WorldWideScience

Sample records for science approach electronic

  1. VLSI electronics microstructure science

    CERN Document Server

    1981-01-01

    VLSI Electronics: Microstructure Science, Volume 3 evaluates trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the impact of VLSI on computer architectures; VLSI design and design aid requirements; and design, fabrication, and performance of CCD imagers. The approaches, potential, and progress of ultra-high-speed GaAs VLSI; computer modeling of MOSFETs; and numerical physics of micron-length and submicron-length semiconductor devices are also elaborated. This text likewise covers the optical linewi

  2. Electronic Materials Science

    Science.gov (United States)

    Irene, Eugene A.

    2005-02-01

    A thorough introduction to fundamental principles and applications From its beginnings in metallurgy and ceramics, materials science now encompasses such high- tech fields as microelectronics, polymers, biomaterials, and nanotechnology. Electronic Materials Science presents the fundamentals of the subject in a detailed fashion for a multidisciplinary audience. Offering a higher-level treatment than an undergraduate textbook provides, this text benefits students and practitioners not only in electronics and optical materials science, but also in additional cutting-edge fields like polymers and biomaterials. Readers with a basic understanding of physical chemistry or physics will appreciate the text's sophisticated presentation of today's materials science. Instructive derivations of important formulae, usually omitted in an introductory text, are included here. This feature offers a useful glimpse into the foundations of how the discipline understands such topics as defects, phase equilibria, and mechanical properties. Additionally, concepts such as reciprocal space, electron energy band theory, and thermodynamics enter the discussion earlier and in a more robust fashion than in other texts. Electronic Materials Science also features: An orientation towards industry and academia drawn from the author's experience in both arenas Information on applications in semiconductors, optoelectronics, photocells, and nanoelectronics Problem sets and important references throughout Flexibility for various pedagogical needs Treating the subject with more depth than any other introductory text, Electronic Materials Science prepares graduate and upper-level undergraduate students for advanced topics in the discipline and gives scientists in associated disciplines a clear review of the field and its leading technologies.

  3. Ultrafast Science Opportunities with Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    DURR, HERMANN; Wang, X.J., ed.

    2016-04-28

    X-rays and electrons are two of the most fundamental probes of matter. When the Linac Coherent Light Source (LCLS), the world’s first x-ray free electron laser, began operation in 2009, it transformed ultrafast science with the ability to generate laser-like x-ray pulses from the manipulation of relativistic electron beams. This document describes a similar future transformation. In Transmission Electron Microscopy, ultrafast relativistic (MeV energy) electron pulses can achieve unsurpassed spatial and temporal resolution. Ultrafast temporal resolution will be the next frontier in electron microscopy and can ideally complement ultrafast x-ray science done with free electron lasers. This document describes the Grand Challenge science opportunities in chemistry, material science, physics and biology that arise from an MeV ultrafast electron diffraction & microscopy facility, especially when coupled with linac-based intense THz and X-ray pump capabilities.

  4. Neo-Institutional Approach to the Study of Electronic Government

    Directory of Open Access Journals (Sweden)

    Yan I. Vaslavskiy

    2016-01-01

    Full Text Available The article is devoted to the neo-institutional approach as a methodological basis in the study of electronic government. In this article substantiates the choice of neo-institutional approach to the study of the processes of implementation of information and communication technologies in the activity of state institutions, analyzes the differences of neoinstitutionalism from traditional institutional approach, considers the features of the different directions of neo-institutionalism, namely sociological, historical and rational choice theory. Attention is paid to the reasons for the renewed interest in political institutions in political science. The article emphasizes the importance of considering the electronic government as an institution, and the conditions for its implementation in the Russian political system as the institutional environment. The authors pay special attention to the variety of sociological neo-institutionalism, used, in addition to political science in sociology of organizations. The article substantiates the value of using sociological institutionalism to explore the electronic government based on a comparative analysis of e-government projects in Russia and abroad and explores its heuristic capabilities. It examines the impact of the system of norms and values of the institutional environment on the processes of formation and development of electronic government in Russia. The research capacity of this theory is due to the fact that it allows us to trace the reasons for copying and replication of inefficient practices and organizational and management schemes, to identify the factors impeding innovation use by the state of electronic interaction technologies. It is emphasized that the use of the theory of institutional isomorphism is useful in the sphere of implementation of electronic technologies, in which a key role play pluralism, horizontal managerial communication, inter-agency coordination.

  5. Many-electron approaches in physics, chemistry and mathematics a multidisciplinary view

    CERN Document Server

    Site, Luigi

    2014-01-01

    This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.

  6. VLSI electronics microstructure science

    CERN Document Server

    1982-01-01

    VLSI Electronics: Microstructure Science, Volume 4 reviews trends for the future of very large scale integration (VLSI) electronics and the scientific base that supports its development.This book discusses the silicon-on-insulator for VLSI and VHSIC, X-ray lithography, and transient response of electron transport in GaAs using the Monte Carlo method. The technology and manufacturing of high-density magnetic-bubble memories, metallic superlattices, challenge of education for VLSI, and impact of VLSI on medical signal processing are also elaborated. This text likewise covers the impact of VLSI t

  7. Bibliometrics of electronic journals in information science

    Directory of Open Access Journals (Sweden)

    Donald T. Hawkins

    2001-01-01

    Full Text Available The bibliometric characteristics of electronic journals (e-journals covering the field of information science have been studied. Twenty-eight e-journals were identified and ranked by number of articles on the subject they published. A Bradford plot revealed that the core is not well developed yet, but it will likely contain six journals. The publication of information science articles in e-journals began modestly in 1995 with 26 articles, but it has risen to approximately 250 articles per year. The most prolific authors are identified. The vast majority of them are located in the United States or United Kingdom. Only 26 articles have authors from more than one country, showing that electronic technology has not yet strongly influenced international collaboration. About 2/3 of the articles originate in academic institutions. Common topics of e-journal articles in information science include electronic information, electronic publishing, virtual (digital libraries, information search and retrieval, and use of the Internet. Seven online databases cover these e-journals; Information Science Abstracts is the only one to cover all 28 journals, and it has the highest number of abstracts from them - over 1,100.

  8. Science Education: Issues, Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Shairose Irfan Jessani

    2015-06-01

    Full Text Available In today’s global education system, science education is much more than fact-based knowledge. Science education becomes meaningless and incomprehensible for learners, if the learners are unable to relate it with their lives. It is thus recommended that Pakistan, like many other countries worldwide should adopt Science Technology Society (STS approach for delivery of science education. The purpose of the STS approach lies in developing scientifically literate citizens who can make conscious decisions about the socio-scientific issues that impact their lives. The challenges in adopting this approach for Pakistan lie in four areas that will completely need to be revamped according to STS approach. These areas include: the examination system; science textbooks; science teacher education programs; and available resources and school facilities.

  9. Electronic Publishing in Library and Information Science.

    Science.gov (United States)

    Lee, Joel M.; And Others

    1988-01-01

    Discusses electronic publishing as it refers to machine-readable databases. Types of electronic products and services are described and related topics considered: (1) usage of library and information science databases; (2) production and distribution of databases; (3) trends and projections in the electronic information industry; and (4)…

  10. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    King, Wayne E.; Campbell, Geoffrey H.; Frank, Alan; Reed, Bryan; Schmerge, John F.; Siwick, Bradley J.; Stuart, Brent C.; Weber, Peter M.

    2005-01-01

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  11. A review of electronic journal acquisition, management, and use in health sciences libraries.

    Science.gov (United States)

    Burrows, Suzetta

    2006-01-01

    The paper describes patterns of electronic journal usage in health sciences libraries during the past decade. The paper presents a case study, documenting the pattern of acquisition, management, and usage at the Louis Calder Memorial Library of the University of Miami Miller School of Medicine. Health sciences journals were early to offer electronic alternatives to print. As a result, health sciences libraries, their patrons, and the public at large were early to embrace the new versions and continue to embrace the significant changes in scholarly communication they enable. Although the patterns of electronic journals among health sciences libraries and other special and academic libraries have similarities, they also have differences. Broad studies of electronic journals in non-health sciences libraries have been published, but a retrospective review of electronic journals in health sciences libraries has not.

  12. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    Science.gov (United States)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  13. Interacting electrons theory and computational approaches

    CERN Document Server

    Martin, Richard M; Ceperley, David M

    2016-01-01

    Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.

  14. Electronics a systems approach

    CERN Document Server

    Storey, Neil

    2017-01-01

    Electronics plays a central role in our everyday lives. It is at the heart of almost all of today's essential technology, from mobile phones to computers and from cars to power stations. As such, all engineers, scientists and technologists need to have a fundamental understanding of this exciting subject, and for many this will just be the beginning. Now in its sixth edition, Electronics: A Systems Approach provides an outstanding introduction to this fast-moving and important field. Comprehensively revised and updated to cover the latest developments in the world of electronics, the text continues to use Neil Storey's established and well-respected systems approach. It introduces the basic concepts first before progressing to a more advanced analysis, enabling you to contextualise what a system is designed to achieve before tackling the intricacies of designing or analysing its various components with confidence. This book is accompanied by a website which contains over 100 video tutorials to help explain ke...

  15. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  16. Approaches to translational plant science

    DEFF Research Database (Denmark)

    Dresbøll, Dorte Bodin; Christensen, Brian; Thorup-Kristensen, Kristian

    2015-01-01

    is lessened. In our opinion, implementation of translational plant science is a necessity in order to solve the agricultural challenges of producing food and materials in the future. We suggest an approach to translational plant science forcing scientists to think beyond their own area and to consider higher......Translational science deals with the dilemma between basic research and the practical application of scientific results. In translational plant science, focus is on the relationship between agricultural crop production and basic science in various research fields, but primarily in the basic plant...... science. Scientific and technological developments have allowed great progress in our understanding of plant genetics and molecular physiology, with potentials for improving agricultural production. However, this development has led to a separation of the laboratory-based research from the crop production...

  17. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  18. Science Centers in the Electronic Age: Are We Doomed?

    Science.gov (United States)

    Russell, Robert L., Ed.; West, Robert M., Ed.

    1996-01-01

    This issue is a debate-discussion concerning science centers in the electronic age. The articles are based on presentations made at the Science Center World Congress (1st, Heureka, Finland, June 13-17, 1996). The four articles are: (1) "Lessons from Laboratorio dell'Immaginario Scientifico" (Andrea Bandelli); (2) "The Doom-Shaped Thing in the…

  19. A Science, Engineering and Technology (SET) Approach Improves Science Process Skills in 4-H Animal Science Participants

    Science.gov (United States)

    Clarke, Katie C.

    2010-01-01

    A new Science, Engineering and Technology (SET) approach was designed for youth who participated in the Minnesota State Fair Livestock interview process. The project and evaluation were designed to determine if the new SET approach increased content knowledge and science process skills in participants. Results revealed that youth participants not…

  20. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  1. International Conference on Emerging Research in Electronics, Computer Science and Technology

    CERN Document Server

    Sheshadri, Holalu; Padma, M

    2014-01-01

    PES College of Engineering is organizing an International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT-12) in Mandya and merging the event with Golden Jubilee of the Institute. The Proceedings of the Conference presents high quality, peer reviewed articles from the field of Electronics, Computer Science and Technology. The book is a compilation of research papers from the cutting-edge technologies and it is targeted towards the scientific community actively involved in research activities.

  2. A decision science approach for integrating social science in climate and energy solutions

    Science.gov (United States)

    Wong-Parodi, Gabrielle; Krishnamurti, Tamar; Davis, Alex; Schwartz, Daniel; Fischhoff, Baruch

    2016-06-01

    The social and behavioural sciences are critical for informing climate- and energy-related policies. We describe a decision science approach to applying those sciences. It has three stages: formal analysis of decisions, characterizing how well-informed actors should view them; descriptive research, examining how people actually behave in such circumstances; and interventions, informed by formal analysis and descriptive research, designed to create attractive options and help decision-makers choose among them. Each stage requires collaboration with technical experts (for example, climate scientists, geologists, power systems engineers and regulatory analysts), as well as continuing engagement with decision-makers. We illustrate the approach with examples from our own research in three domains related to mitigating climate change or adapting to its effects: preparing for sea-level rise, adopting smart grid technologies in homes, and investing in energy efficiency for office buildings. The decision science approach can facilitate creating climate- and energy-related policies that are behaviourally informed, realistic and respectful of the people whom they seek to aid.

  3. A linear algebraic approach to electron-molecule collisions

    International Nuclear Information System (INIS)

    Collins, L.A.; Schnieder, B.I.

    1982-01-01

    The linear algebraic approach to electron-molecule collisions is examined by firstly deriving the general set of coupled integrodifferential equations that describe electron collisional processes and then describing the linear algebraic approach for obtaining a solution to the coupled equations. Application of the linear algebraic method to static-exchange, separable exchange and effective optical potential, is examined. (U.K.)

  4. New Approaches to the Study of Students' Response to Science

    DEFF Research Database (Denmark)

    Krogh, Lars

    2011-01-01

    of science and school science. In this chapter I describe two new approaches to the study of students’ responses to school science, both pragmatic by nature, and combining perspectives from cultural research with a quantitative or a Mixed Methods methodology. The approaches have been applied to studies......’Students’ responses’ to science include their attitudes and internalization of science (e.g. valueing, identifying) as well as their choices and actions related to science. This broader conception has advantages over attitudes alone, when it comes to understanding students’ paths in and out...... of Physics in Danish upper secondary school, and though these targeted different aspects of students’ responses and applied highly different methods the results were found to complement each other. A study using the first approach related students’ attitudes towards physics to various types of Cultural...

  5. Health Sciences Patrons Use Electronic Books More than Print Books

    Directory of Open Access Journals (Sweden)

    Robin Elizabeth Miller

    2017-09-01

    Full Text Available A Review of: Li, J. (2016. Is it cost-effective to purchase print books when the equivalent e-book is available? Journal of Hospital Librarianship, 16(1, 40-48. http://dx.doi.org/10.1080/15323269.2016.1118288 Abstract Objective – To compare use of books held simultaneously in print and electronic formats. Design – Case study. Setting – A health sciences library at a public comprehensive university with a medical college in the southern United States. Subjects – Usage data for 60 books held by the library simultaneously in print and electronically. The titles were on standing order in print and considered “core” texts for clinical, instructional, or reference for health sciences faculty, students, and medical residents. Methods – Researchers collected usage data for 60 print titles from the integrated library system and compared the data to COUNTER reports for electronic versions of the same titles, for the period spanning 2010-2014. Main Results – Overall, the 60 e-book titles were used more than the print versions, with the electronic versions used a total of 370,695 times while the print versions were used 93 times during the time period being examined. Conclusion – The use of electronic books outnumbers the use of print books of the same title.

  6. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    Energy Technology Data Exchange (ETDEWEB)

    Abeyratne, S; Ahmed, S; Barber, D; Bisognano, J; Bogacz, A; Castilla, A; Chevtsov, P; Corneliussen, S; Deconinck, W; Degtiarenko, P; Delayen, J; Derbenev, Ya; DeSilva, S; Douglas, D; Dudnikov, V; Ent, R; Erdelyi, B; Evtushenko, P; Fujii, Yu; Filatov, Yury; Gaskell, D; Geng, R; Guzey, V; Horn, T; Hutton, A; Hyde, C; Johnson, R; Kim, Y; Klein, F; Kondratenko, A; Kondratenko, M; Krafft, G; Li, R; Lin, F; Manikonda, S; Marhauser, F; McKeown, R; Morozov, V; Dadel-Turonski, P; Nissen, E; Ostroumov, P; Pivi, M; Pilat, F; Poelker, M; Prokudin, A; Rimmer, R; Satogata, T; Sayed, H; Spata, M; Sullivan, M; Tennant, C; Terzic, B; Tiefenback, M; Wang, M; Wang, S; Weiss, C; Yunn, B

    2012-08-01

    beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10{sup 34} cm{sup -2}s{sup -1} per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10{sup 34} cm{sup -2}s{sup -1} at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R&D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF

  7. Science Requirements and Conceptual Design for a Polarized Medium Energy Electron-Ion Collider at Jlab

    International Nuclear Information System (INIS)

    Abeyratne, S.; Accardi, A.; Ahmed, S.; Barber, D.; Bisognano, J.; Bogacz, A.; Castilla, A.; Chevtsov, P.; Corneliussen, S.; Deconinck, W.; Degtiarenko, P.; Delayen, J.; Derbenev, Ya.; DeSilva, S.; Douglas, D.; Dudnikov, V.; Ent, R.; Erdelyi, B.; Evtushenko, P.; Fujii, Yu; Filatov, Yury; Gaskell, D.; Geng, R.; Guzey, V.; Horn, T.; Hutton, A.; Hyde, C.; Johnson, R.; Kim, Y.; Klein, F.; Kondratenko, A.; Kondratenko, M.; Krafft, G.; Li, R.; Lin, F.; Manikonda, S.; Marhauser, F.; McKeown, R.; Morozov, V.; Dadel-Turonski, P.; Nissen, E.; Ostroumov, P.; Pivi, M.; Pilat, F.; Poelker, M.; Prokudin, A.; Rimmer, R.; Satogata, T.; Sayed, H.; Spata, M.; Sullivan, M.; Tennant, C.; Terzic, B.; Tiefenback, M.; Wang, H.; Wang, S.; Weiss, C.; Yunn, B.; Zhang, Y.

    2012-01-01

    beginning, the design studies at Jefferson Lab have focused on achieving high collider performance, particularly ultrahigh luminosities up to 10 34 cm -2 s -1 per detector with large acceptance, while maintaining high polarization for both the electron and light-ion beams. These are the two key performance requirements of a future electron-ion collider facility as articulated by the NSAC Long Range Plan. In MEIC, a new ion complex is designed specifically to deliver ion beams that match the high bunch repetition and highly polarized electron beam from CEBAF. During the last two years, both development of the science case and optimization of the machine design point toward a medium-energy electron-ion collider as the topmost goal for Jefferson Lab. The MEIC, with relatively compact collider rings, can deliver a luminosity above 10 34 cm -2 s -1 at a center-of-mass energy up to 65 GeV. It offers an electron energy up to 11 GeV, a proton energy up to 100 GeV, and corresponding energies per nucleon for heavy ions with the same magnetic rigidity. This design choice balances the scope of the science program, collider capabilities, accelerator technology innovation, and total project cost. An energy upgrade could be implemented in the future by adding two large collider rings housed in another large tunnel to push the center-of-mass energy up to or exceeding 140 GeV. After careful consideration of an alternative electron energy recovery linac on ion storage ring approach, a ring-ring collider scenario at high bunch repetition frequency was found to offer fully competitive performance while eliminating the uncertainties of challenging R and D on ampere-class polarized electron sources and many-pass energy-recovery linacs (ERLs). The essential new elements of an MEIC facility at Jefferson Lab are an electron storage ring and an entirely new, modern ion acceleration and storage complex. For the high-current electron collider ring, the upgraded 12 GeV CEBAF SRF linac will serve as a

  8. Two-process approach to electron beam welding control

    International Nuclear Information System (INIS)

    Lastovirya, V.N.

    1987-01-01

    The analysis and synthesis of multi-dimensional welding control systems, which require the usage of computers, should be conducted within the temporal range. From the general control theory point two approaches - one-process and two-process - are possible to electron beam welding. In case of two-process approach, subprocesses of heat source formation and direct metal melting are separated. Two-process approach leads to two-profile control system and provides the complete controlability of electron beam welding within the frameworks of systems with concentrated, as well as, with distributed parameters. Approach choice for the given problem solution is determined, first of all, by stability degree of heat source during welding

  9. Seeking Constructive Synergy: Design Science and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2013-01-01

    Information systems research and management science create knowledge which can be applied in organizations. Design science specifically aims at applying existing knowledge to solve interesting and relevant business problems and has been steadily gaining support in information systems research....... However, design science is not the only design-oriented framework. Accordingly, this raises the question of whether it is possible to compare the results obtained from different brands of design-oriented research. This paper contributes to answering this question by comparing two research approaches......, enabling mutual learning possibilities and suggesting improvements in transparency and rigor. The objective of this paper is to compare design science research with the constructive research approach. The conclusion is that the two approaches are compatible, save for details in practical requirements...

  10. Thomson, his discovery of the electron and the twentieth century science and technology

    International Nuclear Information System (INIS)

    Ahmad, N.

    1997-01-01

    Sir J. J. Thomson was the first to discover a subatomic particle i. e. electron. Due to this discovery he is remembered in the history as T he Atom Smasher . He was a great experimentalists and a devoted physicist. He himself, his son and his seven pupils earned Noble prizes on the basis of their scientific discoveries. The discovery of electron by Sir Thomson in 1897, at Cavendish Laboratory, has rewritten the entire physical science. Although electron has wide spread applications in almost every field, yet its exact nature is not fully known. This article briefly describes the life of Sir Thomson, his achievements and the impact of his discovery of electron on the twentieth century science and technology. (author)

  11. A logical approach to security in the context of Ambient Calculus

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Priami, Corrado

    2004-01-01

    A logical approach to security in the context of Ambient Calculus. Electronic Notes in Theoretical Computer Science, N 99:3-29, 2004......A logical approach to security in the context of Ambient Calculus. Electronic Notes in Theoretical Computer Science, N 99:3-29, 2004...

  12. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  13. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  14. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  15. Effective approaches for managing electronic records and archives

    CERN Document Server

    Dearstyne, Bruce W

    2006-01-01

    This is a book of fresh insights, perspectives, strategies, and approaches for managing electronic records and archives. The authors draw on first-hand experience to present practical solutions, including recommendations for building and sustaining strong electronic records programs.

  16. Quantum mechanics meets cognitive science: explanatory vs descriptive approaches

    NARCIS (Netherlands)

    Blutner, R.

    2010-01-01

    We reflect on several aspects of the general claim that a quantum-like approach to Cognitive Science is advantageous over classical approaches. The classical approaches refer to the symbolic approaches including models using a classical (Kolmogorov) probability calculus. The general claim seems to

  17. Systems approach to the design of the CCD sensors and camera electronics for the AIA and HMI instruments on solar dynamics observatory

    Science.gov (United States)

    Waltham, N.; Beardsley, S.; Clapp, M.; Lang, J.; Jerram, P.; Pool, P.; Auker, G.; Morris, D.; Duncan, D.

    2017-11-01

    Solar Dynamics Observatory (SDO) is imaging the Sun in many wavelengths near simultaneously and with a resolution ten times higher than the average high-definition television. In this paper we describe our innovative systems approach to the design of the CCD cameras for two of SDO's remote sensing instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI). Both instruments share use of a custom-designed 16 million pixel science-grade CCD and common camera readout electronics. A prime requirement was for the CCD to operate with significantly lower drive voltages than before, motivated by our wish to simplify the design of the camera readout electronics. Here, the challenge lies in the design of circuitry to drive the CCD's highly capacitive electrodes and to digitize its analogue video output signal with low noise and to high precision. The challenge is greatly exacerbated when forced to work with only fully space-qualified, radiation-tolerant components. We describe our systems approach to the design of the AIA and HMI CCD and camera electronics, and the engineering solutions that enabled us to comply with both mission and instrument science requirements.

  18. Science, a Psychological versus a Logical Approach in Teaching

    Science.gov (United States)

    Ediger, Marlow

    2015-01-01

    Under which approach do pupils attain more optimally, a logical versus a psychological procedure of instruction? Pupils do need to achieve well in a world of science. Science is all around us and pupils need to understand various principles and laws of science. Thus, teachers in the school curriculum must choose carefully objectives for pupil…

  19. Teaching science and ethics to undergraduates: a multidisciplinary approach.

    Science.gov (United States)

    McGowan, Alan H

    2013-06-01

    The teaching of the ethical implications of scientific advances in science courses for undergraduates has significant advantages for both science and non-science majors. The article describes three courses taught by the author as examples of the concept, and examines the disadvantages as well as the advantages. A significant advantage of this approach is that many students take the courses primarily because of the ethical component who would not otherwise take science. A disadvantage is less time in the course for the science; arguably, this is outweighed by the greater retention of the science when it is put into context.

  20. Electron momentum density and Compton profile by a semi-empirical approach

    Science.gov (United States)

    Aguiar, Julio C.; Mitnik, Darío; Di Rocco, Héctor O.

    2015-08-01

    Here we propose a semi-empirical approach to describe with good accuracy the electron momentum densities and Compton profiles for a wide range of pure crystalline metals. In the present approach, we use an experimental Compton profile to fit an analytical expression for the momentum densities of the valence electrons. This expression is similar to a Fermi-Dirac distribution function with two parameters, one of which coincides with the ground state kinetic energy of the free-electron gas and the other resembles the electron-electron interaction energy. In the proposed scheme conduction electrons are neither completely free nor completely bound to the atomic nucleus. This procedure allows us to include correlation effects. We tested the approach for all metals with Z=3-50 and showed the results for three representative elements: Li, Be and Al from high-resolution experiments.

  1. Physics in Films: A New Approach to Teaching Science

    OpenAIRE

    Efthimiou, Costas J.; Llewellyn, Ralph

    2004-01-01

    Over the past year and a half we have developed an innovative approach to the teaching of `Physical Science', a general education course typically found in the curricula of nearly every college and university. The new approach uses popular movies to illustrate the principles of physical science, analyzing individual scenes against the background of the fundamental physical laws. The impact of being able to understand why, in reality, the scene could or could not have occurred as depicted in t...

  2. NASA and COTS Electronics: Past Approach and Successes - Future Considerations

    Science.gov (United States)

    LaBel, Kenneth A.

    2018-01-01

    NASA has a long history of using commercial grade electronics in space. In this talk, a brief history of NASAâ's trends and approaches to commercial grade electronics focusing on processing and memory systems will be presented. This will include providing summary information on the space hazards to electronics as well as NASA mission trade space. We will also discuss developing recommendations for risk management approaches to Electrical, Electronic and Electromechanical (EEE) parts and reliability in space. The final portion of the talk will discuss emerging aerospace trends and the future for Commercial Off The Shelf (COTS) usage.

  3. After PISA--Real Approaches to Science in Wales

    Science.gov (United States)

    Jones, Verity

    2017-01-01

    As a teacher, author Verity Jones found for many years that the science knowledge and understanding of the children she taught in year 6 (age 10-11) was being compromised by the pressures of a government focus on maths and literacy and a short-sighted approach to how to teach those subjects in a cross-curricular way. As the science coordinator for…

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Vibrational excitation resulting from electron capture in LUMO of F2 and HCl - A treatment using the time-dependent wave packet approach. Bhavesh K Shandilya Manabendra Sarma Satrajit Adhikari Manoj K Mishra. Volume 124 Issue 1 January 2012 ...

  5. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    Science.gov (United States)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  6. Web Syndication Approaches for Sharing Primary Data in "Small Science" Domains

    Directory of Open Access Journals (Sweden)

    Eric C Kansa

    2010-06-01

    Full Text Available In some areas of science, sophisticated web services and semantics underlie "cyberinfrastructure". However, in "small science" domains, especially in field sciences such as archaeology, conservation, and public health, datasets often resist standardization. Publishing data in the small sciences should embrace this diversity rather than attempt to corral research into "universal" (domain standards. A growing ecosystem of increasingly powerful Web syndication based approaches for sharing data on the public Web can offer a viable approach. Atom Feed based services can be used with scientific collections to identify and create linkages across different datasets, even across disciplinary boundaries without shared domain standards.

  7. Study on quantum beam science by using ultra short electron pulse, FEL, and slow positron beam at ISIR (Institute of Science and Industrial Research), Osaka University

    International Nuclear Information System (INIS)

    Yoshida, Y.; Tagawa, S.; Okuda, S.; Honda, Y.; Kimura, N.; Yamamoto, T.; Isoyama, G.

    1995-01-01

    Three projects for quantum beam science, an ultra fast electron pulse, a free electron laser, and a slow positron beam, has been started by using 38 MeV L-band and 150 MeV S-band linacs at ISIR in Osaka University. Both study on the production of three beams and study on quantum material science by using three beams will play an important role in the beam science. (author)

  8. Hydrodynamic approach to electronic transport in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Narozhny, Boris N. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); Gornyi, Igor V. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Ioffe Physical Technical Institute, St. Petersburg (Russian Federation); Mirlin, Alexander D. [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe (Germany); Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Schmalian, Joerg [Institute for Theoretical Condensed Matter Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute for Solid State Physics, Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2017-11-15

    The last few years have seen an explosion of interest in hydrodynamic effects in interacting electron systems in ultra-pure materials. In this paper we briefly review the recent advances, both theoretical and experimental, in the hydrodynamic approach to electronic transport in graphene, focusing on viscous phenomena, Coulomb drag, non-local transport measurements, and possibilities for observing nonlinear effects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A pocket guide to electronic laboratory notebooks in the academic life sciences.

    Science.gov (United States)

    Dirnagl, Ulrich; Przesdzing, Ingo

    2016-01-01

    Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN) in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  10. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    International Nuclear Information System (INIS)

    Martins, Fernanda; Machado, Diana; Fernandes, Alberto; Ribeiro, Fernanda

    2015-01-01

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties

  11. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Fernanda, E-mail: mmartins@letras.up.pt; Machado, Diana, E-mail: mmartins@letras.up.pt; Fernandes, Alberto, E-mail: mmartins@letras.up.pt; Ribeiro, Fernanda, E-mail: mmartins@letras.up.pt [Faculdade de Letras da Universidade do Porto (Portugal)

    2015-02-09

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties.

  12. Topics in library and information science in Brazil: focus on electronic scientific journals

    Directory of Open Access Journals (Sweden)

    Marina Alves de Mendonça

    2016-04-01

    Full Text Available Accents the national electronic journals of library and information science with purpose of identifying the questions most debated in information science through the analysis of articles published from 2003 to 2013, in addition to detecting the subjects of the articles analyzed in order to detect thematic similarities and differences in the scope of interdisciplinarity, including the identification of "empty", i.e. important issues not contemplated. Include the library science journals for the reason of the relevant titles currently be originated of publications before dedicated to the library science and then concentrated on studies in information science. To achieve this quali-quantitative research, nature descriptive and case study, resort to documentary analysis and thematic content analysis as collection techniques and data analysis, respectively. Verifies that the increase in research in this field follows with the expansion of the Graduate Program in Information Science and expands as found in electronic journals, the means to intensify scientific communication and ratify interdisciplinary relations. Registers 48 themes, among which Management has the highest incidence (191 articles as opposed to the classes; Administration and Environment and Sustainability, both with only seven studies each. Library Science has the highest number of interdisciplinary relations. It is recommended that researchers in the field turn their attention to topics on the rise not yet explored in the context of information science, like Cognitive and Behavioral Studies; and Information Architecture, in view of the prospects for growth and contribution to the field.

  13. Division of information and quantum sciences

    International Nuclear Information System (INIS)

    2016-01-01

    The advent of the digital society where tremendous amount of information is electronically accessible has brought the intelligent information processing technologies indispensable. This division consists of seven departments; Information Science Departments (Knowledge Science, Intelligent Media, Architecture for Intelligence, Reasoning for Intelligence), Quantum Science Departments (Photonic and Electronic Materials, Semiconductor Electronics, and Advanced Electron Devices. The former four and the latter three departments aim to establish fundamental techniques to support the advanced digital society in terms of software and hardware technologies respectively. The departments on the former software technologies work on the task of computerizing the intelligent human information processing capability to help solving difficult engineering problems and assist intellectual activities. The departments on the latter hardware technologies pursue various approaches in the fields of electronic materials design and tailoring, surface physics, nanometer scale materials fabrication and characterization, semiconductor nanostructures for quantum devices, semiconductor-based new bio/chemical sensors, organic materials and biomolecules. We challenge to output world-widely significant achievements under our systematic cooperation, and further collaborate with researchers of domestic and overseas universities, research institutes and private companies. Moreover, we educate many graduate students belonging to Graduate School of Science (Department of Physics), Graduate School of Engineering (Department of Electrical, Electronic and Information Engineering, Department of Applied Physics), Graduate School of Engineering Science (Department of Materials Engineering Science), and Graduate School of Information Science and Technology (Department of Computer Science, Department of Information and Physical Sciences) under the aim to grow young researchers having both advanced knowledge and

  14. Photons in Natural and Life Sciences An Interdisciplinary Approach

    CERN Document Server

    Lewerenz, Hans-Joachim

    2012-01-01

    The book describes first the principle photon generation processes from nuclear reactions, electron motion and from discrete quantum transitions. It then focuses on the use of photons in various selected fields of modern natural and life sciences. It bridges disciplines such as physics, chemistry, earth- and materials science, proteomics, information technology, photoelectrochemistry, photosynthesis and spintronics. Advanced light sources and their use in natural and life sciences are emphasized and the effects related to the quantum nature of photons (quantum computing, teleportation) are described. The content encompasses among many other examples the role of photons on the origin of life and on homochirality in biology, femtosecond laser slicing, photothermal cancer therapy, the use of gamma rays in materials science, photoelectrochemical surface conditioning, quantum information aspects and photo-spintronics. The book is written for scientists and graduate students from all related disciplines who are int...

  15. NASA/NOAA: Earth Science Electronic Theater 1999

    Science.gov (United States)

    Hasler, A. Fritz

    1999-01-01

    The Electronic Theater (E-theater) presents visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI-Onyx Graphics-Supercomputer are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science. Highlights will be shown from the NASA hurricane visualization resource video tape that has been used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS. The visualizations are produced by the NASA Goddard Visualization and Analysis Laboratory (VAL/912), and Scientific Visualization Studio (SVS/930), as well as other Goddard and NASA groups using NASA, NOAA, ESA, and NASDA Earth science datasets. Visualizations will be shown from the Earth Science E-Theater 1999 recently presented in Tokyo, Paris, Munich, Sydney, Melbourne, Honolulu, Washington, New York, and Dallas. The presentation Jan 11-14 at the AMS meeting in Dallas used a 4-CPU SGI/CRAY Onyx Infinite Reality Super Graphics Workstation with 8 GB RAM and a Terabyte Disk at 3840 X 1024 resolution with triple synchronized BarcoReality 9200 projectors on a 60ft wide screen. Visualizations will also be featured from the new Earth Today Exhibit which was opened by Vice President Gore on July 2, 1998 at the Smithsonian Air & Space museum in Washington, as well as those presented for possible use at the American Museum of Natural History (NYC), Disney EPCOT, and other venues. New methods are demonstrated for visualizing, interpreting, comparing, organizing and analyzing immense HyperImage remote sensing datasets and three dimensional numerical model results. We call the data from many

  16. Longitudinal analysis of standardized test scores of students in the Science Writing Heuristic approach

    Science.gov (United States)

    Chanlen, Niphon

    The purpose of this study was to examine the longitudinal impacts of the Science Writing Heuristic (SWH) approach on student science achievement measured by the Iowa Test of Basic Skills (ITBS). A number of studies have reported positive impact of an inquiry-based instruction on student achievement, critical thinking skills, reasoning skills, attitude toward science, etc. So far, studies have focused on exploring how an intervention affects student achievement using teacher/researcher-generated measurement. Only a few studies have attempted to explore the long-term impacts of an intervention on student science achievement measured by standardized tests. The students' science and reading ITBS data was collected from 2000 to 2011 from a school district which had adopted the SWH approach as the main approach in science classrooms since 2002. The data consisted of 12,350 data points from 3,039 students. The multilevel model for change with discontinuity in elevation and slope technique was used to analyze changes in student science achievement growth trajectories prior and after adopting the SWH approach. The results showed that the SWH approach positively impacted students by initially raising science achievement scores. The initial impact was maintained and gradually increased when students were continuously exposed to the SWH approach. Disadvantaged students who were at risk of having low science achievement had bigger benefits from experience with the SWH approach. As a result, existing problematic achievement gaps were narrowed down. Moreover, students who started experience with the SWH approach as early as elementary school seemed to have better science achievement growth compared to students who started experiencing with the SWH approach only in high school. The results found in this study not only confirmed the positive impacts of the SWH approach on student achievement, but also demonstrated additive impacts found when students had longitudinal experiences

  17. A multi-frequency approach to free electron lasers driven by short electron bunches

    International Nuclear Information System (INIS)

    Piovella, Nicola

    1997-01-01

    A multi-frequency model for free electron lasers (FELs), based on the Fourier decomposition of the radiation field coupled with the beam electrons, is discussed. We show that the multi-frequency approach allows for an accurate description of the evolution of the radiation spectrum, also when the FEL is driven by short electron bunches, of arbitrary longitudinal profile. We derive from the multi-frequency model, by averaging over one radiation period, the usual FEL equations modelling the slippage between radiation and particles and describing the super-radiant regime in high-gain FELs. As an example of application of the multi-frequency model, we discuss the coherent spontaneous emission (CSE) from short electron bunches

  18. Design science research as research approach in doctoral studies

    CSIR Research Space (South Africa)

    Kotzé, P

    2015-08-01

    Full Text Available Since the use of design science research (DSR) gained momentum as a research approach in information systems (IS), the adoption of a DSR approach in postgraduate studies became more acceptable. This paper reflects on a study to investigate how a...

  19. A study of the quality and effectiveness of the Airway Science Electronic Systems program to meet the workforce needs of the Federal Aviation Administration

    Science.gov (United States)

    Hedge, Clarence Alvin

    1999-11-01

    Scope and method of study. The purpose of the study was to determine the quality and effectiveness of the Airway Science Electronics Systems program to meet the workforce needs of the Federal Aviation Administration (FAA). The study was to research traditional FAA hired electronics technicians and Airway Science degree graduate electronics technicians. More specially, the study sought (1) to compare the traditional electronics training course requirements to the Airway Science curriculum course requirements, (2) to examine the ratio of Airway Science Electronics Systems graduates to graduates of other Airway Science options and also related electronics training and (3) to determine strengths and weaknesses in the Airway Science Electronics System. Findings and conclusions. The data were obtained by questionnaires sent to (1) the 61 recognized Airway Science Institutions, (2) personal interviews with department chairmen who are members of the Oklahoma City Aviation Aerospace Alliance and (3) personal interviews were also conducted with Electronics Technicians and supervisors at the Mike Monroney Aeronautical Center, Oklahoma City, Oklahoma. It was found that the present area of airway science curriculum encompasses Airway Science Management, Airway Computer Science, Airway Electronics Systems, Aviation Maintenance Management and Aircraft Systems Management. Programs in airway science are designed specifically to help prepare individuals for meeting the requirements for a strong educational background for tomorrow's aviation leaders. The data indicated that the majority of airway science students pursue careers with the FAA but also find even greater opportunities in industry. The data also shows that in the surveyed schools with approved airway science programs, Airway Science Management was the most frequent offered program.

  20. Science-Driven Approach to Disaster Risk and Crisis Management

    Science.gov (United States)

    Ismail-Zadeh, A.

    2014-12-01

    Disasters due to natural extreme events continue to grow in number and intensity. Disaster risk and crisis management requires long-term planning, and to undertake that planning, a science-driven approach is needed to understand and assess disaster risks and to help in impact assessment and in recovery processes after a disaster. Science is used in assessments and rapid modeling of the disaster impact, in forecasting triggered hazards and risk (e.g., a tsunami or a landslide after a large earthquake), in contacts with and medical treatment of the affected population, and in some other actions. At the stage of response to disaster, science helps to analyze routinely the disaster happened (e.g., the physical processes led to this extreme event; hidden vulnerabilities; etc.) At the stage of recovery, natural scientists improve the existing regional hazard assessments; engineers try to use new science to produce new materials and technologies to make safer houses and infrastructure. At the stage of disaster risk mitigation new scientific methods and approaches are being developed to study natural extreme events; vulnerability of society is periodically investigated, and the measures for increasing the resilience of society to extremes are developed; existing disaster management regulations are improved. At the stage of preparedness, integrated research on disaster risks should be developed to understand the roots of potential disasters. Enhanced forecasting and early warning systems are to be developed reducing predictive uncertainties, and comprehensive disaster risk assessment is to be undertaken at local, regional, national and global levels. Science education should be improved by introducing trans-disciplinary approach to disaster risks. Science can help society by improving awareness about extreme events, enhancing risk communication with policy makers, media and society, and assisting disaster risk management authorities in organization of local and regional

  1. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    This report summarizes a 2011 workshop that addressed the potential role of rapid, time-resolved electron microscopy measurements in accelerating the solution of important scientific and technical problems. A series of U.S. Department of Energy (DOE) and National Academy of Science workshops have highlighted the critical role advanced research tools play in addressing scientific challenges relevant to biology, sustainable energy, and technologies that will fuel economic development without degrading our environment. Among the specific capability needs for advancing science and technology are tools that extract more detailed information in realistic environments (in situ or operando) at extreme conditions (pressure and temperature) and as a function of time (dynamic and time-dependent). One of the DOE workshops, Future Science Needs and Opportunities for Electron Scattering: Next Generation Instrumentation and Beyond, specifically addressed the importance of electron-based characterization methods for a wide range of energy-relevant Grand Scientific Challenges. Boosted by the electron optical advancement in the last decade, a diversity of in situ capabilities already is available in many laboratories. The obvious remaining major capability gap in electron microscopy is in the ability to make these direct in situ observations over a broad spectrum of fast (µs) to ultrafast (picosecond [ps] and faster) temporal regimes. In an effort to address current capability gaps, EMSL, the Environmental Molecular Sciences Laboratory, organized an Ultrafast Electron Microscopy Workshop, held June 14-15, 2011, with the primary goal to identify the scientific needs that could be met by creating a facility capable of a strongly improved time resolution with integrated in situ capabilities. The workshop brought together more than 40 leading scientists involved in applying and/or advancing electron microscopy to address important scientific problems of relevance to DOE’s research

  2. Constructive Synergy in Design Science Research: A Comparative Analysis of Design Science Research and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2014-01-01

    Information systems research is focused on creating knowledge which can be applied in organizations. Design science research, which specifically aims at applying existing knowledge to solve interesting and relevant business problems, has been steadily gaining support in information systems research....... However, design science research is not the only design-oriented research framework available. Accordingly, this raises the question of whether there is something to learn between the different approaches. This paper contributes to answering this question by comparing design science research...... with the constructive research approach. The conclusion is that the two approaches are similar and compatible, save for details in practical requirements and partly underlying philosophical assumptions. The main finding that arises from the comparison is, however, that there is a potential problem in claiming knowledge...

  3. Constructive Synergy in Design Science Research: A Comparative Analysis of Design Science Research and the Constructive Research Approach

    DEFF Research Database (Denmark)

    Piirainen, Kalle; Gonzalez, Rafael A.

    2014-01-01

    with the constructive research approach. The conclusion is that the two approaches are similar and compatible, save for details in practical requirements and partly underlying philosophical assumptions. The main finding that arises from the comparison is, however, that there is a potential problem in claiming knowledge......Information systems research is focused on creating knowledge which can be applied in organizations. Design science research, which specifically aims at applying existing knowledge to solve interesting and relevant business problems, has been steadily gaining support in information systems research....... However, design science research is not the only design-oriented research framework available. Accordingly, this raises the question of whether there is something to learn between the different approaches. This paper contributes to answering this question by comparing design science research...

  4. Teaching science to English Language Learners: Instructional approaches of high school teachers

    Science.gov (United States)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  5. Complementary Health Approaches for Smoking Cessation: What the Science Says

    Science.gov (United States)

    ... health professionals Complementary Health Approaches for Smoking Cessation: What the Science Says Share: November 2017 Mind and Body Practices ... as a smoking cessation treatment, authorizing Achieve Life Science, Inc. to proceed with clinical ... What Does the Research Show? A 2016 Cochrane review ...

  6. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  7. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  8. Integrated Nationwide Electronic Health Records system: Semi-distributed architecture approach.

    Science.gov (United States)

    Fragidis, Leonidas L; Chatzoglou, Prodromos D; Aggelidis, Vassilios P

    2016-11-14

    The integration of heterogeneous electronic health records systems by building an interoperable nationwide electronic health record system provides undisputable benefits in health care, like superior health information quality, medical errors prevention and cost saving. This paper proposes a semi-distributed system architecture approach for an integrated national electronic health record system incorporating the advantages of the two dominant approaches, the centralized architecture and the distributed architecture. The high level design of the main elements for the proposed architecture is provided along with diagrams of execution and operation and data synchronization architecture for the proposed solution. The proposed approach effectively handles issues related to redundancy, consistency, security, privacy, availability, load balancing, maintainability, complexity and interoperability of citizen's health data. The proposed semi-distributed architecture offers a robust interoperability framework without healthcare providers to change their local EHR systems. It is a pragmatic approach taking into account the characteristics of the Greek national healthcare system along with the national public administration data communication network infrastructure, for achieving EHR integration with acceptable implementation cost.

  9. Grid-based electronic structure calculations: The tensor decomposition approach

    Energy Technology Data Exchange (ETDEWEB)

    Rakhuba, M.V., E-mail: rakhuba.m@gmail.com [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Oseledets, I.V., E-mail: i.oseledets@skoltech.ru [Skolkovo Institute of Science and Technology, Novaya St. 100, 143025 Skolkovo, Moscow Region (Russian Federation); Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkina St. 8, 119333 Moscow (Russian Federation)

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  10. Certainty and Uncertainty in the Practice of Science: Electrons, Muons and Taus

    International Nuclear Information System (INIS)

    Perl, Martin

    1999-01-01

    During the past one hundred years three related elementary particles-the electron, the muon, and the tau-were discovered by very different scientific techniques. The author, who received the Wolf Prize and the Nobel Prize for the discovery of the tau, uses this history to discuss certainty and uncertainty in the practice of science. While the emphasis is on the practice of scientific research, the paper also explains for the non-physicist some basic ideas in elementary particle science

  11. Certainty and Uncertainty in the Practice of Science: Electrons, Muons and Taus

    Energy Technology Data Exchange (ETDEWEB)

    Perl, Martin

    1999-01-29

    During the past one hundred years three related elementary particles-the electron, the muon, and the tau-were discovered by very different scientific techniques. The author, who received the Wolf Prize and the Nobel Prize for the discovery of the tau, uses this history to discuss certainty and uncertainty in the practice of science. While the emphasis is on the practice of scientific research, the paper also explains for the non-physicist some basic ideas in elementary particle science.

  12. Developing a Scientific Virtue-Based Approach to Science Ethics Training.

    Science.gov (United States)

    Pennock, Robert T; O'Rourke, Michael

    2017-02-01

    Responsible conduct of research training typically includes only a subset of the issues that ought to be included in science ethics and sometimes makes ethics appear to be a set of externally imposed rules rather than something intrinsic to scientific practice. A new approach to science ethics training based upon Pennock's notion of the scientific virtues may help avoid such problems. This paper motivates and describes three implementations-theory-centered, exemplar-centered, and concept-centered-that we have developed in courses and workshops to introduce students to this scientific virtue-based approach.

  13. A Discipline-Specific Approach to the History of U.S. Science Education

    Science.gov (United States)

    Otero, Valerie K.; Meltzer, David E.

    2017-01-01

    Although much has been said and written about the value of using the history of science in teaching science, relatively little is available to guide educators in the various science disciplines through the educational history of their own discipline. Through a discipline-specific approach to a course on the history of science education in the…

  14. Euler European Libraries and Electronic Resources in Mathematical Sciences

    CERN Document Server

    The Euler Project. Karlsruhe

    The European Libraries and Electronic Resources (EULER) Project in Mathematical Sciences provides the EulerService site for searching out "mathematical resources such as books, pre-prints, web-pages, abstracts, proceedings, serials, technical reports preprints) and NetLab (for Internet resources), this outstanding engine is capable of simple, full, and refined searches. It also offers a browse option, which responds to entries in the author, keyword, and title fields. Further information about the Project is provided at the EULER homepage.

  15. Approaches To Teaching Science in the Jordanian Primary School.

    Science.gov (United States)

    Qualter, Anne; Abu-Hola, I. R. A.

    2000-01-01

    Reports on a study of the influence of different approaches to teaching units from the Jordanian science curriculum on over 600 students from grades 6, 9, and 10. Trains a small sample of male and female teachers in the use of cooperative learning and lecture-demonstration approaches to teaching. (Contains 17 references.) (Author/YDS)

  16. Reference Data Layers for Earth and Environmental Science: History, Frameworks, Science Needs, Approaches, and New Technologies

    Science.gov (United States)

    Lenhardt, W. C.

    2015-12-01

    Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.

  17. Transmission electron microscopy a textbook for materials science

    CERN Document Server

    Williams, David B

    1996-01-01

    Electron microscopy has revolutionized our understanding the extraordinary intellectual demands required of the mi­ of materials by completing the processing-structure-prop­ croscopist in order to do the job properly: crystallography, erties links down to atomistic levels. It now is even possible diffraction, image contrast, inelastic scattering events, and to tailor the microstructure (and meso structure ) of materials spectroscopy. Remember, these used to be fields in them­ to achieve specific sets of properties; the extraordinary abili­ selves. Today, one has to understand the fundamentals ties of modem transmission electron microscopy-TEM­ of all of these areas before one can hope to tackle signifi­ instruments to provide almost all of the structural, phase, cant problems in materials science. TEM is a technique of and crystallographic data allow us to accomplish this feat. characterizing materials down to the atomic limits. It must Therefore, it is obvious that any curriculum in modem mate­ be use...

  18. Secondary electron emission yield in the limit of low electron energy

    CERN Document Server

    Andronov, A.N.; Kaganovich, I.D.; Startsev, E.A.; Raitses, Y.; Demidov, V.I.

    2013-04-22

    Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the reflectivity of very low energy electrons from solid surface approaches unity in the limit of zero electron energy2,3,4, If this was indeed the case, this effect would have profound implications on the formation of electron clouds in particle accelerators,2-4 plasma measurements with electrostatic Langmuir probes, and operation of Hall plasma thrusters for spacecraft propulsion5,6. It appears that, the proposed high electron reflectivity at low electron energies contradicts to numerous previous experimental studies of the secondary electron emission7. The goal of this note is to discuss possible causes of these contradictions.

  19. AREAL low energy electron beam applications in life and materials sciences

    Energy Technology Data Exchange (ETDEWEB)

    Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Yerevan State University, 0025 Yerevan (Armenia); Aroutiounian, R.M. [Yerevan State University, 0025 Yerevan (Armenia); Amatuni, G.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Aloyan, L.R.; Aslanyan, L.G. [Yerevan State University, 0025 Yerevan (Armenia); Avagyan, V.Sh. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Babayan, N.S. [Yerevan State University, 0025 Yerevan (Armenia); Institute of Molecular Biology NAS, 0014 Yerevan (Armenia); Buniatyan, V.V. [State Engineering University of Armenia, 0009 Yerevan (Armenia); Dalyan, Y.B.; Davtyan, H.D. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Derdzyan, M.V. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Grigoryan, B.A. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Grigoryan, N.E. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hakobyan, L.S. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Haroutyunian, S.G. [Yerevan State University, 0025 Yerevan (Armenia); Harutiunyan, V.V. [A.I. Alikhanyan National Science Laboratory (YerPhi), 0036 Yerevan (Armenia); Hovhannesyan, K.L. [Institute for Physical Research NAS, 0203 Ashtarak (Armenia); Khachatryan, V.G. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Martirosyan, N.W. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); State Engineering University of Armenia, 0009 Yerevan (Armenia); Melikyan, G.S. [State Engineering University of Armenia, 0009 Yerevan (Armenia); and others

    2016-09-01

    The AREAL laser-driven RF gun provides 2–5 MeV energy ultrashort electron pulses for experimental study in life and materials sciences. We report the first experimental results of the AREAL beam application in the study of molecular-genetic effects, silicon-dielectric structures, ferroelectric nanofilms, and single crystals for scintillators.

  20. X-ray, neutron, and electron scattering. Report of a materials sciences workshop

    International Nuclear Information System (INIS)

    1977-08-01

    The ERDA Workshop on X-ray, Neutron, and Electron Scattering to assess needs and establish priorities for energy-related basic research on materials. The general goals of the Workshop were: (1) to review various energy technologies where x-ray, neutron, and electron scattering techniques might make significant contributions, (2) to identify present and future materials problems in the energy technologies and translate these problems into requirements for basic research by x-ray, neutron, and electron scattering techniques, (3) to recommend research areas utilizing these three scattering techniques that should be supported by the DPR Materials Sciences Program, and (4) to assign priorities to these research areas

  1. Integrating systems Approaches into Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Westerhoff, H.V.; Mosekilde, Erik; Noe, C. R.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose...... of the conference was to promote the ‘Integration of Systems Approaches into Pharmaceutical Sciences’ in view of optimising the development of new effective drugs. And a challenge this is, considering both the high attrition rates in the pharmaceutical industry and the failure of finding definitive drug solutions...... for many of the diseases that plague mankind today. The conference was co-sponsored by the American College of Clinical Pharmacology, the European Center for Pharmaceutical Medicine, and the Swiss Society of Pharmaceutical Sciences and, besides representatives from the European Regulatory Agencies and FDA...

  2. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    Science.gov (United States)

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  3. How to Reconcile the Multiculturalist and Universalist Approaches to Science Education

    Science.gov (United States)

    Hansson, Sven Ove

    2018-01-01

    The "multiculturalist" and "universalist" approaches to science education both fail to recognize the strong continuities between modern science and its forerunners in traditional societies. Various fact-finding practices in indigenous cultures exhibit the hallmarks of scientific investigations, such as collectively achieved…

  4. Tactical Approaches for Trading Science Objectives Against Measurements and Mission Design: Science Traceability Techniques at the Jet Propulsion Laboratory

    Science.gov (United States)

    Nash, A. E., III

    2017-12-01

    The most common approaches to identifying the most effective mission design to maximize science return from a potential set of competing alternative design approaches are often inefficient and inaccurate. Recently, Team-X at the Jet Propulsion Laboratory undertook an effort to improve both the speed and quality of science - measurement - mission design trade studies. We will report on the methodology & processes employed and their effectiveness in trade study speed and quality. Our results indicate that facilitated subject matter expert peers are the keys to speed and quality improvements in the effectiveness of science - measurement - mission design trade studies.

  5. Electronic Science Seminar

    Directory of Open Access Journals (Sweden)

    Geidarov P.Sh.

    2015-09-01

    Full Text Available The structure of electronic scientific seminar, which provides a high level of quality of the objectivity in the evaluation of scientific papers, including dissertations, is described. Conditions for the implementation of electronic scientific seminar are also considered.

  6. Toward Environmentally Robust Organic Electronics: Approaches and Applications.

    Science.gov (United States)

    Lee, Eun Kwang; Lee, Moo Yeol; Park, Cheol Hee; Lee, Hae Rang; Oh, Joon Hak

    2017-11-01

    Recent interest in flexible electronics has led to a paradigm shift in consumer electronics, and the emergent development of stretchable and wearable electronics is opening a new spectrum of ubiquitous applications for electronics. Organic electronic materials, such as π-conjugated small molecules and polymers, are highly suitable for use in low-cost wearable electronic devices, and their charge-carrier mobilities have now exceeded that of amorphous silicon. However, their commercialization is minimal, mainly because of weaknesses in terms of operational stability, long-term stability under ambient conditions, and chemical stability related to fabrication processes. Recently, however, many attempts have been made to overcome such instabilities of organic electronic materials. Here, an overview is provided of the strategies developed for environmentally robust organic electronics to overcome the detrimental effects of various critical factors such as oxygen, water, chemicals, heat, and light. Additionally, molecular design approaches to π-conjugated small molecules and polymers that are highly stable under ambient and harsh conditions are explored; such materials will circumvent the need for encapsulation and provide a greater degree of freedom using simple solution-based device-fabrication techniques. Applications that are made possible through these strategies are highlighted. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Facilitating long-term changes in student approaches to learning science.

    Science.gov (United States)

    Buchwitz, Brian J; Beyer, Catharine H; Peterson, Jon E; Pitre, Emile; Lalic, Nevena; Sampson, Paul D; Wakimoto, Barbara T

    2012-01-01

    Undergraduates entering science curricula differ greatly in individual starting points and learning needs. The fast pace, high enrollment, and high stakes of introductory science courses, however, limit students' opportunities to self-assess and modify learning strategies. The University of Washington's Biology Fellows Program (BFP) intervenes through a 20-session, premajors course that introduces students to the rigor expected of bioscience majors and assists their development as science learners. This study uses quantitative and qualitative approaches to assess whether the 2007-2009 BFP achieved its desired short- and long-term impacts on student learning. Adjusting for differences in students' high school grade point average and Scholastic Aptitude Test scores, we found that participation in the BFP was associated with higher grades in two subsequent gateway biology courses, across multiple quarters and instructors. Two to 4 yr after participating in the program, students attributed changes in how they approached learning science to BFP participation. They reported having learned to "think like a scientist" and to value active-learning strategies and learning communities. In addition, they reported having developed a sense of belonging in bioscience communities. The achievement of long-term impacts for a short-term instructional investment suggests a practical means to prepare diverse students for the rigors of science curricula.

  8. Comparison of Science-Technology-Society Approach and Textbook Oriented Instruction on Students' Abilities to Apply Science Concepts

    Science.gov (United States)

    Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.

    2017-01-01

    It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…

  9. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  10. Practical work in secondary science a minds-on approach

    CERN Document Server

    Abrahams, Ian

    2011-01-01

    Practical work is an essential feature of secondary science education. However, questions have been raised by some science educators about its effectiveness as a teaching and learning strategy. Whilst such an approach is generally effective in getting pupils to do things with objects and materials, it is seen as relatively ineffective in developing their conceptual understanding of the associated scientific ideas and concepts. Ian Abrahams argues that this is because it is practiced as a 'hands-on' rather than 'minds-on' activity. Abrahams draws together theory and practice on effective teaching and learning in practical work in science - covering biology, chemistry and physics. He provides clear guidance to ensure that students are encouraged and supported to be 'minds-on' as well as a 'hands-on' so that they can make the most of this learning experience. An invaluable text for inspiringaspiring andexperienced secondary science professionals, especially for those on M-level secondary science PGCE programmes.

  11. A sociohistorical examination of George Herbert Mead's approach to science education.

    Science.gov (United States)

    Edwards, Michelle L

    2016-07-01

    Although George Herbert Mead is widely known for his social psychological work, his views on science education also represent a significant, yet sometimes overlooked contribution. In a speech delivered in March 1906 entitled "The Teaching of Science in College," Mead calls for cultural courses on the sciences, such as sociology of science or history of science courses, to increase the relevancy of natural and physical science courses for high school and university students. These views reflect Mead's perspective on a number of traditional dualisms, including objectivity versus subjectivity and the social sciences versus natural and physical sciences. Taking a sociohistorical outlook, I identify the context behind Mead's approach to science education, which includes three major influences: (1) German intellectual thought and the Methodenstreit debate, (2) pragmatism and Darwin's theory of evolution, and (3) social reform efforts in Chicago and the General Science Movement. © The Author(s) 2014.

  12. Communicating Science; a collaborative approach through Art, Dance, Music and Science

    Science.gov (United States)

    Smart, Sarah-Jane; Mortimer, Hugh

    2016-04-01

    A collaborative approach to communicating our amazing science. RAL Space at the Rutherford Appleton Lab, has initiated a unique collaboration with a team of award-winning performing artists with the aim of making space science research engaging and accessible to a wide audience. The collaboration has two distinct but connected strands one of which is the development of a contemporary dance work inspired by solar science and including images and data from the Space Physics Division of STFC RAL Space. The work has been commissioned by Sadler's Wells, one of the world's leading dance venues. It will be created by choreographer Alexander Whitley, video artist Tal Rosner and composers Ella Spira and Joel Cadbury and toured throughout the UK and internationally by the Alexander Whitley Dance Company (AWDC). The work will come about through collaboration with the work of the scientists of RAL Space and in particular the SOHO, CDS and STEREO missions, taking a particular interest in space weather. Choreographer Alexander Whitley and composers Ella Spira and Joel Cadbury will take their inspiration from the images and data that are produced by the solar science within RAL Space. Video artist Tal Rosner will use these spectacular images to create an atmospheric backdrop to accompany the work, bringing the beauty and wonder of space exploration to new audiences. Funding for the creation and touring of the work will be sought from Arts Council England, the British Council, partner organisations, trusts and foundations and private donors.The world premiere of the work will take place at Sadler's Wells in June 2017. It will then tour throughout the UK and internationally to theatres, science conferences and outreach venues with the aim of bringing the work of STFC RAL Space and the science behind solar science and space weather to new audiences. An education programme will combine concepts of choreography and space science aimed at young people in year 5 Key Stage 2 and be

  13. Nanomedical science and laser-driven particle acceleration: promising approaches in the prethermal regime

    Science.gov (United States)

    Gauduel, Y. A.

    2017-05-01

    A major challenge of spatio-temporal radiation biomedicine concerns the understanding of biophysical events triggered by an initial energy deposition inside confined ionization tracks. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances in real-time radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to advanced techniques of ultrafast TW laser-plasma accelerator. Recent advances of powerful TW laser sources ( 1019 W cm-2) and laser-plasma interactions providing ultra-short relativistic particle beams in the energy domain 5-200 MeV open promising opportunities for the development of high energy radiation femtochemistry (HERF) in the prethermal regime of secondary low-energy electrons and for the real-time imaging of radiation-induced biomolecular alterations at the nanoscopic scale. New developments would permit to correlate early radiation events triggered by ultrashort radiation sources with a molecular approach of Relative Biological Effectiveness (RBE). These emerging research developments are crucial to understand simultaneously, at the sub-picosecond and nanometric scales, the early consequences of ultra-short-pulsed radiation on biomolecular environments or integrated biological entities. This innovating approach would be applied to biomedical relevant concepts such as the emerging domain of real-time nanodosimetry for targeted pro-drug activation and pulsed radio-chimiotherapy of cancers.

  14. A Gendered Approach to Science Ethics for US and UK Physicists.

    Science.gov (United States)

    Ecklund, Elaine Howard; Di, Di

    2017-02-01

    Some research indicates that women professionals-when compared to men-may be more ethical in the workplace. Existing literature that discusses gender and ethics is confined to the for-profit business sector and primarily to a US context. In particular, there is little attention paid to gender and ethics in science professions in a global context. This represents a significant gap, as science is a rapidly growing and global professional sector, as well as one with ethically ambiguous areas. Adopting an international comparative perspective, this paper relies on 121 semi-structured interviews with US and UK academic physicists to examine how physicists perceive the impact of gender on science ethics. Findings indicate that some US and UK physicists believe that female scientists handle ethical issues within science in a feminine way whereas their male colleagues approach ethics in a masculine way. Some of these physicists further claim that these different approaches to science ethics lead to male and female scientists' different levels of competitiveness in academic physics. In both the US and the UK, there are "gender-blind" physicists, who do not think gender is related to professional ethics. Relying on physicists' nuanced descriptions this paper contributes to the current understanding of gender and science and engineering ethics.

  15. Parallel science and engineering applications the Charm++ approach

    CERN Document Server

    Kale, Laxmikant V

    2016-01-01

    Developed in the context of science and engineering applications, with each abstraction motivated by and further honed by specific application needs, Charm++ is a production-quality system that runs on almost all parallel computers available. Parallel Science and Engineering Applications: The Charm++ Approach surveys a diverse and scalable collection of science and engineering applications, most of which are used regularly on supercomputers by scientists to further their research. After a brief introduction to Charm++, the book presents several parallel CSE codes written in the Charm++ model, along with their underlying scientific and numerical formulations, explaining their parallelization strategies and parallel performance. These chapters demonstrate the versatility of Charm++ and its utility for a wide variety of applications, including molecular dynamics, cosmology, quantum chemistry, fracture simulations, agent-based simulations, and weather modeling. The book is intended for a wide audience of people i...

  16. Exploring new frontiers of electronic publishing in biomedical science.

    Science.gov (United States)

    Ng, K H

    2009-03-01

    Publishing is a hallmark of good scientific research. The aim of publishing is to disseminate new research knowledge and findings as widely as possible in a timely and efficient manner. Scientific publishing has evolved over the years with the advent of new technologies and demands. This paper presents a brief discussion on the history and status of electronic publishing. The Open Access Initiative was created with the aim of overcoming various limitations faced by traditional publishing access models. Innovations have opened up possibilities for electronic publishing to increase the accessibility, visibility, interactivity and usability of research. A glimpse of the future publishing landscape has revealed that scientific communication and research will not remain the same. The internet and advances in information technology will have an impact on the research landscape, scholarly publishing, research policy and funding, dissemination of knowledge, and the progress of science as a whole.

  17. Electronic structure of a striped nickelate studied by the exact exchange for correlated electrons (EECE) approach

    KAUST Repository

    Schwingenschlögl, Udo

    2009-12-01

    Motivated by a RIXS study of Wakimoto, et al.(Phys. Rev. Lett., 102 (2009) 157001) we use density functional theory to analyze the magnetic order in the nickelate La5/3Sr1/3NiO4 and the details of its crystal and electronic structure. We compare the generalized gradient approximation to the hybrid functional approach of exact exchange for correlated electrons (EECE). In contrast to the former, the latter reproduces the insulating state of the compound and the midgap states. The EECE approach, in general, appears to be appropriate for describing stripe phases in systems with orbital degrees of freedom. Copyright © EPLA, 2009.

  18. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  19. NATURAL SCIENCE AT SCHOOL: MODERN APPROACHES TO THE DIFFERENTIATED STUDY

    Directory of Open Access Journals (Sweden)

    Dechtyarenko S.G.

    2015-08-01

    Full Text Available The article analyzes the possibility of differentiated study natural science at school on the basis of ecological educational process. Natural science is the science about nature as a single unity or totality of the natural sciences, which constituting a single unit. The main aim of the course is to develop student’s natural science competence through integrated mastering system knowledge about nature and man, the basics of environmental knowledge, ways of improving teaching and learning activities, development of value orientations in relation to the nature. There is strong need to review approaches to teaching nature science at schools, taking into account the general trend of greening of the educational process. The aim of the work is to analyze the possibility of practical application of modern approaches to differentiated teaching of the nature science at school greening within the educational process. In our view, the environmental component may be a basis to the formation and differentiated teaching in general. The environmental component of the educational sector has been aimed to the student’s environmental consciousness and compliance with rules of environmentally safe behavior in the environment. The learning of the integrated knowledge about nature and man can be submitted through the prism of action of the environmental factors according classic approach to their classification: abiotic, biotic and anthropogenic factors. In parallel, it is reasonable to raise the issues of practical importance as some natural objects and actions of each of these factors. The new degree of the studying of the environment has been provided by the beginning of the systematization of knowledge about natural objects and structure of the universe, by the formation of primary concepts about the relationship between the world of the living and inanimate nature, between organisms and between human activities and changes that has been occurred in the

  20. Unawareness to Production, Dropout to Innovator--Primary Teachers' Understanding and Use of a Science, Technology and Society Approach to Science Teaching

    Science.gov (United States)

    Rollnick, Marissa; Dlamini, Betty T.; Bradley, John

    2015-01-01

    This paper investigates the process of teacher change in a group of 8 primary school teachers during their exposure to a science, technology and society (STS) approach to teaching Science in Swaziland. The research aimed to establish the effect of support given to teachers in using the approach through a series of workshops, followed by a 5-week…

  1. Orbital approach to the electronic structure of solids

    CERN Document Server

    Canadell, Enric; Iung, Christophe

    2012-01-01

    This book provides an intuitive yet sound understanding of how structure and properties of solids may be related. The natural link is provided by the band theory approach to the electronic structure of solids. The chemically insightful concept of orbital interaction and the essential machinery of band theory are used throughout the book to build links between the crystal and electronic structure of periodic systems. In such a way, it is shown how important tools for understandingproperties of solids like the density of states, the Fermi surface etc. can be qualitatively sketched and used to ei

  2. Geospatial Cyberinfrastructure and Geoprocessing Web—A Review of Commonalities and Differences of E-Science Approaches

    Directory of Open Access Journals (Sweden)

    Barbara Hofer

    2013-08-01

    Full Text Available Online geoprocessing gains momentum through increased online data repositories, web service infrastructures, online modeling capabilities and the required online computational resources. Advantages of online geoprocessing include reuse of data and services, extended collaboration possibilities among scientists, and efficiency thanks to distributed computing facilities. In the field of Geographic Information Science (GIScience, two recent approaches exist that have the goal of supporting science in online environments: the geospatial cyberinfrastructure and the geoprocessing web. Due to its historical development, the geospatial cyberinfrastructure has strengths related to the technologies required for data storage and processing. The geoprocessing web focuses on providing components for model development and sharing. These components shall allow expert users to develop, execute and document geoprocessing workflows in online environments. Despite this difference in the emphasis of the two approaches, the objectives, concepts and technologies they use overlap. This paper provides a review of the definitions and representative implementations of the two approaches. The provided overview clarifies which aspects of e-Science are highlighted in approaches differentiated in the geographic information domain. The discussion of the two approaches leads to the conclusion that synergies in research on e-Science environments shall be extended. Full-fledged e-Science environments will require the integration of approaches with different strengths.

  3. Descriptive Understandings of the Nature of Science: Examining the Consensual and Family Resemblance Approaches

    Science.gov (United States)

    do Nascimento Rocha, Maristela; Gurgel, Ivã

    2017-01-01

    This paper performs a critical analysis of the consensual and family resemblance approaches to the nature of science. Despite the debate that surrounds them, between a pragmatic consensus and a more comprehensive understanding, both approaches have in common the goal of helping students to "internalize" knowledge about science in a…

  4. Desert Research and Technology Studies (DRATS) 2010 Science Operations: Operational Approaches and Lessons Learned for Managing Science during Human Planetary Surface Missions

    Science.gov (United States)

    Eppler, Dean; Adams, Byron; Archer, Doug; Baiden, Greg; Brown, Adrian; Carey, William; Cohen, Barbara; Condit, Chris; Evans, Cindy; Fortezzo, Corey; hide

    2012-01-01

    Desert Research and Technology Studies (Desert RATS) is a multi-year series of hardware and operations tests carried out annually in the high desert of Arizona on the San Francisco Volcanic Field. These activities are designed to exercise planetary surface hardware and operations in conditions where long-distance, multi-day roving is achievable, and they allow NASA to evaluate different mission concepts and approaches in an environment less costly and more forgiving than space.The results from the RATS tests allows election of potential operational approaches to planetary surface exploration prior to making commitments to specific flight and mission hardware development. In previous RATS operations, the Science Support Room has operated largely in an advisory role, an approach that was driven by the need to provide a loose science mission framework that would underpin the engineering tests. However, the extensive nature of the traverse operations for 2010 expanded the role of the science operations and tested specific operational approaches. Science mission operations approaches from the Apollo and Mars-Phoenix missions were merged to become the baseline for this test. Six days of traverse operations were conducted during each week of the 2-week test, with three traverse days each week conducted with voice and data communications continuously available, and three traverse days conducted with only two 1-hour communications periods per day. Within this framework, the team evaluated integrated science operations management using real-time, tactical science operations to oversee daily crew activities, and strategic level evaluations of science data and daily traverse results during a post-traverse planning shift. During continuous communications, both tactical and strategic teams were employed. On days when communications were reduced to only two communications periods per day, only a strategic team was employed. The Science Operations Team found that, if

  5. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  6. The walkshop approach to science and technology ethics.

    Science.gov (United States)

    Wickson, Fern; Strand, Roger; Kjølberg, Kamilla Lein

    2015-02-01

    In research and teaching on ethical aspects of emerging sciences and technologies, the structure of working environments, spaces and relationships play a significant role. Many of the routines and standard practices of academic life, however, do little to actively explore and experiment with these elements. They do even less to address the importance of contextual and embodied dimensions of thinking. To engage these dimensions, we have benefitted significantly from practices that take us out of seminar rooms, offices and laboratories as well as beyond traditional ways of working and interacting. We have called one such practice the 'walkshop'. Through walkshops, we have spent several days walking together with our colleagues and students in open outdoor spaces, keeping a sustained intellectual discussion on ethical aspects of science, technology and innovation while moving through these landscapes. For us, this has generated useful opportunities to escape established hierarchies, roles and patterns of thought and to rethink conceptual and philosophical issues from new perspectives, under new attitudes and with renewed energy. In this paper we wish to highlight the potential benefits of the walkshop approach by sharing some of our experiences and describing how we have prepared for and carried out these events. We share this information in the hope that we may encourage others to both experiment with the walkshop approach and exchange information on their own innovative processes for research and teaching in science and engineering ethics.

  7. Understanding electron magnetic circular dichroism in a transition potential approach

    Science.gov (United States)

    Barthel, J.; Mayer, J.; Rusz, J.; Ho, P.-L.; Zhong, X. Y.; Lentzen, M.; Dunin-Borkowski, R. E.; Urban, K. W.; Brown, H. G.; Findlay, S. D.; Allen, L. J.

    2018-04-01

    This paper introduces an approach based on transition potentials for inelastic scattering to understand the underlying physics of electron magnetic circular dichroism (EMCD). The transition potentials are sufficiently localized to permit atomic-scale EMCD. Two-beam and three-beam systematic row cases are discussed in detail in terms of transition potentials for conventional transmission electron microscopy, and the basic symmetries which arise in the three-beam case are confirmed experimentally. Atomic-scale EMCD in scanning transmission electron microscopy (STEM), using both a standard STEM probe and vortex beams, is discussed.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China; Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; Department of Materials Science and Engineering, Luoyang Institute of Science and ...

  9. Social inclusion and its approach at Information Science: scientific production analysis in the area of information science periodicals between 2001 and 2010

    Directory of Open Access Journals (Sweden)

    Alex Serrano Almeida

    2013-08-01

    Full Text Available This study has the purpose to check how the social inclusion has been approached at Information Science area, from the scientific production area published at the area national periodicals. Over there, to verify which inclusion forms are recurrently approached at Information Science area; to show the use tendencies of social inclusion concept at the Science Information area scientific articles; to find how it presents the social inclusion concept connected to the information professional and analyze if it there is any association to other themes. It was realized searches in six periodicals at the period between 2001 and 2010. We used how analysis method the Bardin content analysis reference. The analysis corpus was constituted of 30 articles which approached the social inclusion theme. As the results, it was showed that the social inclusion on Information Science area publications, in general, is turned to digital inclusion and to the Information Science area publications uses. Besides, it was still identified connections with the information professionals, which one must serve as mediator between the information and the environment where information and users are inserted.

  10. Exciton Scattering approach for conjugated macromolecules: from electronic spectra to electron-phonon coupling

    Science.gov (United States)

    Tretiak, Sergei

    2014-03-01

    The exciton scattering (ES) technique is a multiscale approach developed for efficient calculations of excited-state electronic structure and optical spectra in low-dimensional conjugated macromolecules. Within the ES method, the electronic excitations in the molecular structure are attributed to standing waves representing quantum quasi-particles (excitons), which reside on the graph. The exciton propagation on the linear segments is characterized by the exciton dispersion, whereas the exciton scattering on the branching centers is determined by the energy-dependent scattering matrices. Using these ES energetic parameters, the excitation energies are then found by solving a set of generalized ``particle in a box'' problems on the graph that represents the molecule. All parameters can be extracted from quantum-chemical computations of small molecular fragments and tabulated in the ES library for further applications. Subsequently, spectroscopic modeling for any macrostructure within considered molecular family could be performed with negligible numerical effort. The exciton scattering properties of molecular vertices can be further described by tight-binding or equivalently lattice models. The on-site energies and hopping constants are obtained from the exciton dispersion and scattering matrices. Such tight-binding model approach is particularly useful to describe the exciton-phonon coupling, energetic disorder and incoherent energy transfer in large branched conjugated molecules. Overall the ES applications accurately reproduce the optical spectra compared to the reference quantum chemistry results, and make possible to predict spectra of complex macromolecules, where conventional electronic structure calculations are unfeasible.

  11. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    Science.gov (United States)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  12. Management Approach for NASA's Earth Venture-1 (EV-1) Airborne Science Investigations

    Science.gov (United States)

    Guillory, Anthony R.; Denkins, Todd C.; Allen, B. Danette

    2013-01-01

    The Earth System Science Pathfinder (ESSP) Program Office (PO) is responsible for programmatic management of National Aeronautics and Space Administration's (NASA) Science Mission Directorate's (SMD) Earth Venture (EV) missions. EV is composed of both orbital and suborbital Earth science missions. The first of the Earth Venture missions is EV-1, which are Principal Investigator-led, temporally-sustained, suborbital (airborne) science investigations costcapped at $30M each over five years. Traditional orbital procedures, processes and standards used to manage previous ESSP missions, while effective, are disproportionally comprehensive for suborbital missions. Conversely, existing airborne practices are primarily intended for smaller, temporally shorter investigations, and traditionally managed directly by a program scientist as opposed to a program office such as ESSP. In 2010, ESSP crafted a management approach for the successful implementation of the EV-1 missions within the constructs of current governance models. NASA Research and Technology Program and Project Management Requirements form the foundation of the approach for EV-1. Additionally, requirements from other existing NASA Procedural Requirements (NPRs), systems engineering guidance and management handbooks were adapted to manage programmatic, technical, schedule, cost elements and risk. As the EV-1 missions are nearly at the end of their successful execution and project lifecycle and the submission deadline of the next mission proposals near, the ESSP PO is taking the lessons learned and updated the programmatic management approach for all future Earth Venture Suborbital (EVS) missions for an even more flexible and streamlined management approach.

  13. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  14. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    International Nuclear Information System (INIS)

    Unal, Cetin; Pasamehmetoglu, Kemal; Carmack, Jon

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R and D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  15. Application of the Reggio Emilia Approach to Early Childhood Science Curriculum.

    Science.gov (United States)

    Stegelin, Dolores A.

    2003-01-01

    This article focuses on the relevance of the Reggio Emilia approach to early childhood education for science knowledge and content standards for the preK-12 student population. The article includes: (1) a summary of key concepts; (2) a description of the science curriculum standards for K-3 in the United States; and (3) an example of an in-depth…

  16. Integrated Circuits in the Introductory Electronics Laboratory

    Science.gov (United States)

    English, Thomas C.; Lind, David A.

    1973-01-01

    Discusses the use of an integrated circuit operational amplifier in an introductory electronics laboratory course for undergraduate science majors. The advantages of this approach and the implications for scientific instrumentation are identified. Describes a number of experiments suitable for the undergraduate laboratory. (Author/DF)

  17. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  18. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  19. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. New light for science: European X-ray Free Electron Laser

    International Nuclear Information System (INIS)

    Sobierajski, R.; Lawniczak-Jablonska, K.

    2006-01-01

    The execution of the X-Ray Free Electron Laser (XFEL) project begins January 2007. The unique combination of the radiation wavelength, pulse duration and peak brightness provided by XFEL will enable to study processes which occur in both atomic scales - time and space. It will create new scientific opportunities in physics, chemistry, biology and material sciences. In the paper the principles of the XFEL radiation generation, technical design and main radiation parameters are described. They are followed by short description of the project organization. (author) [pl

  1. Systems Theory and the Earth Systems Approach in Science Education. ERIC Digest.

    Science.gov (United States)

    Lee, Hyongyong

    The systems approach provides a framework for integrating different scientific disciplines. This approach is used often in Earth Systems Education. This ERIC Digest describes the systems theory and its influence on science education. (Contains 16 references.) (YDS)

  2. Comparative analysis of alternative co-production approaches to conservation science in Alaska

    Science.gov (United States)

    Trammell, E. J.

    2017-12-01

    Co-production has been suggested as an important tool for reducing the gap between science and management. Although co-production can require substantial investments in time and relationship building, there are a range of possible approaches that can be utilized that honor the focus and intent of co-production. I present here a comparison of three efforts that range from relatively simple, to complex and exhaustive, that illustrate diverse approaches to co-production of conservation science in Alaska. The first example highlights a workshop-based approach to identify long-term environmental monitoring needs in Alaska, while the second example describes stakeholder-driven scenarios that identified stressors to salmon in southcentral Alaska. The third example describes a 2-year cooperative agreement to develop management questions as part of a rapid ecoregional assessment in central Alaska. Results suggest that careful stakeholder selection is essential to successful co-production. Additionally, all three examples highlight the potential disconnect between management questions and specific management decisions, even when working directly with resource managers. As the focus of the Alaska Climate Science Center will be on co-production of climate science over the next 5 years, I conclude with some key pathways forward for successful co-production efforts in the future.

  3. Sleep Disorders and Complementary Health Approaches : What the Science Says

    Science.gov (United States)

    ... Sleep Disorders and Complementary Health Approaches: What the Science Says Share: April 2014 Clinical Guidelines, Scientific Literature, ... five randomized controlled trials evaluating the efficacy of music-assisted relaxation for sleep quality in adults found ...

  4. Engaging Pre-Service Teachers to Teach Science Contextually with Scientific Approach Instructional Video

    Science.gov (United States)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning/CTL presents new concepts in real-life experiences and situations where students can find out the meaningful relationship between abstract ideas and practical applications. Implementing contextual teaching by using scientific approach will foster teachers to find the constructive ways of delivering and organizing science content. This research developed an instructional video that represented a modeling of using a scientific approach in CTL. The aim of this research are to engage pre-service teachers in learning how to teach CTL and to show how pre-service teachers’ responses about learning how to teach CTL using an instructional video. The subjects of this research were ten pre-service teachers in Department of Natural Sciences, Universitas Negeri Surabaya, Indonesia. All subjects observed the instructional video which demonstrated contextual teaching and learning combined with the scientific approach as they completed a worksheet to analyze the video content. The results showed that pre-service teachers could learn to teach contextually as well as applying the scientific approach in science classroom through a modeling in the instructional video. They also responded that the instructional video could help them to learn to teach each component contextual teaching as well as scientific approach.

  5. The fruits of a functional approach for psychological science.

    Science.gov (United States)

    Stewart, Ian

    2016-02-01

    The current paper introduces relational frame theory (RFT) as a functional contextual approach to complex human behaviour and examines how this theory has contributed to our understanding of several key phenomena in psychological science. I will first briefly outline the philosophical foundation of RFT and then examine its conceptual basis and core concepts. Thereafter, I provide an overview of the empirical findings and applications that RFT has stimulated in a number of key domains such as language development, linguistic generativity, rule-following, analogical reasoning, intelligence, theory of mind, psychopathology and implicit cognition. © 2015 International Union of Psychological Science.

  6. Cyber Physical Systems Approach to Power Electronics Education

    Directory of Open Access Journals (Sweden)

    Marko Vekić

    2012-12-01

    Full Text Available This paper proposes a Cyber Physical Approach (CPS to power electronics (PE education where all aspects of PE technology from circuit topology to the implementation of real time control code on a microprocessor are dealt with as an inseparable whole, and only the system complexity is increased during the course of instruction. This approach is now made practical thanks to the affordable and unrestricted access to high-power PE laboratory infrastructure (PE laboratory in a box in the form of high-fidelity digital PE emulators with 1us calculation time step and latency.

  7. Molecular self-assembly approaches for supramolecular electronic and organic electronic devices

    Science.gov (United States)

    Yip, Hin-Lap

    Molecular self-assembly represents an efficient bottom-up strategy to generate structurally well-defined aggregates of semiconducting pi-conjugated materials. The capability of tuning the chemical structures, intermolecular interactions and nanostructures through molecular engineering and novel materials processing renders it possible to tailor a large number of unprecedented properties such as charge transport, energy transfer and light harvesting. This approach does not only benefit traditional electronic devices based on bulk materials, but also generate a new research area so called "supramolecular electronics" in which electronic devices are built up with individual supramolecular nanostructures with size in the sub-hundred nanometers range. My work combined molecular self-assembly together with several novel materials processing techniques to control the nucleation and growth of organic semiconducting nanostructures from different type of pi-conjugated materials. By tailoring the interactions between the molecules using hydrogen bonds and pi-pi stacking, semiconducting nanoplatelets and nanowires with tunable sizes can be fabricated in solution. These supramolecular nanostructures were further patterned and aligned on solid substrates through printing and chemical templating methods. The capability to control the different hierarchies of organization on surface provides an important platform to study their structural-induced electronic properties. In addition to using molecular self-assembly to create different organic nanostructures, functional self-assembled monolayer (SAM) formed by spontaneous chemisorption on surfaces was used to tune the interfacial property in organic solar cells. Devices showed dramatically improved performance when appropriate SAMs were applied to optimize the contact property for efficiency charge collection.

  8. General approach to understanding the electronic structure of graphene on metals

    International Nuclear Information System (INIS)

    Voloshina, E N; Dedkov, Yu S

    2014-01-01

    This manuscript presents the general approach to the understanding of the connection between bonding mechanism and electronic structure of graphene on metals. To demonstrate its validity, two limiting cases of ‘weakly’ and ‘strongly’ bonded graphene on Al(111) and Ni(111) are considered, where the Dirac cone is preserved or fully destroyed, respectively. Furthermore, the electronic structure, i.e. doping level, hybridization effects, as well as a gap formation at the Dirac point of the intermediate system, graphene/Cu(111), is fully understood in the framework of the proposed approach. This work summarises the long-term debates regarding connection of the bonding strength and the valence band modification in the graphene/metal systems and paves a way for the effective control of the electronic states of graphene in the vicinity of the Fermi level. (paper)

  9. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  10. Synthesizing Marketing, Community Engagement, and Systems Science Approaches for Advancing Translational Research.

    Science.gov (United States)

    Kneipp, Shawn M; Leeman, Jennifer; McCall, Pamela; Hassmiller-Lich, Kristen; Bobashev, Georgiy; Schwartz, Todd A; Gilmore, Robert; Riggan, Scott; Gil, Benjamin

    2015-01-01

    The adoption and implementation of evidence-based interventions (EBIs) are the goals of translational research; however, potential end-users' perceptions of an EBI value have contributed to low rates of adoption. In this article, we describe our application of emerging dissemination and implementation science theoretical perspectives, community engagement, and systems science principles to develop a novel EBI dissemination approach. Using consumer-driven, graphics-rich simulation, the approach demonstrates predicted implementation effects on health and employment outcomes for socioeconomically disadvantaged women at the local level and is designed to increase adoption interest of county program managers accountable for improving these outcomes in their communities.

  11. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  12. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science.

    Science.gov (United States)

    Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu

    2015-01-01

    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.

  13. Daniel Courgeau: Probability and social science: methodological relationships between the two approaches [Review of: . Probability and social science: methodological relationships between the two approaches

    NARCIS (Netherlands)

    Willekens, F.J.C.

    2013-01-01

    Throughout history, humans engaged in games in which randomness plays a role. In the 17th century, scientists started to approach chance scientifically and to develop a theory of probability. Courgeau describes how the relationship between probability theory and social sciences emerged and evolved

  14. Path-integral approach to resonant electron-molecule scattering

    International Nuclear Information System (INIS)

    Winterstetter, M.; Domcke, W.

    1993-01-01

    A path-integral formulation of resonant electron-molecule scattering is developed within the framework of the projection-operator formalism of scattering theory. The formation and decay of resonances is treated in real time as a quantum-mechanical electronic-tunneling process, modified by the coupling of the electronic motion with the nuclear degrees of freedom. It is shown that the electronic continuum can be summed over in the path-integral formulation, resulting formally in the path integral for an effective two-state system with coupling to vibrations. The harmonic-oscillator approximation is adopted for the vibrational motion in the present work. Approximation methods are introduced which render the numerical evaluation of the sum over paths feasible for up to ∼10 3 elementary time slices. The theory is numerically realized for simple but nontrivial models representing the 2 Π g d-wave shape resonance in e - +N 2 collisions and the 2 Σ u + p-wave shape resonance in e - +H 2 collisions, respectively. The accuracy of the path-integral results is assessed by comparison with exact numerical reference data for these models. The essential virtue of the path-integral approach is the fact that the computational effort scales at most linearly with the number of vibrational degrees of freedom. The path-integral method is thus well suited to treat electron collisions with polyatomic molecules and molecular aggregates

  15. Teaching Electronic Literacy A Concepts-Based Approach for School Library Media Specialists

    CERN Document Server

    Craver, Kathleen W

    1997-01-01

    School library media specialists will find this concepts-based approach to teaching electronic literacy an indispensable basic tool for instructing students and teachers. It provides step-by-step instruction on how to find and evaluate needed information from electronic databases and the Internet, how to formulate successful electronic search strategies and retrieve relevant results, and how to interpret and critically analyze search results. The chapters contain a suggested lesson plan and sample assignments for the school library media specialist to use in teaching electronic literacy skills

  16. Disputes over science and dispute resolution approaches - A survey of Bureau of Reclamation employees

    Science.gov (United States)

    Burkardt, Nina; Ruell, Emily W.

    2012-01-01

    Water resources in parts of the Western United States are over-allocated, which intensifies the pressure to support water management decisions with strong scientific evidence. Because scientific studies sometimes provide uncertain or competing results or recommendations, science can become a source of disputes during decision-making processes. The Bureau of Reclamation (Reclamation) is an important water manager in the Western United States, and Reclamation decision processes are often contested by a variety of affected constituencies. We conducted a Web-based survey of Reclamation employees to determine (1) which types of disputes over science are occurring and how common they are, (2) which approaches have been used by Reclamation to try to resolve these different types of disputes, (3) how useful Reclamation employees find these approaches at resolving these types of disputes, (4) the final outcomes of these disputes and the decision-making processes that were hindered by the disputes over science, and (5) the potential usefulness of several different types of dispute resolution resources that Reclamation could provide for employees that become involved in disputes over science. The calculated minimum response rate for the survey was 59 percent. Twenty-five percent of respondents indicated that they had been involved in a dispute over science while working at Reclamation. Native species and species listed under the Endangered Species Act of 1973 were the most common issue types reported in these disputes over science. Survey respondents indicated that they used a variety of approaches to resolve disputes over science and rated most approaches as either neutral or somewhat helpful in these endeavors. Future research is needed to determine whether there are additional variables underlying these disputes that were not measured in this survey that may identify when dispute resolution methods are most effective, or whether resolving aspects of these disputes, such as

  17. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  18. Understanding the nature of science and scientific progress: A theory-building approach

    Directory of Open Access Journals (Sweden)

    Maria Chuy

    2010-11-01

    Full Text Available In 1993 Carey and Smith conjectured that the most promising way to boost students’ understanding of the nature of science is a “theory-building approach to teaching about inquiry.” The research reported here tested this conjecture by comparing results from two Grade 4 classrooms that differed in their emphasis on and technological support for creating and improving theories. One class followed a Knowledge Building approach and used Knowledge Forum®, which together emphasize theory improvement and sustained creative work with ideas. The other class followed an inquiry approach mediated through collaborative project-based activities. Apart from this, the two classes were demographically similar and both fell within the broad category of constructivist, inquiry-based approaches and employed a range of modes and media for investigative research and reports. An augmented version of Carey and Smith’s Nature of Science Interview showed that the Knowledge Building approach resulted in deeper understanding of the nature of theoretical progress, the connections between theories and facts, and the role of ideas in scientific inquiry.

  19. The impact of a STS/Constructivist learning approach on the beliefs and attitudes of preservice science teachers

    Science.gov (United States)

    Akcay, Hakan

    The purpose of this study was to determine the impact of an Science-Technology-Society (STS) course for preservice science teachers. The course was designed to change not only preservice science teachers' attitudes toward science, scientists and science courses, but also the awareness and use of STS/Constructivist approaches in teaching. It also focuses on changes in preservice science teachers regarding the effectiveness of an STS/Constructivist learning environment. Both qualitative and quantitative research methods were used with and a one-group pretest-posttest design. The instruments were administered to the preservice science teachers at the beginning of the semester as pre-tests and again at the end of the semester as post-tests. Data gathered from pre- and post-administration were analyzed for each of the instruments that provide answers to the research questions. The sample consists of forty-one pre-service science teachers who were enrolled in the Societal & Educational Applications of Biological Concepts course during the spring semester of the 2004 and 2005 academic years at the University of Iowa. The major findings for the study include the following: (1) Preservice science teachers showed significantly growth over the semester in their perceptions concerning STS/Constructivism, beliefs about science teaching and learning, and attitudes toward science and technology, and their implications for society. These significant changes were not affected by gender nor grade (elementary vs secondary) level. (2) Preservice science teachers gain in understanding of how students learn with STS/Constructivist approaches. They also increased their use of STS/Constructivist approaches which were developed and applied to teaching science for all students. (3) Preservice science teachers showed statistically significant growth toward an STS/Constructivist philosophy of science teaching and learning in terms of student actions in the classroom, as well as their

  20. The Effect of a Laboratory Approach Based on Predict-Observation-Explain (POE Strategy on the Development of Students’ Science Process Skills and Views about Nature of Science

    Directory of Open Access Journals (Sweden)

    Kadir Bilen

    2012-06-01

    Full Text Available The purpose of this study was to investigate the effects of a laboratory instruction prepared based on “Predict-Observation-Explain” (POE strategy compared to a verification laboratory approach on the development of pre-service science teachers’ science skill processes and their views of nature of sceince in a general biology laboratory course. The participants of this study consisted of 122 pre-service teachers who took the General Biology Laboratory at the department of science education at Pamukkale University during the fall semester of 2007-2008 academic year. Data was collected through Science Process Skills Test (SPST and Nature of Science Questionnaire. Results indicated that there was a statistically significant difference between the verification laboratory approach and the laboratory approach based on the POE strategy on the development of students’ science process skills [F=10.41, p

  1. Analytic approach to auroral electron transport and energy degradation

    International Nuclear Information System (INIS)

    Stamnes, K.

    1980-01-01

    The interaction of a beam of auroral electrons with the atmosphere is described by the linear transport equation, encompassing discrete energy loss, multiple scattering, and secondary electrons. A solution to the transport equation provides the electron intensity as a function of altitude, pitch angle (with respect to the geomagnetic field) and energy. A multi-stream (discrete ordinate) approximation to the transport equation is developed. An analytic solution is obtained in this approximation. The computational scheme obtained by combining the present transport code with the energy degradation method of Swartz (1979) conserves energy identically. The theory provides a framework within which angular distributions can be easily calculated and interpreted. Thus, a detailed study of the angular distributions of 'non-absorbed' electrons (i.e., electrons that have lost just a small fraction of their incident energy) reveals a systematic variation with incident angle and energy, and with penetration depth. The present approach also gives simple yet accurate solutions in low order multi-stream approximations. The accuracy of the four-stream approximation is generally within a few per cent, whereas two-stream results for backscattered mean intensities and fluxes are accurate to within 10-15%. (author)

  2. Quality assessment of Isfahan Medical Faculty web site electronic services and prioritizing solutions using analytic hierarchy process approach.

    Science.gov (United States)

    Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nargess; Sarmadi, Sima

    2014-01-01

    Implementing information technology in the best possible way can bring many advantages such as applying electronic services and facilitating tasks. Therefore, assessment of service providing systems is a way to improve the quality and elevate these systems including e-commerce, e-government, e-banking, and e-learning. This study was aimed to evaluate the electronic services in the website of Isfahan University of Medical Sciences in order to propose solutions to improve them. Furthermore, we aim to rank the solutions based on the factors that enhance the quality of electronic services by using analytic hierarchy process (AHP) method. Non-parametric test was used to assess the quality of electronic services. The assessment of propositions was based on Aqual model and they were prioritized using AHP approach. The AHP approach was used because it directly applies experts' deductions in the model, and lead to more objective results in the analysis and prioritizing the risks. After evaluating the quality of the electronic services, a multi-criteria decision making frame-work was used to prioritize the proposed solutions. Non-parametric tests and AHP approach using Expert Choice software. The results showed that students were satisfied in most of the indicators. Only a few indicators received low satisfaction from students including, design attractiveness, the amount of explanation and details of information, honesty and responsiveness of authorities, and the role of e-services in the user's relationship with university. After interviewing with Information and Communications Technology (ICT) experts at the university, measurement criteria, and solutions to improve the quality were collected. The best solutions were selected by EC software. According to the results, the solution "controlling and improving the process in handling users complaints" is of the utmost importance and authorities have to have it on the website and place great importance on updating this process

  3. Path integral approach to electron scattering in classical electromagnetic potential

    International Nuclear Information System (INIS)

    Xu Chuang; Feng Feng; Li Ying-Jun

    2016-01-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. (paper)

  4. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    Energy Technology Data Exchange (ETDEWEB)

    Grillo, Vincenzo, E-mail: vincenzo.grillo@nano.cnr.it [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); CNR-IMEM Parco Area delle Scienze 37/A, I-43124 Parma (Italy); Carlo Gazzadi, Gian [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Karimi, Ebrahim [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Mafakheri, Erfan [Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy); Boyd, Robert W. [Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Frabboni, Stefano [CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena (Italy); Dipartimento di Fisica Informatica e Matematica, Università di Modena e Reggio Emilia, via G Campi 213/a, I-41125 Modena (Italy)

    2014-01-27

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science.

  5. Highly efficient electron vortex beams generated by nanofabricated phase holograms

    International Nuclear Information System (INIS)

    Grillo, Vincenzo; Carlo Gazzadi, Gian; Karimi, Ebrahim; Mafakheri, Erfan; Boyd, Robert W.; Frabboni, Stefano

    2014-01-01

    We propose an improved type of holographic-plate suitable for the shaping of electron beams. The plate is fabricated by a focused ion beam on a silicon nitride membrane and introduces a controllable phase shift to the electron wavefunction. We adopted the optimal blazed-profile design for the phase hologram, which results in the generation of highly efficient (25%) electron vortex beams. This approach paves the route towards applications in nano-scale imaging and materials science

  6. Managing Actors, Resources, and Activities in Innovation Ecosystems – A Design Science Approach

    OpenAIRE

    Valkokari , Katri; Amitrano , Cristina ,; Bifulco , Francesco; Valjakka , Tiina

    2016-01-01

    Part 13: Design Science and Business Models - Design Science Research; International audience; Through a design science approach, the paper explores how actors in a network create and sustain competitive advantage independently and through participation in a system of actors (i.e., a collaborative network) who are not hierarchically managed but, rather, act toward their own goals within the innovation ecosystem. In accordance with design studies, the relevance of research and its quality are ...

  7. The principles of electronic and electromechanic power conversion a systems approach

    CERN Document Server

    Ferreira, Braham

    2013-01-01

    Teaching the principles of power electronics and electromechanical power conversion through a unique top down systems approach, The Principles of Electromechanical Power Conversion takes the role and system context of power conversion functions as the starting point. Following this approach, the text defines the building blocks of the system and describes the theory of how they exchange power with each other. The authors introduce a modern, simple approach to machines, which makes the principles of field oriented control and space vector theory approachable to undergraduate students as well as

  8. Visualized attribute analysis approach for characterization and quantification of rice taste flavor using electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Lin; Hu, Xianqiao [Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture, China National Rice Research Institute, Hangzhou 310006 (China); Tian, Shiyi; Deng, Shaoping [College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035 (China); Zhu, Zhiwei, E-mail: 615834652@qq.com [Rice Product Quality Supervision and Inspection Center, Ministry of Agriculture, China National Rice Research Institute, Hangzhou 310006 (China)

    2016-05-05

    This paper deals with a novel visualized attributive analysis approach for characterization and quantification of rice taste flavor attributes (softness, stickiness, sweetness and aroma) employing a multifrequency large-amplitude pulse voltammetric electronic tongue. Data preprocessing methods including Principal Component Analysis (PCA) and Fast Fourier Transform (FFT) were provided. An attribute characterization graph was represented for visualization of the interactive response in which each attribute responded by specific electrodes and frequencies. The model was trained using signal data from electronic tongue and attribute scores from artificial evaluation. The correlation coefficients for all attributes were over 0.9, resulting in good predictive ability of attributive analysis model preprocessed by FFT. This approach extracted more effective information about linear relationship between electronic tongue and taste flavor attribute. Results indicated that this approach can accurately quantify taste flavor attributes, and can be an efficient tool for data processing in a voltammetric electronic tongue system. - Graphical abstract: Schematic process for visualized attributive analysis approach using multifrequency large-amplitude pulse voltammetric electronic tongue for determination of rice taste flavor attribute. (a) sample; (b) sensors in electronic tongue; (c) excitation voltage program and response current signal from MLAPS; (d) similarity data matrix by data preprocessing and similarity extraction; (e) feature data matrix of attribute; (f) attribute characterization graph; (g) attribute scores predicted by the model. - Highlights: • Multifrequency large-amplitude pulse voltammetric electronic tongue was used. • A visualized attributive analysis approach was created as an efficient tool for data processing. • Rice taste flavor attribute was determined and predicted. • The attribute characterization graph was represented for visualization of the

  9. Multiple scattering approach to the vibrational excitation of molecules by slow electrons

    International Nuclear Information System (INIS)

    Drukarev, G.

    1976-01-01

    Another approach to the problem of vibrational excitation of homonuclear two-atomic molecules by slow electrons possibly accompanied by rotational transitions is presented based on the picture of multiple scattering of an electron inside the molecule. The scattering of two fixed centers in the zero range potential model is considered. The results indicate that the multiple scattering determines the order of magnitude of the vibrational excitation cross sections in the energy region under consideration even if the zero range potential model is used. Also the connection between the multiple scattering approach and quasi-stationary molecular ion picture is established. 9 refs

  10. Marxism in Vygotskian approaches to cultural studies of science education

    Science.gov (United States)

    Lima Junior, Paulo; Ostermann, Fernanda; Rezende, Flavia

    2014-09-01

    In this paper we initially address the main categories of Marxism, illustrating how Vygotsky has appropriated them as mediational meta-theoretical tools for building concepts for his psychological approach. In order to investigate the influence of Marxism in cultural studies of science education, we make an account of how current research, sustained by Vygotsky's original and successor theories, has been appropriating meta-theoretical categories of dialectical materialism. Once we identified Cultural Studies of Science Education as a journal that would probably concentrate papers that follow these perspectives, we decided to take it as the context of this study. In the process of selecting the corpus to be reviewed from the editions published from 2006 to 2011, we have found that 16 % of the articles that matched keywords denoting frameworks related to the Vygotskian tradition developed and appropriated the categories of dialectical materialism. The quality and originality of contemporary development of CHAT denote that this framework has been playing a very important role in recent expansion of Vygotskian approaches to research in science education. Among the papers that we considered to develop and appropriate Vygotskian frameworks, incompletion in the appropriation of meta-theoretical categories of dialectical materialism and the misusage of dialectics intertwined with dialogism were highlighted. Our findings suggest that overcoming these limitations can enhance political analysis of sociocultural phenomena in the context of science education. It also represents a strengthening of the role of dialectical materialism in expanding sociocultural perspectives toward a better articulation between individual and institutional-centered analyses.

  11. The Relation between Science Student Teachers' Approaches to Studying and Their Attitude to Reflective Practice

    Science.gov (United States)

    Efe, Rifat

    2018-01-01

    In this study, the relation between science student teachers' approaches to studying and their attitude to reflective practice were investigated. The participants were 345 science student teachers on teacher education course during 2015-2016 academic year. The data was collected through Approaches and Study Skills Inventory for Students (ASSIST)…

  12. Mathematics and social science : a statistical mechanics approach to immigration

    NARCIS (Netherlands)

    Contucci, P.; Giardinà, C.

    2008-01-01

    Is modern science able to study social matters like those related to immigration phenomena on solid mathematical grounds? Can we for instance determine cultural robustness and the causes behind abrupt changes from cultural legacies? Can we predict, cause or avoid swings? A novel approach is under

  13. An exploratory study of the impact of hypermedia-based approach and science-in-fiction approach for instruction on the polymerase chain reaction

    Science.gov (United States)

    Britton, Lynda A.

    1998-12-01

    Exploration of meaningful learning of the polymerase chain reaction (PCR) followed instruction by a researcher-developed hypermedia computer program that incorporated human constructivist principles and a "science-in-fiction" chapter of a novel that described PCR. Human constructivism is the Ausubel-Novak-Gowin (1997) meaningful learning theory that supports science learning through graphic representations and multiple examples. Science-in-fiction is a new genre of fiction introduced by the prominent scientist, Carl Djerassi, to engender an appreciation for science, and its ethical dilemmas. Chapter 19 of Djerassi's 1994 novel, The Bourbaki Gambit, was placed into hypermedia format to standardize the presentation. As part of a clinical microbiology course in the medical technology curriculum at a major medical center in the Deep South, 10 undergraduates participated in this study. Each first read The Bourbaki Gambit, and then half of the participants experienced the human constructivist approach first (the PCR group) while the others first encountered the science-in-fiction approach (the Chapter 19 group). For the rest, the order of presentation was reversed, so that all experienced both programs. Students' explanations while using the computer were videotaped. Students were tested and interviewed before experiencing either program, after their first instructional session, and again after the second instructional session. These students were also assessed on their knowledge of the nature of science by taking the Nature of Science Questionnaire, before and after instruction (Roach, 1993) and interviewed as a cross-check on its reliability. Students' preferred learning approaches were determined using Schmeck's Inventory of Learning Processes (Schmeck, Ribich, & Ramanaiah, 1977). Data were collected and analyzed both qualitatively and quantitatively using appropriate verbal analysis techniques (Chi, 1997). All but three students reached a structural level of PCR

  14. Learning approaches as predictors of academic performance in first year health and science students.

    Science.gov (United States)

    Salamonson, Yenna; Weaver, Roslyn; Chang, Sungwon; Koch, Jane; Bhathal, Ragbir; Khoo, Cheang; Wilson, Ian

    2013-07-01

    To compare health and science students' demographic characteristics and learning approaches across different disciplines, and to examine the relationship between learning approaches and academic performance. While there is increasing recognition of a need to foster learning approaches that improve the quality of student learning, little is known about students' learning approaches across different disciplines, and their relationships with academic performance. Prospective, correlational design. Using a survey design, a total of 919 first year health and science students studying in a university located in the western region of Sydney from the following disciplines were recruited to participate in the study - i) Nursing: n = 476, ii) Engineering: n = 75, iii) Medicine: n = 77, iv) Health Sciences: n = 204, and v) Medicinal Chemistry: n = 87. Although there was no statistically significant difference in the use of surface learning among the five discipline groups, there were wide variations in the use of deep learning approach. Furthermore, older students and those with English as an additional language were more likely to use deep learning approach. Controlling for hours spent in paid work during term-time and English language usage, both surface learning approach (β = -0.13, p = 0.001) and deep learning approach (β = 0.11, p = 0.009) emerged as independent and significant predictors of academic performance. Findings from this study provide further empirical evidence that underscore the importance for faculty to use teaching methods that foster deep instead of surface learning approaches, to improve the quality of student learning and academic performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  16. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-01-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to…

  17. Materials and processing approaches for foundry-compatible transient electronics

    Science.gov (United States)

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-07-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  18. A Theoretical Approach to Electronic Prescription System: Lesson Learned from Literature Review

    Science.gov (United States)

    Samadbeik, Mahnaz; Ahmadi, Maryam; Hosseini Asanjan, Seyed Masoud

    2013-01-01

    Context The tendency to use advanced technology in healthcare and the governmental policies have put forward electronic prescription. Electronic prescription is considered as the main solution to overcome the major drawbacks of the paper-based medication prescription, such as transcription errors. This study aims to provide practical information concerning electronic prescription system to a variety of stakeholders. Evidence Acquisition In this review study, PubMed, ISI Web of Science, Scopus, EMBASE databases, Iranian National Library Of Medicine (INLM) portal, Google Scholar, Google and Yahoo were searched for relevant English publications concerning the problems of paper-based prescription, and concept, features, levels, benefits, stakeholders and standards of electronic prescription system. Results There are many problems with the paper prescription system which, according to studies have jeopardized patients’ safety and negatively affected the outcomes of medication therapy. All of these problems are remedied through the implementation of e-prescriptions. Conclusions The sophistication of electronic prescription and integration with EHR will become a reality, if all its stakeholders collaborate in developing fast and secure electronic prescription systems. It is plausible that the required infrastructure should be provided for implementation of the national integrated electronic prescription systems in countries without the system. Given the barriers to the implementation and use, policymakers should consider multiple strategies and offer incentives to encourage e-prescription initiatives. This will result in widespread adoption of the system. PMID:24693376

  19. Development of a Free-Electron Laser Center and Research in Medicine, Biology and Materials Science,

    Science.gov (United States)

    1992-05-14

    the reduced electron- larons cause localized distortions in an ionic lattice lattice coupling strength leads to molecule emission, which are... syndrome . Health Science Center at San Antonio and the University Buerger’s disease, palmar hyperhidrosis, frostbite and of Mi.imi School of Medicine, Miami

  20. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  1. The Pedagogical Orientations of South African Physical Sciences Teachers towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-01-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school…

  2. Modern Publishing Approach of Journal of Astronomy & Earth Sciences Education

    Science.gov (United States)

    Slater, Timothy F.

    2015-01-01

    Filling a needed scholarly publishing avenue for astronomy education researchers and earth science education researchers, the Journal of Astronomy & Earth Sciences Education - JAESE published its first volume and issue in 2014. The Journal of Astronomy & Earth Sciences Education - JAESE is a scholarly, peer-reviewed scientific journal publishing original discipline-based education research and evaluation, with an emphasis of significant scientific results derived from ethical observations and systematic experimentation in science education and evaluation. International in scope, JAESE aims to publish the highest quality and timely articles from discipline-based education research that advance understanding of astronomy and earth sciences education and are likely to have a significant impact on the discipline or on policy. Articles are solicited describing both (i) systematic science education research and (ii) evaluated teaching innovations across the broadly defined Earth & space sciences education, including the disciplines of astronomy, climate education, energy resource science, environmental science, geology, geography, agriculture, meteorology, planetary sciences, and oceanography education. The publishing model adopted for this new journal is open-access and articles appear online in GoogleScholar, ERIC, and are searchable in catalogs of 440,000 libraries that index online journals of its type. Rather than paid for by library subscriptions or by society membership dues, the annual budget is covered by page-charges paid by individual authors, their institutions, grants or donors: This approach is common in scientific journals, but is relatively uncommon in education journals. Authors retain their own copyright. The journal is owned by the Clute Institute of Denver, which owns and operates 17 scholarly journals and currently edited by former American Astronomical Society Education Officer Tim Slater, who is an endowed professor at the University of Wyoming and

  3. Fabrication Approaches to Interconnect Based Devices for Stretchable Electronics: A Review.

    Science.gov (United States)

    Nagels, Steven; Deferme, Wim

    2018-03-03

    Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves either the implementation of strain reliefs through insightful geometric patterning, the dispersion of stiff conductive filler in an elastomeric matrix, or the employment of intrinsically stretchable conductive materials. These basic principles however have spawned a myriad of materials systems wherein future application engineers need to find their way. This paper reports a literature study on the spectrum of different approaches towards stretchable electronics, discusses standardization of characteristic tests together with their reports and estimates matureness for industry. Patterned copper foils that are embedded in elastomeric sheets, which are closest to conventional electronic circuits processing, make up one end of the spectrum. Furthest from industry are the more recent circuits based on intrinsically stretchable liquid metals. These show extremely promising results, however, as a technology, liquid metal is not mature enough to be adapted. Printing makes up the transition between both ends, and is also well established on an industrial level, but traditionally not linked to creating electronics. Even though a certain level of maturity was found amongst the approaches that are reviewed herein, industrial adaptation for consumer electronics remains unpredictable without a designated break-through commercial application.

  4. Fabrication Approaches to Interconnect Based Devices for Stretchable Electronics: A Review

    Directory of Open Access Journals (Sweden)

    Steven Nagels

    2018-03-01

    Full Text Available Stretchable electronics promise to naturalize the way that we are surrounded by and interact with our devices. Sensors that can stretch and bend furthermore have become increasingly relevant as the technology behind them matures rapidly from lab-based workflows to industrially applicable production principles. Regardless of the specific materials used, creating stretchable conductors involves either the implementation of strain reliefs through insightful geometric patterning, the dispersion of stiff conductive filler in an elastomeric matrix, or the employment of intrinsically stretchable conductive materials. These basic principles however have spawned a myriad of materials systems wherein future application engineers need to find their way. This paper reports a literature study on the spectrum of different approaches towards stretchable electronics, discusses standardization of characteristic tests together with their reports and estimates matureness for industry. Patterned copper foils that are embedded in elastomeric sheets, which are closest to conventional electronic circuits processing, make up one end of the spectrum. Furthest from industry are the more recent circuits based on intrinsically stretchable liquid metals. These show extremely promising results, however, as a technology, liquid metal is not mature enough to be adapted. Printing makes up the transition between both ends, and is also well established on an industrial level, but traditionally not linked to creating electronics. Even though a certain level of maturity was found amongst the approaches that are reviewed herein, industrial adaptation for consumer electronics remains unpredictable without a designated break-through commercial application.

  5. An Investigation of a Culturally Responsive Approach to Science Education in a Summer Program for Marginalized Youth

    Science.gov (United States)

    Garvin, Brittany A.

    There have been numerous calls and efforts made to provide states, school districts, and communities needed financial support to increase and enhance access to and opportunities in Science, Technology, Engineering, and Math (STEM) related disciplines for marginalized populations (Tyson, Lee, & Hanson, 2007; Caldwell & Siwatu, 2003). As the challenge to better educate students of color and poor students intensifies, the need to provide equitable science learning experiences for all students aimed at scientific literacy and STEM also becomes critical. Thus the need to provide summer science enrichment programs where students engage in scientific experimentation, investigation, and critical thinking are vital to helping students who have been traditionally marginalized achieve success in school science and enter the science career pipeline. This mixed methods study examined the impact of a culturally responsive approach on student attitudes, interests in science education and STEM careers, and basic science content knowledge before and after participation in an upward bound summer program. Quantitative results indicated using a culturally responsive approach to teach science in an informal learning space significantly increases student achievement. Students receiving culturally responsive science instruction exhibited statistically significant increases in their posttest science scores compared to pretest science scores, M = 0.376, 95% CI [0.266, 0.487], t (10) = 7.610, p < 0.001. Likewise, students receiving culturally responsive science instruction had a significantly higher interest in science (M = 1.740, SD = 0.548) and STEM careers, M = 0.597, 95% CI [0.276, 0.919], p = 0.001. The qualitative data obtained in this study sought to gain a more in-depth understanding of the impact of a culturally responsive approach on students' attitudes, interests in science and STEM careers. Findings suggest providing students the opportunity to do and learn science utilizing a

  6. An approach to teaching general chemistry II that highlights the interdisciplinary nature of science.

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M

    2011-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. Copyright © 2010 Wiley Periodicals, Inc.

  7. An Open and Holistic Approach for Geo and Space Sciences

    Science.gov (United States)

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  8. Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach

    DEFF Research Database (Denmark)

    Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper

    2017-01-01

    We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...... sampling. We show that a significant number of snapshots are needed to avoid artifacts in the calculated electronic circular dichroism parameters due to insufficient configurational sampling, thus highlighting the efficiency of the PE model....

  9. Revolution in Field Science: Apollo Approach to Inaccessible Surface Exploration

    Science.gov (United States)

    Clark, P. E.

    2010-07-01

    The extraordinary challenge mission designers, scientists, and engineers, faced in planning the first human expeditions to the surface of another solar system body led to the development of a distinctive and even revolutionary approach to field work. Not only were those involved required to deal effectively with the extreme limitation in resources available for and access to a target as remote as the lunar surface; they were required to developed a rigorous approach to science activities ranging from geological field work to deploying field instruments. Principal aspects and keys to the success of the field work are discussed here, including the highly integrated, intensive, and lengthy science planning, simulation, and astronaut training; the development of a systematic scheme for description and documentation of geological sites and samples; and a flexible yet disciplined methodology for site documentation and sample collection. The capability for constant communication with a ‘backroom’ of geological experts who make requests and weigh in on surface operations was innovative and very useful in encouraging rapid dissemination of information to the greater community in general. An extensive archive of the Apollo era science activity related documents provides evidence of the principal aspects and keys to the success of the field work. The Apollo Surface Journal allows analysis of the astronaut’s performance in terms of capability for traveling on foot, documentation and sampling of field stations, and manual operation of tools and instruments, all as a function of time. The application of these analysis as ‘lessons learned’ for planning the next generation of human or robotic field science activities on the Moon and elsewhere are considered here as well.

  10. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  11. Electronic resource management systems a workflow approach

    CERN Document Server

    Anderson, Elsa K

    2014-01-01

    To get to the bottom of a successful approach to Electronic Resource Management (ERM), Anderson interviewed staff at 11 institutions about their ERM implementations. Among her conclusions, presented in this issue of Library Technology Reports, is that grasping the intricacies of your workflow-analyzing each step to reveal the gaps and problems-at the beginning is crucial to selecting and implementing an ERM. Whether the system will be used to fill a gap, aggregate critical data, or replace a tedious manual process, the best solution for your library depends on factors such as your current soft

  12. Interviewing for Education and Social Science Research: The Gateway Approach

    Science.gov (United States)

    Mears, Carolyn Lunsford

    2009-01-01

    This volume introduces a fresh approach to research, using strategies adapted from oral history and educational criticism to traverse the boundaries of human experience, and bring to light matters of concern to education and social science researchers. This narrator-centered method, a by-product of the author's award-winning investigation into the…

  13. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  14. Marxism in Vygotskian Approaches to Cultural Studies of Science Education

    Science.gov (United States)

    Lima, Paulo, Jr.; Ostermann, Fernanda; Rezende, Flavia

    2014-01-01

    In this paper we initially address the main categories of Marxism, illustrating how Vygotsky has appropriated them as mediational meta-theoretical tools for building concepts for his psychological approach. In order to investigate the influence of Marxism in cultural studies of science education, we make an account of how current research,…

  15. Print and Electronic Resources: Usage Statistics at Guru Gobind Singh Indraprastha University Library

    Science.gov (United States)

    Kapoor, Kanta

    2010-01-01

    Purpose: The purpose of this paper is to quantify the use of electronic journals in comparison with the print collections in the Guru Gobind Singh Indraprastha University Library. Design/methodology/approach: A detailed analysis was made of the use of lending services, the Xerox facility and usage of electronic journals such as Science Direct,…

  16. An inquiry approach to science and language teaching

    Science.gov (United States)

    Rodriguez, Imelda; Bethel, Lowell J.

    The purpose of this study was to determine the effectiveness of an inquiry approach to science and language teaching to further develop classification and oral communication skills of bilingual Mexican American third graders. A random sample consisting of 64 subjects was selected for experimental and control groups from a population of 120 bilingual Mexican American third graders. The Solomon Four-Group experimental design was employed. Pre- and posttesting was performed by use of the Goldstein-Sheerer Object Sorting Test, (GSOST) and the Test of Oral Communication Skills, (TOCS). The experimental group participated in a sequential series of science lessons which required manipulation of objects, exploration, peer interaction, and teacher-pupil interaction. The children made observations and comparisons of familiar objects and then grouped them on the basis of perceived and inferred attributes. Children worked individually and in small groups. Analysis of variance procedures was used on the posttest scores to determine if there was a significant improvement in classification and oral communication skills in the experimental group. The results on the posttest scores indicated a significant improvement at the 0.01 level for the experimental group in both classification and oral communication skills. It was concluded that participation in the science inquiry lessons facilitated the development of classification and oral communication skills of bilingual children.

  17. Application of electron beam, ion beam and positron beam to polymer sciences

    International Nuclear Information System (INIS)

    Tagawa, Seiichi

    1999-01-01

    Full text: Particle beams are finding increasing application in material sciences and the interest covers both applied as well as fundamental investigations. In the present talk application of electron and ion beams in several polymers such as polysilanes, polystyrene, polyolefins, polymethylmethacrylates and related polymers will be presented. It includes among other investigations (such as product analysis) pulse radiolysis studies and effect of LET on polymers. Importance of positron studies in material sciences especially bulk polymers is well documented. A relatively new technique, namely, positron beam application especially in thin film polymers is a new and emerging areas. The interest ranges from applied aspects as well as fundamental understanding of surfaces and interfaces. The present talk will detail the development of a pulsed positron beam using LINAC at Institute of Scientific and Industrial Research (ISIR) as well as its applications to polymer thin films

  18. Quality assessment of Isfahan Medical Faculty web site electronic services and prioritizing solutions using analytic hierarchy process approach

    Science.gov (United States)

    Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nargess; Sarmadi, Sima

    2014-01-01

    Context: Implementing information technology in the best possible way can bring many advantages such as applying electronic services and facilitating tasks. Therefore, assessment of service providing systems is a way to improve the quality and elevate these systems including e-commerce, e-government, e-banking, and e-learning. Aims: This study was aimed to evaluate the electronic services in the website of Isfahan University of Medical Sciences in order to propose solutions to improve them. Furthermore, we aim to rank the solutions based on the factors that enhance the quality of electronic services by using analytic hierarchy process (AHP) method. Materials and Methods: Non-parametric test was used to assess the quality of electronic services. The assessment of propositions was based on Aqual model and they were prioritized using AHP approach. The AHP approach was used because it directly applies experts’ deductions in the model, and lead to more objective results in the analysis and prioritizing the risks. After evaluating the quality of the electronic services, a multi-criteria decision making frame-work was used to prioritize the proposed solutions. Statistical Analysis Used: Non-parametric tests and AHP approach using Expert Choice software. Results: The results showed that students were satisfied in most of the indicators. Only a few indicators received low satisfaction from students including, design attractiveness, the amount of explanation and details of information, honesty and responsiveness of authorities, and the role of e-services in the user's relationship with university. After interviewing with Information and Communications Technology (ICT) experts at the university, measurement criteria, and solutions to improve the quality were collected. The best solutions were selected by EC software. According to the results, the solution “controlling and improving the process in handling users complaints” is of the utmost importance and authorities

  19. A Graphical, Self-Organizing Approach to Classifying Electronic Meeting Output.

    Science.gov (United States)

    Orwig, Richard E.; Chen, Hsinchun; Nunamaker, Jay F., Jr.

    1997-01-01

    Describes research using an artificial intelligence approach in the application of a Kohonen Self-Organizing Map (SOM) to the problem of classification of electronic brainstorming output and an evaluation of the results. The graphical representation of textual data produced by the Kohonen SOM suggests many opportunities for improving information…

  20. Zeroth order regular approximation approach to electric dipole moment interactions of the electron

    Science.gov (United States)

    Gaul, Konstantin; Berger, Robert

    2017-07-01

    A quasi-relativistic two-component approach for an efficient calculation of P ,T -odd interactions caused by a permanent electric dipole moment of the electron (eEDM) is presented. The approach uses a (two-component) complex generalized Hartree-Fock and a complex generalized Kohn-Sham scheme within the zeroth order regular approximation. In applications to select heavy-elemental polar diatomic molecular radicals, which are promising candidates for an eEDM experiment, the method is compared to relativistic four-component electron-correlation calculations and confirms values for the effective electric field acting on the unpaired electron for RaF, BaF, YbF, and HgF. The calculations show that purely relativistic effects, involving only the lower component of the Dirac bi-spinor, are well described by treating only the upper component explicitly.

  1. Environmental dose reconstruction: Approaches to an inexact science

    International Nuclear Information System (INIS)

    Hoffman, F.O.

    1991-01-01

    The endpoints of environmental dose reconstruction are quantitative yet the science is inexact. Four problems related to this issue are described. These problems are: (1) Defining the scope of the assessment and setting logical priorities for detailed investigations, (2) Recognizing the influence of investigator judgment of the results, (3) Selecting an endpoint other than dose for the assessment of multiple contaminants, and (4) Resolving the conflict between credibility and expertise in selecting individuals responsible for dose reconstruction. Approaches are recommended for dealing with each of these problems

  2. A pocket guide to electronic laboratory notebooks in the academic life sciences [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Ulrich Dirnagl

    2016-01-01

    Full Text Available Every professional doing active research in the life sciences is required to keep a laboratory notebook. However, while science has changed dramatically over the last centuries, laboratory notebooks have remained essentially unchanged since pre-modern science. We argue that the implementation of electronic laboratory notebooks (eLN in academic research is overdue, and we provide researchers and their institutions with the background and practical knowledge to select and initiate the implementation of an eLN in their laboratories. In addition, we present data from surveying biomedical researchers and technicians regarding which hypothetical features and functionalities they hope to see implemented in an eLN, and which ones they regard as less important. We also present data on acceptance and satisfaction of those who have recently switched from paper laboratory notebook to an eLN.  We thus provide answers to the following questions: What does an electronic laboratory notebook afford a biomedical researcher, what does it require, and how should one go about implementing it?

  3. Electronic excitation of atoms and molecules by electron impact in a linear algebraic, separable potential approach

    International Nuclear Information System (INIS)

    Collins, L.A.; Schneider, B.I.

    1984-01-01

    The linear algebraic, separable potential approach is applied to the electronic excitation of atoms and molecules by electron impact. By representing the exchange and off-diagonal direct terms on a basis, the standard set of coupled inelastic equations is reduced to a set of elastic inhomogeneous equations. The procedure greatly simplifies the formulation by allowing a large portion of the problem to be handled by standard bound-state techniques and by greatly reducing the order of the scattering equations that must be solved. Application is made to the excitation of atomic hydrogen in the three-state close-coupling (1s, 2s, 2p) approximation. (author)

  4. A novel system architecture for the national integration of electronic health records: a semi-centralized approach.

    Science.gov (United States)

    AlJarullah, Asma; El-Masri, Samir

    2013-08-01

    The goal of a national electronic health records integration system is to aggregate electronic health records concerning a particular patient at different healthcare providers' systems to provide a complete medical history of the patient. It holds the promise to address the two most crucial challenges to the healthcare systems: improving healthcare quality and controlling costs. Typical approaches for the national integration of electronic health records are a centralized architecture and a distributed architecture. This paper proposes a new approach for the national integration of electronic health records, the semi-centralized approach, an intermediate solution between the centralized architecture and the distributed architecture that has the benefits of both approaches. The semi-centralized approach is provided with a clearly defined architecture. The main data elements needed by the system are defined and the main system modules that are necessary to achieve an effective and efficient functionality of the system are designed. Best practices and essential requirements are central to the evolution of the proposed architecture. The proposed architecture will provide the basis for designing the simplest and the most effective systems to integrate electronic health records on a nation-wide basis that maintain integrity and consistency across locations, time and systems, and that meet the challenges of interoperability, security, privacy, maintainability, mobility, availability, scalability, and load balancing.

  5. An Investigation of Turkish Middle School Science Teachers' Pedagogical Orientations Towards Direct and Inquiry Instructional Approaches

    Science.gov (United States)

    Sahingoz, Selcuk

    One of the most important goals of science education is preparing effective science teachers which includes the development of a science pedagogical orientation. Helping in-service science teachers improve their orientations toward science teaching begins with identifying their current orientations. While there are many aspects of an effective science teaching orientation, this study specifically focuses on effective pedagogy. The interest of this study is to clarify pedagogical orientations of middle school science teachers in Turkey toward the teaching of science conceptual knowledge. It focuses on what instructional preferences Turkish middle school science teachers have in theory and practice. The purpose of this study is twofold: 1) to elucidate teacher pedagogical profiles toward direct and inquiry instructional approaches. For this purpose, quantitative profile data, using a Turkish version of the Pedagogy of Science Teaching Test (POSTT-TR) assessment instrument, was collected from 533 Turkish middle school science teachers; 2) to identify teaching orientations of middle school science teachers and to identify their reasons for preferring specific instructional practices. For this purpose, descriptive qualitative, interview data was collected from 23 teachers attending a middle school science teacher workshop in addition to quantitative data using the POSTT-TR. These teachers sat for interviews structured by items from the POSTT-TR. Thus, the research design is mixed-method. The design provides a background profile on teacher orientations along with insights on reasons for pedagogical choices. The findings indicate that instructional preference distributions for the large group and smaller group are similar; however, the smaller workshop group is more in favor of inquiry instructional approaches. The findings also indicate that Turkish middle school science teachers appear to have variety of teaching orientations and they have varied reasons. Moreover, the

  6. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.

    Science.gov (United States)

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.

  7. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  8. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. D K Lee. Articles written in Journal of Chemical Sciences. Volume 114 Issue 6 December 2002 pp 533-538. Photoinduced electron transfer of chlorophyll in lipid bilayer system · D K Lee K W Seo Y S Kang · More Details Abstract Fulltext PDF. Photoinduced electron transfer ...

  9. Effects of the Problem-Posing Approach on Students' Problem Solving Skills and Metacognitive Awareness in Science Education

    Science.gov (United States)

    Akben, Nimet

    2018-05-01

    The interrelationship between mathematics and science education has frequently been emphasized, and common goals and approaches have often been adopted between disciplines. Improving students' problem-solving skills in mathematics and science education has always been given special attention; however, the problem-posing approach which plays a key role in mathematics education has not been commonly utilized in science education. As a result, the purpose of this study was to better determine the effects of the problem-posing approach on students' problem-solving skills and metacognitive awareness in science education. This was a quasi-experimental based study conducted with 61 chemistry and 40 physics students; a problem-solving inventory and a metacognitive awareness inventory were administered to participants both as a pre-test and a post-test. During the 2017-2018 academic year, problem-solving activities based on the problem-posing approach were performed with the participating students during their senior year in various university chemistry and physics departments throughout the Republic of Turkey. The study results suggested that structured, semi-structured, and free problem-posing activities improve students' problem-solving skills and metacognitive awareness. These findings indicated not only the usefulness of integrating problem-posing activities into science education programs but also the need for further research into this question.

  10. Bridging Theory and Practice: Using Hip-Hop Pedagogy As A Culturally Relevant Approach In The Urban Science Classroom

    Science.gov (United States)

    Adjapong, Edmund S.

    This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates the effect that Hip-Hop Pedagogy, as a culturally relevant approach to teaching has on teaching and learning in an urban science classroom. This study establishes practical tools and approaches, which were formed from by theory and research that transcend the traditional monolithic approaches to teaching science. Participants in this study are middle school students who attend an urban school in one of the largest school systems in the country. This research showed that as result of utilizing Hip-Hop pedagogical practices, students reported that they developed a deeper understanding of science content, students were more likely to identify as scientists, and students were provided a space and opportunities to deconstruct traditional classroom spaces and structures.

  11. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Science.gov (United States)

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  12. Towards a pedagogical model for science education: bridging educational contexts through a blended learning approach

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2017-01-01

    This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The development of this design framework started as a response to complex

  13. Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

    Science.gov (United States)

    Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel

    2018-04-01

    We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.

  14. Library and Information Science Education: An Approach to Albania

    Directory of Open Access Journals (Sweden)

    Elsa Bitri

    2013-11-01

    Full Text Available This study aims to develop and suggest to Albania an applicable academic-level Library and Infor­mation Science (LIS educational program approach parallel to world developments in this aspect. Scientific and technological developments have deeply impacted LISfield. The development-education interaction has reflected even in the curriculum changes. In an era where scientific and technological changes can deeply affect education merely a flexible and general approach that could place profes- sional developments and local characteristics of the country could be suggested. A descriptive method was used and a survey questionnaire was applied to 94 librarians from different types of libraries and 6 educators. From the questionnaires it was concluded that a LIS education in a university level is needed in the country. As conclusion this study suggested a conceptual educational approach regarding LIS education. This approach is comprised of eight general modules/subject areas such as information resources, information organization, information users and communication, research, theory and phi- losophy, systems and information technology management, and other disciplines.

  15. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  16. An Approach to Teaching General Chemistry II that Highlights the Interdisciplinary Nature of Science*,†

    Science.gov (United States)

    Sumter, Takita Felder; Owens, Patrick M.

    2012-01-01

    The need for a revised curriculum within the life sciences has been well-established. One strategy to improve student preparation in the life sciences is to redesign introductory courses like biology, chemistry, and physics so that they better reflect their disciplinary interdependence. We describe a medically relevant, context-based approach to teaching second semester general chemistry that demonstrates the interdisciplinary nature of biology and chemistry. Our innovative method provides a model in which disciplinary barriers are diminished early in the undergraduate science curriculum. The course is divided into three principle educational modules: 1) Fundamentals of General Chemistry, 2) Medical Approaches to Inflammation, and 3) Neuroscience as a connector of chemistry, biology, and psychology. We accurately anticipated that this modified approach to teaching general chemistry would enhance student interest in chemistry and bridge the perceived gaps between biology and chemistry. The course serves as a template for context-based, interdisciplinary teaching that lays the foundation needed to train 21st century scientists. PMID:21445902

  17. Endorsing the Practical Endorsement? OCR's Approach to Practical Assessment in Science A-Levels

    Science.gov (United States)

    Evans, Steve; Wade, Neil

    2015-01-01

    This article summarises the practical requirements for new science A-levels in biology, chemistry and physics for first teaching from September 2015. It discusses the background to how the new approach was reached and how OCR has seen this taking shape in our assessment models. The opportunities presented by this new approach to practical…

  18. [Thirty years of the electron microscope investigation in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences].

    Science.gov (United States)

    Shatrov, A B

    2003-01-01

    The history of the electron microscope investigations in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences and progress in scanning and transmission electron microscope investigations in this field of biology to the moment are briefly accounted.

  19. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    International Nuclear Information System (INIS)

    Adorno, Dominique Persano; Pizzolato, Nicola; Fazio, Claudio

    2015-01-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations. (paper)

  20. Elucidating the electron transport in semiconductors via Monte Carlo simulations: an inquiry-driven learning path for engineering undergraduates

    Science.gov (United States)

    Persano Adorno, Dominique; Pizzolato, Nicola; Fazio, Claudio

    2015-09-01

    Within the context of higher education for science or engineering undergraduates, we present an inquiry-driven learning path aimed at developing a more meaningful conceptual understanding of the electron dynamics in semiconductors in the presence of applied electric fields. The electron transport in a nondegenerate n-type indium phosphide bulk semiconductor is modelled using a multivalley Monte Carlo approach. The main characteristics of the electron dynamics are explored under different values of the driving electric field, lattice temperature and impurity density. Simulation results are presented by following a question-driven path of exploration, starting from the validation of the model and moving up to reasoned inquiries about the observed characteristics of electron dynamics. Our inquiry-driven learning path, based on numerical simulations, represents a viable example of how to integrate a traditional lecture-based teaching approach with effective learning strategies, providing science or engineering undergraduates with practical opportunities to enhance their comprehension of the physics governing the electron dynamics in semiconductors. Finally, we present a general discussion about the advantages and disadvantages of using an inquiry-based teaching approach within a learning environment based on semiconductor simulations.

  1. New Statistical Multiparticle Approach to the Acceleration of Electrons by the Ion Field in Plasmas

    Directory of Open Access Journals (Sweden)

    Eugene Oks

    2010-01-01

    Full Text Available The phenomenon of the acceleration of the (perturbing electrons by the ion field (AEIF significantly reduces Stark widths and shifts in plasmas of relatively high densities and/or relatively low temperature. Our previous analytical calculations of the AEIF were based on the dynamical treatment: the starting point was the ion-microfield-caused changes of the trajectories and velocities of individual perturbing electrons. In the current paper, we employ a statistical approach: the starting point is the electron velocity distribution function modified by the ion microfield. The latter had been calculated by Romanovsky and Ebeling in the multiparticle description of the ion microfield. The result shows again the reduction of the electron Stark broadening. Thus two totally different analytical approaches (dynamical and statistical agree with each other and therefore disprove the corresponding recent fully-numerical simulations by Stambulchik et al. that claimed an increase of the electron Stark broadening.

  2. A citizen science approach to monitoring bleaching in the zoantharian Palythoa tuberculosa

    KAUST Repository

    Parkinson, John Everett; Yang, Sung-Yin; Kawamura, Iori; Byron, Gordon; Todd, Peter Alan; Reimer, James Davis

    2016-01-01

    in midwinter, as well as low sample size and brief training owing to the course structure. Despite certain limitations of P. tuberculosa as a focal organism, the citizen science approach to color monitoring has promise, and we

  3. Ensuring that ecological science contributes to natural resource management using a Delphi-derived approach

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Amy K [ORNL; Dale, Virginia H [ORNL; Arthur, Taryn A [ORNL; Baskaran, Latha Malar [ORNL

    2017-01-01

    This chapter approaches participatory modeling in environmental decision making from an atypical perspective. It broadly addresses the question of how to assure that science conducted to assist practitioners improves resource management. More specifically, it describes a case involving environmental science and natural resource management at Fort Benning, a U.S. Army installation in the southeastern United States where disparate environmental research projects were funded by a single federal agency to enhance the ability of Fort Benning resource managers to achieve their resource management goals. The role of our effort was to integrate the scientific studies in a manner that would be meaningful and useful for resource managers. Hence we assembled a team consisting of an anthropologist, ecologist, microbiologist, statistician, and geographic information systems specialist who developed a common framework that served as the basis for this integration. The team first used a Delphi expert elicitation, which evolved into an approach more akin to facilitated negotiation. This second approach arose organically, particularly when our team took advantage of an opportunity for face-to-face interaction. Although the shift in our approach was unplanned, it proved to be highly productive. We discuss the potential utility of our approach for other situations and suggest that it would be useful to initiate at the beginning of research where the aim is to produce scientific results that meet practitioners needs, specifically in the realm of environmental science and resource management.

  4. Public health policy research: making the case for a political science approach.

    Science.gov (United States)

    Bernier, Nicole F; Clavier, Carole

    2011-03-01

    The past few years have seen the emergence of claims that the political determinants of health do not get due consideration and a growing demand for better insights into public policy analysis in the health research field. Several public health and health promotion researchers are calling for better training and a stronger research culture in health policy. The development of these studies tends to be more advanced in health promotion than in other areas of public health research, but researchers are still commonly caught in a naïve, idealistic and narrow view of public policy. This article argues that the political science discipline has developed a specific approach to public policy analysis that can help to open up unexplored levers of influence for public health research and practice and that can contribute to a better understanding of public policy as a determinant of health. It describes and critiques the public health model of policy analysis, analyzes political science's specific approach to public policy analysis, and discusses how the politics of research provides opportunities and barriers to the integration of political science's distinctive contributions to policy analysis in health promotion.

  5. Philosophical Approaches towards Sciences of Life in Early Cybernetics

    Science.gov (United States)

    Montagnini, Leone

    2008-07-01

    The article focuses on the different conceptual and philosophical approaches towards the sciences of life operating in the backstage of Early Cybernetics. After a short reconstruction of the main steps characterizing the origins of Cybernetics, from 1940 until 1948, the paper examines the complementary conceptual views between Norbert Wiener and John von Neumann, as a "fuzzy thinking" versus a "logical thinking", and the marked difference between the "methodological individualism" shared by both of them versus the "methodological collectivism" of most of the numerous scientists of life and society attending the Macy Conferences on Cybernetics. The main thesis sustained here is that these different approaches, quite invisible to the participants, were different, maybe even opposite, but they could provoke clashes, as well as cooperate in a synergic way.

  6. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  7. Utilization of Electronic Information Resources by Undergraduate Students of University of Ibadan: A Case Study of Social Sciences and Education

    Science.gov (United States)

    Owolabi, Sola; Idowu, Oluwafemi A.; Okocha, Foluke; Ogundare, Atinuke Omotayo

    2016-01-01

    The study evaluated utilization of electronic information resources by undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan. The study adopted a descriptive survey design with a study population of 1872 undergraduates in the Faculties of Education and the Social Sciences in University of Ibadan, from which a…

  8. Continuum multiple-scattering approach to electron-molecule scattering and molecular photoionization

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dill, D.

    1979-01-01

    The multiple-scattering approach to the electronic continuum of molecules is described. The continuum multiple-scattering model (CMSM) was developed as a survey tool and, as such was required to satisfy two requirements. First, it had to have a very broad scope, which means (i) molecules of arbitrary geometry and complexity containing any atom in the periodic system, (ii) continuum electron energies from 0-1000 eV, and (iii) capability to treat a large range of processes involving both photoionization and electron scattering. Second, the structure of the theory was required to lend itself to transparent, physical interpretation of major spectral features such as shape resonances. A comprehensive theoretical framework for the continuum multiple scattering method is presented, as well as its applications to electron-molecule scattering and molecular photoionization. Highlights of recent applications in these two areas are reviewed. The major impact of the resulting studies over the last few years has been to establish the importance of shape resonances in electron collisions and photoionization of practically all (non-hydride) molecules

  9. Observation of superconducting fluxons by transmission electron microscopy: A Fourier space approach to calculate the electron optical phase shifts and images

    International Nuclear Information System (INIS)

    Beleggia, M.; Pozzi, G.

    2001-01-01

    An approach is presented for the calculation of the electron optical phase shift experienced by high-energy electrons in a transmission electron microscope, when they interact with the magnetic field associated with superconducting fluxons in a thin specimen tilted with respect to the beam. It is shown that by decomposing the vector potential in its Fourier components and by calculating the phase shift of each component separately, it is possible to obtain the Fourier transform of the electron optical phase shift, which can be inverted either analytically or numerically. It will be shown how this method can be used to recover the result, previously obtained by the real-space approach, relative to the case of a straight flux tube perpendicular to the specimen surfaces. Then the method is applied to the case of a London fluxon in a thin film, where the bending and the broadening of the magnetic-field lines due to the finite specimen thickness are now correctly taken into account and not treated approximately by means of a parabolic fit. Finally, it will be shown how simple models for the pancake structure of the fluxon can be analyzed within this framework and the main features of electron transmission images predicted

  10. Technological and Traditional Drawing Approaches Encourage Active Engagement in Histology Classes for Science Undergraduates

    Science.gov (United States)

    Cogdell, Barbara; Torsney, Ben; Stewart, Katherine; Smith, Robert A.

    2012-01-01

    In order to promote more active engagement of science undergraduates in histology practical classes some technology-based innovations were introduced. First, an interactive pre-lab tutorial was set up using an electronic handset voting system, where guidance on tissue analysis was given. Second, a web-based resource where students could access…

  11. [The approach of sciences of complexity in health services administration].

    Science.gov (United States)

    Fajardo-Ortiz, Guillermo; Ortiz-Montalvo, Armando

    2013-01-01

    Historically, health services administration has been managed under a Taylorist, Fayolist, humanist and bureaucratic focus approach. However, today dynamic and competitive behaviors that require others approaches in management are developing. Because of the social, scientific and technological changes that are occurring, it is necessary to abandon hierarchical and authoritarian schemes, "up and down" lines, prescriptive rules and order line up must be left behind. Health services administration is an adapted complex system that is not proportional, neither predictable in direction or magnitude. A new proposal is to focus on the sciences of complexity, where the social factors, materials, economics, human and ethics coincide with order and disorder, reason and unreason, and in which we must accept that the phenomenon that emerges creates different organizing different structures from the addition or subtraction of components. There is distance in the process of cause and direct effect. The mirage from the sciences of complexity are trans-disciplinary and we have accepted this in others branches of knowledge, such as quantum physics, non-linear mathematics and cybernetics, so we have to accept the influence of entropy, non-entropy, attractors, the theory of chaos and fractals.

  12. Novel approaches to study low-energy electron-induced damage to DNA oligonucleotides

    International Nuclear Information System (INIS)

    Rackwitz, Jenny; Bald, Ilko; Ranković, Miloš Lj; Milosavljević, Aleksandar R

    2015-01-01

    The novel approach of DNA origami structures as templates for precise quantification of various well- defined oligonucleotides provides the opportunity to determine the sensitivity of complex DNA sequences towards low-energy electrons. (paper)

  13. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    Science.gov (United States)

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160

  14. A novel approach to electron data background treatment in an online wide-angle spectrometer for laser-accelerated ion and electron bunches

    Science.gov (United States)

    Lindner, F. H.; Bin, J. H.; Englbrecht, F.; Haffa, D.; Bolton, P. R.; Gao, Y.; Hartmann, J.; Hilz, P.; Kreuzer, C.; Ostermayr, T. M.; Rösch, T. F.; Speicher, M.; Parodi, K.; Thirolf, P. G.; Schreiber, J.

    2018-01-01

    Laser-based ion acceleration is driven by electrical fields emerging when target electrons absorb laser energy and consecutively leave the target material. A direct correlation between these electrons and the accelerated ions is thus to be expected and predicted by theoretical models. We report on a modified wide-angle spectrometer, allowing the simultaneous characterization of angularly resolved energy distributions of both ions and electrons. Equipped with online pixel detectors, the RadEye1 detectors, the investigation of this correlation gets attainable on a single shot basis. In addition to first insights, we present a novel approach for reliably extracting the primary electron energy distribution from the interfering secondary radiation background. This proves vitally important for quantitative extraction of average electron energies (temperatures) and emitted total charge.

  15. Theoretical study of molecular vibrations in electron momentum spectroscopy experiments on furan: An analytical versus a molecular dynamical approach

    International Nuclear Information System (INIS)

    Morini, Filippo; Deleuze, Michael S.; Watanabe, Noboru; Takahashi, Masahiko

    2015-01-01

    The influence of thermally induced nuclear dynamics (molecular vibrations) in the initial electronic ground state on the valence orbital momentum profiles of furan has been theoretically investigated using two different approaches. The first of these approaches employs the principles of Born-Oppenheimer molecular dynamics, whereas the so-called harmonic analytical quantum mechanical approach resorts to an analytical decomposition of contributions arising from quantized harmonic vibrational eigenstates. In spite of their intrinsic differences, the two approaches enable consistent insights into the electron momentum distributions inferred from new measurements employing electron momentum spectroscopy and an electron impact energy of 1.2 keV. Both approaches point out in particular an appreciable influence of a few specific molecular vibrations of A 1 symmetry on the 9a 1 momentum profile, which can be unravelled from considerations on the symmetry characteristics of orbitals and their energy spacing

  16. Defining science literacy: A pedagogical approach

    Science.gov (United States)

    Brilakis, Kathryn

    A functional knowledge of science is required to capably evaluate the validity of conflicting positions on topics such as fracking, climate change, and the safety of genetically modified food. Scientifically illiterate individuals are at risk of favoring the persuasive arguments of those championing partisan, anti-science agendas. In an effort to enhance the scientific literacy of community college students and equip them with the skill set necessary to make informed decisions, this study generated a pedagogical definition of science literacy using survey methodology and then utilized the definition to construct an accessible, comprehensive, and pragmatic web-based science literacy program. In response to an email solicitation, college and university science educators submitted lists of topics within their specialty they considered essential when assessing science literacy. Their responses were tabulated and those topics cited most frequently by the participating physicists, biologists, chemists and geoscientists were assembled into a definition of science literacy. This definition was translated into a modular, web-based course suitable for both online and classroom learning published as: www.scienceliteracyforum.com.

  17. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions

    Science.gov (United States)

    Hoy, Erik P.; Mazziotti, David A.; Seideman, Tamar

    2017-11-01

    Can an electronic device be constructed using only a single molecule? Since this question was first asked by Aviram and Ratner in the 1970s [Chem. Phys. Lett. 29, 277 (1974)], the field of molecular electronics has exploded with significant experimental advancements in the understanding of the charge transport properties of single molecule devices. Efforts to explain the results of these experiments and identify promising new candidate molecules for molecular devices have led to the development of numerous new theoretical methods including the current standard theoretical approach for studying single molecule charge transport, i.e., the non-equilibrium Green's function formalism (NEGF). By pairing this formalism with density functional theory (DFT), a wide variety of transport problems in molecular junctions have been successfully treated. For some systems though, the conductance and current-voltage curves predicted by common DFT functionals can be several orders of magnitude above experimental results. In addition, since density functional theory relies on approximations to the exact exchange-correlation functional, the predicted transport properties can show significant variation depending on the functional chosen. As a first step to addressing this issue, the authors have replaced density functional theory in the NEGF formalism with a 2-electron reduced density matrix (2-RDM) method, creating a new approach known as the NEGF-RDM method. 2-RDM methods provide a more accurate description of electron correlation compared to density functional theory, and they have lower computational scaling compared to wavefunction based methods of similar accuracy. Additionally, 2-RDM methods are capable of capturing static electron correlation which is untreatable by existing NEGF-DFT methods. When studying dithiol alkane chains and dithiol benzene in model junctions, the authors found that the NEGF-RDM predicts conductances and currents that are 1-2 orders of magnitude below

  18. Scientific integrity and research ethics an approach from the ethos of science

    CERN Document Server

    Koepsell, David

    2017-01-01

    This book is an easy to read, yet comprehensive introduction to practical issues in research ethics and scientific integrity. It addresses questions about what constitutes appropriate academic and scientific behaviors from the point of view of what Robert Merton called the “ethos of science.” In other words, without getting into tricky questions about the nature of the good or right (as philosophers often do), Koepsell’s concise book provides an approach to behaving according to the norms of science and academia without delving into the morass of philosophical ethics. The central thesis is that: since we know certain behaviors are necessary for science and its institutions to work properly (rather than pathologically), we can extend those principles to guide good behaviors as scientists and academics. The Spanish version of this book was commissioned by the Mexican National Science Foundation (CONACyT) and is being distributed to and used by Mexican scientists in a unique, national plan to improve scie...

  19. Electronics in nuclear science and technology

    International Nuclear Information System (INIS)

    Dastidar, P.R.

    1979-01-01

    Electronics plays a vital role in the field of nuclear research and industry. Nuclear instrumentation and control systems rely heavily on electronics for reliable plant operation and to ensure personnel safety from harmful radiations. Rapid developments in electronics have resulted in the gradual phasing out of pneumatic instruments and replacement by solid-state electronic systems. On-line computers are now being used extensively for centralised monitoring and control of large nuclear plants. The paper covers the following main topics: (i) radiation detection and measurement, (ii) systems for nuclear research and design, (iii) nuclear reactor control and safety systems and (iv) modern trends in reactor control and nuclear instrumentation systems. The methods for radiation detection, ionization chambers, self-powdered detectors and semiconductor detectors are discussed in brief, followed by the description of the electronic systems commonly used in nuclear research, namely the pulse height, multichannel, correlation and fourier analysers. NIM and CAMAC, the electronic system standards used in nuclear laboratories/industries are also outlined. Electronic systems used for nuclear reactor control, safety, reactor core monitoring, failed fuel detection and process control instrumentation, have been described. The application of computers to reactor control, plant data processing, better man-machine interface and the use of multiple computer systems for achieving better reliability have also been discussed. Micro-computer based instrumentation systems, computers in reactor safety and advanced nuclear instrumentation techniques are briefly illustrated. (auth.)

  20. Use of electronic databases by postgraduate students in a university ...

    African Journals Online (AJOL)

    The purpose of this study was to investigate the use of electronic databases by postgraduate students in the Faculty of Science and Agriculture at the. University of KwaZulu-Natal, Pietermaritzburg. The study adopted a quantitative approach and a survey was conducted. The results of the study found that while postgraduate ...

  1. Electron-phonon coupling from finite differences

    Science.gov (United States)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  2. Science, technology, engineering, mathematics (STEM) as mathematics learning approach in 21st century

    Science.gov (United States)

    Milaturrahmah, Naila; Mardiyana, Pramudya, Ikrar

    2017-08-01

    This 21st century demands competent human resources in science, technology, engineering design and mathematics so that education is expected to integrate the four disciplines. This paper aims to describe the importance of STEM as mathematics learning approach in Indonesia in the 21st century. This paper uses a descriptive analysis research method, and the method reveals that STEM education growing in developed countries today can be a framework for innovation mathematics in Indonesia in the 21st century. STEM education integrate understanding of science, math skills, and the available technology with the ability to perform engineering design process. Implementation of mathematics learning with STEM approach makes graduates trained in using of mathematics knowledge that they have to create innovative products that are able to solve the problems that exist in society.

  3. Using Evernote as an electronic lab notebook in a translational science laboratory.

    Science.gov (United States)

    Walsh, Emily; Cho, Ilseung

    2013-06-01

    Electronic laboratory notebooks (ELNs) offer significant advantages over traditional paper laboratory notebooks (PLNs), yet most research labs today continue to use paper documentation. While biopharmaceutical companies represent the largest portion of ELN users, government and academic labs trail far behind in their usage. Our lab, a translational science laboratory at New York University School of Medicine (NYUSoM), wanted to determine if an ELN could effectively replace PLNs in an academic research setting. Over 6 months, we used the program Evernote to record all routine experimental information. We also surveyed students working in research laboratories at NYUSoM on the relative advantages and limitations of ELNs and PLNs and discovered that electronic and paper notebook users alike reported the inability to freehand into a notebook as a limitation when using electronic methods. Using Evernote, we found that the numerous advantages of ELNs greatly outweighed the inability to freehand directly into a notebook. We also used imported snapshots and drawing program add-ons to obviate the need for freehanding. Thus, we found that using Evernote as an ELN not only effectively replaces PLNs in an academic research setting but also provides users with a wealth of other advantages over traditional paper notebooks.

  4. The Implementation of a Social Constructivist Approach in Primary Science Education in Confucian Heritage Culture: The Case of Vietnam

    Science.gov (United States)

    H?ng, Ngô Vu Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2015-01-01

    Social constructivism has been increasingly studied and implemented in science school education. Nevertheless, there is a lack of holistic studies on the implementation of social constructivist approach in primary science education in Confucian heritage culture. This study aims to determine to what extent a social constructivist approach is…

  5. An effective approach for choosing an electronic health record.

    Science.gov (United States)

    Rowley, Robert

    2009-01-01

    With government stimulus money becoming available to encourage healthcare facilities to adopt electronic health record (EHR) systems, the decision to move forward with implementing an EHR system has taken on an urgency not previously seen. The EHR landscape is evolving rapidly and the underlying technology platform is becoming increasingly interconnected. One must make sure that an EHR decision does not lock oneself into technology obsolescence. The best approach for evaluating an EHR is on the basis of:usability, interoperability, and affordability.

  6. Data science approaches to pharmacogenetics.

    Science.gov (United States)

    Penrod, N M; Moore, J H

    2014-01-01

    Pharmacogenetic studies rely on applied statistics to evaluate genetic data describing natural variation in response to pharmacotherapeutics such as drugs and vaccines. In the beginning, these studies were based on candidate gene approaches that specifically focused on efficacy or adverse events correlated with variants of single genes. This hypothesis driven method required the researcher to have a priori knowledge of which genes or gene sets to investigate. According to rational design, the focus of these studies has been on drug metabolizing enzymes, drug transporters, and drug targets. As technology has progressed, these studies have transitioned to hypothesis-free explorations where markers across the entire genome can be measured in large scale, population based, genome-wide association studies (GWAS). This enables identification of novel genetic biomarkers, therapeutic targets, and analysis of gene-gene interactions, which may reveal molecular mechanisms of drug activities. Ultimately, the challenge is to utilize gene-drug associations to create dosing algorithms based individual genotypes, which will guide physicians and ensure they prescribe the correct dose of the correct drug the first time eliminating trial-and-error and adverse events. We review here basic concepts and applications of data science to the genetic analysis of pharmacologic outcomes.

  7. Spatial and temporal resolution in cryo-electron microscopy : a scope for nano-chemistry

    NARCIS (Netherlands)

    Frederik, P.M.; Sommerdijk, N.A.J.M.

    2005-01-01

    Cryo-electron microscopy has evolved in an established approach to study the structure of bio-colloids. Recent developments in instrumentation and automation, often demanded by life sciences, made cryo-EM a general tool in colloid chemistry. Recently improved instrumentation for vitrification has

  8. Approaches to Open Data for Science in Spain

    Directory of Open Access Journals (Sweden)

    E Wulff-Barreiro

    2011-10-01

    Full Text Available As observational data has attained new legal status, allowing their integration into open Internet systems, and experimental data continues to be assembled in common and free platforms, state of the art, easy to access data repositories have been designed in Spain. These repositories have removed many obstacles to re-utilization of GIS and other data. European legislation has also made advances in opening biodiversity data, including a European space in the Latin-American grid infrastructure. Open access biomedical repositories attract commercial attention while astronomical, meteorological, and oncological institutions promote data quality and access. This paper describes recent approaches to open access data for science in Spain.

  9. Proceedings – Mathematical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    , Sichuan 614202, China; School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China; School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, ...

  10. A university system's approach to enhancing the educational mission of health science schools and institutions: the University of Texas Academy of Health Science Education

    Directory of Open Access Journals (Sweden)

    L. Maximilian Buja

    2013-03-01

    Full Text Available Background: The academy movement developed in the United States as an important approach to enhance the educational mission and facilitate the recognition and work of educators at medical schools and health science institutions. Objectives: Academies initially formed at individual medical schools. Educators and leaders in The University of Texas System (the UT System, UTS recognized the academy movement as a means both to address special challenges and pursue opportunities for advancing the educational mission of academic health sciences institutions. Methods: The UTS academy process was started by the appointment of a Chancellor's Health Fellow for Education in 2004. Subsequently, the University of Texas Academy of Health Science Education (UTAHSE was formed by bringing together esteemed faculty educators from the six UTS health science institutions. Results: Currently, the UTAHSE has 132 voting members who were selected through a rigorous, system-wide peer review and who represent multiple professional backgrounds and all six campuses. With support from the UTS, the UTAHSE has developed and sustained an annual Innovations in Health Science Education conference, a small grants program and an Innovations in Health Science Education Award, among other UTS health science educational activities. The UTAHSE represents one university system's innovative approach to enhancing its educational mission through multi- and interdisciplinary as well as inter-institutional collaboration. Conclusions: The UTAHSE is presented as a model for the development of other consortia-type academies that could involve several components of a university system or coalitions of several institutions.

  11. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Weathersby, S. P.; Brown, G.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K., E-mail: lrk@slac.stanford.edu; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); and others

    2015-07-15

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  12. Electronic-nose applications in forensic science and for analysis of volatile biomarkers in the human breath

    Science.gov (United States)

    AD Wilson

    2014-01-01

    The application of electronic-nose (E-nose) technologies in forensic science is a recent new development following a long history of progress in the development of diverse applications in the related biomedical and pharmaceutical fields. Data from forensic analyses must satisfy the needs and requirements of both the scientific and legal communities. The type of data...

  13. Spin polarized electrons in surface science

    International Nuclear Information System (INIS)

    Siegmann, H.C.

    1983-01-01

    The potentialities of spin-polarised electron beams as a probe of surface magnetic properties are outlined. Elastic as well as inelastic scattering of electrons from solid surfaces are considered. (G.Q.)

  14. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Directory of Open Access Journals (Sweden)

    J. Köhler

    2016-01-01

    Full Text Available The Radiation Assessment Detector (RAD, on board the Mars Science Laboratory (MSL rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements. We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements. We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  15. Electron/positron measurements obtained with the Mars Science Laboratory Radiation Assessment Detector on the surface of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, J.; Wimmer-Schweingruber, R.F.; Appel, J. [Kiel Univ. (Germany). Inst. of Experimental and Applied Physics; and others

    2016-04-01

    The Radiation Assessment Detector (RAD), on board the Mars Science Laboratory (MSL) rover Curiosity, measures the energetic charged and neutral particles and the radiation dose rate on the surface of Mars. Although charged and neutral particle spectra have been investigated in detail, the electron and positron spectra have not been investigated yet. The reason for that is that they are difficult to separate from each other and because of the technical challenges involved in extracting energy spectra from the raw data. We use GEANT4 to model the behavior of the RAD instrument for electron/positron measurements.We compare Planetocosmics predictions for different atmospheric pressures and different modulation parameters Φ with the obtained RAD electron/positron measurements.We find that the RAD electron/positron measurements agree well with the spectra predicted by Planetocosmics. Both RAD measurements and Planetocosmics simulation show a dependence of the electron/positron fluxes on both atmospheric pressure and solar modulation potential.

  16. Preservice Science Teachers' Efficacy Regarding a Socioscientific Issue: A Belief System Approach

    Science.gov (United States)

    Kilinç, Ahmet; Kartal, Tezcan; Eroglu, Baris; Demiral, Ümit; Afacan, Özlem; Polat, Dilber; Demirci Guler, Mutlu P.; Görgülü, Özkan

    2013-01-01

    The aim of the present study was to understand the nature of teaching efficacy beliefs related to a socioscientific issue (SSI). We investigated Turkish preservice science teachers' teaching efficacy beliefs about genetically modified (GM) foods using a belief system approach. We assumed that preservice teachers' beliefs about GM foods (content…

  17. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    International Nuclear Information System (INIS)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon

    2015-01-01

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF − and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN + , and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects

  18. Nuclear-electronic orbital reduced explicitly correlated Hartree-Fock approach: Restricted basis sets and open-shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Brorsen, Kurt R.; Sirjoosingh, Andrew; Pak, Michael V.; Hammes-Schiffer, Sharon, E-mail: shs3@illinois.edu [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Ave., Urbana, Illinois 61801 (United States)

    2015-06-07

    The nuclear electronic orbital (NEO) reduced explicitly correlated Hartree-Fock (RXCHF) approach couples select electronic orbitals to the nuclear orbital via Gaussian-type geminal functions. This approach is extended to enable the use of a restricted basis set for the explicitly correlated electronic orbitals and an open-shell treatment for the other electronic orbitals. The working equations are derived and the implementation is discussed for both extensions. The RXCHF method with a restricted basis set is applied to HCN and FHF{sup −} and is shown to agree quantitatively with results from RXCHF calculations with a full basis set. The number of many-particle integrals that must be calculated for these two molecules is reduced by over an order of magnitude with essentially no loss in accuracy, and the reduction factor will increase substantially for larger systems. Typically, the computational cost of RXCHF calculations with restricted basis sets will scale in terms of the number of basis functions centered on the quantum nucleus and the covalently bonded neighbor(s). In addition, the RXCHF method with an odd number of electrons that are not explicitly correlated to the nuclear orbital is implemented using a restricted open-shell formalism for these electrons. This method is applied to HCN{sup +}, and the nuclear densities are in qualitative agreement with grid-based calculations. Future work will focus on the significance of nonadiabatic effects in molecular systems and the further enhancement of the NEO-RXCHF approach to accurately describe such effects.

  19. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  20. A modified linear algebraic approach to electron scattering using cubic splines

    International Nuclear Information System (INIS)

    Kinney, R.A.

    1986-01-01

    A modified linear algebraic approach to the solution of the Schrodiner equation for low-energy electron scattering is presented. The method uses a piecewise cubic-spline approximation of the wavefunction. Results in the static-potential and the static-exchange approximations for e - +H s-wave scattering are compared with unmodified linear algebraic and variational linear algebraic methods. (author)

  1. Nitrogen cycle: approach in Science textbooks for the junior Higt Level 1

    Directory of Open Access Journals (Sweden)

    Angela Fernandes Campos

    2008-01-01

    Full Text Available This paper features as its theme the approach to Nitrogen Cycle in textbooks. The goal is to tell whether the Science textbooks focus on an adequate approach to such a cycle, so that it meets the teacher`s needs. This content was defined because we understand that its study is of the utmost importance, due to the fact that on such a cycle depend nature`s energetic balance, the preservation of the richness of the soil in nutrients and the formation of the nitrogenous compounds which are vital to the organism of all living beings. The research work was carried out by means of the analysis of the Science textbooks recommended by The Textbook Guide 2005, taking into account that, supposedly, upon being approved and suggested by PNLD, they are already qualified to be adopted by teachers. With this research, we came to the conclusion that there are different limits when the Nitrogen Cycle is approached in textbooks. Such finding is not enough for the solution to a real problem; it is believed, however, that perceiving the existence of that problem and understanding what causes is to happen tends to make a possible answer to such a question less distant and conflicting.

  2. Communication: Electronic and transport properties of molecular junctions under a finite bias: A dual mean field approach

    International Nuclear Information System (INIS)

    Liu, Shuanglong; Feng, Yuan Ping; Zhang, Chun

    2013-01-01

    We show that when a molecular junction is under an external bias, its properties cannot be uniquely determined by the total electron density in the same manner as the density functional theory for ground state properties. In order to correctly incorporate bias-induced nonequilibrium effects, we present a dual mean field (DMF) approach. The key idea is that the total electron density together with the density of current-carrying electrons are sufficient to determine the properties of the system. Two mean fields, one for current-carrying electrons and the other one for equilibrium electrons can then be derived. Calculations for a graphene nanoribbon junction show that compared with the commonly used ab initio transport theory, the DMF approach could significantly reduce the electric current at low biases due to the non-equilibrium corrections to the mean field potential in the scattering region

  3. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  4. Electron microscopy approach for the visualization of the epithelial and endothelial glycocalyx.

    Science.gov (United States)

    Chevalier, L; Selim, J; Genty, D; Baste, J M; Piton, N; Boukhalfa, I; Hamzaoui, M; Pareige, P; Richard, V

    2017-06-01

    This study presents a methodological approach for the visualization of the glycocalyx by electron microscopy. The glycocalyx is a three dimensional network mainly composed of glycolipids, glycoproteins and proteoglycans associated with the plasma membrane. Since less than a decade, the epithelial and endothelial glycocalyx proved to play an important role in physiology and pathology, increasing its research interest especially in vascular functions. Therefore, visualization of the glycocalyx requires reliable techniques and its preservation remains challenging due to its fragile and dynamic organization, which is highly sensitive to the different process steps for electron microscopy sampling. In this study, chemical fixation was performed by perfusion as a good alternative to conventional fixation. Additional lanthanum nitrate in the fixative enhances staining of the glycocalyx in transmission electron microscopy bright field and improves its visualization by detecting the elastic scattered electrons, thus providing a chemical contrast. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Quantitative vs. qualitative approaches to the electronic structure of solids

    International Nuclear Information System (INIS)

    Oliva, J.M.; Llunell, Miquel; Alemany, Pere; Canadell, Enric

    2003-01-01

    The usefulness of qualitative and quantitative theoretical approaches in solid state chemistry is discussed by considering three different types of problems: (a) the distribution of boron and carbon atoms in MB 2 C 2 (M=Ca, La, etc.) phases, (b) the band structure and Fermi surface of low-dimensional transition metal oxides and bronzes, and (c) the correlation between the crystal and electronic structure of the ternary nitride Ca 2 AuN

  6. Understanding the Nature of Science and Scientific Progress: A Theory-Building Approach

    Science.gov (United States)

    Chuy, Maria; Scardamalia, Marlene; Bereiter, Carl; Prinsen, Fleur; Resendes, Monica; Messina, Richard; Hunsburger, Winifred; Teplovs, Chris; Chow, Angela

    2010-01-01

    In 1993 Carey and Smith conjectured that the most promising way to boost students' understanding of the nature of science is a "theory-building approach to teaching about inquiry." The research reported here tested this conjecture by comparing results from two Grade 4 classrooms that differed in their emphasis on and technological…

  7. History of science, physics, and art: a complex approach in Brazilian syllabuses

    Science.gov (United States)

    Braga, Marco; Guerra, Andreia; Reis, José Claudio

    2013-09-01

    This paper is about new contents that can be introduced into science education. It is a description of an experience aimed at introducing a complex approach into the final grade of a Brazilian elementary school. The aim is to show the transformation of the conception of space and time from the Middle Ages with the physics of Aristotle to the 20th century, when a new conception arose with the physics of Einstein. These changes were accompanied by new visions of space and time in both physics and arts. Comparison between these two expressions of human culture is used to introduce science as a human construct inserted into history.

  8. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    Science.gov (United States)

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  9. Beyond Positive Sciences : an Anthropological Approach to Market Analysis in North-Western Ghana

    Directory of Open Access Journals (Sweden)

    Dessein, JPG.

    2000-01-01

    Full Text Available Western science has often been thought of as an universally applicable, dominant and neutral knowledge system. Recently this view has been challenged by various scientists, who try to revalue the subjugated knowledge systems of local people by appreciating its characteristics. But this upgrading of endogenous knowledge often is but another example of the hegemonie position of Western science : it evaluates local situations with Western criteria, neglecting the cultural paradigms of the people involved. This article is a plea for a new multidisciplinary and intercultural research approach which takes as its foundation an understanding of the local culture and paradigms on which selected topics can be analysed, rather than a traditional disciplinary approach in which, afterwards, a foreign cultural component is being inscribed. This appeal is supported by material from a local market in North-western Ghana, where the Lobi peasants sell their harvest to the Wala traders.

  10. Taking a 'Big Data' approach to data quality in a citizen science project.

    Science.gov (United States)

    Kelling, Steve; Fink, Daniel; La Sorte, Frank A; Johnston, Alison; Bruns, Nicholas E; Hochachka, Wesley M

    2015-11-01

    Data from well-designed experiments provide the strongest evidence of causation in biodiversity studies. However, for many species the collection of these data is not scalable to the spatial and temporal extents required to understand patterns at the population level. Only data collected from citizen science projects can gather sufficient quantities of data, but data collected from volunteers are inherently noisy and heterogeneous. Here we describe a 'Big Data' approach to improve the data quality in eBird, a global citizen science project that gathers bird observations. First, eBird's data submission design ensures that all data meet high standards of completeness and accuracy. Second, we take a 'sensor calibration' approach to measure individual variation in eBird participant's ability to detect and identify birds. Third, we use species distribution models to fill in data gaps. Finally, we provide examples of novel analyses exploring population-level patterns in bird distributions.

  11. Proceedings of the symposium Actinides 2006 - Basic Science, Applications and Technology

    International Nuclear Information System (INIS)

    Blobaum, Kerri J.M.; Chandler, Elaine A.; Havela, Ladislav; Maple, M. Brian; Neu, Mary P.

    2007-01-01

    These proceedings from the September 2006 symposium includes papers presented on experimental and modeling work with the intention of broadening understanding of the field of actinide research. Actinides have gained attention recently because of their roles in the threat of nuclear terrorism (e.g., 'dirty bombs') and the use of nuclear power to offset fossil fuel consumption. Actinide science is the study of the elements with atomic numbers in the range of 90 to 103, which includes uranium and plutonium. Beyond the well-known nuclear reactions of these heavy radioactive metals, the large electron clouds with 5f electrons in the outer shell yield fascinating and complex chemistries, crystal structures, and physical properties. Traditionally, actinide research has been divided among three scientific disciplines: chemistry (nuclear chemistry and radiochemistry); physics (condensed matter physics and electronic structure); and materials science (metallurgy). Modern actinide research, however, has become an interdisciplinary blend of these traditional fields, and it also incorporates developing fields such as environmental chemistry and superconductivity. Improved scientific understanding of actinides is needed for development of materials for actinide detection and nuclear fuels, and for safer management of nuclear waste. Recently, there has been a resurgence of actinide science at national laboratories and universities. The current multidisciplinary approach to actinide science lays the groundwork for understanding the connection between the 5f electronic structure and observed chemical reactions and physical properties such as structural phase transformations and novel ground states. This work provides many opportunities for new researchers in actinide science. These proceedings gather 25 selected papers among the 53 presentations given at this symposium

  12. Irradiation-related amorphization and crystallization: In situ transmission electron microscope studies

    International Nuclear Information System (INIS)

    Allen, C.W.

    1994-01-01

    Interfacing an ion accelerator to a transmission electron microscope (TEM) allows the analytical functions of TEM imaging and diffraction to be employed during ion-irradiation effects studies. At present there are twelve such installations in Japan, one in France and one in the US. This paper treats several aspects of in situ studies involving electron and ion beam induced and enhanced phase transformations and presents results of several in situ experiments to illustrate the dynamics of this approach in the materials science of irradiation effects. The paper describes the ion- and electron-induced amorphization of CuTi; the ion-irradiation-enhanced transformation of TiCr 2 ; and the ion- and electron-irradiation-enhanced crystallization of CoSi 2

  13. Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach

    Science.gov (United States)

    Farzaneh, Saeed; Forootan, Ehsan

    2018-03-01

    The computerized ionospheric tomography is a method for imaging the Earth's ionosphere using a sounding technique and computing the slant total electron content (STEC) values from data of the global positioning system (GPS). The most common approach for ionospheric tomography is the voxel-based model, in which (1) the ionosphere is divided into voxels, (2) the STEC is then measured along (many) satellite signal paths, and finally (3) an inversion procedure is applied to reconstruct the electron density distribution of the ionosphere. In this study, a computationally efficient approach is introduced, which improves the inversion procedure of step 3. Our proposed method combines the empirical orthogonal function and the spherical Slepian base functions to describe the vertical and horizontal distribution of electron density, respectively. Thus, it can be applied on regional and global case studies. Numerical application is demonstrated using the ground-based GPS data over South America. Our results are validated against ionospheric tomography obtained from the constellation observing system for meteorology, ionosphere, and climate (COSMIC) observations and the global ionosphere map estimated by international centers, as well as by comparison with STEC derived from independent GPS stations. Using the proposed approach, we find that while using 30 GPS measurements in South America, one can achieve comparable accuracy with those from COSMIC data within the reported accuracy (1 × 1011 el/cm3) of the product. Comparisons with real observations of two GPS stations indicate an absolute difference is less than 2 TECU (where 1 total electron content unit, TECU, is 1016 electrons/m2).

  14. The sustainability paradigm and the STS approach: mediations for science education

    Directory of Open Access Journals (Sweden)

    Elizandra Rêgo de Vasconcelos

    2012-12-01

    Full Text Available The society has been confronted with issues that involve interactions between science, technology and society (STS, which reveal social, economic, environmental, ethical implications, among others. The sustainability paradigm occupies a prominent position in this area. We understand that the STS guidelines are an important instrument for building the concept of sustainability in science education, whose perspectives consistent with the formation of citizens with environmental sensitivity-citizens who are able to analyze and evaluate critically issues related to the social, environmental and economic field, among other aspects. We propose, in this article, to discuss the possible links between the sustainability paradigm, the STS approach and the process of teaching and learning in science. This articulation certainly helps to think the implications of the current development model and the relationships STS, inserted, for example, on various issues, contexts, dimensions, knowledge and teaching strategies. Certainly, we must undertake the effort to approximate the natural and social fields, in the apprehension of the complex reality as it stands nowadays

  15. Imaginative science education the central role of imagination in science education

    CERN Document Server

    Hadzigeorgiou, Yannis

    2016-01-01

    This book is about imaginative approaches to teaching and learning school science. Its central premise is that science learning should reflect the nature of science, and therefore be approached as an imaginative/creative activity. As such, the book can be seen as an original contribution of ideas relating to imagination and creativity in science education. The approaches discussed in the book are storytelling, the experience of wonder, the development of ‘romantic understanding’, and creative science, including science through visual art, poetry and dramatization. However, given the perennial problem of how to engage students (of all ages) in science, the notion of ‘aesthetic experience’, and hence the possibility for students to have more holistic and fulfilling learning experiences through the aforementioned imaginative approaches, is also discussed. Each chapter provides an in-depth discussion of the theoretical background of a specific imaginative approach (e.g., storytelling, ‘wonder-full’ s...

  16. Pioneering the Transdisciplinary Team Science Approach: Lessons Learned from National Cancer Institute Grantees.

    Science.gov (United States)

    Vogel, Amanda L; Stipelman, Brooke A; Hall, Kara L; Nebeling, Linda; Stokols, Daniel; Spruijt-Metz, Donna

    2014-01-01

    The National Cancer Institute has been a leader in supporting transdisciplinary (TD) team science. From 2005-2010, the NCI supported Transdisciplinary Research on Energetic and Cancer I (TREC I), a center initiative fostering the TD integration of social, behavioral, and biological sciences to examine the relationships among obesity, nutrition, physical activity and cancer. In the final year of TREC I, we conducted qualitative in-depth-interviews with 31 participating investigators and trainees to learn more about their experiences with TD team science, including challenges, facilitating factors, strategies for success, and impacts. Five main challenges emerged: (1) limited published guidance for how to engage in TD team science, when TREC I was implemented; (2) conceptual and scientific challenges inherent to efforts to achieve TD integration; (3) discipline-based differences in values, terminology, methods, and work styles; (4) project management challenges involved in TD team science; and (5) traditional incentive and reward systems that do not recognize or reward TD team science. Four main facilitating factors and strategies for success emerged: (1) beneficial attitudes and beliefs about TD research and team science; (2) effective team processes; (3) brokering and bridge-building activities by individuals holding particular roles in a research center; and (4) funding initiative characteristics that support TD team science. Broad impacts of participating in TD team science in the context of TREC I included: (1) new positive attitudes about TD research and team science; (2) new boundary-crossing collaborations; (3) scientific advances related to research approaches, findings, and dissemination; (4) institutional culture change and resource creation in support of TD team science; and (5) career advancement. Funding agencies, academic institutions, and scholarly journals can help to foster TD team science through funding opportunities, institutional policies on

  17. Eikonal approach to the atomic break-up process by polarized electrons

    International Nuclear Information System (INIS)

    Onaga, Tomohide

    1992-01-01

    The cross section asymmetry for ionization of hydrogen atoms by electron impact is analysed in the eikonal approach. A new formulation is given for the evaluation of the exchange amplitude up to higher partial Coulomb waves. It is concluded that the cross section asymmetry gives an important criterion or interesting test of validity of approximation methods with the exchange effect. (author)

  18. Hybridization approach to in-line and off-axis (electron) holography for superior resolution and phase sensitivity

    Science.gov (United States)

    Ozsoy-Keskinbora, C.; Boothroyd, C. B.; Dunin-Borkowski, R. E.; van Aken, P. A.; Koch, C. T.

    2014-01-01

    Holography - originally developed for correcting spherical aberration in transmission electron microscopes - is now used in a wide range of disciplines that involve the propagation of waves, including light optics, electron microscopy, acoustics and seismology. In electron microscopy, the two primary modes of holography are Gabor's original in-line setup and an off-axis approach that was developed subsequently. These two techniques are highly complementary, offering superior phase sensitivity at high and low spatial resolution, respectively. All previous investigations have focused on improving each method individually. Here, we show how the two approaches can be combined in a synergetic fashion to provide phase information with excellent sensitivity across all spatial frequencies, low noise and an efficient use of electron dose. The principle is also expected to be widely to applications of holography in light optics, X-ray optics, acoustics, ultra-sound, terahertz imaging, etc. PMID:25387480

  19. ARTICLE Robust Diagnosis of Mechatronics System by Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Abderrahmene Sellami

    2018-03-01

    Full Text Available This article presents design of a robust diagnostic system based on bond graph model for a mechatronic system. Mechatronics is the synergistic and systemic combination of mechanics, electronics and computer science. The design of a mechatronic system modeled by the bond graph model becomes easier and more generous. The bond graph tool is a unified graphical language for all areas of engineering sciences and confirmed as a structured approach to modeling and simulation of multidisciplinary systems.

  20. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  1. Design Guide for Earth System Science Education: Common Student Learning Objectives and Special Pedagogical Approaches

    Science.gov (United States)

    Baker, D.

    2006-12-01

    As part of the NASA-supported undergraduate Earth System Science Education (ESSE) program, fifty-seven institutions have developed and implemented a wide range of Earth system science (ESS) courses, pedagogies, and evaluation tools. The Teaching, Learning, and Evaluation section of USRA's online ESSE Design Guide showcases these ESS learning environments. This Design Guide section also provides resources for faculty who wish to develop ESS courses. It addresses important course design issues including prior student knowledge and interests, student learning objectives, learning resources, pedagogical approaches, and assessments tied to student learning objectives. The ESSE Design Guide provides links to over 130 ESS course syllabi at introductory, senior, and graduate levels. ESS courses over the past 15 years exhibit common student learning objectives and unique pedagogical approaches. From analysis of ESS course syllabi, seven common student learning objectives emerged: 1) demonstrate systems thinking, 2) develop an ESS knowledge base, 3) apply ESS to the human dimension, 4) expand and apply analytical skills, 5) improve critical thinking skills, 6) build professional/career skills, and 7) acquire an enjoyment and appreciation for science. To meet these objectives, ESSE often requires different ways of teaching than in traditional scientific disciplines. This presentation will highlight some especially successful pedagogical approaches for creating positive and engaging ESS learning environments.

  2. A real-space stochastic density matrix approach for density functional electronic structure.

    Science.gov (United States)

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  3. Teaching Probability to Pre-Service Teachers with Argumentation Based Science Learning Approach

    Science.gov (United States)

    Can, Ömer Sinan; Isleyen, Tevfik

    2016-01-01

    The aim of this study is to explore the effects of the argumentation based science learning (ABSL) approach on the teaching probability to pre-service teachers. The sample of the study included 41 students studying at the Department of Elementary School Mathematics Education in a public university during the 2014-2015 academic years. The study is…

  4. Quality assessment of Isfahan Medical Faculty web site electronic services and prioritizing solutions using analytic hierarchy process approach

    OpenAIRE

    Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nargess; Sarmadi, Sima

    2014-01-01

    Context: Implementing information technology in the best possible way can bring many advantages such as applying electronic services and facilitating tasks. Therefore, assessment of service providing systems is a way to improve the quality and elevate these systems including e-commerce, e-government, e-banking, and e-learning. Aims: This study was aimed to evaluate the electronic services in the website of Isfahan University of Medical Sciences in order to propose solutions to improve them. F...

  5. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    Science.gov (United States)

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  6. Library usage patterns in the electronic information environment. Electronic journals, Use studies, Libraries, Medical libraries

    Directory of Open Access Journals (Sweden)

    B. Franklin

    2004-01-01

    Full Text Available This paper examines the methodology and results from Web-based surveys of more than 15,000 networked electronic services users in the United States between July 1998 and June 2003 at four academic health sciences libraries and two large main campus libraries serving a variety of disciplines. A statistically valid methodology for administering simultaneous Web-based and print-based surveys using the random moments sampling technique is discussed and implemented. Results from the Web-based surveys showed that at the four academic health sciences libraries, there were approximately four remote networked electronic services users for each in-house user. This ratio was even higher for faculty, staff, and research fellows at the academic health sciences libraries, where more than five remote users for each in-house user were recorded. At the two main libraries, there were approximately 1.3 remote users for each in-house user of electronic information. Sponsored research (grant funded research accounted for approximately 32% of the networked electronic services activity at the health sciences libraries and 16% at the main campus libraries. Sponsored researchers at the health sciences libraries appeared to use networked electronic services most intensively from on-campus, but not from in the library. The purpose of use for networked electronic resources by patrons within the library is different from the purpose of use of those resources by patrons using the resources remotely. The implications of these results on how librarians reach decisions about networked electronic resources and services are discussed.

  7. Nanotubule and Tour Molecule Based Molecular Electronics: Suggestion for a Hybrid Approach

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Recent experimental and theoretical attempts and results indicate two distinct broad pathways towards future molecular electronic devices and architectures. The first is the approach via Tour type ladder molecules and their junctions which can be fabricated with solution phase chemical approaches. Second are fullerenes or nanotubules and their junctions which may have better conductance, switching and amplifying characteristics but can not be made through well controlled and defined chemical means. A hybrid approach combining the two pathways to take advantage of the characteristics of both is suggested. Dimension and scale of such devices would be somewhere in between isolated molecule and nanotubule based devices but it maybe possible to use self-assembly towards larger functional and logicalunits.

  8. Consistent quantum approach to new laser-electron-nuclear effects in diatomic molecules

    International Nuclear Information System (INIS)

    Glushkov, A V; Malinovskaya, S V; Loboda, A V; Shpinareva, I M; Prepelitsa, G P

    2006-01-01

    We present a consistent, quantum approach to the calculation of electron-nuclear γ. spectra (set of vibrational and rotational satellites) for nuclei in diatomic molecules. The approach generelizes the well known Letokhov-Minogin model and is based on the Dunham model potential approximation for potential curves of diatomic molecules. The method is applied to the calculation of probabilities of the vibration-rotation-nuclear transitions in a case of emission and absorption spectrum for the nucleus 127 I (E γ (0) = 203 keV) linked with the molecule H 127 I

  9. The power of simplicity: a fast-and-frugal heuristics approach to performance science.

    Science.gov (United States)

    Raab, Markus; Gigerenzer, Gerd

    2015-01-01

    Performance science is a fairly new multidisciplinary field that integrates performance domains such as sports, medicine, business, and the arts. To give its many branches a structure and its research a direction, it requires a theoretical framework. We demonstrate the applications of this framework with examples from sport and medicine. Because performance science deals mainly with situations of uncertainty rather than known risks, the needed framework can be provided by the fast-and-frugal heuristics approach. According to this approach, experts learn to rely on heuristics in an adaptive way in order to make accurate decisions. We investigate the adaptive use of heuristics in three ways: the descriptive study of the heuristics in the cognitive "adaptive toolbox;" the prescriptive study of their "ecological rationality," that is, the characterization of the situations in which a given heuristic works; and the engineering study of "intuitive design," that is, the design of transparent aids for making better decisions.

  10. The power of simplicity: a fast-and-frugal heuristics approach to performance science

    Science.gov (United States)

    Raab, Markus; Gigerenzer, Gerd

    2015-01-01

    Performance science is a fairly new multidisciplinary field that integrates performance domains such as sports, medicine, business, and the arts. To give its many branches a structure and its research a direction, it requires a theoretical framework. We demonstrate the applications of this framework with examples from sport and medicine. Because performance science deals mainly with situations of uncertainty rather than known risks, the needed framework can be provided by the fast-and-frugal heuristics approach. According to this approach, experts learn to rely on heuristics in an adaptive way in order to make accurate decisions. We investigate the adaptive use of heuristics in three ways: the descriptive study of the heuristics in the cognitive “adaptive toolbox;” the prescriptive study of their “ecological rationality,” that is, the characterization of the situations in which a given heuristic works; and the engineering study of “intuitive design,” that is, the design of transparent aids for making better decisions. PMID:26579051

  11. A new systems engineering approach to streamlined science and mission operations for the Far Ultraviolet Spectroscopic Explorer (FUSE)

    Science.gov (United States)

    Butler, Madeline J.; Sonneborn, George; Perkins, Dorothy C.

    1994-01-01

    The Mission Operations and Data Systems Directorate (MO&DSD, Code 500), the Space Sciences Directorate (Code 600), and the Flight Projects Directorate (Code 400) have developed a new approach to combine the science and mission operations for the FUSE mission. FUSE, the last of the Delta-class Explorer missions, will obtain high resolution far ultraviolet spectra (910 - 1220 A) of stellar and extragalactic sources to study the evolution of galaxies and conditions in the early universe. FUSE will be launched in 2000 into a 24-hour highly eccentric orbit. Science operations will be conducted in real time for 16-18 hours per day, in a manner similar to the operations performed today for the International Ultraviolet Explorer. In a radical departure from previous missions, the operations concept combines spacecraft and science operations and data processing functions in a single facility to be housed in the Laboratory for Astronomy and Solar Physics (Code 680). A small missions operations team will provide the spacecraft control, telescope operations and data handling functions in a facility designated as the Science and Mission Operations Center (SMOC). This approach will utilize the Transportable Payload Operations Control Center (TPOCC) architecture for both spacecraft and instrument commanding. Other concepts of integrated operations being developed by the Code 500 Renaissance Project will also be employed for the FUSE SMOC. The primary objective of this approach is to reduce development and mission operations costs. The operations concept, integration of mission and science operations, and extensive use of existing hardware and software tools will decrease both development and operations costs extensively. This paper describes the FUSE operations concept, discusses the systems engineering approach used for its development, and the software, hardware and management tools that will make its implementation feasible.

  12. Correlated nuclear and electronic dynamics in photoionized systems studied by quantum and mixed quantum-classical approaches

    International Nuclear Information System (INIS)

    Li, Zheng

    2014-09-01

    The advent of free electron lasers and high harmonic sources enables the investigation of electronic and nuclear dynamics of molecules and solids with atomic spatial resolution and femtosecond/attosecond time resolution, using bright and ultrashort laser pulses of frequency from terahertz to hard x-ray range. With the help of ultrashort laser pulses, the nuclear and electronic dynamics can be initiated, monitored and actively controlled at the typical time scale in the femtosecond to attosecond realm. Meanwhile, theoretical tools are required to describe the underlying mechanism. This doctoral thesis focuses on the development of theoretical tools based on full quantum mechanical multiconfiguration time-dependent Hartree (MCTDH) and mixed quantum classical approaches, which can be applied to describe the dynamical behavior of gas phase molecules and strongly correlated solids in the presence of ultrashort laser pulses. In the first part of this thesis, the focus is on the motion of electron holes in gas phase molecular ions created by extreme ultraviolet (XUV) photoionization and watched by spectroscopic approaches. The XUV photons create electron-hole in the valence orbitals of molecules by photoionization, the electron hole, as a positively charged quasi-particle, can then interact with the nuclei and the rest of electrons, leading to coupled non-Born-Oppenheimer dynamics. I present our study on electron-hole relaxation dynamics in valence ionized molecular ions of moderate size, using quantum wave packet and mixed quantum-classical approaches, using photoionized [H + (H 2 O) n ] + molecular ion as example. We have shown that the coupled motion of the electron-hole and the nuclei can be mapped out with femtosecond resolution by core-level x-ray transient absorption spectroscopy. Furthermore, in specific cases, the XUV photon can create a coherent electron hole, that can maintain its coherence to time scales of ∝ 1 picosecond. Employing XUV pump - IR probe

  13. Grade 8 students' capability of analytical thinking and attitude toward science through teaching and learning about soil and its' pollution based on science technology and society (STS) approach

    Science.gov (United States)

    Boonprasert, Lapisarin; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 8 students' analytical thinking and attitude toward science in teaching and learning about soil and its' pollution through science technology and society (STS) approach. The participants were 36 Grade 8 students in Naklang, Nongbualumphu, Thailand. The teaching and learning about soil and its' pollution through STS approach had carried out for 6 weeks. The soil and its' pollution unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' analytical thinking and attitude toward science was collected during their learning by participant observation, analytical thinking test, students' tasks, and journal writing. The findings revealed that students could gain their capability of analytical thinking. They could give ideas or behave the characteristics of analytical thinking such as thinking for classifying, compare and contrast, reasoning, interpreting, collecting data and decision making. Students' journal writing reflected that the STS class of soil and its' pollution motivated students. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  14. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.

    Science.gov (United States)

    Xie, Ling-Hai; Yang, Su-Hui; Lin, Jin-Yi; Yi, Ming-Dong; Huang, Wei

    2013-10-13

    Nanotechnology not only opens up the realm of nanoelectronics and nanophotonics, but also upgrades organic thin-film electronics and optoelectronics. In this review, we introduce polymer semiconductors and plastic electronics briefly, followed by various top-down and bottom-up nano approaches to organic electronics. Subsequently, we highlight the progress in polyfluorene-based nanoparticles and nanowires (nanofibres), their tunable optoelectronic properties as well as their applications in polymer light-emitting devices, solar cells, field-effect transistors, photodetectors, lasers, optical waveguides and others. Finally, an outlook is given with regard to four-element complex devices via organic nanotechnology and molecular manufacturing that will spread to areas such as organic mechatronics in the framework of robotic-directed science and technology.

  15. Low Cost Science Teaching Equipment for Visually Impaired Children

    Science.gov (United States)

    Gupta, H. O.; Singh, Rakshpal

    1998-05-01

    A low cost null detector an electronic thermometer and a colorimeter have been designed and developed for enabling visually impaired children (VIC) to do experiments in science that normally are accessible only to sighted children. The instruments are based on audio null detection in a balanced bridge and use a themistor for sensing the temperature and an LDR for color change. The analog output can be tactually read by VIC. The equipment has been tested for suitability with VIC. The approach followed in developing these equipment would be generally appropriate to a wide variety of science equipment for VIC by incorporating suitable sensors.

  16. ANALYSIS OF THEORETICAL AND METHODOLOGICAL APPROACHES TO DESIGN OF ELECTRONIC TEXTBOOKS FOR STUDENTS OF HIGHER AGRICULTURAL EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Olena Yu. Balalaieva

    2017-06-01

    Full Text Available The article deals with theoretical and methodological approaches to the design of electronic textbook, in particular systems, competence, activity, personality oriented, technological one, that in complex reflect the general trends in the formation of a new educational paradigm, distinctive features of which lie in constructing the heuristic searching model of the learning process, focusing on developmental teaching, knowledge integration, skills development for the independent information search and processing, technification of the learning process. The approach in this study is used in a broad sense as a synthesis of the basic ideas, views, principles that determine the overall research strategy. The main provisions of modern approaches to design are not antagonistic, they should be applied in a complex, taking into account the advantages of each of them and leveling shortcomings for the development of optimal concept of electronic textbook. The model of electronic textbook designing and components of methodology for its using based on these approaches are described.

  17. History of Science, Physics, and Art: A Complex Approach in Brazilian Syllabuses

    Science.gov (United States)

    Braga, Marco; Guerra, Andreia; Reis, José Claudio

    2013-01-01

    This paper is about new contents that can be introduced into science education. It is a description of an experience aimed at introducing a complex approach into the final grade of a Brazilian elementary school. The aim is to show the transformation of the conception of space and time from the Middle Ages with the physics of Aristotle to the 20th…

  18. A Dictionary Approach to Electron Backscatter Diffraction Indexing.

    Science.gov (United States)

    Chen, Yu H; Park, Se Un; Wei, Dennis; Newstadt, Greg; Jackson, Michael A; Simmons, Jeff P; De Graef, Marc; Hero, Alfred O

    2015-06-01

    We propose a framework for indexing of grain and subgrain structures in electron backscatter diffraction patterns of polycrystalline materials. We discretize the domain of a dynamical forward model onto a dense grid of orientations, producing a dictionary of patterns. For each measured pattern, we identify the most similar patterns in the dictionary, and identify boundaries, detect anomalies, and index crystal orientations. The statistical distribution of these closest matches is used in an unsupervised binary decision tree (DT) classifier to identify grain boundaries and anomalous regions. The DT classifies a pattern as an anomaly if it has an abnormally low similarity to any pattern in the dictionary. It classifies a pixel as being near a grain boundary if the highly ranked patterns in the dictionary differ significantly over the pixel's neighborhood. Indexing is accomplished by computing the mean orientation of the closest matches to each pattern. The mean orientation is estimated using a maximum likelihood approach that models the orientation distribution as a mixture of Von Mises-Fisher distributions over the quaternionic three sphere. The proposed dictionary matching approach permits segmentation, anomaly detection, and indexing to be performed in a unified manner with the additional benefit of uncertainty quantification.

  19. Materials Sciences Division 1990 annual report

    International Nuclear Information System (INIS)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals

  20. Nonadiabatic effects in electronic and nuclear dynamics

    Directory of Open Access Journals (Sweden)

    Martin P. Bircher

    2017-11-01

    Full Text Available Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.

  1. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    Science.gov (United States)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  2. A rethink of how policy and social science approach changing individuals' actions on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Young, William; Middlemiss, Lucie

    2012-01-01

    Social scientists from all areas are developing theories and testing practical approaches to change individuals' actions to lower greenhouse gas emissions. In the UK context, policy-makers, local authorities, companies and organisations are using these theories to invest resources to change individual's actions. The problem is that social scientists are delivering fragmented science based on narrow disciplinary views and those using this science are cherry picking whatever theory suits their agenda. We argue that with substantial GHG emission reduction targets to be achieved, a multidisciplinary application and view of social science are urgently needed.

  3. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Science.gov (United States)

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  4. Formative and summative assessment of science in English primary schools: evidence from the Primary Science Quality Mark

    Science.gov (United States)

    Earle, Sarah

    2014-05-01

    Background:Since the discontinuation of Standard Attainment Tests (SATs) in science at age 11 in England, pupil performance data in science reported to the UK government by each primary school has relied largely on teacher assessment undertaken in the classroom. Purpose:The process by which teachers are making these judgements has been unclear, so this study made use of the extensive Primary Science Quality Mark (PSQM) database to obtain a 'snapshot' (as of March 2013) of the approaches taken by 91 English primary schools to the formative and summative assessment of pupils' learning in science. PSQM is an award scheme for UK primary schools. It requires the science subject leader (co-ordinator) in each school to reflect upon and develop practice over the course of one year, then upload a set of reflections and supporting evidence to the database to support their application. One of the criteria requires the subject leader to explain how science is assessed within the school. Sample:The data set consists of the electronic text in the assessment section of all 91 PSQM primary schools which worked towards the Quality Mark in the year April 2012 to March 2013. Design and methods:Content analysis of a pre-existing qualitative data set. Text in the assessment section of each submission was first coded as describing formative or summative processes, then sub-coded into different strategies used. Results:A wide range of formative and summative approaches were reported, which tended to be described separately, with few links between them. Talk-based strategies are widely used for formative assessment, with some evidence of feedback to pupils. Whilst the use of tests or tracking grids for summative assessment is widespread, few schools rely on one system alone. Enquiry skills and conceptual knowledge were often assessed separately. Conclusions:There is little consistency in the approaches being used by teachers to assess science in English primary schools. Nevertheless

  5. Teaching of science and language by elementary teachers who emphasize the integrated language approach: A descriptive study

    Science.gov (United States)

    Blouch, Kathleen Kennedy

    This research involved investigating the nature of science and language instruction in 13 elementary classrooms where teachers have restructured their language programs to reflect an integrated or holistic view of language instruction. The teachers were identified by school administrators and other professionals as teachers who have implemented instructional reforms described in the Pennsylvania Framework for Reading, Writing and Speaking Across the Curriculum (PCRPII), (Lytle & Botel, 1900). The instruction utilized by these teachers was described as atypical when compared to that of teachers utilizing the more traditional didactic skills oriented approach to language literacy. The research involved observing, recording and categorizing teaching behaviors during both science and language instruction. Videotaped observations were followed by analyses and descriptions of these behaviors. Interviews were also conducted to ascertain the basis for selection of the various instructional approaches. The instruction was compared on four dimensions: participation patterns, time the behaviors were practiced, type of tasks and levels of questioning. The instruction was then described in light of constructivist teaching practices: student collaboration, student autonomy, integration and higher order thinking. Constructivist practices differed among teachers for science and language instruction. During science instruction teachers spent more time involved in teacher-whole group participation patterns with more direct questioning as compared to language instruction in which children participated alone or in groups and had opportunity to initiate conversations and questions. Student inquiry was evidenced during language instruction more so than during science. The 13 teachers asked a variety of levels and types of questions both in science and language instruction. More hands-on science experiences were observed when science was taught separately compared to when integrated with

  6. A new approach to environmental education: environment-challenge for science, technology and society

    International Nuclear Information System (INIS)

    Popovic, D.

    2002-01-01

    The paper presents a new approach to environmental education within the project Environment: Challenge for Science, Technology and Education, realized on the Alternative Academic Education Network (AAEN) in Belgrade. The project is designed for graduate or advanced undergraduate students of science, medicine, engineering, biotechnology, political and law sciences. It is multidisciplinary and interdisciplinary project aimed to support students interest in different areas of the environmental sciences through strong inter-connection between modern scientific ideas, technological achievements and society. The project contains four basic courses (Living in the Environment; Physical and Chemical Processes in the Environment; Industrial Ecology and Sustainable Development; Environmental Philosophy and Ethics) and a number of elective courses dealing with environmental biology, adaptation processes , global eco politics, environmental ethics, scientific and public policy, environmental consequences of warfare, environmental pollution control, energy management, environmental impact assessment, etc. The standard ex catedra teaching is replaced with active student-teacher communication method enabling students to participate actively in the subject through seminars, workshops, short essays and individual research projects

  7. Pseudogap in the Eliashberg approach based on electron-phonon and electron-electron-phonon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Szczesniak, R. [Institute of Physics, Czestochowa University of Technology (Poland); Institute of Physics, Jan Dlugosz University in Czestochowa (Poland); Durajski, A.P.; Duda, A.M. [Institute of Physics, Czestochowa University of Technology (Poland)

    2017-04-15

    The properties of the superconducting and the anomalous normal state were described by using the Eliashberg method. The pairing mechanism was reproduced with the help of the Hamiltonian, which models the electron-phonon and the electron-electron-phonon interaction (EEPh). The set of the Eliashberg equations, which determines the order parameter function (φ), the wave function renormalization factor (Z), and the energy shift function (χ), was derived. It was proven that for the sufficiently large values of the EEPh potential, the doping dependence of the order parameter (φ/Z) has the analogous course to that observed experimentally in cuprates. The energy gap in the electron density of states is induced by Z and χ - the contribution from φ is negligible. The electron density of states possesses the characteristic asymmetric form and the pseudogap is observed above the critical temperature. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Synthetic Approach to biomolecular science by cyborg supramolecular chemistry.

    Science.gov (United States)

    Kurihara, Kensuke; Matsuo, Muneyuki; Yamaguchi, Takumi; Sato, Sota

    2018-02-01

    To imitate the essence of living systems via synthetic chemistry approaches has been attempted. With the progress in supramolecular chemistry, it has become possible to synthesize molecules of a size and complexity close to those of biomacromolecules. Recently, the combination of precisely designed supramolecules with biomolecules has generated structural platforms for designing and creating unique molecular systems. Bridging between synthetic chemistry and biomolecular science is also developing methodologies for the creation of artificial cellular systems. This paper provides an overview of the recently expanding interdisciplinary research to fuse artificial molecules with biomolecules, that can deepen our understanding of the dynamical ordering of biomolecules. Using bottom-up approaches based on the precise chemical design, synthesis and hybridization of artificial molecules with biological materials have been realizing the construction of sophisticated platforms having the fundamental functions of living systems. The effective hybrid, molecular cyborg, approaches enable not only the establishment of dynamic systems mimicking nature and thus well-defined models for biophysical understanding, but also the creation of those with highly advanced, integrated functions. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electron-electron interactions in artificial graphene

    Science.gov (United States)

    Rasanen, Esa

    2013-03-01

    Recent advances in the creation and modulation of graphenelike systems are introducing a science of ``designer Dirac materials.'' In its original definition, artificial graphene is a man-made nanostructure that consists of identical potential wells (quantum dots) arranged in an adjustable honeycomb lattice in the two-dimensional electron gas. As our ability to control the quality of artificial graphene samples improves, so grows the need for an accurate theory of its electronic properties, including the effects of electron-electron interactions. Here we determine those effects on the band structure and on the emergence of Dirac points, and discuss future investigations and challenges in this field.

  10. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  11. Materials Sciences Division 1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report is the Materials Sciences Division's annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  12. Quasi-appropriation of dialectical materialism: a critical reading of Marxism in Vygotskian approaches to cultural studies in science education

    Science.gov (United States)

    Rodrigues, André; Camillo, Juliano; Mattos, Cristiano

    2014-09-01

    In this review essay we examine five categories of dialectical materialism proposed by Paulo Lima Junior, Fernanda Ostermann, and Flavia Rezende in their study of the extent to which the articles published in Cultural Studies of Science Education, that use a Vygotskian approach, are committed to Marxism/dialectical materialism. By closely examining these categories ("thesis, antithesis and synthesis," "unity of analysis," "History," "revolution," "materialism") we expect to enrich the general discussion about the possible contributions of Marxism to science education. We perceive part of science education practice as orientating toward positivism, which reduces human beings—teachers, learners and researchers—to isolated individuals who construct knowledge by themselves. The very same approach aggravates the inner contradiction of the capitalist society demanding commitments from researchers to continually build innovative science education from human praxis. Nevertheless, it is necessary to situate ourselves beyond a formal commitment with dialectical materialism and hence reach the heart of this method. Besides understanding the researchers' commitments, we question the extent to which the respective research helps to radically refresh the current view on science, science education practice, and research in science education.

  13. New Computational Approach to Electron Transport in Irregular Graphene Nanostructures

    Science.gov (United States)

    Mason, Douglas; Heller, Eric; Prendergast, David; Neaton, Jeffrey

    2009-03-01

    For novel graphene devices of nanoscale-to-macroscopic scale, many aspects of their transport properties are not easily understood due to difficulties in fabricating devices with regular edges. Here we develop a framework to efficiently calculate and potentially screen electronic transport properties of arbitrary nanoscale graphene device structures. A generalization of the established recursive Green's function method is presented, providing access to arbitrary device and lead geometries with substantial computer-time savings. Using single-orbital nearest-neighbor tight-binding models and the Green's function-Landauer scattering formalism, we will explore the transmission function of irregular two-dimensional graphene-based nanostructures with arbitrary lead orientation. Prepared by LBNL under contract DE-AC02-05CH11231 and supported by the U.S. Dept. of Energy Computer Science Graduate Fellowship under grant DE-FG02-97ER25308.

  14. Real-space local polynomial basis for solid-state electronic-structure calculations: A finite-element approach

    International Nuclear Information System (INIS)

    Pask, J.E.; Klein, B.M.; Fong, C.Y.; Sterne, P.A.

    1999-01-01

    We present an approach to solid-state electronic-structure calculations based on the finite-element method. In this method, the basis functions are strictly local, piecewise polynomials. Because the basis is composed of polynomials, the method is completely general and its convergence can be controlled systematically. Because the basis functions are strictly local in real space, the method allows for variable resolution in real space; produces sparse, structured matrices, enabling the effective use of iterative solution methods; and is well suited to parallel implementation. The method thus combines the significant advantages of both real-space-grid and basis-oriented approaches and so promises to be particularly well suited for large, accurate ab initio calculations. We develop the theory of our approach in detail, discuss advantages and disadvantages, and report initial results, including electronic band structures and details of the convergence of the method. copyright 1999 The American Physical Society

  15. Factors affecting student achievement in science: A study of teacher beliefs

    Science.gov (United States)

    Hayes, Jonathan

    This study employed a mixed methods and mixed model research design to explore secondary science teachers' beliefs. Specifically, this study focused on factors that secondary science teachers believe affect student achievement in science, and the extent to which teacher beliefs transfer to teacher practice. This study is significant because the outcomes may inform professional development and policy decisions at the school, district, and provincial level. Results from self-reporting data of 82 secondary science teachers indicate that teacher beliefs in each of the fourteen topics surveyed (Classroom Management, Learning Styles, Inclusion, Equity, Science-Technology-Society (STS), Formative Assessment, Summative Assessment, Constructivism, Thematic Approach, Hands-On/Minds-On Activities, The Nature of Science, Science Subject Matter, Electronic Learning and Cooperative Learning) are positive for most Prince Edward Island (P.E.I.) secondary science teachers. Furthermore, secondary science teachers reported having strong beliefs in their ability to affect student learning (self-efficacy beliefs). However, it is apparent from the survey and interview data that teachers believe there are other influential factors that are preventing some students from learning despite the teachers' best efforts and ability. Regarding implementation, this study indicates that beliefs and the enactment of beliefs in classroom practice are positively correlated. The data also shows that at least seventy percent of teachers reported that they implement practices consistent with all but two topics -- The Nature of Science and Electronic Learning -- at least once a week. The findings of this study are discussed in the context of the P.E.I. secondary science setting. Limitations and implications of this study are also addressed.

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. SUDHANSHU CHOUDHARY. Articles written in Bulletin of Materials Science. Volume 35 Issue 5 October 2012 pp 713-718. Theoretical study on effect of radial and axial deformation on electron transport properties in a semiconducting Si–C nanotube · Sudhanshu Choudhary ...

  17. A gestalt approach to the science fiction novels of William Gibson

    OpenAIRE

    McFarlane, Anna M.

    2015-01-01

    Gestalt psychologists Kurt Koffka and Wolfgang Köhler argue that human perception relies on a form, or gestalt, into which perceptions are assimilated. Gestalt theory has been applied to the visual arts by Rudolf Arnheim and to literature by Wolfgang Iser. My original contribution to knowledge is to use gestalt theory to perform literary criticism, an approach that highlights the importance of perception in William Gibson’s novels and the impact of this emphasis on posthumanism and science fi...

  18. Challenges of the science data processing, analysis and archiving approach in BepiColombo

    Science.gov (United States)

    Martinez, Santa

    BepiColombo is a joint mission of the European Space Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA) to the planet Mercury. It comprises two separate orbiters: the Mercury Planetary Orbiter (MPO) and the Mercury Magnetospheric Orbiter (MMO). After approximately 7.5 years of cruise, BepiColombo will arrive at Mercury in 2024 and will gather data during a 1-year nominal mission, with a possible 1-year extension. The approach selected for BepiColombo for the processing, analysis and archiving of the science data represents a significant change with respect to previous ESA planetary missions. Traditionally Instrument Teams are responsible for processing, analysing and preparing their science data for the long-term archive, however in BepiColombo, the Science Ground Segment (SGS), located in Madrid, Spain, will play a key role in these activities. Fundamental aspects of this approach include: the involvement of the SGS in the definition, development and operation of the instrument processing pipelines; the production of ready-to-archive science products compatible with NASA’s Planetary Data System (PDS) standards in all the processing steps; the joint development of a quick-look analysis system to monitor deviations between planned and executed observations to feed back the results into the different planning cycles when possible; and a mission archive providing access to the scientific products and to the operational data throughout the different phases of the mission (from the early development phase to the legacy phase). In order to achieve these goals, the SGS will need to overcome a number of challenges. The proposed approach requires a flexible infrastructure able to cope with a distributed data processing system, residing in different locations but designed as a single entity. For this, all aspects related to the integration of software developed by different Instrument Teams and the alignment of their development schedules will need to be

  19. Hot electrons and the approach to metallic behavior in Kx(KCl)1-x

    NARCIS (Netherlands)

    Silvestrelli, P.L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The approach to the metallic phase of molten Kx(KCl)1-x mixtures is studied using ab initio molecular dynamics based on finite-temperature density functional theory. The finite electronic temperature is found to result in new and unexpected effects. In particular, we observe a thermally induced

  20. Linear-algebraic approach to electron-molecule collisions: General formulation

    International Nuclear Information System (INIS)

    Collins, L.A.; Schneider, B.I.

    1981-01-01

    We present a linear-algebraic approach to electron-molecule collisions based on an integral equations form with either logarithmic or asymptotic boundary conditions. The introduction of exchange effects does not alter the basic form or order of the linear-algebraic equations for a local potential. In addition to the standard procedure of directly evaluating the exchange integrals by numerical quadrature, we also incorporate exchange effects through a separable-potential approximation. Efficient schemes are developed for reducing the number of points and channels that must be included. The method is applied at the static-exchange level to a number of molecular systems including H 2 , N 2 , LiH, and CO 2

  1. A new approach in the development of quality management systems for (micro)electronics

    Science.gov (United States)

    Bacivarov, Ioan C.; Bacivarov, Angelica; Gherghina, Cǎtǎlina

    2016-12-01

    This paper presents the new approach in the analysis of the Quality Management Systems (QMS) of companies, based on the revised standard ISO 9001:2015. In the first part of the paper, QMS based on ISO 9001 certification are introduced; the changes and the updates proposed for the new version of ISO 9001:2015 are critically analyzed, based on the documents elaborated by ISO/TC 176. The approach based on ISO 9001:2015 could be considered as "beginning of a new era in development of quality management systems". A comparison between the between the "old" standard ISO 9001:2008 and the "new" standard ISO 9001:2015 is made. In the second part of the paper, steps to be followed in a company to implement this new standard are presented. A peculiar attention is given to the new concept of risk-based thinking in order to support and improve application of the process based approach. The authors conclude that, by considering risk throughout the organization the likelihood of achieving stated objectives is improved, output is more consistent and customers can be confident that they will receive the expected results. Finally, the benefits of the new approach in the development of quality management systems are outlined, as well as how they are reflected in the management of companies in general and those in electronics field, in particular. As demonstrated in this paper, well understood and properly applied, the new approach based on the revised standard ISO9001:2015 could offer a better quality management for companies operating in electronics and beyond.

  2. Net current measurements and secondary electron emission characteristics of the Voyager plasma science experiment and their impact on data interpretation

    Science.gov (United States)

    Mcnutt, Ralph L., Jr.

    1988-01-01

    The Voyager Plasma Science (PLS) instrument is capable of returning integral (DC) current measurements, similar in some respects to measurements made with a Langmuir probe or a retarding potential analyzer, although there are significant differences. The integral measurements were made during a calibration sequence in the solar wind, during Cruise Science Maneuvers, and within the magnetospheres of Jupiter and Saturn by Voyager 1. After the failure of the PLS experiment following the Saturn encounter, that instrument was placed in the DC return mode returning possibly usable data from early 1981 through early 1985. The DC return measurements are difficult to interpret and are above threshold values only for relatively large fluxes; the determination of the measured current level is dependent on the operating temperature of the preamplifiers which further complicates the interpretation. Nevertheless, these measurements can be used to determine the efficiency of the suppressor grid at preventing the loss of secondary electrons off the collector plate. Some DC return measurements have been invaluable in aiding in the interpretation of some electron plasma measurements not previously understood. It is found that electron spectra can be significantly modified by the presence of second generation secondary electrons produced by either first generation secondaries or photoelectrons on the support ring of the negative high voltage modulator grid within the instrument housing.

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Austrian Centre of Competence for Tribology, Viktor Kaplan-Straße 2, A 2700 Wiener Neustadt, Austria; Institute of Industrial Electronics and Material Science, Vienna University of Technology, A 1040 Vienna, Austria; Institute of Material Science and Testing, Vienna University of Technology, A 1040 Vienna, Austria; Institute ...

  4. What's in a Domain: Understanding How Students Approach Questioning in History and Science

    Science.gov (United States)

    Portnoy, Lindsay Blau; Rabinowitz, Mitchell

    2014-01-01

    How students ask questions as they learn has implications for understanding, retention, and problem solving. The current research investigates the influence of domain, age, and previous experience with content on the ways students approach questioning across history and science texts. In 3 experiments, 3rd-, 8th-, and 10th-grade students in large…

  5. A practical approach for electron monitor unit calculation

    International Nuclear Information System (INIS)

    Choi, David; Patyal, Baldev; Cho, Jongmin; Cheng, Ing Y; Nookala, Prashanth

    2009-01-01

    Electron monitor unit (MU) calculation requires measured beam data such as the relative output factor (ROF) of a cone, insert correction factor (ICF) and effective source-to-surface distance (ESD). Measuring the beam data to cover all possible clinical cases is not practical for a busy clinic because it takes tremendous time and labor. In this study, we propose a practical approach to reduce the number of data measurements without affecting accuracy. It is based on two findings of dosimetric properties of electron beams. One is that the output ratio of two inserts is independent of the cone used, and the other is that ESD is a function of field size but independent of cone and jaw opening. For the measurements to prove the findings, a parallel plate ion chamber (Markus, PTW 23343) with an electrometer (Cardinal Health 35040) was used. We measured the outputs to determine ROF, ICF and ESD of different energies (5-21 MeV). Measurements were made in a Plastic Water(TM) phantom or in water. Three linear accelerators were used: Siemens MD2 (S/N 2689), Siemens Primus (S/N 3305) and Varian Clinic 21-EX (S/N 1495). With these findings, the number of data set to be measured can be reduced to less than 20% of the data points. (note)

  6. Direct electron transfer: an approach for electrochemical biosensors with higher selectivity and sensitivity

    Directory of Open Access Journals (Sweden)

    Freire Renato S.

    2003-01-01

    Full Text Available The most promising approach for the development of electrochemical biosensors is to establish a direct electrical communication between the biomolecules and the electrode surface. This review focuses on advances, directions and strategies in the development of third generation electrochemical biosensors. Subjects covered include a brief description of the fundamentals of the electron transfer phenomenon and amperometric biosensor development (different types and new oriented enzyme immobilization techniques. Special attention is given to different redox enzymes and proteins capable of electrocatalyzing reactions via direct electron transfer. The analytical applications and future trends for third generation biosensors are also presented and discussed.

  7. Computational approaches to energy materials

    CERN Document Server

    Catlow, Richard; Walsh, Aron

    2013-01-01

    The development of materials for clean and efficient energy generation and storage is one of the most rapidly developing, multi-disciplinary areas of contemporary science, driven primarily by concerns over global warming, diminishing fossil-fuel reserves, the need for energy security, and increasing consumer demand for portable electronics. Computational methods are now an integral and indispensable part of the materials characterisation and development process.   Computational Approaches to Energy Materials presents a detailed survey of current computational techniques for the

  8. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. Electron Fermi acceleration in collapsing magnetic traps: Computational and analytical models

    International Nuclear Information System (INIS)

    Gisler, G.; Lemons, D.

    1990-01-01

    The authors consider the heating and acceleration of electrons trapped on magnetic field lines between approaching magnetic mirrors. Such a collapsing magnetic trap and consequent electron energization can occur whenever a curved (or straight) flux tube drifts into a relatively straight (or curved) perpendicular shock. The relativistic, three-dimensional, collisionless test particle simulations show that an initial thermal electron distribution is bulk heated while a few individual electrons are accelerated to many times their original energy before they escape the trap. Upstream field-aligned beams and downstream pancake distributions perpendicular to the field are predicted. In the appropriate limit the simulation results agree well with a nonrelativistic analytic model of the distribution of escaping electrons which is based on the first adiabatic invariant and energy conservation between collisions with the mirrors. Space science and astrophysical applications are discussed

  10. {cross-disciplinary} Data CyberInfrastructure: A Different Approach to Developing Collaborative Earth and Environmental Science Research Platforms

    Science.gov (United States)

    Lenhardt, W. C.; Krishnamurthy, A.; Blanton, B.; Conway, M.; Coposky, J.; Castillo, C.; Idaszak, R.

    2017-12-01

    An integrated science cyberinfrastructure platform is fast becoming a norm in science, particularly where access to distributed resources, access to compute, data management tools, and collaboration tools are accessible to the end-user scientist without the need to spin up these services on their own. There platforms have various types of labels ranging from data commons to science-as-a-service. They tend to share common features, as outlined above. What tends to distinguish these platforms, however, is their affinity for particular domains, NanoHub - nanomaterials, iPlant - plant biology, Hydroshare - hydrology, and so on. The challenge still remains how to enable these platforms to be more easily adopted for use by other domains. This paper will provide an overview of RENCI's approach to creating a science platform that can be more easily adopted by new communities while also endeavoring to accelerate their research. At RENCI, we started with Hydroshare, but have now worked to generalize the methodology for application to other domains. This new effort is called xDCi, or {cross-disciplinary} Data CyberInfrastructure. We have adopted a broader approach to the challenge of domain adoption and includes two key elements in addition to the technology component. The first of these is how development is operationalized. RENCI implements a DevOps model of continuous development and deployment. This greatly increases the speed by which a new platform can come online and be refined to meet domain needs. DevOps also allows for migration over time, i.e. sustainability. The second element is a concierge model. In addition to the technical elements, and the more responsive development process, RENCI also supports domain adoption of the platform by providing a concierge service— dedicated expertise- in the following areas, Information Technology, Sustainable Software, Data Science, and Sustainability. The success of the RENCI methodology is illustrated by the adoption of the

  11. A unifying probabilistic Bayesian approach to derive electron density from MRI for radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Gudur, Madhu Sudhan Reddy; Hara, Wendy; Le, Quynh-Thu; Wang, Lei; Xing, Lei; Li, Ruijiang

    2014-01-01

    MRI significantly improves the accuracy and reliability of target delineation in radiation therapy for certain tumors due to its superior soft tissue contrast compared to CT. A treatment planning process with MRI as the sole imaging modality will eliminate systematic CT/MRI co-registration errors, reduce cost and radiation exposure, and simplify clinical workflow. However, MRI lacks the key electron density information necessary for accurate dose calculation and generating reference images for patient setup. The purpose of this work is to develop a unifying method to derive electron density from standard T1-weighted MRI. We propose to combine both intensity and geometry information into a unifying probabilistic Bayesian framework for electron density mapping. For each voxel, we compute two conditional probability density functions (PDFs) of electron density given its: (1) T1-weighted MRI intensity, and (2) geometry in a reference anatomy, obtained by deformable image registration between the MRI of the atlas and test patient. The two conditional PDFs containing intensity and geometry information are combined into a unifying posterior PDF, whose mean value corresponds to the optimal electron density value under the mean-square error criterion. We evaluated the algorithm’s accuracy of electron density mapping and its ability to detect bone in the head for eight patients, using an additional patient as the atlas or template. Mean absolute HU error between the estimated and true CT, as well as receiver operating characteristics for bone detection (HU > 200) were calculated. The performance was compared with a global intensity approach based on T1 and no density correction (set whole head to water). The proposed technique significantly reduced the errors in electron density estimation, with a mean absolute HU error of 126, compared with 139 for deformable registration (p = 2  ×  10 −4 ), 283 for the intensity approach (p = 2  ×  10 −6 ) and 282

  12. A Citizen Science Approach: A Detailed Ecological Assessment of Subtropical Reefs at Point Lookout, Australia.

    Science.gov (United States)

    Roelfsema, Chris; Thurstan, Ruth; Beger, Maria; Dudgeon, Christine; Loder, Jennifer; Kovacs, Eva; Gallo, Michele; Flower, Jason; Gomez Cabrera, K-le; Ortiz, Juan; Lea, Alexandra; Kleine, Diana

    2016-01-01

    Subtropical reefs provide an important habitat for flora and fauna, and proper monitoring is required for conservation. Monitoring these exposed and submerged reefs is challenging and available resources are limited. Citizen science is increasing in momentum, as an applied research tool and in the variety of monitoring approaches adopted. This paper aims to demonstrate an ecological assessment and mapping approach that incorporates both top-down (volunteer marine scientists) and bottom-up (divers/community) engagement aspects of citizen science, applied at a subtropical reef at Point Lookout, Southeast Queensland, Australia. Marine scientists trained fifty citizen scientists in survey techniques that included mapping of habitat features, recording of substrate, fish and invertebrate composition, and quantifying impacts (e.g., occurrence of substrate damage, presence of litter). In 2014 these volunteers conducted four seasonal surveys along semi-permanent transects, at five sites, across three reefs. The project presented is a model on how citizen science can be conducted in a marine environment through collaboration of volunteer researchers, non-researchers and local marine authorities. Significant differences in coral and algal cover were observed among the three sites, while fluctuations in algal cover were also observed seasonally. Differences in fish assemblages were apparent among sites and seasons, with subtropical fish groups observed more commonly in colder seasons. The least physical damage occurred in the most exposed sites (Flat Rock) within the highly protected marine park zones. The broad range of data collected through this top-down/bottom-up approach to citizen science exemplifies the projects' value and application for identifying ecosystem trends or patterns. The results of the project support natural resource and marine park management, providing a valuable contribution to existing scientific knowledge and the conservation of local reefs.

  13. Data science in R a case studies approach to computational reasoning and problem solving

    CERN Document Server

    Nolan, Deborah

    2015-01-01

    Effectively Access, Transform, Manipulate, Visualize, and Reason about Data and ComputationData Science in R: A Case Studies Approach to Computational Reasoning and Problem Solving illustrates the details involved in solving real computational problems encountered in data analysis. It reveals the dynamic and iterative process by which data analysts approach a problem and reason about different ways of implementing solutions. The book's collection of projects, comprehensive sample solutions, and follow-up exercises encompass practical topics pertaining to data processing, including: Non-standar

  14. Implementation of science process skills using ICT-based approach to facilitate student life skills

    Science.gov (United States)

    Rahayu, Y. S.; Yuliani; Wijaya, B. R.

    2018-01-01

    The purpose of this study is to describe the results of the implementation of a teaching-learning package in Plant Physiology courses to improve the student’s life skills using the science process skills-based approach ICT. This research used 15 students of Biology Education of Undergraduate International Class who are in the Plant Physiology course. This study consists of two phases items, namely the development phase and implementation phase by using a one-shot case study design. Research parameters were the feasibility of lesson plans, student achievement, Including academic skills, thinking skills, and social skills. Data were descriptively Analyzed According to the characteristics of the existing data. The result shows that the feasibility of a lesson plan is very satisfied and can be improvements in student’s life skills, especially with regards to student’s thinking skills and scientific thinking skills. The results indicate that the science process skills using ICT-based approach can be effective methods to improve student’s life skills.

  15. The effect of different electrodes on the electronic transmission of benzene junctions: Analytical approach

    Energy Technology Data Exchange (ETDEWEB)

    Mohebbi, Razie; Seyed-Yazdi, Jamileh, E-mail: j.seyedyazdi@vru.ac.ir

    2016-06-01

    In this paper we have investigated the electronic transmission of systems electrode–benzene–electrode using the Landauer approach. The effect of different electrodes made of metal (Au) and semiconductors (Si, TiO{sub 2}) is investigated. These three electrodes are compared between them and the results show that the electronic transmission of benzene junctions, when using semiconductor electrodes, is associated to a gap in transmission which is due to the electrodes band gap. As a consequence, a threshold voltage is necessary to obtain conducting channels.

  16. The Usefulness of Qualitative and Quantitative Approaches and Methods in Researching Problem-Solving Ability in Science Education Curriculum

    Science.gov (United States)

    Eyisi, Daniel

    2016-01-01

    Research in science education is to discover the truth which involves the combination of reasoning and experiences. In order to find out appropriate teaching methods that are necessary for teaching science students problem-solving skills, different research approaches are used by educational researchers based on the data collection and analysis…

  17. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  18. How to link geography, cross-curricular approach and inquiry in science education at the primary schools

    Science.gov (United States)

    Karvánková, Petra; Popjaková, Dagmar

    2018-05-01

    Pupil research in school lessons in the sense of Inquiry-Based Education (IBE) is one of the constructivist approaches to education. Inquiry strengthens the positive approach of pupils to natural science subjects, encouraging them to study phenomena and processes taking place in the natural environment around them and use the acquired knowledge in their practical life. Geography as a school subject, due to the multidisciplinary nature of geography as a science, is close to natural sciences as well. This is because of the broadness of the subject of geographical studies, the complex (natural and cultural) landscape. The close links of geography to all cross-sectional themes make it a good support for teaching classical science subjects at schools such as mathematics, physics, chemistry or biology, environmental education. Moreover, the field teaching is one of the strong assets of the implementation of IBE in the school geography. Presented case study on the 'effect of noise on the surroundings' explores the facts mentioned above, in geography teaching. It verifies the pupils' knowledge and skills to adopt the basic principles of IBE in the practice. At the same time, it presents the concrete experiences how the children master the individual stages of IBE during the process of education.

  19. The Development of Interdisciplinary Teaching Approaches among Pre-service Science and Mathematics Teachers

    Science.gov (United States)

    Miranda Martins, Dominique

    This study sought to understand how a group of pre-service teachers in a combined secondary science and mathematics teaching methods course conceptualized and experienced interdisciplinary approaches to teaching. Although knowing how to plan interdisciplinary activities is an essential teaching practice in Quebec, these pre-service teachers faced many challenges during the process of learning to teach with this approach. By using two interdisciplinary frameworks (Nikitina, 2005; Boix Mansilla & Duraising, 2007), I qualitatively analyzed the development of the pre-service teachers' prior and emerging ideas about interdisciplinarity and their ability to plan interdisciplinary teaching activities. The provincial curriculum and issues related to time greatly shaped students' conceptions about interdisciplinarity in the classroom and constrained their ability to plan for and envision the enactment of interdisciplinary lessons in secondary science and mathematics classes. In addition, images of themselves as content-specialists, self-efficacy beliefs in relation to interdisciplinary teaching, and student learning as a source of teacher motivation emerged as key factors promoting or interrupting the development of interdisciplinary teaching approaches. Examination of these factors highlights the need for teacher-education programs to provide opportunities for pre-service teachers to explore how they see themselves as educators, increase their instructional self-efficacy beliefs, and motivate them to teach in an interdisciplinary fashion. Keywords: interdisciplinary teaching, student-teachers, curriculum, teacher-education program, self-efficacy, motivation.

  20. Metal-dielectric interfaces in gigascale electronics thermal and electrical stability

    CERN Document Server

    He, Ming

    2012-01-01

    Metal-dielectric interfaces are ubiquitous in modern electronics. As advanced gigascale electronic devices continue to shrink, the stability of these interfaces is becoming an increasingly important issue that has a profound impact on the operational reliability of these devices. In this book, the authors present the basic science underlying  the thermal and electrical stability of metal-dielectric interfaces and its relationship to the operation of advanced interconnect systems in gigascale electronics. Interface phenomena, including chemical reactions between metals and dielectrics, metallic-atom diffusion, and ion drift, are discussed based on fundamental physical and chemical principles. Schematic diagrams are provided throughout the book to illustrate  interface phenomena and the principles that govern them. Metal-Dielectric Interfaces in Gigascale Electronics  provides a unifying approach to the diverse and sometimes contradictory test results that are reported in the literature on metal-dielectric i...

  1. The implementation of a social constructivist approach in primary science education in Confucian heritage culture: the case of Vietnam

    NARCIS (Netherlands)

    Vu Thu Hang, N.; Meijer, M.R.; Bulte, A.M.W.; Pilot, A.

    2015-01-01

    Social constructivism has been increasingly studied and implemented in science school education. Nevertheless, there is a lack of holistic studies on the implementation of social constructivist approach in primary science education in Confucian heritage culture. This study aims to determine to what

  2. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Ganesh Sanjeev. Articles written in Bulletin of Materials Science. Volume 33 Issue 3 June 2010 pp 191-196 Thin Films and Nanomatter. Dielectric properties of electron irradiated PbZrO3 thin films · Shetty Aparna V M Jali Ganesh Sanjeev Jayanta Parui S B Krupanidhi.

  3. Robust Estimation of Electron Density From Anatomic Magnetic Resonance Imaging of the Brain Using a Unifying Multi-Atlas Approach

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shangjie [Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation, Tianjin University, Tianjin (China); Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California (United States); Hara, Wendy; Wang, Lei; Buyyounouski, Mark K.; Le, Quynh-Thu; Xing, Lei [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California (United States); Li, Ruijiang, E-mail: rli2@stanford.edu [Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California (United States)

    2017-03-15

    Purpose: To develop a reliable method to estimate electron density based on anatomic magnetic resonance imaging (MRI) of the brain. Methods and Materials: We proposed a unifying multi-atlas approach for electron density estimation based on standard T1- and T2-weighted MRI. First, a composite atlas was constructed through a voxelwise matching process using multiple atlases, with the goal of mitigating effects of inherent anatomic variations between patients. Next we computed for each voxel 2 kinds of conditional probabilities: (1) electron density given its image intensity on T1- and T2-weighted MR images; and (2) electron density given its spatial location in a reference anatomy, obtained by deformable image registration. These were combined into a unifying posterior probability density function using the Bayesian formalism, which provided the optimal estimates for electron density. We evaluated the method on 10 patients using leave-one-patient-out cross-validation. Receiver operating characteristic analyses for detecting different tissue types were performed. Results: The proposed method significantly reduced the errors in electron density estimation, with a mean absolute Hounsfield unit error of 119, compared with 140 and 144 (P<.0001) using conventional T1-weighted intensity and geometry-based approaches, respectively. For detection of bony anatomy, the proposed method achieved an 89% area under the curve, 86% sensitivity, 88% specificity, and 90% accuracy, which improved upon intensity and geometry-based approaches (area under the curve: 79% and 80%, respectively). Conclusion: The proposed multi-atlas approach provides robust electron density estimation and bone detection based on anatomic MRI. If validated on a larger population, our work could enable the use of MRI as a primary modality for radiation treatment planning.

  4. A Cost-Effective Approach for Migrating Enterprise Electronic Mail Systems

    Directory of Open Access Journals (Sweden)

    Emmanuel Omojokun

    2008-02-01

    Full Text Available Electronic mail (E-mail is one of the most utilized application software systems in modern-day organizations. The major messaging application programs used in the enterprise are IBM Lotus Notes also known as Domino, Microsoft Exchange Servers, and Novel GroupWise. For various reasons – such as high cost of maintenance, undeliverable e-mail issue and loss of attachments, companies find it necessary to either migrate to newer versions of their messaging software or to an entirely different software. In either case, the process must be carefully planned, well designed and properly implemented to avoid disaster. In this paper, we present a cost-effective approach for migrating a particular messaging software. The approach was implemented and tested for the migration of GroupWise 5.5 to Exchange Server 2003. We present our success story and lessons learned from the case. A six-week and one-year post migration system-audits indicated that the organization derived several benefits including significant cost savings as a result of this particular approach. Chief information/technology officers and e-mail administrators will benefit immensely from the "best practice" strategy hereby presented.

  5. Natural science modules with SETS approach to improve students’ critical thinking ability

    Science.gov (United States)

    Budi, A. P. S.; Sunarno, W.; Sugiyarto

    2018-05-01

    SETS (Science, Environment, Technology and Society) approach for learning is important to be developed for middle school, since it can improve students’ critical thinking ability. This research aimed to determine feasibility and the effectiveness of Natural Science Module with SETS approach to increase their critical thinking ability. The module development was done by invitation, exploration, explanation, concept fortifying, and assessment. Questionnaire and test performed including pretest and posttest with control group design were used as data collection technique in this research. Two classes were selected randomly as samples and consisted of 32 students in each group. Descriptive data analysis was used to analyze the module feasibility and t-test was used to analyze their critical thinking ability. The results showed that the feasibility of the module development has a very good results based on assessment of the experts, practitioners and peers. Based on the t-test results, there was significant difference between control class and experiment class (0.004), with n-gain score of control and the experiment class respectively 0.270 (low) and 0.470 (medium). It showed that the module was more effective than the textbook. It was able to improve students’ critical thinking ability and appropriate to be used in learning process.

  6. Ultrafast electron diffraction and electron microscopy: present status and future prospects

    International Nuclear Information System (INIS)

    Ishchenko, A A; Aseyev, S A; Ryabov, E A; Bagratashvili, V N; Panchenko, V Ya

    2014-01-01

    Acting as complementary research tools, high time-resolved spectroscopy and diffractometry techniques proceeding from various physical principles open up new possibilities for studying matter with necessary integration of the 'structure–dynamics–function' triad in physics, chemistry, biology and materials science. Since the 1980s, a new field of research has started at the leading research laboratories, aimed at developing means of filming the coherent dynamics of nuclei in molecules and fast processes in biological objects ('atomic and molecular movies'). The utilization of ultrashort laser pulse sources has significantly modified traditional electron beam approaches to and provided high space–time resolution for the study of materials. Diffraction methods using frame-by-frame filming and the development of the main principles of the study of coherent dynamics of atoms have paved the way to observing wave packet dynamics, the intermediate states of reaction centers, and the dynamics of electrons in molecules, thus allowing a transition from the kinetics to the dynamics of the phase trajectories of molecules in the investigation of chemical reactions. (reviews of topical problems)

  7. Thai primary students' understanding of nature of science (NOS) in learning about force and motion for explicit NOS through STS approach

    Science.gov (United States)

    Jimakorn, Narakorn; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to study of primary school students' understanding of nature of science in learning about force and motion for Explicit Nature of Science through science technology and society (STS) approach. Participants were 11 Grade 5 students who study in Baan Khongtaphet, Bothong, Chonburi, Thailand. This research regarded interpretive paradigm. The intervention of STS physics provided 4 weeks of teaching about force and motion through Yuenyong (2006) science technology and society (STS) approach. The issues of making skate board was brought into the class in order to enhance students learning about force and motion and applying knowledge for designing skate board. The intervention was also designed to allow students explicitly mentioning their ideas about nature of science related to learning activities of STS force and motion. Students' understanding of nature of science was interpreted through students' worksheets, participant observation, students' journal writing and informal interview. The findings revealed that majority of students could reflect their ideas related to many aspects of nature of science. This included Science demands and relies on empirical evidence; knowledge production in science shares many common factors and shared habits of mind, norms, logical thinking and methods; tentative of scientific knowledge; historical, cultural and social influences on science; historical, cultural and social influences on science; science and its methods cannot answer all questions. The study has implications for NOS teaching in Thailand primary school.

  8. Fostering solidarity and transforming identities: A collaborative approach to elementary science teacher education

    Science.gov (United States)

    Siry, Christina A.

    This study explores the use of coteaching and cogenerative dialogue in pre-service elementary teacher education, and the ways in which collaborating to share responsibility for learning and teaching can afford the development of solidarity and new teachers' identity transformations. Specifically, the research detailed in this dissertation focuses on learning to teach science in a field-based methods course taught partially on a college campus and partially in an urban elementary school. I used critical ethnography guided by the theoretical frameworks of cultural sociology and the sociology of emotions. The lens of phenomenology provided the contextual aspects of the individual experience, and design experiment was utilized as the research unfolded, affording continual redesign of the work. Issues of identity and group membership are central to this research, and I have explored connections between the emergence of solidarity within a group of teachers and the individual identity transformations supported through a collective sense of belonging. A key component of this study was an analysis of the co-responsibility nurtured through coteaching and cogenerative dialogue, and thus the dialectical relationship between the individual and the collective is critical to this research. At the individual level, I examined identity development, and individual participation in a field-based methods course. At the collective level, I considered the ways that participants form collective identities and group solidarity. Two of the chapters of my dissertation are coauthored with students, as I have sought to dismantle teacher-student hierarchies and replace them with complex relationships supported through polysemic and polyphonic approaches to research. In examining identity and solidarity as they emerged from this approach, I make the following contributions to science teacher education; (1) identify resources and practices in elementary science teaching that surface in a

  9. Electron-impact ionization of oriented molecules using the time-dependent close-coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, J [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Pindzola, M S, E-mail: jcolgan@lanl.gov [Department of Physics, Auburn University, Auburn, AL 36849 (United States)

    2011-04-01

    An overview is given on recent progress on computing triple differential cross sections for electron-impact ionization of the hydrogen molecule using a time-dependent close-coupling approach. Our calculations, when averaged over all molecular orientations, are generally in very good agreement with (e,2e) measurements made on H{sub 2}, where the molecular orientation is unknown, for a range of incident energies and outgoing electron angles and energies. In this paper, we present TDCS for ionization of H{sub 2} at specific molecular orientations. It is hoped that this study will help stimulate future measurements of TDCS from oriented H{sub 2} at medium impact energies.

  10. An investigation of a professional development model in science education: A systems approach

    Science.gov (United States)

    Bell, Glenda Love

    The Mathematics and Science Cooperative (MSEC), a four year longevity model of professional development education for in-service teachers, is closely aligned with the spirit and tenets of science for all. This partnership of a university, a school district, and a higher education coordinating board, seeks to promote and improve science and mathematics achievement for underserved and underrepresented populations. This study sought to explore how this model affects elementary in-service teachers' feelings of self-efficacy toward science and science teaching. Interactive Qualitative Research (IQR), a systems approach of natural inquiry, was used for this study. Theory is grounded in the data collected and analyzed through group processes. A core group of teachers, key teachers representing grades one through six and lead teachers the campus contact representatives, received professional development education from university professors in semi-monthly after school workshops and in a three week summer science institute held on-site. In this study, (N = 18) key and lead teachers participated in a focus group, a picture board exercise (a projective type exercise), interviews, and classroom observations. Within the system of the MSEC professional development model, cause and effect relationships among eleven phenomena were identified which had the greatest impact on the teachers' feelings of self-efficacy and science teaching practices. Changed teaching practices were indicated by inquiry-based science lessons with students as active learners. Five principles of self-efficacy: (1) efficacy; (2) goals setting; (3) values; (4) expectancy; and, (5) control beliefs were used to evaluate efficacy beliefs. Findings from the data collection and analysis identified two phenomena, the university instructional leadership role and teacher time commitments and time constraints, both internally and externally imposed, which seemed to have the greatest impact on elementary teachers

  11. Problems and Projects Based Approach For Analog Electronic Circuits' Course

    Directory of Open Access Journals (Sweden)

    Vahé Nerguizian

    2009-04-01

    Full Text Available New educational methods and approaches are recently introduced and implemented at several North American and European universities using Problems and Projects Based Approach (PPBA. The PPBA employs a teaching technique based mostly on competences/skills rather than only on knowledge. This method has been implemented and proven by several pedagogical instructors and authors at several educational institutions. This approach is used at different disciplines such as medicine, biology, engineering and many others. It has the advantage to improve the student's skills and the knowledge retention rate, and reflects the 21st century industrial/company needs and demands. Before implementing this approach to a course, a good resources preparation and planning is needed upfront by the responsible or instructor of the course to achieve the course and students related objectives. This paper presents the preparation, the generated documentation and the implementation of a pilot project utilizing PPBA education for a second year undergraduate electronic course over a complete semester, and for two different class groups (morning and evening groups. The outcome of this project (achieved goals, observed difficulties and lessons learned is presented based on different tools such as students 'in class' communication and feedback, different course evaluation forms and the professor/instructor feedback. Resources, challenges, difficulties and recommendations are also assessed and presented. The impact, the effect and the results (during and at the end of the academic fall session of the PPBA on students and instructor are discussed, validated, managed and communicated to help other instructor in taking appropriate approach decisions with respect to this new educational approach compared to the classical one.

  12. A visitor study approach to INGV exhibition at Genova Science Festival 2011

    Science.gov (United States)

    Nave, R.; D'Addezio, G.; Carosi, A.

    2012-04-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is one of the largest European scientific institution dealing with Earth Sciences research and seismic and volcanic surveillance. We organizes every year intense educational and outreach activities focalizing in particular on causes of earthquakes and volcanic eruptions and how to behave properly and deal with these events. This approach derived from the consciousness on the social role of a correct information on natural hazards and on the awareness that preparedness is the best way to live with and to mitigate natural hazard. The Genova Science Festival, held since 2003, is the most remarkable among the Italian Science Communication events and for or the 2011 edition, the INGV realized an exibition called COME E' PROFONDO IL MARE, la geofisica in acqua (HOW DEEP THE SEA IS, geophysics in water). The exhibition shows and explains the main geodinamic processes trough interactive exhibits and colorful panels exploring events as earthquakes, volcanic eruption and tsunami, their impact on our territory. In order to approach a visitor study related to this scientific educational path we elaborated questionnaires designed for students, for teacher and for general public. We have chosen this survey instrument for its advantage to get a wide variety of information and quantitative data. In developing the questionnaire three main aspects were taken in account: its shortness, clarity in the questions, and answers structure able to grade different indicator of visitor opinion and exhibition impact. That will also allow us to combine indicators scores during data elaboration phase. The questionnaire goes through all the section of the educational path, trying to have a feedback on the proposed layout and its efficacy. The Science Festival lasted 2 weeks and was visited by about 8000 people. During the event were handed out and recollected about 300 questionnaires that allows us to make a reliable assessment on the

  13. Approaching multidimensional forms of knowledge through Personal Meaning Mapping in science integrating teaching outside the classroom

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Bolling, Mads; Bentsen, Peter

    2017-01-01

    knowledge dimensions is important, especially in science teaching outside the classroom, where “hands-on” approaches and experiments are often part of teaching and require procedural knowledge, among other things. Therefore, this study investigates PMM as a method for exploring specific knowledge dimensions......Current research points to Personal Meaning Mapping (PMM) as a method useful in investigating students’ prior and current science knowledge. However, studies investigating PMM as a method for exploring specific knowledge dimensions are lacking. Ensuring that students are able to access specific...... in formal science education integrating teaching outside the classroom. We applied a case study design involving two schools and four sixth-grade classes. Data were collected from six students in each class who constructed personal meaning maps and were interviewed immediately after natural science...

  14. Modular Approaches to Earth Science Scientific Computing: 3D Electromagnetic Induction Modeling as an Example

    Science.gov (United States)

    Tandon, K.; Egbert, G.; Siripunvaraporn, W.

    2003-12-01

    We are developing a modular system for three-dimensional inversion of electromagnetic (EM) induction data, using an object oriented programming approach. This approach allows us to modify the individual components of the inversion scheme proposed, and also reuse the components for variety of problems in earth science computing howsoever diverse they might be. In particular, the modularity allows us to (a) change modeling codes independently of inversion algorithm details; (b) experiment with new inversion algorithms; and (c) modify the way prior information is imposed in the inversion to test competing hypothesis and techniques required to solve an earth science problem. Our initial code development is for EM induction equations on a staggered grid, using iterative solution techniques in 3D. An example illustrated here is an experiment with the sensitivity of 3D magnetotelluric inversion to uncertainties in the boundary conditions required for regional induction problems. These boundary conditions should reflect the large-scale geoelectric structure of the study area, which is usually poorly constrained. In general for inversion of MT data, one fixes boundary conditions at the edge of the model domain, and adjusts the earth?s conductivity structure within the modeling domain. Allowing for errors in specification of the open boundary values is simple in principle, but no existing inversion codes that we are aware of have this feature. Adding a feature such as this is straightforward within the context of the modular approach. More generally, a modular approach provides an efficient methodology for setting up earth science computing problems to test various ideas. As a concrete illustration relevant to EM induction problems, we investigate the sensitivity of MT data near San Andreas Fault at Parkfield (California) to uncertainties in the regional geoelectric structure.

  15. Electron Microscopy Society of Southern Africa : proceedings

    International Nuclear Information System (INIS)

    Snyman, H.C.; Coetzee, J.; Coubrough, R.I.

    1987-01-01

    The proceedings of the 26th annual conference of the Electron Microscopy Society of Southern Africa are presented. Papers were presented on the following topics: techniques and instrumentation used in electron microscopy, and applications of electron microscopy in the life sciences, including applications in medicine, zoology, botany and microbiology. The use of electron microscopy in the physical sciences was also discussed. Separate abstracts were prepared for seven of the papers presented. The remaining papers were considered outside the subject scope of INIS

  16. A New Approach in Teaching Power Electronics Control of Electrical Drives using Real-Time

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Blaabjerg, Frede

    2000-01-01

    A new approach in teaching power electronics and electrical drives is achieved at the Flexible Drives System Laboratory (FDSL) from Aalborg University by using the new Total Development Environment (TDE) concept that allows a full visual block-oriented programming of dynamic real-time systems...

  17. The Need for More Scientific Approaches to Science Communication

    Science.gov (United States)

    Sadri, S.

    2015-12-01

    Two possible goals for public science communication are: a) improving the public's in-depth understanding of the scientific subject; and b) fostering the public's belief that scientific efforts make a better world. Although (a) is often a natural target when scientists try to communicate their subject, the importance of (b) is underscored by the NSF, who investigated the "cultural authority of science" to understand science's role in policymaking. Surveys consistently find that there is a huge divergence between "knowledge" and "admiration" of science in society because science literacy has very little to do with public perception of science. However, even if both goals could be achieved, it doesn't necessarily mean that the general public will act on scientific advice. Different parts of society have different criteria for reaching judgments about how to act in their best interests. This makes the study of science communication important when controversies arise requiring public engagement. Climate change, sustainability, and water crises are only a few examples of such controversial subjects. Science communication can be designed carefully to sponsor dialogue and participation, to overcome perceptual obstacles, and to engage with stakeholders and the wider public. This study reviews work in social science that tries to answer: When is science communication necessary? What is involved in science communication? What is the role of media in effective science communication? It also reviews common recommendations for improved public engagement by scientists and science organizations. As part of this effort, I will present some portions of my science films. I will conclude with suggestions on what scientific institutions can focus on to build trust, relationships, and participation across segments of the public. Keywords: informal learning, popular science, climate change, water crisis, science communication, science films, science policy.

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. U Manju. Articles written in Journal of Chemical Sciences. Volume 115 Issue 5-6 October-December 2003 pp 491-498. Electron spectroscopic investigation of metal-insulator transition in Ce1-SrTiO3 · U Manju S R Krishnakumar Sugata Ray S Raj M Onoda C Carbone D D ...

  19. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1998-07-01

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  20. A Crafts-Oriented Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with Electronic Textiles

    Science.gov (United States)

    Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora

    2014-01-01

    In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. George Mathew. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao ...

  2. The impact of socio-political environment on the perception of science - a comparative study of German and Israeli approaches to science education

    Science.gov (United States)

    Schneider, S.; Rabinowitz, D.

    2017-12-01

    At the interface of environmental anthropology, social science, education research, and Earth Sciences, this presentation will look at Earth science education in school and out-of-school settings in Germany and Israel. We will focus on divergent cultural concepts of nature and science within the four-columned societal system in Israel: the secular Israeli community, which is oriented on western standards and concepts, the orthodox community with a stronger focus on merging scientific and religious approaches to understanding the Earth system, the Arabian community in Israel, which is strongly influenced by the Arabian science tradition as well as by confined monetary resources, and the ultra-orthodox community where science education seems to be totally abandoned in favor of Thora-studies. These environments, alongside a more homogeneous Germany educational system, resample an experimental setting with differences in a manageable number of parameters. We will analyze educational material used by the different communities in terms of the presented functions and services of the Earth sciences as well as in respect to the image of Earth sciences constructed by educational material of the observed communities. The aim of this project is to look for evidence that allows to attribute significant differences in education concepts to formal socio-political settings in the observed communities. The term Socio-political environment as used in this project proposal describes the context that is predetermined by cultural, political, and religious traditions. It described the pre-conditions in which communication takes place. Within this presentation, we will discuss the concept of socio-political environments. One of our hypothesis is, that the intensity of differences in Earth science community will be associated with differences in the socio-political environment. Influences of cultural, political, and religious boundary conditions will provide an insight into alterations

  3. An Investigation of the Teaching Approach Used by Tutors to Prepare Science and Mathematics Teachers during Training at Morogoro Teachers' College

    Science.gov (United States)

    Mungure, Daudi Mika

    2017-01-01

    This paper investigated the teaching approach used by tutors to prepare science and mathematics teachers during training at Morogoro teachers' college. For six years consecutive the performance of science and mathematics in secondary school has become very poor even though the training colleges produce science and mathematics teachers every year…

  4. Linking Science and Language Arts: A Review of the Literature Which Compares Integrated versus Non-Integrated Approaches

    Science.gov (United States)

    Bradbury, Leslie U.

    2014-01-01

    The purpose of this paper is to review the literature published during the last 20 years that investigates the impact of approaches that describe themselves as integrating science and language arts on student learning and/or attitude at the elementary level. The majority of papers report that integrated approaches led to greater student…

  5. Food Control and a Citizen Science Approach for Improving Teaching of Genetics in Universities

    Science.gov (United States)

    Borrell, Y. J.; Muñoz-Colmenero, A. M.; Dopico, E.; Miralles, L.; Garcia-Vazquez, E.

    2016-01-01

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home ("students as samplers") were employed as teaching material in three different courses of Genetics during the academic…

  6. An analytical approach to characterize morbidity profile dissimilarity between distinct cohorts using electronic medical records

    OpenAIRE

    Schildcrout, Jonathan S.; Basford, Melissa A.; Pulley, Jill M.; Masys, Daniel R.; Roden, Dan M.; Wang, Deede; Chute, Christopher G.; Kullo, Iftikhar J.; Carrell, David; Peissig, Peggy; Kho, Abel; Denny, Joshua C.

    2010-01-01

    We describe a two-stage analytical approach for characterizing morbidity profile dissimilarity among patient cohorts using electronic medical records. We capture morbidities using the International Statistical Classification of Diseases and Related Health Problems (ICD-9) codes. In the first stage of the approach separate logistic regression analyses for ICD-9 sections (e.g., “hypertensive disease” or “appendicitis”) are conducted, and the odds ratios that describe adjusted differences in pre...

  7. Applying innovative approach “Nature of Science (NoS) within inquiry” for developing scientific literacy in the student worksheet

    Science.gov (United States)

    Widowati, A.; Anjarsari, P.; Zuhdan, K. P.; Dita, A.

    2018-03-01

    The challenges of the 21st century require innovative solutions. Education must able to make an understanding of science learning that leads to the formation of scientific literacy learners. This research was conducted to produce the prototype as science worksheet based on Nature of Science (NoS) within inquiry approach and to know the effectiveness its product for developing scientific literacy. This research was the development and research design, by pointing to Four D models and Borg & Gall Model. There were 4 main phases (define, design, develop, disseminate) and additional phases (preliminary field testing, main product revision, main field testing, and operational product revision). Research subjects were students of the junior high school in Yogyakarta. The instruments used included questionnaire sheet product validation and scientific literacy test. For the validation data were analyzed descriptively. The test result was analyzed by an N-gain score. The results showed that the appropriateness of worksheet applying NoS within inquiry-based learning approach is eligible based on the assessment from excellent by experts and teachers, students’ scientific literacy can improve high category of the N-gain score at 0.71 by using student worksheet with Nature of Science (NoS) within inquiry approach.

  8. Electronic structure analysis of UO2 by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ozkendir, O.M.

    2009-01-01

    Full text: Due to the essential role of Actinides in nuclear science and technology, electronic and structural investigations of actinide compounds attract major interest in science. Electronic structure of actinide compounds have important properties due to narrow 5f states which play key role in bonding with anions. The properties of Uranium has been a subject of enduring interest due to its being a major importance as a nuclear fuel and is the highest numbered element which can be found naturally on earth. UO 2 forms as a secondary uranyl group occurred during metamictization of uranium oxide compounds [1].Uranium oxide thin films have been investigated by X-ray Absorption Fine Structure spectroscopy (XAFS) [2]. The full multiple scattering approach has been applied to the calculation of U L3 edge spectra of UO 2 . The calculations are based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code [3,4]. U L3-edge absorption spectrum in UO 2 is compared with U L3-edges in USiO 4 and UTe which are chosen due to their different electronic and chemical structures.We have found prominent changes in the XANES spectra of Uranium oxide thin films due to valency properties. Such observed changes are explained by considering the structural, electronic and spectroscopic properties. (author)

  9. Education in Soil Science: the Italian approach

    Science.gov (United States)

    Benedetti, Anna; Canfora, Loredana; Dazzi, Carmelo; Lo Papa, Giuseppe

    2017-04-01

    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: • the Working Group on Pedotechniques; • the Working Group on Hydromorphic and Subaqueous Soils and • the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science. Keywords: SISS, soil education and awareness.

  10. The Sources of Science Teaching Self-efficacy among Elementary School Teachers: A mediational model approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung; Wei, Shih-Hsuan

    2015-09-01

    This study aimed to investigate the factors accounting for science teaching self-efficacy and to examine the relationships among Taiwanese teachers' science teaching self-efficacy, teaching and learning conceptions, technological-pedagogical content knowledge for the Internet (TPACK-I), and attitudes toward Internet-based instruction (Attitudes) using a mediational model approach. A total of 233 science teachers from 41 elementary schools in Taiwan were invited to take part in the study. After ensuring the validity and reliability of each questionnaire, the results indicated that each measure had satisfactory validity and reliability. Furthermore, through mediational models, the results revealed that TPACK-I and Attitudes mediated the relationship between teaching and learning conceptions and science teaching self-efficacy, suggesting that (1) knowledge of and attitudes toward Internet-based instruction (KATII) mediated the positive relationship between constructivist conceptions of teaching and learning and outcome expectancy, and that (2) KATII mediated the negative correlations between traditional conceptions of teaching and learning and teaching efficacy.

  11. The electronic structure of molecules by a many-body approach. Pt. 1

    International Nuclear Information System (INIS)

    Niessen, W. von; Cederbaum, L.S.; Kraemer, W.P.

    1976-01-01

    The ionization potentials of benzene are studied by an ab initio many-body approach which includes the effects of electron correlation and reorganization beyond the one-particle approximation. The calculations confirm the assignment of the photoelectron spectrum experimentally proposed by Jonsson and Lindholm: 1esub(1g)(π), 2esub(2g), 1asub(2u)(π), 2esub(1u), 1bsub(2u), 1bsub(1u), 2asub(1g), 1esub(2g) in order of increasing binding energy. To definitely establish the ordering of the ionization potentials in the second band, which has been very controversial, the corresponding vibrational structure has been calculated. A number of one-electron properties are calculated in the one-particle approximation and compared to experimental work and other theoretical calculations. (orig.) [de

  12. Science at the Time-scale of the Electron

    Science.gov (United States)

    Murnane, Margaret

    2010-03-01

    Replace this text with your abstract Ever since the invention of the laser 50 years ago and its application in nonlinear optics, scientists have been striving to extend coherent laser beams into the x-ray region of the spectrum. Very recently however, the prospects for tabletop coherent sources, with attosecond pulse durations, at very short wavelengths even in the hard x-ray region of the spectrum at wavelengths movie of how electron orbitals in a molecule change shape as a molecule breaks apart, following how fast a magnetic material can flip orientation, understanding how fast heat flows in a nanocircuit, or building a microscope without lenses. [4pt] [1] T. Popmintchev et al., ``Phase matched upconversion of coherent ultrafast laser light into the soft and hard x-ray regions of the spectrum'', PNAS 106, 10516 (2009). [0pt] [2] C. LaOVorakiat et al., ``Ultrafast Soft X-Ray Magneto-Optics at the M-edge Using a Tabletop High-Harmonic Source'', Physical Review Letters 103, 257402 (2009). [0pt] [3] M. Siemens et al. ``Measurement of quasi-ballistic heat transport across nanoscale interfaces using ultrafast coherent soft x-ray beams'', Nature Materials 9, 26 (2010). [0pt] [4] K. Raines et al., ``Three-dimensional structure determination from a single view,'' Nature 463, 214 (2010). [0pt] [5] W. Li et al., ``Time-resolved Probing of Dynamics in Polyatomic Molecules using High Harmonic Generation'', Science 322, 1207 (2008).

  13. Comparing Multiple Intelligences Approach with Traditional Teaching on Eight Grade Students' Achievement in and Attitudes toward Science

    Science.gov (United States)

    Kaya, Osman Nafiz; Dogan, Alev; Gokcek, Nur; Kilic, Ziya; Kilic, Esma

    2007-01-01

    The purpose of this study was to investigate the effects of multiple intelligences (MI) teaching approach on 8th Grade students' achievement in and attitudes toward science. This study used a pretest-posttest control group experimental design. While the experimental group (n=30) was taught a unit on acids and bases using MI teaching approach, the…

  14. Science 101: How Does an Electron Microscope Work?

    Science.gov (United States)

    Robertson, Bill

    2013-01-01

    Contrary to popular opinion, electron microscopes are not used to look at electrons. They are used to look for structure in things that are too small to observe with an optical microscope, or to obtain images that are magnified much more than is obtainable with an optical microscope. To understand how electron microscopes work, it will help to go…

  15. Central Laboratory of X-ray and Electron Microscopy Research at the Institute of Physics of the Polish Academy of Sciences, Warsaw

    International Nuclear Information System (INIS)

    Zymierska, D.

    2008-01-01

    The beginning and history of the Central Laboratory of X-ray and Electron Microscopy at the Institute of Physics of the Polish Academy of Sciences in Warsaw is described. Then, recent scientific achievements are presented. Organising activities of the Laboratory staff are also mentioned. (author)

  16. Science-Technology-Society or Technology-Society-Science? Insights from an Ancient Technology

    Science.gov (United States)

    Lee, Yeung Chung

    2010-01-01

    Current approaches to science-technology-society (STS) education focus primarily on the controversial socio-scientific issues that arise from the application of science in modern technology. This paper argues for an interdisciplinary approach to STS education that embraces science, technology, history, and social and cultural studies. By employing…

  17. Electronic processes in organic electronics bridging nanostructure, electronic states and device properties

    CERN Document Server

    Kudo, Kazuhiro; Nakayama, Takashi; Ueno, Nobuo

    2015-01-01

    The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic mater...

  18. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit

    International Nuclear Information System (INIS)

    Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph

    2015-01-01

    We present the design and implementation of a highly compact femtosecond electron diffractometer working at electron energies up to 100 keV. We use a multi-body particle tracing code to simulate electron bunch propagation through the setup and to calculate pulse durations at the sample position. Our simulations show that electron bunches containing few thousands of electrons per bunch are only weakly broadened by space-charge effects and their pulse duration is thus close to the one of a single-electron wavepacket. With our compact setup, we can create electron bunches containing up to 5000 electrons with a pulse duration below 100 fs on the sample. We use the diffractometer to track the energy transfer from photoexcited electrons to the lattice in a thin film of titanium. This process takes place on the timescale of few-hundred femtoseconds and a fully equilibrated state is reached within 1 ps

  19. A museum-based urban teacher residency program's approach to strengthening the STEM pipeline: Channeling highly qualified Earth Science teachers into high needs schools

    Science.gov (United States)

    Ustunisik, G. K.; Zirakparvar, N. A.

    2015-12-01

    Channeling better prepared Earth Science teachers into secondary schools with low achievement rates in STEM subjects is essential to ensuring that the students attending these schools are ultimately afforded the opportunity to take advantage of projected growth in the global geoscience workforce. Here, a museum-based urban teacher residency (UTR) program's approach to building subject specific content knowledge and research experience in Earth Science teacher candidates is described. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth and Space research scientists that account for almost half of the program's faculty. Because these courses and research experiences are designed specifically for the teacher candidates, they are different than many science courses and research experiences available to pre-service teachers in a university setting. At the same time, the museum-based program is the only UTR to incorporate such a rigorous science curriculum, and some possible advantages and disadvantages of the program's approach are also considered here. While the impact of the program's approach on student achievement rates has yet to be evaluated, there is promise in the well documented links between a teacher's own experience with the practice of science and that teacher's ability to leverage effective pedagogical content knowledge in the teaching of science. Because the museum-based program's science curriculum is balanced against the educational coursework and teaching residencies that necessarily form the program's backbone, the museum's approach to strengthening the teacher candidate's science background may also inform the faculty and administration of other UTRs in cases where one of their program goals is to further expand their teacher candidate's content knowledge and practical subject matter experience.

  20. Shaping the Electronic Library--The UW-Madison Approach.

    Science.gov (United States)

    Dean, Charles W., Ed.; Frazier, Ken; Pope, Nolan F.; Gorman, Peter C.; Dentinger, Sue; Boston, Jeanne; Phillips, Hugh; Daggett, Steven C.; Lundquist, Mitch; McClung, Mark; Riley, Curran; Allan, Craig; Waugh, David

    1998-01-01

    This special theme section describes the University of Wisconsin-Madison's experience building its Electronic Library. Highlights include integrating resources and services; the administrative framework; the public electronic library, including electronic publishing capability and access to World Wide Web-based and other electronic resources;…

  1. Electronics lab instructors' approaches to troubleshooting instruction

    Science.gov (United States)

    Dounas-Frazer, Dimitri R.; Lewandowski, H. J.

    2017-06-01

    In this exploratory qualitative study, we describe instructors' self-reported practices for teaching and assessing students' ability to troubleshoot in electronics lab courses. We collected audio data from interviews with 20 electronics instructors from 18 institutions that varied by size, selectivity, and other factors. In addition to describing participants' instructional practices, we characterize their perceptions about the role of troubleshooting in electronics, the importance of the ability to troubleshoot more generally, and what it means for students to be competent troubleshooters. One major finding of this work is that, while almost all instructors in our study said that troubleshooting is an important learning outcome for students in electronics lab courses, only half of instructors said they directly assessed students' ability to troubleshoot. Based on our findings, we argue that there is a need for research-based instructional materials that attend to both cognitive and noncognitive aspects of troubleshooting proficiency. We also identify several areas for future investigation related to troubleshooting instruction in electronics lab courses.

  2. Materials and applications of bioresorbable electronics

    Science.gov (United States)

    Huang, Xian

    2018-01-01

    Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework. Project supported by the National Natural Science Foundation of China (No. 61604108) and the Natural Science Foundation of Tianjin (No. 16JCYBJC40600).

  3. A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803.

    Directory of Open Access Journals (Sweden)

    Angelo Cereda

    Full Text Available Biophotovoltaic devices employ photosynthetic organisms at the anode of a microbial fuel cell to generate electrical power. Although a range of cyanobacteria and algae have been shown to generate photocurrent in devices of a multitude of architectures, mechanistic understanding of extracellular electron transfer by phototrophs remains minimal. Here we describe a mediatorless bioelectrochemical device to measure the electrogenic output of a planktonically grown cyanobacterium, Synechocystis sp. PCC6803. Light dependent production of current is measured, and its magnitude is shown to scale with microbial cell concentration and light intensity. Bioelectrochemical characterization of a Synechocystis mutant lacking Photosystem II demonstrates conclusively that production of the majority of photocurrent requires a functional water splitting aparatus and electrons are likely ultimately derived from water. This shows the potential of the device to rapidly and quantitatively characterize photocurrent production by genetically modified strains, an approach that can be used in future studies to delineate the mechanisms of cyanobacterial extracellular electron transport.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. T K Gundu Rao. Articles written in Journal of Earth System Science. Volume 111 Issue 2 June 2002 pp 103-113. Electron spin resonance dating of fault gouge from Desamangalam, Kerala: Evidence for Quaternary movement in Palghat gap shear zone · T K Gundu Rao C P ...

  5. A Brief Review on Metamaterial-Based Vacuum Electronics for Terahertz and Microwave Science and Technology

    Science.gov (United States)

    Matsui, Tatsunosuke

    2017-09-01

    Metamaterials, which enable us to realize novel physical effects that cannot be achieved using natural materials, have been extensively studied in recent years and significant progress has been made, especially in the field of optics. This game-changing concept has also initiated a rich variety of research activity in vacuum electronics. Here we review the recent development of metamaterial-based vacuum electronics for terahertz (THz) and microwave science and technology. The reversed Cherenkov radiation (RCR) in double-negative (DNG) metamaterials predicted by Veselago back in the 1960s has been experimentally verified in the microwave frequency range by utilizing specially designed DNG metamaterials. The interaction of an electron beam (e-beam) with DNG metamaterials may lead to the realization of novel applications such as microwave and THz radiation sources, accelerators, and even the visualization of invisibility cloaks. Smith-Purcell radiation (SPR) has recently received renewed interest owing to the development of metamaterials and the concept of spoof surface plasmon polaritons, as discussed in this review, and recent results on e-beam-induced directional and wide-band THz radiation with sharp multiple peaks from a graded grating, as well as directional and monochromatic special SPR and their possible application to THz orotron devices, are also reviewed.

  6. Improving Science Pedagogic Quality in Elementary School Using Process Skill Approach Can Motivate Student to Be Active in Learning

    Science.gov (United States)

    Sukiniarti

    2016-01-01

    On global era todays, as the professional teacher should be improving their pedagogic competency, including to improve their science pedagogy quality. This study is aimed to identify: (1) Process skill approach which has been used by Elementary School Teacher in science learning; (2) Teacher's opinion that process skill can motivate the student to…

  7. Primary processes of the electron-protic species coupling in pure aqueous phases: - femtosecond laser spectroscopy study; - quantum approach of the electron-water interaction

    International Nuclear Information System (INIS)

    Pommeret, Stanislas

    1991-01-01

    This thesis work deals with the coupling mechanisms between an electron, water molecules or protic species (hydronium ion, hydroxyl radical). Two complementary studies have been carry out in pure aqueous phases. The first one is concerned with the structural aspect of the hydrated electron which is studied via a semi-quantum approach Splitting Operator Method. The results indicates the importance of the second hydration shell in the localisation of an electron at 77 and 300 Kelvin. The second part of this work relates to the dynamic of the primary processes in light or heavy water at room temperature: the ion-molecule reaction, radical pair formation, geminate recombination of the hydrated electron with the hydronium ion and the hydroxyl radical. The dynamic of these reactions is studied by time resolved absorption spectroscopy from the near infrared to the near ultraviolet with a few tens femto-seconds temporal precision. The analysis of the primary processes takes into account the protic properties of water molecules. (author) [fr

  8. A Study on Technology Architecture and Serving Approaches of Electronic Government System

    Science.gov (United States)

    Liu, Chunnian; Huang, Yiyun; Pan, Qin

    As E-government becomes a very active research area, a lot of solutions to solve citizens' needs are being deployed. This paper provides technology architecture of E-government system and approaches of service in Public Administrations. The proposed electronic system addresses the basic E-government requirements of user friendliness, security, interoperability, transparency and effectiveness in the communication between small and medium sized public organizations and their citizens, businesses and other public organizations. The paper has provided several serving approaches of E-government, which includes SOA, web service, mobile E-government, public library and every has its own characteristics and application scenes. Still, there are a number of E-government issues for further research on organization structure change, including research methodology, data collection analysis, etc.

  9. Systematic Approach to Remediation in Basic Science Knowledge for Preclinical Students: A case study

    Science.gov (United States)

    Amara, Francis

    Remediation of pre-clerkship students for deficits in basic science knowledge should help them overcome their learning deficiencies prior to clerkship. However, very little is known about remediation in basic science knowledge during pre-clerkship. This study utilized the program theory framework to collect and organize mixed methods data of the remediation plan for pre-clerkship students who failed their basic science cognitive examinations in a Canadian medical school. This plan was analyzed using a logic model narrative approach and compared to literature on the learning theories. The analysis showed a remediation plan that was strong on governance and verification of scores, but lacked: clarity and transparency of communication, qualified remedial tutors, individualized diagnosis of learner's deficits, and student centered learning. Participants admitted uncertainty about the efficacy of the remediation process. A remediation framework is proposed that includes student-centered participation, individualized learning plan and activities, deliberate practice, feedback, reflection, and rigorous reassessment.

  10. Making Philosophy of Science Education Practical for Science Teachers

    Science.gov (United States)

    Janssen, F. J. J. M.; van Berkel, B.

    2015-04-01

    Philosophy of science education can play a vital role in the preparation and professional development of science teachers. In order to fulfill this role a philosophy of science education should be made practical for teachers. First, multiple and inherently incomplete philosophies on the teacher and teaching on what, how and why should be integrated. In this paper we describe our philosophy of science education (ASSET approach) which is composed of bounded rationalism as a guideline for understanding teachers' practical reasoning, liberal education underlying the why of teaching, scientific perspectivism as guideline for the what and educational social constructivism as guiding choices about the how of science education. Integration of multiple philosophies into a coherent philosophy of science education is necessary but not sufficient to make it practical for teachers. Philosophies are still formulated at a too abstract level to guide teachers' practical reasoning. For this purpose, a heuristic model must be developed on an intermediate level of abstraction that will provide teachers with a bridge between these abstract ideas and their specific teaching situation. We have developed and validated such a heuristic model, the CLASS model in order to complement our ASSET approach. We illustrate how science teachers use the ASSET approach and the CLASS model to make choices about the what, the how and the why of science teaching.

  11. Implementation of an electronic surgical referral service. Collaboration, consensus and cost of the surgeon – general practitioner Delphi approach

    Directory of Open Access Journals (Sweden)

    Augestad KM

    2014-09-01

    Full Text Available Knut Magne Augestad,1–3 Arthur Revhaug,1,3 Roar Johnsen,4 Stein-Olav Skrøvseth,2 Rolv-Ole Lindsetmo1,3 1Department of Gastrointestinal Surgery, 2Department of Integrated Care and Telemedicine, University Hospital North Norway, Tromsø, Norway; 3Department of Colorectal Surgery, University Hospitals Case Medical Center, Cleveland, Ohio, USA; 4Department of Public Health and General Practice, Norwegian University of Science and Technology, Trondheim, Norway Background: Poor coordination between levels of care plays a central role in determining the quality and cost of health care. To improve patient coordination, systematic structures, guidelines, and processes for creating, transferring, and recognizing information are needed to facilitate referral routines. Methods: Prospective observational survey of implementation of electronic medical record (EMR-supported guidelines for surgical treatment. Results: One university clinic, two local hospitals, 31 municipalities, and three EMR vendors participated in the implementation project. Surgical referral guidelines were developed using the Delphi method; 22 surgeons and seven general practitioners (GPs needed 109 hours to reach consensus. Based on consensus guidelines, an electronic referral service supported by a clinical decision support system, fully integrated into the GPs' EMR, was developed. Fifty-five information technology personnel and 563 hours were needed (total cost 67,000 £ to implement a guideline supported system in the EMR for 139 GPs. Economical analyses from a hospital and societal perspective, showed that 504 (range 401–670 and 37 (range 29–49 referred patients, respectively, were needed to provide a cost-effective service. Conclusion: A considerable amount of resources were needed to reach consensus on the surgical referral guidelines. A structured approach by the Delphi method and close collaboration between IT personnel, surgeons and primary care physicians were needed to

  12. Do compulsory secondary science courses change students’ attitude towards studying science?

    DEFF Research Database (Denmark)

    Kristensen, Lærke Elisabeth; Petersen, Morten Rask

    2015-01-01

    recruitment to STEM education has been a compulsory course in the Gymnasium called Natural Science Subject (NSS). This is an interdisciplinary, introductory course with the intention that students shall “ … realize the importance of knowing and understanding natural science thinking” (Authors translation...... science and science careers. In this approach we ended up with the following research question: “Does a compulsory introductory sciences course have an impact on students’ attitude towards studying sciences in secondary school?” In this approach we chose to use parameters as motivation (Deci & Ryan, 2002...... Subject course. The distribution included all levels (K10-K12) and all study lines. Student answers were analyzed using Mann-Whitney U-test using SPSS statistics 22 as analytical tool. Comparisons for this study were made across study lines (natural science vs. human science & social science...

  13. Electronics and Lithuanian Terminology

    Directory of Open Access Journals (Sweden)

    Stasys Zajankauskas

    2011-04-01

    Full Text Available It is found that the vacuum triode, transistor, monolithic circuit and microprocessor were the most important inventions of traditional electronics. Thus, the origins of the traditional electronics should be associated with the invention of the vacuum triode, but not with the invention of vacuum diode. It is shown that the science of electronics is not as young as computer science or up-to-date information technologies: electronics, including active electronics, had already celebrated the centenary, and the period of 2004–2008 is the period of numerous already solid jubilees. Thus, the terminology of electronics is not at initial stage of evolution as well – general terms should be already systematized and normalized. However, Lithuanian terms for electronic devices invented before tens of years and terms for old-defined notions associated with these devices are still varying, some are worsened. Especially, the incorrectly motivated terms used for variations of transistors and microcircuits are analyzed in the article. It is motivated which terms are preferable, systematic and exact. The paper is dedicated to the 50th anniversary of monolithic circuit, as well as the 60th anniversary of transistor, the 40th jubilee of microprocessor and centenary of electronics.

  14. Approaches on information presented in different brazilian periodicals from the area of information science

    Directory of Open Access Journals (Sweden)

    Nadia Aurora Vanti

    2013-04-01

    Full Text Available This article aims at mapping approaches on information presented in different Brazilian periodicals from the area of Information Science, regarding three conceptual guidelines: Business information, citizenship information and information for emancipation. The methodological approach encompassed a review of literature and qualitative and quantitative analysis. We conclude that the concept of information adopted in the articles analyzed varies according to the theoretical framework addressed by the authors, and for each of them is used a set of terms that identifies it as such. It was also possible to observe that the more recurring focus in the analyzed journals was Business information.

  15. From FRA to RFN, or How the Family Resemblance Approach Can Be Transformed for Science Curriculum Analysis on Nature of Science

    Science.gov (United States)

    Kaya, Ebru; Erduran, Sibel

    2016-12-01

    The inclusion of Nature of Science (NOS) in the science curriculum has been advocated around the world for several decades. One way of defining NOS is related to the family resemblance approach (FRA). The family resemblance idea was originally described by Wittgenstein. Subsequently, philosophers and educators have applied Wittgenstein's idea to problems of their own disciplines. For example, Irzik and Nola adapted Wittgenstein's generic definition of the family resemblance idea to NOS, while Erduran and Dagher reconceptualized Irzik and Nola's FRA-to-NOS by synthesizing educational applications by drawing on perspectives from science education research. In this article, we use the terminology of "Reconceptualized FRA-to-NOS (RFN)" to refer to Erduran and Dagher's FRA version which offers an educational account inclusive of knowledge about pedagogical, instructional, curricular and assessment issues in science education. Our motivation for making this distinction is rooted in the need to clarify the various accounts of the family resemblance idea.The key components of the RFN include the aims and values of science, methods and methodological rules, scientific practices, scientific knowledge as well as the social-institutional dimensions of science including the social ethos, certification, and power relations. We investigate the potential of RFN in facilitating curriculum analysis and in determining the gaps related to NOS in the curriculum. We analyze two Turkish science curricula published 7 years apart and illustrate how RFN can contribute not only to the analysis of science curriculum itself but also to trends in science curriculum development. Furthermore, we present an analysis of documents from USA and Ireland and contrast them to the Turkish curricula thereby illustrating some trends in the coverage of RFN categories. The results indicate that while both Turkish curricula contain statements that identify science as a cognitive-epistemic system, they

  16. The Pedagogical Orientations of South African Physical Sciences Teachers Towards Inquiry or Direct Instructional Approaches

    Science.gov (United States)

    Ramnarain, Umesh; Schuster, David

    2014-08-01

    In recent years, inquiry-based science instruction has become widely advocated in science education standards in many countries and, hence, in teacher preparation programmes. Nevertheless, in practice, one finds a wide variety of science instructional approaches. In South Africa, as in many countries, there is also a great disparity in school demographic situations, which can also affect teaching practices. This study investigated the pedagogical orientations of in-service physical sciences teachers at a diversity of schools in South Africa. Assessment items in a Pedagogy of Science Teaching Test (POSTT) were used to identify teachers' science teaching orientations, and reasons for pedagogical choices were probed in interviews. The findings reveal remarkable differences between the orientations of teachers at disadvantaged township schools and teachers at more privileged suburban schools. We found that teachers at township schools have a strong `active direct' teaching orientation overall, involving direct exposition of the science followed by confirmatory practical work, while teachers at suburban schools exhibit a guided inquiry orientation, with concepts being developed via a guided exploration phase. The study identified contextual factors such as class size, availability of resources, teacher competence and confidence, time constraints, student ability, school culture and parents' expectations as influencing the methods adopted by teachers. In view of the recent imperative for inquiry-based learning in the new South African curriculum, this study affirms the context specificity of curriculum implementation (Bybee 1993) and suggests situational factors beyond the curriculum mandate that need to be addressed to achieve successful inquiry-based classroom instruction in science.

  17. A Comparison of Students' Achievement and Attitude Changes Resulting From a Laboratory and Non-Laboratory Approach to General Education Physical Science Courses.

    Science.gov (United States)

    Gunsch, Leonhardt Maurice

    Student achievement and attitude changes resulting from two different approaches to teaching of physical science were studied among 94 non-science freshmen enrolled at Valley City State College during the 1970-71 winter quarter. Thirty-four students were taught the laboratory-oriented Physical Science for Nonscience Students (PSNS) Project course…

  18. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    International Nuclear Information System (INIS)

    Sugioka, Yuji; Takayanagi, Toshiyuki

    2012-01-01

    Highlights: ► Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. ► Temperature effects can be reasonably reproduced with the present model. ► All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H 2 O and CF 3 Cl, for which several previous studies are available from both the experimental and theoretical sides.

  19. A practical approach to temperature effects in dissociative electron attachment cross sections using local complex potential theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugioka, Yuji [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan); Takayanagi, Toshiyuki, E-mail: tako@mail.saitama-u.ac.jp [Department of Chemistry, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570 (Japan)

    2012-09-11

    Highlights: Black-Right-Pointing-Pointer Dissociative electron attachment cross sections for polyatomic molecules are calculated by a simple theoretical approach. Black-Right-Pointing-Pointer Temperature effects can be reasonably reproduced with the present model. Black-Right-Pointing-Pointer All the degrees-of-freedom are taken into account in the present dynamics approach. -- Abstract: We propose a practical computational scheme to obtain temperature dependence of dissociative electron attachment cross sections to polyatomic molecules within a local complex potential theory formalism. First we perform quantum path-integral molecular dynamics simulations on the potential energy surface for the neutral molecule in order to sample initial nuclear configurations as well as momenta. Classical trajectories are subsequently integrated on the potential energy surface for the anionic state and survival probabilities are simultaneously calculated along the obtained trajectories. We have applied this simple scheme to dissociative electron attachment processes to H{sub 2}O and CF{sub 3}Cl, for which several previous studies are available from both the experimental and theoretical sides.

  20. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  1. An analytic approach to 2D electronic PE spectra of molecular systems

    International Nuclear Information System (INIS)

    Szoecs, V.

    2011-01-01

    Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: → RWA approach to electronic photon echo. → A straightforward calculation of 2D electronic spectrograms in finite molecular systems. → Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the δ-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.

  2. Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based approach

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The electron and photon reconstruction in ATLAS has moved towards the use of a dynamical, topo- logical cell-based approach for cluster building, owing to advancements in the calibration procedure which allow for such a method to be applied. The move to this new technique allows for improved measurements of electron and photon energies, particularly in situations where an electron radiates a bremsstrahlung photon, or a photon converts to an electron-poistron pair. This note details the changes to the ATLAS electron and photon reconstruction software, and assesses its performance under current LHC luminosity conditions using simulated data. Changes to the converted photon reconstruction are also detailed, which improve the reconstruction efficiency of double-track converted photons, as well as reducing the reconstruction of spurious one-track converted photons. The performance of the new reconstruction algorithm is also presented in a number of important topologies relevant to precision Standard Model physics,...

  3. Advances in imaging and electron physics the scanning transmission electron microscope

    CERN Document Server

    Hawkes, Peter W

    2009-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.  This particular volume presents several timely articles on the scanning transmission electron microscope. Updated with contributions from leading international scholars and industry experts Discusses hot topic areas and presents current and future research trends Provides an invaluable reference and guide for physicists, engineers and mathematicians.

  4. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    Science.gov (United States)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  5. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    Science.gov (United States)

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  6. Bridging Theory and Practice: Using Hip-Hop Pedagogy as a Culturally Relevant Approach in the Urban Science Classroom

    Science.gov (United States)

    Adjapong, Edmund S.

    2017-01-01

    This dissertation explores the context of urban science education as it relates to the achievement and engagement of urban youth. This study provides a framework for Hip-Hop Pedagogy, an approach to teaching and learning anchored in the creative elements of Hip-Hop culture, in STEM as an innovative approach to teaching and learning demonstrates…

  7. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-02-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by now many universities and colleges have courses that incorporate science fiction stories or film. The intent appears to be to a) increase student interest in physics, b) increase the imaginative grasp of the student, and c) enable a clearer understanding of physics concepts. Reports on these experiments, from Freedman and Little's classic 1980 paper to more recent work like that of Dubeck et al.,2 Dark,3 and Smith,4 indicate that such innovative approaches do work. I was curious as to whether a combination of science fiction and science fact (in the form of a science news article) might enhance the benefits of including science fiction. Below I describe how I used a science fiction story along with a science article on a related theme to pique the interest of students in a new and exciting area of research that was nevertheless connected to the course material.

  8. Renormalization group-theoretic approach to electron localization in disordered systems

    International Nuclear Information System (INIS)

    Kumar, N.; Heinrichs, J.

    1977-06-01

    The localization problem for the Anderson tight-binding model with site-diagonal (gaussian) disorder is studied, using a previously established analogy between this problem and the statistical mechanics of a zero-component classical field. The equivalent free-energy functional turns out to have complex coefficients in the bilinear terms but involves a real repulsive quartic interaction. The averaged one-electron propagator corresponds to the two-point correlation function for the equivalent statistical problem and the critical point gives the mobility edge, which is identified with the (real) fixed point energy of the associated renormalization group. Since for convergence reasons the conventional perturbative treatment of Wilson's formula is invalid, it is resorted to a non-perturbative approach which leads to a physical fixed point corresponding to a repulsive quartic interaction. The results for the mobility edge in three dimensions and for the critical disorder for an Anderson transition in two dimensions agree well with previous detailed predictions. The critical indices describing the approach of the transition at the mobility edge of various physical quantities, within the epsilon-expansion are also discussed. The more general problem where both diagonal and off-diagonal disorder is present in the Anderson hamiltonian is considered. In this case it is shown that the Hamilton function for the equivalent zero-component classical field model involves an additional biquadratic exchange term. From a simple generalization of Wilson's recursion relation and its non-perturbative solution explicit expressions for the mobility edges for weak diagonal and off-diagonal disorder in two and three dimensions are obtained. Our treatment casts doubts on the validity of recent conclusions about electron localization based on the renormalization group study of the nm-component spin model

  9. The Role of Playful Science in Developing Positive Attitudes toward Teaching Science in a Science Teacher Preparation Program

    Science.gov (United States)

    Bulunuz, Mizrap

    2015-01-01

    Problem Statement: Research studies indicate that teachers with negative attitudes toward science tend to use didactic approaches rather than approaches based on students' active participation. However, the reviews of the national academic literature in Turkey located a few research studies on the relationship between playful science experiences…

  10. Science, Beliefs and Knowledge: A Personal Reflection on Robert J. Aumann’s Approach

    OpenAIRE

    Gil Kalai

    2006-01-01

    On the occasion of Robert J. Aumann's being awarded the 2005 Nobel Prize in Economics, this paper gives a personal view on some of Aumann's contributions, and primarily on his approach to foundational issues in game theory, economics, and science as a whole. It is based on numerous discussions and e-mail exchanges we had in the 1990's, dealing with various scientific and political matters, including our long debate on the ``Bible Code'' controversy.

  11. Proceedings of 10. Conference on Electron Microscopy of Solids

    International Nuclear Information System (INIS)

    1999-01-01

    The new technical solutions and methodical variants of electron microscopy i. e. transmission electron microscopy and scanning electron microscopy have been presented. Development of new methods and microscope constructions which became more and more sophisticated causes the progress in possible applications. The broad spectrum of such applications in metallurgy, materials science, chemical engineering, electronics, physical chemistry, solid state physics, mineralogy and other branches of science and technique have been performed and discussed at the conference

  12. Symposium on electron linear accelerators in honor of Richard B. Neal's 80th birthday: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Siemann, R.H. [ed.

    1998-07-01

    The papers presented at the conference are: (1) the construction of SLAC and the role of R.B. Neal; (2) symposium speech; (3) lessons learned from the SLC; (4) alternate approaches to future electron-positron linear colliders; (5) the NLC technical program; (6) advanced electron linacs; (7) medical uses of linear accelerators; (8) linac-based, intense, coherent X-ray source using self-amplified spontaneous emission. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory.

    Science.gov (United States)

    Liang, Yufeng; Vinson, John; Pemmaraju, Sri; Drisdell, Walter S; Shirley, Eric L; Prendergast, David

    2017-03-03

    Constrained-occupancy delta-self-consistent-field (ΔSCF) methods and many-body perturbation theories (MBPT) are two strategies for obtaining electronic excitations from first principles. Using the two distinct approaches, we study the O 1s core excitations that have become increasingly important for characterizing transition-metal oxides and understanding strong electronic correlation. The ΔSCF approach, in its current single-particle form, systematically underestimates the pre-edge intensity for chosen oxides, despite its success in weakly correlated systems. By contrast, the Bethe-Salpeter equation within MBPT predicts much better line shapes. This motivates one to reexamine the many-electron dynamics of x-ray excitations. We find that the single-particle ΔSCF approach can be rectified by explicitly calculating many-electron transition amplitudes, producing x-ray spectra in excellent agreement with experiments. This study paves the way to accurately predict x-ray near-edge spectral fingerprints for physics and materials science beyond the Bethe-Salpether equation.

  14. Office of Basic Energy Sciences: 1984 summary report

    International Nuclear Information System (INIS)

    1984-11-01

    Subprograms of the OBES discussed in this document include: materials sciences, chemical sciences, nuclear sciences, engineering and geosciences, advanced energy projects, biological energy research, carbon dioxide research, HFBR, HFIR, NSLS, SSRL, IPNS, Combustion Research Facility, high-voltage and atomic resolution electron microscopic facilities, Oak Ridge Electron Linear Accelerator, Dynamitron Accelerator, calutrons, and Transuranium Processing Plant. Nickel aluminide and glassy metals are discussed

  15. Particles and waves in electron optics and microscopy

    CERN Document Server

    Pozzi, Giulio

    2016-01-01

    Advances in Imaging and Electron Physics merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contains contributions from leading authorities on the subject matter* Informs and updates all the latest developments in the field of imaging and electron physics* Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource* Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image pro...

  16. An Innovative Approach to Teaching and Learning about the Nature of Science: Student’s Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Beh Kian Lim

    2011-12-01

    Full Text Available This paper is based on the author’s classroom experience. It looks into the content and the methodology used in the classroom for SCE500- Nature of Science (NOS, a course for pre-service science teachers. It highlights the innovative and creative elements of the class lessons especially pertaining to the variety of approaches used in the set induction of every class session. These approaches were based on the consensus model of the Nature of Science. Among the approaches were using optical illusions as illustrations of what constitutes observation and the notion that observation is theory laden, using the developmental model of the atom from the historical perspective as illustration for the tentativeness of scientific ideas, using ‘ magnetic field’ as revealed by dusting iron filings around a bar magnet to illuminate the notion that scientific constructs are created by scientists, using specific examples of scientific law and theory in conceptualising the distinction between theory and law in view of the misconceptions harboured by students that theory with sufficient evidence will become law, and using the duality of light as particles and waves to illustrate the possibility of multiple theories for a particular set of data. The paper also highlights the eight misconceptions of NOS commonly found among students and the effectiveness of the course in addressing these misconceptions based on students’ course feedback and the quantitative data obtained before and after the course using an inventory designed by the author to gauge students’ conceptual gain in the eight aspects of NOS.

  17. Magnetism Teaching Sequences Based on an Inductive Approach for First-Year Thai University Science Students

    Science.gov (United States)

    Narjaikaew, Pattawan; Emarat, Narumon; Arayathanitkul, Kwan; Cowie, Bronwen

    2010-01-01

    The study investigated the impact on student motivation and understanding of magnetism of teaching sequences based on an inductive approach. The study was conducted in large lecture classes. A pre- and post-Conceptual Survey of Electricity and Magnetism was conducted with just fewer than 700 Thai undergraduate science students, before and after…

  18. A Comparison of Two Approaches to Developing In-Service Teachers' Knowledge and Strategies for Teaching Nature of Science

    Science.gov (United States)

    Vhurumuku, Elaosi; Chikochi, Andrew

    2017-01-01

    This paper reports the results of a study that compared two approaches to developing in-service teachers' subject matter knowledge and strategies for teaching nature of science. A treatment post-test only quasi-experimental research design was used. One group of in-service teachers (n = 15) was taught using what is called a capsular approach. In…

  19. Computer science approach to quantum control

    International Nuclear Information System (INIS)

    Janzing, D.

    2006-01-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  20. Towards multidimensional approaches to early childhood science education

    Science.gov (United States)

    Siry, Christina

    2014-06-01

    In this forum paper, I respond to issues raised by Kristina Andersson and Annica Gullberg in their article titled What is science in preschool and what do teachers have to know to empower children? (2012). I seek to continue the discussion begun with Andersson and Gullberg's paper, by further exploring the questions they introduce to guide their paper: "What is science in preschool?" and "What do teachers have to know to empower children?" In particular, I elaborate on the value of drawing on multiple perspectives and different epistemological frameworks, and I argue for the need for a reconceptualized notion of science as a school discipline; one that acknowledges the multifaceted ways in which young children engage in science.

  1. An analytical approach to characterize morbidity profile dissimilarity between distinct cohorts using electronic medical records.

    Science.gov (United States)

    Schildcrout, Jonathan S; Basford, Melissa A; Pulley, Jill M; Masys, Daniel R; Roden, Dan M; Wang, Deede; Chute, Christopher G; Kullo, Iftikhar J; Carrell, David; Peissig, Peggy; Kho, Abel; Denny, Joshua C

    2010-12-01

    We describe a two-stage analytical approach for characterizing morbidity profile dissimilarity among patient cohorts using electronic medical records. We capture morbidities using the International Statistical Classification of Diseases and Related Health Problems (ICD-9) codes. In the first stage of the approach separate logistic regression analyses for ICD-9 sections (e.g., "hypertensive disease" or "appendicitis") are conducted, and the odds ratios that describe adjusted differences in prevalence between two cohorts are displayed graphically. In the second stage, the results from ICD-9 section analyses are combined into a general morbidity dissimilarity index (MDI). For illustration, we examine nine cohorts of patients representing six phenotypes (or controls) derived from five institutions, each a participant in the electronic MEdical REcords and GEnomics (eMERGE) network. The phenotypes studied include type II diabetes and type II diabetes controls, peripheral arterial disease and peripheral arterial disease controls, normal cardiac conduction as measured by electrocardiography, and senile cataracts. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Application of a Sensemaking Approach to Ethics Training in the Physical Sciences and Engineering

    Science.gov (United States)

    Kligyte, Vykinta; Marcy, Richard T.; Waples, Ethan P.; Sevier, Sydney T.; Godfrey, Elaine S.; Mumford, Michael D.; Hougen, Dean F.

    2008-06-01

    Integrity is a critical determinant of the effectiveness of research organizations in terms of producing high quality research and educating the new generation of scientists. A number of responsible conduct of research (RCR) training programs have been developed to address this growing organizational concern. However, in spite of a significant body of research in ethics training, it is still unknown which approach has the highest potential to enhance researchers' integrity. One of the approaches showing some promise in improving researchers' integrity has focused on the development of ethical decision-making skills. The current effort proposes a novel curriculum that focuses on broad metacognitive reasoning strategies researchers use when making sense of day-to-day social and professional practices that have ethical implications for the physical sciences and engineering. This sensemaking training has been implemented in a professional sample of scientists conducting research in electrical engineering, atmospheric and computer sciences at a large multi-cultural, multi-disciplinary, and multi-university research center. A pre-post design was used to assess training effectiveness using scenario-based ethical decision-making measures. The training resulted in enhanced ethical decision-making of researchers in relation to four ethical conduct areas, namely data management, study conduct, professional practices, and business practices. In addition, sensemaking training led to researchers' preference for decisions involving the application of the broad metacognitive reasoning strategies. Individual trainee and training characteristics were used to explain the study findings. Broad implications of the findings for ethics training development, implementation, and evaluation in the sciences are discussed.

  3. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 121; Issue 5 ... self-affine fractals: Comparative study of statistically corrugated and isotropic roughness ... Theory of coherent molecule to surface electron injection: An analytical model.

  4. The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)

    Science.gov (United States)

    Hoffman, Reviewed By Megan M.

    2000-01-01

    "You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon

  5. Food control and a citizen science approach for improving teaching of Genetics in universities.

    Science.gov (United States)

    Borrell, Y J; Muñoz-Colmenero, A M; Dopico, E; Miralles, L; Garcia-Vazquez, E

    2016-09-10

    A Citizen Science approach was implemented in the laboratory practices of Genetics at the University of Oviedo, related with the engaging topic of Food Control. Real samples of food products consumed by students at home (students as samplers) were employed as teaching material in three different courses of Genetics during the academic year 2014-2015: Experimental Methods in Food Production (MBTA) (Master level), and Applied Molecular Biology (BMA) and Conservation Genetics and Breeding (COMGE) (Bachelor/Degree level). Molecular genetics based on PCR amplification of DNA markers was employed for species identification of 22 seafood products in COMGE and MBTA, and for detection of genetically modified (GM) maize from nine products in BMA. In total six seafood products incorrectly labeled (27%), and two undeclared GM maize (22%) were found. A post-Laboratory survey was applied for assessing the efficacy of the approach for improving motivation in the Laboratory Practices of Genetics. Results confirmed that students that worked on their own samples from local markets were significantly more motivated and better evaluated their Genetic laboratory practices than control students (χ(2)  = 12.11 p = 0.033). Our results suggest that citizen science approaches could not be only useful for improving teaching of Genetics in universities but also to incorporate students and citizens as active agents in food control. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(5):450-462, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Implementing e-network-supported inquiry learning in science

    DEFF Research Database (Denmark)

    Williams, John; Cowie, Bronwen; Khoo, Elaine

    2013-01-01

    The successful implementation of electronically networked (e-networked) tools to support an inquiry-learning approach in secondary science classrooms is dependent on a range of factors spread between teachers, schools, and students. The teacher must have a clear understanding of the nature......-construct knowledge using a wide range of resources for meaning making and expression of ideas. These outcomes were, however, contingent on the interplay of teacher understanding of the nature of science inquiry and school provision of an effective technological infrastructure and support for flexible curriculum...... of inquiry, the school must provide effective technological infrastructure and sympathetic curriculum parameters, and the students need to be carefully scaffolded to the point of engaging with the inquiry process. Within this study, e-networks supported students to exercise agency, collaborate, and co...

  7. Lie algebraic approach to valence bond theory of π-electron systems: a preliminary study of excited states

    Science.gov (United States)

    Paldus, J.; Li, X.

    1992-10-01

    Following a brief outline of various developments and exploitations of the unitary group approach (UGA), and its extension referred to as Clifford algebra UGA (CAUGA), in molecular electronic structure calculations, we present a summary of a recently introduced implementation of CAUGA for the valence bond (VB) method based on the Pariser-Parr-Pople (PPP)-type Hamiltonian. The existing applications of this PPP-VB approach have been limited to groundstates of various π-electron systems or, at any rate, to the lowest states of a given multiplicity. In this paper the method is applied to the low-lying excited states of several archetypal models, namely cyclobutadiene and benzene, representing antiaromatic and aromatic systems, hexatriene, representing linear polyenic systems and, finally, naphthalene, representing polyacenes.

  8. Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors: A Green function approach

    Science.gov (United States)

    Saniz, R.; Partoens, B.; Peeters, F. M.

    2013-02-01

    The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.

  9. Arctic System Science: Meeting Earth System and Social Impact Challenges through Integrative Approaches and Synthesis

    Science.gov (United States)

    Vorosmarty, C. J.; Hinzman, L. D.; Rawlins, M. A.; Serreze, M. C.; Francis, J. A.; Liljedahl, A. K.; McDonald, K. C.; Piasecki, M.; Rich, R. H.; Holland, M. M.

    2017-12-01

    The Arctic is an integral part of the Earth system where multiple interactions unite its natural and human elements. Recent observations show the Arctic to be experiencing rapid and amplified signatures of global climate change. At the same time, the Arctic system's response to this broader forcing has itself become a central research topic, given its potential role as a critical throttle on future planetary dynamics. Changes are already impacting life systems and economic prosperity and continued change is expected to bear major implications far outside the region. We also have entered an era when environmental management, traditionally local in scope, must confront regional, whole biome, and pan-Arctic biogeophysical challenges. While challenges may appear to operate in isolation, they emerge within the context of an evolving, integrated Arctic system defined by interactions among natural and social sub-systems. Clearly, new efforts aimed at community planning, industrial development, and infrastructure construction must consider this multiplicity of interacting processes. We recently organized an "Arctic System Synthesis Workshop Series" supported by the Arctic Systems Science Program of NSF and devoted to exploring approaches capable of uncovering the systems-level behavior in both the natural and social sciences domains. The series featured two topical meetings. The first identified the sources responsible for extreme climate events in the Arctic. The second focused on multiple "currencies" within the system (i.e., water, energy, carbon, nutrients) and how they interact to produce systems-level behaviors. More than 40 experts participated, drawn from the ranks of Arctic natural and social sciences. We report here on the workshop series consensus report, which identifies a broad array of topics. Principal among these are a consideration of why study the Arctic as a system, as well as an articulation of the major systems-level approaches to support basic as well

  10. Computationally efficient description of relativistic electron beam transport in dense plasma

    Science.gov (United States)

    Polomarov, Oleg; Sefkov, Adam; Kaganovich, Igor; Shvets, Gennady

    2006-10-01

    A reduced model of the Weibel instability and electron beam transport in dense plasma is developed. Beam electrons are modeled by macro-particles and the background plasma is represented by electron fluid. Conservation of generalized vorticity and quasineutrality of the plasma-beam system are used to simplify the governing equations. Our approach is motivated by the conditions of the FI scenario, where the beam density is likely to be much smaller than the plasma density and the beam energy is likely to be very high. For this case the growth rate of the Weibel instability is small, making the modeling of it by conventional PICs exceedingly time consuming. The present approach does not require resolving the plasma period and only resolves a plasma collisionless skin depth and is suitable for modeling a long-time behavior of beam-plasma interaction. An efficient code based on this reduced description is developed and benchmarked against the LSP PIC code. The dynamics of low and high current electron beams in dense plasma is simulated. Special emphasis is on peculiarities of its non-linear stages, such as filament formation and merger, saturation and post-saturation field and energy oscillations. *Supported by DOE Fusion Science through grant DE-FG02-05ER54840.

  11. Understanding social forces involved in diabetes outcomes: a systems science approach to quality-of-life research.

    Science.gov (United States)

    Lounsbury, David W; Hirsch, Gary B; Vega, Chawntel; Schwartz, Carolyn E

    2014-04-01

    The field of quality-of-life (QOL) research would benefit from learning about and integrating systems science approaches that model how social forces interact dynamically with health and affect the course of chronic illnesses. Our purpose is to describe the systems science mindset and to illustrate the utility of a system dynamics approach to promoting QOL research in chronic disease, using diabetes as an example. We build a series of causal loop diagrams incrementally, introducing new variables and their dynamic relationships at each stage. These causal loop diagrams demonstrate how a common set of relationships among these variables can generate different disease and QOL trajectories for people with diabetes and also lead to a consideration of non-clinical (psychosocial and behavioral) factors that can have implications for program design and policy formulation. The policy implications of the causal loop diagrams are discussed, and empirical next steps to validate the diagrams and quantify the relationships are described.

  12. SUSTAINABLE MANAGEMENT APPROACHES AND REVITALIZATION TOOLS-ELECTRONIC (SMARTE): OVERVIEW AND DEMONSTRATION FOR FINAL PHASE 3 CONFERENCE

    Science.gov (United States)

    The U.S. contingent of the U.S.-German Bilateral Working Group is developing Sustainable Management Approaches and Revitalization Tools-electronic (SMARTe). SMARTe is a web-based, decision support system designed to assist stakeholders in developing and evaluating alternative reu...

  13. Effect of Learning Cycle Approach-Based Science Teaching on Academic Achievement, Attitude, Motivation and Retention

    Science.gov (United States)

    Uyanik, Gökhan

    2016-01-01

    The purpose of this study was to examine the effect of learning cycle approach-based teaching on academic achievement, attitude, motivation and retention at primary school 4th grade science lesson. It was conducted pretest-posttest quasi-experimental design in this study. The study was conducted on a total of 65 students studying in two different…

  14. Effects of Brain-Based Learning Approach on Students' Motivation and Attitudes Levels in Science Class

    Science.gov (United States)

    Akyurek, Erkan; Afacan, Ozlem

    2013-01-01

    The purpose of the study was to examine the effect of brain-based learning approach on attitudes and motivation levels in 8th grade students' science classes. The main reason for examining attitudes and motivation levels, the effect of the short-term motivation, attitude shows the long-term effect. The pre/post-test control group research model…

  15. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  16. Science-Technology-Society (STS): A New Paradigm in Science Education

    Science.gov (United States)

    Mansour, Nasser

    2009-01-01

    Changes in the past two decades of goals for science education in schools have induced new orientations in science education worldwide. One of the emerging complementary approaches was the science-technology-society (STS) movement. STS has been called the current megatrend in science education. Others have called it a paradigm shift for the field…

  17. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Specialization: Computer Science & Engineering, Information Technology and Electronics Address: INSA Senior Scientist, Faculty Consciousness Studies Programme, National Institute of Advanced Studies, Indian Institute of Science Campus, Bengaluru 560 012, Karnataka Contact: Residence: (080) 2360 2635

  18. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach.

    Science.gov (United States)

    Prucker, V; Bockstedte, M; Thoss, M; Coto, P B

    2018-03-28

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  19. Dynamical simulation of electron transfer processes in self-assembled monolayers at metal surfaces using a density matrix approach

    Science.gov (United States)

    Prucker, V.; Bockstedte, M.; Thoss, M.; Coto, P. B.

    2018-03-01

    A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.

  20. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    Science.gov (United States)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  1. Hands-on approach to teaching Earth system sciences using a information-computational web-GIS portal "Climate"

    Science.gov (United States)

    Gordova, Yulia; Gorbatenko, Valentina; Martynova, Yulia; Shulgina, Tamara

    2014-05-01

    A problem of making education relevant to the workplace tasks is a key problem of higher education because old-school training programs are not keeping pace with the rapidly changing situation in the professional field of environmental sciences. A joint group of specialists from Tomsk State University and Siberian center for Environmental research and Training/IMCES SB RAS developed several new courses for students of "Climatology" and "Meteorology" specialties, which comprises theoretical knowledge from up-to-date environmental sciences with practical tasks. To organize the educational process we use an open-source course management system Moodle (www.moodle.org). It gave us an opportunity to combine text and multimedia in a theoretical part of educational courses. The hands-on approach is realized through development of innovative trainings which are performed within the information-computational platform "Climate" (http://climate.scert.ru/) using web GIS tools. These trainings contain practical tasks on climate modeling and climate changes assessment and analysis and should be performed using typical tools which are usually used by scientists performing such kind of research. Thus, students are engaged in n the use of modern tools of the geophysical data analysis and it cultivates dynamic of their professional learning. The hands-on approach can help us to fill in this gap because it is the only approach that offers experience, increases students involvement, advance the use of modern information and communication tools. The courses are implemented at Tomsk State University and help forming modern curriculum in Earth system science area. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grants numbers 13-05-12034 and 14-05-00502.

  2. Phylo: a citizen science approach for improving multiple sequence alignment.

    Directory of Open Access Journals (Sweden)

    Alexander Kawrykow

    Full Text Available BACKGROUND: Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. METHODOLOGY/PRINCIPAL FINDINGS: We introduce Phylo, a human-based computing framework applying "crowd sourcing" techniques to solve the Multiple Sequence Alignment (MSA problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. CONCLUSIONS/SIGNIFICANCE: We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of "human-brain peta-flops" of computation that are spent every day playing games

  3. Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems

    Science.gov (United States)

    Andrade, Xavier; Strubbe, David; De Giovannini, Umberto; Larsen, Ask Hjorth; Oliveira, Micael J. T.; Alberdi-Rodriguez, Joseba; Varas, Alejandro; Theophilou, Iris; Helbig, Nicole; Verstraete, Matthieu J.; Stella, Lorenzo; Nogueira, Fernando; Aspuru-Guzik, Alán; Castro, Alberto; Marques, Miguel A. L.; Rubio, Angel

    Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are discretized on a grid, combined with competitive numerical performance and great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems. Among these applications are approaches to calculate response properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schr\\"odinger equation for low-dimensionality systems.

  4. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    International Nuclear Information System (INIS)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-01-01

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  5. Dimer and cluster approach for the evaluation of electronic couplings governing charge transport: Application to two pentacene polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Canola, Sofia; Pecoraro, Claudia; Negri, Fabrizia

    2016-10-20

    Hole transport properties are modeled for two polymorphs of pentacene: the single crystal polymorph and the thin film polymorph relevant for organic thin-film transistor applications. Electronic couplings are evaluated in the standard dimer approach but also considering a cluster approach in which the central molecule is surrounded by a large number of molecules quantum-chemically described. The effective electronic couplings suitable for the parametrization of a tight-binding model are derived either from the orthogonalization scheme limited to HOMO orbitals and from the orthogonalization of the full basis of molecular orbitals. The angular dependent mobilities estimated for the two polymorphs using the predicted pattern of couplings display different anisotropy characteristics as suggested from experimental investigations.

  6. The Effect of Two Different Cooperative Approaches on Students' Learning and Practices within the Context of a WebQuest Science Investigation

    Science.gov (United States)

    Zacharia, Zacharias C.; Xenofontos, Nikoletta A.; Manoli, Constantinos C.

    2011-01-01

    The goal of this study was to investigate the effect of two different cooperative learning approaches, namely, the Jigsaw Cooperative Approach (JCA) and the Traditional Cooperative Approach (TCA), on students' learning and practices/actions within the context of a WebQuest science investigation. Another goal of this study was to identify possible…

  7. Paper electronics.

    Science.gov (United States)

    Tobjörk, Daniel; Österbacka, Ronald

    2011-05-03

    Paper is ubiquitous in everyday life and a truly low-cost substrate. The use of paper substrates could be extended even further, if electronic applications would be applied next to or below the printed graphics. However, applying electronics on paper is challenging. The paper surface is not only very rough compared to plastics, but is also porous. While this is detrimental for most electronic devices manufactured directly onto paper substrates, there are also approaches that are compatible with the rough and absorptive paper surface. In this review, recent advances and possibilities of these approaches are evaluated and the limitations of paper electronics are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  9. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kandemir, B S; Keskin, M [Department of Physics, Faculty of Sciences, Ankara University, 06100 Tandogan, Ankara (Turkey)

    2008-08-13

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction.

  10. Analytical approach to phonons and electron-phonon interactions in single-walled zigzag carbon nanotubes

    International Nuclear Information System (INIS)

    Kandemir, B S; Keskin, M

    2008-01-01

    In this paper, exact analytical expressions for the entire phonon spectra in single-walled carbon nanotubes with zigzag geometry are presented by using a new approach, originally developed by Kandemir and Altanhan. This approach is based on the concept of construction of a classical lattice Hamiltonian of single-walled carbon nanotubes, wherein the nearest and next nearest neighbor and bond bending interactions are all included, then its quantization and finally diagonalization of the resulting second quantized Hamiltonian. Furthermore, within this context, explicit analytical expressions for the relevant electron-phonon interaction coefficients are also investigated for single-walled carbon nanotubes having this geometry, by the phonon modulation of the hopping interaction

  11. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    Science.gov (United States)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).

  12. [How to approach the discipline of "nursing science" in France?].

    Science.gov (United States)

    Lecordier, Didier; Rémy-Largeau, Isabelle; Jovic, Ljiljana

    2013-03-01

    The last four years have seen the development of supports toward research in nursing and other healthcare professionals' research, along with the fact that, nursing education has become part of university programs. Professional and scientific landscapes are changing and the opening perspectives let glimpse a growing professionalization of nurses' activities but also, raise the question of the nursing science construction in France. By considering interdisciplinary work, as an approach for complex situations of care, by specifying the purpose of the production of nursing scientific knowledge in order to meet the population needs of healthcare, by explaining the purpose of nursing research and theoretical elements that allow its construction, the following article offers an epistemological reflection on the evolution of the profession and on the construction of a nursing scientific discipline in France.

  13. Advances in the MQDT approach of electron/molecular cation reactive collisions: High precision extensive calculations for applications

    Directory of Open Access Journals (Sweden)

    Motapon O.

    2015-01-01

    Full Text Available Recent advances in the stepwise multichannel quantum defect theory approach of electron/molecular cation reactive collisions have been applied to perform computations of cross sections and rate coefficients for dissociative recombination and electron-impact ro-vibrational transitions of H2+, BeH+ and their deuterated isotopomers. At very low energy, rovibronic interactions play a significant role in the dynamics, whereas at high energy, the dissociative excitation strongly competes with all other reactive processes.

  14. Preparing Pre-Service Teachers to Teach Primary Science: An Integrated Approach Using the Theme of Sustainability

    Science.gov (United States)

    King, Donna

    2014-01-01

    An integrated approach to assessment afforded pre-service teachers the opportunity to learn about a local sustainability issue through three learning areas: science and technology, the arts and studies of society and environment (SOSE). Three sustainability issues chosen by the pre-service teachers are presented in this paper highlighting the…

  15. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  16. Phase-space description of wave packet approach to electronic transport in nanoscale systems

    International Nuclear Information System (INIS)

    Szydłowski, D; Wołoszyn, M; Spisak, B J

    2013-01-01

    The dynamics of conduction electrons in resonant tunnelling nanosystems is studied within the phase-space approach based on the Wigner distribution function. The time evolution of the distribution function is calculated from the time-dependent quantum kinetic equation for which an effective numerical method is presented. Calculations of the transport properties of a double-barrier resonant tunnelling diode are performed to illustrate the proposed techniques. Additionally, analysis of the transient effects in the nanosystem is carried out and it is shown that for some range of the bias voltage the temporal variations of electronic current can take negative values. The explanation of this effect is based on the analysis of the time changes of the Wigner distribution function. The decay time of the temporal current oscillations in the nanosystem as a function of the bias voltage is determined. (paper)

  17. Three approaches to investigating the multidimensional nature of a science assessment

    Science.gov (United States)

    Gokiert, Rebecca Jayne

    The purpose of this study was to investigate a multi-method approach for collecting validity evidence about the underlying knowledge and skills measured by a large-scale science assessment. The three approaches included analysis of dimensionality, differential item functioning (DIF), and think-aloud interviews. The specific research questions addressed were: (1) Does the 4-factor model previously found by Hamilton et al. (1995) for the grade 8 sample explain the data? (2) Do the performances of male and female students systematically differ? Are these performance differences captured in the dimensions? (3) Can think-aloud reports aid in the generation of hypotheses about the underlying knowledge and skills that are measured by this test? A confirmatory factor analysis of the 4-factor model revealed good model data fit for both the AB and AC tests. Twenty-four of the 83 AB test items and 16 of the 77 AC test items displayed significant DIF, however, items were found, on average, to favour both males and females equally. There were some systematic differences found across the 4-factors; items favouring males tended to be related to earth and space sciences, stereotypical male related activities, and numerical operations. Conversely, females were found to outperform males on items that required careful reading and attention to detail. Concurrent and retrospective verbal reports (Ericsson & Simon, 1993) were collected from 16 grade 8 students (9 male and 7 female) while they solved 12 DIF items. Four general cognitive processing themes were identified from the student protocols that could be used to explain male and female problem solving. The themes included comprehension (verbal and visual), visualization, background knowledge/experience (school or life), and strategy use. There were systematic differences in cognitive processing between the students that answered the items correctly and the students who answered the items incorrectly; however, this did not always

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Pakkirisamy Thilagar. Articles written in Journal of Chemical Sciences. Volume 118 Issue 6 November 2006 pp 455-462. Stannoxanes and phosphonates: New approaches in organometallic and transition metal assemblies · Vadapalli Chandrasekhar Kandasamy Gopal ...

  19. More than "Cool Science": Science Fiction and Fact in the Classroom

    Science.gov (United States)

    Singh, Vandana

    2014-01-01

    The unfortunate negative attitude toward physics among many students, including science majors, warrants creative approaches to teaching required physics courses. One such approach is to integrate science fiction into the curriculum, either in the form of movies or the written word. Historically this has been done since at least the 1970s, and by…

  20. Practical Approaches to Mitigation of Specimen Charging in High-Resolution Transmission Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Young-Min Kim

    2010-09-01

    Full Text Available Specimen charging that is associated with the electron bombardment on the sample is a practical hindrance to high-resolution transmission electron microscopy (HRTEM analysis because it causes a severe loss of resolution in either diffraction or image data. Conductive thin film deposition on an insulating specimen has been proposed as an effective approach to the mitigation of the specimen charging; however, this method is generally not useful in HRTEM imaging of materials because the deposited film induces another artifact in the HRTEM image contrast. In this study, we propose practical methods to mitigate the specimen charging that takes place during the HRTEM of materials. For bulk-type specimens prepared by either an ion-thinning or focused-ion beam (FIB process, a plasma cleaning treatment is significantly effective in eliminating the charging phenomenon. In the case of low-dimensional nanomaterials such as nanowires and nanoparticles, the plasma cleaning is not feasible; however, the charging effect can be effectively eliminated by adjusting the electron illumination condition. The proposed methods facilitate a decrease in the buildup of specimen charging, thereby enhancing the quality of high-resolution images significantly.

  1. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    Science.gov (United States)

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  2. Electron-positron correlations in an electron liquid

    International Nuclear Information System (INIS)

    Stachowiak, H.

    1980-01-01

    The importance of studying electron-positron interaction for the interpretation of angular correlation data obtained for metallic systems is emphasized. The most successful approaches to electron-positron correlations in jellium are presented. Those include the Bethe-Goldstone two-body equation proposed by Kahana, the charge-density-dielectric function approach connected with the names of Singwi, Sjolander, Stott and Bhattacharyya and the Sawada boson-generalized Tamm-Dancoff approach elaborated recently by Arponen and Pajanne. In conclusion, it is reported that one can consider that the behaviour of a positron at rest in jellium is relatively well understood, though the problem of the optimal choice of a two-body electron-positron phenomenological equation is still open. Also, the behaviour of a positron in a real metal is not well understood and so far, serious calculations in this field have been performed only on very simple models while realistic calculations of the ACPAQ curves tend to minimize the importance of the problems which remain to be solved. (K.B.)

  3. Using network science in the language sciences and clinic.

    Science.gov (United States)

    Vitevitch, Michael S; Castro, Nichol

    2015-02-01

    A number of variables—word frequency, word length—have long been known to influence language processing. This study briefly reviews the effects in speech perception and production of two more recently examined variables: phonotactic probability and neighbourhood density. It then describes a new approach to study language, network science, which is an interdisciplinary field drawing from mathematics, computer science, physics and other disciplines. In this approach, nodes represent individual entities in a system (i.e. phonological word-forms in the lexicon), links between nodes represent relationships between nodes (i.e. phonological neighbours) and various measures enable researchers to assess the micro-level (i.e. the individual word), the macro-level (i.e. characteristics about the whole system) and the meso-level (i.e. how an individual fits into smaller sub-groups in the larger system). Although research on individual lexical characteristics such as word-frequency has increased understanding of language processing, these measures only assess the "micro-level". Using network science, researchers can examine words at various levels in the system and how each word relates to the many other words stored in the lexicon. Several new findings using the network science approach are summarized to illustrate how this approach can be used to advance basic research as well as clinical practice.

  4. Linear-algebraic approach to electronic excitation of atoms and molecules by electron impact

    International Nuclear Information System (INIS)

    Collins, L.A.; Schneider, B.I.

    1983-01-01

    A linear-algebraic method, based on an integral equations formulation, is applied to the excitation of atoms and molecules by electron impact. Various schemes are devised for treating the one-electron terms that sometimes cause instabilities when directly incorporated into the solution matrix. These include introducing Lagrange undetermined multipliers and correlation terms. Good agreement between the method and other computational techniques is obtained for electron scattering for hydrogenic and Li-like atomic ions and for H 2 + in two- to five-state close-coupling calculations

  5. Gender-inclusive science teaching: A feminist-constructivist approach

    Science.gov (United States)

    Roychoudhury, Anita; Tippins, Debora J.; Nichols, Sharon E.

    The underrepresentation of women in science is an extensively studied yet persistent concern of our society. Researchers have identified numerous educational and social factors thought to be responsible for this underrepresentation (Kahle, 1990a; Kelly, 1987). One of the dominant explanations, used by many researchers for years to discuss gender differences in science and mathematics achievement as well as interest, has been the differences in the cognitive abilities of men and women. This explanation, however, has been discarded in recent years (Linn & Hyde, 1989; Linn 1990). On the basis of their meta-analyses of various studies. Linn and Hyde (1989) concluded that gender differences in cognitive skills have declined and those that remain are largely explained by experiential differences. Women may not have different cognitive abilities, but they may have a different way of learning rooted in their role in society. The epistemic differences between men and women stemming from their standpoint in life can help us understand their differential interaction with the nature of science, and hence their participation in the field. In the following section, we will briefly discuss the feminist critique of science and extend the implication to science education.Received: 28 July 1993; Revised: 19 August 1994;

  6. Inverse Problem Approach for the Alignment of Electron Tomographic Series

    International Nuclear Information System (INIS)

    Tran, V.D.; Moreaud, M.; Thiebaut, E.; Denis, L.; Becker, J.M.

    2014-01-01

    In the refining industry, morphological measurements of particles have become an essential part in the characterization catalyst supports. Through these parameters, one can infer the specific physico-chemical properties of the studied materials. One of the main acquisition techniques is electron tomography (or nano-tomography). 3D volumes are reconstructed from sets of projections from different angles made by a Transmission Electron Microscope (TEM). This technique provides a real three-dimensional information at the nano-metric scale. A major issue in this method is the misalignment of the projections that contributes to the reconstruction. The current alignment techniques usually employ fiducial markers such as gold particles for a correct alignment of the images. When the use of markers is not possible, the correlation between adjacent projections is used to align them. However, this method sometimes fails. In this paper, we propose a new method based on the inverse problem approach where a certain criterion is minimized using a variant of the Nelder and Mead simplex algorithm. The proposed approach is composed of two steps. The first step consists of an initial alignment process, which relies on the minimization of a cost function based on robust statistics measuring the similarity of a projection to its previous projections in the series. It reduces strong shifts resulting from the acquisition between successive projections. In the second step, the pre-registered projections are used to initialize an iterative alignment-refinement process which alternates between (i) volume reconstructions and (ii) registrations of measured projections onto simulated projections computed from the volume reconstructed in (i). At the end of this process, we have a correct reconstruction of the volume, the projections being correctly aligned. Our method is tested on simulated data and shown to estimate accurately the translation, rotation and scale of arbitrary transforms. We

  7. The Universe Discovery Guides: A Collaborative Approach to Educating with NASA Science

    Science.gov (United States)

    Manning, James G.; Lawton, Brandon L.; Gurton, Suzanne; Smith, Denise Anne; Schultz, Gregory; Astrophysics Community, NASA

    2015-08-01

    For the 2009 International Year of Astronomy, the then-existing NASA Origins Forum collaborated with the Astronomical Society of the Pacific (ASP) to create a series of monthly “Discovery Guides” for informal educator and amateur astronomer use in educating the public about featured sky objects and associated NASA science themes. Today’s NASA Astrophysics Science Education and Public Outreach Forum (SEPOF), one of the current generation of forums coordinating the work of NASA Science Mission Directorate (SMD) EPO efforts—in collaboration with the ASP and NASA SMD missions and programs--has adapted the Discovery Guides into “evergreen” educational resources suitable for a variety of audiences. The Guides focus on “deep sky” objects and astrophysics themes (stars and stellar evolution, galaxies and the universe, and exoplanets), showcasing EPO resources from more than 30 NASA astrophysics missions and programs in a coordinated and cohesive “big picture” approach across the electromagnetic spectrum, grounded in best practices to best serve the needs of the target audiences.Each monthly guide features a theme and a representative object well-placed for viewing, with an accompanying interpretive story, finding charts, strategies for conveying the topics, and complementary supporting NASA-approved education activities and background information from a spectrum of NASA missions and programs. The Universe Discovery Guides are downloadable from the NASA Night Sky Network web site at nightsky.jpl.nasa.gov and specifically from http://nightsky.jpl.nasa.gov/news-display.cfm?News_ID=611.The presentation will describe the collaborative’s experience in developing the guides, how they place individual science discoveries and learning resources into context for audiences, and how the Guides can be readily used in scientist public outreach efforts, in college and university introductory astronomy classes, and in other engagements between scientists, instructors

  8. Building a Science Communication Culture: One Agency's Approach

    Science.gov (United States)

    DeWitt, S.; Tenenbaum, L. F.; Betz, L.

    2014-12-01

    Science communication does not have to be a solitary practice. And yet, many scientists go about it alone and with little support from their peers and organizations. To strengthen community and build support for science communicators, NASA designed a training course aimed at two goals: 1) to develop individual scientists' communication skills, and 2) to begin to build a science communication culture at the agency. NASA offered a pilot version of this training course in 2014: the agency's first multidisciplinary face-to-face learning experience for science communicators. Twenty-six Earth, space and life scientists from ten field centers came together for three days of learning. They took part in fundamental skill-building exercises, individual development planning, and high-impact team projects. This presentation will describe the course design and learning objectives, the experience of the participants, and the evaluation results that will inform future offerings of communication training for NASA scientists and others.

  9. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. NAGAIYAN SEKAR. Articles written in Journal of Chemical Sciences. Volume 129 Issue 9 September 2017 pp 1349-1361 Regular Aricle. Enhanced NLO response in BODIPY-coumarin hybrids: density functional theory approach · YOGESH ERANDE NAGAIYAN SEKAR.

  10. How new concepts become universal scientific approaches: insights from citation network analysis of agent-based complex systems science.

    Science.gov (United States)

    Vincenot, Christian E

    2018-03-14

    Progress in understanding and managing complex systems comprised of decision-making agents, such as cells, organisms, ecosystems or societies, is-like many scientific endeavours-limited by disciplinary boundaries. These boundaries, however, are moving and can actively be made porous or even disappear. To study this process, I advanced an original bibliometric approach based on network analysis to track and understand the development of the model-based science of agent-based complex systems (ACS). I analysed research citations between the two communities devoted to ACS research, namely agent-based (ABM) and individual-based modelling (IBM). Both terms refer to the same approach, yet the former is preferred in engineering and social sciences, while the latter prevails in natural sciences. This situation provided a unique case study for grasping how a new concept evolves distinctly across scientific domains and how to foster convergence into a universal scientific approach. The present analysis based on novel hetero-citation metrics revealed the historical development of ABM and IBM, confirmed their past disjointedness, and detected their progressive merger. The separation between these synonymous disciplines had silently opposed the free flow of knowledge among ACS practitioners and thereby hindered the transfer of methodological advances and the emergence of general systems theories. A surprisingly small number of key publications sparked the ongoing fusion between ABM and IBM research. Beside reviews raising awareness of broad-spectrum issues, generic protocols for model formulation and boundary-transcending inference strategies were critical means of science integration. Accessible broad-spectrum software similarly contributed to this change. From the modelling viewpoint, the discovery of the unification of ABM and IBM demonstrates that a wide variety of systems substantiate the premise of ACS research that microscale behaviours of agents and system-level dynamics

  11. Advances in imaging and electron physics

    CERN Document Server

    Mulvey, Tom

    1995-01-01

    Academic Press is pleased to announce the creation of Advances in Imaging and Electron Physics. This serial publication results from the merger of two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical & Electron Microscopy. Advances in Imaging & Electron Physics will feature extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies,microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.

  12. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Date of birth: 1 July 1959. Specialization: Game Theory & Mechanism Design, Electronic Commerce Internet and Network Economics Address: Department of Computer Science & Automation, Indian Institute of Science, Bengaluru 560 012, Karnataka Contact: Office: (080) 2293 2773. Residence: (080) 2331 0265

  13. Broadening the Study of Participation in the Life Sciences: How Critical Theoretical and Mixed-Methodological Approaches Can Enhance Efforts to Broaden Participation

    Science.gov (United States)

    Metcalf, Heather

    2016-01-01

    This research methods Essay details the usefulness of critical theoretical frameworks and critical mixed-methodological approaches for life sciences education research on broadening participation in the life sciences. First, I draw on multidisciplinary research to discuss critical theory and methodologies. Then, I demonstrate the benefits of these…

  14. Finite element methods for engineering sciences. Theoretical approach and problem solving techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chaskalovic, J. [Ariel University Center of Samaria (Israel); Pierre and Marie Curie (Paris VI) Univ., 75 (France). Inst. Jean le Rond d' Alembert

    2008-07-01

    This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. (orig.)

  15. Modeling a terminology-based electronic nursing record system: an object-oriented approach.

    Science.gov (United States)

    Park, Hyeoun-Ae; Cho, InSook; Byeun, NamSoo

    2007-10-01

    The aim of this study was to present our perspectives on healthcare information analysis at a conceptual level and the lessons learned from our experience with the development of a terminology-based enterprise electronic nursing record system - which was one of components in an EMR system at a tertiary teaching hospital in Korea - using an object-oriented system analysis and design concept. To ensure a systematic approach and effective collaboration, the department of nursing constituted a system modeling team comprising a project manager, systems analysts, user representatives, an object-oriented methodology expert, and healthcare informaticists (including the authors). A rational unified process (RUP) and the Unified Modeling Language were used as a development process and for modeling notation, respectively. From the scenario and RUP approach, user requirements were formulated into use case sets and the sequence of activities in the scenario was depicted in an activity diagram. The structure of the system was presented in a class diagram. This approach allowed us to identify clearly the structural and behavioral states and important factors of a terminology-based ENR system (e.g., business concerns and system design concerns) according to the viewpoints of both domain and technical experts.

  16. Electron-Scavenging Chemistry of Benzoquinone on TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Michael A.; Shen, Mingmin

    2017-04-03

    The chemistry of benzoquinone (BQ) on TiO2(110) was examined using temperature programmed desorption (TPD), electron energy loss spectroscopy (EELS) and Auger electron spectroscopy (AES). BQ adsorbs mostly molecularly on the clean surface, although EELS demonstrates that electrons from surface Ti3+ sites at oxygen vacancy sites (VO) are readily oxidized by the high electron scavenging ability of the molecule. In contrast, when the surface is covered with water, subsequently adsorbed BQ molecules that scavenge surface electrons also abstract H from surface OHbr groups to form hydroquinone (HQ), which desorbs at ~450 K. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. The research was performed using the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  17. How Does the Science Writing Heuristic Approach Affect Students' Performances of Different Academic Achievement Levels? A Case for High School Chemistry

    Science.gov (United States)

    Kingir, Sevgi; Geban, Omer; Gunel, Murat

    2012-01-01

    This study investigates the effects of the Science Writing Heuristic (SWH), known as an argumentation-based science inquiry approach, on Grade 9 students' performance on a post-test in relation to their academic achievement levels. Four intact classes taught by 2 chemistry teachers from a Turkish public high school were selected for the study; one…

  18. The Electronic Notebook Ontology

    OpenAIRE

    Chalk, Stuart

    2016-01-01

    Science is rapidly being brought into the electronic realm and electronic laboratory notebooks (ELN) are a big part of this activity. The representation of the scientific process in the context of an ELN is an important component to making the data recorded in ELNs semantically integrated. This presentation will outline initial developments of an Electronic Notebook Ontology (ENO) that will help tie together the ExptML ontology, HCLS Community Profile data descriptions, and the VIVO-ISF ontol...

  19. Representing electrons a biographical approach to theoretical entities

    CERN Document Server

    Arabatzis, Theodore

    2006-01-01

    Both a history and a metahistory, Representing Electrons focuses on the development of various theoretical representations of electrons from the late 1890s to 1925 and the methodological problems associated with writing about unobservable scientific entities. Using the electron-or rather its representation-as a historical actor, Theodore Arabatzis illustrates the emergence and gradual consolidation of its representation in physics, its career throughout old quantum theory, and its appropriation and reinterpretation by chemists. As Arabatzis develops this novel biographical

  20. International Workshop on Electronic Density Functional Theory : Recent Progress and New Directions

    CERN Document Server

    Vignale, Giovanni; Das, Mukunda

    1998-01-01

    This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on r...

  1. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  2. A new neutron interferometry approach in the determination of the neutron-electron interaction amplitude

    CERN Document Server

    Ioffe, A

    2002-01-01

    A new experimental approach in the determination of the neutron-electron interaction amplitude is proposed. The main idea of this approach is to use a perfect-crystal neutron interferometer as both a sample and a device for the measurement of the extra phase shift caused by the neutron interaction with atoms of Si. Indeed, such a sample (an interferometer blade) has a well-known atomic density and is a priori perfectly aligned with respect to the crystal lattice of the interferometer crystal. This results in the minimization of systematic errors caused by sample alignment and increases the overall experimental accuracy. Some theoretic estimations and details of an experimental setup are discussed. (orig.)

  3. The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science.

    Science.gov (United States)

    Marek, A; Blum, V; Johanni, R; Havu, V; Lang, B; Auckenthaler, T; Heinecke, A; Bungartz, H-J; Lederer, H

    2014-05-28

    Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for problem

  4. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    Science.gov (United States)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  5. Physics Guided Data Science in the Earth Sciences

    Science.gov (United States)

    Ganguly, A. R.

    2017-12-01

    Even as the geosciences are becoming relatively data-rich owing to remote sensing and archived model simulations, established physical understanding and process knowledge cannot be ignored. The ability to leverage both physics and data-intensive sciences may lead to new discoveries and predictive insights. A principled approach to physics guided data science, where physics informs feature selection, output constraints, and even the architecture of the learning models, is motivated. The possibility of hybrid physics and data science models at the level of component processes is discussed. The challenges and opportunities, as well as the relations to other approaches such as data assimilation - which also bring physics and data together - are discussed. Case studies are presented in climate, hydrology and meteorology.

  6. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  7. Biographical Sources in the Sciences--Life, Earth and Physical Sciences (1989-2006). LC Science Tracer Bullet. TB 06-4

    Science.gov (United States)

    Freitag, Ruth, Comp.; Bradley, Michelle Cadoree, Comp.

    2006-01-01

    This guide offers a systematic approach to the wide variety of published biographical information on men and women of science in the life, earth and physical sciences, primarily from 1989 to 2006, and complements Library of Congress Science Tracer Bullet "TB88-3" ("Biographical Sources in the Sciences," compiled 1988 [ED306074]) and "TB06-7"…

  8. The pedagogical possibilities in the education of scientific research methodology in information science and the scientific objects of this field: durkheim approaches

    OpenAIRE

    Francisco das Chagas de Souza

    2003-01-01

    This article results of bibliographical, exploratory and qualitative research. Its argues that three approaches are gifts in the educational process of discipline of the Scientific Research Methodology in Information Science. They are the social facts of the Information Science, the types of the research and the social theory. It sees that the pedagogical possibilities of the education of Scientific Methodology in Information Science are related with the practical one of the writing which dep...

  9. Spacecraft Software Maintenance: An Effective Approach to Reducing Costs and Increasing Science Return

    Science.gov (United States)

    Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.

    1999-01-01

    Flight software is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are typically dealing almost entirely with the capabilities of onboard software. This software, even more than critical ground/flight communications systems, is expected to perform perfectly during all phases of spacecraft life. Due to the fact that it can be reprogrammed on-orbit to accommodate degradations or failures in flight hardware, new insights into spacecraft characteristics, new control options which permit enhanced science options, etc., the on- orbit flight software maintenance team is usually significantly responsible for the long term success of a science mission. Failure of flight software to perform as needed can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to maintaining spacecraft software--namely using the original developers, using the mission operations personnel, or assembling a center of excellence for multi-spacecraft software maintenance. Not planning properly for flight software maintenance can lead to unnecessarily high on-orbit costs and/or unacceptably long delays, or errors, in patch installations. A common approach for flight software maintenance is to access the original development staff. The argument for utilizing the development staff is that the people who developed the software will be the best people to modify the software on-orbit. However, it can quickly becomes a challenge to obtain the services of these key people. They may no longer be available to the organization. They may have a more urgent job to perform, quite likely on another project under different project management. If they havn't worked on the software for a long time, they may need precious time for refamiliarization to the software, testbeds and tools. Further, a lack of insight into issues related to flight software in its on

  10. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The journal covers all branches of engineering science and technology including mechanics (fluid, solid, thermal), computer science, electronics, energy, ... either because the work is fundamental or because it reflects the best in current technology; also on summaries of special projects of interest to engineering scientists.

  11. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    Energy Technology Data Exchange (ETDEWEB)

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X., E-mail: kxliu@pku.edu.cn [Institute of Heavy Ion Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  12. A Confirmatory Factor Analysis on the Attitude Scale of Constructivist Approach for Science Teachers

    Directory of Open Access Journals (Sweden)

    E. Evrekli

    2010-11-01

    Full Text Available Underlining the importance of teachers for the constructivist approach, the present study attempts to develop “Attitude Scale of Construc¬tivist Approach for Science Teachers (ASCAST”. The pre-applications of the scale were administered to a total of 210 science teachers; however, the data obtained from 5 teachers were excluded from the analysis. As a result of the analysis of the data obtained from the pre-applications, it was found that the scale could have a single factor structure, which was tested using the confir¬matory factor analysis. As a result of the initial confirmatory factor analysis, the values of fit were examined and found to be low. Subsequently, by exam¬ining the modification indices, error covariance was added between items 23 and 24 and the model was tested once again. The added error covariance led to a significant improvement in the model, producing values of fit suitable for limit values. Thus, it was concluded that the scale could be employed with a single factor. The explained variance value for the scale developed with a sin¬gle factor structure was calculated to be 50.43% and its reliability was found to be .93. The results obtained suggest that the scale possesses reliable-valid characteristics and could be used in further studies.

  13. THE CHALLENGES FOR MARKETING DISTANCE EDUCATION IN ONLINE ENVIRONMENT An Integrated Approach

    OpenAIRE

    Reweved by Natalija LEPKOVA

    2009-01-01

    THE CHALLENGES FOR MARKETING DISTANCE EDUCATION IN ONLINEENVIRONMENT An Integrated ApproachEdited by Prof. Dr. Ugur DEMIRAY,Assist. Prof. Dr. N. Serdar SEVER,Print ISBN 978-975-06-0596-3, Electronic ISBN 978-975-98590-6-0,732pp. 2009, Anadolu University, Eskisehir-Turkey(Available from http://www.midasebook.com)Reviewed by Associate Professor, Natalija LEPKOVADoctor of technological sciencesDepartment of Construction Economicsand Property ManagementVilnius Gediminas Technical University,LITHU...

  14. Rethinking Approaches to Exploration and Analysis of Big Data in Earth Science

    Science.gov (United States)

    Graves, S. J.; Maskey, M.

    2015-12-01

    With increasing amounts of data available for exploration and analysis, there are increasing numbers of users that need information extracted from the data for very specific purposes. Many of the specific purposes may not have even been considered yet so how do computational and data scientists plan for this diverse and not well defined set of possible users? There are challenges to be considered in the computational architectures, as well as the organizational structures for the data to allow for the best possible exploration and analytical capabilities. Data analytics need to be a key component in thinking about the data structures and types of storage of these large amounts of data, coming from a variety of sensing platforms that may be space based, airborne, in situ and social media. How do we provide for better capabilities for exploration and anaylsis at the point of collection for real-time or near real-time requirements? This presentation will address some of the approaches being considered and the challenges the computational and data science communities are facing in collaboration with the Earth Science research and application communities.

  15. Digital contract approach for consistent and predictable multimedia information delivery in electronic commerce

    Science.gov (United States)

    Konana, Prabhudev; Gupta, Alok; Whinston, Andrew B.

    1997-01-01

    A pure 'technological' solution to network quality problems is incomplete since any benefits from new technologies are offset by the demand from exponentially growing electronic commerce ad data-intensive applications. SInce an economic paradigm is implicit in electronic commerce, we propose a 'market-system' approach to improve quality of service. Quality of service for digital products takes on a different meaning since users view quality of service differently and value information differently. We propose a framework for electronic commerce that is based on an economic paradigm and mass-customization, and works as a wide-area distributed management system. In our framework, surrogate-servers act as intermediaries between information provides and end- users, and arrange for consistent and predictable information delivery through 'digital contracts.' These contracts are negotiated and priced based on economic principles. Surrogate servers pre-fetched, through replication, information from many different servers and consolidate based on demand expectations. In order to recognize users' requirements and process requests accordingly, real-time databases are central to our framework. We also propose that multimedia information be separated into slowly changing and rapidly changing data streams to improve response time requirements. Surrogate- servers perform the tasks of integration of these data streams that is transparent to end-users.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences. Krishna P Kaliappan. Articles written in Journal of Chemical Sciences. Volume 120 Issue 1 January 2008 pp 205-216. Synthetic studies on taxanes: A domino-enyne metathesis/Diels-Alder approach to the AB-ring · Krishna P Kaliappan Velayutham Ravikumar Sandip A Pujari.

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Md HABIB. Articles written in Bulletin of Materials Science. Volume 41 Issue 2 April 2018 pp 56. Tuning the BODIPY core for its potential use in DSSC: a quantum chemical approach · NARENDRA NATH GHOSH Md HABIB ANUP PRAMANIK PRANAB SARKAR SOUGATA PAL.

  18. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. V Vinmathi. Articles written in Bulletin of Materials Science. Volume 38 Issue 3 June 2015 pp 625-628. A green and facile approach for the synthesis of silver nanoparticles using aqueous extract of Ailanthus excelsa leaves, evaluation of its antibacterial and anticancer efficacy.

  19. Electronics and telecommunications in Poland, issues and perspectives: Part II. Science, research, development, higher education

    Science.gov (United States)

    Modelski, Józef; Romaniuk, Ryszard

    2010-09-01

    important role of ET is combined with the existence in the society of an adequate infrastructure which recreates the full development cycle of high technology embracing: people, institutions, finances and logistics, in this also science, higher education, education, continuous training, dissemination and outreach, professional social environment, legal basis, political support and lobbying, innovation structures, applications, industry and economy. The digest of chosen development tendencies in ET was made here from the academic perspective, in a wider scale and on this background the national one, trying to situate this branch in the society, determine its changing role to build a new technical infrastructure of a society based on knowledge, a role of builder of many practical gadgets facilitating life, a role of a big future integrator of today's single bricks into certain more useful unity. This digest does not have a character of a systematic analysis of ET. It is a kind of an arbitrary utterance of the authors inside their field of competence. The aim of this paper is to take an active part in the discussion of the academic community in this country on the development strategy of ET, choice of priorities for cyclically rebuilding economy, in competitive environments. The review paper was initiated by the Committee of Electronics and Telecommunications of Polish Academy of Sciences and was published in Polish as introductory chapter of a dedicated expertise, printed in a book format. This version makes the included opinions available for a wider community.

  20. Surface science principles and current applications

    CERN Document Server

    Taglauer, E; Wandelt, K

    1996-01-01

    Modern technologies increasingly rely on low-dimensional physics at interfaces and in thin-films and nano-structures. Surface science holds a key position in providing the experimental methods and theoretical models for a basic understanding of these effects. This book includes case studies and status reports about research topics such as: surface structure determination by tensor-LEED and surface X-ray diffraction; the preparation and detection of low-dimensional electronic surface states; quantitative surface compositional analysis; the dynamics of adsorption and reaction of adsorbates, e.g. kinetic oscillations; the characterization and control of thin-film and multilayer growth including the influence of surfactants; a critical assessment of the surface physics approach to heterogeneous catalysis.

  1. Integrating systems approaches into pharmaceutical sciences.

    NARCIS (Netherlands)

    Westerhoff, H.V.; Mosekilde, E.; Noe, C.; Clemensen, A.M.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose

  2. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    Science.gov (United States)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  3. A transfer-function approach to the interpretation of relaxation spectra of second-order cross-effects in material science

    NARCIS (Netherlands)

    Kloos, G.

    1996-01-01

    The interpretation of relaxation spectra of second-order cross-effects is a problem that arises in some branches of materials science when coupling between thermal, mechanical and dielectric quantities is investigated. In this article, a transfer-function approach is combined with thermodynamics to

  4. Quantum inelastic electron-vibration scattering in molecular wires: Landauer-like versus Green's function approaches and temperature effects

    International Nuclear Information System (INIS)

    Ness, H

    2006-01-01

    In this paper, we consider the problem of inelastic electron transport in molecular systems in which both electronic and vibrational degrees of freedom are considered on the quantum level. The electronic transport properties of the corresponding molecular nanojunctions are obtained by means of a non-perturbative Landauer-like multi-channel inelastic scattering technique. The connections between this approach and other Green's function techniques that are useful in particular cases are studied in detail. The validity of the wide-band approximation, the effects of the lead self-energy and the dynamical polaron shift are also studied for a wide range of parameters. As a practical application of the method, we consider the effects of the temperature on the conductance properties of molecular breakjunctions in relation to recent experiments

  5. Evaporating brine from frost flowers with electron microscopy and implications for atmospheric chemistry and sea-salt aerosol formation

    Czech Academy of Sciences Publication Activity Database

    Yang, X.; Neděla, Vilém; Runštuk, Jiří; Ondrušková, G.; Krausko, J.; Vetráková, L'.; Heger, D.

    2017-01-01

    Roč. 17, č. 10 (2017), s. 6291-6303 ISSN 1680-7316 R&D Projects: GA ČR(CZ) GA14-22777S Institutional support: RVO:68081731 Keywords : experimental-computational approach * aqueous-solutions * boundary-layer * blowing snow * spectroscopic properties * low-temperatures Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Meteorology and atmospheric sciences Impact factor: 5.318, year: 2016

  6. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Evangelin Ramani Sujatha. Articles written in Journal of Earth System Science. Volume 121 Issue 5 October 2012 pp 1337-1350. Landslide susceptibility analysis using Probabilistic Certainty Factor Approach: A case study on Tevankarai stream watershed, India.

  7. [Trends of electronic publishing in medicine and life sciences].

    Science.gov (United States)

    Strelski-Waisman, Neta; Waisman, Dan

    2005-09-01

    Scientific publication in the electronic media is gaining popularity in academic libraries, research institutions and commercial organizations. The electronic journal may shorten the processes of writing and publication, decrease publication and distribution costs, and enable access from any location in the world. Electronic publications have unique advantages: it is possible to search them, to create hyperlinks to references and footnotes, as well as to information on the web and to include graphics and photographs at a very low cost. Audio, video and tri-dimensional images may also be included. Electronic publishing may also speed up review and publication processes and enable the writer to receive immediate feedback through the web. However, in spite of the advantages, there are certain points that must be considered: accessibility to previously published material is not guaranteed as databases are not always stable and coverage may change without notice. In addition, the price that commercial publishers charge for their services may be very high or be subject to the purchase of a packaged deal that may include unwanted databases. Many issues of copyright and the use of published material are not yet finalized. In this review we discuss the advantages and disadvantages of the electronic scientific publication, the feasibility of keeping appropriate quality and peer-review process, the stability and accessibility of databases managed by the publishers and the acceptance of the electronic format by scientists and clinicians.

  8. Sensors, Circuits, and Satellites - NGSS at it's best: the integration of three dimensions with NASA science

    Science.gov (United States)

    Butcher, G. J.; Roberts-Harris, D.

    2013-12-01

    A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these

  9. A multimedia and interactive approach to teach soil science

    Science.gov (United States)

    Badía-Villas, D.; Martí-Dalmau, C.; Iñiguez-Remón, E.

    2012-04-01

    Soil Science is a discipline concerned with a material that has unique features and behaviours (Churchman, 2010). Thus, teachers of Soil Science need to be experienced with Soil Science practices and must appreciate the complexities and relationships inherent within the discipline (Field et al, 2011). But when soil science had to be taught not by specialists, for instance in the introductory courses of earth and environmental sciences Degrees or in Secondary School, adequate material cannot be found. For this reason, multimedia and interactive programmes have been developed and showed here. EDAFOS is an e-learning resource that provides a comprehensive review of the fundamental concepts on soil science and reveals it as the living skin of planet Earth (European Commission, 2006). This programme is available via website (www.cienciadelsuelo.es) both in Spanish and, more recently, also in English. Edafos is a programme with different modules, which after outlining the study of soil components goes on to examine the main factors and processes of soil genesis explaining the mechanisms of soil processes. By the use of animations, the vital functions of soil are explained. The program ends with a section of multiple-choice exercises with self-assessment. To complement this program, virtual visits to the field are showed in the program iARASOL (www.suelosdearagon.es), in a time when field trips are gradually diminishing due to insufficiency in time and budget, as well as safety concerns (Çaliskan, 2011). In this case, the objective of iARASOL is to set out that soil vary from place to place not randomly, but in a systematic way, according to landscape units; therefore, graduates can classify the soils using the WRB system (IUSS, 2007). It presents diverse types of data and images instantly, from a variety of viewpoints, at many different scales and display non-visual information in the field. Both programs provide an additional source of information to supplement

  10. Evaluating Electronic Reference Services: Issues, Approaches and Criteria.

    Science.gov (United States)

    Novotny, Eric

    2001-01-01

    Discussion of electronic library reference services focuses on an overview of the chief methodologies available for conducting assessments of electronic services. Highlights include quantitative measures and benchmarks, including equity and access; quality measures; behavioral aspects of quality, including librarian-patron interaction; and future…

  11. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 128; Issue 1. Electron irradiation of carbon dioxide-carbon disulphide ice analog and its implication on the identification of carbon disulphide on Moon. B Sivaraman. Regular Articles Volume 128 Issue 1 January 2016 pp 159-164 ...

  12. Inverse-Electron-Demand Diels-Alder Reactions: Principles and Applications.

    Science.gov (United States)

    Png, Zhuang Mao; Zeng, Huining; Ye, Qun; Xu, Jianwei

    2017-09-05

    Inverse-electron-demand Diels-Alder (iEDDA) reactions are an intriguing class of cycloaddition reactions that have attracted increasing attention for their application in bioorthogonal chemistry, the total synthesis of natural products, and materials science. In many cases, the application of the iEDDA reaction has been demonstrated as an innovative approach to achieve target structures. The theoretical aspects of this class of reactions are of particular interest for scientists as a means to understand the various factors, such as steric strain and electron density of the attached groups, that govern the reaction and thus to elucidate the reaction mechanism. This review aims to summarize both theoretical investigations and application-driven research work on the iEDDA reaction. First, the historical aspects and the theoretical basis of the reaction, especially recent advances in time-dependent density functional theory (TD-DFT) calculations, as well as catalysis strategies will be highlighted and discussed. Second, the applications of this novel reaction in the context of materials science, bioorthogonal chemistry, and total synthesis of natural products will be elaborated with selected recent examples. The challenges and opportunities of the iEDDA reaction will be highlighted to give more insight into its potential applications in many other research areas. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Science, Technology and Innovation as Social Goods for Development: Rethinking Research Capacity Building from Sen's Capabilities Approach.

    Science.gov (United States)

    Mormina, Maru

    2018-03-01

    Science and technology are key to economic and social development, yet the capacity for scientific innovation remains globally unequally distributed. Although a priority for development cooperation, building or developing research capacity is often reduced in practice to promoting knowledge transfers, for example through North-South partnerships. Research capacity building/development tends to focus on developing scientists' technical competencies through training, without parallel investments to develop and sustain the socioeconomic and political structures that facilitate knowledge creation. This, the paper argues, significantly contributes to the scientific divide between developed and developing countries more than any skills shortage. Using Charles Taylor's concept of irreducibly social goods, the paper extends Sen's Capabilities Approach beyond its traditional focus on individual entitlements to present a view of scientific knowledge as a social good and the capability to produce it as a social capability. Expanding this capability requires going beyond current fragmented approaches to research capacity building to holistically strengthen the different social, political and economic structures that make up a nation's innovation system. This has implications for the interpretation of human rights instruments beyond their current focus on access to knowledge and for focusing science policy and global research partnerships to design approaches to capacity building/development beyond individual training/skills building.

  14. The PICS Climate Insights 101 Courses: A Visual Approach to Learning About Climate Science, Mitigation and Adaptation

    Science.gov (United States)

    Pedersen, T. F.; Zwiers, F. W.; Breen, C.; Murdock, T. Q.

    2014-12-01

    The Pacific Institute for Climate Solutions (PICS) has now made available online three free, peer-reviewed, unique animated short courses in a series entitled "Climate Insights 101" that respectively address basic climate science, carbon-emissions mitigation approaches and opportunities, and adaptation. The courses are suitable for students of all ages, and use professionally narrated animations designed to hold a viewer's attention. Multiple issues are covered, including complex concerns like the construction of general circulation models, carbon pricing schemes in various countries, and adaptation approaches in the face of extreme weather events. Clips will be shown in the presentation. The first course (Climate Science Basics) has now been seen by over two hundred thousand individuals in over 80 countries, despite being offered in English only. Each course takes about two hours to work through, and in recognizing that that duration might pose an attention barrier to some students, PICS selected a number of short clips from the climate-science course and posted them as independent snippets on YouTube. A companion series of YouTube videos entitled, "Clear The Air", was created to confront the major global-warming denier myths. But a major challenge remains: despite numerous efforts to promote the availability of the free courses and the shorter YouTube pieces, they have yet to become widely known. Strategies to overcome that constraint will be discussed.

  15. Manipulating the electron distribution through a combination of electron injection and MacKenzie’s Maxwell Demon

    International Nuclear Information System (INIS)

    Yip, Chi-Shung; Hershkowitz, Noah

    2015-01-01

    Experiments on electron heating are performed in a biased hot filament-produced argon plasma. Electrons are confined by multi-dipole magnetic fields on the radial wall of the cylindrical chamber but not the planar end walls. Electron heating is provided by a combination of cold electron injection (Hershowitz N and Leung K N 1975 Appl. Phys. Lett. 26 607) and a MacKenzie Maxwell Demon (Mackenzie K R et al 1971 Appl. Phys. Lett. 18 529). This approach allows the manipulation of the electrons by introducing a depleted tail into the electron energy distribution function or by removing a depleted tail. It is found that the injected electrons mimic and thermalize with the electron species with the closest average energy or temperature. The effect of the injected electrons is optimal when they mimic the secondary electrons emitted from the wall instead of the degraded primary electrons. Both approaches combine to achieve increases in electron temperature T e from 0.67 to 2.8 eV, which was not significantly higher than using each approach alone. (paper)

  16. Electronic Health Record-Enabled Big-Data Approaches to Nephrotoxin-Associated Acute Kidney Injury Risk Prediction.

    Science.gov (United States)

    Sutherland, Scott M

    2018-06-09

    Nephrotoxin-associated acute kidney injury (NTx-AKI) has become one of the most common causes of AKI among hospitalized adults and children; across acute and intensive care populations, exposure to nephrotoxins accounts for 15-25% of AKI. Although some interventions have shown promise in observational studies, no treatments currently exist for NTx-AKI once it occurs. Thus, nearly all effective strategies are aimed at prevention. The primary obstacle to prevention is risk prediction and the determination of which patients are more likely to develop NTx-AKI when exposed to medications with nephrotoxic potential. Historically, traditional statistical modeling has been applied to previously recognized clinical risk factors to identify predictors of NTx-AKI. However, increased electronic health record adoption and the evolution of "big-data" approaches to predictive analytics may offer a unique opportunity to prevent NTx-AKI events. This article describes prior and current approaches to NTx-AKI prediction and offers three novel use cases for electronic health record-enabled NTx-AKI forecasting and risk profiling. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Science and Shakespeare.

    Science.gov (United States)

    Mah, Steven; Chinnery, Charlene

    2003-01-01

    Describes an assignment in which the preservice teacher must find a connection between science and Shakespeare. Connects the science of the witches in Shakespeare's "Macbeth" to the holistic approach of education. (SG)

  18. Science education with the help of media. Educating science concerning the help of current news of media referring to it

    International Nuclear Information System (INIS)

    Lazar, I.; Agoston, L.

    2005-01-01

    In the last decades, at the beginning of the 21st century high school students turn their back on science more frequently than before, therefore the generation of the community of reliable scientists and experts becomes the elder. The time spent studying science in schools is also decreasing. However, mass-communication, electronic and traditional media plays more and more part in the description and explanation of scientific problems in our time. Media is inundated with questions, facts and rumours in connection with science, therefore imaginary fears, beliefs and superstitions can get into the limelight of interests. Problems like keeping people frightened with radioactivity and the ionizing and non-ionizing radiations is probably the most popular way of making ''bad news'' (panic) in the mass-media, and they particularly call our attention to the most current tasks in education of the next generations. In order to help to keep the public informed in a precise and exact way, it's necessary to put natural science into practice in high schools. Our new method of science education could prove the necessity of science taught through the current news of the media. This means students learn by making discussions and corrections of the news. The Science and Media Project provides the possibility of applying scientific ways of thinking about questions of our environment and life and it also improves critical approach towards new information. This method is put to practice by real project works, including a lot of fieldwork and reading of papers and scientific literature, enabling the students to discover and solve problems by themselves. (author)

  19. Understand electronics

    CERN Document Server

    Bishop, Owen

    2013-01-01

    Understand Electronics provides a readable introduction to the exciting world of electronics for the student or enthusiast with little previous knowledge. The subject is treated with the minimum of mathematics and the book is extensively illustrated.This is an essential guide for the newcomer to electronics, and replaces the author's best-selling Beginner's Guide to Electronics.The step-by-step approach makes this book ideal for introductory courses such as the Intermediate GNVQ.

  20. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under