sciences in Central and Eastern Europe and their histories. An interview with professor Michael Jordan conducted by Jan Surman

    Directory of Open Access Journals (Sweden)

    Michael Gordin

    2016-11-01

    Full Text Available What is special about sciences in Central and Eastern Europe? What are the obstacles for writing histories of science done beyond metropoles? Is this science different than the science in the centers and what makes it so? How imperial are sciences made by representatives of dominant nations compared to non-dominant nations? These are some of the questions touched upon in the interview with Michael Gordin, a leading historian of science from Princeton University.

  16. Experiences in Bridging the Gap between Science and Decision Making at NASA's GSFC Earth Science Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Kempler, Steven; Teng, Bill; Friedl, Lawrence; Lynnes, Chris; Leptoukh, Gregory

    2008-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet s natural environment, NASA has implemented the Decision Support Through Earth Science Research Results program (NASA ROSES solicitations). a) This successful program has yielded several monitoring, surveillance, and decision support systems through collaborations with benefiting organizations. b) The Goddard Space Flight Center (GSFC) Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations gaining much experience in the formulation, management, development, and implementation of decision support systems utilizing NASA Earth science data. c) In addition, GES DISC s understanding of Earth science missions and resulting data and information, including data structures, data usability and interpretation, data interoperability, and information management systems, enables the GES DISC to identify challenges that come with bringing science data to decision makers. d) The purpose of this presentation is to share GES DISC decision support system project experiences in regards to system sustainability, required data quality (versus timeliness), data provider understanding of how decisions are made, and the data receivers willingness to use new types of information to make decisions, as well as other topics. In addition, defining metrics that really evaluate success will be exemplified.

  17. Science center capabilities to monitor and investigate Michigan’s water resources, 2016

    Science.gov (United States)

    Giesen, Julia A.; Givens, Carrie E.

    2016-09-06

    information regarding projects by the Michigan Water Science Center (MI WSC) is available at http://mi.water.usgs.gov/.

  18. Space data management at the NSSDC (National Space Sciences Data Center): Applications for data compression

    Science.gov (United States)

    Green, James L.

    1989-01-01

    The National Space Science Data Center (NSSDC), established in 1966, is the largest archive for processed data from NASA's space and Earth science missions. The NSSDC manages over 120,000 data tapes with over 4,000 data sets. The size of the digital archive is approximately 6,000 gigabytes with all of this data in its original uncompressed form. By 1995 the NSSDC digital archive is expected to more than quadruple in size reaching over 28,000 gigabytes. The NSSDC digital archive is expected to more than quadruple in size reaching over 28,000 gigabytes. The NSSDC is beginning several thrusts allowing it to better serve the scientific community and keep up with managing the ever increasing volumes of data. These thrusts involve managing larger and larger amounts of information and data online, employing mass storage techniques, and the use of low rate communications networks to move requested data to remote sites in the United States, Europe and Canada. The success of these thrusts, combined with the tremendous volume of data expected to be archived at the NSSDC, clearly indicates that innovative storage and data management solutions must be sought and implemented. Although not presently used, data compression techniques may be a very important tool for managing a large fraction or all of the NSSDC archive in the future. Some future applications would consist of compressing online data in order to have more data readily available, compress requested data that must be moved over low rate ground networks, and compress all the digital data in the NSSDC archive for a cost effective backup that would be used only in the event of a disaster.

  19. Data-driven Ontology Development: A Case Study at NASA's Atmospheric Science Data Center

    Science.gov (United States)

    Hertz, J.; Huffer, E.; Kusterer, J.

    2012-12-01

    Well-founded ontologies are key to enabling transformative semantic technologies and accelerating scientific research. One example is semantically enabled search and discovery, making scientific data accessible and more understandable by accurately modeling a complex domain. The ontology creation process remains a challenge for many anxious to pursue semantic technologies. The key may be that the creation process -- whether formal, community-based, automated or semi-automated -- should encompass not only a foundational core and supplemental resources but also a focus on the purpose or mission the ontology is created to support. Are there tools or processes to de-mystify, assess or enhance the resulting ontology? We suggest that comparison and analysis of a domain-focused ontology can be made using text engineering tools for information extraction, tokenizers, named entity transducers and others. The results are analyzed to ensure the ontology reflects the core purpose of the domain's mission and that the ontology integrates and describes the supporting data in the language of the domain - how the science is analyzed and discussed among all users of the data. Commonalities and relationships among domain resources describing the Clouds and Earth's Radiant Energy (CERES) Bi-Directional Scan (BDS) datasets from NASA's Atmospheric Science Data Center are compared. The domain resources include: a formal ontology created for CERES; scientific works such as papers, conference proceedings and notes; information extracted from the datasets (i.e., header metadata); and BDS scientific documentation (Algorithm Theoretical Basis Documents, collection guides, data quality summaries and others). These resources are analyzed using the open source software General Architecture for Text Engineering, a mature framework for computational tasks involving human language.

  20. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, Andrew L.; Limaye, Ashutosh S.; Srikishen, Jayanthi

    2011-01-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula s "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA s National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA s SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT s experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  1. Bombs, Bosons and Beer Cans-Research at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Pynn, Roger

    1997-04-01

    The neutron scattering community is justifiably proud of the contributions it has made to basic research in many areas of science. Information obtained using neutrons has contributed strongly to our basic understanding of phenomena in diverse systems of interest to physicists, chemists and biologists - think, for example, of how little we would know about excitations in quantum fluids, the spin-density-wave state of chromium, electronic back-donation in the bonding of organometallic compounds, or the conformation of proteins and DNA in nucleosomes without neutron scattering. However, illustrious as this history of neutron scattering may be, it is not the only type of contribution neutrons have made to our modern scientific and technological enterprise. Increasingly in recent years, we have witnessed the application of neutrons to later parts of the R&D cycle, to problems that have been called ''strategic research'' and even in areas that are ''applied research'' or ''product development''. The purpose of my talk at this meeting is to illustrate this aspect of research at spallation neutron sources, using examples of work that has been done at the Los Alamos Neutron Science Center (LANSCE). Some of this work is driven by the fact that our principal funding agency, the Office of Defense Programs within the U.S. Department of Energy, has a need to master the science behind technologies relevant to nuclear weapons. Even so, most of the examples I have picked are equally relevant to the industrial sector and several would not shame even the most devout proponent of ''pure'' research. To demonstrate the breadth of the research performed at LANSCE, I will describe examples of recent experiments in the following areas: materials texture; temperature and particle velocity measurement in reacting high explosives; radiographic imaging with protons; chemical bonding in metal-dihydride complexes; and the structure of thin adhesive layers. LANSCE operates a user program and

  2. The Experimental Teaching Reform in Biochemistry and Molecular Biology for Undergraduate Students in Peking University Health Science Center

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and…

  3. Increasing Access to Atmospheric Science Research at NASA Langley Research Center

    Science.gov (United States)

    Chambers, L. H.; Bethea, K. L.; LaPan, J. C.

    2013-12-01

    The Science Directorate (SD) at NASA's Langley Research Center conducts cutting edge research in fundamental atmospheric science topics including radiation and climate, air quality, active remote sensing, and upper atmospheric composition. These topics matter to the public, as they improve our understanding of our home planet. Thus, we have had ongoing efforts to improve public access to the results of our research. These efforts have accelerated with the release of the February OSTP memo. Our efforts can be grouped in two main categories: 1. Visual presentation techniques to improve science understanding: For fundamental concepts such as the Earth's energy budget, we have worked to display information in a more "digestible" way for lay audiences with more pictures and fewer words. These audiences are iPad-lovers and TV-watchers with shorter attention spans than audiences of the past. They are also educators and students who need a basic understanding of a concept delivered briefly to fit into busy classroom schedules. We seek to reach them with a quick, visual message packed with important information. This presentation will share several examples of visual techniques, such as infographics (e.g., a history of lidar at Langley and a timeline of atmospheric research, ozone garden diagrams (http://science-edu.larc.nasa.gov/ozonegarden/ozone-cycle.php); history of lidar at LaRC; DISCOVER-AQ maps. It will also share examples of animations and interactive graphics (DISCOVER-AQ); and customized presentations (e.g., to explain the energy budget or to give a general overview of research). One of the challenges we face is a required culture shift between the way scientists traditionally share knowledge with each other and the way these public audiences ingest knowledge. A cross-disciplinary communications team in SD is crucial to bridge that gap. 2. Lay research summaries to make research more accessible: Peer-reviewed publications are a primary product of the SD, with more

  4. LOS ALAMOS NEUTRON SCIENCE CENTER CONTRIBUTIONS TO THE DEVELOPMENT OF FUTURE POWER REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    GAVRON, VICTOR I. [Los Alamos National Laboratory; HILL, TONY S. [Los Alamos National Laboratory; PITCHER, ERIC J. [Los Alamos National Laboratory; TOVESSON, FREDERIK K. [Los Alamos National Laboratory

    2007-01-09

    The Los Alamos Neutron Science Center (LANSCE) is a large spallation neutron complex centered around an 800 MeV high-currently proton accelerator. Existing facilities include a highly-moderated neutron facility (Lujan Center) where neutrons between thermal and keV energies are produced, and the Weapons Neutron Research Center (WNR), where a bare spallation target produces neutrons between 0.1 and several hundred MeV.The LANSCE facility offers a unique capability to provide high precision nuclear data over a large energy region, including that for fast reactor systems. In an ongoing experimental program the fission and capture cross sections are being measured for a number of minor actinides relevant for Generation-IV reactors and transmutation technology. Fission experiments makes use of both the highly moderated spallation neutron spectrum at the Lujan Center, and the unmoderated high energy spectrum at WNR. By combininb measurements at these two facilities the differential fission cross section is measured relative to the {sup 235}U(n,f) standard from subthermal energies up to about 200 MeV. An elaborate data acquisition system is designed to deal with all the different types of background present when spanning 10 energy decades. The first isotope to be measured was {sup 237}Np, and the results were used to improve the current ENDF/B-VII evaluation. Partial results have also been obtained for {sup 240}Pu and {sup 242}Pu, and the final results are expected shortly. Capture cross sections are measured at LANSCE using the Detector for Advanced Neutron Capture Experiments (DANCE). This unique instrument is highly efficient in detecting radiative capture events, and can thus handle radioactive samples of half-lives as low as 100 years. A number of capture cross sections important to fast reaction applications have been measured with DANCE. The first measurement was on {sup 237}Np(n,{gamma}), and the results have been submitted for publication. Other capture

  5. How to Lead the Way Through Complexity, Constraint, and Uncertainty in Academic Health Science Centers.

    Science.gov (United States)

    Lieff, Susan J; Yammarino, Francis J

    2017-05-01

    Academic medicine is in an era of unprecedented and constant change due to fluctuating economies, globalization, emerging technologies, research, and professional and educational mandates. Consequently, academic health science centers (AHSCs) are facing new levels of complexity, constraint, and uncertainty. Currently, AHSC leaders work with competing academic and health service demands and are required to work with and are accountable to a diversity of stakeholders. Given the new challenges and emerging needs, the authors believe the leadership methods and approaches AHSCs have used in the past that led to successes will be insufficient. In this Article, the authors propose that AHSCs will require a unique combination of old and new leadership approaches specifically oriented to the unique complexity of the AHSC context. They initially describe the designer (or hierarchical) and heroic (military and transformational) approaches to leadership and how they have been applied in AHSCs. While these well-researched and traditional approaches have their strengths in certain contexts, the leadership field has recognized that they can also limit leaders' abilities to enable their organizations to be engaged, adaptable, and responsive. Consequently, some new approaches have emerged that are taking hold in academic work and professional practice. The authors highlight and explore some of these new approaches-the authentic, self, shared, and network approaches to leadership-with attention to their application in and utility for the AHSC context.

  6. Klystron Modulator Design for the Los Alamos Neutron Science Center Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Reass, William A. [Los Alamos National Laboratory; Baca, David M. [Los Alamos National Laboratory; Partridge, Edward R. [retired; Rees, Daniel E. [Los Alamos National Laboratory

    2012-06-22

    This paper will describe the design of the 44 modulator systems that will be installed to upgrade the Los Alamos Neutron Science Center (LANSCE) accelerator RF system. The klystrons can operate up to 86 kV with a nominal 32 Amp beam current with a 120 Hz repetition rate and 15% duty cycle. The klystrons are a mod-anode design. The modulator is designed with analog feedback control to ensure the klystron beam current is flat-top regulated. To achieve fast switching while maintaining linear feedback control, a grid-clamp, totem-pole modulator configuration is used with an 'on' deck and an 'off' deck. The on and off deck modulators are of identical design and utilize a cascode connected planar triode, cathode driven with a high speed MOSFET. The derived feedback is connected to the planar triode grid to enable the flat-top control. Although modern design approaches suggest solid state designs may be considered, the planar triode (Eimac Y-847B) is very cost effective, is easy to integrate with the existing hardware, and provides a simplified linear feedback control mechanism. The design is very compact and fault tolerant. This paper will review the complete electrical design, operational performance, and system characterization as applied to the LANSCE installation.

  7. The GOLD Science Data Center - Algorithm Heritage, Data Product Descriptions and User Services

    Science.gov (United States)

    Lumpe, J. D.; Foroosh, H.; Eastes, R.; Krywonos, A.; Evans, J. S.; Burns, A. G.; Strickland, D. J.; Daniell, R. E.; England, S.; Solomon, S. C.; McClintock, W. E.; Anderson, D. N.

    2013-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) instrument is an imaging spectrograph to be launched onboard a commercial communications satellite in 2017. From its vantage point in geosynchronous orbit GOLD will image the Earth in the far-ultraviolet from 132 to 162 nm. The instrument consists of two independent optical channels, allowing for simultaneous implementation of multiple measurement sequences with different temporal sampling and spectral resolution. In addition to continuously scanning the disk of the Earth, GOLD will also perform routine limb scan and stellar occultation measurements. These measurements will be used to retrieve a variety of data products characterizing the temperature and composition of the thermosphere-ionosphere, and their response to geomagnetic storms and solar forcing. Primary data products include: daytime neutral temperatures near 160 km altitude; daytime O/N2 column density ratios; nighttime peak electron density; thermospheric O2 density profiles (day and night); daytime exospheric neutral temperature on the limb; atmospheric tides from temperature perturbations; and the location and evolution of ionospheric bubbles. GOLD data will be processed at the Science Data Center (SDC) located at the University of Central Florida. The SDC will also serve as the primary gateway for distribution of GOLD data products to end-users. In this talk we summarize the heritage and theoretical basis of the GOLD retrieval algorithms and describe the full range of GOLD data products that will be available at the SDC, including estimates of data latency and quality.

  8. Virtual microscopy in medical research: Open European Nephrology Science Center (OpEN.SC)

    Science.gov (United States)

    Schrader, Thomas; Beil, Michael; Schmidt, Danilo; Dietel, Manfred; Lindemann, Gabriela

    2007-03-01

    The amount and heterogeneity of data in biomedical research, notably in transnational research, requires new methods for the collection, presentation and analysis of information. Important data from laboratory experiments as well as patient trials are available as images. Thus, the integration and processing of image data represent a crucial component of information systems in biomedical research. The Charité Medical School in Berlin has established a new information service center for kidney diseases and transplantation (Open European Nephrology Science Centre - OpEN.SC) together with the German Research Agency (DFG). The aims of this project are (i) to improve the availability of raw data, (ii) to establish an infrastructure for clinical trials, (iii) to monitor the occurrence of rare disease patterns and (iv) to establish a quality assurance system. Major diagnostic procedures in medicine are based on the processing and analysis of image data. In diagnostic pathology, the availability of automated slide scanners provide the opportunity to digitize entire microscopic slides. The processing, presentation and analysis of these image data are called virtual microscopy. The integration of this new technology into the OpEN.SC system and the link to other heterogeneous data of individual patients represent a major technological challenge. Thus, new ways in communication between clinical and scientific partners have to be established and will be promoted by the project. The technological basis of the repository are web services for a scalable and adaptable system. HL7 and DICOM are considered the main medical standards of communication.

  9. Upgrades to the ultracold neutron source at the Los Alamos Neutron Science Center

    Science.gov (United States)

    Pattie, Robert; LANL-nEDM Collaboration

    2015-10-01

    The spallation-driven solid deutrium-based ultracold neutron (UCN) source at the Los Alamos Neutron Science Center (LANSCE) has provided a facility for precision measurements of fundamental symmetries via the decay observables from neutron beta decay for nearly a decade. In preparation for a new room temperature neutron electric dipole moment (nEDM) experiment and to increase the statistical sensitivity of all experiments using the source an effort to increase the UCN output is underway. The ultimate goal is to provide a density of 100 UCN/cc or greater in the nEDM storage cell. This upgrade includes redesign of the cold neutron moderator and UCN converter geometries, improved coupling and coating of the UCN transport system through the biological shielding, optimization of beam timing structure, and increase of the proton beam current. We will present the results of the MCNP and UCN transport simulations that led to the new design, which will be installed spring 2016, and UCN guide tests performed at LANSCE and the Institut Laue-Langevin to study the UCN transport properties of a new nickel-based guide coating.

  10. Decision support system development at the Upper Midwest Environmental Sciences Center

    Science.gov (United States)

    Fox, Timothy J.; Nelson, J. C.; Rohweder, Jason J.

    2014-01-01

    A Decision Support System (DSS) can be defined in many ways. The working definition used by the U.S. Geological Survey Upper Midwest Environmental Sciences Center (UMESC) is, “A spatially based computer application or data that assists a researcher or manager in making decisions.” This is quite a broad definition—and it needs to be, because the possibilities for types of DSSs are limited only by the user group and the developer’s imagination. There is no one DSS; the types of DSSs are as diverse as the problems they help solve. This diversity requires that DSSs be built in a variety of ways, using the most appropriate methods and tools for the individual application. The skills of potential DSS users vary widely as well, further necessitating multiple approaches to DSS development. Some small, highly trained user groups may want a powerful modeling tool with extensive functionality at the expense of ease of use. Other user groups less familiar with geographic information system (GIS) and spatial data may want an easy-to-use application for a nontechnical audience. UMESC has been developing DSSs for almost 20 years. Our DSS developers offer our partners a wide variety of technical skills and development options, ranging from the most simple Web page or small application to complex modeling application development.

  11. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-fiscal year 2010 annual report

    Science.gov (United States)

    Nelson, Janice S.

    2011-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. The work of the Center is shaped by the earth sciences, the missions of our stakeholders, and implemented through strong program and project management, and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote-sensing-based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet, and where possible exceed, the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2010. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by EROS staff or by visiting our web site at http://eros.usgs.gov. We welcome comments and follow-up questions on any aspect of this Annual Report and invite any of our customers or partners to contact us at their convenience. To

  12. Ranking Iranian biomedical research centers according to H-variants (G, M, A, R) in Scopus and Web of Science.

    Science.gov (United States)

    Mahmudi, Zoleikha; Tahamtan, Iman; Sedghi, Shahram; Roudbari, Masoud

    2015-01-01

    We conducted a comprehensive bibliometrics analysis to calculate the H, G, M, A and R indicators for all Iranian biomedical research centers (IBRCs) from the output of ISI Web of Science (WoS) and Scopus between 1991 and 2010. We compared the research performance of the research centers according to these indicators. This was a cross-sectional and descriptive-analytical study, conducted on 104 Iranian biomedical research centers between August and September 2011. We collected our data through Scopus and WoS. Pearson correlation coefficient between the scientometrics indicators was calculated using SPSS, version 16. The mean values of all indicators were higher in Scopus than in WoS. Drug Applied Research Center of Tabriz University of Medical Sciences had the highest number of publications in both WoS and Scopus databases. This research center along with Royan Institute received the highest number of citations in both Scopus and WoS, respectively. The highest correlation was seen between G and R (.998) in WoS and between G and R (.990) in Scopus. Furthermore, the highest overlap of the 10 top IBRCs was between G and H in WoS (100%) and between G-R (90%) and H-R (90%) in Scopus. Research centers affiliated to the top ranked Iranian medical universities obtained a better position with respect to the studied scientometrics indicators. All aforementioned indicators are important for ranking bibliometrics studies as they refer to different attributes of scientific output and citation aspects.

  13. Cloud Computing Applications in Support of Earth Science Activities at Marshall Space Flight Center

    Science.gov (United States)

    Molthan, A.; Limaye, A. S.

    2011-12-01

    Currently, the NASA Nebula Cloud Computing Platform is available to Agency personnel in a pre-release status as the system undergoes a formal operational readiness review. Over the past year, two projects within the Earth Science Office at NASA Marshall Space Flight Center have been investigating the performance and value of Nebula's "Infrastructure as a Service", or "IaaS" concept and applying cloud computing concepts to advance their respective mission goals. The Short-term Prediction Research and Transition (SPoRT) Center focuses on the transition of unique NASA satellite observations and weather forecasting capabilities for use within the operational forecasting community through partnerships with NOAA's National Weather Service (NWS). SPoRT has evaluated the performance of the Weather Research and Forecasting (WRF) model on virtual machines deployed within Nebula and used Nebula instances to simulate local forecasts in support of regional forecast studies of interest to select NWS forecast offices. In addition to weather forecasting applications, rapidly deployable Nebula virtual machines have supported the processing of high resolution NASA satellite imagery to support disaster assessment following the historic severe weather and tornado outbreak of April 27, 2011. Other modeling and satellite analysis activities are underway in support of NASA's SERVIR program, which integrates satellite observations, ground-based data and forecast models to monitor environmental change and improve disaster response in Central America, the Caribbean, Africa, and the Himalayas. Leveraging SPoRT's experience, SERVIR is working to establish a real-time weather forecasting model for Central America. Other modeling efforts include hydrologic forecasts for Kenya, driven by NASA satellite observations and reanalysis data sets provided by the broader meteorological community. Forecast modeling efforts are supplemented by short-term forecasts of convective initiation, determined by

  14. Report on the Global Data Assembly Center (GDAC) to the 12th GHRSST Science Team Meeting

    Science.gov (United States)

    Armstrong, Edward M.; Bingham, Andrew; Vazquez, Jorge; Thompson, Charles; Huang, Thomas; Finch, Chris

    2011-01-01

    In 2010/2011 the Global Data Assembly Center (GDAC) at NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC) continued its role as the primary clearinghouse and access node for operational Group for High Resolution Sea Surface Temperature (GHRSST) datastreams, as well as its collaborative role with the NOAA Long Term Stewardship and Reanalysis Facility (LTSRF) for archiving. Here we report on our data management activities and infrastructure improvements since the last science team meeting in June 2010.These include the implementation of all GHRSST datastreams in the new PO.DAAC Data Management and Archive System (DMAS) for more reliable and timely data access. GHRSST dataset metadata are now stored in a new database that has made the maintenance and quality improvement of metadata fields more straightforward. A content management system for a revised suite of PO.DAAC web pages allows dynamic access to a subset of these metadata fields for enhanced dataset description as well as discovery through a faceted search mechanism from the perspective of the user. From the discovery and metadata standpoint the GDAC has also implemented the NASA version of the OpenSearch protocol for searching for GHRSST granules and developed a web service to generate ISO 19115-2 compliant metadata records. Furthermore, the GDAC has continued to implement a new suite of tools and services for GHRSST datastreams including a Level 2 subsetter known as Dataminer, a revised POET Level 3/4 subsetter and visualization tool, a Google Earth interface to selected daily global Level 2 and Level 4 data, and experimented with a THREDDS catalog of GHRSST data collections. Finally we will summarize the expanding user and data statistics, and other metrics that we have collected over the last year demonstrating the broad user community and applications that the GHRSST project continues to serve via the GDAC distribution mechanisms. This report also serves by extension to summarize the

  15. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    Science.gov (United States)

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  16. Application of the Study Model of \\\\\\"Knowledge Management Infrastructure in Organizations\\\\\\" in Information Centers: The case of the Regional Information Center for Science and Technology (RICeST

    Directory of Open Access Journals (Sweden)

    Abdolhossein Farajpahlou

    2012-02-01

    Full Text Available Information centers are duly obliged to move in line with their parent organizations’ goals and missions in creating knowledge. In the age of information and communication revolution, and in a knowledge-based economy, organizations that are involved in creation of knowledge have an important role in communication and diffusion of knowledge. In the mean time, libraries and information centers change from being mere depository sources to knowledge institutions. The current research aimed to study the present state of knowledge management infrastructures of the Regional Information Center for Science and Technology (RICeST as a national and regional information center. The statistic population of this study was consisted of 87 staff. Data was collected by means of questionnaires, observation and interviews. The results showed the required infrastructure for KM activities were almost there, among different aspects of which, budgeting had a better situation in the institution under study. In regards with establishment of knowledge management, RICeST was paying more attention to information and communication technology and knowledge network via applications such as the Internet and extranets. Another fact was that in the RICeST, emphasis was on learning and on human resources as the substantial sources in creation of knowledge. Among other aspects, “organizational culture” was in a lower state compared with other aspects in the RICeST.

  17. Performance of a career development and compensation program at an academic health science center.

    Science.gov (United States)

    O'Brodovich, Hugh; Beyene, Joseph; Tallett, Susan; MacGregor, Daune; Rosenblum, Norman D

    2007-04-01

    The academic physicians of our department developed a novel Career Development and Compensation Program to outline job expectations, enhance career development, and provide a peer-review process to assess performance. The Career Development and Compensation Program was founded on the principle that sustained achievement in education, clinical care, or research should be valued, supported, and rewarded in an equivalent manner and that reward for clinical work should not be limited by the focus of the university on research and education. The objective of this study was to determine whether the principles of the Career Development and Compensation Program were sustained during the initial 7 years of its implementation. The outcome of the 7 triennial reviews that occurred from 1999 to 2005 was evaluated. For the purposes of some analyses, physicians were classified as predominately clinical (clinician-specialists and clinician-teachers), predominately education (clinician-educators), or predominately research (clinician-investigators and clinician-scientists). Each of the job profiles had a similar probability to increase a level within the Career Development and Compensation Program at the time of triennial review. Similarly, all 5 job profiles had a similar rate of increase in their level in relation to the total number of years of experience at an academic health science center. Neither the university academic rank nor gender of the physician affected the probability of increasing a level at the time of the triennial review. The peer-reviewed Career Development and Compensation Program recognizes sustained achievement in each area of education, clinical care, and research in an equivalent manner with no detectable effect of academic rank or gender.

  18. Patterns of biomedical science production in a sub-Saharan research center.

    Science.gov (United States)

    Agnandji, Selidji T; Tsassa, Valerie; Conzelmann, Cornelia; Köhler, Carsten; Ehni, Hans-Jörg

    2012-03-26

    Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  19. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  20. 76 FR 44593 - Identifying the Center for Drug Evaluation and Research's Science and Research Needs...

    Science.gov (United States)

    2011-07-26

    ... Science and Research Needs; Availability of a Draft Report; Request for Comments AGENCY: Food and Drug... announcing the availability of a draft report entitled ``Identifying CDER's Science and Research Needs... efforts. Through external communication of the science and research needs outlined in the report, CDER...

  1. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    Science.gov (United States)

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  2. Educating youth about health and science using a partnership between an academic medical center and community-based science museum.

    Science.gov (United States)

    Bunce, Arwen E; Griest, Susan; Howarth, Linda C; Beemsterboer, Phyllis; Cameron, William; Carney, Patricia A

    2009-08-01

    Declining student interest and scholastic abilities in the sciences are concerns for the health professions. Additionally, the National Institutes of Health is committed to promoting more research on health behaviors among US youth, where one of the most striking contemporary issues is obesity. This paper reports findings on the impact of a partnership between Oregon Health and Science University (OHSU) and the Oregon Museum of Science and Industry linked to a 17-week exhibition of BodyWorlds3 and designed to inform rural underserved youth about science and health research. Self-administered survey measures included health knowledge, attitudes, intended health behaviors, and interest in the health professions. Four hundred four surveys (88% of participants) were included in analyses. Ninety percent or more found both the BodyWorlds (n = 404) and OHSU (n = 239) exhibits interesting. Dental care habits showed the highest level of intended behavior change (Dental = 45%, Exercise = 34%, Eating = 30%). Overall, females and middle school students were more likely than male and high school students, respectively, to state an intention to change exercise, eating and dental care habits. Females and high school students were more likely to have considered a career in health or science prior to their exhibit visit and, following the exhibit, were more likely to report that this intention had been reinforced. About 6% of those who had not previously considered a career in health or science (n = 225) reported being more likely to do so after viewing the exhibits. In conclusion, high quality experiential learning best created by community-academic partnerships appears to have the ability to stimulate interest and influence intentions to change health behaviors among middle and high school students.

  3. Communicating Ocean Sciences to Informal Audiences (COSIA): Universities, Oceanographic Institutions, Science Centers and Aquariums Working Together to Improve Ocean Education and Public Outreach

    Science.gov (United States)

    Glenn, S.; McDonnell, J.; Halversen, C.; Zimmerman, T.

    2006-12-01

    Ocean observatories have already demonstrated their ability to maintain long-term time series, capture episodic events, provide context for improved shipboard sampling, and improve accessibility to a broader range of participants. Communicating Ocean Sciences, an already existing college course (http://www.cacosee.net/collegecourse) from COSEE California has demonstrated its ability to teach future scientists essential communication skills. The NSF-funded Communicating Ocean Sciences to Informal Audiences (COSIA) project will leverage these experiences and others to demonstrate a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. The COSIA effort will be one of the pathfinders for ensuring that the new scientific results from the increasing U.S. investments in ocean observatories is effectively communicated to the nation, and will serve as a model for other fields. Our presentation will describe a long-term model for promoting effective science communication skills and techniques applicable to diverse audiences. COSIA established partnerships between informal science education institutions and universities nationwide to facilitate quality outreach by scientists and the delivery of rigorous, cutting edge science by informal educators while teaching future scientists (college students) essential communication skills. The COSIA model includes scientist-educator partnerships that develop and deliver a college course derived from COS that teaches communication skills through the understanding of learning theory specifically related to informal learning environments and the practice of these skills at aquariums and science centers. The goals of COSIA are to: provide a model for establishing substantive, long-term partnerships between scientists and informal science education institutions to meet their respective outreach needs; provide future scientists with experiences delivering outreach to informal

  4. Dynamics of center-periphery patterns in knowledge networks - the case of China's biotech science and technology system

    CERN Document Server

    Hennemann, Stefan; Liefner, Ingo

    2011-01-01

    Science and technology systems - and their epistemic communities - are usually hierarchical and composed of a number of strong, large, leading organizations, along with a number of smaller and less influential ones. Moreover, these hierarchical patterns have a spatial structure: the leading organizations are concentrated in a few places, creating a science and technology center, whereas the majority of locations are peripheral. In the example of biotech research in China, we found dynamic changes in center-periphery patterns. These results are based on a network analysis of evolving co-authorship networks from 2001 to 2009 that were built combining national and international databases. Therefore, our results are not only relevant for evaluating the spatial structure and dynamics in the Chinese biotech system and its integration into the global knowledge network, but also revive a discussion on persistence and processes of change in the systems theory for sciencebased industries.

  5. An overview of the use of Open Source in the NASA Langley Atmospheric Science Data Center Archive Next Generation system

    Science.gov (United States)

    Dye, R. A.; Perez, J.; Piatko, P. J.; Coogan, S. P.; Parker, L.

    2012-12-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the archive and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. Over the past several years the ASDC has developed and implemented the Archive Next Generation (ANGe) system, a state-of-the-art data ingest, archival, and distribution system to serve the atmospheric sciences data provider and user communities. ANGe employs Open Source technologies including the JBoss Application Server, a PostGIS-enabled PostgreSQL database system to store geospatial metadata, modules from the GeoTools Open Source Java GIS Toolkit including the Java Topology Suite (JTS) and GeoAPI libraries, and other libraries such as the Spring framework. ANGe was developed using a suite of several Open Source tools comprised of Eclipse, Ant, Subversion and Jenkins. ANGe is also deployed into an operational environment that leverages Open Source technologies from the Linux Operating system to tools such as Ganglia for monitoring. This presentation provides an overview of ANGe with a focus on the Open Source technologies employed in the implementation and deployment of the system. The ASDC is part of Langley's Science Directorate. The Data Center was established in 1991 to support NASA's Earth Observing System and the U.S. Global Change Research Program. It is unique among NASA data centers in the size of its archive, cutting edge computing technology, and full range of data services. For more information regarding ASDC data holdings, documentation, tools and services, visit http://eosweb.larc.nasa.gov.

  6. Research advances in treatment of neurological and psychological diseases by acupuncture at the Acupuncture Meridian Science Research Center

    OpenAIRE

    Lee, Bombi; Kim, Seung-Nam; Park, Hi-Joon; Lee, Hyejung

    2014-01-01

    Acupuncture is an ancient therapeutic intervention that can be traced back at least 2100 years and is emerging worldwide as one of the most widely used therapies in the field of complementary and alternative medicine. Due to limitations associated with Western medicine's focus on the treatment of diseases rather than on their causes, interests are shifting to complementary and alternative medicines. The Acupuncture and Meridian Science Research Center (AMSRC) was established in 2005 to elucid...

  7. Report on enhancing young scholars in science and technology the Center for Excellence in Education

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-30

    The present stock and flow of highly talented young persons engaged in the global discovery and application of science and technology are critical to the future pace of innovation. Historically, the world`s largest reservoirs of scientists and engineers have been in the Western economies. Overtime, however, Asia has begun to build equivalent pools of scientists and engineers among their university graduates. According to 1993 data from the National Science Foundation and the UNESCO World Science Report, Germany leads all economies with a 67% ratio of science and engineering degrees to total first university degrees compared to the United States with a distant fifth place at 32% behind Italy, Mexico and Poland. If the nation is to keep its scientific and technological prowess, it must capture its very best talent in the science and technology fields. The question is then raised as to the source within the United States of the science and technology talent pool. While between 1978 and 1991 there was an overall decline in male participation in undergraduate (-9%) and graduate degrees (-12%), the number of women receiving undergraduate (+8%) and graduate degrees (+34%) rose dramatically. These numbers are encouraging for women`s participation overall, however, women earn only a small percentage of physical science and engineering degrees. Why are there so few women in mathematics, engineering, and the physical sciences? The answers are complex and begin early in a woman`s exposure to science and mathematics. This report presents results on a study of careers of alumni from the Research Science Institute. Investigations were concerned with the timing of decision processes concerned with the sciences and math and factors that influenced people to turn away from or proceed with careers in science and math.

  8. Learner-centered teaching in the college science classroom: a practical guide for teaching assistants, instructors, and professors

    Science.gov (United States)

    Dominguez, Margaret Z.; Vorndran, Shelby

    2014-09-01

    The Office of Instruction and Assessment at the University of Arizona currently offers a Certificate in College Teaching Program. The objective of this program is to develop the competencies necessary to teach effectively in higher education today, with an emphasis on learner-centered teaching. This type of teaching methodology has repeatedly shown to have superior effects compared to traditional teacher-centered approaches. The success of this approach has been proven in both short term and long term teaching scenarios. Students must actively participate in class, which allows for the development of depth of understanding, acquisition of critical thinking, and problem-solving skills. As optical science graduate students completing the teaching program certificate, we taught a recitation class for OPTI 370: Photonics and Lasers for two consecutive years. The recitation was an optional 1-hour long session to supplement the course lectures. This recitation received positive feedback and learner-centered teaching was shown to be a successful method for engaging students in science, specifically in optical sciences following an inquiry driven format. This paper is intended as a guide for interactive, multifaceted teaching, due to the fact that there are a variety of learning styles found in every classroom. The techniques outlined can be implemented in many formats: a full course, recitation session, office hours and tutoring. This guide is practical and includes only the most effective and efficient strategies learned while also addressing the challenges faced, such as formulating engaging questions, using wait time and encouraging shy students.

  9. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  10. Evolution of Information Management at the GSFC Earth Sciences (GES) Data and Information Services Center (DISC): 2006-2007

    Science.gov (United States)

    Kempler, Steven; Lynnes, Christopher; Vollmer, Bruce; Alcott, Gary; Berrick, Stephen

    2009-01-01

    Increasingly sophisticated National Aeronautics and Space Administration (NASA) Earth science missions have driven their associated data and data management systems from providing simple point-to-point archiving and retrieval to performing user-responsive distributed multisensor information extraction. To fully maximize the use of remote-sensor-generated Earth science data, NASA recognized the need for data systems that provide data access and manipulation capabilities responsive to research brought forth by advancing scientific analysis and the need to maximize the use and usability of the data. The decision by NASA to purposely evolve the Earth Observing System Data and Information System (EOSDIS) at the Goddard Space Flight Center (GSFC) Earth Sciences (GES) Data and Information Services Center (DISC) and other information management facilities was timely and appropriate. The GES DISC evolution was focused on replacing the EOSDIS Core System (ECS) by reusing the In-house developed disk-based Simple, Scalable, Script-based Science Product Archive (S4PA) data management system and migrating data to the disk archives. Transition was completed in December 2007

  11. Student-Centered Instruction: Integrating the Learning Sciences to Support Elementary and Middle School Learners

    Science.gov (United States)

    Turner, Steven L.

    2011-01-01

    Research from the learning sciences (how people learn) can help educators and parents work more effectively with disengaged students and reluctant learners. In this article, the author reviews the knowledge base of the learning sciences and examines what researchers and teachers have learned in the past 30 years regarding how and why people learn…

  12. Improving Scientific Voice in the Science Communication Center at UT Knoxville

    Science.gov (United States)

    Hirst, Russel

    2013-01-01

    Many science students believe that scientific writing is most impressive (and most professionally acceptable) when impersonal, dense, complex, and packed with jargon. In particular, they have the idea that legitimate scientific writing must suppress the subjectivity of the human voice. But science students can mature into excellent writers whose…

  13. Exponential Growth and the Shifting Global Center of Gravity of Science Production, 1900-2011

    Science.gov (United States)

    Zhang, Liang; Powell, Justin J. W.; Baker, David P.

    2015-01-01

    Long historical trends in scientific discovery led mid-20th century scientometricians to mark the advent of "big science"--extensive science production--and predicted that over the next few decades, the exponential growth would slow, resulting in lower rates of increase in production at the upper limit of a logistic curve. They were…

  14. 75 FR 14128 - Center for Nanoscale Science and Technology Postdoctoral Researcher and Visiting Fellow...

    Science.gov (United States)

    2010-03-24

    ... Researcher and Visiting Fellow Measurement Science and Engineering Program; Availability of Funds AGENCY... establishing a financial assistance program for awardees to develop and implement with the CNST a Postdoctoral Researcher and Visiting Fellow Measurement Science and Engineering Program. This program is intended to...

  15. Hypothetical Biotechnology Companies: A Role-Playing Student Centered Activity for Undergraduate Science Students

    Science.gov (United States)

    Chuck, Jo-Anne

    2011-01-01

    Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need…

  16. Science and Math through Role-Play Centers in the Elementary School Classroom.

    Science.gov (United States)

    Jarrett, Olga S.

    1997-01-01

    Describes role-play centers in which children can do math problems, invent, experiment, write with a purpose, and act out adult career roles. Examples of centers include a doctor's office, a supermarket, a fix-it or inventor's workshop, a post office, a pet store, a zoo, a veterinary clinic, a museum, and a restaurant. (DKM)

  17. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    Science.gov (United States)

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  18. 77 FR 57569 - Science Advisory Board to the National Center for Toxicological Research; Notice of Meeting

    Science.gov (United States)

    2012-09-18

    ... provide advice and recommendations to the Agency on FDA's regulatory issues. Date and Time: The meeting... for Food Safety and Applied Nutrition will each briefly discuss their center-specific research strategic needs. On October 24, 2012, the Director of the Center for Food Safety and Applied Nutrition will...

  19. U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center-Fiscal Year 2009 Annual Report

    Science.gov (United States)

    Nelson, Janice S.

    2010-01-01

    The Earth Resources Observation and Science (EROS) Center is a U.S. Geological Survey (USGS) facility focused on providing science and imagery to better understand our Earth. As part of the USGS Geography Discipline, EROS contributes to the Land Remote Sensing (LRS) Program, the Geographic Analysis and Monitoring (GAM) Program, and the National Geospatial Program (NGP), as well as our Federal partners and cooperators. The work of the Center is shaped by the Earth sciences, the missions of our stakeholders, and implemented through strong program and project management and application of state-of-the-art information technologies. Fundamentally, EROS contributes to the understanding of a changing Earth through 'research to operations' activities that include developing, implementing, and operating remote sensing based terrestrial monitoring capabilities needed to address interdisciplinary science and applications objectives at all levels-both nationally and internationally. The Center's programs and projects continually strive to meet and/or exceed the changing needs of the USGS, the Department of the Interior, our Nation, and international constituents. The Center's multidisciplinary staff uses their unique expertise in remote sensing science and technologies to conduct basic and applied research, data acquisition, systems engineering, information access and management, and archive preservation to address the Nation's most critical needs. Of particular note is the role of EROS as the primary provider of Landsat data, the longest comprehensive global land Earth observation record ever collected. This report is intended to provide an overview of the scientific and engineering achievements and illustrate the range and scope of the activities and accomplishments at EROS throughout fiscal year (FY) 2009. Additional information concerning the scientific, engineering, and operational achievements can be obtained from the scientific papers and other documents published by

  20. Issue-centered Earth Science undergraduate instruction in U.S. colleges and universities

    Science.gov (United States)

    Liddicoat, J. C.

    2011-12-01

    Semester-long introductory courses in Earth Science at U.S. colleges and universities often contain astronomy, meteorology, oceanography, and geology taught as single entities. My experience teaching Earth Science that way and using a trade Earth Science textbook results in cursory knowledge and poor retention of each topic area. This seems to be especially true for liberal arts students who take Earth Science to satisfy a distribution requirement in the sciences. Instead, my method of teaching Earth Science at the State University of New York is to use two books that together explore consequences of global warming caused by the combustion of fossil fuels by humans. In this way, students who do not intend to major in science are given in-depth information about how and why this challenge to the well-being of life on Earth in the present century and beyond must be addressed in a thoughtful way. The books, Tyler Volk's CO2 Rising - The World's Greatest Environmental Challenge and James Edinger's Watching for the Wind, are inexpensive paperbacks that the students read in their entirety. Besides supplemental information I provide in the lectures, students have weekly examinations that are narrative in form, and there are written assignments for exhibits at science and other museums in NYC that complement some of the topics. The benefit of teaching Earth Science in this non-traditional way is that students seem more interested in the subject because it is relevant to everyday experience and news accounts about a serious global science problem for which an informed public must take a positive role to solve.

  1. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-07-01

    challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  2. Federal Agency and Federal Library Reports. Library of Congress; Center for the Book; Federal Library and Information Center Committee; National Commission on Libraries and Information Science; National Agricultural Library; National Library of Medicine;United States Government Printing Office; National Technical Information Service; National Archives and Records Administration; National Center for Education Statistics Library Statistics Program; National Library of Education; Educational Resources Information Center.

    Science.gov (United States)

    Fischer, Audrey; Cole, John Y.; Tarr, Susan M.; Vlach, Rosalie B.; Carey, Len; Mehnert, Robert; Sherman, Andrew M.; Davis, Linda; Vecchiarelli, Marion H.; Chute, Adrienne; Dunn, Christina

    2002-01-01

    Includes reports from Library of Congress, Center for the Book, Federal Library and Information Center Committee, National Commission on Libraries and Information Science, National Agricultural Library, National Library of Medicine, Government Printing Office, National Technical Information Service, National Archives and Records Administration,…

  3. The Process of Science Communications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning-based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium.

  4. Physical and Chemical Sciences Center - research briefs. Volume 1-96

    Energy Technology Data Exchange (ETDEWEB)

    Mattern, P.L.

    1994-12-31

    This report provides brief summaries of research performed in chemical and physical sciences at Sandia National Laboratories. Programs are described in the areas of advanced materials and technology, applied physics and chemistry, lasers, optics, and vision, and resources and capabilities.

  5. National Center for Learning and Teaching in Nanoscale Science and Engineering (NCLT)

    Science.gov (United States)

    Giordano, Nicholas

    2006-12-01

    The NCLT is an NSF-sponsored, collaborative project involving traditional scientists, science educators, and learning science researchers from Northwestern University, the University of Michigan, the University of Illinois at Chicago and at Urbana-Champaign, and Purdue University. This talk describes NCLT efforts in several areas: (1) Research into how and where nanoscience concepts can be introduced into the 7-12 curriculum, (2) How to design grade-appropriate nanoscience activities at the 7-12 level, (3) The design and implementation of professional development programs to enable teachers to integrate nanoscience into traditional chemistry, physics, biology, and mathematics classes. The NCLT research is also addressing the larger issue of how emerging new interdisciplinary science topics can be introduced into 7-12 science classrooms. Supported by NSF through grant ESI-0426328.

  6. Israel's Information Retrieval Center for the Social Sciences: Database, Products, and Services.

    Science.gov (United States)

    Langerman, Shoshannah

    1986-01-01

    Describes a computerized database of social sciences research activities in Israel. The problems of constructing a database in a small country with special linguistic problems are covered, and the printed products and services offered are described. (Author/EM)

  7. Pushing the frontiers of science--the Mellon reproductive biology centers.

    Science.gov (United States)

    Makinson, C; Harper, M J

    1999-12-01

    The 20-year history of the Andrew W. Mellon Foundation's support for US reproductive biology centers and junior investigators is summarized. The main results of the Foundation's program during the 1990s are described under the following headings: research generated by seed money, research generated by the twinning program, and commercial partnerships. The twinning program supports research collaborations between US centers and reproductive biology centers in developing countries, and was recently reviewed by an external panel. Both the seed money and twinning mechanisms were judged to have been successful in promoting research relevant to contraception which, in many instances, resulted in publications in peer-reviewed journals and in follow-on funding from other sources. The Foundation established a new program in 1998. The paper lists the US centers included in the new program and the 'target' areas of research that will be emphasized.

  8. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    . This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and

  9. Harvard Catalyst | The Clinical Translational Science Center IND/IDE Consult Service: Providing an IND/IDE Consult Service in a Decentralized Network of Academic Healthcare Centers

    Science.gov (United States)

    Winkler, Sabune J.; Bierer, Barbara E.; Wolf, Delia

    2014-01-01

    Abstract The Food and Drug Administration (FDA) regulations require sponsors of clinical investigations involving an investigational drug or device to submit an Investigational New Drug (IND) or Investigational Device Exemption (IDE) application. Strict adherence to applicable regulations is vital to the success of clinical research. Unlike most major pharmaceutical sponsors, investigator sponsors often do not fully appreciate their regulatory obligations nor have resources to ensure compliance. As a result they can place themselves and their institutions at risk. Nevertheless, investigator‐initiated clinical trials are vital to the further development of innovative drugs, biologics, and medical devices. The IND/IDE Subcommittee under the Regulatory Knowledge and Support Program at Harvard Catalyst, The Harvard Clinical and Translational Science Center worked in collaboration with Harvard and Harvard affiliated institutions to create and launch an IND/IDE Consult Service in a decentralized network of collaborating Academic Healthcare Centers (AHC). The IND/IDE Consult Service offers expertise, resources, and shared experiences to assist sponsor‐investigators and IRBs in meeting regulatory requirements for conducting and reviewing investigator‐initiated IND/IDE studies. The scope of the services provided by the Harvard Catalyst IND/IDE Consult Service are described, including the specifics of the service, lessons learned, and challenges faced, in a scalable model that builds inter‐institutional capacity. PMID:24455986

  10. Development of Innovative Radioactive Isotope Production Techniques at the Pennsylvania State University Radiation Science and Engineering Center

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Amanda M. [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Heidrich, Brenden [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center; Durrant, Chad [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Bascom, Andrew [Pennsylvania State Univ., State College, PA (United States). Department of mechanical and Nuclear Engineering Center; Unlu, Kenan [Pennsylvania State Univ., State College, PA (United States). Radiation Science and Engineering Center

    2013-08-15

    The Penn State Breazeale Nuclear Reactor (PSBR) at the Radiation Science and Engineering Center (RSEC) has produced radioisotopes for research and commercial purposes since 1956. With the rebirth of the radiochemistry education and research program at the RSEC, the Center stands poised to produce a variety of radioisotopes for research and industrial work that is in line with the mission of the DOE Office of Science, Office of Nuclear Physics, Isotope Development and Production Research and Application Program. The RSEC received funding from the Office of Science in 2010 to improve production techniques and develop new capabilities. Under this program, we improved our existing techniques to provide four radioisotopes (Mn-56, Br-82, Na-24, and Ar-41) to researchers and industry in a safe and efficient manner. The RSEC is also working to develop new innovative techniques to provide isotopes in short supply to researchers and others in the scientific community, specifically Cu-64 and Cu-67. Improving our existing radioisotopes production techniques and investigating new and innovative methods are two of the main initiatives of the radiochemistry research program at the RSEC.

  11. Epidemiology of sports injuries referring to Kashan University of Medical Sciences Trauma Research Center from 2005 to 2011

    Directory of Open Access Journals (Sweden)

    Sayyah Mansour

    2014-12-01

    Full Text Available 【Abstract】Objective: Among the injury types, sports ones constitute a considerable proportion of patients who refer to the medical centers. This research was conducted to examine the frequency of sportsrelated injuries referring to Kashan University of Medical Sciences Trauma Research Center from 2005 to 2011. Methods: This was a retrospective research in which existing data from the data bank of Kashan University of Medical Sciences Trauma Research Center were employed. The data were extracted from the main source by SPSS version 16.0. Variables such as age, education, occupation and gender were analyzed. Results: The highest proportion of injuries was observed in students (59.4% followed by workers (11.8%. Upper and lower extremities were most commonly injured. The most frequent injury was strain (35.4%, followed by sprain (27.7%. Conclusion: The results of this research showed that the majority of the sports trauma occurrs in students; therefore, they need more attention in regard to sports injuries. Preventive measures such as informing the coaches and teachers as well as increasing the students’ awareness about the injury risk can decrease the incidences of sports injuries. Key words: Athletic injuries; Epidemiology; Kashan

  12. Climate change science education across schools, campuses, and centers: strategies and successes

    Science.gov (United States)

    Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.

    2016-02-01

    With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.

  13. SED_ARCHIVE - Database for the U.S. Geological Survey Woods Hole Science Center's marine sediment samples, including locations, sample data and collection information

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. Geological Survey (USGS), Woods Hole Science Center (WHSC) has been an active member of the Woods Hole research community for over 40 years. In that time...

  14. Time-series water temperature and salinity at the Hatfield Marine Science Center's in-building seawater system, July 2002 - February 2003 (NODC Accession 0001119)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  15. Time-series water temperature and salinity at the Hatfield Marine Science Center's in-building seawater system, January - August 2000 (NODC Accession 0001135)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  16. Absolute Geostrophic Velocity Inverted from the Polar Science Center Hydrographic Climatology (PHC3.0) of the Arctic Ocean with the P-Vector Method (NCEI Accession 0156425)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset (called PHC-V) comprises 3D gridded climatological fields of absolute geostrophic velocity of the Arctic Ocean inverted from the Polar science center...

  17. Approach to Managing MeaSURES Data at the GSFC Earth Science Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Vollmer, Bruce; Kempler, Steven J.; Ramapriyan, Hampapuram K.

    2009-01-01

    A major need stated by the NASA Earth science research strategy is to develop long-term, consistent, and calibrated data and products that are valid across multiple missions and satellite sensors. (NASA Solicitation for Making Earth System data records for Use in Research Environments (MEaSUREs) 2006-2010) Selected projects create long term records of a given parameter, called Earth Science Data Records (ESDRs), based on mature algorithms that bring together continuous multi-sensor data. ESDRs, associated algorithms, vetted by the appropriate community, are archived at a NASA affiliated data center for archive, stewardship, and distribution. See http://measures-projects.gsfc.nasa.gov/ for more details. This presentation describes the NASA GSFC Earth Science Data and Information Services Center (GES DISC) approach to managing the MEaSUREs ESDR datasets assigned to GES DISC. (Energy/water cycle related and atmospheric composition ESDRs) GES DISC will utilize its experience to integrate existing and proven reusable data management components to accommodate the new ESDRs. Components include a data archive system (S4PA), a data discovery and access system (Mirador), and various web services for data access. In addition, if determined to be useful to the user community, the Giovanni data exploration tool will be made available to ESDRs. The GES DISC data integration methodology to be used for the MEaSUREs datasets is presented. The goals of this presentation are to share an approach to ESDR integration, and initiate discussions amongst the data centers, data managers and data providers for the purpose of gaining efficiencies in data management for MEaSUREs projects.

  18. Institutional Profile: University of Chicago Center for Personalized Therapeutics: research, education and implementation science.

    Science.gov (United States)

    Dolan, M Eileen; Maitland, Michael L; O'Donnell, Peter H; Nakamura, Yusuke; Cox, Nancy J; Ratain, Mark J

    2013-09-01

    Pharmacogenomics is aimed at advancing our knowledge of the genetic basis of variable drug response. The Center for Personalized Therapeutics within the University of Chicago comprises basic, translational and clinical research as well as education including undergraduate, graduate, medical students, clinical/postdoctoral fellows and faculty. The Committee on Clinical Pharmacology and Pharmacogenomics is the educational arm of the Center aimed at training clinical and postdoctoral fellows in translational pharmacology and pharmacogenomics. Research runs the gamut from basic discovery and functional studies to pharmacogenomic implementation studies to evaluate physician adoption of genetic medicine. The mission of the Center is to facilitate research, education and implementation of pharmacogenomics to realize the true potential of personalized medicine and improve the lives of patients.

  19. [Activities of Center for Lidar and Atmospheric Sciences Students, Hampton University

    Science.gov (United States)

    Temple, Doyle

    2004-01-01

    The mission of CLASS was to provide education and training in NASA-related mathematics, technology and science to US. students who are underrepresented. In these areas and to encourage them to pursue advanced degrees. The project has three goals which support this mission: research training, curriculum development and outreach. All project activities are designed to meet a concrete objective which directly advances one of these goals. The common theme of all project activities is NASA's Earth Science Enterprise, in particular, the use of laser-based remote sensing systems (lidars) to monitor and understand the earth's environment

  20. Minerva: User-Centered Science Operations Software Capability for Future Human Exploration

    Science.gov (United States)

    Deans, Matthew; Marquez Jessica J.; Cohen, Tamar; Miller, Matthew J.; Deliz, Ivonne; Hillenius, Steven; Hoffman, Jeffrey; Lee, Yeon Jin; Lees, David; Norheim, Johannes; hide

    2017-01-01

    In June of 2016, the Biologic Analog Science Associated with Lava Terrains (BASALT) research project conducted its first field deployment, which we call BASALT-1. BASALT-1 consisted of a science-driven field campaign in a volcanic field in Idaho as a simulated human mission to Mars. Scientists and mission operators were provided a suite of ground software tools that we refer to collectively as Minerva to carry out their work. Minerva provides capabilities for traverse planning and route optimization, timeline generation and display, procedure management, execution monitoring, data archiving, visualization, and search. This paper describes the Minerva architecture, constituent components, use cases, and some preliminary findings from the BASALT-1 campaign.

  1. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  2. Identity development in pre-service teachers who are explainers in a science center: Dialectically developing theory and praxis

    Science.gov (United States)

    Gupta, Preeti

    This dissertation investigates how teaching in a hands-on science center contributes to re/shaping one's teaching identity. Situated at the New York Hall of Science (NYHS) in Queens, New York, my research approach is to conduct a critical ethnography where the focus is on improving the teaching and learning of science for all involved. In particular, Explainers, floor staff at NYHS, who are studying to be science teachers, are invited to become co-researchers with me. Written as a manuscript style, this dissertation consists of six chapters. Each chapter foregrounds certain events and phenomena, and theory and method are woven in to theorize identity construction. Grounded in cultural sociology, the frameworks of Cultural Historical Activity Theory (CHAT), and the sociology of emotions, illuminate key understandings about the construction of teaching identity. Multiple data sources including field notes, transcribed audio and videotapes, and cogenerative dialogues are used. I employ a hermeneutic phenomenological approach to data analysis. This research has salient implications for museum-university partnerships, and training for museum floor staff and has the potential to inform policy-making for pre-service teaching clinical fieldwork experiences.

  3. Tobacco regulatory science: research to inform regulatory action at the Food and Drug Administration's Center for Tobacco Products.

    Science.gov (United States)

    Ashley, David L; Backinger, Cathy L; van Bemmel, Dana M; Neveleff, Deborah J

    2014-08-01

    The U.S. Food and Drug Administration (FDA) promotes the development of regulatory science to ensure that a strong evidence base informs all of its regulatory activities related to the manufacture, marketing, and distribution of tobacco products as well as public education about tobacco product constituents and effects. Toward that end, the FDA's Center for Tobacco Products (CTP) provides funding for research studies with scientific aims that fall within its defined regulatory authority. However, given their traditional biomedical focus on basic and applied research, some researchers may not understand the principles of regulatory science or the types of studies CTP funds. The purpose of this paper is (1) to clarify the definition of regulatory science as a distinct scientific discipline, (2) to explore the role of tobacco regulatory science in order to help researchers understand the parameters and types of research that can be funded by CTP, and (3) to describe the types of research efforts that will inform the FDA's public health framework for tobacco product regulation. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  4. CO2 Data Distribution and Support from the Goddard Earth Science Data and Information Services Center (GES-DISC)

    Science.gov (United States)

    Hearty, Thomas; Savtchenko, Andrey; Vollmer, Bruce; Albayrak, Arif; Theobald, Mike; Esfandiari, Ed; Wei, Jennifer

    2015-01-01

    This talk will describe the support and distribution of CO2 data products from OCO-2, AIRS, and ACOS, that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. We will provide a brief summary of the current online archive and distribution metrics for the OCO-2 Level 1 products and plans for the Level 2 products. We will also describe collaborative data sets and services (e.g., matchups with other sensors) and solicit feedback for potential future services.

  5. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  6. Hands-on-Science: Using Education Research to Construct Learner-Centered Classes

    Science.gov (United States)

    Ludwig, R. R.; Chimonidou, A.; Kopp, S.

    2014-07-01

    Research into the process of learning, and learning astronomy, can be informative for the development of a course. Students are better able to incorporate and make sense of new ideas when they are aware of their own prior knowledge (Resnick et al. 1989; Confrey 1990), have the opportunity to develop explanations from their own experience in their own words (McDermott 1991; Prather et al. 2004), and benefit from peer instruction (Mazur 1997; Green 2003). Students in astronomy courses often have difficulty understanding many different concepts as a result of difficulties with spatial reasoning and a sense of scale. The Hands-on-Science program at UT Austin incorporates these research-based results into four guided-inquiry, integrated science courses (50 students each). They are aimed at pre-service K-5 teachers but are open to other majors as well. We find that Hands-on-Science students not only attain more favorable changes in attitude towards science, but they also outperform students in traditional lecture courses in content gains. Workshop Outcomes: Participants experienced a research-based, guided-inquiry lesson about the motion of objects in the sky and discussed the research methodology for assessing students in such a course.

  7. Learner Centered Classroom in Science Instruction: Providing Feedback with Technology Integration

    Science.gov (United States)

    Yilmaz, Ozkan

    2017-01-01

    "Learner centered" term points out environments that attention to the learners brings to the educational setting. This term includes teaching practices: effort to uncover what learners think in a specific problem on hand, talking about their misconceptions and, giving them situations to readjust their ideas. In Learner centered…

  8. Education of natural science in the work of the Municipal Center for Extracurricular Activities

    Science.gov (United States)

    Jokin, I.

    2012-04-01

    In the description of my work I presented my own experience in the organizing and carrying out of extracurricular activities with the students, the used modes and methods of work, the obtained results and some good practices in the field of natural sciences. Organizing and carrying out of scientific festivals, participation in joint projects together with scientific organizations. Key words: European dimension, interactive methods, key competences, natural sciences, extracurricular activities. We are witnesses of a fundamental change in the pedagogical culture and practice in our schools to establish the parameters of the quality of training. The good scientific culture is an important part of the students' education. Unfortunately, at the present time the scientific and technological culture is on a low level. One of the contemporary problems and realities of the education in natural science school subjects, as a whole and in particular in the secondary education, is the decreased interest for the training in them and in particular in physics, as well as synchronization of the interrelations: school environment - society. In many countries there is a drop in the orientation of the students towards the science and technology - the problem of Science and Technology (S&T). The training of the young people often creates some problems. The teachers meet with the problem of insufficient motivation of the learners for study and difficulties that they encounter in the process of training. The students find it difficult to apply the mastered knowledge to an applied context. The knowledge is rather academic and rather remote from the context, in which the children live and communicate, which makes it nonfunctional. At present there are not enough extracurricular activities that should meet these necessities of the Bulgarian school. The reasons are various, but they mainly consist in the lack of a material base, an exchange of experience and good practices and motivation

  9. Native American Participation among Bachelors in Physical Sciences and Engineering: Results from 2003-13 Data of the National Center for Education Statistics. Focus On

    Science.gov (United States)

    Merner, Laura; Tyler, John

    2017-01-01

    Using the National Center of Education Statistics' Integrated Postsecondary Education Data System (IPEDS), this report analyzes data on Native American recipients of bachelor's degrees among 16 physical science and engineering fields. Overall, Native Americans are earning physical science and engineering bachelor's degrees at lower rates than the…

  10. Analysis According to Certain Variables of Scientific Literacy among Gifted Students That Participate in Scientific Activities at Science and Art Centers

    Science.gov (United States)

    Kömek, Emre; Yagiz, Dursun; Kurt, Murat

    2015-01-01

    The purpose of this study is to analyze scientific literacy levels relevant to science and technology classes among gifted students that participate in scientific activities at science and art centers. This study investigated whether there was a significant difference in scientific literacy levels among gifted students according to the areas of…

  11. Global alcohol producers, science, and policy: the case of the International Center for Alcohol Policies.

    Science.gov (United States)

    Jernigan, David H

    2012-01-01

    In this article, I document strategies used by alcohol producers to influence national and global science and policy. Their strategies include producing scholarly publications with incomplete, distorted views of the science underlying alcohol policies; pressuring national and international governmental institutions; and encouraging collaboration of public health researchers with alcohol industry-funded organizations and researchers. I conclude with a call for an enhanced research agenda drawing on sources seldom used by public health research, more focused resourcing of global public health bodies such as the World Health Organization to counterbalance industry initiatives, development of technical assistance and other materials to assist countries with effective alcohol-control strategies, and further development of an ethical stance regarding collaboration with industries that profit from unhealthy consumption of their products.

  12. Scientific Project, SciencesPo-LIEPP Interdisciplinary research center for the evaluation of public policies

    OpenAIRE

    Etienne Wasmer; Cornelia Woll

    2011-01-01

    Sciences Po develops an interdisciplinary research program for the evaluation of public policies (in French: Laboratoire interdisciplinaire d’évaluation des politiques publiques, LIEPP), based on four founding units: Department of Economics, Centre de Sociologie des Organisations, Centre d’Etudes Européennes and Observatoire Sociologique du Changement. Its aim is to be (1) independent and non-partisan to ensure its credibility, (2) international to learn from experiences in other countries, a...

  13. USGS Gulf Coast Science Conference and Florida Integrated Science Center Meeting: Proceedings with Abstracts, October 20-23, 2008, Orlando, Florida

    Science.gov (United States)

    Edited and compiled by Lavoie, Dawn; Rosen, Barry; Sumner, Dave; Haag, Kim; Tihansky, Ann; Boynton, Betsy; Koenig, Renee

    2008-01-01

    Welcome! The USGS is the Nation's premier source of information in support of science-based decision making for resource management. We are excited to have the opportunity to bring together a diverse array of USGS scientists, managers, specialists, and others from science centers around the Gulf working on biologic, geologic, and hydrologic issues related to the Gulf of Mexico and the State of Florida. We've organized the meeting around the major themes outlined in the USGS Circular 1309, Facing Tomorrow's Challenges - U.S. Geological Survey Science in the Decade 2007-2017. USGS senior leadership will provide a panel discussion about the Gulf of Mexico and Integrated Science. Capstone talks will summarize major topics and key issues. Interactive poster sessions each evening will provide the opportunity for you to present your results and talk with your peers. We hope that discussions and interactions at this meeting will help USGS scientists working in Florida and the Gulf Coast region find common interests, forge scientific collaborations and chart a direction for the future. We hope that the meeting environment will encourage interaction, innovation and stimulate ideas among the many scientists working throughout the region. We'd like to create a community of practice across disciplines and specialties that will help us address complex scientific and societal issues. Please take advantage of this opportunity to visit with colleagues, get to know new ones, share ideas and brainstorm about future possibilities. It is our pleasure to provide this opportunity. We are glad you're here.

  14. Economic Development Activities at the Young - Rainey Science, Technology, & Research (STAR) Center

    Energy Technology Data Exchange (ETDEWEB)

    Paul S. Sacco; Carl Smeigh; John Caponiti, Jr.

    2008-06-30

    Project mission was to mitigate the adverse economic effects of closing the U.S. Department of Energy's Pinellas Plant in Largo, Florida. This project was to facilitate the physical renovation of the plant and to help maintain and create jobs for the employees that worked at the plant when DOE terminated its operations. It also included finding and attracting high technology, industrial manufacturing and related firms to utilize the space and high tech equipment to remain at the plant. Stakeholders included the affected plant employees, local government and related public organizations, and businesses and universities in the Tampa Bay Florida area. The $17.6 million funded for this project helped produce 2,780 jobs at the Young - Rainey STAR Center at an average cost of $6,328. Rental income from STAR Center tenants and third party cash input amounted to approximately $66 million over the project period of 13.3 years.

  15. Faculty and student perceptions of academic counselling services at an academic health science center.

    Science.gov (United States)

    Gaughf, Natalie White; Smith, Penni L; Williams, Dara A

    2013-06-01

    There are limited data on support services that facilitate students' academic success at academic health science centres. The authors explored faculty and students' perceptions of available academic counselling services (ACS) at an academic health science centre in the Southeastern United States. Participants were surveyed in May and June of 2011 regarding the ACS available at the institution. Fifty-nine percent of faculty respondents (N = 471) agreed that academic counselling was a necessary part of the institution, but only 26 % reported knowledge of how to refer students for academic counselling. Only 18 % stated they had previously referred a student for services. Fifty-four percent of student respondents (N = 360) agreed that academic counselling was a necessary part of the institution and 60 % stated that they would seek these services if needed. However, only 35 % of students reported that they were aware of how to access the services. These findings suggest a discrepancy between the belief that academic support services have value and their knowledge about how to utilize the services. It is recommended that academic health science centres consider the promotion of available academic support services amongst both faculty and students when designing and implementing programmes to reduce this potential obstacle to service utilization.

  16. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries.

  17. Focus on: University Hospital & Health Sciences Center SUNY at Stony Brook Biomedical Engineering Department.

    Science.gov (United States)

    Dyro, J F

    1993-01-01

    Clinical Engineering is practiced within the Biomedical Engineering Department (BME) at University Hospital, a modern, 536-bed, tertiary care teaching hospital. The 30-member department delivers a full range of clinical engineering services within the Stony Brook academic medical center. Major clinical engineering advances have been made in the areas of technology management, productivity and cost effectiveness, medical device safety, education, and research. University Hospital provides care for 2.5 million people in Suffolk County and other parts of Long Island.

  18. Why did the world trade center collapse? Science, engineering, and speculation

    Science.gov (United States)

    Eagar, Thomas W.; Musso, Christopher

    2001-12-01

    There have been numerous reports detailing the cause of the World Trade Center Tower collapse on September 11, 2001. Most have provided qualitative explanations; however, simple quantitative analyses show that some common conclusions are incorrect; for example, the steel could not melt in these flames and there was more structural damage than merely softening of the steel at elevated temperatures. Some guidelines for improvements in future structures are presented.

  19. The relationship between participation in student-centered discussions and the academic achievement of fifth-grade science students

    Science.gov (United States)

    Mathues, Patricia Kelly

    Although the social constructivist theory proposed by Vygotsky states the value of discourse as a contribution to the ability of the learner to create meaning, student-led discussions have often been relegated to the language arts classroom. The standards created by the National Council of Teachers of English and the International Reading Association have long recognized that learners create meaning in a social context. The National Science Education Standards have also challenged science teachers to facilitate discourse. However, the science standards document provides no specific structure through which such discourse should be taught. This study investigated the effectiveness of a discussion strategy provided by Shoop and Wright for teaching and conducting student-centered discussions (SCD). Fifth graders in one school were randomly selected and randomly assigned to one of two science classes; 22 students in one class learned and applied the SCD strategies while a second class with 19 students learned the same science concepts from a teacher using traditional methods as described by Cazden. This study used a pretest-posttest design to test the hypothesis that participation in SCD's would effect a difference in fifth-graders' abilities to comprehend science concepts. Results of independent-samples t-tests showed that while there was no significant difference between the mean ability scores of the two groups of subjects as measured by a standardized mental abilities test, the mean pretest score of the traditional group was significantly higher than the SCD group's mean pretest score. ANCOVA procedures demonstrated that the SCD group's mean posttest score was significantly higher than the mean posttest score of the traditional group. Data analysis supported the rejection of the null hypothesis. The investigator concluded that the SCD methodology contributed to students' understanding of the science concepts. Results of this study challenge content area teachers to

  20. Advantages of a Unified Earth and Space Science Approach for Geoscience Education: Perspectives from the National Center for Atmospheric Research

    Science.gov (United States)

    Johnson, R. M.; Barnes, T.; Bergman, J.; Carbone, L.; Eastburn, T.; Foster, S.; Gardiner, L.; Genyuk, J.; Henderson, S.; Lagrave, M.; Munoz, R.; Russell, R.; Araujo-Pradere, E.; Metcalfe, T.; Mastie, D.; Pennington, P.

    2005-05-01

    The intellectual divisions common among scientists involved in research in specific disciplines are frequently not shared by the broader community of learners. For example, in K-12 education, the Earth sciences and the space sciences have generally been taught in an integrated approach, until opportunities for more advanced courses become available at the higher grade levels in some fortunate school districts. When scientists involved in EPO activities retain a perspective limited to their particular science mission, rather than stepping back to a broader perspective that places the research in a larger context, they risk limiting the usefulness of these activities to a broad cross-section of learners that seek to learn in a contextual framework. The re-integration of Earth and space sciences within NASA's Science Mission Directorate provides an opportunity to more systematically take advantage of the fact that Earth is one of many examples of possible planetary evolution scenarios presented in our solar system and beyond. This development should encourage integration of research across the SMD into a broader context that encourages the development of higher learning skills and a systems thinking approach. At the National Center for Atmospheric Research, the interdisciplinary nature of the research problems we address requires an approach that integrates Earth and space science, and we parallel this in our education and outreach activities, ranging from our exhibits on climate change to our professional development workshops and online courses to our websites and curriculum development efforts. The Windows to the Universe project (http://www.windows.ucar.edu), initiated at the University of Michigan with support from NASA in 1995 and now developed and maintained at the University Corporation for Atmospheric Research, has maintained this integrated approach from its inception with great success - leading to over 6 million users of our English and Spanish language

  1. The rôle of planetaria: The Library of Alexandria Planetarium Science Center

    Science.gov (United States)

    El-Mitaky, Hoda S.

    2011-06-01

    In ancient times the stars and the Moon were humans' only guide to cross the seas and explore the depths of the deserts. With the use of modern technological gadgets, and the increasingly light pollution, citizens of the world stopped looking at the heavens. How can planetaria play a rôle in reviving public interest in astronomy? How can the beauty of astronomy play a rôle in luring the youth to pursue a career in science? How can astronomy play a rôle in raising public awareness about preserving the environment? Moreover, how can astronomy play a rôle in the dialogue among civilisations?

  2. Nursing Empowerment, Workplace Environment, and Job Satisfaction in Nurses Employed in an Academic Health Science Center.

    Science.gov (United States)

    Kretzschmer, Shari; Walker, Mandi; Myers, John; Vogt, Krista; Massouda, Jessica; Gottbrath, Deidra; Pritchett, Melissa; Stikes, Reetta; Logsdon, M Cynthia

    The aim of this study was to test predictors of nursing empowerment and job satisfaction in nurses. Nursing professional development leaders and Magnet® coordinators need foundational data on which to build interventions that will support and empower nurses on the journey toward American Nurses Credentialing Center Magnet® designation. Secondary data analysis methods were used. Overall, nurses perceived that they had moderate empowerment and were satisfied with their jobs. Study results support predicted relationships and can be used to guide interventions for, and development of, nurses.

  3. Establishing a new clinical informationist role in an academic health sciences center.

    Science.gov (United States)

    Aldrich, Alison M; Schulte, Stephanie J

    2014-01-01

    The concept of clinical informationists is not new, but has recently been gaining more widespread acceptance across the United States. This article describes the lessons and challenges learned from starting a new clinical informationist service targeted to internal medicine residents in a large academic medical center. Lessons included the need for becoming immersed in evidence-based practice fundamentals; becoming comfortable with the pace, realities, and topics encountered during clinical rounds; and needing organizational commitment to both the evidence-based practice paradigm and clinical informationist role. Challenges included adapting to organizational culture, resident burnout, and perceptions of information overload.

  4. Hypothetical biotechnology companies: A role-playing student centered activity for undergraduate science students.

    Science.gov (United States)

    Chuck, Jo-Anne

    2011-01-01

    Science students leaving undergraduate programs are entering the biotechnology industry where they are presented with issues which require integration of science content. Students find this difficult as through-out their studies, most content is limited to a single subdiscipline (e.g., biochemistry, immunology). In addition, students need knowledge of the ethical, economic, and legal frame work in which the industry operates. This article presents an approach to deliver these outcomes in a collaborative and active learning modality which promotes deep learning. In the model, groups of final year undergraduate students form hypothetical biotechnology companies and identify real issues of interest to industry, make integrative team decisions, use professional level technology, and develop appropriate communication skills. The final successful teaching paradigm was based on self reflection, observation, and student feedback to ensure appropriate attainment of content, group work skills and increased confidence in professional decision-making. It is these outcomes which will facilitate life long learning skills, a major outcome applicable for all tertiary education. Copyright © 2011 Wiley Periodicals, Inc.

  5. Gerald L. Epstein, PhD: director, center for science, technology, and security policy, American Association for the Advancement of Science (AAAS). Interview by Madeline Drexler.

    Science.gov (United States)

    Epstein, Gerald L

    2009-12-01

    Over his entire career, Gerald Epstein has toiled at the nexus of science, technology, and security. From 2003 to 2009, he was Senior Fellow for Science and Security at the Center for Strategic and International Studies Homeland Security Program, where he worked on reducing biological weapons threats, improving national preparedness, and easing potential tensions between the scientific research and national security communities. Epstein came to CSIS from the Institute for Defense Analyses. From 1996 to 2001, he served in the White House Office of Science and Technology Policy. And from 1983 to 1989, and again from 1991 until its demise in 1995, Epstein worked at the Congressional Office of Technology Assessment, where he directed a study on the proliferation of weapons of mass destruction, alongside research on other global security topics. A recognized expert in biological risk reduction, Epstein was actually trained as a physicist, having received SB degrees in physics and electrical engineering from MIT, and a PhD in physics from the University of California at Berkeley. How, then, did he come to study the evolving threat from bioterrorism? "What compelled me about bioterrorism was that it was a stellar example of a topic that would lead to a train wreck between the scientific community and the security community unless they figured out how to work together," he said. "The distance between a laboratory and a very large consequence event is a lot shorter in biology than in any other field. I got into bioterrorism to help make sure that the security community doesn't get so scared of the science that it shuts it down, and that the science community isn't so oblivious of security concerns that it pays no attention to them." Epstein spoke on November 6, 2009, with contributing writer Madeline Drexler, author of Emerging Epidemics: The Menace of New Infections (Penguin, 2009), an updated version of an earlier volume. Drexler holds a visiting appointment at the

  6. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results

  7. Increasing Internal Stakeholder Consensus about a University Science Center's Outreach Policies and Procedures

    Science.gov (United States)

    Fisher, Richard D.

    For decades the United States has tried to increase the number of students pursuing science, technology, engineering, and mathematics (STEM) education and careers. Educators and policy makers continue to seek strategies to increase the number of students in the STEM education pipeline. Public institutions of higher education are involved in this effort through education and public outreach (EPO) initiatives. Arizona State University opened its largest research facility, the new Interdisciplinary Science and Technology Building IV (ISTB4) in September, 2012. As the new home of the School of Earth & Space Exploration (SESE), ISTB4 was designed to serve the school's dedication to K-12 education and public outreach. This dissertation presents a menu of ideas for revamping the EPO program for SESE. Utilizing the Delphi method, I was able to clarify which ideas would be most supported, and those that would not, by a variety of important SESE stakeholders. The study revealed that consensus exists in areas related to staffing and expansion of free programming, whereas less consensus exist in the areas of fee-based programs. The following most promising ideas for improving the SESE's EPO effort were identified and will be presented to SESE's incoming director in July, 2013: (a) hire a full-time director, theater manager, and program coordinator; (b) establish a service-learning requirement obligating undergraduate SESE majors to serve as docent support for outreach programs; (c) obligate all EPO operations to advise, assist, and contribute to the development of curricula, activities, and exhibits; (d) perform a market and cost analysis of other informational education venues offering similar programming; (3) establish a schedule of fee-based planetarium and film offerings; and (f) create an ISTB4 centric, fee-based package of programs specifically correlated to K12 education standards that can be delivered as a fieldtrip experience.

  8. The Radiation Safety Information Computational Center (RSICC): A Resource for Nuclear Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL

    2009-01-01

    The Radiation Safety Information Computational Center (RSICC) has been in existence since 1963. RSICC collects, organizes, evaluates and disseminates technical information (software and nuclear data) involving the transport of neutral and charged particle radiation, and shielding and protection from the radiation associated with: nuclear weapons and materials, fission and fusion reactors, outer space, accelerators, medical facilities, and nuclear waste management. RSICC serves over 12,000 scientists and engineers from about 100 countries. An important activity of RSICC is its participation in international efforts on computational and experimental benchmarks. An example is the Shielding Integral Benchmarks Archival Database (SINBAD), which includes shielding benchmarks for fission, fusion and accelerators. RSICC is funded by the United States Department of Energy, Department of Homeland Security and Nuclear Regulatory Commission.

  9. Marshall Space Flight Center - Launching the Future of Science and Exploration

    Science.gov (United States)

    Shivers, Alisa; Shivers, Herbert

    2010-01-01

    Topics include: NASA Centers around the country, launching a legacy (Explorer I), Marshall's continuing role in space exploration, MSFC history, lifting from Earth, our next mission STS 133, Space Shuttle propulsion systems, Space Shuttle facts, Space Shuttle and the International Space Station, technologies/materials originally developed for the space program, astronauts come from all over, potential future missions and example technologies, significant accomplishments, living and working in space, understanding our world, understanding worlds beyond, from exploration to innovation, inspiring the next generation, space economy, from exploration to opportunity, new program assignments, NASA's role in education, and images from deep space including a composite of a galaxy with a black hole, Sagittarius A, Pillars of Creation, and an ultra deep field

  10. Surface-water quality-assurance plan for the U.S. Geological Survey Washington Water Science Center

    Science.gov (United States)

    Mastin, Mark C.

    2016-02-19

    This Surface-Water Quality-Assurance Plan documents the standards, policies, and procedures used by the U.S. Geological Survey Washington Water Science Center (WAWSC) for activities related to the collection, processing, storage, analysis, and publication of surface-water data. This plan serves as a guide to all WAWSC personnel involved in surface-water data activities, and changes as the needs and requirements of the WAWSC change. Regular updates to this plan represent an integral part of the quality-assurance process. In the WAWSC, direct oversight and responsibility by the hydrographer(s) assigned to a surface-water station, combined with team approaches in all work efforts, assure highquality data, analyses, reviews, and reports for cooperating agencies and the public.

  11. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  12. [Significance and utilization of "RECHS" (Resource Center for Health Science) focusing on the importance of human bio-resources].

    Science.gov (United States)

    Matuo, Yushi; Matsunami, Hidetoshi; Takemura, Masao; Saito, Kuniaki

    2011-12-01

    The Resource Center for Health Science (RECHS) has initiated a project based on the development and utilization of Bio-Resources/Database (BR/DB), comprising personal health records(PHR), such as health/medical records of the health of individuals, physically consolidated with bio-resources, e.g. serum, urine etc. taken from the same individuals. This is characterized as analytical alterations of BR/DB annually collected from healthy individuals, targeting 100,000, but not as data dependent on the number of unhealthy individuals so far investigated. The purpose is to establish a primary defense for the improvement of QOL by applying BR/DB to analysis by epidemiology and clinical chemistry. Furthermore, it also contributes to the construction of a PHR system planned as a national project. The RECHS coordinating activities are fully dependent on as many general hospitals as possible on the basis of regional medical services, and academia groups capable of analyzing BR/DB.

  13. Magnetic Test Performance Capabilities at the Goddard Space Flight Center as Applied to the Global Geospace Science Initiative

    Science.gov (United States)

    Mitchell, Darryl R.

    1997-01-01

    Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.

  14. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    Science.gov (United States)

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.

  15. Citations in Life Science Patents to Publicly Funded Research at Academic Medical Centers.

    Science.gov (United States)

    Sampat, Bhaven N; Pincus, Harold Alan

    2015-12-01

    The contributions of Academic Medical Centers (AMCs) to biomedical innovation have been difficult to measure because of the challenges involved in tracing knowledge flows from their origin to their uses. The authors examined patent citation linkages between AMC research funded by the National Institutes of Health (NIH) and patents. In prospective analyses, they examine the extent to which articles resulting from NIH grants to AMCs awarded between 1990 and 1995 were cited in drug and medical patents. The authors then examine the extent to which these patents are associated with marketed drugs. In retrospective analyses, they examine the share of drugs approved between 2000 and 2009 that have citation links to NIH-funded AMC research. The prospective analyses show over a third of AMC grants resulted in publications that were cited in patents. Most the patents are drug and biotechnology patents, and are assigned to private firms. Patents citing NIH-funded AMC publications were associated with 106 new FDA approved drugs, half of which are new molecular entities and a quarter of which are priority NMEs. The retrospective analyses showed that about half of the new molecular entities approved over the 2000-2009 period had citations links to NIH-funded AMC research. There are strong links between articles from NIH-funded AMC research and private sector medical patenting, including drugs. More research is needed to better understand the types of links the citations represent and their implications for public policy. © 2015 Wiley Periodicals, Inc.

  16. Public Communication of Science and Technology in Museums and Interactive Centers in MedellÍn (Colombia

    Directory of Open Access Journals (Sweden)

    Silvia Inés Jiménez-G.

    2010-01-01

    Full Text Available Following the simple and complex deficit and democratic model approaches, this paper analyses the communication strategies applied in several museums and interactive centers —Parque Explora, Museo Interactivo Empresas Públicas de Medellín, Planetario Jesús Emilio Ramírez and Museo Universitario from the University of Antioquia in the city of Medellín—. We argue that communicating scientific and technological developments at a conjunctural moment —because of the pressure exerted by the demand side to bring knowledge within the reach of the man in the street— involves recognizing science and technology issues should not be conveyed in a language increasingly distanced from layman’s understanding and should allow for citizens’ critical thinking formation face to techno-scientific developments. By analysing the communication approaches mentioned above, we found significant obstacles to be overcome in the communication strategies applied by museum staff in order to come to an understanding of science and technology.

  17. Research advances in treatment of neurological and psychological diseases by acupuncture at the Acupuncture Meridian Science Research Center

    Directory of Open Access Journals (Sweden)

    Bombi Lee

    2014-06-01

    Full Text Available Acupuncture is an ancient therapeutic intervention that can be traced back at least 2100 years and is emerging worldwide as one of the most widely used therapies in the field of complementary and alternative medicine. Due to limitations associated with Western medicine's focus on the treatment of diseases rather than on their causes, interests are shifting to complementary and alternative medicines. The Acupuncture and Meridian Science Research Center (AMSRC was established in 2005 to elucidate the neurophysiological mechanisms of acupuncture for neurological diseases based on multidisciplinary research supported by the Korean Ministry of Science and Technology. In the AMSRC, resultant research articles have shown that acupuncture can improve neurological and psychological problems, including Parkinson's disease, pain, and depression, in animal models. Basic research studies suggest its effectiveness in treating various problems such as depression, drug addiction, epilepsy, ischemia, dementia, Parkinson's disease, and pain. We strongly believe that these effects, evident from the AMSRC research results, can play leading roles in the use of acupuncture for treating neurological diseases, based on collaboration among various academic fields such as neurophysiology, molecular genetics, and traditional Korean medicine.

  18. Research advances in treatment of neurological and psychological diseases by acupuncture at the Acupuncture Meridian Science Research Center.

    Science.gov (United States)

    Lee, Bombi; Kim, Seung-Nam; Park, Hi-Joon; Lee, Hyejung

    2014-06-01

    Acupuncture is an ancient therapeutic intervention that can be traced back at least 2100 years and is emerging worldwide as one of the most widely used therapies in the field of complementary and alternative medicine. Due to limitations associated with Western medicine's focus on the treatment of diseases rather than on their causes, interests are shifting to complementary and alternative medicines. The Acupuncture and Meridian Science Research Center (AMSRC) was established in 2005 to elucidate the neurophysiological mechanisms of acupuncture for neurological diseases based on multidisciplinary research supported by the Korean Ministry of Science and Technology. In the AMSRC, resultant research articles have shown that acupuncture can improve neurological and psychological problems, including Parkinson's disease, pain, and depression, in animal models. Basic research studies suggest its effectiveness in treating various problems such as depression, drug addiction, epilepsy, ischemia, dementia, Parkinson's disease, and pain. We strongly believe that these effects, evident from the AMSRC research results, can play leading roles in the use of acupuncture for treating neurological diseases, based on collaboration among various academic fields such as neurophysiology, molecular genetics, and traditional Korean medicine.

  19. A study on teenage pregnant mothers attending primary health centers of Kempegowda Institute of Medical Sciences, Bangalore.

    Science.gov (United States)

    Parasuramalu, B G; Shakila, N; Masthi, Ramesh N R

    2010-01-01

    Data were collected from 78 teenage pregnant mothers (15-19 years) out of 1446 pregnant mothers who attended the primary health centers situated in the field practice area of the rural health center, Kengeri of Kempegowda Institute of Medical Sciences, Bangalore, between May and July 2009 to study the factors associated with teenage pregnancies and awareness regarding family planning. This was a descriptive study. Out of 78 teenage pregnant mothers, 57 (73%) were Hindus and 45 (57.7%) belonged to joint families. 76 (97.4%) teenage pregnant mothers were housewives, i.e. 55 (70.5%) of the spouses of the teenage pregnant mothers were laborers, in majority, i.e. 40 (51.3%) teenage pregnant mothers' age at marriage and the age at first pregnancy were 18 years. The mean age at marriage increased significantly with an increase of the educational status of the teenage pregnant mothers (F value = 7.08%, Ppregnancy was also increased with an increase of the education status of both the teenage pregnant mothers and their spouse. The most common reason for early marriage and early pregnancy was traditional practices and family pressure among 50 (64%) and 45 (57.7%) teenage pregnant mothers, respectively. 49 (63%) teenage pregnant mothers were not aware of any family planning methods.

  20. Using Social Science to Ensure Sustainable Development Centered on Human Well-being in Costa Rica

    Science.gov (United States)

    Hunt, C. A.; Durham, W. H.; Gaffikin, L.

    2012-12-01

    When then president José Figueres Ferrer invited the world to use Costa Rica as a "laboratory for sustainable development" in 1997, the country's fame as a biodiversity mecca was firmly established. Yet despite vast investment, conservation-related interventions in the cantons of Osa and Golfito along the country's southern Pacific coast have been seen as overly conservation-oriented and carried out "with its back to the communities." By ignoring human well-being, these interventions have been unable to overcome the region's vast disparities in access to resources and general state of underdevelopment despite investments of many millions of dollars in recent decades. With the country's third international airport and Central America's largest hydroelectric project proposed for the region, as well as other infrastructure-driven development currently underway, the region is poised to undergo rapid change. This presentation first describes the Osa-Golfito Initiative (INOGO), an interdisciplinary effort facilitated by the Stanford Woods Institute for the Environment to development a long term strategic action plan that ensures a development trajectory focused on human and environmental well-being. Whereas a concurrent presentation will focus on biophysical components of INOGO, the focus here is on the often-overlooked contributions of social science for ensuring the region's future sustainability. An anthropological approach is taken to assess the assets and resources of the region's residents, and the obstacles and challenges as they perceive them. This groundwork provides a crucial link between individual and local realities, and the regional and national political economy, and thus provides greater probability of sustainable development occurring with its "face to the communities.";

  1. The Gemini Science User Support Department: A community-centered approach to user support

    Science.gov (United States)

    Chené, André-Nicolas; Thomas-Osip, Joanna

    2016-01-01

    The Gemini Science User Support Department (SUSD) was formed a little more than a year ago to create a collaborative community of users and staff and to consolidate existing post-observing support throughout the observatory for more efficient use of resources as well as better visibility amongst our user community. This poster is an opportunity to exchange ideas about how Gemini can improve your experience while working with the Observatory and present details about new avenues of post-observing support coming soon. We encourage your feedback at any time.Shortly after its creation, the SUSD conducted a complete revision of the communication cycle between Gemini and its community of researchers. The cycle was then revisited from the perspective of an astronomer interested in using Gemini for their research. This exercise led to a series of proposed changes that are currently under development, and the implementation of a sub-selection is expected in 2016, including the following. (1) Email notifications: Gemini users will receive new forms of email communications that are more instructive and tailored to their program. The objective is to direct the users more efficiently toward the useful links and documentation all along the lifecycle of the program, from phaseII to after the data are completely reduced. (2) HelpDesk system: The HelpDesk will become more user-friendly and transparent. (3) Webpages: The organization of the Gemini webpages will be redesigned to optimize navigation; especially for anything regarding more critical periods likes phaseIs and phaseIIs. (4) Data Reduction User Forum: Following recommendations from Gemini users, new capabilities were added to the forum, like email notifications, and a voting system, in order to make it more practical. This forum's objective is to bring the Gemini community together to exchange their ideas, thoughts, questions and solutions about data reduction, a sort of Reddit, StackOverflow or Slashdot for Gemini data.

  2. User centered and ontology based information retrieval system for life sciences

    Directory of Open Access Journals (Sweden)

    Sy Mohameth-François

    2012-01-01

    Full Text Available Abstract Background Because of the increasing number of electronic resources, designing efficient tools to retrieve and exploit them is a major challenge. Some improvements have been offered by semantic Web technologies and applications based on domain ontologies. In life science, for instance, the Gene Ontology is widely exploited in genomic applications and the Medical Subject Headings is the basis of biomedical publications indexation and information retrieval process proposed by PubMed. However current search engines suffer from two main drawbacks: there is limited user interaction with the list of retrieved resources and no explanation for their adequacy to the query is provided. Users may thus be confused by the selection and have no idea on how to adapt their queries so that the results match their expectations. Results This paper describes an information retrieval system that relies on domain ontology to widen the set of relevant documents that is retrieved and that uses a graphical rendering of query results to favor user interactions. Semantic proximities between ontology concepts and aggregating models are used to assess documents adequacy with respect to a query. The selection of documents is displayed in a semantic map to provide graphical indications that make explicit to what extent they match the user's query; this man/machine interface favors a more interactive and iterative exploration of data corpus, by facilitating query concepts weighting and visual explanation. We illustrate the benefit of using this information retrieval system on two case studies one of which aiming at collecting human genes related to transcription factors involved in hemopoiesis pathway. Conclusions The ontology based information retrieval system described in this paper (OBIRS is freely available at: http://www.ontotoolkit.mines-ales.fr/ObirsClient/. This environment is a first step towards a user centred application in which the system enlightens

  3. The International Science and Technology Center (ISTC) and ISTC projects related to research reactors: information review

    Energy Technology Data Exchange (ETDEWEB)

    Tocheniy, L. V.; Rudneva, V. Ya. [ISTC, Moscow (Russian Federation)

    1998-07-01

    The ISTC is an intergovernmental organization established by agreement between the Russian Federation, the European Union, Japan, and the United States. Since 1994, Finland, Sweden, Norway, Georgia, Belarus, Kazakhstan and the Kyrgyz Republic have acceded to the Agreement and Statute. At present, the Republic of Korea is finishing the process of accession to the ISTC. All work of the ISTC is aimed at the goals defined in the ISTC Agreement: To give CIS weapons scientists, particularly those who possess knowledge and skills related to weapons of mass destruction and their delivery systems, the opportunities to redirect their talents to peaceful activities; To contribute to solving national and international technical problems; To support the transition to market-based economics; To support basic and applied research; To help integrate CIS weapons scientists into the international scientific community. The projects may be funded both through governmental funds of the Funding partners of the ISTC. According to the ISTC Statute, approved by the appropriate national organizations, funds used within ISTC projects are exempt from CIS taxes. As of March 1998, more than 1500 proposals had been submitted to the Center, of which 551 were approved for funding, for a total value of approximately US$166 million. The number of scientists and engineers participating in the projects is more than 18000. There are about 20 funded and as yet nonfunded projects related to various problems of research reactors. Many of them address safety issues. Information review of the results and plans of both ongoing projects and as yet nonfunded proposals related to research reactors will be presented with the aim assisting international researchers to establish partnerships or collaboration with ISTC projects. The following groups of ISTC projects will be represented: 1. complex computer simulator s for research reactors; 2. reactor facility decommissioning; 3. neutron sources for medicine; 4

  4. NASA Kennedy Space Center: Contributions to Sea Turtle Science and Conservation

    Science.gov (United States)

    Provancha, Jane A.; Phillips, Lynne V.; Mako, Cheryle L.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) is a United States (US) federal agency that oversees US space exploration and aeronautical research. NASA's primary launch site, Kennedy Space Center (KSC) is located along the east coast of Florida, on Cape Canaveral and the western Atlantic Ocean. The natural environment within KSC's large land boundaries, not only functions as an extensive safety buffer-area, it performs simultaneously as a wildlife refuge and a national seashore. In the early 1960s, NASA was developing KSC for rocket launches and the US was establishing an awareness of, and commitment to protecting the environment. The US began creating regulations that required the consideration of the environment when taking action on federal land or with federal funds. The timing of the US Endangered Species Act (1973), the US National Environmental Policy Act (1972), coincided with the planning and implementation of the US Space Shuttle Program. This resulted in the first efforts to evaluate the impacts of space launch operation operations on waterways, air quality, habitats, and wildlife. The first KSC fauna and flora baseline studies were predominantly performed by University of Central Florida (then Florida Technological University). Numerous species of relative importance were observed and sea turtles were receiving regulatory review and protection as surveys by Dr. L Ehrhart (UCF) from 1973-1978 described turtles nesting along the KSC beaches and foraging in the KSC lagoon systems. These data were used in the first NASA Environmental Impact Statement for the Space Transportation System (shuttle program) in 1980. In 1982, NASA began a long term ecological monitoring program with contracted scientists on site. This included efforts to track sea turtle status and trends at KSC and maintain protective measures for these species. Many studies and collaborations have occurred on KSC over these last 45 years with agencies (USFWS, NOAA, NAVY), students

  5. Mapping user’s habits and patterns of use at the Catholic university of Louvain - Library and learning center of sciences and technologies (BST)

    OpenAIRE

    Brodkom, Frédéric; Ervinckx, Céline; 18th Seminar of the LIBER Architecture Group

    2016-01-01

    In 2011, the Université catholique de Louvain decided to relocate the old Library of sciences and technologies dating from 1973 in a former building of didactical chemistry to be renovated. It was the occasion to implement new services around the concept of learning center. Nevertheless, facts and objective measurements were required to better know the real uses of the spaces and services in the library and to identify the needs for the design of the new library and learning center (inaugurat...

  6. Research Priority Setting for Social Determinants of Health Research Center of Shahid Beheshti University of Medical Sciences in 2013

    Directory of Open Access Journals (Sweden)

    Mohammad-Reza Sohrabi

    2015-02-01

    Full Text Available Background and objective: It is obvious that, because of the lack of resources, we should devote our limited resources to priorities in order to reach an acceptable level of health. The objective of this study was to research priority setting for Pediatric Surgery Research Center; with the participation of all stakeholders.Material and Methods: This is a Health System Research (HSR project in order to apply governance and leadership issues with the participation of 41 people including faculty members in Pediatric Surgery Research Center, Shahid Beheshti Medical University and the other pediatric specialists and health system stakeholders as well as the people associated with health system inside & outside the university. This was performed in 2010 using the Council on Health Research for Development COHRED( model with little change. Based on the model, at first the stakeholders were identified and the field situation of Pediatric Surgery was analyzed. Then, research areas and titles were specified and research priorities were set out by giving scores according to the criteria.Results: The seven obtained research areas in priority order are included pediatric trauma, pediatric cancers, pediatric urology diseases, undescended testicles in children, developmental genetics & congenital defects, emergency in children and application of laparoscopic surgery in children. Because each of the research areas is composed of multiple subareas, we managed to finally specify 43 research subareas as research priorities. These subareas included epidemiology, risk factors, prevention, screening, diagnosis and treatment. They also included follow-up, complications, knowledge & attitudes of parents, quality of life, economy aspects and data bank for further research.Conclusion: In this project, research priorities were set out for Pediatric Surgery Research Center of Shahid Beheshti University of Medical Sciences, with the participation of all the stakeholders

  7. Measuring changes in content comprehension and attitudes toward informal science learning from three new learning modules implemented at the Trinity River Audubon Center

    Science.gov (United States)

    Wehner, Sarah E.

    Informal science learning has the potential to engage, entertain, and educate learners of all demographics, and its merits have been increasingly recognized as a vital part of science education. This study sought to create and implement three new and unique field trip modules at the Trinity River Audubon Center in Dallas, Texas. Participants who embarked upon the field trip were assessed for enhanced content knowledge and improved attitudes toward learning in informal science learning environments. No statistically significant changes in content or attitude scores were detected, though the preliminary data collected was insufficient to confidently accept nor reject the proposed hypotheses.

  8. Southeast Regional Assessment Project for the National Climate Change and Wildlife Science Center, U.S. Geological Survey

    Science.gov (United States)

    Dalton, Melinda S.; Jones, Sonya A.

    2010-01-01

    The Southeastern United States spans a broad range of physiographic settings and maintains exceptionally high levels of faunal diversity. Unfortunately, many of these ecosystems are increasingly under threat due to rapid human development, and management agencies are increasingly aware of the potential effects that climate change will have on these ecosystems. Natural resource managers and conservation planners can be effective at preserving ecosystems in the face of these stressors only if they can adapt current conservation efforts to increase the overall resilience of the system. Climate change, in particular, challenges many of the basic assumptions used by conservation planners and managers. Previous conservation planning efforts identified and prioritized areas for conservation based on the current environmental conditions, such as habitat quality, and assumed that conditions in conservation lands would be largely controlled by management actions (including no action). Climate change, however, will likely alter important system drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain recent historic conditions in conservation lands into the future. Climate change will also influence the future conservation potential of non-conservation lands, further complicating conservation planning. Therefore, there is a need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change on future environmental conditions. Congress recognized this important issue and authorized the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC; http://nccw.usgs.gov/) in the Fiscal Year 2008. The NCCWSC will produce science that will help resource management agencies anticipate and adapt to climate change impacts to fish, wildlife, and their habitats. With the release of Secretarial Order 3289 on September 14, 2009, the mandate of the NCCWSC was

  9. Fort Collins Science Center Ecosystem Dynamics branch--interdisciplinary research for addressing complex natural resource issues across landscapes and time

    Science.gov (United States)

    Bowen, Zachary H.; Melcher, Cynthia P.; Wilson, Juliette T.

    2013-01-01

    The Ecosystem Dynamics Branch of the Fort Collins Science Center offers an interdisciplinary team of talented and creative scientists with expertise in biology, botany, ecology, geology, biogeochemistry, physical sciences, geographic information systems, and remote-sensing, for tackling complex questions about natural resources. As demand for natural resources increases, the issues facing natural resource managers, planners, policy makers, industry, and private landowners are increasing in spatial and temporal scope, often involving entire regions, multiple jurisdictions, and long timeframes. Needs for addressing these issues include (1) a better understanding of biotic and abiotic ecosystem components and their complex interactions; (2) the ability to easily monitor, assess, and visualize the spatially complex movements of animals, plants, water, and elements across highly variable landscapes; and (3) the techniques for accurately predicting both immediate and long-term responses of system components to natural and human-caused change. The overall objectives of our research are to provide the knowledge, tools, and techniques needed by the U.S. Department of the Interior, state agencies, and other stakeholders in their endeavors to meet the demand for natural resources while conserving biodiversity and ecosystem services. Ecosystem Dynamics scientists use field and laboratory research, data assimilation, and ecological modeling to understand ecosystem patterns, trends, and mechanistic processes. This information is used to predict the outcomes of changes imposed on species, habitats, landscapes, and climate across spatiotemporal scales. The products we develop include conceptual models to illustrate system structure and processes; regional baseline and integrated assessments; predictive spatial and mathematical models; literature syntheses; and frameworks or protocols for improved ecosystem monitoring, adaptive management, and program evaluation. The descriptions

  10. Centro Regional de Ciencias Nucleares (a Brazilian regional center for nuclear sciences) - activities report - 1999; Centro Regional de Ciencias Nucleares - relatorio de atividades - 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    The annual activities report of 1999 of nuclear sciences regional center - Brazilian organization - introduces the next main topics: institutional relations; sectorial actions - logistic support and training, laboratory of radiation protection and dosimetry, laboratory of metrology, laboratory of chemical characterization; technical and scientific events; and financial resources and perspectives for 2000.

  11. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Science Mission Directorate Projects at Glenn Research Center for 2015

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    This report is intended to help NASA program and project managers incorporate Glenn ResearchCenter Small Business Innovation Research/Small Business Technology Transfer (SBIR)/(STTR)technologies into NASA Science Mission Directorate (SMD) programs/projects. Other Government and commercial project managers can also find this useful.

  12. Using the American Community Survey to Create a National Academy of Sciences-Style Poverty Measure: Work by the New York City Center for Economic Opportunity

    Science.gov (United States)

    Levitan, Mark; D'Onofrio, Christine; Koolwal, Gayatri; Krampner, John; Scheer, Daniel; Seidel, Todd; Virgin, Vicky

    2010-01-01

    The need to improve the U.S. poverty measure has received renewed attention as state and local governments have initiated antipoverty efforts and wish to judge their effect. This paper describes the New York City Center for Economic Opportunity's implementation of the National Academy of Sciences' recommendations for measuring poverty. The…

  13. Louisiana State University Health Sciences Center Katrina Inspired Disaster Screenings (KIDS): Psychometric Testing of the National Child Traumatic Stress Network Hurricane Assessment and Referral Tool

    Science.gov (United States)

    Hansel, Tonya Cross; Osofsky, Joy D.; Osofsky, Howard J.

    2015-01-01

    Background: Post disaster psychosocial surveillance procedures are important for guiding effective and efficient recovery. The Louisiana State University Health Sciences Center Katrina Inspired Disaster Screenings (KIDS) is a model designed with the goal of assisting recovering communities in understanding the needs of and targeting services…

  14. Environmental flow studies of the Fort Collins Science Center, U.S. Geological Survey-Cherry Creek, Arizona

    Science.gov (United States)

    Waddle, Terry J.; Bovee, Ken D.

    2010-01-01

    At the request of the U.S. Forest Service, an instream flow assessment was conducted at Cherry Creek, Ariz., to investigate habitat for native and introduced fish species and to describe the beneficial use of a possible instream flow water right. The U.S. Geological Survey (USGS) Fort Collins Science Center performed an intensive field study of two sections of Cherry Creek in September 2008 to provide base data for hydrodynamic simulation of the flow conditions in the stream. The USGS Arizona Cooperative Fish and Wildlife Research Unit, at the University of Arizona School of Natural Resources, conducted a survey of the habitat requirements of the resident fish species in Cherry Creek and provided the habitat suitability criteria used in this study. The habitat suitability criteria were combined with hydrodynamic simulation results to quantify fish habitat for the full range of daily flow experienced in the creek and to produce maps of habitat occurrence for those flows. The flow record at the Cherry Creek stream gage was used to generate habitat response values over time. The long-term habitat response was incorporated into an Excel (Registered) spreadsheet to allow evaluation of habitat occurrence with and without an instream water right under different hypothetical water withdrawal scenarios. The spreadsheet displays information about the time sequence of habitat events, the duration of critical events, and habitat retention.

  15. Production technology readiness assessment of surfactant in the research center for Chemistry-Indonesian Institute of Sciences

    Science.gov (United States)

    Setiawan, Arief Ameir Rahman; Sulaswatty, Anny

    2017-11-01

    The common problem faced by the institution working on research, innovation and technology development is lack of quantitative measures to determine the technology readiness of research. No common communication language between R & D Institutions and industry about the level of preparedness of a research resulting a barrier to technology diffusion interaction. This lack of connection between R & D institutes with industry may lead to "sluggishness" occurs in innovating. For such circumstance, assessing technology readiness of research is very important. One of wide spread methods for the assessment is Technology Readiness Level (TRL, also known as Technometer), which is introduced by NASA (National Aeronautics and Space Administration). TRL is a general guide that provides an overview of maturity level of a technology. This study aims to identify and demonstrate the implementation of TRL to assess a number of surfactant researches in the Research Center for Chemistry, Indonesian Institute of Sciences. According to the assessment, it has been obtained the surfactant recommended for further development towards commercialization of R & D results, i.e. Glycerol Mono Stearate (GMS), which has reached the level of TRL 7.

  16. Developing and Sustaining a Science and Technology Center Education Program: "Inquiry" as a Means for Organizational Change and Institutional Legitimacy

    Science.gov (United States)

    Ball, T.; Hunter, L.

    2010-12-01

    Formal organizations have become ubiquitous in contemporary society and since so many of us spend so much of our daily lives working, learning, and socializing in them it is important to understand not only how they govern our interactions but also how we can incite (and sustain) organizational change. This is especially true for STEM education; learning about science, technology, engineering or mathematics rarely occurs outside of formal settings and educators need to be aware of how learning goals, priorities and practices are permeable to the institutional processes that structure sponsoring organizations. Adopting a historical perspective, this paper reports on organizational changes at the Center for Adaptive Optics in relation to an emerging emphasis on inquiry learning. The results of our analysis show how the inquiry model functioned as a boundary object and was instrumental in transforming members' expectations and assumptions about educational practice in STEM while securing the institutional legitimacy of the CfAO as a whole. Our findings can inform the advancement of educational initiatives within the STEM research community and are particularly useful in relation to concerns around accommodating and integrating individuals from non-dominant backgrounds.

  17. Ecological Design of Fernery based on Bioregion Classification System in Ecopark Cibinong Science Center Botanic Gardens, Indonesia

    Science.gov (United States)

    Nafar, S.; Gunawan, A.

    2017-10-01

    Indonesia as mega biodiversity country has a wide variety of ferns. However, the natural habitats of ferns are currently degrading, particularly in lowlands due to the increasing level of urban-sprawl and industrial zones development. Therefore, Ecology Park (Ecopark) Cibinong Science Center-Botanic Gardens as an ex-situ conservation area is expected to be the best location to conserve the lowland ferns. The purpose of this study is to design a fernery through an ecological landscape design process. The main concept is The Journey of Fern, this concept aiming on providing users experiences in fernery by associating conservational, educational, and recreational aspects. Ecological landscape design as general is applied by the principal of reduce, reuse, and recycle (3R). Bioregion classification system is applied by grouping the plants based on the characteristics of light, water, soil, air, and temperature. The design concept is inspired by the morphology of fern and its growth patterns which is transformed into organic and geometric forms. The result of this study is a design of fernery which consist of welcome area, recreation area, service area, and conservation education area as the main area that providing 66 species of ferns.

  18. The experimental teaching reform in biochemistry and molecular biology for undergraduate students in Peking University Health Science Center.

    Science.gov (United States)

    Yang, Xiaohan; Sun, Luyang; Zhao, Ying; Yi, Xia; Zhu, Bin; Wang, Pu; Lin, Hong; Ni, Juhua

    2015-01-01

    Since 2010, second-year undergraduate students of an eight-year training program leading to a Doctor of Medicine degree or Doctor of Philosophy degree in Peking University Health Science Center (PKUHSC) have been required to enter the "Innovative talent training project." During that time, the students joined a research lab and participated in some original research work. There is a critical educational need to prepare these students for the increasing accessibility of research experience. The redesigned experimental curriculum of biochemistry and molecular biology was developed to fulfill such a requirement, which keeps two original biochemistry experiments (Gel filtration and Enzyme kinetics) and adds a new two-experiment component called "Analysis of anti-tumor drug induced apoptosis." The additional component, also known as the "project-oriented experiment" or the "comprehensive experiment," consists of Western blotting and a DNA laddering assay to assess the effects of etoposide (VP16) on the apoptosis signaling pathways. This reformed laboratory teaching system aims to enhance the participating students overall understanding of important biological research techniques and the instrumentation involved, and to foster a better understanding of the research process all within a classroom setting. Student feedback indicated that the updated curriculum helped them improve their operational and self-learning capability, and helped to increase their understanding of theoretical knowledge and actual research processes, which laid the groundwork for their future research work. © 2015 The International Union of Biochemistry and Molecular Biology.

  19. LHCb - A SciFi production center in NRC KI FOR LHCb upgrade

    CERN Multimedia

    Shevchenko, Vladimir

    2015-01-01

    The Scintillating Fiber Tracker, SciFi for short, will be the main new tracking detector in LHCb. It will provide better than 100 µm spatial resolution, and high rate capability and radiation hardness enabling a fast, 40 MHz, trigger rate with a capability to withstand 50 fb$^{-1}$ integrated luminosity, delivered by LHC, without a major performance degradation. The main active element of the tracker is a scintillating fiber ribbon with the SiPM readout. The ribbons consist of 6 layers of the 250 µm scintillating fibers Kuraray SCSF-78MJ, assembled by winding and bound together by the epoxy glue. NRC Kurchatov Institute, Moscow, together with the colleagues from ITEP, CERN, TU of Dortmund and RWTH of Aachen are developing dedicated production centers with the aim to reach by 2016 production rate one ribbon per day per center, necessary to supply more than 1300 fibre ribbons (mats) needed for the new LHCb tracker.

  20. Integration Of PanDA Workload Management System With Supercomputers for ATLAS and Data Intensive Science

    Energy Technology Data Exchange (ETDEWEB)

    De, K [University of Texas at Arlington; Jha, S [Rutgers University; Klimentov, A [Brookhaven National Laboratory (BNL); Maeno, T [Brookhaven National Laboratory (BNL); Nilsson, P [Brookhaven National Laboratory (BNL); Oleynik, D [University of Texas at Arlington; Panitkin, S [Brookhaven National Laboratory (BNL); Wells, Jack C [ORNL; Wenaus, T [Brookhaven National Laboratory (BNL)

    2016-01-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS, one of the largest collaborations ever assembled in the sciences, is at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, the ATLAS experiment is relying on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System for managing the workflow for all data processing on over 150 data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. While PanDA currently uses more than 250,000 cores with a peak performance of 0.3 petaFLOPS, LHC data taking runs require more resources than Grid computing can possibly provide. To alleviate these challenges, LHC experiments are engaged in an ambitious program to expand the current computing model to include additional resources such as the opportunistic use of supercomputers. We will describe a project aimed at integration of PanDA WMS with supercomputers in United States, Europe and Russia (in particular with Titan supercomputer at Oak Ridge Leadership Computing Facility (OLCF), MIRA supercomputer at Argonne Leadership Computing Facilities (ALCF), Supercomputer at the National Research Center Kurchatov Institute , IT4 in Ostrava and others). Current approach utilizes modified PanDA pilot framework for job submission to the supercomputers batch queues and local data management, with light-weight MPI wrappers to run single threaded workloads in parallel on LCFs multi-core worker nodes. This implementation

  1. Textural analysis of marine sediments at the USGS Woods Hole Science Center; methodology and data on DVD

    Science.gov (United States)

    Poppe, Lawrence J.; Williams, S. Jeffress; Paskevich, Valerie F.

    2006-01-01

    Marine sediments off the eastern United States vary markedly in texture (i.e., the size, shape, composition, and arrangement of their grains) due to a complex geologic history. For descriptive purposes, however, it is typically most useful to classify these sediments according to their grain-size distributions. In 1962, the U.S. Geological Survey began a program to study the marine geology of the continental margin off the Atlantic coast of the United States. As part of this program and numerous subsequent projects, thousands of sediment grab samples and cores were collected and analyzed for grain size at the Woods Hole Science Center. USGS Open-File Report 2005-1001 (Poppe et al., 2005), available on DVD and online, describes the field methods used to collect marine sediment samples as well as the laboratory methods used to determine and characterize grain-size distributions, and presents these data in several formats that can be readily employed by interested parties. The report is divided into three sections. The first section discusses procedures and contains pictures of the equipment, analytical flow diagrams, video clips with voice commentary, classification schemes, useful forms and compiled and uncompiled versions of the data-acquisition and data-processing software with documentation. The second section contains the grain-size data for more than 23,000 analyses in two “flat-file” formats, a data dictionary, and color-coded browse maps. The third section provides a GIS data catalog of the available point, interpretive, and baseline data layers, with FGDC-compliant metadata to help users visualize the textural information in a geographic context.

  2. The use and misuse of prescription stimulants as "cognitive enhancers" by students at one academic health sciences center.

    Science.gov (United States)

    Bossaer, John B; Gray, Jeffrey A; Miller, Stacy E; Enck, Gavin; Gaddipati, Vamsi C; Enck, Robert E

    2013-07-01

    Prescription stimulant use as "cognitive enhancers" has been described among undergraduate college students. However, the use of prescription stimulants among future health care professionals is not well characterized. This study was designed to determine the prevalence of prescription stimulant misuse among students at an academic health sciences center. Electronic surveys were e-mailed to 621 medical, pharmacy, and respiratory therapy students at East Tennessee State University for four consecutive weeks in fall 2011. Completing the survey was voluntary and anonymous. Surveys asked about reasons for, frequency of, and side effects of nonprescription misuse of prescription stimulants. Given the sensitive material, an opportunity to win one of ten $50 gift cards was used as an incentive. Three hundred seventy-two (59.9%) students completed the survey from three disciplines (47.6% medical, 70.5% pharmacy, and 57.6% respiratory therapy). Overall, 11.3% of responders admitted to misusing prescription stimulants. There was more misuse by respiratory therapy students, although this was not statistically significant (10.9% medicine, 9.7% pharmacy, 26.3% respiratory therapy; P = .087). Reasons for prescription stimulant misuse included to enhance alertness/energy (65.9%), to improve academic performance (56.7%), to experiment (18.2%), and to use recreationally/get high (4.5%). Prescription stimulant misuse was prevalent among participating students, but further research is needed to describe prevalence among future health care workers more generally. The implications and consequences of such misuse require further study across professions with emphasis on investigating issues of academic dishonesty (e.g., "cognitive enhancement"), educational quality, and patient safety or health care quality.

  3. Evaluating Indicator-Based Methods of "Measuring Long-Term Impacts of a Science Center on Its Community"

    Science.gov (United States)

    Jensen, Eric Allen

    2016-01-01

    This article addresses some of the challenges faced when attempting to evaluate the long-term impact of informal science learning interventions. To contribute to the methodological development of informal science learning research, we critically examine (Falk and Needham (2011) "Journal of Research in Science Teaching," 48: 1-12.) study…

  4. Hampshire College Center for Science Education. Final Report on Activities Supported by the Department of Energy Grant No. DE-FG02-06ER64256

    Energy Technology Data Exchange (ETDEWEB)

    Stillings, Neil [Hampshire College, Amherst, MA (United States); Wenk, Laura [Hampshire College, Amherst, MA (United States)

    2009-12-30

    Hampshire College's Center for Science Education (Center) focuses on teacher professional development, curriculum development, and student enrichment programs. The Center also maintains research programs on teacher change, student learning and instructional effectiveness. The Center's work promotes learning that persists over time and transfers to new situations in and out of school. The projects develop the implications of the increasing agreement among teachers and researchers that effective learning involves active concept mastery and consistent practice with inquiry and critical thinking. The Center's objective is to help strengthen the pipeline of U.S. students pursuing postsecondary study in STEM fields. The Center achieves this by fostering an educational environment in which science is taught as an active, directly experienced endeavor across the K-16 continuum. Too often, young people are dissuaded from pursuing science because they do not see its relevance, instead experiencing it as dry, rote, technical. In contrast, when science is taught as a hands-on, inquiry-driven process, students are encouraged to ask questions grounded in their own curiosity and seek experimental solutions accordingly. In this way, they quickly discover both the profound relevance of science to their daily lives and its accessibility to them. Essentially, they learn to think and act like real scientists. The Center’s approach is multi-faceted: it includes direct inquiry-based science instruction to secondary and postsecondary students, educating the next generation of teachers, and providing new educational opportunities for teachers already working in the schools. Funding from the Department of Energy focused on the last population, enabling in-service teachers to explore and experience the pedagogy of inquiry-based science for themselves, and to take it back to their classrooms and students. The Center has demonstrated that the inquiry-based approach to science

  5. The Magnetospheric Multiscale (MMS) Mission Science Data Center: Technologies, Methods, and Experiences in Making Available Large Volumes of In-Situ Particle and Field Data

    Science.gov (United States)

    Pankratz, Christopher; Kokkonen, Kim; Larsen, Kristopher; Panneton, Russell; Putnam, Brian; Schafer, Corey; Baker, Daniel; Burch, James

    2016-04-01

    On September 1, 2015 the Magnetospheric MultiScale (MMS) constellation of four satellites completed their six-month commissioning period and began routine science data collection. Science operations for the mission is conducted at the Science Operations Center (SOC) at the Laboratory for Atmospheric and Space Physics, University of Colorado in Boulder, Colorado, USA. The MMS Science Data Center (SDC) is a component of the SOC responsible for the data production, management, dissemination, archiving, and visualization of the data from the extensive suite of 100 instruments onboard the four spacecraft. As of March 2016, MMS science data are openly available to the entire science community via the SDC. This includes hundreds of science parameters, and 50 gigabytes of data per day distributed across thousands of data files. Products are produced using integrated software systems developed and maintained by teams at other institutions using their own institutional software management procedures and made available via a centralized public web site and web services. To accomplish the data management, data processing, and system integration challenges present on this space mission, the MMS SDC incorporates a number of evolutionary techniques and technologies. This presentation will provide an informatics-oriented view of the MMS SDC, summarizing its technical aspects, novel technologies and data management practices that are employed, experiences with its design and development, and lessons learned. Also presented is the MMS "Scientist-in-the-Loop" (SITL) system, which is used to leverage human insight and expertise to optimize the data selected for transmission to the ground. This smoothly operating system entails the seamless interoperability of multiple mission facilities and data systems that ultimately translate scientist insight into uplink commands that triggers optimal data downlink to the ground.

  6. “From intellectual to expert” in the Argentinian education field in the 1960s. The case of the Center for Research in Educational Sciences

    Directory of Open Access Journals (Sweden)

    Jorgelina Mendez

    2017-09-01

    Full Text Available This work investigates a particular institution, the Center for Research in Educational Sciences of the Torcuato Di Tella Institute, where the necessary elements were combined to define the profile of an expert in education. Throughout the 1960s the Social Sciences, including Educational Research, had a strong growth and development, which was called modernization. This generated new academic and professional profiles, where the expert stands out. In Argentina this process was generated in a context of political instability and conflicts between governments and universities. Taking the historical context into account, we analyzed the characteristics of the center, the researchers who worked there and the activities carried out during the first period of operation seeking to characterize the “expert” in education.

  7. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    Science.gov (United States)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  8. Streamlining volcano-related, web-based data display and design with a new U.S. Geological Survey Volcano Science Center website

    Science.gov (United States)

    Stovall, W. K.; Randall, M. J.; Cervelli, P. F.

    2011-12-01

    The goal of the newly designed U.S. Geological Survey (USGS) Volcano Science Center website is to provide a reliable, easy to understand, and accessible format to display volcano monitoring data and scientific information on US volcanoes and their hazards. There are greater than 150 active or potentially active volcanoes in the United States, and the Volcano Science Center aims to advance the scientific understanding of volcanic processes at these volcanoes and to lessen the harmful impacts of potential volcanic activity. To fulfill a Congressional mandate, the USGS Volcano Hazards Program must communicate scientific findings to authorities and the public in a timely and understandable form. The easiest and most efficient way to deliver this information is via the Internet. We implemented a new database model to organize website content, ensuring consistency, accuracy, and timeliness of information display. Real-time monitoring data is available for over 50 volcanoes in the United States, and web-site visitors are able to interact with a dynamic, map-based display system to access and analyze these data, which are managed by scientists from the five USGS volcano observatories. Helicorders, recent hypocenters, webcams, tilt measurements, deformation, gas emissions, and changes in hydrology can be viewed for any of the real-time instruments. The newly designed Volcano Science Center web presence streamlines the display of research findings, hazard assessments, and real-time monitoring data for the U.S. volcanoes.

  9. Research activity by National Center of Archaeological studies of Institute of History of Tatarstan Academy of Sciences in 2013

    Directory of Open Access Journals (Sweden)

    Sitdikov Ayrat G.

    2014-03-01

    Full Text Available The work of the National Center for Archaeological Studies named after A.Sh. Khalikov with the Institute of History named after Sh Mardjani of the Academy of Sciences of the Republic of Tatarstan (NCAS in 2013 was conducted within three Departments: prehistoric and medieval archaeology, conservation studies, and a bioarchaeological laboratory. The basic problems were: “Archaeology of the ancient population of the Volga-Kama: the formation and interaction of cultures”; “Medieval Turkic-Tatar civilization: the emergence, development, interaction with the peoples of Eurasia”; “Anthropology and genetics of the ancient population of the Middle Volga region”. Within the project on “Geographic information systems of Tatarstan archaeological heritage”, preparatory works for monitoring of the condition of cultural heritage objects located in the Kuibyshev and Nizhnekamsk reservoirs zones of influence were conducted. Archaeological fieldwork was conducted in the framework of the Primitive, Early Bulgar, Kazan, Bulgar, Lower Volga, Sviyazhsk archaeological expeditions and Preservation and salvation expedition in the area of Nizhnekamsk and Kuibyshev reservoirs. Beyond the Republic of Tatarstan, exploratory research was conducted in the territory of the Chuvash and Mordovian republics, Ulyanovsk and Samara Oblasts. The study of monuments in the Lower Volga region continued in collaboration with colleagues from the Astrakhan Oblast and the Republic of Mari El. Joint international archaeological research was carried out in the territory of the Republic of Bulgaria and Ukraine. 5 conferences were organized, including 4 international ones. The NCAS staff participated in 16 conferences, including 11 international ones. 2 Doctor habilitatus and 3 Doctor’s theses were defended. 5 collections of articles and theses, and 4 issues of the “Privolzhskaya arkheologiya” (Volga region archaeology were published. The NCAS staff prepared 216

  10. National Institute of Justice Center Requirements Definition, Technical Assistance, Agile Test and Evaluation and Cyber Science Analysis

    National Research Council Canada - National Science Library

    Frantz, Frederick

    2003-01-01

    This task provided for assembly, definition, and completion of technical enhancements in coordination with the National Law Enforcement and Corrections Technology Center -Northeast Region (NLECTC-NE...

  11. The Indiana University Center for Healthcare Innovation and Implementation Science: Bridging healthcare research and delivery to build a learning healthcare system.

    Science.gov (United States)

    Azar, Jose; Adams, Nadia; Boustani, Malaz

    2015-01-01

    In the United States, it is estimated that 75,000 deaths every year could be averted if the healthcare system implemented high quality care more effectively and efficiently. Patient harm in the hospital occurs as a consequence of inadequate procedures, medications and other therapies, nosocomial infections, diagnostic evaluations and patient falls. Implementation science, a new emerging field in healthcare, is the development and study of methods and tools aimed at enhancing the implementation of new discoveries and evidence into daily healthcare delivery. The Indiana University Center for Healthcare Innovation and Implementation Science (IU-CHIIS) was launched in September 2013 with the mission to use implementation science and innovation to produce great-quality, patient-centered and cost-efficient healthcare delivery solutions for the United States of America. Within the first 24 months of its initiation, the IU-CHIIS successfully scaled up an evidence-based collaborative care model for people with dementia and/or depression, successfully expanded the Accountable Care Unit model positively impacting the efficiency and quality of care, created the first Certificate in Innovation and Implementation Science in the US and secured funding from National Institutes of Health to investigate innovations in dementia care. This article summarizes the establishment of the IU-CHIIS, its impact and outcomes and the lessons learned during the journey. Copyright © 2015. Published by Elsevier GmbH.

  12. Emotional and Motivational Outcomes of Lab Work in the Secondary Intermediate Track: The Contribution of a Science Center Outreach Lab

    Science.gov (United States)

    Itzek-Greulich, Heike; Vollmer, Christian

    2017-01-01

    Students' interest in science declines in secondary school. Therefore, motivating students to become competent and engaged in science topics that are relevant for their everyday lives is an important goal, so they can be better citizens and decision makers with socioscientific issues (e.g., climate change and waste disposal). The present study…

  13. The publication of scientific data by World Data Centers and the National Library of Science and Technology in Germany

    Directory of Open Access Journals (Sweden)

    J Brase

    2006-11-01

    Full Text Available In its 2004 report "Data and information", the International Council for Science (ICSU strongly recommended a new strategic framework for scientific data and information. On an initiative from a working group from the Committee on Data for Science and Technology (CODATA, the German Research Foundation (DFG has started the project "Publication and Citation of Scientific Primary Data" as part of the program "Information-infrastructure of network -based scientific-cooperation and digital publication" in 2004. Starting with the field of earth science, the German National Library of Science and Technology (TIB is now established as a registration agency for scientific primary data as a member of the International DOI Foundation (IDF.

  14. 77 FR 51564 - Notice of Inventory Completion: Herrett Center for Arts and Science, College of Southern Idaho...

    Science.gov (United States)

    2012-08-24

    ... Science, College of Southern Idaho, by the family of James H. Berkley. No known individuals were... practices, and oral traditions. Documentation submitted by representatives of the Gila River Indian...

  15. Predictive factors of job satisfaction among nurses in therapeutic-educational centers of Guilan University of Medical Science

    Directory of Open Access Journals (Sweden)

    Nastaran Mirfarhadi

    2014-11-01

    satisfaction in job environment, using a comprehensive program by organization managers and planners seems necessary.* Corresponding Author: Rasht, Guilan University of Medical Sciences, Faculty of Nursing and Midwifery.Email: Saghi_m80@yahoo.com

  16. NASA University Research Centers Technical Advances in Aeronautics, Space Sciences and Technology, Earth Systems Sciences, Global Hydrology, and Education. Volumes 2 and 3

    Science.gov (United States)

    Coleman, Tommy L. (Editor); White, Bettie (Editor); Goodman, Steven (Editor); Sakimoto, P. (Editor); Randolph, Lynwood (Editor); Rickman, Doug (Editor)

    1998-01-01

    This volume chronicles the proceedings of the 1998 NASA University Research Centers Technical Conference (URC-TC '98), held on February 22-25, 1998, in Huntsville, Alabama. The University Research Centers (URCS) are multidisciplinary research units established by NASA at 11 Historically Black Colleges or Universities (HBCU's) and 3 Other Minority Universities (OMU's) to conduct research work in areas of interest to NASA. The URC Technical Conferences bring together the faculty members and students from the URC's with representatives from other universities, NASA, and the aerospace industry to discuss recent advances in their fields.

  17. NASA Earth Observing System Data and Information System (EOSDIS): A U.S. Network of Data Centers Serving Earth Science Data: A Network Member of ICSU WDS

    Science.gov (United States)

    Behnke, Jeanne; Ramapriyan, H. K. " Rama"

    2016-01-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been in operation since August 1994, and serving a diverse user community around the world with Earth science data from satellites, aircraft, field campaigns and research investigations. The ESDIS Project, responsible for EOSDIS is a Network Member of the International Council for Sciences (ICSU) World Data System (WDS). Nine of the 12 Distributed Active Archive Centers (DAACs), which are part of EOSDIS, are Regular Members of the ICSUWDS. This poster presents the EOSDIS mission objectives, key characteristics of the DAACs that make them world class Earth science data centers, successes, challenges and best practices of EOSDIS focusing on the years 2014-2016, and illustrates some highlights of accomplishments of EOSDIS. The highlights include: high customer satisfaction, growing archive and distribution volumes, exponential growth in number of products distributed to users around the world, unified metadata model and common metadata repository, flexibility provided to uses by supporting data transformations to suit their applications, near-real-time capabilities to support various operational and research applications, and full resolution image browse capabilities to help users select data of interest. The poster also illustrates how the ESDIS Project is actively involved in several US and international data system organizations.

  18. Involving Minority High School Students in Cutting Edge Research through C-DEBI, an NSF-National Science and Technology Center

    Science.gov (United States)

    Singer, E.; Edwards, K. J.

    2012-12-01

    The Center for Dark Energy Biosphere Investigations (C-DEBI) was established as a National Science and Technology Center (NTC) funded by NSF in 2009. Its mission is to explore life beneath the seafloor and make transformative discoveries that advance science, benefit society, and inspire people of all ages and origins. Thanks to the multi-institutional character of C-DEBI, the Center has not only started a collaborative framework for experimental and exploratory research, but also targets education programs at the K-12, undergraduate, graduate and postdoctoral levels involving biogeochemists, microbiologists, geochemists and geologists. An example for this is the introduction of deep biosphere research into the K-12 classroom. In this context, C-DEBI has collaborated with teachers from the Animo Leadership High School in Inglewood, which is ranked 27th within California and has a total minority enrollment of 99%, to adapt Marine Biology classes and introduce latest Deep Biosphere Science discoveries. Three high school students participated in a pilot project over 6 months to gain hands-on experience in an ongoing study in a Marine Microbiology laboratory at University of Southern California. Graduate and postdoctoral students from the Departments of Biological and Earth Sciences supervised theory, praxis and project design, which was aimed at culturing strains of Marinobacter, one of the most ubiquitous marine microbial genera, and preparing extracted DNA for sequencing using the latest Ion Torrent Technology. Students learned about the interdisciplinary global context of the study and gained experience in laboratory procedures, including basic aseptical techniques, molecular biology methods, and cutting-edge sequencing Technology, as well as problem-solving and creative thinking in project preparation and conduction. This hands-on training included discussions about the 'Whys' and 'Hows' in today's research with respect to their specific project, but also from a

  19. Descriptions of marine mammal specimens in Marine Mammal Osteology Reference Collection, Alaska Fisheries Science Center, National Marine Mammal Laboratory from 1938-01-01 to 2015-12-05 (NCEI Accession 0140937)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NMFS Alaska Fisheries Science Center National Marine Mammal Laboratory (NMML) Marine Mammal Osteology Collection consists of approximately 2500 specimens (skulls...

  20. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Woods Hole Coastal and Marine Science Center (WHCMSC) Samples Repository is a partner in the...

  1. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) Pacific Coastal and Marine Science Center (PCMSC) Samples Repository is a partner in the Index...

  2. Archive of Geosample Data and Information from the U.S. Geological Survey (USGS) Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Geological Survey Coastal and Marine Geology Program (CMGP) St. Petersburg Coastal and Marine Science Center (SPCMSC) Samples Repository is a partner in the...

  3. Time series physical oceanographic and tidal height data collected in Yaquina Bay from 11/01/1999 to 12/31/1999 as part of the Hatfield Marine Science Center Seawater Database (NODC Accession 0000129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water characteristics of Yaquina Bay and Hatfield Marine Science Center's in-building seawater system, measured every six minutes since 1988. Tide height data is...

  4. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    Science.gov (United States)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most

  5. The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology): Lessons Learned from an Innovative Research-Education-Outreach Center at Colorado School of Mines

    Science.gov (United States)

    Hogue, T. S.; Blaine, A. C.; Martin, A. C.

    2016-12-01

    The ConocoPhillips Center for a Sustainable WE2ST (Water-Energy Education, Science, and Technology) is a testament to the power of collaboration and innovation. WE2ST began as a partnership between ConocoPhillips (foundation gift) and the Colorado School of Mines (CSM) with the goal of fostering solutions to water-energy challenges via education, research and outreach. The WE2ST center is a training ground for the next generation of water-energy-social scientists and engineers and is a natural fit for CSM, which is known for its expertise in water resources, water treatment technologies, petroleum engineering, geosciences, and hydrology. WE2ST has nine contributing faculty researchers that combine to create a web of expertise on sustainable energy and water resources. This research benefits unconventional energy producers, water-reliant stakeholders and the general public. Areas of focus for research include water sources (quality and quantity), integrated water-energy solution viability and risk, and social-corporate responsibility. The WE2ST Center currently provides annual support for 8-9 Graduate Fellows and 13 Undergraduate Scholars. Top-tier graduate students are recruited nationally and funded similar to an NSF Graduate Research Fellowship (GRF). Undergraduate Scholars are also recruited from across the CSM campus to gain experience in faculty laboratories and on research teams. All WE2ST students receive extensive professional skills training, leadership development, communication skills training, networking opportunities in the water-energy industries, and outreach opportunities in the community. The corner stone of the WE2ST Center is a focus on communication with the public. Both in social science research teams and in general interactions with the public, WE2ST seeks to be "an honest broker" amidst a very passionate and complex topic. WE2ST research is communicated by presentations at technical conferences, talking with people at public gatherings

  6. Making lemonade from lemons: a case study on loss of space at the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Tobia, Rajia C; Feldman, Jonquil D

    2010-01-01

    The setting for this case study is the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, a health sciences campus with medical, dental, nursing, health professions, and graduate schools. During 2008-2009, major renovations to the library building were completed including office space for a faculty development department, multipurpose classrooms, a 24/7 study area, study rooms, library staff office space, and an information commons. The impetus for changes to the library building was the decreasing need to house collections in an increasingly electronic environment, the need for office space for other departments, and growth of the student body. About 40% of the library building was remodeled or repurposed, with a loss of approximately 25% of the library's original space. Campus administration proposed changes to the library building, and librarians worked with administration, architects, and construction managers to seek renovation solutions that meshed with the library's educational mission.

  7. Developing Low-Cost Solutions to Improve Public Policy: The Work of MDRC's Center for Applied Behavioral Science. Issue Focus

    Science.gov (United States)

    MDRC, 2016

    2016-01-01

    Many social policy and education programs start from the assumption that people act in their best interest. But behavioral science shows that people often weigh intuition over reason, make inconsistent choices, and put off big decisions. The individuals and families who need services and the staff who provide them are no exception. From city…

  8. Student-Centered and Dynamic Interfaces that Enrich Technical Learning for Online Science Learners: A Review of the Literature

    Science.gov (United States)

    Killian, Susan A.; Beck, Dennis E.; O'Bryan, Corliss A.; Jarvis, Nathan; Clausen, Edgar C.; Crandall, Philip G.

    2014-01-01

    Communicating complex scientific and technical information presents a challenge for food science educators. The most efficient learning occurs when all senses are engaged, one reason that many educators believe that scientific principles are best taught with hands-on laboratory experiences. Today there are many challenges to the continuation of…

  9. Revolutions in the Science of Learning: A New View from a New Center--Visual Language and Visual Learning

    Science.gov (United States)

    Petitto, Laura-Ann

    2012-01-01

    Revolutions can happen in different ways. About six years ago, a very particular type of revolution began in a cluster of rooms on the main campus of Gallaudet University. There, a handful of individuals began a "quiet revolution" guided by an overarching passionate mission to conduct groundbreaking science that would have widespread…

  10. Translational nutrition research at UC-Davis – the key role of the clinical and translational science center

    Science.gov (United States)

    To better understand the facility and equipment needs for human clinical nutrition research the New York Academy of Sciences presented a symposium. This paper is the result of that symposium and provides information into how clinical nutrition research is conducted at the Clinical and Translational ...

  11. CONFERENCES AND SYMPOSIA: Scientific Session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the centenary of L D Landau's birth (22-23 January 2008)

    Science.gov (United States)

    Andreev, A. F.; Kagan, Yu M.; Pitaevskii, L. P.; Khalatnikov, I. M.; Kamenshchik, A. Yu; Ioffe, B. L.; Okun, L. B.; Lipatov, L. N.

    2008-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the centenary of L D Landau's birth was held in the Conference Hall of the Lebedev Physics Institute, Russian Academy of Sciences, on 22 and 23 January 2008. An Opening Address by A F Andreev and the following reports were presented at the session: (1) Andreev A F (Kapitza Institute of Physical Problems, Russian Academy of Sciences) "Supersolidity of quantum glasses" (2) Kagan Yu M (Russian Research Center Kurchatov Institute, Moscow) "Formation kinetics of the Bose condensate and long-range order"; (3) Pitaevskii L P (Kapitza Institute of Physical Problems, Russian Academy of Sciences; Dipartimento di Fisica, Universita di Trento and BDC Center, Trento, Italy) "Superfluid Fermi liquid in a unitary regime"; (4) Lebedev V V (Landau Institute for Theoretical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region) "Kolmogorov, Landau, and the modern theory of turbulence"; (5) Khalatnikov I M (Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow), Kamenshchik A Yu (Landau Institute for Theoretical Physics, Russian Academy of Sciences, Moscow; Dipartimento di Fisica and Istituto Nazionale di Fisica Nucleare, Bologna, Italy) "Lev Landau and the problem of singularities in cosmology"; (6) Ioffe B L (Russian State Scientific Center Alikhanov Institute for Theoretical and Experimental Physics, Moscow) "Axial anomaly in quantum electro- and chromodynamics and the structure of the vacuum in quantum chromodynamics"; (7) Okun L B (Russian State Scientific Center Alikhanov Institute for Theoretical and Experimental Physics, Moscow) "The theory of relativity and the Pythagorean theorem"; (8) Lipatov L N (St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg) "Bjorken and Regge asymptotics of scattering amplitudes in QCD and in supersymmetric gauge models." A brief presentation of the Opening Address by A F Andreev and reports 2

  12. A blueprint of pain curriculum across prelicensure health sciences programs: one NIH Pain Consortium Center of Excellence in Pain Education (CoEPE) experience.

    Science.gov (United States)

    Doorenbos, Ardith Z; Gordon, Deborah B; Tauben, David; Palisoc, Jenny; Drangsholt, Mark; Lindhorst, Taryn; Danielson, Jennifer; Spector, June; Ballweg, Ruth; Vorvick, Linda; Loeser, John D

    2013-12-01

    To improve U.S. pain education and promote interinstitutional and interprofessional collaborations, the National Institutes of Health Pain Consortium has funded 12 sites to develop Centers of Excellence in Pain Education (CoEPEs). Each site was given the tasks of development, evaluation, integration, and promotion of pain management curriculum resources, including case studies that will be shared nationally. Collaborations among schools of medicine, dentistry, nursing, pharmacy, and others were encouraged. The John D. Loeser CoEPE is unique in that it represents extensive regionalization of health science education, in this case in the region covering the states of Washington, Wyoming, Alaska, Montana, and Idaho. This paper describes a blueprint of pain content and teaching methods across the University of Washington's 6 health sciences schools and provides recommendations for improvement in pain education at the prelicensure level. The Schools of Dentistry and Physician Assistant provide the highest percentage of total required curriculum hours devoted to pain compared with the Schools of Medicine, Nursing, Pharmacy, and Social Work. The findings confirm the paucity of pain content in health sciences curricula, missing International Association for the Study of Pain curriculum topics, and limited use of innovative teaching methods such as problem-based and team-based learning. Findings confirm the paucity of pain education across the health sciences curriculum in a CoEPE that serves a large region in the United States. The data provide a pain curriculum blueprint that can be used to recommend added pain content in health sciences programs across the country. Copyright © 2013. Published by Elsevier Inc.

  13. Applying accreditation standards in a self-evaluation process: The experience of Educational Development Center of Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    A Mirzazadeh

    2016-03-01

    Full Text Available Introduction: Educational Development Centers (EDCs, as the coordinator in education development in Medical Sciences universities, in order to improve their quality should evaluate their activities. In spite of remarkable performance of Tehran University of Medical Sciences (TUMS EDC in previous national rankings, but it faces many challenges and problems. This paper provided the process, results and lessons learned from a self-evaluation experience conducted at TUMS EDC based on accreditation standards. Method: The present study is an Institutional self-evaluation study based on the national accreditation standards of EDCs (2012. Data were gathered using an open-ended questionnaire developed on the basis of the SWOT format. A directional content analysis applied to analyze the data. Results: In total, 84 point of strengths, 87 weaknesses, 15 opportunities, 24 threats and also 99 recommendations for quality improvement were reported. The most important strengths of the center were the existence of an established mechanism regarding research process in education and scholarship of education, holding various faculty development courses and training standardized patient. The most important weaknesses were the lack of specified procedures in some areas such as monitoring the planning and reviewing of educational programs in the field of educational programs and evaluation of empowerment courses. Conclusion: The present evaluation results will be useful in directing future policies of TUMS EDC such as revising its strategic planning. We hope that the current experience can be helpful for administrators in EDCs in the Ministry of Health and Medical Education and also other Medical Sciences Universities.

  14. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Science.gov (United States)

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  15. Hierarchical Storage Management at the NASA Center for Computational Sciences: From UniTree to SAM-QFS

    Science.gov (United States)

    Salmon, Ellen; Tarshish, Adina; Palm, Nancy; Patel, Sanjay; Saletta, Marty; Vanderlan, Ed; Rouch, Mike; Burns, Lisa; Duffy, Daniel; Caine, Robert

    2004-01-01

    This paper presents the data management issues associated with a large center like the NCCS and how these issues are addressed. More specifically, the focus of this paper is on the recent transition from a legacy UniTree (Legato) system to a SAM-QFS (Sun) system. Therefore, this paper will describe the motivations, from both a hardware and software perspective, for migrating from one system to another. Coupled with the migration from UniTree into SAM-QFS, the complete mass storage environment was upgraded to provide high availability, redundancy, and enhanced performance. This paper will describe the resulting solution and lessons learned throughout the migration process.

  16. Exploring the Abyss. The Financial Crisis of 2008 ff. as a Central Topic of Problem-Centered Social Science Education

    Directory of Open Access Journals (Sweden)

    Thorsten Hippe

    2010-07-01

    Full Text Available The financial crisis of 2008 ff. and financial crises in general should be a central topic of social science education because these crises are a recurrent and therefore structural feature of modern capitalism which has severe consequences for citizens’ quality of life. Hence, the citizenry should know how to prevent such developments which endanger its well-being in a massive way. Therefore, learners should understand the relationship between the quality of people’s everyday lives and those economic institutions and political decisions which have led to the current mess. They should be enabled to critically evaluate the current misregulation of the financial sector and the economy in order to identify possible policy measures to prevent or at least to mitigate future crises. By educating (young citizens in this way, the (future general public can – as a necessary counterweight to the lobbyism of the finance industry – exert more prudent political pressure which gives politicians a greater incentive to regulate the financial sector and the economy in a manner which is beneficial for the vast majority of the people instead of for a small elite. Two core concepts of the social sciences can be used to make the roots of the seemingly complex topic more understandable for learners: liability and inequality.

  17. The Center for Environmental Kinetics Analysis: an NSF- and DOE-funded Environmental Molecular Science Institute (EMSI) at Penn State

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Brantley; William D. Burgos; Brian A. Dempsey; Peter J. Heaney; James D. Kubicki; Peter C. Lichtner; Bruce E. Logan; Carmen E. Martinez; Karl T. Mueller; Kwadwo A. Osseo-Asare; Ming Tien; Carl I. Steefel, Glenn A. Waychunas; and John M. Zachara

    2007-04-19

    Physicochemical and microbiological processes taking place at environmental interfaces influence natural processes as well as the transport and fate of environmental contaminants, the remediation of toxic chemicals, and the sequestration of anthropogenic CO2. A team of scientists and engineers has been assembled to develop and apply new experimental and computational techniques to expand our knowledge of environmental kinetics. We are also training a cohort of talented and diverse students to work on these complex problems at multiple length scales and to compile and synthesize the kinetic data. Development of the human resources capable of translating molecular-scale information into parameters that are applicable in real world, field-scale problems of environmental kinetics is a major and relatively unique objective of the Institute's efforts. The EMSI team is a partnership among 10 faculty at The Pennsylvania State University (funded by the National Science Foundation Divisions of Chemistry and Earth Sciences), one faculty member at Juniata College, one faculty member at the University of Florida, and four researchers drawn from Los Alamos National Laboratory, Pacific Northwest National Laboratory, and Lawrence Berkeley National Laboratory (funded by the Department of Energy Division of Environmental Remediation Sciences). Interactions among the applied and academic scientists drives research approaches aimed toward solving important problems of national interest. The Institute is organized into three interest groups (IGs) focusing on the processes of dissolution (DIG), precipitation (PIG), and microbial reactions at surfaces (BIG). Some of the research activity from each IG is highlighted to the right. The IGs interact with each other as each interest group studies reactions across the molecular, microscopic, mesoscopic and, in most cases, field scales. For example, abiotic dissolution and precipitation reactions of Fe oxides as studied in the Dissolution

  18. State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine» - research activities and scientific advance in 2015.

    Science.gov (United States)

    Bazyka, D; Sushko, V; Chumak, A; Buzunov, V; Talko, V; Yanovych, L

    2016-12-01

    Research activities and scientific advance achieved in 2014 at the State Institution «National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine» (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report.The report presents the results of fundamental and applied research works of the study of radiation effects and health effects of the Chornobyl accident; fulfillment of tasks of «State social program for improving safety, occupational health and working environment in 2014-2018 years».The report also shows the results of scientific organizational and health care work, staff training.The NRCRM Annual Report was approved at the Scientific Council meeting of NAMS on March 17, 2016. D. Bazyka, V. Sushko, A. Chumak, V. Buzunov, V. Talko, L. Yanovych.

  19. Development and implementation of an online screening application at the University of Texas Health Science Center at San Antonio Dental School.

    Science.gov (United States)

    Connor, Joseph P; Hendricson, William D; Guest, Gary F; Dodge, William W

    2010-11-01

    This article describes a quality improvement (QI) initiative that is in process at the University of Texas Health Science Center at San Antonio (UTHSCSA) Dental School and the website that grew out of this effort. The process of screening and assignment of patients was selected for improvement in 2006. QI methods were used to develop a website that improves access to care for patients and assists in the matching of patients and students. The website (www.dentalscreening.com) has received more than 15,000 screening applications in the period from May 2007 to January 2010 and has provided unprecedented insight into the needs of our patients. This article outlines the process by which the website was created, the rationale for the design, and the benefits of establishing a screening website for any dental school. The program was developed entirely at UTHSCSA, but it addresses a problem that may affect many dental schools.

  20. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    Science.gov (United States)

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  1. Ocular Stem Cell Research from Basic Science to Clinical Application: A Report from Zhongshan Ophthalmic Center Ocular Stem Cell Symposium

    Directory of Open Access Journals (Sweden)

    Hong Ouyang

    2016-03-01

    Full Text Available Stem cells hold promise for treating a wide variety of diseases, including degenerative disorders of the eye. The eye is an ideal organ for stem cell therapy because of its relative immunological privilege, surgical accessibility, and its being a self-contained system. The eye also has many potential target diseases amenable to stem cell-based treatment, such as corneal limbal stem cell deficiency, glaucoma, age-related macular degeneration (AMD, and retinitis pigmentosa (RP. Among them, AMD and glaucoma are the two most common diseases, affecting over 200 million people worldwide. Recent results on the clinical trial of retinal pigment epithelial (RPE cells from human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs in treating dry AMD and Stargardt’s disease in the US, Japan, England, and China have generated great excitement and hope. This marks the beginning of the ocular stem cell therapy era. The recent Zhongshan Ophthalmic Center Ocular Stem Cell Symposium discussed the potential applications of various stem cell types in stem cell-based therapies, drug discoveries and tissue engineering for treating ocular diseases.

  2. An Overview of the Materials Science Research at the Marshall Space Flight Center Electrostatic Levitator Facility and Recent CDDF Efforts

    Science.gov (United States)

    2003-01-01

    Containerless processing is an important tool for materials research. The freedom from a crucible allows processing of liquid materials in a metastable undercooled state, as well as allowing processing of high temperature and highly reactive melts. Electrostatic levitation (ESL) is a containerless method which provides a number of unique advantages, including the ability to process non-conducting materials, the ability to operate in ultra-high vacuum or at moderate gas pressure (approx. = 5 atm), and the decoupling of positioning force from sample heating. ESL also has the potential to reduce internal flow velocities below those possible with electromagnetic, acoustic, or aero-acoustic techniques. In electrostatic levitation, the acceleration of gravity (or residual acceleration in reduced gravity) is opposed by the action of an applied electric field on a charged sample. Microgravity allows electrostatic levitation to work even more effectively. The ESL facility at NASA s Marshall Space Flight Center is in use for materials research and thermophysical property measurement by a number of different internal and external investigators. Results from the recent CDDF studies on the high energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory will be presented. The Microgravity Research Program supports the facility.

  3. Bridging basic and clinical science with policy studies: The Partners with Transdisciplinary Tobacco Use Research Centers experience.

    Science.gov (United States)

    Kobus, Kimberly; Mermelstein, Robin

    2009-05-01

    The Partners with Transdisciplinary Tobacco Use Research Centers (TTURCs) initiative was a transdisciplinary team-building program, funded by the Robert Wood Johnson Foundation, to expand the policy research capacity of the TTURCs. EXPANSION INTO POLICY RESEARCh: Policy research activities at the TTURCs fell into four broad domains: (a) health services research, (b) examination of the business case for cessation treatment and funding, (c) collaborative teams with key stakeholders, and (d) direct assessment of smoking-related policies. Examples of each domain are presented. Goals of the initiative included efforts to foster collaborative, transdisciplinary research, to bring new investigators into the field, to develop programs of policy research, to answer next-step translational questions, and to enhance awareness of policy relevance. Success at meeting each of these goals is discussed. We offer recommendations for incorporating programs of policy research into full-spectrum transdisciplinary research initiatives, including the roles of research teams, senior researchers, infrastructure, stakeholders, and communications activities. The TTURC Partners initiative represented a first-generation effort to fill the gap between scientific discovery and research translation through expansion into policy studies. While all aspects of the effort were not equally successful, the effort demonstrated that it is possible to develop successful collaborations that extend more basic and applied research into studies that examine their policy and practice implications.

  4. Environmental health research recommendations from the Inter-Environmental Health Sciences Core Center Working Group on unconventional natural gas drilling operations.

    Science.gov (United States)

    Penning, Trevor M; Breysse, Patrick N; Gray, Kathleen; Howarth, Marilyn; Yan, Beizhan

    2014-11-01

    Unconventional natural gas drilling operations (UNGDO) (which include hydraulic fracturing and horizontal drilling) supply an energy source that is potentially cleaner than liquid or solid fossil fuels and may provide a route to energy independence. However, significant concerns have arisen due to the lack of research on the public health impact of UNGDO. Environmental Health Sciences Core Centers (EHSCCs), funded by the National Institute of Environmental Health Sciences (NIEHS), formed a working group to review the literature on the potential public health impact of UNGDO and to make recommendations for needed research. The Inter-EHSCC Working Group concluded that a potential for water and air pollution exists that might endanger public health, and that the social fabric of communities could be impacted by the rapid emergence of drilling operations. The working group recommends research to inform how potential risks could be mitigated. Research on exposure and health outcomes related to UNGDO is urgently needed, and community engagement is essential in the design of such studies.

  5. Integrating Place-based Science and Data into Hydrology and Geoscience Education Using the CUAHSI Water Data Center Resources

    Science.gov (United States)

    Arrigo, J. S.; Dalbotten, D. M.; Hooper, R. P.; Pollak, J.; Geosling, E.

    2014-12-01

    "All water is local." For geoscientist researchers and educators, this simple statement underlies potentially powerful ways to engage students around hydrologic and engineering concepts. Education research has given us strong insight into how students learn. Place-based education gives students a personal and geographical context to connect concepts and processes to their everyday lives. Data-driven exercises build inquiry and critical thinking skills. With the ubiquity of water, the critical roles it plays in earth systems, and its influence on ecosystems, climate, geologic processes, economies, and human health, integrating water data and place-based exercises into the classroom is an excellent opportunity to enhance student learning and stimulate interest in the geosciences. THE CUAHSI Water Data Center (WDC), established in 2013, is the culmination of a decade of work to adapt modern web services technology to work on time-series data (such as a gage record or water-quality series), the most common water data type. It provides unprecedented consolidated access to water quantity and quality data across the US (and increasingly across the world). This allows educators to craft learning exercises around key concepts and locations, from rote problem sets to more exploratory investigations. The web services technology used address key limitations - such as difficulty in discovering data, co-locating data, and download options and access- that have been identified as barriers to integrating real data in classroom exercises. This presentation discusses key aspects of the system, provides example exercises, and discusses how we seek to engage the community to effectively chart a path forward for further development of both the technological and education resources.

  6. ngVLA Key Science Goal 4: Using Pulsars in the Galactic Center as Fundamental Tests of Gravity

    Science.gov (United States)

    Bower, Geoffrey C.; Chatterjee, Shami; Cordes, James; Demorest, Paul; Dexter, Jason; Kramer, Michael; Lazio, Joseph; Ransom, Scott; Wharton, Robert; ngVLA Science Working Group 4

    2018-01-01

    Pulsars in the Galactic Center (GC) are important probes of general relativity (GR), star formation, stellar dynamics, stellar evolution, and the interstellar medium. A pulsar in orbit around the massive black hole in the GC, Sgr A*, has the power to provide a high-precision measurement of the black hole mass and spin in a unique regime of GR. It is sufficient to find and time a normal, slowly rotating pulsar in a reasonable orbit, in order to measure the mass of Sgr A* with a precision of 1 solar mass, to test the cosmic censorship conjecture to a precision of 0.1%, and to test the no-hair theorem to a precision of 1%. The pulsar population in the GC on scales from the inner parsec to the edge of the Central Molecular Zone (250 parsecs in diameter) can provide fresh insight into the complex processes at work in this region: the characteristic age distribution of the discovered pulsars will give insight into the star formation history; millisecond pulsars can be used as acceleratormeters to probe the local gravitational potential; the observed dispersion and scattering measures (and their variability) will allow us to probe the distribution, clumpiness and other properties of the central interstellar medium, including characterization of the central magnetic field using Faraday rotation. Proper motions of young pulsars can be used to point back to regions of recent star formation and/or supernova remnants.Despite years of searching, only a handful of pulsars in the central 0.5 degrees are known. This is likely the result of strong interstellar scattering along the line of sight, which broadens individual pulses to greater width than the pulse period. Scattering effects decline as wavelength to the fourth power, implying that we require observation at higher frequencies than are typical for typical pulsar searches. The characteristic steep spectrum of pulsars, however, implies the need for greater instrumental sensitivity at higher frequencies in order to detect and

  7. Evaluation Of Investments In Science, Technology And Innovation: Applying Scientific and Technical Human Capital Framework For Assessment of Doctoral Students In Cooperative Research Centers

    Science.gov (United States)

    Leonchuk, Olena

    other students' outcomes by employing data from a matched sample of S&E doctoral students trained at the Industry/University Cooperative Research Centers, I/UCRCs (N=173), and doctoral students from the same universities and disciplines who were trained more traditionally (N=87). Two exploratory path models demonstrate the important role of availability of network resources and proxy for mobilizing them on students' perceived career preparedness and satisfaction with their training. Study 2 is a case study of one I/UCRC's whole social network. The researcher attempts to provide a better understanding of the embeddedness components of students' social capital in their I/UCRC network. The case study has significant limitations in that findings cannot be generalized to the population of I/UCRC students. Nevertheless, findings are interesting for the one I/UCRC. The students scored significantly higher on preparedness when they had higher out-degree centrality, indicator of how much they reach out to other center's personnel. Also, a visual representation of the whole I/UCRC social network could be used to understand better students' embeddedness. Both studies show that social capital is a very hard concept to measure mainly because of its different dimensions. Nevertheless, they also show that social capital is a useful tool for comparing students' outcomes in different STI programs. A focus on students and social capital is one of the ways the S&T human capital model can be applied in evaluation of the STI programs. Such focus provides a considerable contrast to linear STI metrics that focus on long-term outcomes and often exclude students all together. It is important to provide information about the human side of science in its current state including students' graduate training, experiences and social networks. In addition, inclusion of students provides a view into the future - an opportunity to look at science of tomorrow as the same students will be part of the

  8. WASCAL - West African Science Service Center on Climate Change and Adapted Land Use Regional Climate Simulations and Land-Atmosphere Simulations for West Africa at DKRZ and elsewhere

    Science.gov (United States)

    Hamann, Ilse; Arnault, Joel; Bliefernicht, Jan; Klein, Cornelia; Heinzeller, Dominikus; Kunstmann, Harald

    2014-05-01

    Changing climate and hydro-meteorological boundary conditions are among the most severe challenges to Africa in the 21st century. In particular West Africa faces an urgent need to develop effective adaptation and mitigation strategies to cope with negative impacts on humans and environment due to climate change, increased hydro-meteorological variability and land use changes. To help meet these challenges, the German Federal Ministry of Education and Research (BMBF) started an initiative with institutions in Germany and West African countries to establish together a West African Science Service Center on Climate Change and Adapted Land Use (WASCAL). This activity is accompanied by an establishment of trans-boundary observation networks, an interdisciplinary core research program and graduate research programs on climate change and related issues for strengthening the analytical capabilities of the Science Service Center. A key research activity of the WASCAL Competence Center is the provision of regional climate simulations in a fine spatio-temporal resolution for the core research sites of WASCAL for the present and the near future. The climate information is needed for subsequent local climate impact studies in agriculture, water resources and further socio-economic sectors. The simulation experiments are performed using regional climate models such as COSMO-CLM, RegCM and WRF and statistical techniques for a further refinement of the projections. The core research sites of WASCAL are located in the Sudanian Savannah belt in Northern Ghana, Southern Burkina Faso and Northern Benin. The climate in this region is semi-arid with six rainy months. Due to the strong population growth in West Africa, many areas of the Sudanian Savannah have been already converted to farmland since the majority of the people are living directly or indirectly from the income produced in agriculture. The simulation experiments of the Competence Center and the Core Research Program are

  9. Fort Collins Science Center: Invasive Species Science

    Science.gov (United States)

    Stohlgren, Tom

    2004-01-01

    Invasive, non-native species of plants, animals, and disease organisms adversely affect the ecosystems they enter. Like "biological wildfires," they can quickly spread, and they affect nearly all terrestrial and aquatic ecosystems. Invasive species have become the greatest environmental challenge of the 21st century in terms of economic, environmental, and human health costs, with an estimated impact in the U.S. of over $138 billion per year. Managers of Department of the Interior and other public and private lands and waters rank invasive species as their top resource management problem.

  10. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    Science.gov (United States)

    Liu, Z.; Ostrenga, D.; Vollmer, B.; Kempler, S.; Deshong, B.; Greene, M.

    2015-01-01

    The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is also home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 17 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available: -Level-1 GPM Microwave Imager (GMI) and partner radiometer products, DPR products -Level-2 Goddard Profiling Algorithm (GPROF) GMI and partner products, DPR products -Level-3 daily and monthly products, DPR products -Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data version control and provenance; documentation; science support for proper data usage, FAQ, help desk; monitoring services (e.g. Current Conditions) for applications. The United User Interface (UUI) is the next step in the evolution of the GES DISC web site. It attempts to provide seamless access to data, information and services through a single interface without sending the user to different applications or URLs (e.g., search, access

  11. The Effect of Student-Centered Approaches on Students' Interest and Achievement in Science: Relevant Topic-Based, Open and Guided Inquiry-Based, and Discussion-Based Approaches

    Science.gov (United States)

    Kang, Jingoo; Keinonen, Tuula

    2017-04-01

    Since students have lost their interest in school science, several student-centered approaches, such as using topics that are relevant for students, inquiry-based learning, and discussion-based learning have been implemented to attract pupils into science. However, the effect of these approaches was usually measured in small-scale research, and thus, the large-scale evidence supporting student-centered approaches in general use is insufficient. Accordingly, this study aimed to investigate the effect of student-centered approaches on students' interest and achievement by analyzing a large-scale data set derived from Program for International Student Assessment (PISA) 2006, to add evidence for advocating these approaches in school science, and to generalize the effects on a large population. We used Finnish PISA 2006 data, which is the most recent data that measures science literacy and that contains relevant variables for the constructs of this study. As a consequence of the factor analyses, four teaching methods were grouped as student-centered approaches (relevant topic-based, open and guided inquiry-based, and discussion-based approaches in school science) from the Finnish PISA 2006 sample. The structural equation modeling result indicated that using topics relevant for students positively affected students' interest and achievement in science. Guided inquiry-based learning was also indicated as a strong positive predictor for students' achievement, and its effect was also positively associated with students' interest. On the other hand, open inquiry-based learning was indicated as a strong negative predictor for students' achievement, as was using discussion in school science. Implications and limitations of the study were discussed.

  12. Mine or Theirs, Where Do Users Go? A Comparison of E-Journal Usage at the OhioLINK Electronic Journal Center Platform versus the Elsevier ScienceDirect Platform

    Science.gov (United States)

    Swanson, Juleah

    2015-01-01

    This research provides librarians with a model for assessing and predicting which platforms patrons will use to access the same content, specifically comparing usage at the Ohio Library and Information Network (OhioLINK) Electronic Journal Center (EJC) and at Elsevier's ScienceDirect from 2007 to 2013. Findings show that in the earlier years, the…

  13. Partnership Brings Educational Exhibits, Events, and Resources from Seven National Research Laboratories to the Public in a New Retail Center: The Wonders of Science at Twenty Ninth Street Project

    Science.gov (United States)

    Foster, S. Q.; Johnson, R.; Carbone, L.; Vangundy, S.; Adams, L.; Becker, K.; Cobabe-Ammanns, E.; Curtis, L.; Dusenbery, P.; Foy, R.; Himes, C.; Howell, C.; Knight, C.; Morehouse, R.; Koch, L.; O'Brian, T.; Rooney, J.; Schassburger, P.

    2006-12-01

    Federally Funded Research and Development Centers and universities are challenged to disseminate their educational resources to national audiences, let alone to find ways to collaborate with each other while engaging with the schools and public in their local communities. A unique new partnership involving seven world renowned research laboratories and a commercial land developer in the Denver Metropolitan is celebrating the unveiling of exhibits, web kiosk portals, and public science education events in a shopping mall. The October 2006 opening of the Twenty Ninth Street retail sales center (formerly Crossroad Mall) in Boulder, Colorado, has revitalized 60 acres in the heart of the city. It offers outdoor plazas that accommodate science education installations and lab-sponsored public events. The goal of the partnership is to celebrate the long-standing contributions of research laboratories to the community, increase awareness of each institution's mission, and entice visitors of all ages to learn more about science, mathematics, engineering, technology and related educational opportunities and careers. We describe how the public is responding to the Wonders of Science at Twenty Ninth Street, summarize lessons learned about this ambitious science education collaboration, and plans to sustain public and the K-12 community interest into the future. Partners in the Wonders of Science at Twenty Ninth Street include the JILA at the University of Colorado, the National Center for Atmospheric Research, National Institute for Science and Technology, National Oceanic and Atmospheric Administration, National Renewable Energy Laboratory, the University of Colorado's Laboratory for Atmospheric and Space Physics, Space Science Institute, and Westcor, the shopping mall's developer.

  14. Overview of the SOFIA Data Processing System: A Generalized System for Manual and Automatic Data Processing at the SOFIA Science Center

    Science.gov (United States)

    Shuping, R. Y.; Krzaczek, R.; Vacca, W. D.; Charcos-Llorens, M.; Reach, W. T.; Alles, R.; Clarke, M.; Melchiorri, R.; Radomski, J.; Shenoy, S.; Sandel, D.; Omelian, E. B.

    2015-09-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is an airborne astronomical observatory comprised of a 2.5-meter telescope mounted in the aft section of a Boeing 747SP aircraft. During routine operations, several instruments will be available to the astronomical community including cameras and spectrographs in the near- to far-IR. Raw data obtained in-flight require a significant amount of processing to correct for background emission (from both the telescope and atmosphere), remove instrumental artifacts, correct for atmospheric absorption, and apply both wavelength and flux calibration. In general, this processing is highly specific to the instrument and telescope. In order to maximize the scientific output of the observatory, the SOFIA Science Center must provide these post-processed data sets to Guest Investigators in a timely manner. To meet this requirement, we have designed and built the SOFIA Data Processing System (DPS): an in-house set of tools and services that can be used in both automatic (“pipeline”) and manual modes to process data from a variety of instruments. Here we present an overview of the DPS concepts and architecture, as well as operational results from the first two SOFIA observing cycles (2013-2014).

  15. Knowledge of the Relationships between Oral Health, Diabetes, Body Mass Index and Lifestyle among Students at the Kuwait University Health Sciences Center, Kuwait.

    Science.gov (United States)

    Ali, Dena A

    2016-01-01

    To evaluate the level of knowledge regarding the relationships between oral health, diabetes, body mass index (BMI; obesity) and lifestyle among students of the Health Sciences Center (HSC), Kuwait, and to explore any possible correlation between students' oral health knowledge, BMI and lifestyle choices. A stratified random sample was proportionally selected according to the size of each faculty from the 1,799 students. The questionnaire was divided into 3 sections (i.e. demographics, evaluation of oral health knowledge in relation to diabetes, and evaluation of diabetes knowledge in relation to lifestyle) and distributed to 532 students. Oral health knowledge was categorized as limited, reasonable or knowledgeable. Lifestyle was classified as healthy or nonhealthy. The BMI was calculated as weight (kg) divided by the square of the height (m). ANOVA and χ2 tests were used to test for differences between independent variables. A Pearson correlation coefficient test was used to assess correlations. p students, 235 (47.3%) had a BMI within the normal range, 184 (37.0%) were pre-obese and 67 (13.5%) were obese. Of the 498 students, 244 (49%) had a healthy lifestyle. There was no correlation between oral health knowledge and the other variables; however, there was a correlation between lifestyle and obesity. In this study, the majority of the students had limited knowledge of oral health in association with diabetes and lifestyle. More than half of the students fell in the pre-obese/obese range. © 2015 S. Karger AG, Basel.

  16. Relationship Between Sleep Disorder and Pregnancy Depression in Primigravidae Referring to Health– Treatment Centers of Ahvaz Jundishapur University of Medical Sciences in 2010

    Directory of Open Access Journals (Sweden)

    ٍE Parsaie Rad

    2011-09-01

    Full Text Available Introduction: Sleep is an organized behavior which is repeated every day as a vital necessity, and based on biological rhythm. Sleep disorders are common problems in pregnancy that it seems to have emotional and psychological consequences in pregnant women. This study investigated the relationship between sleep disorders and depression during pregnancy among primigravidae. Methods: This cross-sectional, analytical study was conducted on 70 primigravidae with gestational age between 36 and 40 weeks, singleton without known disease. Subjects were selected by multi-stage sampling method in Health– Treatment centers of Ahvaz Jundishapour University of Medical Sciences. After filling demographic, Winefield & Tiggemann multidimensional support scale, ENRICH marital satisfaction scale and ISI questionnaires, subjects were classified into two groups: with and without sleep disorders. Then they were evaluated for depression by Beck questionnaire. Using SPSS(ver. 17, data was analyzed by T-test for quantitative variables, and chi square and Fisher test for qualitative variables, and Mann-Whitney test for ordinal variables. Results: Findings showed that the severity of sleep disorders is related to depression in pregnancy(p=0.01. There was a statistically significant relationship between difficulty falling asleep, sleep continuation, early awakening, and disruption of daily activities with depression during pregnancy(p= 0.03, 0.008, 0.03, and 0.001, respectively. Conclusion: With regard to the results, education about healthy sleep and suitable consultation during pregnancy is recommended in order to prevent mental complications and to achieve a safe pregnancy

  17. A Metric-Based System for Evaluating the Productivity of Preclinical Faculty at an Academic Medical Center in the Era of Clinical and Translational Science.

    Science.gov (United States)

    Wiegers, Susan E; Houser, Steven R; Pearson, Helen E; Untalan, Ann; Cheung, Joseph Y; Fisher, Susan G; Kaiser, Larry R; Feldman, Arthur M

    2015-08-01

    Academic medical centers are faced with increasing budgetary constraints due to a flat National Institutes of Health budget, lower reimbursements for clinical services, higher costs of technology including informatics and a changing competitive landscape. As such, institutional stakeholders are increasingly asking whether resources are allocated appropriately and whether there are objective methods for measuring faculty contributions and engagement. The complexities of translational research can be particularly challenging when trying to assess faculty contributions because of team science. For over a decade, we have used an objective scoring system called the Matrix to assess faculty productivity and engagement in four areas: research, education, scholarship, and administration or services. The Matrix was developed to be dynamic, quantitative, and able to insure that a fully engaged educator would have a Matrix score that was comparable to a fully engaged investigator. In this report, we present the Matrix in its current form in order to provide a well-tested objective system of performance evaluation for nonclinical faculty to help academic leaders in decision making. © 2015 Wiley Periodicals, Inc.

  18. Nuclear safety analyses and core design calculations to convert the Texas A & M University Nuclear Science Center reactor to low enrichment uranium fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.

    1995-03-02

    This project involved performing the nuclear design and safety analyses needed to modify the license issued by the Nuclear Regulatory Commission to allow operation of the Texas A& M University Nuclear Science Center Reactor (NSCR) with a core containing low enrichment uranium (LEU) fuel. The specific type of LEU fuel to be considered was the TRIGA 20-20 fuel produced by General Atomic. Computer codes for the neutronic analyses were provided by Argonne National Laboratory (ANL) and the assistance of William Woodruff of ANL in helping the NSCR staff to learn the proper use of the codes is gratefully acknowledged. The codes applied in the LEU analyses were WIMSd4/m, DIF3D, NCTRIGA and PARET. These codes allowed full three dimensional, temperature and burnup dependent calculations modelling the NSCR core to be performed for the first time. In addition, temperature coefficients of reactivity and pulsing calculations were carried out in-house, whereas in the past this modelling had been performed at General Atomic. In order to benchmark the newly acquired codes, modelling of the current NSCR core with highly enriched uranium fuel was also carried out. Calculated results were compared to both earlier licensing calculations and experimental data and the new methods were found to achieve excellent agreement with both. Therefore, even if an LEU core is never loaded at the NSCR, this project has resulted in a significant improvement in the nuclear safety analysis capabilities established and maintained at the NSCR.

  19. 110th anniversary of the birth of P A Cherenkov (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2014)

    Science.gov (United States)

    2015-05-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held on 17 December 2014 at the conference hall of the Lebedev Physical Institute, RAS, devoted to the 110th anniversary of the birth of Academician P A Cherenkov. The agenda posted on the website of the Physical Sciences Division RAS http://www.gpad.ac.ru comprised the following reports: (1) Bashmakov Yu A (Lebedev Physical Institute, RAS, Moscow) "Prehistory of discovery"; (2) Kadmensky S G (Voronezh State University, Voronezh) "Cherenkov radiation as a serendipity phenomenon"; (3) Denisov S P (Russian Federation State Scientific Center 'Institute for High Energy Physics' of National Research Center 'Kurchatov Institute', Protvino, Moscow region) "Use of Cherenkov counters in accelerator experiments"; (4) Petrukhin A A (National Research Nuclear University 'MEPhI', Moscow) "Cherenkov NEVOD water detector"; (5) Dremin I M (Lebedev Physical Institute, RAS, Moscow) "Cherenkov radiation from gluons in a nuclear medium"; (6) Domogatsky G V (Institute for Nuclear Research, RAS, Moscow) "Cherenkov detectors for high-energy neutrino astrophysics"; (7) Kravchenko E A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Cherenkov detectors with aerogel radiators"; (8) Malinovski E I (Institute for Nuclear Research, RAS, Moscow) "Cherenkov total absorption spectrometers for high-energy electrons and photons"; (9) Maltseva Yu I (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Distributed beam loss monitor based on the Cherenkov effect in an optical fiber". Papers based on oral reports 1-4, 6-9 are presented below. Some aspects of report 5 can be found in the review by I M Dremin and A V Leonidov published in 2010 in Physics-Uspekhi (Vol. 53, p. 1123). • Cherenkov radiation: from discovery to RICH, Yu A Bashmakov Physics-Uspekhi, 2015, Volume 58, Number 5, Pages 467-471 • Cherenkov radiation as a serendipitous phenomenon, S G Kadmensky Physics

  20. Collaborative Center of Control Science

    Science.gov (United States)

    2007-01-01

    CCCS Final Review assistance • Resources : – Final Performance Report (leveraged funding, papers, etc.), Appendix: Slides of talks – Paper e-archive...workforce objectives ( STW - 21) 4. Leveraging / synergies with other programs Main Objectives CCCS Executive Board (2006) • Dr. Don Paul, Chief Scientist...Synergies (samples) • DARPA MICA Program: Strategies for Human- Automaton Resource Entity Deployment (SHARED), J. Cruz, PI, $2.4M • NASA Goddard: Solar

  1. Center for Electrochemical Energy Science

    Data.gov (United States)

    Federal Laboratory Consortium — CEES Mission: To understand and control the molecular-scale reactivity of electrified oxide interfaces, films and materials that ultimately limits the performance of...

  2. Center for Prostate Disease Research

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Prostate Disease Research is the only free-standing prostate cancer research center in the U.S. This 20,000 square foot state-of-the-art basic science...

  3. National Center for Biotechnology Information

    Science.gov (United States)

    ... to NCBI Sign Out NCBI National Center for Biotechnology Information Search database All Databases Assembly Biocollections BioProject ... Search Welcome to NCBI The National Center for Biotechnology Information advances science and health by providing access ...

  4. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    Science.gov (United States)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  5. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  6. [Opinion of undergraduate health sciences students towards ethical issues related to HIV-positive persons in schools, workplaces and health centers].

    Science.gov (United States)

    Apellaniz, Alfonso; Manzanaro, Ricardo

    2012-01-01

    To describe the opinion of undergraduate health sciences students in the Basque Country universities (UPV/EHU) regarding ethical issues related to HIV-positive persons in schools, workplaces and health centers. Our population consisted of medical, nursing and dental undergraduate students attending UPV/EHU. An opinion survey was conducted among students attending lectures, on a randomly selected date in 2002-2003. The questionnaire included several items on ethical conflicts related to HIV-positive persons in different settings. Item responses consisted of a Likert-type scale with five possible levels of agreement (from "strongly disagree" to "strongly agree"), as well as the option "I do not want to answer/I have no opinion about this". 529 completed questionnaires were collected. 69% of respondents reported total disagreement with refusing to admit HIV+ students to primary schools, and 77% with dismissal of HIV+ workers. Approximately 90% of respondents felt managers should be aware of the HIV+ status of their employees. 78% of the students did not report disagreement with having HIV+ schoolmates in classrooms. Respondents generally disagreed with employment limitations for HIV+ health care workers, 60% strongly disagreed with health workers refusing to treat HIV+ persons, 69% considered that HIV testing should be compulsory for health workers, and 55% that health workers should know their patients' HIV status. In general terms, our students are against social and employment limitations targeting HIV+ persons, but favor disclosure of HIV status in schools and health centres. Copyright belongs to the Societat Catalana de Seguretat i Medicina del Treball.

  7. Reviewing the parental standpoint about origin of the dental fear in children referred to dentistry centers of Isfahan University of Medical Sciences.

    Science.gov (United States)

    Jafarzadeh, Mehdi; Keshani, Fatemeh; Ghazavi, Zahra; Keshani, Foruz

    2011-01-01

    Dental fear leads to lack of child cooperation. In general, without the patient's cooperation, success in remedy is impossible. This study aimed to evaluate parental view about the origins of the dental fear in children as well as their view about factors contributing to the prevention of child dental fear. This was a cross sectional descriptive and analytical study which was carried out on 200 parents of children aged 6-12 years referred to dentistry center of Isfahan University of Medical Sciences. The level of dental fear in these children was screened using Children's Fear Survey Schedule - Dental Subscale (CFSS-DS). This questionnaire consisted of 15 questions and each question had a 5-point Likert-type Scale. Total scores ranged from 15 to 75. Based on the scores, children were divided into two groups: Group with low fear (score of 25 or less) and group with high fear (score of 37 or more). The parents were asked about the causes of their child's dental fear. There was an inverse significant correlation between the average score of fear and the age of the children. In the group with high fear, most of the parents (31%) had chosen previous dental experiences as the cause of their child's fear. There was no significant relationship between parental belief and their gender, the level of education, the level of their own dental fear and the child's age and fear score. According to the parent's standpoint, previous dental experience was a major factor in the development of childhood dental fear. Temperamental factors also played a major role in some of the fearful children. Most of the parents in group with high fear attributed their child's fear to the external factors and seemed they were unable to control and prevent it. Therefore, more attention should be given to the behavior and attitude of the parents as well as dentists in the future researches.

  8. Reviewing the parental standpoint about origin of the dental fear in children referred to dentistry centers of Isfahan University of Medical Sciences

    Science.gov (United States)

    Jafarzadeh, Mehdi; Keshani, Fatemeh; Ghazavi, Zahra; Keshani, Foruz

    2011-01-01

    BACKGROUND: Dental fear leads to lack of child cooperation. In general, without the patient's cooperation, success in remedy is impossible. This study aimed to evaluate parental view about the origins of the dental fear in children as well as their view about factors contributing to the prevention of child dental fear. METHODS: This was a cross sectional descriptive and analytical study which was carried out on 200 parents of children aged 6-12 years referred to dentistry center of Isfahan University of Medical Sciences. The level of dental fear in these children was screened using Children's Fear Survey Schedule - Dental Subscale (CFSS-DS). This questionnaire consisted of 15 questions and each question had a 5-point Likert-type Scale. Total scores ranged from 15 to 75. Based on the scores, children were divided into two groups: Group with low fear (score of 25 or less) and group with high fear (score of 37 or more). The parents were asked about the causes of their child's dental fear. RESULTS: There was an inverse significant correlation between the average score of fear and the age of the children. In the group with high fear, most of the parents (31%) had chosen previous dental experiences as the cause of their child's fear. There was no significant relationship between parental belief and their gender, the level of education, the level of their own dental fear and the child's age and fear score. CONCLUSIONS: According to the parent's standpoint, previous dental experience was a major factor in the development of childhood dental fear. Temperamental factors also played a major role in some of the fearful children. Most of the parents in group with high fear attributed their child's fear to the external factors and seemed they were unable to control and prevent it. Therefore, more attention should be given to the behavior and attitude of the parents as well as dentists in the future researches. PMID:22039391

  9. Viewpoint: A challenge to academic health centers and the National Institutes of Health to prevent unintended gender bias in the selection of clinical and translational science award leaders.

    Science.gov (United States)

    Carnes, Molly; Bland, Carole

    2007-02-01

    In controlled studies, both men and women preferentially select men over women for leadership positions, even when credentials are identical and despite field studies demonstrating women's equivalent or slightly better leadership effectiveness. The assumption that men will make better leaders than women is attributed to the pervasive existence of unconscious stereotypes that characterize both men and leaders as agentic or action oriented and women as dependent. The Clinical and Translational Science Award (CTSA) from the National Institutes of Health (NIH) Roadmap is a novel, prestigious award that will place considerable power in the hands of one principal investigator-conditions that predict activation of bias in favor of selecting male leaders. The authors review research supporting this assertion. To mitigate the impact of this bias and broaden the pool of potential leaders for this transformative initiative, the authors offer the following suggestions. To academic health centers they suggest (1) internal search committees comprised of at least 35% women that establish a priori the desired qualities for the CTSA leader and broadly solicit applicants, (2) explicit specification of the full range of desirable skills of a CTSA leader, and (3) systematic efforts to increase awareness of the negative impact of unconscious gender bias on women's advancement. To the NIH they suggest (1) the new multiple principal investigator rule for the CTSA program, (2) a statement in the request for applications (RFA) encouraging diversity among principal investigators, (3) repetition in the RFA of the public NIH statement of the importance of work life balance for young investigators, and (4) constitution of study sections with at least 35% women.

  10. Collaboration Platforms in China for Translational and Clinical Research: The Partnership Between Peking University Health Science Center and the University of Michigan Medical School.

    Science.gov (United States)

    Kolars, Joseph C; Fang, Weigang; Zheng, Kai; Huang, Amy Y; Sun, Qiudan; Wang, Yanfang; Woolliscroft, James O; Ke, Yang

    2017-03-01

    Clinical and translational research is increasing in China, attracting faculty-to-faculty collaborations between U.S. and Chinese researchers. However, examples of successful institution-to-institution collaborations to facilitate this research are limited. The authors describe a partnership between Peking University Health Science Center (PUHSC) and the University of Michigan Medical School (UMMS) designed to enable faculty-initiated joint translational and clinical research projects. In 2009, UMMS leadership identified PUHSC as the most appropriate institutional partner, and the Joint Institute for Translational and Clinical Research was established in 2010. Each contributed $7 million for joint research projects in areas of mutual interest. A shared governance structure, four thematic programs (pulmonary, cardiovascular, liver, and renal diseases), three joint research-enabling cores, and processes for awarding funding have been established along with methods for collaborating and mechanisms to share data and biomaterials. As of November 2015, 52 joint faculty proposals have been submitted, and 25 have been funded. These projects have involved more than 100,000 patients in the United States and China and have generated 13 peer-reviewed publications. Pilot data have been leveraged to secure $3.3 million of U.S. extramural funding. Faculty and trainee exchanges take place regularly (including an annual symposium), and mechanisms exist to link faculty seeking collaborations. Critical determinants of success include having co-ownership at all levels with coinvestment of resources. Each institution is committed to continuing its support with a repeat $7 million investment. Next steps include initiating studies in new clinical areas and pursuing large clinical intervention trials.

  11. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  12. State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" - research activities and scientific advance in 2014.

    Science.gov (United States)

    Bazyka, D; Sushko, V; Chumak, A; Buzunov, V; Talko, V; Yanovich, L

    2015-12-01

    Research activities and scientific advance achieved in 2014 at the State Institution "National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine" (NRCRM) concerning medical problems of the Chornobyl disaster, radiation medicine, radiobiology, radiation hygiene and epidemiology in collaboration with the WHO network of medical preparedness and assistance in radiation accidents are outlined in the annual report.Epidemiological cohort studies found increased incidence (1990-2012 gg.) of thyroid cancer in victims of Chernobyl accident (liquidators - in 4.6 times, evacuated - in 4.0 times, residents of contaminated areas - in 1.3 times) and increased incidence of breast cancer in female workers of 1986-1987. (in the 1994-2012 biennium. SIR = 160,0%, 95% CI: 142,4-177,6). Retrospective studies of thyroid cancer ("case control") in cohorts and 152 thousand of liquidators were continued together with the US National Cancer Institute. Radiation risks of multiple myeloma and chronic lymphocytic leukemia were found.Molecular effects of remote period after radiation exposure include changes in gene expression TERF1, TERF2, CCND1, telomere length, the protein expression of cyclin D1, histone gamma H2AX. An association of molecular changes with cognitive deficits were defined. Genetic polymorphisms of rs2981582 gene FGFR2, rs12443621 gene TNRC9, rs3817198 gene LSP1, rs3803662 gene TNRC9, rs889312 gene MAP3K1 and their association with breast can cer were studied; the expression by tumor cells of estrogen and progesterone receptor, antigens of c kit, cytoker atins 5/6, TP53 and ki67, amplification status of the gene Her2 / neu, mutation status of the genes BRCA1 (muta tions 185delAG and 5382insC) and BRCA2 (mutation 6174delT) were studied. The possibility of persistence of radi ation modified hidden chromosomal instability in consecutive generations of human somatic cells was proven.The status of reproductive function and peculiarities

  13. Bridging the Divide Between Climate and Global Change Science and Education of Public and K-12 Visitors at the National Center for Atmospheric Research

    Science.gov (United States)

    Foster, S. Q.; Johnson, R. M.; Carbone, L.; Munoz, R.; Eastburn, T.; Ammann, C.; Lu, G.; Richmond, A.; Committee, S.

    2004-12-01

    The study of climate and global change is an important on-going focus for scientists at the National Center for Atmospheric Research (NCAR). Programs overseen by the University Corporation for Atmospheric Research Office of Education and Outreach (UCAR-EO) help to translate NCAR's scientific programs, methodologies, and technologies and their societal benefits to over 80,000 visitors to the NCAR Mesa Laboratory each year, including about 10,000 K-12 students. This is currently accomplished through the implementation of an increasingly integrated system of exhibits, guided tours, an audiotour, programs for school groups, and a teachers' guide to the exhibits, which is currently in development. The Climate Discovery Exhibit unveiled in July 2003 and expanded in 2004 offers visitors visually engaging and informative text panels, graphics, artifacts, and interactives describing Sun-Earth connections, dynamic processes that contribute to and mediate climate change, and the Earth's climate history. The exhibit seeks to help visitors to understand why scientists model the global climate system and how information about past and current climate is used to validate models and build scenarios for Earth's future climate. Exhibit-viewers are challenged to ask questions and reflect upon decision making challenges while considering the roles various natural and human-induced factors play in shaping these predictions. With support from NASA and NCAR, a K-12 Teacher's Guide has been developed corresponding the Climate Discovery exhibit's sections addressing the Sun-Earth connection and past climates (the Little Ice Age, in particular). This presentation will review efforts to identify the challenges of communicating with the public and school groups about climate change, while also describing several successful strategies for utilizing visitor questionnaires and interviews to learn how to develop and refine educational resources that will target their interests, bolster their

  14. Dive and Explore: An Interactive Exhibit That Simulates Making an ROV Dive to a Submarine Volcano, Hatfield Marine Science Visitor Center, Newport, Oregon

    Science.gov (United States)

    Weiland, C.; Chadwick, W. W.; Hanshumaker, W.; Osis, V.; Hamilton, C.

    2002-12-01

    We have created a new interactive exhibit in which the user can sit down and simulate that they are making a dive to the seafloor with the remotely operated vehicle (ROV) named ROPOS. The exhibit immerses the user in an interactive experience that is naturally fun but also educational. This new public display is located at the Hatfield Marine Science Visitor Center in Newport, Oregon. The exhibit is designed to look like the real ROPOS control console and includes three video monitors, a PC, a DVD player, an overhead speaker, graphic panels, buttons, lights, dials, and a seat in front of a joystick. The dives are based on real seafloor settings at Axial seamount, an active submarine volcano on the Juan de Fuca Ridge (NE Pacific) that is also the location of a seafloor observatory called NeMO. The user can choose between 1 of 3 different dives sites in the caldera of Axial Volcano. Once a dive is chosen, then the user watches ROPOS being deployed and then arrives into a 3-D computer-generated seafloor environment that is based on the real world but is easier to visualize and navigate. Once on the bottom, the user is placed within a 360 degree panorama and can look in all directions by manipulating the joystick. By clicking on markers embedded in the scene, the user can then either move to other panorama locations via movies that travel through the 3-D virtual environment, or they can play video clips from actual ROPOS dives specifically related to that scene. Audio accompanying the video clips informs the user where they are going or what they are looking at. After the user is finished exploring the dive site they end the dive by leaving the bottom and watching the ROV being recovered onto the ship at the surface. The user can then choose a different dive or make the same dive again. Within the three simulated dives there are a total of 6 arrival and departure movies, 7 seafloor panoramas, 12 travel movies, and 23 ROPOS video clips. The exhibit software was created

  15. Hispanic Participation among Bachelor's in Physical Sciences and Engineering: Results from 2002-2012 Data of the National Center for Education Statistics. Focus On

    Science.gov (United States)

    Merner, Laura

    2014-01-01

    This report examines the representation of Hispanics among bachelor's degree recipients in the physical sciences and engineering in the US. Hispanics have been increasing their representation across the physical sciences and engineering at an outstanding rate. More broadly, from 2002-2012 there has been a significant increase in…

  16. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran 1985713834, Iran; Eye Research Center, Farabi Hospital, Tehran University of Medical Sciences, Tehran 1336616351, Iran; Department of Pathology, Farabi Hospital, Tehran University of Medical Sciences, Tehran 1336616351, ...

  17. INFINITY at NASA Stennis Space Center

    Science.gov (United States)

    2010-01-01

    Flags are planted on the roof of the new INFINITY at NASA Stennis Space Center facility under construction just west of the Mississippi Welcome Center at exit 2 on Interstate 10. Stennis and community leaders celebrated the 'topping out' of the new science center Nov. 17, marking a construction milestone for the center. The 72,000-square-foot science and education center will feature space and Earth galleries to showcase the science that underpins the missions of the agencies at Stennis Space Center. The center is targeted to open in 2012.

  18. The GEMSIS-Magnetosphere project: New models of the inner magnetosphere to investigate high-energy particle variation and the ERG science center

    Science.gov (United States)

    Seki, K.; Miyoshi, Y.; Amano, T.; Saito, S.; Miyashita, Y.; Matsumoto, Y.; Umeda, T.; Ebihara, Y.

    2010-12-01

    enhancement of the solar wind dynamic pressure. Isolated electrons outside of the split have a narrow pitch angle distribution around 90° and are confined to a narrow range of the L shell. The existence of the isolated electrons depends on the large geomagnetic tilt angle. It indicates that the split can be seen during summer and winter after MPS occurs. We suggest that this split in the outer radiation belt during summer and winter is evidence that MPS actually causes the loss of the outer radiation belt. Another important task of the GEMSIS project is contribution to the ERG science center that facilitates the close collaboration between the satellite, ground-based observation, and theory/simulation/modeling for geospace studies by providing integrated data analysis tools and combined database. In this presentation, we report on some of recent studies and activities from the GEMSIS-Magnetosphere project with an emphasis on the models of the ring current and radiation belt.

  19. The International Science and Technology Center (ISTC) - Fifteen-Year Experience in Management of Innovative Nuclear and Other Programs (Information Review)

    Energy Technology Data Exchange (ETDEWEB)

    Gudowski, W.; Tocheny, L.V. [ISTC - International Science and Technology Center, Krasnoproletarskaya 32-34, PO Box 20, 127473 Moscow (Russian Federation)

    2009-06-15

    Introduction: The ISTC is a unique international organization created in Moscow in 1994 by Russia, USA, EU and Japan. Later Korea and Canada, and several CIS countries as well acceded to ISTC. The basic idea behind establishing the ISTC was to support non-proliferation of the mass destruction weapons technologies by redirecting former Soviet weapons scientists to peaceful research thus preventing the drain of dangerous knowledge and expertise from Russia and other CIS countries. Presently, the ISTC now has 40 member countries (27 from EU), representing the CIS, Europe, Asia, and North America. The Partner list includes over 200 organizations and leading industrial companies from all ISTC parties. Numerous science and technology projects were realized with the ISTC support in different areas, from bio-technologies and environmental problems to all aspects of nuclear studies, including those focused on the development of effective innovative concepts and technologies in the nuclear field, in general, and for improvement of nuclear safety, in particular. Concept: Challenge of the World Nuclear Community is to prove to Public over the World, that newly proposed nuclear concepts are safe and effective. The only acceptable method, which is trusted and accepted by Public both now and always, is basic-type and demonstration-type Experiment, in advance of computer or paper-type arguing. Important that results of these experiments are to be available for international analysis and validation. Problems are that nuclear experiments are very complex, its require special licensing, long time preparation, appealing to high-skilled personnel, purchasing by nuclear and special materials and tools, as a result - raised budgeting. In this sense the ISTC clients (first of all - nuclear and 'nuclear weapon' institutes in Russia and CIS) have all set, ready, licensed, and equipped unique nuclear installations, high-skilled personnel, good cooperation. Essential, that the ISTC

  20. Research center Juelich to install Germany's most powerful supercomputer new IBM System for science and research will achieve 5.8 trillion computations per second

    CERN Multimedia

    2002-01-01

    "The Research Center Juelich, Germany, and IBM today announced that they have signed a contract for the delivery and installation of a new IBM supercomputer at the Central Institute for Applied Mathematics" (1/2 page).

  1. Ideology and International Relations: Russian View. Interview with Academician, Doctor of Historical Sciences, Professor, Director of Center of The Situational Analysis at RAS V.G. Baranovskiy

    Directory of Open Access Journals (Sweden)

    M A Nikulin

    2017-12-01

    Full Text Available Vladimir G. Baranovskiy is one of the leading specialists in the field of international relations in Russia. He was born on December 30, 1950 in Moscow. In 1972 he graduated from the Moscow Institute of World Economy and International Relations of the USSR Ministry of Foreign Affairs. In 1973-1976 he studied at the graduate school of the Institute of World Economy and International Relations (IMEMO of the USSR Academy of Sciences. Since 1976 he works in the structure of the IMEMO Academy of Sciences of the USSR. In 1982-1988 - Head of the International Security Sector of the IMEMO Academy of Sciences of the USSR. In 1986he defended his doctoral thesis on “The European Community in the System of International Relations”. In 1988-1992 - Head of the Department of Western European Studies, IMEMO USSR Academy of Sciences (IMEMO RAS. In 1992-1998 he was the chief research fellow at IMEMO RAS. In 1992-1996 he led the project at the Stockholm International Peace Research Institute (SIPRI. Since 1998 - deputy director of IMEMO RAS. Since 2005 - Professor of the Department of International Relations and Foreign Policy of the Moscow State Institute of International Relations. Since 2011 - full member of the Russian Academy of Sciences. In his interview, V. G. Baranovsky talks about ethics and morality in international relations, multipolarity and the role of ideology in foreign policy.

  2. National Science Resources Center Project to Improve Science Teaching in Elementary Schools with Special Emphasis on Department of Defense Dependents Schools and Other Schools Serving Children of Military Personnel

    Science.gov (United States)

    1992-10-01

    assessment of science learning, and scientists and engineers engaged in projects to improve science education in the schools. On the closing day, conferees...and adult stages 97-2703 Student Aentiit> Book .. $2.50 are also obstir’s ec. w~ith close attention gisen it) develop- EPR~~SWT L~T mernt. anatom\\ý... terrarium containing plants, soil, and live insects and an aquarium containing plants, snails, and guppies. After studying these environments, they

  3. Study of Healthcare Service Recipients\\' Perceptions Regarding Observance of Patient Privacy and Medical Confidentiality in Teaching Healthcare Centers Affiliated with the Qom University of Medical Sciences in 2015-2016, Iran

    Directory of Open Access Journals (Sweden)

    Hamidreza Ardalan

    2017-06-01

    Full Text Available Background and Objectives: Medical confidentiality and maintenance of patient personal privacy are considered two important moral obligations in medical ethics with a long history in medicine. To be efficient, a healthcare system needs active participation of and appropriate cooperation between the recipients and providers of healthcare services. This study was conducted to investigate healthcare service recipients' perceptions regarding observance of patient privacy and medical confidentiality in teaching healthcare centers affiliated with the Qom University of Medical Sciences. Methods: In this cross-sectional (descriptive-analytical study that was conducted in 2015-2016, 380 patients referred to teaching healthcare centers affiliated with the Qom University of Medical Sciences were enrolled according to randomized sampling. Data were gathered by a researcher-developed questionnaire according to Patient Rights Charter and analyzed by descriptive and nonparametric statistics test in SPSS 16. Results: Patient privacy and confidentiality were not observed from the perspectives of 26.3% of them, partly observed from the perspectives of 50%, and fully observed from the perspectives of 23.7%. Alongside observance of patient privacy, the most important item, from the healthcare service recipients' perspectives, was observance of client orientation, which was observed from the perspectives of 24.5% of them, partly observed from the perspectives of 50.4%, and not observed from the perspectives of 25.1%. Conclusion: From half of the patients' perspectives in the healthcare centers affiliated with the Qom University of Medical Sciences, patient privacy and medical confidentiality were partly observed. Therefore, the authorities can take necessary steps to set priorities and appropriately plan for improving observance of the patient privacy and medical confidentiality as well as to respect the patients' territory and rights in all areas, especially

  4. How NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying government, private, public and academic communities' driven requirements.

    Science.gov (United States)

    Tisdale, M.

    2016-12-01

    NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying government, private, public and academic communities' driven requirements. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), OGC Web Coverage Services (WCS) and leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams and ASDC are utilizing these services, developing applications using the Web AppBuilder for ArcGIS and ArcGIS API for Javascript, and evaluating restructuring their data production and access scripts within the ArcGIS Python Toolbox framework and Geoprocessing service environment. These capabilities yield a greater usage and exposure of ASDC data holdings and provide improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry.

  5. Quels espaces pour faciliter les apprentissages et la recherche en bibliothèque universitaire ? Retour de 5 ans d'expérience en Bibliothèque et learning center des sciences et technologies.

    OpenAIRE

    Brodkom, Frédéric; Forum pédagogique du pôle hainuyer "Ouverture et diversité des espaces d'apprentissage dans l'enseignement supérieur : quelles approches pédagogiques pour un apprentissage centré sur l'étudiant"

    2017-01-01

    Depuis son installation en septembre 2014 à l'UCL, la nouvelle bibliothèque et learning center des sciences et technologies développe la qualité de ses espaces et services au bénéfice des apprentissages et la recherche. Cette présentation montre les étapes du projet et des enquêtes particulières qui ont été menées pour répondre aux besoins des utilisateurs. La diversité des usages du learning center et l'ouverture à toutes les situations d'étude, de travail et d'apprentissage sont les réponse...

  6. Effects of a science center outreach lab on school students' achievement - Are student lab visits needed when they teach what students can learn at school?

    NARCIS (Netherlands)

    Itzek-Greulich, Heike; Flunger, Barbara; Vollmer, Christian; Nagengast, Benjamin; Rehm, Markus; Trautwein, Ulrich

    2015-01-01

    This study examined the effectiveness of labwork settings in science education with a pretest-posttest design. Sixty-eight ninth-grade classes (N=1773) were randomly assigned to three experimental conditions and a control condition. The first condition was taught the topic of the chemistry of starch

  7. Advancing Public Health Using Regulatory Science to Enhance Development and Regulation of Medical Products: Food and Drug Administration Research at the Center for Biologics Evaluation and Research.

    Science.gov (United States)

    Kusinitz, Marc; Braunstein, Emily; Wilson, Carolyn A

    2017-01-01

    Center for Biologics Evaluation and Research enhances and supports regulatory decision-making and policy development. This work contributes to our regulatory mission, advances medical product development, and supports Food and Drug Administration's regulatory response to public health crises. This review presents some examples of our diverse scientific work undertaken in recent years to support our regulatory and public health mission.

  8. Scientific, technical and economic information center for the coal industry - 30 years of success in developing science and technology in the coal sector

    Energy Technology Data Exchange (ETDEWEB)

    Nemcova, A.; Bruskova, P. (PKD, Ostrava (Czechoslovakia). Rozvoj a Projektovani)

    1990-06-01

    Summarizes the 30-year history of the Center, including introduction of its first automated information system in 1969 and the organization's own suite of AUTIS programs introduced in 1979 and which now run on IBM 4331 and 4361 computers. The Center is responsible for coordinating acquisition of foreign literature, access to foreign data bases, international cooperation within the Informugol' system, AUTIS coal data base management, analytical information processing, publications and systems control. Its structure includes a directorate with secretariat, a technical library, an analysis section, an analytical information section, a publications section and a development section. The Center's publications include 4 periodicals and 5 occasional series covering many aspects of the coal industry. Briefly describes some products manufactured by Rohde and Schwarz of the FRG, with whom the Center has had a long association; these include the CMS 52 communications tester, ZWOB 6 polyscope, EZM spectrum monitor, FSAC spectrum analyzer, PSA 5 control computer, SMGU and GMHU signal generators and TIF video/timing analyzer.

  9. Student Center Activities Aligned to the Common Core State Standards in English Language Arts and Literacy in History/Social Studies, Science, and Technical Subjects K-5

    Science.gov (United States)

    Verhagen, Connie

    2012-01-01

    This publication helps educators create differentiated reading instruction experiences for their students by showing the relationship between two distinct resources: Student Center Activities (SCAs) and the Common Core State Standards (CCSSs). Reading specialists, reading coaches, and teachers will find this document useful in lesson planning, as…

  10. Student-Centered Pedagogy and Real-World Research: Using Documents as Sources of Data in Teaching Social Science Skills and Methods

    Science.gov (United States)

    Peyrefitte, Magali; Lazar, Gillian

    2018-01-01

    This teaching note describes the design and implementation of an activity in a 90-minute teaching session that was developed to introduce a diverse cohort of first-year criminology and sociology students to the use of documents as sources of data. This approach was contextualized in real-world research through scaffolded, student-centered tasks…

  11. Center for Infrastructure Defense

    OpenAIRE

    2013-01-01

    Includes an image of the main page on this date and compressed file containing additional web pages. The Center for Infrastructure Defense (CID) focuses on the continued operation of critical military and civilian infrastructure in the presence of accident, failure, and attack. Operations Research (OR) Department in the Graduate School of Operational and Information Sciences at the Naval Postgraduate School.

  12. Nicolaus Copernicus Astronomical Center

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Nicolaus Copernicus Astronomical Center is the largest astronomical institution in Poland, located in Warsaw and founded in 1956. At present it is a government-funded research institute supervised by the Polish Academy of Sciences and licensed by the government of Poland to award PhD and doctor habilitatus degrees in astronomy and astrophysics. In September 1999 staff included 21 senior scientist...

  13. Scientific project, Sciences Po | LIEPP laboratoire interdisciplinaire d'evaluation des politiques publiques or in english, interdisciplinary research center for the evaluation of public policies

    OpenAIRE

    Wasmer, Etienne; Woll, Cornelia

    2011-01-01

    Sciences Po develops an interdisciplinary research program for the evaluation of public policies (in French: Laboratoire interdisciplinaire d’évaluation des politiques publiques, LIEPP), based on four founding units: Department of Economics, Centre de Sociologie des Organisations, Centre d’Etudes Européennes and Observatoire Sociologique du Changement. Its aim is to be (1) independent and non-partisan to ensure its credibility, (2) international to learn from experiences in other countries, a...

  14. The Relationship between Religious Attitudes and Psychological Well-being of Nurses Working in Health Centers in Qom University of Medical Sciences in 2014

    OpenAIRE

    Tahmineh Dadkhah Tehrani; Nafiseh Habibian; Reza Ahmadi

    2016-01-01

    Background and Objectives: Nurses are the most important group who provide health system services. They may face with various stresses related to their job that may cause physiological problems. Many factors can influence their psychological health. With this in mind, the current study aimed to examine the relationship between religious attitude with psychological well-being in nurses working in Qom University of Medical Sciences. Methods: The data were collected by means of three questionnai...

  15. OPPORTUNITIES OF EXERCISING THE ROLE OF AN ACTIVE STUDENT AS A PREMISE OF STUDENT-CENTERED EDUCATION IN THE ECONOMIC SCIENCES FACULTY OF THE UNIVERSITY OF ORADEA

    Directory of Open Access Journals (Sweden)

    Rosca Remus Dorel

    2014-07-01

    The ideas presented in this paper are to represent a part of a good practice guide on implementing student-centered education within a high educational institution. The concern for this concept is determined by the current context of the high educational system in Romania characterized by: the intensification of the competitive environment; increasing employers’ demands; increasing high school graduates and students’ demands towards the quality offered by a high educational institution; the performance indicators used by ARACIS in the evaluation of the universities, a very relevant example being the graduates’ professional route in the labour field. We are convinced that the ideas presented in this paper are important to the decision factors from the academic environment, factors that should initiate and facilitate the implementation of the student- centered education concept.

  16. The center for collegiate mental health: studying college student mental health through an innovative research infrastructure that brings science and practice together.

    Science.gov (United States)

    Locke, Benjamin D; Bieschke, Kathleen J; Castonguay, Louis G; Hayes, Jeffrey A

    2012-01-01

    Available information about college student mental health has largely been anecdotal or based on information drawn from a single institution. This review examines ten studies published within the past 20 years that focused on college student mental health using data collected from multisite college or university counseling center clients or staff. This subset of research on college student mental health is important in view of the increased demands on counseling centers and the increased emphasis on evidence-based practice. Collectively, these studies suggest that the presenting concerns of college students are changing, that those in treatment are more distressed than those who are not, that clients who identify as ethnic minorities appear to evidence slightly more distress than their white counterparts, that matching client and counselors relative to ethnicity does not appear to improve outcome, and that counseling services seem to improve outcome. While each study makes a unique contribution to the literature, this body of literature suffers from a common set of limitations that stem from the difficulties associated with multisite research, research taking place in active clinical work, and the time-limited nature of data sets. Through our review and critique of these studies, we discuss the importance of establishing an infrastructure that helps researchers to elucidate trends, effective treatments, and risk factors that will be useful to clinicians treating this population. The Center for Collegiate Mental Health, a practice-research network focused on college student mental health, is described and preliminary findings from this entity are presented.

  17. Center for Integrated Nanotechnologies (CINT) - Gateway

    Data.gov (United States)

    Federal Laboratory Consortium — The CINT Gateway to Los Alamos Facility, located at Los Alamos National Laboratory in the center of the Materials Science Complex, brings together materials science...

  18. NASA Goddard Space Flight Center presents Enhancing Standards Based Science Curriculum through NASA Content Relevancy: A Model for Sustainable Teaching-Research Integration Dr. Robert Gabrys, Raquel Marshall, Dr. Evelina Felicite-Maurice, Erin McKinley

    Science.gov (United States)

    Marshall, R. H.; Gabrys, R.

    2016-12-01

    NASA Goddard Space Flight Center has developed a systemic educator professional development model for the integration of NASA climate change resources into the K-12 classroom. The desired outcome of this model is to prepare teachers in STEM disciplines to be globally engaged and knowledgeable of current climate change research and its potential for content relevancy alignment to standard-based curriculum. The application and mapping of the model is based on the state education needs assessment, alignment to the Next Generation Science Standards (NGSS), and implementation framework developed by the consortium of district superintendents and their science supervisors. In this presentation, we will demonstrate best practices for extending the concept of inquiry-based and project-based learning through the integration of current NASA climate change research into curriculum unit lessons. This model includes a significant teacher development component focused on capacity development for teacher instruction and pedagogy aimed at aligning NASA climate change research to related NGSS student performance expectations and subsequent Crosscutting Concepts, Science and Engineering Practices, and Disciplinary Core Ideas, a need that was presented by the district steering committee as critical for ensuring sustainability and high-impact in the classroom. This model offers a collaborative and inclusive learning community that connects classroom teachers to NASA climate change researchers via an ongoing consultant/mentoring approach. As a result of the first year of implementation of this model, Maryland teachers are implementing NGSS unit lessons that guide students in open-ended research based on current NASA climate change research.

  19. Center for Disaster & Humanitarian Assistance Medicine

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Disaster and Humanitarian Assistance Medicine (CDHAM) was formally established at the Uniformed Services University of the Health Sciences (USUHS) by...

  20. Building Technologies Research and Integration Center (BTRIC)

    Data.gov (United States)

    Federal Laboratory Consortium — The Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science Division (ETSD) of Oak Ridge National Laboratory (ORNL),...

  1. METALS (Minority Education Through Traveling and Learning in the Sciences) and the Value of Collaborative Field-centered Experiences in the Geosciences (Invited)

    Science.gov (United States)

    White, L. D.

    2013-12-01

    METALS (Minority Education Through Traveling and Learning in the Sciences) is a field-based, geoscience diversity program developed by a collaborative venture among San Francisco State University, the University of Texas at El Paso, the University of New Orleans, and Purdue University. Since 2010, this program has created meaningful geoscience experiences for underrepresented minorities by engaging 30 high school students in experiential learning opportunities each year. During METALS field trips, the primarily urban students observe natural landforms, measure water quality, conduct beach profiles, and interpret stratigraphic and structural features in locations that have included southern Utah, southern Louisiana, central Wyoming, and northern California. In these geological settings participants are also able to focus on societally relevant, community-related issues. Results from program evaluation suggest that student participants view METALS as: (1) opening up new opportunities for field-based science not normally available to them, (2) engaging in a valuable science-based field experience, (3) an inspirational, but often physically challenging, undertaking that combines high-interest geology content with an exciting outdoor adventure, and (4) a unique social experience that brings together people from various parts of the United States. Further evaluation findings from the four summer trips completed thus far demonstrate that active learning opportunities through direct interaction with the environment is an effective way to engage students in geoscience-related learning. Students also seem to benefit from teaching strategies that include thoughtful reflection, journaling, and teamwork, and mentors are positive about engaging with these approaches. Participants appear motivated to explore geoscience topics further and often discuss having new insights and new perspectives leading to career choices in geosciences. Additionally, students who had a prior and

  2. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    Science.gov (United States)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    Early career scientists at MARUM cover a wide range of research topics and disciplines including geosciences, biology, chemistry, social sciences and law. Just as colourful as the disciplinary background of the people, are their ideas for their personal careers. With our services and programmes, we aim to address some important career planning needs of PhD students and early career Postdocs, both, for careers in science and for careers outside academia. For PhD students aiming to stay in science, MARUM provides funding opportunities for a research stay abroad for a duration of up to 6 months. A range of courses is offered to prepare for the first Postdoc position. These include trainings in applying for research funding, proposal writing and interview skills. Following MARUM lectures which are held once a month, early career scientists are offered the opportunity to talk to senior scientists from all over the world in an informal Meet&Greet. Mentoring and coaching programmes for women in science are offered in cooperation with the office for equal opportunities at the University of Bremen. These programmes offer an additional opportunity to train interpersonal skills and to develop personal career strategies including a focus on special challenges that especially women might (have to) face in the scientific community. Early career scientists aiming for a non-academic career find support on different levels. MARUM provides funding opportunities for placements in industry, administration, consulting or similar. We offer trainings in e.g. job hunting strategies or interview skills. For a deeper insight into jobs outside the academic world, we regularly invite professionals for informal fireside chats and career days. These events are organised in cooperation with other graduate programmes in the region to broaden the focus of both, the lecturers and the participants. A fundamental component of our career programmes is the active involvement of alumni of MARUM and our

  3. The NASA Physical Science Program in Reduced Gravity: Combustion and Fluid Physics Work at the NASA Glenn Research Center and the International Space Station

    Science.gov (United States)

    Sacksteder, Kurt

    The completion of the International Space Station (ISS) includes the launching and installa-tion of the Combustion Integrated Rack (CIR) and the Fluids Integrated Rack (FIR), providing an unprecedented capability for conducting fundamental and applied research in the physical sciences. In addition to ongoing work, NASA has initiated a variety of investigations in combus-tion and fluid physics including ground-based testing and theoretical development to prepare for the utilization of these ISS capabilities. This paper will provide an overview of the CIR and FIR facilities and the portfolio of investigations that are currently aboard the ISS utilizing these facilities and the investigations that are underway for future utilization.

  4. The Application of an Online Data Visualization Tool, Ptplot, in the World Data Center (WDC for Solar-Terrestrial Science (STS in IPS Radio and Space Services, Australia

    Directory of Open Access Journals (Sweden)

    K Wang

    2013-02-01

    Full Text Available Ptplot is a set of two dimensional signal plotters components written in Java with multiple properties, such as being embeddable in applets or applications, utilizing automatic or manual tick marks, logarithmic axes, infinite zooming, and much more. The World Data Centre of IPS applies Ptplot as a multiple function online data plot tool by converting various text format data files into Ptplot recognizable XML files with the AWK language. At present, Ptplot has allowed eight archived solar-terrestrial science data sets to be easily plotted, viewed, and downloaded from the IPS web site.

  5. Four Decades of Ground-Breaking Research in the Reproductive and Developmental Sciences: The Infant Primate Research Laboratory at the University of Washington National Primate Research Center

    Science.gov (United States)

    Burbacher, Thomas M.; Grant, Kimberly S.; Worlein, Julie; Ha, James; Curnow, Eliza; Juul, Sandra; Sackett, Gene P.

    2017-01-01

    The Infant Primate Research Laboratory (IPRL) was established in the 1970s at the University of Washington as a visionary project of Dr. Gene (Jim) P. Sackett. Supported by a collaboration between the Washington National Primate Research Center and the Center on Human Health and Disability, the IPRL operates under the principle that learning more about the causes of abnormal development in macaque monkeys will provide important insights into mechanisms underlying childhood neurodevelopmental disorders. Over the past forty years, a broad range of research projects have been conducted at the IPRL. Some have described the normal expression of species-typical behaviors in nursery-reared macaques while others have focused on specific issues in perinatal medicine and research. This article will review the unique history of the IPRL and the scientific contributions produced by research conducted in the laboratory. Past and present investigations at the IPRL have explored the consequences of adverse early rearing, low-birth-weight, prematurity, epilepsy, chemical/drug exposure, viral infection, diarrheal disease, vaccine safety, assisted reproductive technologies and perinatal hypoxia on growth and development. New directions of investigation include the production of a transgenic primate model using our embryonic stem cell-based technology to better understand and treat heritable forms of human mental retardation such as fragile X. PMID:23873400

  6. Science on Wheels

    Science.gov (United States)

    Savitz, Maxine L.

    1973-01-01

    A science program was developed which is based on a mobile laboratory containing scientific experiments in biology, chemistry, physics, applied science, and mathematics. Discussion and experiments differ from the normal classroom setting as they utilize small groups and center around the relationship of modern science and technology of the urban…

  7. Danish Chinese Center for Nanometals

    DEFF Research Database (Denmark)

    Winther, Grethe

    The Danish-Chinese Center for Nanometals is funded by the Danish National Research Foundation and the National Natural Science Foundation of China. The Chinese partners in the Center are Institute of Metal Research in Shenyang, Tsinghua University and Chongqing University. The Danish part...

  8. Developing a More "Citizen-Centered" Coral Reef Information System: Engaging the Coral Reef Community To Assess User Needs and Improve Coral Reef Science Communication

    Science.gov (United States)

    Taylor, K.; McCaffrey, M.

    2005-05-01

    With 35 million web pages and 22,000 websites, the U.S. Federal Government through the E-Government Act 2002 directs those who develop and maintain these websites to become more "citizen-centered." One required activity of the act is to "sponsor ongoing dialogue with interested parties (including state, local, and tribal governments, private and non-profit sectors, and the general public) to find innovative ways to use IT to improve the delivery of Government information and services" (Sec 101, 3602). One of the websites that has begun to engage such parties is the NOAA Coral Reef Information System (CoRIS), which is designed to provide the public with access to NOAA's coral reef data and information from a single location. CoRIS has, through two usability workshops conducted by staff from the Coastal Services Center, and a series of stakeholder meetings held in the Fall of 2003 in American Samoa and Hawai'i and the Fall of 2004 in Puerto Rico and the U.S. Virgin Islands, sought to address the needs of users, both internal and external to NOAA. The goal was to select a set of test participants that represented the CoRIS project's targeted users (researchers, managers, general public) and provide an overview of the web site to demonstrate its resources and capabilities. The findings of the workshops and meetings are being used by the CoRIS development team to respond to user needs as part of an iterative process to improve utility and usability of the website and better understand how to present often complex scientific information to address a variety of user needs and local issues. Based on recommendations from the feedback of current and potential users of the CoRIS website from meetings held in the Fall of 2004, the development team has adopted a series of usability requirements to be implemented in the coming year. Participants of the meetings have suggested that CoRIS engage with user communities, including Local Action Strategy (LAS) efforts, to assess user

  9. Cancer cell biology: a student-centered instructional module exploring the use of multimedia to enrich interactive, constructivist learning of science.

    Science.gov (United States)

    Bockholt, Susanne M; West, J Paige; Bollenbacher, Walter E

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential "multimedia pedagogy" for the development of other multimedia science learning environments.

  10. Cancer Cell Biology: A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    Science.gov (United States)

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. Cancer Cell Biology, an interactive, multimedia, problem-based module, focuses on how mutations in protooncogenes and tumor suppressor genes can lead to uncontrolled cell proliferation by engaging students as research scientists/physicians with the task of diagnosing the molecular basis of tumor growth for a group of patients. The process of constructing the module, which was guided by scientist and student feedback/responses, is described. The completed module and insights gained from its development are presented as a potential “multimedia pedagogy” for the development of other multimedia science learning environments. PMID:12822037

  11. Developing Dual Polarization Applications For 45th Weather Squadron's (45 WS) New Weather Radar: A Cooperative Project With The National Space Science and Technology Center (NSSTC)

    Science.gov (United States)

    Roeder, W.P.; Peterson, W.A.; Carey, L.D.; Deierling, W.; McNamara, T.M.

    2009-01-01

    A new weather radar is being acquired for use in support of America s space program at Cape Canaveral Air Force Station, NASA Kennedy Space Center, and Patrick AFB on the east coast of central Florida. This new radar includes dual polarization capability, which has not been available to 45 WS previously. The 45 WS has teamed with NSSTC with funding from NASA Marshall Spaceflight Flight Center to improve their use of this new dual polarization capability when it is implemented operationally. The project goals include developing a temperature profile adaptive scan strategy, developing training materials, and developing forecast techniques and tools using dual polarization products. The temperature profile adaptive scan strategy will provide the scan angles that provide the optimal compromise between volume scan rate, vertical resolution, phenomena detection, data quality, and reduced cone-of-silence for the 45 WS mission. The mission requirements include outstanding detection of low level boundaries for thunderstorm prediction, excellent vertical resolution in the atmosphere electrification layer between 0 C and -20 C for lightning forecasting and Lightning Launch Commit Criteria evaluation, good detection of anvil clouds for Lightning Launch Commit Criteria evaluation, reduced cone-of-silence, fast volume scans, and many samples per pulse for good data quality. The training materials will emphasize the appropriate applications most important to the 45 WS mission. These include forecasting the onset and cessation of lightning, forecasting convective winds, and hopefully the inference of electrical fields in clouds. The training materials will focus on annotated radar imagery based on products available to the 45 WS. Other examples will include time sequenced radar products without annotation to simulate radar operations. This will reinforce the forecast concepts and also allow testing of the forecasters. The new dual polarization techniques and tools will focus on

  12. Usage Center

    DEFF Research Database (Denmark)

    Kleinaltenkamp, Michael; Plewa, Carolin; Gudergan, Siegfried

    2017-01-01

    -actor value cocreation, this paper is the first to comprehensively andcoherently conceptualize the notion of a usage center. In doing so, the authorsbuild an important foundation for future theorizing related to the potentialemergence of usage centers as well as the cocreation of individual andcollective...

  13. The Relationship between Religious Attitudes and Psychological Well-being of Nurses Working in Health Centers in Qom University of Medical Sciences in 2014

    Directory of Open Access Journals (Sweden)

    Tahmineh Dadkhah Tehrani

    2016-01-01

    Full Text Available Background and Objectives: Nurses are the most important group who provide health system services. They may face with various stresses related to their job that may cause physiological problems. Many factors can influence their psychological health. With this in mind, the current study aimed to examine the relationship between religious attitude with psychological well-being in nurses working in Qom University of Medical Sciences. Methods: The data were collected by means of three questionnaires: demographic, psychological wellbeing, and religious attitude questionnaires. The religious attitude was assessed by Clark and Stark's religious attitude questionnaire. And the psychological well-being was measured by psychological well-being questionnaire introduced by Ryff and Keyes for adults in this study. Results: Religious attitude and psychological well-being were at medium level in 53/6% of the subjects (n=127. Correlational Pearson test showed that total score of religious attitude had significantly positive relationships with psychological well-being (r=+0/30, p<0/01. Conclusion: Based on the results of the study, it can be concluded that religious attitude can have a positive influence on psychological well-being.

  14. A Person-Centered, Registry-Based Learning Health System for Palliative Care: A Path to Coproducing Better Outcomes, Experience, Value, and Science.

    Science.gov (United States)

    Kamal, Arif H; Kirkland, Kathryn B; Meier, Diane E; Morgan, Tamara S; Nelson, Eugene C; Pantilat, Steven Z

    2017-11-01

    Palliative care offers an approach to the care of people with serious illness that focuses on quality of life and aligning care with individual and family goals, and values in the context of what is medically achievable. Measurement of the impact of palliative care is critical for determining what works for which patients in what settings, to learn, improve care, and ensure access to high value care for people with serious illness. A learning health system that includes patients and families partnering with clinicians and care teams, is directly linked to a registry to support networks for improvement and research, and offers an ideal framework for measuring what matters to a range of stakeholders interested in improving care for this population. Measurement focuses on the individual patient and family experience as the fundamental outcome of interest around which all care delivery is organized. We describe an approach to codesigning and implementing a palliative care registry that functions as a learning health system, by combining patient and family inputs and clinical data to support person-centered care, quality improvement, accountability, transparency, and scientific research. The potential for a palliative care learning health system that, by design, brings together enriched information environments to support coproduction of healthcare and facilitated peer networks to support patients and families, collaborative clinician networks to support palliative care program improvement, and collaboratories to support research and the application of research to benefit individual patients is immense.

  15. Informal science education at Science City

    Science.gov (United States)

    French, April Nicole

    The presentation of chemistry within informal learning environments, specifically science museums and science centers is very sparse. This work examines learning in Kansas City's Science City's Astronaut Training Center in order to identify specific behaviors associated with visitors' perception of learning and their attitudes toward space and science to develop an effective chemistry exhibit. Grounded in social-constructivism and the Contextual Model of Learning, this work approaches learning in informal environments as resulting from social interactions constructed over time from interaction between visitors. Visitors to the Astronaut Training Center were surveyed both during their visit and a year after the visit to establish their perceptions of behavior within the exhibit and attitudes toward space and science. Observations of visitor behavior and a survey of the Science City staff were used to corroborate visitor responses. Eighty-six percent of visitors to Science City indicated they had learned from their experiences in the Astronaut Training Center. No correlation was found between this perception of learning and visitor's interactions with exhibit stations. Visitor attitudes were generally positive toward learning in informal settings and space science as it was presented in the exhibit. Visitors also felt positively toward using video game technology as learning tools. This opens opportunities to developing chemistry exhibits using video technology to lessen the waste stream produced by a full scale chemistry exhibit.

  16. Specialty education in periodontics in Japan and the United States: comparison of programs at Nippon Dental University Hospital and the University of Texas Health Science Center at San Antonio.

    Science.gov (United States)

    Osawa, Ginko; Nakaya, Hiroshi; Mealey, Brian L; Kalkwarf, Kenneth; Cochran, David L

    2014-03-01

    Japan has institutions that train qualified postdoctoral students in the field of periodontics; however, Japan does not have comprehensive advanced periodontal programs and national standards for these specialty programs. To help Japanese programs move toward global standards in this area, this study was designed to describe overall differences in periodontics specialty education in Japan and the United States and to compare periodontics faculty members and residents' characteristics and attitudes in two specific programs, one in each country. Periodontal faculty members and residents at Nippon Dental University (NDU) and the University of Texas Health Science Center at San Antonio (UTHSCSA) Dental School participated in the survey study: four faculty members and nine residents at NDU; seven faculty members and thirteen residents at UTHSCSA. Demographic data were collected as well as respondents' attitudes toward and assessment of their programs. The results showed many differences in curriculum structure and clinical performance. In contrast to the UTHSCSA respondents, for example, the residents and faculty members at NDU reported that they did not have enough subject matter and time to learn clinical science. Although the residents at NDU reported seeing more total patients in one month than those at UTHSCSA, they were taught fewer varieties of periodontal treatments. To provide high-quality and consistent education for periodontal residents, Japan needs to establish a set of standards that will have positive consequences for those in Japan who need periodontal treatment.

  17. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Efficient click reaction towards novel sulfonamide hybrids by molecular hybridization strategy as antiproliferative agents ... New Drug Research & Development Center, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety ...

  18. DOE SciDAC’s Earth System Grid Center for Enabling Technologies Final Report for University of Southern California Information Sciences Institute

    Energy Technology Data Exchange (ETDEWEB)

    Chervenak, Ann Louise [Univ. of Southern California Information Sciences Inst., Marina del Rey, CA (United States)

    2013-12-19

    The mission of the Earth System Grid Federation (ESGF) is to provide the worldwide climate-research community with access to the data, information, model codes, analysis tools, and intercomparison capabilities required to make sense of enormous climate data sets. Its specific goals are to (1) provide an easy-to-use and secure web-based data access environment for data sets; (2) add value to individual data sets by presenting them in the context of other data sets and tools for comparative analysis; (3) address the specific requirements of participating organizations with respect to bandwidth, access restrictions, and replication; (4) ensure that the data are readily accessible through the analysis and visualization tools used by the climate research community; and (5) transfer infrastructure advances to other domain areas. For the ESGF, the U.S. Department of Energy’s (DOE’s) Earth System Grid Center for Enabling Technologies (ESG-CET) team has led international development and delivered a production environment for managing and accessing ultra-scale climate data. This production environment includes multiple national and international climate projects (such as the Community Earth System Model and the Coupled Model Intercomparison Project), ocean model data (such as the Parallel Ocean Program), observation data (Atmospheric Radiation Measurement Best Estimate, Carbon Dioxide Information and Analysis Center, Atmospheric Infrared Sounder, etc.), and analysis and visualization tools, all serving a diverse user community. These data holdings and services are distributed across multiple ESG-CET sites (such as ANL, LANL, LBNL/NERSC, LLNL/PCMDI, NCAR, and ORNL) and at unfunded partner sites, such as the Australian National University National Computational Infrastructure, the British Atmospheric Data Centre, the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory, the Max Planck Institute for Meteorology, the German Climate Computing

  19. Computing Cost Price by Using Activity Based Costing (ABC Method in Dialysis Ward of Shahid Rajaei Medical & Education Center, in Alborz University of Medical Sciences Karaj in 2015

    Directory of Open Access Journals (Sweden)

    H. Derafshi

    2016-08-01

    Full Text Available Background: Analysis of hospital cost is one of the key subjects for resource allocation. The Activity – based costing is an applicable tool to recognize accurate costs .This technique helps to determine costs. The aim of this study is utilizing activity activity-based costing method to estimate the cost of dialysis unit related to Shahid Rajaei hospital in year 2015. Methods: The type of this research is applied and sectioned descriptive study. The required data is collected from dialysis unit , accounting unit, discharge, the completion of medical equipments of Shahid Rajaei hospital in the first six months 2015 which was calculated cost by excel software. Results and Conclusion: In any month, the average 1238 patients accepted to receive the dialysis services in Shahid Rajaei hospital .The cost of consumables materials was 47.6%, which is the majority percentage of allocated costs. The lowest cost related to insurance deductions about 2.27%. After Calculating various costs of dialysis services, we find out, the personal cost covers only 32% of the all cost. The other ongoing overhead cost is about 11.94% of all cost. Therefore, any dialysis service requires 2.017.131 rial costs, however the tariff of any dialysis service is 1.838.871 rial. So, this center loses 178,260 rial in each session. The results show that the cost of doing any dialysis services is more than the revenue of it in Shahid Rajaei hospital. It seems that the reforming processes of supplying consumable, changing the tariffs in chronic dialysis; especially in set the filter and consumable materials unit besides controlling the cost of human resource could decrease the cost of this unit with Regard to the results recommended using capacity of the private department recommended. 

  20. Medication Errors in Hospitals: A Study of Factors Affecting Nursing Reporting in a Selected Center Affiliated with Shahid Beheshti University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    HamidReza Mirzaee

    2015-10-01

    Full Text Available Background: Medication errors are mentioned as the most common important challenges threatening healthcare system in all countries worldwide. This study is conducted to investigate the most significant factors in refusal to report medication errors among nursing staff.Methods: The cross-sectional study was conducted on all nursing staff of a selected Education& Treatment Center in 2013. Data was collected through a teacher made questionnaire. The questionnaires’ face and content validity was confirmed by experts and for measuring its reliability test-retest was used. Data was analyzed by descriptive and analytic statistics. 16th  version of SPSS was also used for related statistics.Results: The most important factors in refusal to report medication errors respectively are: lack of reporting system in the hospital(3.3%, non-significance of reporting medication errors to hospital authorities and lack of appropriate feedback(3.1%, and lack of a clear definition for a medication error (3%. there was a significant relationship between the most important factors of refusal to report medication errors and work shift (p:0.002, age(p:0.003, gender(p:0.005, work experience(p<0.001 and employment type of nurses(p:0.002.Conclusion: Factors pertaining to management in hospitals as well as the fear of the consequences of reporting are two broad fields among the factors that make nurses not report their medication errors. In this regard, providing enough education to nurses, boosting the job security for nurses, management support and revising related processes and definitions are some factors that can help decreasing medication errors and increasing their report in case of occurrence.

  1. NASA Earth Science Update with Information Science Technology

    Science.gov (United States)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  2. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  3. Tunison Laboratory of Aquatic Science

    Data.gov (United States)

    Federal Laboratory Consortium — Tunison Laboratory of Aquatic Science (TLAS), located in Cortland, New York, is a field station of the USGS Great Lakes Science Center (GLSC). TLAS was established...

  4. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  5. NASA NEESPI Data Center

    Science.gov (United States)

    Leptoukh, G.; Loboda, T.; Romanov, P.; Gerasimov, I.; Csiszar, I.

    2006-12-01

    The Northern Eurasia Earth Science Partnership Initiative (NEESPI) is an international program of coordinated research on the state and dynamics of ecosystems in Northern Eurasia and their interactions with the Earth's Climate system. The program is designed to enhance scientific knowledge of these ecosystems as well as to develop predictive capabilities to support informed decision-making and practical applications. The NASA NEESPI Data Center is a multi-sensor, online, easy access data archive and distribution system to provide advanced data management capabilities in support of the NEESPI scientific objectives. Its tools include data analysis and visualization, and other techniques for better science data usage. The NASA NEESPI Data Center portal integrates remote sensing data from MODIS, AIRS, OMI, and other instruments on board polar- orbiting satellites, along with customized data products from climatology data sets and models into a single one-stop-shopping interdisciplinary NASA-NEESPI data center. The presentation will provide status and the most recent achievements of the NASA NEESPI Data Center. In the recent months, the emphasis has been put on analyzing and then preparing steps for the online data analysis by bringing data to common grids while preserving available and statistically important information from the higher resolution inputs. The NESSPI instance of Giovanni, the popular online visualization and analysis tool, features the first batch of atmospheric, fire and snow data products, organized to provide quick and user-friendly exploration means.

  6. How to Modernize the Academic Museum. Exhibition Activity of the Museum Group the ARAS as a Pilot Project of the Museum of History of Russian Academy of Science

    Directory of Open Access Journals (Sweden)

    Korneva-Chaeva Irina A.

    2016-09-01

    Full Text Available The article on the example of the Museum group of Archives of Russian Academy of Science is demonstrating new possibilities of representation of archival documents in the museum space. The authors focused on the potential exposure of the museum based on the principle of visualization. They explain the special role of representing scientific knowledge for education of youth. They offer a new form of interactive communication with the museum’s scientific heritage, based on the method of comprehending the reality as a “co-experience” and “re-discovery” that leads to the attainment the new generation to the new intellectual and spiritual experience. The experiment, the research paper, the science, the war, and even the modern art are the main themes of our exhibitions. The authors use the special new methods of exhibition to create the intriguing image of scientist. They use light boxes and interactive demonstrations. The main aim of the exposition is to show the documents of Archives of Russian Academy of Science, so we rely on the following materials: personal fond of academicians A.N. Nesmeyanov, V.L. Komarov, M.V. Keldysh, I.V. Kurchatov and others. Authors successfully solve the problems of the development of new theoretical principles exposing archival documents by modern methods.

  7. "Infotonics Technology Center"

    Energy Technology Data Exchange (ETDEWEB)

    Fritzemeier, L. [Infotonics Technology Center Inc., Canandaigua, NY (United States); Boysel, M. B. [Infotonics Technology Center Inc., Canandaigua, NY (United States); Smith, D. R. [Infotonics Technology Center Inc., Canandaigua, NY (United States)

    2004-09-30

    During this grant period July 15, 2002 thru September 30, 2004, the Infotonics Technology Center developed the critical infrastructure and technical expertise necessary to accelerate the development of sensors, alternative lighting and power sources, and other specific subtopics of interest to Department of Energy. Infotonics fosters collaboration among industry, universities and government and operates as a national center of excellence to drive photonics and microsystems development and commercialization. A main goal of the Center is to establish a unique, world-class research and development facility. A state-of-the-art microsystems prototype and pilot fabrication facility was established to enable rapid commercialization of new products of particular interest to DOE. The Center has three primary areas of photonics and microsystems competency: device research and engineering, packaging and assembly, and prototype and pilot-scale fabrication. Center activities focused on next generation optical communication networks, advanced imaging and information sensors and systems, micro-fluidic systems, assembly and packaging technologies, and biochemical sensors. With targeted research programs guided by the wealth of expertise of Infotonics business and scientific staff, the fabrication and packaging facility supports and accelerates innovative technology development of special interest to DOE in support of its mission and strategic defense, energy, and science goals.

  8. Gestión del conocimiento en el Centro de Desarrollo de las Ciencias Sociales y Humanísticas en Salud Knowledge management at the Center for the Development of Social Sciences and Humanities in Health

    Directory of Open Access Journals (Sweden)

    Norbis Díaz Campos

    2010-04-01

    Full Text Available En la actualidad la gestión del conocimiento se ha convertido en una herramienta indispensable para las instituciones. Esta actividad se orienta hacia el aprovechamiento eficiente del conocimiento, que se genera dentro y fuera de la institución, lo que permite organizar el proceso de producción y transmisión del mismo. El artículo realiza un acercamiento teórico-práctico a la gestión del conocimiento en el Centro de Desarrollo de las Ciencias Sociales y Humanísticas en Salud, para diseñar una estrategia que optimice la estructuración de sus funciones como contribución al cumplimiento de su misión. Atendiendo a las características del Centro como Entidad de Ciencia e Innovación Tecnológica, se identifican las principales consideraciones teóricas y las bases sobre las cuales debe sustentarse el diseño de la estrategia.Knowledge management is a very important tool for institutions today. It focuses on the effective use of knowledge produced inside and outside of institutions, which consequently facilitates the organization of the process of knowledge production and transmission. This article deals with a theoretical-practical approach to knowledge management at the Center for the Development of Social Sciences and Humanities in Health, in order to design a strategy that optimizes the structure of the institution’s functions as a contribution to the fulfillment of its mission. The approach is intended to design a strategy to organize the functions contributing to the fulfillment of the institution’s mission. Taking into consideration that the institution is an Entity of Science and Technological Innovation, the article presents the main theoretical considerations and bases upon which the design of the strategy must be supported.

  9. Nigerian Journal of Health and Biomedical Sciences: Editorial Policies

    African Journals Online (AJOL)

    The application of molecular biology and information technology is taking a center-stage in this century. Scope: Basic Medical Sciences Behavioural Sciences Biomedical Communications Biomedical Engineering Biotechnology in relation to Medicine Clinical Sciences Dental Sciences Environment and Health

  10. Science and data science.

    Science.gov (United States)

    Blei, David M; Smyth, Padhraic

    2017-08-07

    Data science has attracted a lot of attention, promising to turn vast amounts of data into useful predictions and insights. In this article, we ask why scientists should care about data science. To answer, we discuss data science from three perspectives: statistical, computational, and human. Although each of the three is a critical component of data science, we argue that the effective combination of all three components is the essence of what data science is about.

  11. 2002 Microgravity Materials Science Conference

    Science.gov (United States)

    Gillies, Donald (Editor); Ramachandran, Narayanan (Editor); Murphy, Karen (Editor); McCauley, Dannah (Editor); Bennett, Nancy (Editor)

    2003-01-01

    The 2002 Microgravity Materials Science Conference was held June 25-26, 2002, at the Von Braun Center, Huntsville, Alabama. Organized by the Microgravity Materials Science Discipline Working Group, sponsored by the Physical Sciences Research Division, NASA Headquarters, and hosted by NASA Marshall Space Flight Center and member institutions under the Cooperative Research in Biology and Materials Science (CORBAMS) agreement, the conference provided a forum to review the current research and activities in materials science, discuss the envisioned long-term goals, highlight new crosscutting research areas of particular interest to the Physical Sciences Research Division, and inform the materials science community of research opportunities in reduced gravity. An abstracts book was published and distributed at the conference to the approximately 240 people attending, who represented industry, academia, and other NASA Centers. This CD-ROM proceedings is comprised of the research reports submitted by the Principal Investigators in the Microgravity Materials Science program.

  12. Encyclopedia of Rose Science

    NARCIS (Netherlands)

    Roberts, A.; Debener, T.; Gudin, S.; Byrne, D.B.; Cairns, T.; Vries, de D.P.; Dubois, L.A.M.; Forkmann, G.; Fruchter, M.; Helsper, J.P.F.G.; Horst, R.K.; Jay, M.; Kwakkenbosch, T.A.M.; Pemberton, B.; Put, H.M.C.; Rajapakse, S.; Reid, M.; Schum, A.; Shorthouse, J.D.; Ueda, Y.; Vainstein, A.; Pol, van de P.A.; Zieslin, N.

    2003-01-01

    The Encyclopedia of Rose Science brings together a wealth of information on the rose, long treasured for its captivating perfumes and splendid colors. Now, more than ever, science plays a central place in the production of this flower at the center of one of the world's biggest floricultural

  13. The Study of Correlation between Spiritual well-being and Hope in Cancer Patients Referring to Seyyedo Shohada Training-Therapy Center of Isfahan University of Medical Sciences, 2010, Isfahan, Iran

    Directory of Open Access Journals (Sweden)

    Moghimian M

    2012-09-01

    Full Text Available Background and Objectives: Religious and spiritual resources are important coping resources for cancer patients during the process of disease that can be used to improve the psychological problems such as despair. This research tries to study the correlation between spiritual well-being and hope in cancer patients.Methods: In this descriptive cross-sectional study with demographic questionnaire, Ellison and Palutzian’s spiritual well being and Snyder’s hope questionnaire, 300 cancer patients who referred to training-therapy center of Isfahan university of medical sciences were selected with Available sampling. Data were analyzed by descriptive statistical and Spearman and Pearson tests and the significant level equal to 0.05 was considered.Results: The findings of this research showed that there was direct and significant correlation between spiritual well-being and hope (r=0.27 (p<0.0001. Conclusion: Treatment staff can provide opportunities to identify spiritual needs of cancer patients to promote their spiritual health and hope among them. Thus it is recommended in order to maintain health and increase hope among patients, the important role of spiritual health in nursing care of life-threatening diseases such as cancer take into more consideration.

  14. The Relationship between Knowledge, Attitude and Tendency to Care of HIV/AIDS Patients among Nurses and Midwives, Working in General Hospitals and Health Care Centers of Isfahan University of Medical Sciences, 2013

    Directory of Open Access Journals (Sweden)

    Farzin Khorvash

    2014-10-01

    Methods: This cross-sectional study was conducted on 303 nurses and midwives at healthcare centers, affiliated to Isfahan University of Medical Sciences, using stratified sampling in 2013. All participants completed a four-section questionnaire including demographic data, knowledge about HIV/AIDS, attitude towards HIV/AIDS, and tendency to care for HIV/AIDS patients. For data analysis, Pearson’s correlation coefficient, t-test, and one-way ANOVA were performed, using SPSS version 16. Results: As to the findings, 57% of the participants had insufficient knowledge, 98% had negative attitudes, and 86% had a moderate tendency to care for HIV/AIDS patients. A negative correlation was seen between HIV knowledge and attitude towards HIV patients (P=0.042, r=-0.58. Also a significant relationship was observed between attitudes towards HIV/AIDS and tendency to provide care for these patients (P=0.011, r=0.78. Conclusion: As the knowledge, attitude, and tendency to care for HIV/AIDS patients were not desirable among nurses and midwives, it is recommended that comprehensive courses be organized in order to change caregivers’ knowledge, attitudes, and tendencies towards care provision for HIV/AIDS patients.

  15. Center for Renewable Energy Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Billo, Richard; Rajeshwar, Krishnan

    2013-01-15

    The CREST research team conducted research that optimized catalysts used for the conversion of southwestern lignite into synthetic crude oil that can be shipped to nearby Texas refineries and power plants for development of transportation fuels and power generation. Research was also undertaken to convert any potential by-products of this process such as CO2 to useful chemicals and gases which could be recycled and used as feedstock to the synthetic fuel process. These CO2 conversion processes used light energy to drive the endogonic reduction reactions involved. The project was divided into two tasks: A CO2 Conversion Task, and a Catalyst Optimization Task. The CO2 Conversion task was aimed at developing molecular and solid state catalysts for the thermal, electro- and photocatalytic reduction of CO2 to reduced products such as simple feedstock compounds (e.g. CO, H2, CHOOH, CH2O, CH3OH and CH4). For example, the research team recycled CO that was developed from this Task and used it as a feedstock for the production of synthetic crude in the Catalyst Optimization Task. In the Catalyst Optimization Task, the research team conducted bench-scale experiments with the goal of reducing overall catalyst cost in support of several synthetic crude processes that had earlier been developed. This was accomplished by increasing the catalyst reactivity thus reducing required concentrations or by using less expensive metals. In this task the team performed parametric experiments in small scale batch reactors in an effort to improve catalyst reactivity and to lower cost. They also investigated catalyst robustness by testing lignite feedstocks that vary in moisture, h, and volatile content.

  16. (Congressional) Center for Microplasma Science and Technology

    Science.gov (United States)

    2012-03-29

    the plasma to move freely about the  structure . In addition, they can be assembled in various configurations, e.g.  planar, multi‐layer, and...an antifungal therapy, Applied Physics Letters, 98 (2011) 021501  K. H. Becker, H. Kersten, J. Hopwood, and J. L. Lopez. Microplasmas: scientific

  17. The USGS Northern Rocky Mountain Science Center

    Science.gov (United States)

    Paul Stephen Corn; Suzanna C. Soileau

    2014-01-01

    The Aldo Leopold Wilderness Research Institute (ALWRI) was conceived as an interagency partnership, and its founding in 1993 coincided with the creation of the National Biological Service (NBS), from the biological research programs and staff in the Department of the Interior. NBS research zoologist Steve Corn moved to Missoula to join the staff at ALWRI in 1996, at...

  18. Veterinary Science Students, Center Changing a Reservation

    Science.gov (United States)

    Blackwater, Jasmine

    2011-01-01

    Kayenta is a rural community located in northeastern Arizona on a Navajo reservation. On the reservation, many families rely on their livestock for income, and as a result, many reservation high school students show a great interest in agricultural education. Having livestock on the reservation is not just a source of income, but also part of a…

  19. Medical Informatics in Academic Health Science Centers.

    Science.gov (United States)

    Frisse, Mark E.

    1992-01-01

    An analysis of the state of medical informatics, the application of computer and information technology to biomedicine, looks at trends and concerns, including integration of traditionally distinct enterprises (clinical information systems, financial information, scholarly support activities, infrastructures); informatics career choice and…

  20. Midwest Structural Sciences Center, 2006-2013

    Science.gov (United States)

    2013-09-01

    NASA Langley 8-Foot High Temperature Tunnel (8’ HTT) to study the effect of thermally bowed National Aerospace Plane (NASP) thermal protection system...Laboratory (AFRL) Air Vehicles Directorate, flexible panels have been inserted in the Propulsion Directorate RC-19 supersonic wind tunnel . Innovative...describe a wide array of morphologies in areas ranging from geology to astrophysics. We developed in-house software that computes the Minkowski