WorldWideScience

Sample records for science algorithm includes

  1. Heuristic and algorithmic processing in English, mathematics, and science education.

    Science.gov (United States)

    Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane

    2008-01-01

    Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.

  2. A relevancy algorithm for curating earth science data around phenomenon

    Science.gov (United States)

    Maskey, Manil; Ramachandran, Rahul; Li, Xiang; Weigel, Amanda; Bugbee, Kaylin; Gatlin, Patrick; Miller, J. J.

    2017-09-01

    Earth science data are being collected for various science needs and applications, processed using different algorithms at multiple resolutions and coverages, and then archived at different archiving centers for distribution and stewardship causing difficulty in data discovery. Curation, which typically occurs in museums, art galleries, and libraries, is traditionally defined as the process of collecting and organizing information around a common subject matter or a topic of interest. Curating data sets around topics or areas of interest addresses some of the data discovery needs in the field of Earth science, especially for unanticipated users of data. This paper describes a methodology to automate search and selection of data around specific phenomena. Different components of the methodology including the assumptions, the process, and the relevancy ranking algorithm are described. The paper makes two unique contributions to improving data search and discovery capabilities. First, the paper describes a novel methodology developed for automatically curating data around a topic using Earth science metadata records. Second, the methodology has been implemented as a stand-alone web service that is utilized to augment search and usability of data in a variety of tools.

  3. Algorithm integration using ADL (Algorithm Development Library) for improving CrIMSS EDR science product quality

    Science.gov (United States)

    Das, B.; Wilson, M.; Divakarla, M. G.; Chen, W.; Barnet, C.; Wolf, W.

    2013-05-01

    Algorithm Development Library (ADL) is a framework that mimics the operational system IDPS (Interface Data Processing Segment) that is currently being used to process data from instruments aboard Suomi National Polar-orbiting Partnership (S-NPP) satellite. The satellite was launched successfully in October 2011. The Cross-track Infrared and Microwave Sounder Suite (CrIMSS) consists of the Advanced Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS) instruments that are on-board of S-NPP. These instruments will also be on-board of JPSS (Joint Polar Satellite System) that will be launched in early 2017. The primary products of the CrIMSS Environmental Data Record (EDR) include global atmospheric vertical temperature, moisture, and pressure profiles (AVTP, AVMP and AVPP) and Ozone IP (Intermediate Product from CrIS radiances). Several algorithm updates have recently been proposed by CrIMSS scientists that include fixes to the handling of forward modeling errors, a more conservative identification of clear scenes, indexing corrections for daytime products, and relaxed constraints between surface temperature and air temperature for daytime land scenes. We have integrated these improvements into the ADL framework. This work compares the results from ADL emulation of future IDPS system incorporating all the suggested algorithm updates with the current official processing results by qualitative and quantitative evaluations. The results prove these algorithm updates improve science product quality.

  4. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series

    Science.gov (United States)

    Min, Min; Wu, Chunqiang; Li, Chuan; Liu, Hui; Xu, Na; Wu, Xiao; Chen, Lin; Wang, Fu; Sun, Fenglin; Qin, Danyu; Wang, Xi; Li, Bo; Zheng, Zhaojun; Cao, Guangzhen; Dong, Lixin

    2017-08-01

    Fengyun-4A (FY-4A), the first of the Chinese next-generation geostationary meteorological satellites, launched in 2016, offers several advances over the FY-2: more spectral bands, faster imaging, and infrared hyperspectral measurements. To support the major objective of developing the prototypes of FY-4 science algorithms, two science product algorithm testbeds for imagers and sounders have been developed by the scientists in the FY-4 Algorithm Working Group (AWG). Both testbeds, written in FORTRAN and C programming languages for Linux or UNIX systems, have been tested successfully by using Intel/g compilers. Some important FY-4 science products, including cloud mask, cloud properties, and temperature profiles, have been retrieved successfully through using a proxy imager, Himawari-8/Advanced Himawari Imager (AHI), and sounder data, obtained from the Atmospheric InfraRed Sounder, thus demonstrating their robustness. In addition, in early 2016, the FY-4 AWG was developed based on the imager testbed—a near real-time processing system for Himawari-8/AHI data for use by Chinese weather forecasters. Consequently, robust and flexible science product algorithm testbeds have provided essential and productive tools for popularizing FY-4 data and developing substantial improvements in FY-4 products.

  5. Efficient Algorithms for Electrostatic Interactions Including Dielectric Contrasts

    Directory of Open Access Journals (Sweden)

    Christian Holm

    2013-10-01

    Full Text Available Coarse-grained models of soft matter are usually combined with implicit solvent models that take the electrostatic polarizability into account via a dielectric background. In biophysical or nanoscale simulations that include water, this constant can vary greatly within the system. Performing molecular dynamics or other simulations that need to compute exact electrostatic interactions between charges in those systems is computationally demanding. We review here several algorithms developed by us that perform exactly this task. For planar dielectric surfaces in partial periodic boundary conditions, the arising image charges can be either treated with the MMM2D algorithm in a very efficient and accurate way or with the electrostatic layer correction term, which enables the user to use his favorite 3D periodic Coulomb solver. Arbitrarily-shaped interfaces can be dealt with using induced surface charges with the induced charge calculation (ICC* algorithm. Finally, the local electrostatics algorithm, MEMD(Maxwell Equations Molecular Dynamics, even allows one to employ a smoothly varying dielectric constant in the systems. We introduce the concepts of these three algorithms and an extension for the inclusion of boundaries that are to be held fixed at a constant potential (metal conditions. For each method, we present a showcase application to highlight the importance of dielectric interfaces.

  6. MODIS Science Algorithms and Data Systems Lessons Learned

    Science.gov (United States)

    Wolfe, Robert E.; Ridgway, Bill L.; Patt, Fred S.; Masuoka, Edward J.

    2009-01-01

    For almost 10 years, standard global products from NASA's Earth Observing System s (EOS) two Moderate Resolution Imaging Spectroradiometer (MODIS) sensors are being used world-wide for earth science research and applications. This paper discusses the lessons learned in developing the science algorithms and the data systems needed to produce these high quality data products for the earth sciences community. Strong science team leadership and communication, an evolvable and scalable data system, and central coordination of QA and validation activities enabled the data system to grow by two orders of magnitude from the initial at-launch system to the current system able to reprocess data from both the Terra and Aqua missions in less than a year. Many of the lessons learned from MODIS are already being applied to follow-on missions.

  7. Power to the People! Meta-algorithmic modelling in applied data science

    NARCIS (Netherlands)

    Spruit, M.; Jagesar, R.

    2016-01-01

    This position paper first defines the research field of applied data science at the intersection of domain expertise, data mining, and engineering capabilities, with particular attention to analytical applications. We then propose a meta-algorithmic approach for applied data science with societal

  8. The Challenge of Promoting Algorithmic Thinking of Both Sciences- and Humanities-Oriented Learners

    Science.gov (United States)

    Katai, Z.

    2015-01-01

    The research results we present in this paper reveal that properly calibrated e-learning tools have potential to effectively promote the algorithmic thinking of both science-oriented and humanities-oriented students. After students had watched an illustration (by a folk dance choreography) and an animation of the studied sorting algorithm (bubble…

  9. Framework for Integrating Science Data Processing Algorithms Into Process Control Systems

    Science.gov (United States)

    Mattmann, Chris A.; Crichton, Daniel J.; Chang, Albert Y.; Foster, Brian M.; Freeborn, Dana J.; Woollard, David M.; Ramirez, Paul M.

    2011-01-01

    A software framework called PCS Task Wrapper is responsible for standardizing the setup, process initiation, execution, and file management tasks surrounding the execution of science data algorithms, which are referred to by NASA as Product Generation Executives (PGEs). PGEs codify a scientific algorithm, some step in the overall scientific process involved in a mission science workflow. The PCS Task Wrapper provides a stable operating environment to the underlying PGE during its execution lifecycle. If the PGE requires a file, or metadata regarding the file, the PCS Task Wrapper is responsible for delivering that information to the PGE in a manner that meets its requirements. If the PGE requires knowledge of upstream or downstream PGEs in a sequence of executions, that information is also made available. Finally, if information regarding disk space, or node information such as CPU availability, etc., is required, the PCS Task Wrapper provides this information to the underlying PGE. After this information is collected, the PGE is executed, and its output Product file and Metadata generation is managed via the PCS Task Wrapper framework. The innovation is responsible for marshalling output Products and Metadata back to a PCS File Management component for use in downstream data processing and pedigree. In support of this, the PCS Task Wrapper leverages the PCS Crawler Framework to ingest (during pipeline processing) the output Product files and Metadata produced by the PGE. The architectural components of the PCS Task Wrapper framework include PGE Task Instance, PGE Config File Builder, Config File Property Adder, Science PGE Config File Writer, and PCS Met file Writer. This innovative framework is really the unifying bridge between the execution of a step in the overall processing pipeline, and the available PCS component services as well as the information that they collectively manage.

  10. A new warfarin dosing algorithm including VKORC1 3730 G > A polymorphism: comparison with results obtained by other published algorithms.

    Science.gov (United States)

    Cini, Michela; Legnani, Cristina; Cosmi, Benilde; Guazzaloca, Giuliana; Valdrè, Lelia; Frascaro, Mirella; Palareti, Gualtiero

    2012-08-01

    Warfarin dosing is affected by clinical and genetic variants, but the contribution of the genotype associated with warfarin resistance in pharmacogenetic algorithms has not been well assessed yet. We developed a new dosing algorithm including polymorphisms associated both with warfarin sensitivity and resistance in the Italian population, and its performance was compared with those of eight previously published algorithms. Clinical and genetic data (CYP2C9*2, CYP2C9*3, VKORC1 -1639 G > A, and VKORC1 3730 G > A) were used to elaborate the new algorithm. Derivation and validation groups comprised 55 (58.2% men, mean age 69 years) and 40 (57.5% men, mean age 70 years) patients, respectively, who were on stable anticoagulation therapy for at least 3 months with different oral anticoagulation therapy (OAT) indications. Performance of the new algorithm, evaluated with mean absolute error (MAE) defined as the absolute value of the difference between observed daily maintenance dose and predicted daily dose, correlation with the observed dose and R(2) value, was comparable with or slightly lower than that obtained using the other algorithms. The new algorithm could correctly assign 53.3%, 50.0%, and 57.1% of patients to the low (≤25 mg/week), intermediate (26-44 mg/week) and high (≥ 45 mg/week) dosing range, respectively. Our data showed a significant increase in predictive accuracy among patients requiring high warfarin dose compared with the other algorithms (ranging from 0% to 28.6%). The algorithm including VKORC1 3730 G > A, associated with warfarin resistance, allowed a more accurate identification of resistant patients who require higher warfarin dosage.

  11. A practical algorithm for distribution state estimation including renewable energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher [Electronic and Electrical Department, Shiraz University of Technology, Modares Blvd., P.O. 71555-313, Shiraz (Iran); Firouzi, Bahman Bahmani [Islamic Azad University Marvdasht Branch, Marvdasht (Iran)

    2009-11-15

    Renewable energy is energy that is in continuous supply over time. These kinds of energy sources are divided into five principal renewable sources of energy: the sun, the wind, flowing water, biomass and heat from within the earth. According to some studies carried out by the research institutes, about 25% of the new generation will be generated by Renewable Energy Sources (RESs) in the near future. Therefore, it is necessary to study the impact of RESs on the power systems, especially on the distribution networks. This paper presents a practical Distribution State Estimation (DSE) including RESs and some practical consideration. The proposed algorithm is based on the combination of Nelder-Mead simplex search and Particle Swarm Optimization (PSO) algorithms, called PSO-NM. The proposed algorithm can estimate load and RES output values by Weighted Least-Square (WLS) approach. Some practical considerations are var compensators, Voltage Regulators (VRs), Under Load Tap Changer (ULTC) transformer modeling, which usually have nonlinear and discrete characteristics, and unbalanced three-phase power flow equations. The comparison results with other evolutionary optimization algorithms such as original PSO, Honey Bee Mating Optimization (HBMO), Neural Networks (NNs), Ant Colony Optimization (ACO), and Genetic Algorithm (GA) for a test system demonstrate that PSO-NM is extremely effective and efficient for the DSE problems. (author)

  12. In Pursuit of LSST Science Requirements: A Comparison of Photometry Algorithms

    Science.gov (United States)

    Becker, Andrew C.; Silvestri, Nicole M.; Owen, Russell E.; Ivezić, Željko; Lupton, Robert H.

    2007-12-01

    We have developed an end-to-end photometric data-processing pipeline to compare current photometric algorithms commonly used on ground-based imaging data. This test bed is exceedingly adaptable and enables us to perform many research and development tasks, including image subtraction and co-addition, object detection and measurements, the production of photometric catalogs, and the creation and stocking of database tables with time-series information. This testing has been undertaken to evaluate existing photometry algorithms for consideration by a next-generation image-processing pipeline for the Large Synoptic Survey Telescope (LSST). We outline the results of our tests for four packages: the Sloan Digital Sky Survey's Photo package, DAOPHOT and ALLFRAME, DOPHOT, and two versions of Source Extractor (SExtractor). The ability of these algorithms to perform point-source photometry, astrometry, shape measurements, and star-galaxy separation and to measure objects at low signal-to-noise ratio is quantified. We also perform a detailed crowded-field comparison of DAOPHOT and ALLFRAME, and profile the speed and memory requirements in detail for SExtractor. We find that both DAOPHOT and Photo are able to perform aperture photometry to high enough precision to meet LSST's science requirements, and less adequately at PSF-fitting photometry. Photo performs the best at simultaneous point- and extended-source shape and brightness measurements. SExtractor is the fastest algorithm, and recent upgrades in the software yield high-quality centroid and shape measurements with little bias toward faint magnitudes. ALLFRAME yields the best photometric results in crowded fields.

  13. New Optimization Algorithms in Physics

    CERN Document Server

    Hartmann, Alexander K

    2004-01-01

    Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.

  14. Combinatorial optimization algorithms and complexity

    CERN Document Server

    Papadimitriou, Christos H

    1998-01-01

    This clearly written, mathematically rigorous text includes a novel algorithmic exposition of the simplex method and also discusses the Soviet ellipsoid algorithm for linear programming; efficient algorithms for network flow, matching, spanning trees, and matroids; the theory of NP-complete problems; approximation algorithms, local search heuristics for NP-complete problems, more. All chapters are supplemented by thought-provoking problems. A useful work for graduate-level students with backgrounds in computer science, operations research, and electrical engineering.

  15. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  16. Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School

    Science.gov (United States)

    Avancena, Aimee Theresa; Nishihara, Akinori

    2014-01-01

    Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…

  17. Clinton administration budget includes mixed bag for science

    Science.gov (United States)

    Showstack, Randy

    The $1,766 trillion federal budget proposal that the Clinton Administration rolled out on February 1—which promises to protect Social Security and Medicare and work within mandated budget caps—generally provides favorable news for federally funded science research and development.Within the 17% ($592 billion) of the federal budget earmarked for discretionary spending, the Administration's budget proposal increases funding for nondefense research and development for the seventh year in a row. This includes increased funding for a number of science accounts and money for a series of new science initiatives.

  18. STAR Algorithm Integration Team - Facilitating operational algorithm development

    Science.gov (United States)

    Mikles, V. J.

    2015-12-01

    The NOAA/NESDIS Center for Satellite Research and Applications (STAR) provides technical support of the Joint Polar Satellite System (JPSS) algorithm development and integration tasks. Utilizing data from the S-NPP satellite, JPSS generates over thirty Environmental Data Records (EDRs) and Intermediate Products (IPs) spanning atmospheric, ocean, cryosphere, and land weather disciplines. The Algorithm Integration Team (AIT) brings technical expertise and support to product algorithms, specifically in testing and validating science algorithms in a pre-operational environment. The AIT verifies that new and updated algorithms function in the development environment, enforces established software development standards, and ensures that delivered packages are functional and complete. AIT facilitates the development of new JPSS-1 algorithms by implementing a review approach based on the Enterprise Product Lifecycle (EPL) process. Building on relationships established during the S-NPP algorithm development process and coordinating directly with science algorithm developers, the AIT has implemented structured reviews with self-contained document suites. The process has supported algorithm improvements for products such as ozone, active fire, vegetation index, and temperature and moisture profiles.

  19. The Soil Moisture Active Passive Mission (SMAP) Science Data Products: Results of Testing with Field Experiment and Algorithm Testbed Simulation Environment Data

    Science.gov (United States)

    Entekhabi, Dara; Njoku, Eni E.; O'Neill, Peggy E.; Kellogg, Kent H.; Entin, Jared K.

    2010-01-01

    Talk outline 1. Derivation of SMAP basic and applied science requirements from the NRC Earth Science Decadal Survey applications 2. Data products and latencies 3. Algorithm highlights 4. SMAP Algorithm Testbed 5. SMAP Working Groups and community engagement

  20. Algorithms

    Indian Academy of Sciences (India)

    ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...

  1. AeroADL: applying the integration of the Suomi-NPP science algorithms with the Algorithm Development Library to the calibration and validation task

    Science.gov (United States)

    Houchin, J. S.

    2014-09-01

    A common problem for the off-line validation of the calibration algorithms and algorithm coefficients is being able to run science data through the exact same software used for on-line calibration of that data. The Joint Polar Satellite System (JPSS) program solved part of this problem by making the Algorithm Development Library (ADL) available, which allows the operational algorithm code to be compiled and run on a desktop Linux workstation using flat file input and output. However, this solved only part of the problem, as the toolkit and methods to initiate the processing of data through the algorithms were geared specifically toward the algorithm developer, not the calibration analyst. In algorithm development mode, a limited number of sets of test data are staged for the algorithm once, and then run through the algorithm over and over as the software is developed and debugged. In calibration analyst mode, we are continually running new data sets through the algorithm, which requires significant effort to stage each of those data sets for the algorithm without additional tools. AeroADL solves this second problem by providing a set of scripts that wrap the ADL tools, providing both efficient means to stage and process an input data set, to override static calibration coefficient look-up-tables (LUT) with experimental versions of those tables, and to manage a library containing multiple versions of each of the static LUT files in such a way that the correct set of LUTs required for each algorithm are automatically provided to the algorithm without analyst effort. Using AeroADL, The Aerospace Corporation's analyst team has demonstrated the ability to quickly and efficiently perform analysis tasks for both the VIIRS and OMPS sensors with minimal training on the software tools.

  2. Introduction to Evolutionary Algorithms

    CERN Document Server

    Yu, Xinjie

    2010-01-01

    Evolutionary algorithms (EAs) are becoming increasingly attractive for researchers from various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science, economics, etc. This book presents an insightful, comprehensive, and up-to-date treatment of EAs, such as genetic algorithms, differential evolution, evolution strategy, constraint optimization, multimodal optimization, multiobjective optimization, combinatorial optimization, evolvable hardware, estimation of distribution algorithms, ant colony optimization, particle swarm opti

  3. Student Motivation in Science Subjects in Tanzania, Including Students' Voices

    Science.gov (United States)

    Mkimbili, Selina Thomas; Ødegaard, Marianne

    2017-12-01

    Fostering and maintaining students' interest in science is an important aspect of improving science learning. The focus of this paper is to listen to and reflect on students' voices regarding the sources of motivation for science subjects among students in community secondary schools with contextual challenges in Tanzania. We conducted a group-interview study of 46 Form 3 and Form 4 Tanzanian secondary school students. The study findings reveal that the major contextual challenges to student motivation for science in the studied schools are limited resources and students' insufficient competence in the language of instruction. Our results also reveal ways to enhance student motivation for science in schools with contextual challenges; these techniques include the use of questioning techniques and discourse, students' investigations and practical work using locally available materials, study tours, more integration of classroom science into students' daily lives and the use of real-life examples in science teaching. Also we noted that students' contemporary life, culture and familiar language can be utilised as a useful resource in facilitating meaningful learning in science in the school. Students suggested that, to make science interesting to a majority of students in a Tanzanian context, science education needs to be inclusive of students' experiences, culture and contemporary daily lives. Also, science teaching and learning in the classroom need to involve learners' voices.

  4. 8. Algorithm Design Techniques

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 8. Algorithms - Algorithm Design Techniques. R K Shyamasundar. Series Article Volume 2 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  5. Python algorithms mastering basic algorithms in the Python language

    CERN Document Server

    Hetland, Magnus Lie

    2014-01-01

    Python Algorithms, Second Edition explains the Python approach to algorithm analysis and design. Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques. The book deals with some of the most important and challenging areas of programming and computer science in a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data struc

  6. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin; Maddumage, Prasad [Research Computing Center, Department of Scientific Computing, Florida State University, Tallahassee, FL 32306 (United States); Kantowski, Ronald; Dai, Xinyu; Baron, Eddie, E-mail: bchen3@fsu.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2015-05-15

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python.

  7. ALGORITHMS AND PROGRAMS FOR STRONG GRAVITATIONAL LENSING IN KERR SPACE-TIME INCLUDING POLARIZATION

    International Nuclear Information System (INIS)

    Chen, Bin; Maddumage, Prasad; Kantowski, Ronald; Dai, Xinyu; Baron, Eddie

    2015-01-01

    Active galactic nuclei (AGNs) and quasars are important astrophysical objects to understand. Recently, microlensing observations have constrained the size of the quasar X-ray emission region to be of the order of 10 gravitational radii of the central supermassive black hole. For distances within a few gravitational radii, light paths are strongly bent by the strong gravity field of the central black hole. If the central black hole has nonzero angular momentum (spin), then a photon’s polarization plane will be rotated by the gravitational Faraday effect. The observed X-ray flux and polarization will then be influenced significantly by the strong gravity field near the source. Consequently, linear gravitational lensing theory is inadequate for such extreme circumstances. We present simple algorithms computing the strong lensing effects of Kerr black holes, including the effects on polarization. Our algorithms are realized in a program “KERTAP” in two versions: MATLAB and Python. The key ingredients of KERTAP are a graphic user interface, a backward ray-tracing algorithm, a polarization propagator dealing with gravitational Faraday rotation, and algorithms computing observables such as flux magnification and polarization angles. Our algorithms can be easily realized in other programming languages such as FORTRAN, C, and C++. The MATLAB version of KERTAP is parallelized using the MATLAB Parallel Computing Toolbox and the Distributed Computing Server. The Python code was sped up using Cython and supports full implementation of MPI using the “mpi4py” package. As an example, we investigate the inclination angle dependence of the observed polarization and the strong lensing magnification of AGN X-ray emission. We conclude that it is possible to perform complex numerical-relativity related computations using interpreted languages such as MATLAB and Python

  8. Who Owns Educational Theory? Big Data, Algorithms and the Expert Power of Education Data Science

    Science.gov (United States)

    Williamson, Ben

    2017-01-01

    "Education data science" is an emerging methodological field which possesses the algorithm-driven technologies required to generate insights and knowledge from educational big data. This article consists of an analysis of the Lytics Lab, Stanford University's laboratory for research and development in learning analytics, and the Center…

  9. 11th Biennial Conference on Emerging Mathematical Methods, Models and Algorithms for Science and Technology

    CERN Document Server

    Manchanda, Pammy; Bhardwaj, Rashmi

    2015-01-01

    The present volume contains invited talks of 11th biennial conference on “Emerging Mathematical Methods, Models and Algorithms for Science and Technology”. The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.

  10. The Kepler Science Operations Center Pipeline Framework Extensions

    Science.gov (United States)

    Klaus, Todd C.; Cote, Miles T.; McCauliff, Sean; Girouard, Forrest R.; Wohler, Bill; Allen, Christopher; Chandrasekaran, Hema; Bryson, Stephen T.; Middour, Christopher; Caldwell, Douglas A.; hide

    2010-01-01

    The Kepler Science Operations Center (SOC) is responsible for several aspects of the Kepler Mission, including managing targets, generating on-board data compression tables, monitoring photometer health and status, processing the science data, and exporting the pipeline products to the mission archive. We describe how the generic pipeline framework software developed for Kepler is extended to achieve these goals, including pipeline configurations for processing science data and other support roles, and custom unit of work generators that control how the Kepler data are partitioned and distributed across the computing cluster. We describe the interface between the Java software that manages the retrieval and storage of the data for a given unit of work and the MATLAB algorithms that process these data. The data for each unit of work are packaged into a single file that contains everything needed by the science algorithms, allowing these files to be used to debug and evolve the algorithms offline.

  11. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  12. Fractal Landscape Algorithms for Environmental Simulations

    Science.gov (United States)

    Mao, H.; Moran, S.

    2014-12-01

    Natural science and geographical research are now able to take advantage of environmental simulations that more accurately test experimental hypotheses, resulting in deeper understanding. Experiments affected by the natural environment can benefit from 3D landscape simulations capable of simulating a variety of terrains and environmental phenomena. Such simulations can employ random terrain generation algorithms that dynamically simulate environments to test specific models against a variety of factors. Through the use of noise functions such as Perlin noise, Simplex noise, and diamond square algorithms, computers can generate simulations that model a variety of landscapes and ecosystems. This study shows how these algorithms work together to create realistic landscapes. By seeding values into the diamond square algorithm, one can control the shape of landscape. Perlin noise and Simplex noise are also used to simulate moisture and temperature. The smooth gradient created by coherent noise allows more realistic landscapes to be simulated. Terrain generation algorithms can be used in environmental studies and physics simulations. Potential studies that would benefit from simulations include the geophysical impact of flash floods or drought on a particular region and regional impacts on low lying area due to global warming and rising sea levels. Furthermore, terrain generation algorithms also serve as aesthetic tools to display landscapes (Google Earth), and simulate planetary landscapes. Hence, it can be used as a tool to assist science education. Algorithms used to generate these natural phenomena provide scientists a different approach in analyzing our world. The random algorithms used in terrain generation not only contribute to the generating the terrains themselves, but are also capable of simulating weather patterns.

  13. 6. Algorithms for Sorting and Searching

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Algorithms - Algorithms for Sorting and Searching. R K Shyamasundar. Series Article ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India ...

  14. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  15. Cuckoo search and firefly algorithm theory and applications

    CERN Document Server

    2014-01-01

    Nature-inspired algorithms such as cuckoo search and firefly algorithm have become popular and widely used in recent years in many applications. These algorithms are flexible, efficient and easy to implement. New progress has been made in the last few years, and it is timely to summarize the latest developments of cuckoo search and firefly algorithm and their diverse applications. This book will review both theoretical studies and applications with detailed algorithm analysis, implementation and case studies so that readers can benefit most from this book.  Application topics are contributed by many leading experts in the field. Topics include cuckoo search, firefly algorithm, algorithm analysis, feature selection, image processing, travelling salesman problem, neural network, GPU optimization, scheduling, queuing, multi-objective manufacturing optimization, semantic web service, shape optimization, and others.   This book can serve as an ideal reference for both graduates and researchers in computer scienc...

  16. An Innovative Thinking-Based Intelligent Information Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Huimin Lu

    2013-01-01

    Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.

  17. Digital and discrete geometry theory and algorithms

    CERN Document Server

    Chen, Li

    2014-01-01

    This book provides comprehensive coverage of the modern methods for geometric problems in the computing sciences. It also covers concurrent topics in data sciences including geometric processing, manifold learning, Google search, cloud data, and R-tree for wireless networks and BigData.The author investigates digital geometry and its related constructive methods in discrete geometry, offering detailed methods and algorithms. The book is divided into five sections: basic geometry; digital curves, surfaces and manifolds; discretely represented objects; geometric computation and processing; and a

  18. Verification of ICESat-2/ATLAS Science Receiver Algorithm Onboard Databases

    Science.gov (United States)

    Carabajal, C. C.; Saba, J. L.; Leigh, H. W.; Magruder, L. A.; Urban, T. J.; Mcgarry, J.; Schutz, B. E.

    2013-12-01

    NASA's ICESat-2 mission will fly the Advanced Topographic Laser Altimetry System (ATLAS) instrument on a 3-year mission scheduled to launch in 2016. ATLAS is a single-photon detection system transmitting at 532nm with a laser repetition rate of 10 kHz, and a 6 spot pattern on the Earth's surface. A set of onboard Receiver Algorithms will perform signal processing to reduce the data rate and data volume to acceptable levels. These Algorithms distinguish surface echoes from the background noise, limit the daily data volume, and allow the instrument to telemeter only a small vertical region about the signal. For this purpose, three onboard databases are used: a Surface Reference Map (SRM), a Digital Elevation Model (DEM), and a Digital Relief Maps (DRMs). The DEM provides minimum and maximum heights that limit the signal search region of the onboard algorithms, including a margin for errors in the source databases, and onboard geolocation. Since the surface echoes will be correlated while noise will be randomly distributed, the signal location is found by histogramming the received event times and identifying the histogram bins with statistically significant counts. Once the signal location has been established, the onboard Digital Relief Maps (DRMs) will be used to determine the vertical width of the telemetry band about the signal. University of Texas-Center for Space Research (UT-CSR) is developing the ICESat-2 onboard databases, which are currently being tested using preliminary versions and equivalent representations of elevation ranges and relief more recently developed at Goddard Space Flight Center (GSFC). Global and regional elevation models have been assessed in terms of their accuracy using ICESat geodetic control, and have been used to develop equivalent representations of the onboard databases for testing against the UT-CSR databases, with special emphasis on the ice sheet regions. A series of verification checks have been implemented, including

  19. A not quite random walk: Experimenting with the ethnomethods of the algorithm

    Directory of Open Access Journals (Sweden)

    Malte Ziewitz

    2017-11-01

    Full Text Available Algorithms have become a widespread trope for making sense of social life. Science, finance, journalism, warfare, and policing—there is hardly anything these days that has not been specified as “algorithmic.” Yet, although the trope has brought together a variety of audiences, it is not quite clear what kind of work it does. Often portrayed as powerful yet inscrutable entities, algorithms maintain an air of mystery that makes them both interesting and difficult to understand. This article takes on this problem and examines the role of algorithms not as techno-scientific objects to be known, but as a figure that is used for making sense of observations. Following in the footsteps of Harold Garfinkel’s tutorial cases, I shall illustrate the implications of this view through an experiment with algorithmic navigation. Challenging participants to go on a walk, guided not by maps or GPS but by an algorithm developed on the spot, I highlight a number of dynamics typical of reasoning with running code, including the ongoing respecification of rules and observations, the stickiness of the procedure, and the selective invocation of the algorithm as an intelligible object. The materials thus provide an opportunity to rethink key issues at the intersection of the social sciences and the computational, including popular concerns with transparency, accountability, and ethics.

  20. Gems of combinatorial optimization and graph algorithms

    CERN Document Server

    Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea

    2015-01-01

    Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory?  Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar?  Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science?   Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas.  Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks.   This ...

  1. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  2. The Applications of Genetic Algorithms in Medicine

    Directory of Open Access Journals (Sweden)

    Ali Ghaheri

    2015-11-01

    Full Text Available A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.

  3. The Applications of Genetic Algorithms in Medicine.

    Science.gov (United States)

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-11-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.].

  4. 2nd International Conference on Harmony Search Algorithm

    CERN Document Server

    Geem, Zong

    2016-01-01

    The Harmony Search Algorithm (HSA) is one of the most well-known techniques in the field of soft computing, an important paradigm in the science and engineering community.  This volume, the proceedings of the 2nd International Conference on Harmony Search Algorithm 2015 (ICHSA 2015), brings together contributions describing the latest developments in the field of soft computing with a special focus on HSA techniques. It includes coverage of new methods that have potentially immense application in various fields. Contributed articles cover aspects of the following topics related to the Harmony Search Algorithm: analytical studies; improved, hybrid and multi-objective variants; parameter tuning; and large-scale applications.  The book also contains papers discussing recent advances on the following topics: genetic algorithms; evolutionary strategies; the firefly algorithm and cuckoo search; particle swarm optimization and ant colony optimization; simulated annealing; and local search techniques.   This book ...

  5. High-order hydrodynamic algorithms for exascale computing

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Nathaniel Ray [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broad range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.

  6. SeaWiFS Technical Report Series. Volume 42; Satellite Primary Productivity Data and Algorithm Development: A Science Plan for Mission to Planet Earth

    Science.gov (United States)

    Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor); hide

    1998-01-01

    Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.

  7. Tenth workshop on the algorithmic foundations of robotics (WAFR)

    CERN Document Server

    Lozano-Perez, Tomas; Roy, Nicholas; Rus, Daniela; Algorithmic foundations of robotics X

    2013-01-01

    Algorithms are a fundamental component of robotic systems. Robot algorithms process inputs from sensors that provide noisy and partial data, build geometric and physical models of the world, plan high-and low-level actions at different time horizons, and execute these actions on actuators with limited precision. The design and analysis of robot algorithms raise a unique combination of questions from many elds, including control theory, computational geometry and topology, geometrical and physical modeling, reasoning under uncertainty, probabilistic algorithms, game theory, and theoretical computer science. The Workshop on Algorithmic Foundations of Robotics (WAFR) is a single-track meeting of leading researchers in the eld of robot algorithms. Since its inception in 1994, WAFR has been held every other year, and has provided one of the premiere venues for the publication of some of the eld's most important and lasting contributions. This books contains the proceedings of the tenth WAFR, held on June 13{15 201...

  8. Super-Encryption Implementation Using Monoalphabetic Algorithm and XOR Algorithm for Data Security

    Science.gov (United States)

    Rachmawati, Dian; Andri Budiman, Mohammad; Aulia, Indra

    2018-03-01

    The exchange of data that occurs offline and online is very vulnerable to the threat of data theft. In general, cryptography is a science and art to maintain data secrecy. An encryption is a cryptography algorithm in which data is transformed into cipher text, which is something that is unreadable and meaningless so it cannot be read or understood by other parties. In super-encryption, two or more encryption algorithms are combined to make it more secure. In this work, Monoalphabetic algorithm and XOR algorithm are combined to form a super- encryption. Monoalphabetic algorithm works by changing a particular letter into a new letter based on existing keywords while the XOR algorithm works by using logic operation XOR Since Monoalphabetic algorithm is a classical cryptographic algorithm and XOR algorithm is a modern cryptographic algorithm, this scheme is expected to be both easy-to-implement and more secure. The combination of the two algorithms is capable of securing the data and restoring it back to its original form (plaintext), so the data integrity is still ensured.

  9. What does it all mean? Capturing Semantics of Surgical Data and Algorithms with Ontologies

    OpenAIRE

    Katić, Darko; Maleshkova, Maria; Engelhardt, Sandy; Wolf, Ivo; März, Keno; Maier-Hein, Lena; Nolden, Marco; Wagner, Martin; Kenngott, Hannes; Müller-Stich, Beat Peter; Dillmann, Rüdiger; Speidel, Stefanie

    2017-01-01

    Every year approximately 234 million major surgeries are performed, leading to plentiful, highly diverse data. This is accompanied by a matching number of novel algorithms for the surgical domain. To garner all benefits of surgical data science it is necessary to have an unambiguous, shared understanding of algorithms and data. This includes inputs and outputs of algorithms and thus their function, but also the semantic content, i.e. meaning of data such as patient parameters. We therefore pr...

  10. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  11. Study of Power Flow Algorithm of AC/DC Distribution System including VSC-MTDC

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2015-08-01

    Full Text Available In recent years, distributed generation and a large number of sensitive AC and DC loads have been connected to distribution networks, which introduce a series of challenges to distribution network operators (DNOs. In addition, the advantages of DC distribution networks, such as the energy conservation and emission reduction, mean that the voltage source converter based multi-terminal direct current (VSC-MTDC for AC/DC distribution systems demonstrates a great potential, hence drawing growing research interest. In this paper, considering losses of the reactor, the filter and the converter, a mathematical model of VSC-HVDC for the load flow analysis is derived. An AC/DC distribution network architecture has been built, based on which the differences in modified equations of the VSC-MTDC-based network under different control modes are analyzed. In addition, corresponding interface functions under five control modes are provided, and a back/forward iterative algorithm which is applied to power flow calculation of the AC/DC distribution system including VSC-MTDC is proposed. Finally, by calculating the power flow of the modified IEEE14 AC/DC distribution network, the efficiency and validity of the model and algorithm are evaluated. With various distributed generations connected to the network at appropriate locations, power flow results show that network losses and utilization of transmission networks are effectively reduced.

  12. The GOLD Science Data Center - Algorithm Heritage, Data Product Descriptions and User Services

    Science.gov (United States)

    Lumpe, J. D.; Foroosh, H.; Eastes, R.; Krywonos, A.; Evans, J. S.; Burns, A. G.; Strickland, D. J.; Daniell, R. E.; England, S.; Solomon, S. C.; McClintock, W. E.; Anderson, D. N.

    2013-12-01

    The Global-scale Observations of the Limb and Disk (GOLD) instrument is an imaging spectrograph to be launched onboard a commercial communications satellite in 2017. From its vantage point in geosynchronous orbit GOLD will image the Earth in the far-ultraviolet from 132 to 162 nm. The instrument consists of two independent optical channels, allowing for simultaneous implementation of multiple measurement sequences with different temporal sampling and spectral resolution. In addition to continuously scanning the disk of the Earth, GOLD will also perform routine limb scan and stellar occultation measurements. These measurements will be used to retrieve a variety of data products characterizing the temperature and composition of the thermosphere-ionosphere, and their response to geomagnetic storms and solar forcing. Primary data products include: daytime neutral temperatures near 160 km altitude; daytime O/N2 column density ratios; nighttime peak electron density; thermospheric O2 density profiles (day and night); daytime exospheric neutral temperature on the limb; atmospheric tides from temperature perturbations; and the location and evolution of ionospheric bubbles. GOLD data will be processed at the Science Data Center (SDC) located at the University of Central Florida. The SDC will also serve as the primary gateway for distribution of GOLD data products to end-users. In this talk we summarize the heritage and theoretical basis of the GOLD retrieval algorithms and describe the full range of GOLD data products that will be available at the SDC, including estimates of data latency and quality.

  13. Approximate Computing Techniques for Iterative Graph Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Panyala, Ajay R.; Subasi, Omer; Halappanavar, Mahantesh; Kalyanaraman, Anantharaman; Chavarria Miranda, Daniel G.; Krishnamoorthy, Sriram

    2017-12-18

    Approximate computing enables processing of large-scale graphs by trading off quality for performance. Approximate computing techniques have become critical not only due to the emergence of parallel architectures but also the availability of large scale datasets enabling data-driven discovery. Using two prototypical graph algorithms, PageRank and community detection, we present several approximate computing heuristics to scale the performance with minimal loss of accuracy. We present several heuristics including loop perforation, data caching, incomplete graph coloring and synchronization, and evaluate their efficiency. We demonstrate performance improvements of up to 83% for PageRank and up to 450x for community detection, with low impact of accuracy for both the algorithms. We expect the proposed approximate techniques will enable scalable graph analytics on data of importance to several applications in science and their subsequent adoption to scale similar graph algorithms.

  14. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon

  15. Linear programming mathematics, theory and algorithms

    CERN Document Server

    1996-01-01

    Linear Programming provides an in-depth look at simplex based as well as the more recent interior point techniques for solving linear programming problems. Starting with a review of the mathematical underpinnings of these approaches, the text provides details of the primal and dual simplex methods with the primal-dual, composite, and steepest edge simplex algorithms. This then is followed by a discussion of interior point techniques, including projective and affine potential reduction, primal and dual affine scaling, and path following algorithms. Also covered is the theory and solution of the linear complementarity problem using both the complementary pivot algorithm and interior point routines. A feature of the book is its early and extensive development and use of duality theory. Audience: The book is written for students in the areas of mathematics, economics, engineering and management science, and professionals who need a sound foundation in the important and dynamic discipline of linear programming.

  16. Parallel algorithms and cluster computing

    CERN Document Server

    Hoffmann, Karl Heinz

    2007-01-01

    This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.

  17. Benchmarking homogenization algorithms for monthly data

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M. J.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratiannil, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.; Willett, K.

    2013-09-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies. The algorithms were validated against a realistic benchmark dataset. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including i) the centered root mean square error relative to the true homogeneous values at various averaging scales, ii) the error in linear trend estimates and iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data. Moreover, state-of-the-art relative homogenization algorithms developed to work with an inhomogeneous reference are shown to perform best. The study showed that currently automatic algorithms can perform as well as manual ones.

  18. A constriction factor based particle swarm optimisation algorithm to solve the economic dispatch problem including losses

    Energy Technology Data Exchange (ETDEWEB)

    Young, Steven; Montakhab, Mohammad; Nouri, Hassan

    2011-07-15

    Economic dispatch (ED) is one of the most important problems to be solved in power generation as fractional percentage fuel reductions represent significant cost savings. ED wishes to optimise the power generated by each generating unit in a system in order to find the minimum operating cost at a required load demand, whilst ensuring both equality and inequality constraints are met. For the process of optimisation, a model must be created for each generating unit. The particle swarm optimisation technique is an evolutionary computation technique with one of the most powerful methods for solving global optimisation problems. The aim of this paper is to add in a constriction factor to the particle swarm optimisation algorithm (CFBPSO). Results show that the algorithm is very good at solving the ED problem and that CFBPSO must be able to work in a practical environment and so a valve point effect with transmission losses should be included in future work.

  19. Enabling high performance computational science through combinatorial algorithms

    International Nuclear Information System (INIS)

    Boman, Erik G; Bozdag, Doruk; Catalyurek, Umit V; Devine, Karen D; Gebremedhin, Assefaw H; Hovland, Paul D; Pothen, Alex; Strout, Michelle Mills

    2007-01-01

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation

  20. Enabling high performance computational science through combinatorial algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Boman, Erik G [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Bozdag, Doruk [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Catalyurek, Umit V [Biomedical Informatics, and Electrical and Computer Engineering, Ohio State University (United States); Devine, Karen D [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Gebremedhin, Assefaw H [Computer Science and Center for Computational Science, Old Dominion University (United States); Hovland, Paul D [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Pothen, Alex [Computer Science and Center for Computational Science, Old Dominion University (United States); Strout, Michelle Mills [Computer Science, Colorado State University (United States)

    2007-07-15

    The Combinatorial Scientific Computing and Petascale Simulations (CSCAPES) Institute is developing algorithms and software for combinatorial problems that play an enabling role in scientific and engineering computations. Discrete algorithms will be increasingly critical for achieving high performance for irregular problems on petascale architectures. This paper describes recent contributions by researchers at the CSCAPES Institute in the areas of load balancing, parallel graph coloring, performance improvement, and parallel automatic differentiation.

  1. A review on quantum search algorithms

    Science.gov (United States)

    Giri, Pulak Ranjan; Korepin, Vladimir E.

    2017-12-01

    The use of superposition of states in quantum computation, known as quantum parallelism, has significant advantage in terms of speed over the classical computation. It is evident from the early invented quantum algorithms such as Deutsch's algorithm, Deutsch-Jozsa algorithm and its variation as Bernstein-Vazirani algorithm, Simon algorithm, Shor's algorithms, etc. Quantum parallelism also significantly speeds up the database search algorithm, which is important in computer science because it comes as a subroutine in many important algorithms. Quantum database search of Grover achieves the task of finding the target element in an unsorted database in a time quadratically faster than the classical computer. We review Grover's quantum search algorithms for a singe and multiple target elements in a database. The partial search algorithm of Grover and Radhakrishnan and its optimization by Korepin called GRK algorithm are also discussed.

  2. Structure-preserving algorithms for oscillatory differential equations II

    CERN Document Server

    Wu, Xinyuan; Shi, Wei

    2015-01-01

    This book describes a variety of highly effective and efficient structure-preserving algorithms for second-order oscillatory differential equations. Such systems arise in many branches of science and engineering, and the examples in the book include systems from quantum physics, celestial mechanics and electronics. To accurately simulate the true behavior of such systems, a numerical algorithm must preserve as much as possible their key structural properties: time-reversibility, oscillation, symplecticity, and energy and momentum conservation. The book describes novel advances in RKN methods, ERKN methods, Filon-type asymptotic methods, AVF methods, and trigonometric Fourier collocation methods.  The accuracy and efficiency of each of these algorithms are tested via careful numerical simulations, and their structure-preserving properties are rigorously established by theoretical analysis. The book also gives insights into the practical implementation of the methods. This book is intended for engineers and sc...

  3. Encyclopedia of Complexity and Systems Science

    CERN Document Server

    Meyers, Robert A

    2009-01-01

    Encyclopedia of Complexity and Systems Science provides an authoritative single source for understanding and applying the concepts of complexity theory together with the tools and measures for analyzing complex systems in all fields of science and engineering. The science and tools of complexity and systems science include theories of self-organization, complex systems, synergetics, dynamical systems, turbulence, catastrophes, instabilities, nonlinearity, stochastic processes, chaos, neural networks, cellular automata, adaptive systems, and genetic algorithms. Examples of near-term problems and major unknowns that can be approached through complexity and systems science include: The structure, history and future of the universe; the biological basis of consciousness; the integration of genomics, proteomics and bioinformatics as systems biology; human longevity limits; the limits of computing; sustainability of life on earth; predictability, dynamics and extent of earthquakes, hurricanes, tsunamis, and other n...

  4. A practical algorithm for optimal operation management of distribution network including fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Niknam, Taher; Meymand, Hamed Zeinoddini; Nayeripour, Majid [Electrical and Electronic Engineering Department, Shiraz University of Technology, Shiraz (Iran)

    2010-08-15

    Fuel cell power plants (FCPPs) have been taken into a great deal of consideration in recent years. The continuing growth of the power demand together with environmental constraints is increasing interest to use FCPPs in power system. Since FCPPs are usually connected to distribution network, the effect of FCPPs on distribution network is more than other sections of power system. One of the most important issues in distribution networks is optimal operation management (OOM) which can be affected by FCPPs. This paper proposes a new approach for optimal operation management of distribution networks including FCCPs. In the article, we consider the total electrical energy losses, the total electrical energy cost and the total emission as the objective functions which should be minimized. Whereas the optimal operation in distribution networks has a nonlinear mixed integer optimization problem, the optimal solution could be obtained through an evolutionary method. We use a new evolutionary algorithm based on Fuzzy Adaptive Particle Swarm Optimization (FAPSO) to solve the optimal operation problem and compare this method with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Ant Colony Optimization (ACO) and Tabu Search (TS) over two distribution test feeders. (author)

  5. Combinatorial algorithms enabling computational science: tales from the front

    International Nuclear Information System (INIS)

    Bhowmick, Sanjukta; Boman, Erik G; Devine, Karen; Gebremedhin, Assefaw; Hendrickson, Bruce; Hovland, Paul; Munson, Todd; Pothen, Alex

    2006-01-01

    Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations. The importance of discrete algorithms continues to grow with the demands of new applications and advanced architectures. This paper surveys some recent developments in this rapidly changing and highly interdisciplinary field

  6. Combinatorial algorithms enabling computational science: tales from the front

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmick, Sanjukta [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Boman, Erik G [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Devine, Karen [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Gebremedhin, Assefaw [Computer Science Department, Old Dominion University (United States); Hendrickson, Bruce [Discrete Algorithms and Math Department, Sandia National Laboratories (United States); Hovland, Paul [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Munson, Todd [Mathematics and Computer Science Division, Argonne National Laboratory (United States); Pothen, Alex [Computer Science Department, Old Dominion University (United States)

    2006-09-15

    Combinatorial algorithms have long played a crucial enabling role in scientific and engineering computations. The importance of discrete algorithms continues to grow with the demands of new applications and advanced architectures. This paper surveys some recent developments in this rapidly changing and highly interdisciplinary field.

  7. Imaging Sciences Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1996-11-21

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  8. The JPSS Ground Project Algorithm Verification, Test and Evaluation System

    Science.gov (United States)

    Vicente, G. A.; Jain, P.; Chander, G.; Nguyen, V. T.; Dixon, V.

    2016-12-01

    The Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) is an operational system that provides services to the Suomi National Polar-orbiting Partnership (S-NPP) Mission. It is also a unique environment for Calibration/Validation (Cal/Val) and Data Quality Assessment (DQA) of the Join Polar Satellite System (JPSS) mission data products. GRAVITE provides a fast and direct access to the data and products created by the Interface Data Processing Segment (IDPS), the NASA/NOAA operational system that converts Raw Data Records (RDR's) generated by sensors on the S-NPP into calibrated geo-located Sensor Data Records (SDR's) and generates Mission Unique Products (MUPS). It also facilitates algorithm investigation, integration, checkouts and tuning, instrument and product calibration and data quality support, monitoring and data/products distribution. GRAVITE is the portal for the latest S-NPP and JPSS baselined Processing Coefficient Tables (PCT's) and Look-Up-Tables (LUT's) and hosts a number DQA offline tools that takes advantage of the proximity to the near-real time data flows. It also contains a set of automated and ad-hoc Cal/Val tools used for algorithm analysis and updates, including an instance of the IDPS called GRAVITE Algorithm Development Area (G-ADA), that has the latest installation of the IDPS algorithms running in an identical software and hardware platforms. Two other important GRAVITE component are the Investigator-led Processing System (IPS) and the Investigator Computing Facility (ICF). The IPS is a dedicated environment where authorized users run automated scripts called Product Generation Executables (PGE's) to support Cal/Val and data quality assurance offline. This data-rich and data-driven service holds its own distribution system and allows operators to retrieve science data products. The ICF is a workspace where users can share computing applications and resources and have full access to libraries and

  9. Data Stewardship in the Ocean Sciences Needs to Include Physical Samples

    Science.gov (United States)

    Carter, M.; Lehnert, K.

    2016-02-01

    Across the Ocean Sciences, research involves the collection and study of samples collected above, at, and below the seafloor, including but not limited to rocks, sediments, fluids, gases, and living organisms. Many domains in the Earth Sciences have recently expressed the need for better discovery, access, and sharing of scientific samples and collections (EarthCube End-User Domain workshops, 2012 and 2013, http://earthcube.org/info/about/end-user-workshops), as has the US government (OSTP Memo, March 2014). iSamples (Internet of Samples in the Earth Sciences) is a Research Coordination Network within the EarthCube program that aims to advance the use of innovative cyberinfrastructure to support and advance the utility of physical samples and sample collections for science and ensure reproducibility of sample-based data and research results. iSamples strives to build, grow, and foster a new community of practice, in which domain scientists, curators of sample repositories and collections, computer and information scientists, software developers and technology innovators engage in and collaborate on defining, articulating, and addressing the needs and challenges of physical samples as a critical component of digital data infrastructure. A primary goal of iSamples is to deliver a community-endorsed set of best practices and standards for the registration, description, identification, and citation of physical specimens and define an actionable plan for implementation. iSamples conducted a broad community survey about sample sharing and has created 5 different working groups to address the different challenges of developing the internet of samples - from metadata schemas and unique identifiers to an architecture for a shared cyberinfrastructure to manage collections, to digitization of existing collections, to education, and ultimately to establishing the physical infrastructure that will ensure preservation and access of the physical samples. Repositories that curate

  10. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  11. Models of science dynamics encounters between complexity theory and information sciences

    CERN Document Server

    Börner, Katy; Besselaar, Peter

    2012-01-01

    Models of science dynamics aim to capture the structure and evolution of science. They are developed in an emerging research area in which scholars, scientific institutions and scientific communications become themselves basic objects of research. In order to understand phenomena as diverse as the structure of evolving co-authorship networks or citation diffusion patterns, different models have been developed. They include conceptual models based on historical and ethnographic observations, mathematical descriptions of measurable phenomena, and computational algorithms. Despite its evident importance, the mathematical modeling of science still lacks a unifying framework and a comprehensive research agenda. This book aims to fill this gap, reviewing and describing major threads in the mathematical modeling of science dynamics for a wider academic and professional audience. The model classes presented here cover stochastic and statistical models, game-theoretic approaches, agent-based simulations, population-dy...

  12. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  13. 5th International Conference on Algorithms for Approximation

    CERN Document Server

    Levesley, Jeremy

    2007-01-01

    Approximation methods are vital in many challenging applications of computational science and engineering. This is a collection of papers from world experts in a broad variety of relevant applications, including pattern recognition, machine learning, multiscale modelling of fluid flow, metrology, geometric modelling, tomography, signal and image processing. It documents recent theoretical developments which have lead to new trends in approximation, it gives important computational aspects and multidisciplinary applications, thus making it a perfect fit for graduate students and researchers in science and engineering who wish to understand and develop numerical algorithms for the solution of their specific problems. An important feature of the book is that it brings together modern methods from statistics, mathematical modelling and numerical simulation for the solution of relevant problems, with a wide range of inherent scales. Contributions of industrial mathematicians, including representatives from Microso...

  14. Information dynamics algorithm for detecting communities in networks

    Science.gov (United States)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  15. Essential algorithms a practical approach to computer algorithms

    CERN Document Server

    Stephens, Rod

    2013-01-01

    A friendly and accessible introduction to the most useful algorithms Computer algorithms are the basic recipes for programming. Professional programmers need to know how to use algorithms to solve difficult programming problems. Written in simple, intuitive English, this book describes how and when to use the most practical classic algorithms, and even how to create new algorithms to meet future needs. The book also includes a collection of questions that can help readers prepare for a programming job interview. Reveals methods for manipulating common data structures s

  16. FIREWORKS ALGORITHM FOR UNCONSTRAINED FUNCTION OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Evans BAIDOO

    2017-03-01

    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  17. Planning Readings: A Comparative Exploration of Basic Algorithms

    Science.gov (United States)

    Piater, Justus H.

    2009-01-01

    Conventional introduction to computer science presents individual algorithmic paradigms in the context of specific, prototypical problems. To complement this algorithm-centric instruction, this study additionally advocates problem-centric instruction. I present an original problem drawn from students' life that is simply stated but provides rich…

  18. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  19. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    Science.gov (United States)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  20. A cross-disciplinary introduction to quantum annealing-based algorithms

    Science.gov (United States)

    Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco

    2018-04-01

    A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.

  1. Separated Representations and Fast Algorithms for Materials Science

    National Research Council Canada - National Science Library

    Beylkin, Gregory; Monzon, Lucas; Perez, Fernando

    2007-01-01

    ...) and to develop and test algorithms for computing multiparticle wave functions both based on representing operators and functions of many variables as short sums of separable functions the so-called...

  2. Autonomous Star Tracker Algorithms

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Kilsgaard, Søren

    1998-01-01

    Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances.......Proposal, in response to an ESA R.f.P., to design algorithms for autonomous star tracker operations.The proposal also included the development of a star tracker breadboard to test the algorithms performances....

  3. Experimental Methods for the Analysis of Optimization Algorithms

    DEFF Research Database (Denmark)

    , computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different...... in algorithm design, statistical design, optimization and heuristics, and most chapters provide theoretical background and are enriched with case studies. This book is written for researchers and practitioners in operations research and computer science who wish to improve the experimental assessment......In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However...

  4. Nature-inspired optimization algorithms

    CERN Document Server

    Yang, Xin-She

    2014-01-01

    Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning

  5. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  6. Principal component analysis networks and algorithms

    CERN Document Server

    Kong, Xiangyu; Duan, Zhansheng

    2017-01-01

    This book not only provides a comprehensive introduction to neural-based PCA methods in control science, but also presents many novel PCA algorithms and their extensions and generalizations, e.g., dual purpose, coupled PCA, GED, neural based SVD algorithms, etc. It also discusses in detail various analysis methods for the convergence, stabilizing, self-stabilizing property of algorithms, and introduces the deterministic discrete-time systems method to analyze the convergence of PCA/MCA algorithms. Readers should be familiar with numerical analysis and the fundamentals of statistics, such as the basics of least squares and stochastic algorithms. Although it focuses on neural networks, the book only presents their learning law, which is simply an iterative algorithm. Therefore, no a priori knowledge of neural networks is required. This book will be of interest and serve as a reference source to researchers and students in applied mathematics, statistics, engineering, and other related fields.

  7. Experimental Methods for the Analysis of Optimization Algorithms

    DEFF Research Database (Denmark)

    of solution quality, runtime and other measures; and the third part collects advanced methods from experimental design for configuring and tuning algorithms on a specific class of instances with the goal of using the least amount of experimentation. The contributor list includes leading scientists......, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on different...

  8. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  9. Artificial intelligence programming with LabVIEW: genetic algorithms for instrumentation control and optimization.

    Science.gov (United States)

    Moore, J H

    1995-06-01

    A genetic algorithm for instrumentation control and optimization was developed using the LabVIEW graphical programming environment. The usefulness of this methodology for the optimization of a closed loop control instrument is demonstrated with minimal complexity and the programming is presented in detail to facilitate its adaptation to other LabVIEW applications. Closed loop control instruments have variety of applications in the biomedical sciences including the regulation of physiological processes such as blood pressure. The program presented here should provide a useful starting point for those wishing to incorporate genetic algorithm approaches to LabVIEW mediated optimization of closed loop control instruments.

  10. A Functional Programming Approach to AI Search Algorithms

    Science.gov (United States)

    Panovics, Janos

    2012-01-01

    The theory and practice of search algorithms related to state-space represented problems form the major part of the introductory course of Artificial Intelligence at most of the universities and colleges offering a degree in the area of computer science. Students usually meet these algorithms only in some imperative or object-oriented language…

  11. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  12. Unsupervised learning algorithms

    CERN Document Server

    Aydin, Kemal

    2016-01-01

    This book summarizes the state-of-the-art in unsupervised learning. The contributors discuss how with the proliferation of massive amounts of unlabeled data, unsupervised learning algorithms, which can automatically discover interesting and useful patterns in such data, have gained popularity among researchers and practitioners. The authors outline how these algorithms have found numerous applications including pattern recognition, market basket analysis, web mining, social network analysis, information retrieval, recommender systems, market research, intrusion detection, and fraud detection. They present how the difficulty of developing theoretically sound approaches that are amenable to objective evaluation have resulted in the proposal of numerous unsupervised learning algorithms over the past half-century. The intended audience includes researchers and practitioners who are increasingly using unsupervised learning algorithms to analyze their data. Topics of interest include anomaly detection, clustering,...

  13. Evaluation of Algorithms for Compressing Hyperspectral Data

    Science.gov (United States)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  14. Fault-tolerant search algorithms reliable computation with unreliable information

    CERN Document Server

    Cicalese, Ferdinando

    2013-01-01

    Why a book on fault-tolerant search algorithms? Searching is one of the fundamental problems in computer science. Time and again algorithmic and combinatorial issues originally studied in the context of search find application in the most diverse areas of computer science and discrete mathematics. On the other hand, fault-tolerance is a necessary ingredient of computing. Due to their inherent complexity, information systems are naturally prone to errors, which may appear at any level - as imprecisions in the data, bugs in the software, or transient or permanent hardware failures. This book pr

  15. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. J C Joshi. Articles written in Journal of Earth System Science. Volume 126 Issue 1 February 2017 pp 3. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya · J C Joshi Tankeshwar ...

  16. Data structures and algorithm analysis in C++

    CERN Document Server

    Shaffer, Clifford A

    2011-01-01

    With its focus on creating efficient data structures and algorithms, this comprehensive text helps readers understand how to select or design the tools that will best solve specific problems. It uses Microsoft C++ as the programming language and is suitable for second-year data structure courses and computer science courses in algorithm analysis.Techniques for representing data are presented within the context of assessing costs and benefits, promoting an understanding of the principles of algorithm analysis and the effects of a chosen physical medium. The text also explores tradeoff issues, f

  17. Data structures and algorithm analysis in Java

    CERN Document Server

    Shaffer, Clifford A

    2011-01-01

    With its focus on creating efficient data structures and algorithms, this comprehensive text helps readers understand how to select or design the tools that will best solve specific problems. It uses Java as the programming language and is suitable for second-year data structure courses and computer science courses in algorithm analysis. Techniques for representing data are presented within the context of assessing costs and benefits, promoting an understanding of the principles of algorithm analysis and the effects of a chosen physical medium. The text also explores tradeoff issues, familiari

  18. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  19. Incremental Yield of Including Determine-TB LAM Assay in Diagnostic Algorithms for Hospitalized and Ambulatory HIV-Positive Patients in Kenya.

    Science.gov (United States)

    Huerga, Helena; Ferlazzo, Gabriella; Bevilacqua, Paolo; Kirubi, Beatrice; Ardizzoni, Elisa; Wanjala, Stephen; Sitienei, Joseph; Bonnet, Maryline

    2017-01-01

    Determine-TB LAM assay is a urine point-of-care test useful for TB diagnosis in HIV-positive patients. We assessed the incremental diagnostic yield of adding LAM to algorithms based on clinical signs, sputum smear-microscopy, chest X-ray and Xpert MTB/RIF in HIV-positive patients with symptoms of pulmonary TB (PTB). Prospective observational cohort of ambulatory (either severely ill or CD4<200cells/μl or with Body Mass Index<17Kg/m2) and hospitalized symptomatic HIV-positive adults in Kenya. Incremental diagnostic yield of adding LAM was the difference in the proportion of confirmed TB patients (positive Xpert or MTB culture) diagnosed by the algorithm with LAM compared to the algorithm without LAM. The multivariable mortality model was adjusted for age, sex, clinical severity, BMI, CD4, ART initiation, LAM result and TB confirmation. Among 474 patients included, 44.1% were severely ill, 69.6% had CD4<200cells/μl, 59.9% had initiated ART, 23.2% could not produce sputum. LAM, smear-microscopy, Xpert and culture in sputum were positive in 39.0% (185/474), 21.6% (76/352), 29.1% (102/350) and 39.7% (92/232) of the patients tested, respectively. Of 156 patients with confirmed TB, 65.4% were LAM positive. Of those classified as non-TB, 84.0% were LAM negative. Adding LAM increased the diagnostic yield of the algorithms by 36.6%, from 47.4% (95%CI:39.4-55.6) to 84.0% (95%CI:77.3-89.4%), when using clinical signs and X-ray; by 19.9%, from 62.2% (95%CI:54.1-69.8) to 82.1% (95%CI:75.1-87.7), when using clinical signs and microscopy; and by 13.4%, from 74.4% (95%CI:66.8-81.0) to 87.8% (95%CI:81.6-92.5), when using clinical signs and Xpert. LAM positive patients had an increased risk of 2-months mortality (aOR:2.7; 95%CI:1.5-4.9). LAM should be included in TB diagnostic algorithms in parallel to microscopy or Xpert request for HIV-positive patients either ambulatory (severely ill or CD4<200cells/μl) or hospitalized. LAM allows same day treatment initiation in patients at

  20. Signal sciences workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1997-05-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing.

  1. Signal sciences workshop. Proceedings

    International Nuclear Information System (INIS)

    Candy, J.V.

    1997-01-01

    This meeting is aimed primarily at signal processing and controls. The technical program for the 1997 Workshop includes a variety of efforts in the Signal Sciences with applications in the Microtechnology Area a new program at LLNL and a future area of application for both Signal/Image Sciences. Special sessions organized by various individuals in Seismic and Optical Signal Processing as well as Micro-Impulse Radar Processing highlight the program, while the speakers at the Signal Processing Applications session discuss various applications of signal processing/control to real world problems. For the more theoretical, a session on Signal Processing Algorithms was organized as well as for the more pragmatic, featuring a session on Real-Time Signal Processing

  2. Exposing the Science in Citizen Science: Fitness to Purpose and Intentional Design.

    Science.gov (United States)

    Parrish, Julia K; Burgess, Hillary; Weltzin, Jake F; Fortson, Lucy; Wiggins, Andrea; Simmons, Brooke

    2018-05-21

    Citizen science is a growing phenomenon. With millions of people involved and billions of in-kind dollars contributed annually, this broad extent, fine grain approach to data collection should be garnering enthusiastic support in the mainstream science and higher education communities. However, many academic researchers demonstrate distinct biases against the use of citizen science as a source of rigorous information. To engage the public in scientific research, and the research community in the practice of citizen science, a mutual understanding is needed of accepted quality standards in science, and the corresponding specifics of project design and implementation when working with a broad public base. We define a science-based typology focused on the degree to which projects deliver the type(s) and quality of data/work needed to produce valid scientific outcomes directly useful in science and natural resource management. Where project intent includes direct contribution to science and the public is actively involved either virtually or hands-on, we examine the measures of quality assurance (methods to increase data quality during the design and implementation phases of a project) and quality control (post hoc methods to increase the quality of scientific outcomes). We suggest that high quality science can be produced with massive, largely one-off, participation if data collection is simple and quality control includes algorithm voting, statistical pruning and/or computational modeling. Small to mid-scale projects engaging participants in repeated, often complex, sampling can advance quality through expert-led training and well-designed materials, and through independent verification. Both approaches - simplification at scale and complexity with care - generate more robust science outcomes.

  3. Effects of visualization on algorithm comprehension

    Science.gov (United States)

    Mulvey, Matthew

    Computer science students are expected to learn and apply a variety of core algorithms which are an essential part of the field. Any one of these algorithms by itself is not necessarily extremely complex, but remembering the large variety of algorithms and the differences between them is challenging. To address this challenge, we present a novel algorithm visualization tool designed to enhance students understanding of Dijkstra's algorithm by allowing them to discover the rules of the algorithm for themselves. It is hoped that a deeper understanding of the algorithm will help students correctly select, adapt and apply the appropriate algorithm when presented with a problem to solve, and that what is learned here will be applicable to the design of other visualization tools designed to teach different algorithms. Our visualization tool is currently in the prototype stage, and this thesis will discuss the pedagogical approach that informs its design, as well as the results of some initial usability testing. Finally, to clarify the direction for further development of the tool, four different variations of the prototype were implemented, and the instructional effectiveness of each was assessed by having a small sample participants use the different versions of the prototype and then take a quiz to assess their comprehension of the algorithm.

  4. Algorithms in invariant theory

    CERN Document Server

    Sturmfels, Bernd

    2008-01-01

    J. Kung and G.-C. Rota, in their 1984 paper, write: "Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics". The book of Sturmfels is both an easy-to-read textbook for invariant theory and a challenging research monograph that introduces a new approach to the algorithmic side of invariant theory. The Groebner bases method is the main tool by which the central problems in invariant theory become amenable to algorithmic solutions. Students will find the book an easy introduction to this "classical and new" area of mathematics. Researchers in mathematics, symbolic computation, and computer science will get access to a wealth of research ideas, hints for applications, outlines and details of algorithms, worked out examples, and research problems.

  5. Genetic algorithms and genetic programming for multiscale modeling: Applications in materials science and chemistry and advances in scalability

    Science.gov (United States)

    Sastry, Kumara Narasimha

    2007-03-01

    Effective and efficient rnultiscale modeling is essential to advance both the science and synthesis in a, wide array of fields such as physics, chemistry, materials science; biology, biotechnology and pharmacology. This study investigates the efficacy and potential of rising genetic algorithms for rnultiscale materials modeling and addresses some of the challenges involved in designing competent algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale modeling with the help of two non-trivial case studies in materials science and chemistry. The first case study explores the utility of genetic programming (GP) in multi-timescaling alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress symbolically an inline barrier function from a limited set of molecular dynamics simulations to enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo 1-x) alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active configurations, independent of type of potentials used to obtain the learning set of barriers via molecular dynamics. The resulting method enables 2--9 orders-of-magnitude increase in real-time dynamics simulations taking 4--7 orders-of-magnitude less CPU time. The second case study presents the application of multiobjective genetic algorithms (MOGAs) in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-level quantum chemistry and semiempirical methods to provide accurate representation of complex molecular excited-state and ground-state behavior. Results on ethylene and benzene---two common

  6. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  7. Algorithmic psychometrics and the scalable subject.

    Science.gov (United States)

    Stark, Luke

    2018-04-01

    Recent public controversies, ranging from the 2014 Facebook 'emotional contagion' study to psychographic data profiling by Cambridge Analytica in the 2016 American presidential election, Brexit referendum and elsewhere, signal watershed moments in which the intersecting trajectories of psychology and computer science have become matters of public concern. The entangled history of these two fields grounds the application of applied psychological techniques to digital technologies, and an investment in applying calculability to human subjectivity. Today, a quantifiable psychological subject position has been translated, via 'big data' sets and algorithmic analysis, into a model subject amenable to classification through digital media platforms. I term this position the 'scalable subject', arguing it has been shaped and made legible by algorithmic psychometrics - a broad set of affordances in digital platforms shaped by psychology and the behavioral sciences. In describing the contours of this 'scalable subject', this paper highlights the urgent need for renewed attention from STS scholars on the psy sciences, and on a computational politics attentive to psychology, emotional expression, and sociality via digital media.

  8. The design and results of an algorithm for intelligent ground vehicles

    Science.gov (United States)

    Duncan, Matthew; Milam, Justin; Tote, Caleb; Riggins, Robert N.

    2010-01-01

    This paper addresses the design, design method, test platform, and test results of an algorithm used in autonomous navigation for intelligent vehicles. The Bluefield State College (BSC) team created this algorithm for its 2009 Intelligent Ground Vehicle Competition (IGVC) robot called Anassa V. The BSC robotics team is comprised of undergraduate computer science, engineering technology, marketing students, and one robotics faculty advisor. The team has participated in IGVC since the year 2000. A major part of the design process that the BSC team uses each year for IGVC is a fully documented "Post-IGVC Analysis." Over the nine years since 2000, the lessons the students learned from these analyses have resulted in an ever-improving, highly successful autonomous algorithm. The algorithm employed in Anassa V is a culmination of past successes and new ideas, resulting in Anassa V earning several excellent IGVC 2009 performance awards, including third place overall. The paper will discuss all aspects of the design of this autonomous robotic system, beginning with the design process and ending with test results for both simulation and real environments.

  9. Document Organization Using Kohonen's Algorithm.

    Science.gov (United States)

    Guerrero Bote, Vicente P.; Moya Anegon, Felix de; Herrero Solana, Victor

    2002-01-01

    Discussion of the classification of documents from bibliographic databases focuses on a method of vectorizing reference documents from LISA (Library and Information Science Abstracts) which permits their topological organization using Kohonen's algorithm. Analyzes possibilities of this type of neural network with respect to the development of…

  10. Algorithms in Singular

    Directory of Open Access Journals (Sweden)

    Hans Schonemann

    1996-12-01

    Full Text Available Some algorithms for singularity theory and algebraic geometry The use of Grobner basis computations for treating systems of polynomial equations has become an important tool in many areas. This paper introduces of the concept of standard bases (a generalization of Grobner bases and the application to some problems from algebraic geometry. The examples are presented as SINGULAR commands. A general introduction to Grobner bases can be found in the textbook [CLO], an introduction to syzygies in [E] and [St1]. SINGULAR is a computer algebra system for computing information about singularities, for use in algebraic geometry. The basic algorithms in SINGULAR are several variants of a general standard basis algorithm for general monomial orderings (see [GG]. This includes wellorderings (Buchberger algorithm ([B1], [B2] and tangent cone orderings (Mora algorithm ([M1], [MPT] as special cases: It is able to work with non-homogeneous and homogeneous input and also to compute in the localization of the polynomial ring in 0. Recent versions include algorithms to factorize polynomials and a factorizing Grobner basis algorithm. For a complete description of SINGULAR see [Si].

  11. An Implementation of RC4+ Algorithm and Zig-zag Algorithm in a Super Encryption Scheme for Text Security

    Science.gov (United States)

    Budiman, M. A.; Amalia; Chayanie, N. I.

    2018-03-01

    Cryptography is the art and science of using mathematical methods to preserve message security. There are two types of cryptography, namely classical and modern cryptography. Nowadays, most people would rather use modern cryptography than classical cryptography because it is harder to break than the classical one. One of classical algorithm is the Zig-zag algorithm that uses the transposition technique: the original message is unreadable unless the person has the key to decrypt the message. To improve the security, the Zig-zag Cipher is combined with RC4+ Cipher which is one of the symmetric key algorithms in the form of stream cipher. The two algorithms are combined to make a super-encryption. By combining these two algorithms, the message will be harder to break by a cryptanalyst. The result showed that complexity of the combined algorithm is θ(n2 ), while the complexity of Zig-zag Cipher and RC4+ Cipher are θ(n2 ) and θ(n), respectively.

  12. An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2014-01-01

    Full Text Available Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.

  13. Swarm Robotics with Circular Formation Motion Including Obstacles Avoidance

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2017-07-01

    Full Text Available The robots science has been developed over the past few years, where robots have become used to accomplish difficult, repetitive or accurate tasks, which are very hard for humans to carry out. In this paper, we propose an algorithm to control the motion of a swarm of robots and make them able to avoid obstacles. The proposed solution is based on forming the robots in circular fashion. A group set of robots consists of multiple groups of robots, each group of robots consists of robots forming a circular shape and each group set is a circular form of robots. The proposed algorithm is concerned with first locating the randomly generated robots in groups and secondly with the swarm robot motion and finally with the swarm obstacle avoidance and swarm reorganization after crossing the obstacle. The proposed algorithm has been simulated with five different obstacles with various numbers of randomly generated robots. The results show that the swarm in the circular form can deal with the obstacles very effectively by passing the obstacles smoothly. The proposed algorithm has been compared with flocking algorithm and it is shown that the circular formation algorithm does not need extensive computation after obstacle avoidance whereas the flocking algorithm needs extensive computation. In addition, the circular formation algorithm maintains every robot in its group after avoiding the obstacles whereas with flocking algorithm does not.

  14. In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.

    Science.gov (United States)

    Cowen, Todd; Busato, Mirko; Karim, Kal; Piletsky, Sergey A

    2016-12-01

    Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Developing chemometrics with the tools of information sciences (CHESS) - MASIT23

    Energy Technology Data Exchange (ETDEWEB)

    Simula, O.; Corona, F.; Lendasse, A. (Helsinki University of Technology, Adaptive Informatics Research Centre, Espoo (Finland)) (and others)

    2008-07-01

    In the CHESS project, novel algorithms and variations of existing algorithms are developed for process data analysis, visualization, and monitoring. The algorithms are implemented in a variety of industrial applications under five test cases, including oil production, food production, process monitoring, plastics production, and environmental analysis and forecasting. In the first phase of CHESS, data sets from industrial partners were analyzed. Based on this study, the research partners have created a set of general-purpose information science tools. The emphasis is on real-time implementation of the methods in practical industrial environment. The final implementation of the methods and algorithms in products will be further developed by the small partner companies of CHESS. (orig.)

  16. Marshall Rosenbluth and the Metropolis algorithm

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    2005-01-01

    The 1953 publication, 'Equation of State Calculations by Very Fast Computing Machines' by N. Metropolis, A. W. Rosenbluth and M. N. Rosenbluth, and M. Teller and E. Teller [J. Chem. Phys. 21, 1087 (1953)] marked the beginning of the use of the Monte Carlo method for solving problems in the physical sciences. The method described in this publication subsequently became known as the Metropolis algorithm, undoubtedly the most famous and most widely used Monte Carlo algorithm ever published. As none of the authors made subsequent use of the algorithm, they became unknown to the large simulation physics community that grew from this publication and their roles in its development became the subject of mystery and legend. At a conference marking the 50th anniversary of the 1953 publication, Marshall Rosenbluth gave his recollections of the algorithm's development. The present paper describes the algorithm, reconstructs the historical context in which it was developed, and summarizes Marshall's recollections

  17. Applying Clustering Methods in Drawing Maps of Science: Case Study of the Map For Urban Management Science

    Directory of Open Access Journals (Sweden)

    Mohammad Abuei Ardakan

    2010-04-01

    Full Text Available The present paper offers a basic introduction to data clustering and demonstrates the application of clustering methods in drawing maps of science. All approaches towards classification and clustering of information are briefly discussed. Their application to the process of visualization of conceptual information and drawing of science maps are illustrated by reviewing similar researches in this field. By implementing aggregated hierarchical clustering algorithm, which is an algorithm based on complete-link method, the map for urban management science as an emerging, interdisciplinary scientific field is analyzed and reviewed.

  18. The algorithmic level is the bridge between computation and brain.

    Science.gov (United States)

    Love, Bradley C

    2015-04-01

    Every scientist chooses a preferred level of analysis and this choice shapes the research program, even determining what counts as evidence. This contribution revisits Marr's (1982) three levels of analysis (implementation, algorithmic, and computational) and evaluates the prospect of making progress at each individual level. After reviewing limitations of theorizing within a level, two strategies for integration across levels are considered. One is top-down in that it attempts to build a bridge from the computational to algorithmic level. Limitations of this approach include insufficient theoretical constraint at the computation level to provide a foundation for integration, and that people are suboptimal for reasons other than capacity limitations. Instead, an inside-out approach is forwarded in which all three levels of analysis are integrated via the algorithmic level. This approach maximally leverages mutual data constraints at all levels. For example, algorithmic models can be used to interpret brain imaging data, and brain imaging data can be used to select among competing models. Examples of this approach to integration are provided. This merging of levels raises questions about the relevance of Marr's tripartite view. Copyright © 2015 Cognitive Science Society, Inc.

  19. Algorithmically specialized parallel computers

    CERN Document Server

    Snyder, Lawrence; Gannon, Dennis B

    1985-01-01

    Algorithmically Specialized Parallel Computers focuses on the concept and characteristics of an algorithmically specialized computer.This book discusses the algorithmically specialized computers, algorithmic specialization using VLSI, and innovative architectures. The architectures and algorithms for digital signal, speech, and image processing and specialized architectures for numerical computations are also elaborated. Other topics include the model for analyzing generalized inter-processor, pipelined architecture for search tree maintenance, and specialized computer organization for raster

  20. Including plasma and fusion topics in the science education in school

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2015-01-01

    Yutori education (more relaxed education policy) started with the revision of the Courses of Study to introduce 'five-day week system' in 1989, continued with the reduction of the content of school lessons by 30% in 1998, and ended with the introduction of the New Courses of Study in 2011. Focusing on science education, especially in the topics of plasma and nuclear fusion, the modality of the education system in Japan is discussed considering the transition of academic performance based on the Program for International Student Assessment (PISA) in comparison with the examples in other countries. Particularly, the issues with high school textbooks are pointed out from the assessment of current textbooks, and the significance and the need for including the topic of 'plasma' in them are stated. Lastly, in order to make the general public acknowledged with plasma and nuclear fusion, it is suggested to include them also in junior high school textbooks, by briefly mentioning the terms related to plasma, solar wind, aurora phenomenon, and nuclear fusion energy. (S.K.)

  1. A neural algorithm for a fundamental computing problem.

    Science.gov (United States)

    Dasgupta, Sanjoy; Stevens, Charles F; Navlakha, Saket

    2017-11-10

    Similarity search-for example, identifying similar images in a database or similar documents on the web-is a fundamental computing problem faced by large-scale information retrieval systems. We discovered that the fruit fly olfactory circuit solves this problem with a variant of a computer science algorithm (called locality-sensitive hashing). The fly circuit assigns similar neural activity patterns to similar odors, so that behaviors learned from one odor can be applied when a similar odor is experienced. The fly algorithm, however, uses three computational strategies that depart from traditional approaches. These strategies can be translated to improve the performance of computational similarity searches. This perspective helps illuminate the logic supporting an important sensory function and provides a conceptually new algorithm for solving a fundamental computational problem. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Once upon an algorithm how stories explain computing

    CERN Document Server

    Erwig, Martin

    2017-01-01

    How Hansel and Gretel, Sherlock Holmes, the movie Groundhog Day, Harry Potter, and other familiar stories illustrate the concepts of computing. Picture a computer scientist, staring at a screen and clicking away frantically on a keyboard, hacking into a system, or perhaps developing an app. Now delete that picture. In Once Upon an Algorithm, Martin Erwig explains computation as something that takes place beyond electronic computers, and computer science as the study of systematic problem solving. Erwig points out that many daily activities involve problem solving. Getting up in the morning, for example: You get up, take a shower, get dressed, eat breakfast. This simple daily routine solves a recurring problem through a series of well-defined steps. In computer science, such a routine is called an algorithm. Erwig illustrates a series of concepts in computing with examples from daily life and familiar stories. Hansel and Gretel, for example, execute an algorithm to get home from the forest. The movie Groundho...

  3. Advanced algorithms for information science

    International Nuclear Information System (INIS)

    Argo, P.; Brislawn, C.; Fitzgerald, T.J.; Kelley, B.; Kim, W.H.; Mazieres, B.; Roeder, H.; Strottman, D.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). In a modern information-controlled society the importance of fast computational algorithms facilitating data compression and image analysis cannot be overemphasized. Feature extraction and pattern recognition are key to many LANL projects and the same types of dimensionality reduction and compression used in source coding are also applicable to image understanding. The authors have begun developing wavelet coding which decomposes data into different length-scale and frequency bands. New transform-based source-coding techniques offer potential for achieving better, combined source-channel coding performance by using joint-optimization techniques. They initiated work on a system that compresses the video stream in real time, and which also takes the additional step of analyzing the video stream concurrently. By using object-based compression schemes (where an object is an identifiable feature of the video signal, repeatable in time or space), they believe that the analysis is directly related to the efficiency of the compression

  4. Advanced algorithms for information science

    Energy Technology Data Exchange (ETDEWEB)

    Argo, P.; Brislawn, C.; Fitzgerald, T.J.; Kelley, B.; Kim, W.H.; Mazieres, B.; Roeder, H.; Strottman, D.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). In a modern information-controlled society the importance of fast computational algorithms facilitating data compression and image analysis cannot be overemphasized. Feature extraction and pattern recognition are key to many LANL projects and the same types of dimensionality reduction and compression used in source coding are also applicable to image understanding. The authors have begun developing wavelet coding which decomposes data into different length-scale and frequency bands. New transform-based source-coding techniques offer potential for achieving better, combined source-channel coding performance by using joint-optimization techniques. They initiated work on a system that compresses the video stream in real time, and which also takes the additional step of analyzing the video stream concurrently. By using object-based compression schemes (where an object is an identifiable feature of the video signal, repeatable in time or space), they believe that the analysis is directly related to the efficiency of the compression.

  5. CATEGORIES OF COMPUTER SYSTEMS ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. V. Poltavskiy

    2015-01-01

    Full Text Available Philosophy as a frame of reference on world around and as the first science is a fundamental basis, "roots" (R. Descartes for all branches of the scientific knowledge accumulated and applied in all fields of activity of a human being person. The theory of algorithms as one of the fundamental sections of mathematics, is also based on researches of the gnoseology conducting cognition of a true picture of the world of the buman being. From gnoseology and ontology positions as fundamental sections of philosophy modern innovative projects are inconceivable without development of programs,and algorithms.

  6. Comparison of tracking algorithms implemented in OpenCV

    Directory of Open Access Journals (Sweden)

    Janku Peter

    2016-01-01

    Full Text Available Computer vision is very progressive and modern part of computer science. From scientific point of view, theoretical aspects of computer vision algorithms prevail in many papers and publications. The underlying theory is really important, but on the other hand, the final implementation of an algorithm significantly affects its performance and robustness. For this reason, this paper tries to compare real implementation of tracking algorithms (one part of computer vision problem, which can be found in the very popular library OpenCV. Moreover, the possibilities of optimizations are discussed.

  7. DIDADTIC TOOLS FOR THE STUDENTS’ ALGORITHMIC THINKING DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    T. P. Pushkaryeva

    2017-01-01

    Full Text Available Introduction. Modern engineers must possess high potential of cognitive abilities, in particular, the algorithmic thinking (AT. In this regard, the training of future experts (university graduates of technical specialities has to provide the knowledge of principles and ways of designing of various algorithms, abilities to analyze them, and to choose the most optimal variants for engineering activity implementation. For full formation of AT skills it is necessary to consider all channels of psychological perception and cogitative processing of educational information: visual, auditory, and kinesthetic.The aim of the present research is theoretical basis of design, development and use of resources for successful development of AT during the educational process of training in programming.Methodology and research methods. Methodology of the research involves the basic thesis of cognitive psychology and information approach while organizing the educational process. The research used methods: analysis; modeling of cognitive processes; designing training tools that take into account the mentality and peculiarities of information perception; diagnostic efficiency of the didactic tools. Results. The three-level model for future engineers training in programming aimed at development of AT skills was developed. The model includes three components: aesthetic, simulative, and conceptual. Stages to mastering a new discipline are allocated. It is proved that for development of AT skills when training in programming it is necessary to use kinesthetic tools at the stage of mental algorithmic maps formation; algorithmic animation and algorithmic mental maps at the stage of algorithmic model and conceptual images formation. Kinesthetic tools for development of students’ AT skills when training in algorithmization and programming are designed. Using of kinesthetic training simulators in educational process provide the effective development of algorithmic style of

  8. The Quantitative Analysis of User Behavior Online - Data, Models and Algorithms

    Science.gov (United States)

    Raghavan, Prabhakar

    By blending principles from mechanism design, algorithms, machine learning and massive distributed computing, the search industry has become good at optimizing monetization on sound scientific principles. This represents a successful and growing partnership between computer science and microeconomics. When it comes to understanding how online users respond to the content and experiences presented to them, we have more of a lacuna in the collaboration between computer science and certain social sciences. We will use a concrete technical example from image search results presentation, developing in the process some algorithmic and machine learning problems of interest in their own right. We then use this example to motivate the kinds of studies that need to grow between computer science and the social sciences; a critical element of this is the need to blend large-scale data analysis with smaller-scale eye-tracking and "individualized" lab studies.

  9. Data streams: algorithms and applications

    National Research Council Canada - National Science Library

    Muthukrishnan, S

    2005-01-01

    ... massive data sets in general. Researchers in Theoretical Computer Science, Databases, IP Networking and Computer Systems are working on the data stream challenges. This article is an overview and survey of data stream algorithmics and is an updated version of [175]. S. Muthukrishnan Rutgers University, New Brunswick, NJ, USA, muthu@cs...

  10. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Fellow Profile. Elected: 2014 Section: Engineering & Technology. Garg, Prof. Naveen Ph.D. (IIT, Delhi). Date of birth: 12 March 1971. Specialization: Approximation Algorithms, Combinatorial Optimisation, Graph Theory & Algorithms Address: Department of Computer Science & Engineering, Indian Institute of Technology, ...

  11. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 1. Algorithms Introduction to Algorithms. R K Shyamasundar. Series Article Volume 1 ... Author Affiliations. R K Shyamasundar1. Computer Science Group, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005, India.

  12. Algorithm improvement program nuclide identification algorithm scoring criteria and scoring application.

    Energy Technology Data Exchange (ETDEWEB)

    Enghauser, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-02-01

    The goal of the Domestic Nuclear Detection Office (DNDO) Algorithm Improvement Program (AIP) is to facilitate gamma-radiation detector nuclide identification algorithm development, improvement, and validation. Accordingly, scoring criteria have been developed to objectively assess the performance of nuclide identification algorithms. In addition, a Microsoft Excel spreadsheet application for automated nuclide identification scoring has been developed. This report provides an overview of the equations, nuclide weighting factors, nuclide equivalencies, and configuration weighting factors used by the application for scoring nuclide identification algorithm performance. Furthermore, this report presents a general overview of the nuclide identification algorithm scoring application including illustrative examples.

  13. Simulation-based algorithms for Markov decision processes

    CERN Document Server

    Chang, Hyeong Soo; Fu, Michael C; Marcus, Steven I

    2013-01-01

    Markov decision process (MDP) models are widely used for modeling sequential decision-making problems that arise in engineering, economics, computer science, and the social sciences.  Many real-world problems modeled by MDPs have huge state and/or action spaces, giving an opening to the curse of dimensionality and so making practical solution of the resulting models intractable.  In other cases, the system of interest is too complex to allow explicit specification of some of the MDP model parameters, but simulation samples are readily available (e.g., for random transitions and costs). For these settings, various sampling and population-based algorithms have been developed to overcome the difficulties of computing an optimal solution in terms of a policy and/or value function.  Specific approaches include adaptive sampling, evolutionary policy iteration, evolutionary random policy search, and model reference adaptive search. This substantially enlarged new edition reflects the latest developments in novel ...

  14. Optimum Design of Braced Steel Space Frames including Soil-Structure Interaction via Teaching-Learning-Based Optimization and Harmony Search Algorithms

    OpenAIRE

    Ayse T. Daloglu; Musa Artar; Korhan Ozgan; Ali İ. Karakas

    2018-01-01

    Optimum design of braced steel space frames including soil-structure interaction is studied by using harmony search (HS) and teaching-learning-based optimization (TLBO) algorithms. A three-parameter elastic foundation model is used to incorporate the soil-structure interaction effect. A 10-storey braced steel space frame example taken from literature is investigated according to four different bracing types for the cases with/without soil-structure interaction. X, V, Z, and eccentric V-shaped...

  15. Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1993-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  16. Algorithmic Puzzles: History, Taxonomies, and Applications in Human Problem Solving

    Science.gov (United States)

    Levitin, Anany

    2017-01-01

    The paper concerns an important but underappreciated genre of algorithmic puzzles, explaining what these puzzles are, reviewing milestones in their long history, and giving two different ways to classify them. Also covered are major applications of algorithmic puzzles in cognitive science research, with an emphasis on insight problem solving, and…

  17. Improved algorithm for quantum separability and entanglement detection

    International Nuclear Information System (INIS)

    Ioannou, L.M.; Ekert, A.K.; Travaglione, B.C.; Cheung, D.

    2004-01-01

    Determining whether a quantum state is separable or entangled is a problem of fundamental importance in quantum information science. It has recently been shown that this problem is NP-hard, suggesting that an efficient, general solution does not exist. There is a highly inefficient 'basic algorithm' for solving the quantum separability problem which follows from the definition of a separable state. By exploiting specific properties of the set of separable states, we introduce a classical algorithm that solves the problem significantly faster than the 'basic algorithm', allowing a feasible separability test where none previously existed, e.g., in 3x3-dimensional systems. Our algorithm also provides a unique tool in the experimental detection of entanglement

  18. REVIEW OF THE GOVERNING EQUATIONS, COMPUTATIONAL ALGORITHMS, AND OTHER COMPONENTS OF THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM

    Science.gov (United States)

    This article describes the governing equations, computational algorithms, and other components entering into the Community Multiscale Air Quality (CMAQ) modeling system. This system has been designed to approach air quality as a whole by including state-of-the-science capabiliti...

  19. Understanding molecular simulation: from algorithms to applications

    NARCIS (Netherlands)

    Frenkel, D.; Smit, B.

    2002-01-01

    Second and revised edition Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique

  20. Parallel computing for data science with examples in R, C++ and CUDA

    CERN Document Server

    Matloff, Norman

    2015-01-01

    Parallel Computing for Data Science: With Examples in R, C++ and CUDA is one of the first parallel computing books to concentrate exclusively on parallel data structures, algorithms, software tools, and applications in data science. It includes examples not only from the classic ""n observations, p variables"" matrix format but also from time series, network graph models, and numerous other structures common in data science. The examples illustrate the range of issues encountered in parallel programming.With the main focus on computation, the book shows how to compute on three types of platfor

  1. CryoSat-2 science algorithm status, expected future improvements and impacts concerning Sentinel-3 and Jason-CS missions

    Science.gov (United States)

    Cullen, R.; Wingham, D.; Francis, R.; Parrinello, T.

    2011-12-01

    With CryoSat-2 soon to enter its second year of post commissioning operations there is now sufficient experience and evidence showing improvements of the SIRAL's (Synthetic interferometric radar altimeter) SAR and SARIn modes over conventional pulse-width limited altimeters for both the targeted marine/land ice fields but also for non mission relevant surfaces such as the ocean, for example. In the process of understanding the CryoSat data some side effects of the end-to-end platform measurement and ground retrieval system have been identified and whilst those key to mission success are understood and are being handled others, remain open and pave the way to longer term fine-tuning. Of interest to the session will be a summary of the manditory changes made during 2011 to all the modes of CryoSat-2 science processing with a view to longer term algorithm improvements that could benefit the planned mid-to-late nominal operations re-processing. Since some of the science processor improvements have direct implication to the SAR mode processing of Sentinel-3 and Jason-CS science then these will also be highlighted. Finally a summary of the CryoSat-2 in-orbit platform and payload performances and their stability will also be provided. Expectations of the longer term uses of CryoSat's primary sensor (SIRAL) and its successors will be discussed.

  2. [Algorithms of artificial neural networks--practical application in medical science].

    Science.gov (United States)

    Stefaniak, Bogusław; Cholewiński, Witold; Tarkowska, Anna

    2005-12-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer applications of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. This paper presents practical aspects of scientific application of ANN in medicine using widely available algorithms. Several main steps of analysis with ANN were discussed starting from material selection and dividing it into groups, to the quality assessment of obtained results at the end. The most frequent, typical reasons for errors as well as the comparison of ANN method to the modeling by regression analysis were also described.

  3. Engineering of Algorithms for Hidden Markov models and Tree Distances

    DEFF Research Database (Denmark)

    Sand, Andreas

    Bioinformatics is an interdisciplinary scientific field that combines biology with mathematics, statistics and computer science in an effort to develop computational methods for handling, analyzing and learning from biological data. In the recent decades, the amount of available biological data has...... speed up all the classical algorithms for analyses and training of hidden Markov models. And I show how two particularly important algorithms, the forward algorithm and the Viterbi algorithm, can be accelerated through a reformulation of the algorithms and a somewhat more complicated parallelization...... contribution to the theoretically fastest set of algorithms presently available to compute two closely related measures of tree distance, the triplet distance and the quartet distance. And I further demonstrate that they are also the fastest algorithms in almost all cases when tested in practice....

  4. A quasi-static algorithm that includes effects of characteristic time scales for simulating failures in brittle materials

    KAUST Repository

    Liu, Jinxing

    2013-04-24

    When the brittle heterogeneous material is simulated via lattice models, the quasi-static failure depends on the relative magnitudes of Telem, the characteristic releasing time of the internal forces of the broken elements and Tlattice, the characteristic relaxation time of the lattice, both of which are infinitesimal compared with Tload, the characteristic loading period. The load-unload (L-U) method is used for one extreme, Telem << Tlattice, whereas the force-release (F-R) method is used for the other, Telem T lattice. For cases between the above two extremes, we develop a new algorithm by combining the L-U and the F-R trial displacement fields to construct the new trial field. As a result, our algorithm includes both L-U and F-R failure characteristics, which allows us to observe the influence of the ratio of Telem to Tlattice by adjusting their contributions in the trial displacement field. Therefore, the material dependence of the snap-back instabilities is implemented by introducing one snap-back parameter γ. Although in principle catastrophic failures can hardly be predicted accurately without knowing all microstructural information, effects of γ can be captured by numerical simulations conducted on samples with exactly the same microstructure but different γs. Such a same-specimen-based study shows how the lattice behaves along with the changing ratio of the L-U and F-R components. © 2013 The Author(s).

  5. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  6. Comparison Of Hybrid Sorting Algorithms Implemented On Different Parallel Hardware Platforms

    Directory of Open Access Journals (Sweden)

    Dominik Zurek

    2013-01-01

    Full Text Available Sorting is a common problem in computer science. There are lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, hardware platforms enable to create wide parallel algorithms. We have standard processors consist of multiple cores and hardware accelerators like GPU. The graphic cards with their parallel architecture give new possibility to speed up many algorithms. In this paper we describe results of implementation of a few different sorting algorithms on GPU cards and multicore processors. Then hybrid algorithm will be presented which consists of parts executed on both platforms, standard CPU and GPU.

  7. Rational use of cognitive resources: levels of analysis between the computational and the algorithmic.

    Science.gov (United States)

    Griffiths, Thomas L; Lieder, Falk; Goodman, Noah D

    2015-04-01

    Marr's levels of analysis-computational, algorithmic, and implementation-have served cognitive science well over the last 30 years. But the recent increase in the popularity of the computational level raises a new challenge: How do we begin to relate models at different levels of analysis? We propose that it is possible to define levels of analysis that lie between the computational and the algorithmic, providing a way to build a bridge between computational- and algorithmic-level models. The key idea is to push the notion of rationality, often used in defining computational-level models, deeper toward the algorithmic level. We offer a simple recipe for reverse-engineering the mind's cognitive strategies by deriving optimal algorithms for a series of increasingly more realistic abstract computational architectures, which we call "resource-rational analysis." Copyright © 2015 Cognitive Science Society, Inc.

  8. Quality Assessment of Collection 6 MODIS Atmospheric Science Products

    Science.gov (United States)

    Manoharan, V. S.; Ridgway, B.; Platnick, S. E.; Devadiga, S.; Mauoka, E.

    2015-12-01

    Since the launch of the NASA Terra and Aqua satellites in December 1999 and May 2002, respectively, atmosphere and land data acquired by the MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on-board these satellites have been reprocessed five times at the MODAPS (MODIS Adaptive Processing System) located at NASA GSFC. The global land and atmosphere products use science algorithms developed by the NASA MODIS science team investigators. MODAPS completed Collection 6 reprocessing of MODIS Atmosphere science data products in April 2015 and is currently generating the Collection 6 products using the latest version of the science algorithms. This reprocessing has generated one of the longest time series of consistent data records for understanding cloud, aerosol, and other constituents in the earth's atmosphere. It is important to carefully evaluate and assess the quality of this data and remove any artifacts to maintain a useful climate data record. Quality Assessment (QA) is an integral part of the processing chain at MODAPS. This presentation will describe the QA approaches and tools adopted by the MODIS Land/Atmosphere Operational Product Evaluation (LDOPE) team to assess the quality of MODIS operational Atmospheric products produced at MODAPS. Some of the tools include global high resolution images, time series analysis and statistical QA metrics. The new high resolution global browse images with pan and zoom have provided the ability to perform QA of products in real time through synoptic QA on the web. This global browse generation has been useful in identifying production error, data loss, and data quality issues from calibration error, geolocation error and algorithm performance. A time series analysis for various science datasets in the Level-3 monthly product was recently developed for assessing any long term drifts in the data arising from instrument errors or other artifacts. This presentation will describe and discuss some test cases from the

  9. ON A NUMERICAL ALGORITHM FOR UNCERTAIN SYSTEM ∫ Φ ...

    African Journals Online (AJOL)

    Administrator

    Science World Journal Vol 7 (No 1) 2012 www.scienceworldjournal.org. ISSN 1597-6343. On a Numerical Algorithm for Uncertain System. Newton's Algorithm. Step 1 Calculate. )(),().(k k k. xAxgxF. Step 2. Check if ε. <. )(k xg for a predetermined ,ε if so stop, else. Step3. Set k k. PxA. )( = )(k xg. -. Step4. Set k k k. Px x. +. = +1.

  10. Quantum Computation and Algorithms

    International Nuclear Information System (INIS)

    Biham, O.; Biron, D.; Biham, E.; Grassi, M.; Lidar, D.A.

    1999-01-01

    It is now firmly established that quantum algorithms provide a substantial speedup over classical algorithms for a variety of problems, including the factorization of large numbers and the search for a marked element in an unsorted database. In this talk I will review the principles of quantum algorithms, the basic quantum gates and their operation. The combination of superposition and interference, that makes these algorithms efficient, will be discussed. In particular, Grover's search algorithm will be presented as an example. I will show that the time evolution of the amplitudes in Grover's algorithm can be found exactly using recursion equations, for any initial amplitude distribution

  11. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  12. On a numerical algorithm for uncertain system | Abiola | Science ...

    African Journals Online (AJOL)

    A numerical method for computing stable control signals for system with bounded input disturbance is developed. The algorithm is an elaboration of the gradient technique and variable metric method for computing control variables in linear and non-linear optimization problems. This method is developed for an integral ...

  13. Improved multivariate polynomial factoring algorithm

    International Nuclear Information System (INIS)

    Wang, P.S.

    1978-01-01

    A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included

  14. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    It may help the engineers to carry out type synthesis of the mechanisms. Volume 40 Issue 2 April 2015 pp 549-575 Mechanical Sciences. Analysis of double support phase of biped robot and multi-objective optimization using genetic algorithm and particle swarm optimization algorithm · Rega Rajendra Dilip Kumar Pratihar.

  15. An optimization algorithm for a capacitated vehicle routing problem ...

    Indian Academy of Sciences (India)

    Pinar Kirci

    PINAR KIRCI. Engineering Sciences Department, Istanbul University, Istanbul, Turkey .... In VRP solution methods, tabu search algorithm belongs to ..... systems which are considered in statistical mechanics is ..... Procedia-Social Behav. Sci.

  16. Algorithmic paranoia and the convivial alternative

    Directory of Open Access Journals (Sweden)

    Dan McQuillan

    2016-11-01

    Full Text Available In a time of big data, thinking about how we are seen and how that affects our lives means changing our idea about who does the seeing. Data produced by machines is most often ‘seen’ by other machines; the eye is in question is algorithmic. Algorithmic seeing does not produce a computational panopticon but a mechanism of prediction. The authority of its predictions rests on a slippage of the scientific method in to the world of data. Data science inherits some of the problems of science, especially the disembodied ‘view from above’, and adds new ones of its own. As its core methods like machine learning are based on seeing correlations not understanding causation, it reproduces the prejudices of its input. Rising in to the apparatuses of governance, it reinforces the problematic sides of ‘seeing like a state’ and links to the recursive production of paranoia. It forces us to ask the question ‘what counts as rational seeing?’. Answering this from a position of feminist empiricism reveals different possibilities latent in seeing with machines. Grounded in the idea of conviviality, machine learning may reveal forgotten non-market patterns and enable free and critical learning. It is proposed that a programme to challenge the production of irrational pre-emption is also a search for the possibility of algorithmic conviviality.

  17. Comparison between iterative wavefront control algorithm and direct gradient wavefront control algorithm for adaptive optics system

    Science.gov (United States)

    Cheng, Sheng-Yi; Liu, Wen-Jin; Chen, Shan-Qiu; Dong, Li-Zhi; Yang, Ping; Xu, Bing

    2015-08-01

    Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ˜ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ˜ (O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits. Project supported by the National Key Scientific and Research Equipment Development Project of China (Grant No. ZDYZ2013-2), the National Natural Science Foundation of China (Grant No. 11173008), and the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program, China (Grant No. 2012JQ0012).

  18. Planning for Planetary Science Mission Including Resource Prospecting, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in computer-aided mission planning can enhance mission operations and science return for surface missions to Mars, the Moon, and beyond. While the...

  19. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 24; Issue 4. Evaluation of solid–liquid interface profile during continuous casting by a spline based formalism. S K Das. Metals and Alloys Volume ... Keywords. Continuous casting; solidification; solid–liquid interface; front tracking algorithm; phase change; heat transfer.

  20. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  1. Algorithms in combinatorial design theory

    CERN Document Server

    Colbourn, CJ

    1985-01-01

    The scope of the volume includes all algorithmic and computational aspects of research on combinatorial designs. Algorithmic aspects include generation, isomorphism and analysis techniques - both heuristic methods used in practice, and the computational complexity of these operations. The scope within design theory includes all aspects of block designs, Latin squares and their variants, pairwise balanced designs and projective planes and related geometries.

  2. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  3. Novel quantum inspired binary neural network algorithm

    Indian Academy of Sciences (India)

    This parameter is taken as the threshold of neuron for learning of neural network. This algorithm is tested with three benchmark datasets and ... Author Affiliations. OM PRAKASH PATEL1 ARUNA TIWARI. Department of Computer Science and Engineering, Indian Institute of Technology Indore, Indore 453552, India ...

  4. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  5. 3rd Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2014-01-01

    This book is based on the research papers presented in the 3rd Computer Science On-line Conference 2014 (CSOC 2014).   The conference is intended to provide an international forum for discussions on the latest high-quality research results in all areas related to Computer Science. The topics addressed are the theoretical aspects and applications of Artificial Intelligences, Computer Science, Informatics and Software Engineering.   The authors provide new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in their field. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented.   This book is divided into three sections and covers topics including Artificial Intelligence, Computer Science and Software Engineering. Each section consists of new theoretical contributions and applications which can be used for the further development of knowledge of everybod...

  6. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server

    2015-01-01

    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  7. Betweenness-based algorithm for a partition scale-free graph

    International Nuclear Information System (INIS)

    Zhang Bai-Da; Wu Jun-Jie; Zhou Jing; Tang Yu-Hua

    2011-01-01

    Many real-world networks are found to be scale-free. However, graph partition technology, as a technology capable of parallel computing, performs poorly when scale-free graphs are provided. The reason for this is that traditional partitioning algorithms are designed for random networks and regular networks, rather than for scale-free networks. Multilevel graph-partitioning algorithms are currently considered to be the state of the art and are used extensively. In this paper, we analyse the reasons why traditional multilevel graph-partitioning algorithms perform poorly and present a new multilevel graph-partitioning paradigm, top down partitioning, which derives its name from the comparison with the traditional bottom—up partitioning. A new multilevel partitioning algorithm, named betweenness-based partitioning algorithm, is also presented as an implementation of top—down partitioning paradigm. An experimental evaluation of seven different real-world scale-free networks shows that the betweenness-based partitioning algorithm significantly outperforms the existing state-of-the-art approaches. (interdisciplinary physics and related areas of science and technology)

  8. A two-stage algorithm for Clostridium difficile including PCR: can we replace the toxin EIA?

    Science.gov (United States)

    Orendi, J M; Monnery, D J; Manzoor, S; Hawkey, P M

    2012-01-01

    A two step, three-test algorithm for Clostridium difficile infection (CDI) was reviewed. Stool samples were tested by enzyme immunoassays for C. difficile common antigen glutamate dehydrogenase (G) and toxin A/B (T). Samples with discordant results were tested by polymerase chain reaction detecting the toxin B gene (P). The algorithm quickly identified patients with detectable toxin A/B, whereas a large group of patients excreting toxigenic C. difficile but with toxin A/B production below detection level (G(+)T(-)P(+)) was identified separately. The average white blood cell count in patients with a G(+)T(+) result was higher than in those with a G(+)T(-)P(+) result. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  9. Summary of research in applied mathematics, numerical analysis, and computer sciences

    Science.gov (United States)

    1986-01-01

    The major categories of current ICASE research programs addressed include: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effective numerical methods; computational problems in engineering and physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and computer systems and software, especially vector and parallel computers.

  10. A Modularity Degree Based Heuristic Community Detection Algorithm

    Directory of Open Access Journals (Sweden)

    Dongming Chen

    2014-01-01

    Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.

  11. Selecting a general-purpose data compression algorithm

    Science.gov (United States)

    Mathews, Gary Jason

    1995-01-01

    The National Space Science Data Center's Common Data Formate (CDF) is capable of storing many types of data such as scalar data items, vectors, and multidimensional arrays of bytes, integers, or floating point values. However, regardless of the dimensionality and data type, the data break down into a sequence of bytes that can be fed into a data compression function to reduce the amount of data without losing data integrity and thus remaining fully reconstructible. Because of the diversity of data types and high performance speed requirements, a general-purpose, fast, simple data compression algorithm is required to incorporate data compression into CDF. The questions to ask are how to evaluate and compare compression algorithms, and what compression algorithm meets all requirements. The object of this paper is to address these questions and determine the most appropriate compression algorithm to use within the CDF data management package that would be applicable to other software packages with similar data compression needs.

  12. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  13. Targeted learning in data science causal inference for complex longitudinal studies

    CERN Document Server

    van der Laan, Mark J

    2018-01-01

    This textbook for graduate students in statistics, data science, and public health deals with the practical challenges that come with big, complex, and dynamic data. It presents a scientific roadmap to translate real-world data science applications into formal statistical estimation problems by using the general template of targeted maximum likelihood estimators. These targeted machine learning algorithms estimate quantities of interest while still providing valid inference. Targeted learning methods within data science area critical component for solving scientific problems in the modern age. The techniques can answer complex questions including optimal rules for assigning treatment based on longitudinal data with time-dependent confounding, as well as other estimands in dependent data structures, such as networks. Included in Targeted Learning in Data Science are demonstrations with soft ware packages and real data sets that present a case that targeted learning is crucial for the next generatio...

  14. Algorithm Animations for Teaching and Learning the Main Ideas of Basic Sortings

    Science.gov (United States)

    Végh, Ladislav; Stoffová, Veronika

    2017-01-01

    Algorithms are hard to understand for novice computer science students because they dynamically modify values of elements of abstract data structures. Animations can help to understand algorithms, since they connect abstract concepts to real life objects and situations. In the past 30-35 years, there have been conducted many experiments in the…

  15. Foundations of genetic algorithms 1991

    CERN Document Server

    1991-01-01

    Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition

  16. An Evaluation of Concurrent Priority Queue Algorithms

    Science.gov (United States)

    1991-02-01

    path pronlem are testedi A! -S7 ?o An Evaluation of Concurrent Priority Queue Algorithms bv Qin Huang BS. Uiversity - of Science andi Technology of China...who have always supported me through my entire career and made my life more enjoyable. This research was supported in part by the Advanced Research

  17. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  18. Using rapidly-exploring random tree-based algorithms to find smooth and optimal trajectories

    CSIR Research Space (South Africa)

    Matebese, B

    2012-10-01

    Full Text Available -exploring random tree-based algorithms to fi nd smooth and optimal trajectories B MATEBESE1, MK BANDA2 AND S UTETE1 1CSIR Modelling and Digital Science, PO Box 395, Pretoria, South Africa, 0001 2Department of Applied Mathematics, Stellenbosch University... and complex environments. The RRT algorithm is the most popular and has the ability to find a feasible solution faster than other algorithms. The drawback of using RRT is that, as the number of samples increases, the probability that the algorithm converges...

  19. A branch and bound algorithm for the global optimization of Hessian Lipschitz continuous functions

    KAUST Repository

    Fowkes, Jaroslav M.

    2012-06-21

    We present a branch and bound algorithm for the global optimization of a twice differentiable nonconvex objective function with a Lipschitz continuous Hessian over a compact, convex set. The algorithm is based on applying cubic regularisation techniques to the objective function within an overlapping branch and bound algorithm for convex constrained global optimization. Unlike other branch and bound algorithms, lower bounds are obtained via nonconvex underestimators of the function. For a numerical example, we apply the proposed branch and bound algorithm to radial basis function approximations. © 2012 Springer Science+Business Media, LLC.

  20. The Kepler Science Data Processing Pipeline Source Code Road Map

    Science.gov (United States)

    Wohler, Bill; Jenkins, Jon M.; Twicken, Joseph D.; Bryson, Stephen T.; Clarke, Bruce Donald; Middour, Christopher K.; Quintana, Elisa Victoria; Sanderfer, Jesse Thomas; Uddin, Akm Kamal; Sabale, Anima; hide

    2016-01-01

    We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including, the software algorithms. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization.

  1. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  2. COALA-System for Visual Representation of Cryptography Algorithms

    Science.gov (United States)

    Stanisavljevic, Zarko; Stanisavljevic, Jelena; Vuletic, Pavle; Jovanovic, Zoran

    2014-01-01

    Educational software systems have an increasingly significant presence in engineering sciences. They aim to improve students' attitudes and knowledge acquisition typically through visual representation and simulation of complex algorithms and mechanisms or hardware systems that are often not available to the educational institutions. This paper…

  3. Experimental methods for the analysis of optimization algorithms

    CERN Document Server

    Bartz-Beielstein, Thomas; Paquete, Luis; Preuss, Mike

    2010-01-01

    In operations research and computer science it is common practice to evaluate the performance of optimization algorithms on the basis of computational results, and the experimental approach should follow accepted principles that guarantee the reliability and reproducibility of results. However, computational experiments differ from those in other sciences, and the last decade has seen considerable methodological research devoted to understanding the particular features of such experiments and assessing the related statistical methods. This book consists of methodological contributions on diffe

  4. Majorization arrow in quantum-algorithm design

    International Nuclear Information System (INIS)

    Latorre, J.I.; Martin-Delgado, M.A.

    2002-01-01

    We apply majorization theory to study the quantum algorithms known so far and find that there is a majorization principle underlying the way they operate. Grover's algorithm is a neat instance of this principle where majorization works step by step until the optimal target state is found. Extensions of this situation are also found in algorithms based in quantum adiabatic evolution and the family of quantum phase-estimation algorithms, including Shor's algorithm. We state that in quantum algorithms the time arrow is a majorization arrow

  5. Fast geometric algorithms

    International Nuclear Information System (INIS)

    Noga, M.T.

    1984-01-01

    This thesis addresses a number of important problems that fall within the framework of the new discipline of Computational Geometry. The list of topics covered includes sorting and selection, convex hull algorithms, the L 1 hull, determination of the minimum encasing rectangle of a set of points, the Euclidean and L 1 diameter of a set of points, the metric traveling salesman problem, and finding the superrange of star-shaped and monotype polygons. The main theme of all the work was to develop a set of very fast state-of-the-art algorithms that supersede any rivals in terms of speed and ease of implementation. In some cases existing algorithms were refined; for others new techniques were developed that add to the present database of fast adaptive geometric algorithms. What emerges is a collection of techniques that is successful at merging modern tools developed in analysis of algorithms with those of classical geometry

  6. The Day-1 GPM Combined Precipitation Algorithm: IMERG

    Science.gov (United States)

    Huffman, G. J.; Bolvin, D. T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Sorooshian, S.; Xie, P.

    2012-12-01

    The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM) mission (IMERG) algorithm will provide the at-launch combined-sensor precipitation dataset being produced by the U.S. GPM Science Team. IMERG is being developed as a unified U.S. algorithm that takes advantage of strengths in three current U.S. algorithms: - the TRMM Multi-satellite Precipitation Analysis (TMPA), which addresses inter-satellite calibration of precipitation estimates and monthly scale combination of satellite and gauge analyses; - the CPC Morphing algorithm with Kalman Filtering (KF-CMORPH), which provides quality-weighted time interpolation of precipitation patterns following storm motion; and - the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks using a Cloud Classification System (PERSIANN-CCS), which provides a neural-network-based scheme for generating microwave-calibrated precipitation estimates from geosynchronous infrared brightness temperatures, and filters out some non-raining cold clouds. The goal is to provide a long-term, fine-scale record of global precipitation from the entire constellation of precipitation-relevant satellite sensors, with input from surface precipitation gauges. The record will begin January 1998 at the start of the Tropical Rainfall Measuring Mission (TRMM) and extend as GPM records additional data. Although homogeneity is considered desirable, the use of diverse and evolving data sources works against the strict long-term homogeneity that characterizes a Climate Data Record (CDR). This talk will briefly review the design requirements for IMERG, including multiple runs at different latencies (most likely around 4 hours, 12 hours, and 2 months after observation time), various intermediate data fields as part of the IMERG data file, and the plans to bring up IMERG with calibration by TRMM initially, transitioning to GPM when its individual-sensor precipitation algorithms are fully functional

  7. developed algorithm for the application of british method of concret

    African Journals Online (AJOL)

    t-iyke

    Most of the methods of concrete mix design developed over the years were geared towards manual approach. ... Key words: Concrete mix design; British method; Manual Approach; Algorithm. ..... Statistics for Science and Engineering.

  8. Riding the Hype Wave: Evaluating new AI Techniques for their Applicability in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Zhang, J.; Maskey, M.; Lee, T. J.

    2016-12-01

    Every few years a new technology rides the hype wave generated by the computer science community. Converts to this new technology who surface from both the science community and the informatics community promulgate that it can radically improve or even change the existing scientific process. Recent examples of new technology following in the footsteps of "big data" now include deep learning algorithms and knowledge graphs. Deep learning algorithms mimic the human brain and process information through multiple stages of transformation and representation. These algorithms are able to learn complex functions that map pixels directly to outputs without relying on human-crafted features and solve some of the complex classification problems that exist in science. Similarly, knowledge graphs aggregate information around defined topics that enable users to resolve their query without having to navigate and assemble information manually. Knowledge graphs could potentially be used in scientific research to assist in hypothesis formulation, testing, and review. The challenge for the Earth science research community is to evaluate these new technologies by asking the right questions and considering what-if scenarios. What is this new technology enabling/providing that is innovative and different? Can one justify the adoption costs with respect to the research returns? Since nothing comes for free, utilizing a new technology entails adoption costs that may outweigh the benefits. Furthermore, these technologies may require significant computing infrastructure in order to be utilized effectively. Results from two different projects will be presented along with lessons learned from testing these technologies. The first project primarily evaluates deep learning techniques for different applications of image retrieval within Earth science while the second project builds a prototype knowledge graph constructed for Hurricane science.

  9. Proceedings of the 6th Computer Science On-line Conference 2017

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Prokopova, Zdenka; Silhavy, Petr

    2017-01-01

    This book presents new methods and approaches to real-world problems as well as exploratory research that describes novel artificial intelligence applications, including deep learning, neural networks and hybrid algorithms. This book constitutes the refereed proceedings of the Artificial Intelligence Trends in Intelligent Systems Section of the 6th Computer Science On-line Conference 2017 (CSOC 2017), held in April 2017. .

  10. Truth in advertising: Reporting performance of computer programs, algorithms and the impact of architecture

    Directory of Open Access Journals (Sweden)

    Scott Hazelhurst

    2010-11-01

    Full Text Available The level of detail and precision that appears in the experimental methodology section computer science papers is usually much less than in natural science disciplines. This is partially justified by different nature of experiments. The experimental evidence presented here shows that the time taken by the same algorithm varies so significantly on different CPUs that without knowing the exact model of CPU, it is difficult to compare the results. This is placed in context by analysing a cross-section of experimental results reported in the literature. The reporting of experimental results is sometimes insufficient to allow experiments to be replicated, and in some case is insufficient to support the claims made for the algorithms. New standards for reporting on algorithms results are suggested.

  11. Levels of abstraction in students' understanding of the concept of algorithm : the qualitative perspective

    NARCIS (Netherlands)

    Perrenet, J.C.; Kaasenbrood, E.J.S.

    2006-01-01

    In a former, mainly quantitative, study we defined four levels of abstraction in Computer Science students' thinking about the concept of algorithm. We constructed a list of questions about algorithms to measure the answering level as an indication for the thinking level. The answering level

  12. A Faster Algorithm for Computing Motorcycle Graphs

    KAUST Repository

    Vigneron, Antoine E.; Yan, Lie

    2014-01-01

    We present a new algorithm for computing motorcycle graphs that runs in (Formula presented.) time for any (Formula presented.), improving on all previously known algorithms. The main application of this result is to computing the straight skeleton of a polygon. It allows us to compute the straight skeleton of a non-degenerate polygon with (Formula presented.) holes in (Formula presented.) expected time. If all input coordinates are (Formula presented.)-bit rational numbers, we can compute the straight skeleton of a (possibly degenerate) polygon with (Formula presented.) holes in (Formula presented.) expected time. In particular, it means that we can compute the straight skeleton of a simple polygon in (Formula presented.) expected time if all input coordinates are (Formula presented.)-bit rationals, while all previously known algorithms have worst-case running time (Formula presented.). © 2014 Springer Science+Business Media New York.

  13. A Faster Algorithm for Computing Motorcycle Graphs

    KAUST Repository

    Vigneron, Antoine E.

    2014-08-29

    We present a new algorithm for computing motorcycle graphs that runs in (Formula presented.) time for any (Formula presented.), improving on all previously known algorithms. The main application of this result is to computing the straight skeleton of a polygon. It allows us to compute the straight skeleton of a non-degenerate polygon with (Formula presented.) holes in (Formula presented.) expected time. If all input coordinates are (Formula presented.)-bit rational numbers, we can compute the straight skeleton of a (possibly degenerate) polygon with (Formula presented.) holes in (Formula presented.) expected time. In particular, it means that we can compute the straight skeleton of a simple polygon in (Formula presented.) expected time if all input coordinates are (Formula presented.)-bit rationals, while all previously known algorithms have worst-case running time (Formula presented.). © 2014 Springer Science+Business Media New York.

  14. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  15. DNA Cryptography and Deep Learning using Genetic Algorithm with NW algorithm for Key Generation.

    Science.gov (United States)

    Kalsi, Shruti; Kaur, Harleen; Chang, Victor

    2017-12-05

    Cryptography is not only a science of applying complex mathematics and logic to design strong methods to hide data called as encryption, but also to retrieve the original data back, called decryption. The purpose of cryptography is to transmit a message between a sender and receiver such that an eavesdropper is unable to comprehend it. To accomplish this, not only we need a strong algorithm, but a strong key and a strong concept for encryption and decryption process. We have introduced a concept of DNA Deep Learning Cryptography which is defined as a technique of concealing data in terms of DNA sequence and deep learning. In the cryptographic technique, each alphabet of a letter is converted into a different combination of the four bases, namely; Adenine (A), Cytosine (C), Guanine (G) and Thymine (T), which make up the human deoxyribonucleic acid (DNA). Actual implementations with the DNA don't exceed laboratory level and are expensive. To bring DNA computing on a digital level, easy and effective algorithms are proposed in this paper. In proposed work we have introduced firstly, a method and its implementation for key generation based on the theory of natural selection using Genetic Algorithm with Needleman-Wunsch (NW) algorithm and Secondly, a method for implementation of encryption and decryption based on DNA computing using biological operations Transcription, Translation, DNA Sequencing and Deep Learning.

  16. Contact-impact algorithms on parallel computers

    International Nuclear Information System (INIS)

    Zhong Zhihua; Nilsson, Larsgunnar

    1994-01-01

    Contact-impact algorithms on parallel computers are discussed within the context of explicit finite element analysis. The algorithms concerned include a contact searching algorithm and an algorithm for contact force calculations. The contact searching algorithm is based on the territory concept of the general HITA algorithm. However, no distinction is made between different contact bodies, or between different contact surfaces. All contact segments from contact boundaries are taken as a single set. Hierarchy territories and contact territories are expanded. A three-dimensional bucket sort algorithm is used to sort contact nodes. The defence node algorithm is used in the calculation of contact forces. Both the contact searching algorithm and the defence node algorithm are implemented on the connection machine CM-200. The performance of the algorithms is examined under different circumstances, and numerical results are presented. ((orig.))

  17. Benchmark Framework for Mobile Robots Navigation Algorithms

    Directory of Open Access Journals (Sweden)

    Nelson David Muñoz-Ceballos

    2014-01-01

    Full Text Available Despite the wide variety of studies and research on mobile robot systems, performance metrics are not often examined. This makes difficult to establish an objective comparison of achievements. In this paper, the navigation of an autonomous mobile robot is evaluated. Several metrics are described. These metrics, collectively, provide an indication of navigation quality, useful for comparing and analyzing navigation algorithms of mobile robots. This method is suggested as an educational tool, which allows the student to optimize the algorithms quality, relating to important aspectsof science, technology and engineering teaching, as energy consumption, optimization and design.

  18. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  19. Algorithmic, LOCS and HOCS (chemistry) exam questions: performance and attitudes of college students

    Science.gov (United States)

    Zoller, Uri

    2002-02-01

    The performance of freshmen biology and physics-mathematics majors and chemistry majors as well as pre- and in-service chemistry teachers in two Israeli universities on algorithmic (ALG), lower-order cognitive skills (LOCS), and higher-order cognitive skills (HOCS) chemistry exam questions were studied. The driving force for the study was an interest in moving science and chemistry instruction from an algorithmic and factual recall orientation dominated by LOCS, to a decision-making, problem-solving and critical system thinking approach, dominated by HOCS. College students' responses to the specially designed ALG, LOCS and HOCS chemistry exam questions were scored and analysed for differences and correlation between the performance means within and across universities by the questions' category. This was followed by a combined student interview - 'speaking aloud' problem solving session for assessing the thinking processes involved in solving these types of questions and the students' attitudes towards them. The main findings were: (1) students in both universities performed consistently in each of the three categories in the order of ALG > LOCS > HOCS; their 'ideological' preference, was HOCS > algorithmic/LOCS, - referred to as 'computational questions', but their pragmatic preference was the reverse; (2) success on algorithmic/LOCS does not imply success on HOCS questions; algorithmic questions constitute a category on its own as far as students success in solving them is concerned. Our study and its results support the effort being made, worldwide, to integrate HOCS-fostering teaching and assessment strategies and, to develop HOCS-oriented science-technology-environment-society (STES)-type curricula within science and chemistry education.

  20. Analysis of Nature of Science Included in Recent Popular Writing Using Text Mining Techniques

    Science.gov (United States)

    Jiang, Feng; McComas, William F.

    2014-01-01

    This study examined the inclusion of nature of science (NOS) in popular science writing to determine whether it could serve supplementary resource for teaching NOS and to evaluate the accuracy of text mining and classification as a viable research tool in science education research. Four groups of documents published from 2001 to 2010 were…

  1. Quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Shenvi, Neil; Whaley, K. Birgitta; Kempe, Julia

    2003-01-01

    Quantum random walks on graphs have been shown to display many interesting properties, including exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear how to use these novel properties to gain an algorithmic speedup over classical algorithms. In this paper, we present a quantum search algorithm based on the quantum random-walk architecture that provides such a speedup. It will be shown that this algorithm performs an oracle search on a database of N items with O(√(N)) calls to the oracle, yielding a speedup similar to other quantum search algorithms. It appears that the quantum random-walk formulation has considerable flexibility, presenting interesting opportunities for development of other, possibly novel quantum algorithms

  2. Algorithms for Calculating Alternating Infinite Series

    International Nuclear Information System (INIS)

    Garcia, Hector Luna; Garcia, Luz Maria

    2015-01-01

    This paper are presented novel algorithms for exact limits of a broad class of infinite alternating series. Many of these series are found in physics and other branches of science and their exact values found for us are in complete agreement with the values obtained by other authors. Finally, these simple methods are very powerful in calculating the limits of many series as shown by the examples

  3. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 124; Issue 5 ... water cycles and predict the effect of climate change on terrestrial ecosystems, it is ... Application of ANN and fuzzy logic algorithms for streamflow modelling of Savitri .... Influence of nutrient input on the trophic state of a tropical brackish water lagoon.

  4. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Duke). Date of birth: 24 May 1962. Specialization: Algorithms (Sequential & Parallel), Probabilistic Analysis & Randomization and Computational Geometry Address: Department of Computer Science & Engineering, Indian Institute of Technology, ...

  5. Optimization in optical systems revisited: Beyond genetic algorithms

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Dubé, Louis

    2013-05-01

    Designing integrated photonic devices such as waveguides, beam-splitters and beam-shapers often requires optimization of a cost function over a large solution space. Metaheuristics - algorithms based on empirical rules for exploring the solution space - are specifically tailored to those problems. One of the most widely used metaheuristics is the standard genetic algorithm (SGA), based on the evolution of a population of candidate solutions. However, the stochastic nature of the SGA sometimes prevents access to the optimal solution. Our goal is to show that a parallel tabu search (PTS) algorithm is more suited to optimization problems in general, and to photonics in particular. PTS is based on several search processes using a pool of diversified initial solutions. To assess the performance of both algorithms (SGA and PTS), we consider an integrated photonics design problem, the generation of arbitrary beam profiles using a two-dimensional waveguide-based dielectric structure. The authors acknowledge financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

  6. Computational Science and Innovation

    International Nuclear Information System (INIS)

    Dean, David Jarvis

    2011-01-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  7. Applications of modern statistical methods to analysis of data in physical science

    Science.gov (United States)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance

  8. Material Science Image Analysis using Quant-CT in ImageJ

    Energy Technology Data Exchange (ETDEWEB)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  9. Separated Representations and Fast Algorithms for Materials Science

    Science.gov (United States)

    2007-10-29

    Quantum Chemisty , 127 (1999), pp. 143–269. [28] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis. Applications in the Chemical Sciences, John...Advances in highly correlated approaches. Advances in Quantum Chemisty , 127:143–269, 1999. [58] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way Analysis

  10. A new algorithm for hip fracture surgery

    DEFF Research Database (Denmark)

    Palm, Henrik; Krasheninnikoff, Michael; Holck, Kim

    2012-01-01

    Background and purpose Treatment of hip fracture patients is controversial. We implemented a new operative and supervision algorithm (the Hvidovre algorithm) for surgical treatment of all hip fractures, primarily based on own previously published results. Methods 2,000 consecutive patients over 50...... years of age who were admitted and operated on because of a hip fracture were prospectively included. 1,000 of these patients were included after implementation of the algorithm. Demographic parameters, hospital treatment, and reoperations within the first postoperative year were assessed from patient...... by reoperations was reduced from 24% of total hospitalization before the algorithm was introduced to 18% after it was introduced. Interpretation It is possible to implement an algorithm for treatment of all hip fracture patients in a large teaching hospital. In our case, the Hvidovre algorithm both raised...

  11. Semioptimal practicable algorithmic cooling

    International Nuclear Information System (INIS)

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-01-01

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  12. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 4. Decoding Reed–Solomon Codes Using Euclid's Algorithm. Priti Shankar. General Article Volume 12 ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India.

  13. Creating Engaging Online Learning Material with the JSAV JavaScript Algorithm Visualization Library

    Science.gov (United States)

    Karavirta, Ville; Shaffer, Clifford A.

    2016-01-01

    Data Structures and Algorithms are a central part of Computer Science. Due to their abstract and dynamic nature, they are a difficult topic to learn for many students. To alleviate these learning difficulties, instructors have turned to algorithm visualizations (AV) and AV systems. Research has shown that especially engaging AVs can have an impact…

  14. Plagiarism Detection Algorithm for Source Code in Computer Science Education

    Science.gov (United States)

    Liu, Xin; Xu, Chan; Ouyang, Boyu

    2015-01-01

    Nowadays, computer programming is getting more necessary in the course of program design in college education. However, the trick of plagiarizing plus a little modification exists among some students' home works. It's not easy for teachers to judge if there's plagiarizing in source code or not. Traditional detection algorithms cannot fit this…

  15. The Nasa-Isro SAR Mission Science Data Products and Processing Workflows

    Science.gov (United States)

    Rosen, P. A.; Agram, P. S.; Lavalle, M.; Cohen, J.; Buckley, S.; Kumar, R.; Misra-Ray, A.; Ramanujam, V.; Agarwal, K. M.

    2017-12-01

    The NASA-ISRO SAR (NISAR) Mission is currently in the development phase and in the process of specifying its suite of data products and algorithmic workflows, responding to inputs from the NISAR Science and Applications Team. NISAR will provide raw data (Level 0), full-resolution complex imagery (Level 1), and interferometric and polarimetric image products (Level 2) for the entire data set, in both natural radar and geocoded coordinates. NASA and ISRO are coordinating the formats, meta-data layers, and algorithms for these products, for both the NASA-provided L-band radar and the ISRO-provided S-band radar. Higher level products will be also be generated for the purpose of calibration and validation, over large areas of Earth, including tectonic plate boundaries, ice sheets and sea-ice, and areas of ecosystem disturbance and change. This level of comprehensive product generation has been unprecedented for SAR missions in the past, and leads to storage processing challenges for the production system and the archive center. Further, recognizing the potential to support applications that require low latency product generation and delivery, the NISAR team is optimizing the entire end-to-end ground data system for such response, including exploring the advantages of cloud-based processing, algorithmic acceleration using GPUs, and on-demand processing schemes that minimize computational and transport costs, but allow rapid delivery to science and applications users. This paper will review the current products, workflows, and discuss the scientific and operational trade-space of mission capabilities.

  16. Euclidean shortest paths exact or approximate algorithms

    CERN Document Server

    Li, Fajie

    2014-01-01

    This book reviews algorithms for the exact or approximate solution of shortest-path problems, with a specific focus on a class of algorithms called rubberband algorithms. The coverage includes mathematical proofs for many of the given statements.

  17. Computational algorithm for molybdenite concentrate annealing

    International Nuclear Information System (INIS)

    Alkatseva, V.M.

    1995-01-01

    Computational algorithm is presented for annealing of molybdenite concentrate with granulated return dust and that of granulated molybdenite concentrate. The algorithm differs from the known analogies for sulphide raw material annealing by including the calculation of return dust mass in stationary annealing; the latter quantity varies form the return dust mass value obtained in the first iteration step. Masses of solid products are determined by distribution of concentrate annealing products, including return dust and benthonite. The algorithm is applied to computations for annealing of other sulphide materials. 3 refs

  18. Modeling a novel CCHP system including solar and wind renewable energy resources and sizing by a CC-MOPSO algorithm

    International Nuclear Information System (INIS)

    Soheyli, Saman; Shafiei Mayam, Mohamad Hossein; Mehrjoo, Mehri

    2016-01-01

    Highlights: • Considering renewable energy resources as the main prime movers in CCHP systems. • Simultaneous application of FEL and FTL by optimizing two probability functions. • Simultaneous optimization the equipment and penalty factors by CC-MOPSO algorithm. • Reducing fuel consumption and pollution up to 263 and 353 times, respectively. - Abstract: Due to problems, such as, heat losses of equipment, low energy efficiency, increasing pollution and the fossil fuels consumption, combined cooling, heating, and power (CCHP) systems have attracted lots of attention during the last decade. In this paper, for minimizing fossil fuel consumption and pollution, a novel CCHP system including photovoltaic (PV) modules, wind turbines, and solid oxide fuel cells (SOFC) as the prime movers is considered. Moreover, in order to minimize the excess electrical and heat energy production of the CCHP system and so reducing the need for the local power grid and any auxiliary heat production system, following electrical load (FEL) and following thermal load (FTL) operation strategies are considered, simultaneously. In order to determine the optimal number of each system component and also set the penalty factors in the used penalty function, a co-constrained multi objective particle swarm optimization (CC-MOPSO) algorithm is applied. Utilization of the renewable energy resources, the annual total cost (ATC) and the CCHP system area are considered as the objective functions. It also includes constraints such as, loss of power supply probability (LPSP), loss of heat supply probability (LHSP), state of battery charge (SOC), and the number of each CCHP component. A hypothetical hotel in Kermanshah, Iran is conducted to verify the feasibility of the proposed system. 10 wind turbines, 430 PV modules, 11 SOFCs, 106 batteries and 2 heat storage tanks (HST) are numerical results for the spring as the best season in terms of decreasing cost and fuel consumption. Comparing the results

  19. Routing algorithms in networks-on-chip

    CERN Document Server

    Daneshtalab, Masoud

    2014-01-01

    This book provides a single-source reference to routing algorithms for Networks-on-Chip (NoCs), as well as in-depth discussions of advanced solutions applied to current and next generation, many core NoC-based Systems-on-Chip (SoCs). After a basic introduction to the NoC design paradigm and architectures, routing algorithms for NoC architectures are presented and discussed at all abstraction levels, from the algorithmic level to actual implementation.  Coverage emphasizes the role played by the routing algorithm and is organized around key problems affecting current and next generation, many-core SoCs. A selection of routing algorithms is included, specifically designed to address key issues faced by designers in the ultra-deep sub-micron (UDSM) era, including performance improvement, power, energy, and thermal issues, fault tolerance and reliability.   ·         Provides a comprehensive overview of routing algorithms for Networks-on-Chip and NoC-based, manycore systems; ·         Describe...

  20. Handbook of Memetic Algorithms

    CERN Document Server

    Cotta, Carlos; Moscato, Pablo

    2012-01-01

    Memetic Algorithms (MAs) are computational intelligence structures combining multiple and various operators in order to address optimization problems.  The combination and interaction amongst operators evolves and promotes the diffusion of the most successful units and generates an algorithmic behavior which can handle complex objective functions and hard fitness landscapes.   “Handbook of Memetic Algorithms” organizes, in a structured way, all the the most important results in the field of MAs since their earliest definition until now.  A broad review including various algorithmic solutions as well as successful applications is included in this book. Each class of optimization problems, such as constrained optimization, multi-objective optimization, continuous vs combinatorial problems, uncertainties, are analysed separately and, for each problem,  memetic recipes for tackling the difficulties are given with some successful examples. Although this book contains chapters written by multiple authors, ...

  1. A Chinese text classification system based on Naive Bayes algorithm

    Directory of Open Access Journals (Sweden)

    Cui Wei

    2016-01-01

    Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.

  2. Practical mathematical optimization basic optimization theory and gradient-based algorithms

    CERN Document Server

    Snyman, Jan A

    2018-01-01

    This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and dir...

  3. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  4. Korea's Contribution to Radiological Research Included in Science Citation Index Expanded, 1986-2010

    International Nuclear Information System (INIS)

    Ku, You Jin; Yoon, Dae Young; Lim, Kyoung Ja; Baek, Sora; Seo, Young Lan; Yun, Eun Joo; Choi, Chul Soon; Bae, Sang Hoon; Lee, Hyun; Ju, Young Su

    2012-01-01

    To evaluate scientific papers published by Korean radiologists in the Science Citation Index Expanded (SCIE) radiology journals, between 1986 and 2010. The Institute for Scientific Information Web of Knowledge-Web of Science (SCIE) database was searched for all articles published by Korean radiologists, in SCIE radiology journals, between 1986 and 2010. We performed the analysis by typing 'Korea' and 'radiol' in the address section and selecting the subject area of 'Radiology, Nuclear Medicine, and Medical Imaging' with the use of the general search function of the software. Analyzed parameters included the total number of publications, document types, journals, and institutions. In addition, we analyzed where Korea ranks, compared to other countries, in terms of the number of published articles. All these data were analyzed according to five time periods: 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-2010. Overall, 4974 papers were published by Korean radiologists, in 99 different SCIE journals, between 1986 and 2010, of which 4237 (85.2%) were article-type papers. Of the total 115395 articles, worldwide, published in radiology journals, Korea's share was 3.7%, with an upward trend over time (p < 0.005). The journal with the highest number of articles was the American Journal of Roentgenology (n 565, 13.3%). The institution which produced the highest number of publications was Seoul National University (n = 932, 22.0%). The number of scientific articles published by Korean radiologists in the SCIE radiology journals has increased significantly between 1986 and 2010. Korea was ranked 4th among countries contributing to radiology research during the last 5 years.

  5. Optimisation of Hidden Markov Model using Baum–Welch algorithm

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 126; Issue 1. Optimisation of Hidden Markov Model using Baum–Welch algorithm for prediction of maximum and minimum temperature over Indian Himalaya. J C Joshi Tankeshwar Kumar Sunita Srivastava Divya Sachdeva. Volume 126 Issue 1 February 2017 ...

  6. Algorithms and architectures of artificial intelligence

    CERN Document Server

    Tyugu, E

    2007-01-01

    This book gives an overview of methods developed in artificial intelligence for search, learning, problem solving and decision-making. It gives an overview of algorithms and architectures of artificial intelligence that have reached the degree of maturity when a method can be presented as an algorithm, or when a well-defined architecture is known, e.g. in neural nets and intelligent agents. It can be used as a handbook for a wide audience of application developers who are interested in using artificial intelligence methods in their software products. Parts of the text are rather independent, so that one can look into the index and go directly to a description of a method presented in the form of an abstract algorithm or an architectural solution. The book can be used also as a textbook for a course in applied artificial intelligence. Exercises on the subject are added at the end of each chapter. Neither programming skills nor specific knowledge in computer science are expected from the reader. However, some p...

  7. AntStar: Enhancing Optimization Problems by Integrating an Ant System and A⁎ Algorithm

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-01-01

    Full Text Available Recently, nature-inspired techniques have become valuable to many intelligent systems in different fields of technology and science. Among these techniques, Ant Systems (AS have become a valuable technique for intelligent systems in different fields. AS is a computational system inspired by the foraging behavior of ants and intended to solve practical optimization problems. In this paper, we introduce the AntStar algorithm, which is swarm intelligence based. AntStar enhances the optimization and performance of an AS by integrating the AS and A⁎ algorithm. Applying the AntStar algorithm to the single-source shortest-path problem has been done to ensure the efficiency of the proposed AntStar algorithm. The experimental result of the proposed algorithm illustrated the robustness and accuracy of the AntStar algorithm.

  8. The Psychopharmacology Algorithm Project at the Harvard South Shore Program: An Algorithm for Generalized Anxiety Disorder.

    Science.gov (United States)

    Abejuela, Harmony Raylen; Osser, David N

    2016-01-01

    This revision of previous algorithms for the pharmacotherapy of generalized anxiety disorder was developed by the Psychopharmacology Algorithm Project at the Harvard South Shore Program. Algorithms from 1999 and 2010 and associated references were reevaluated. Newer studies and reviews published from 2008-14 were obtained from PubMed and analyzed with a focus on their potential to justify changes in the recommendations. Exceptions to the main algorithm for special patient populations, such as women of childbearing potential, pregnant women, the elderly, and those with common medical and psychiatric comorbidities, were considered. Selective serotonin reuptake inhibitors (SSRIs) are still the basic first-line medication. Early alternatives include duloxetine, buspirone, hydroxyzine, pregabalin, or bupropion, in that order. If response is inadequate, then the second recommendation is to try a different SSRI. Additional alternatives now include benzodiazepines, venlafaxine, kava, and agomelatine. If the response to the second SSRI is unsatisfactory, then the recommendation is to try a serotonin-norepinephrine reuptake inhibitor (SNRI). Other alternatives to SSRIs and SNRIs for treatment-resistant or treatment-intolerant patients include tricyclic antidepressants, second-generation antipsychotics, and valproate. This revision of the GAD algorithm responds to issues raised by new treatments under development (such as pregabalin) and organizes the evidence systematically for practical clinical application.

  9. Improvement on a science curriculum including experimental demonstration of environmental radioactivity for secondary school students

    International Nuclear Information System (INIS)

    Watanabe, Kenji; Matsubara, Shizuo; Aiba, Yoshio; Eriguchi, Hiroshi; Kiyota, Saburo; Takeyama, Tetsuji.

    1988-01-01

    A science curriculum previously prepared for teaching environmental radioactivity was modified on the basis of the results of trial instructions in secondary schools. The main subject of the revised curriculum is an understanding of the natural radioactivity through the experimental demonstration about air-borne β and γ ray emitters. The other subjects included are the radioactive decay, the biological effects of radiation, the concept of risk-benefit balance (acceptable level) and the peaceful uses of nuclear energy and radiation. The work sheets and reference data prepared as learning materials are in two levels corresponding to the ability of students for this curriculum. (author)

  10. a pyramid algorithm for the haar discrete wavelet packet transform

    African Journals Online (AJOL)

    PROF EKWUEME

    computer-aided signal processing of non-stationary signals, this paper develops a pyramid algorithm for the discrete wavelet packet ... Edith T. Luhanga, School of Computational and Communication Sciences and Engineering, Nelson Mandela African. Institute of ..... Mathematics, Washington University. 134. EDITH T.

  11. Chinese handwriting recognition an algorithmic perspective

    CERN Document Server

    Su, Tonghua

    2013-01-01

    This book provides an algorithmic perspective on the recent development of Chinese handwriting recognition. Two technically sound strategies, the segmentation-free and integrated segmentation-recognition strategy, are investigated and algorithms that have worked well in practice are primarily focused on. Baseline systems are initially presented for these strategies and are subsequently expanded on and incrementally improved. The sophisticated algorithms covered include: 1) string sample expansion algorithms which synthesize string samples from isolated characters or distort realistic string samples; 2) enhanced feature representation algorithms, e.g. enhanced four-plane features and Delta features; 3) novel learning algorithms, such as Perceptron learning with dynamic margin, MPE training and distributed training; and lastly 4) ensemble algorithms, that is, combining the two strategies using both parallel structure and serial structure. All the while, the book moves from basic to advanced algorithms, helping ...

  12. Charting taxonomic knowledge through ontologies and ranking algorithms

    Science.gov (United States)

    Huber, Robert; Klump, Jens

    2009-04-01

    Since the inception of geology as a modern science, paleontologists have described a large number of fossil species. This makes fossilized organisms an important tool in the study of stratigraphy and past environments. Since taxonomic classifications of organisms, and thereby their names, change frequently, the correct application of this tool requires taxonomic expertise in finding correct synonyms for a given species name. Much of this taxonomic information has already been published in journals and books where it is compiled in carefully prepared synonymy lists. Because this information is scattered throughout the paleontological literature, it is difficult to find and sometimes not accessible. Also, taxonomic information in the literature is often difficult to interpret for non-taxonomists looking for taxonomic synonymies as part of their research. The highly formalized structure makes Open Nomenclature synonymy lists ideally suited for computer aided identification of taxonomic synonyms. Because a synonymy list is a list of citations related to a taxon name, its bibliographic nature allows the application of bibliometric techniques to calculate the impact of synonymies and taxonomic concepts. TaxonRank is a ranking algorithm based on bibliometric analysis and Internet page ranking algorithms. TaxonRank uses published synonymy list data stored in TaxonConcept, a taxonomic information system. The basic ranking algorithm has been modified to include a measure of confidence on species identification based on the Open Nomenclature notation used in synonymy list, as well as other synonymy specific criteria. The results of our experiments show that the output of the proposed ranking algorithm gives a good estimate of the impact a published taxonomic concept has on the taxonomic opinions in the geological community. Also, our results show that treating taxonomic synonymies as part of on an ontology is a way to record and manage taxonomic knowledge, and thus contribute

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 109; Issue 4. Volume 109, Issue 4. December 2000, pages 393-551. pp 393-394. Editorial · V K Gaur · More Details Fulltext PDF. pp 395-405. Analysis of pathfinder SST algorithm for global and regional conditions · Ajoy Kumar P Minnett G Podesta R Evans K ...

  14. Energy conservation in Newmark based time integration algorithms

    DEFF Research Database (Denmark)

    Krenk, Steen

    2006-01-01

    Energy balance equations are established for the Newmark time integration algorithm, and for the derived algorithms with algorithmic damping introduced via averaging, the so-called a-methods. The energy balance equations form a sequence applicable to: Newmark integration of the undamped equations...... of motion, an extended form including structural damping, and finally the generalized form including structural as well as algorithmic damping. In all three cases the expression for energy, appearing in the balance equation, is the mechanical energy plus some additional terms generated by the discretization...

  15. Parallel asynchronous systems and image processing algorithms

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  16. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    Science.gov (United States)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  17. Deductive Synthesis of the Unification Algorithm,

    Science.gov (United States)

    1981-06-01

    DEDUCTIVE SYNTHESIS OF THE I - UNIFICATION ALGORITHM Zohar Manna Richard Waldinger I F? Computer Science Department Artificial Intelligence Center...theorem proving," Artificial Intelligence Journal, Vol. 9, No. 1, pp. 1-35. Boyer, R. S. and J S. Moore [Jan. 19751, "Proving theorems about LISP...d’Intelligence Artificielle , U.E.R. de Luminy, Universit6 d’ Aix-Marseille II. Green, C. C. [May 1969], "Application of theorem proving to problem

  18. PSO-Based Algorithm Applied to Quadcopter Micro Air Vehicle Controller Design

    Directory of Open Access Journals (Sweden)

    Huu-Khoa Tran

    2016-09-01

    Full Text Available Due to the rapid development of science and technology in recent times, many effective controllers are designed and applied successfully to complicated systems. The significant task of controller design is to determine optimized control gains in a short period of time. With this purpose in mind, a combination of the particle swarm optimization (PSO-based algorithm and the evolutionary programming (EP algorithm is introduced in this article. The benefit of this integration algorithm is the creation of new best-parameters for control design schemes. The proposed controller designs are then demonstrated to have the best performance for nonlinear micro air vehicle models.

  19. Journal of Applied Sciences and Environmental Management - Vol ...

    African Journals Online (AJOL)

    Journal of Applied Sciences and Environmental Management. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Journal of Applied Sciences and Environmental Management - Vol 22, No 4 (2018) ... Evaluating the effect of mobility speed on the performance of three handover algorithms in ...

  20. Array architectures for iterative algorithms

    Science.gov (United States)

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  1. Preemptive Online Scheduling: Optimal Algorithms for All Speeds

    Czech Academy of Sciences Publication Activity Database

    Ebenlendr, Tomáš; Jawor, W.; Sgall, Jiří

    2009-01-01

    Roč. 53, č. 4 (2009), s. 504-522 ISSN 0178-4617 R&D Projects: GA MŠk(CZ) 1M0545; GA ČR GA201/05/0124; GA AV ČR IAA1019401 Institutional research plan: CEZ:AV0Z10190503 Keywords : anline algorithms * scheduling Subject RIV: IN - Informatics, Computer Science Impact factor: 0.917, year: 2009

  2. A simple algorithm for measuring particle size distributions on an uneven background from TEM images

    DEFF Research Database (Denmark)

    Gontard, Lionel Cervera; Ozkaya, Dogan; Dunin-Borkowski, Rafal E.

    2011-01-01

    Nanoparticles have a wide range of applications in science and technology. Their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we describe a simple computer algorithm for measuring particle size distributions from TEM images in the presence of a...... application to images of heterogeneous catalysts is presented.......Nanoparticles have a wide range of applications in science and technology. Their sizes are often measured using transmission electron microscopy (TEM) or X-ray diffraction. Here, we describe a simple computer algorithm for measuring particle size distributions from TEM images in the presence...

  3. Species co-evolutionary algorithm: a novel evolutionary algorithm based on the ecology and environments for optimization

    DEFF Research Database (Denmark)

    Li, Wuzhao; Wang, Lei; Cai, Xingjuan

    2015-01-01

    and affect each other in many ways. The relationships include competition, predation, parasitism, mutualism and pythogenesis. In this paper, we consider the five relationships between solutions to propose a co-evolutionary algorithm termed species co-evolutionary algorithm (SCEA). In SCEA, five operators...

  4. A generic algorithm for layout of biological networks.

    Science.gov (United States)

    Schreiber, Falk; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2009-11-12

    Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration. We present a novel algorithm to visualize different biological networks and network analysis results in meaningful ways depending on network types and analysis outcome. Our method is based on constrained graph layout and we demonstrate how it can handle the drawing conventions used in biological networks. The presented algorithm offers the ability to produce many of the fundamental popular drawing styles while allowing the exibility of constraints to further tailor these layouts.

  5. Algebraic dynamics algorithm: Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG ShunJin; ZHANG Hua

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations,a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm.A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models.The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision,and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  6. Algebraic dynamics algorithm:Numerical comparison with Runge-Kutta algorithm and symplectic geometric algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the exact analytical solution of ordinary differential equations, a truncation of the Taylor series of the exact solution to the Nth order leads to the Nth order algebraic dynamics algorithm. A detailed numerical comparison is presented with Runge-Kutta algorithm and symplectic geometric algorithm for 12 test models. The results show that the algebraic dynamics algorithm can better preserve both geometrical and dynamical fidelity of a dynamical system at a controllable precision, and it can solve the problem of algorithm-induced dissipation for the Runge-Kutta algorithm and the problem of algorithm-induced phase shift for the symplectic geometric algorithm.

  7. Learning from nature: Nature-inspired algorithms

    DEFF Research Database (Denmark)

    Albeanu, Grigore; Madsen, Henrik; Popentiu-Vladicescu, Florin

    2016-01-01

    .), genetic and evolutionary strategies, artificial immune systems etc. Well-known examples of applications include: aircraft wing design, wind turbine design, bionic car, bullet train, optimal decisions related to traffic, appropriate strategies to survive under a well-adapted immune system etc. Based......During last decade, the nature has inspired researchers to develop new algorithms. The largest collection of nature-inspired algorithms is biology-inspired: swarm intelligence (particle swarm optimization, ant colony optimization, cuckoo search, bees' algorithm, bat algorithm, firefly algorithm etc...... on collective social behaviour of organisms, researchers have developed optimization strategies taking into account not only the individuals, but also groups and environment. However, learning from nature, new classes of approaches can be identified, tested and compared against already available algorithms...

  8. Life Sciences Implications of Lunar Surface Operations

    Science.gov (United States)

    Chappell, Steven P.; Norcross, Jason R.; Abercromby, Andrew F.; Gernhardt, Michael L.

    2010-01-01

    The purpose of this report is to document preliminary, predicted, life sciences implications of expected operational concepts for lunar surface extravehicular activity (EVA). Algorithms developed through simulation and testing in lunar analog environments were used to predict crew metabolic rates and ground reaction forces experienced during lunar EVA. Subsequently, the total metabolic energy consumption, the daily bone load stimulus, total oxygen needed, and other variables were calculated and provided to Human Research Program and Exploration Systems Mission Directorate stakeholders. To provide context to the modeling, the report includes an overview of some scenarios that have been considered. Concise descriptions of the analog testing and development of the algorithms are also provided. This document may be updated to remain current with evolving lunar or other planetary surface operations, assumptions and concepts, and to provide additional data and analyses collected during the ongoing analog research program.

  9. The Algorithm for Algorithms: An Evolutionary Algorithm Based on Automatic Designing of Genetic Operators

    Directory of Open Access Journals (Sweden)

    Dazhi Jiang

    2015-01-01

    Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.

  10. A simpler and elegant algorithm for computing fractal dimension in ...

    Indian Academy of Sciences (India)

    Chaotic systems are now frequently encountered in almost all branches of sciences. Dimension of such systems provides an important measure for easy characterization of dynamics of the systems. Conventional algorithms for computing dimension of such systems in higher dimensional state space face an unavoidable ...

  11. Hypersensitivity to local anaesthetics--update and proposal of evaluation algorithm

    DEFF Research Database (Denmark)

    Thyssen, Jacob Pontoppidan; Menné, Torkil; Elberling, Jesper

    2008-01-01

    of patients suspected with immediate- and delayed-type immune reactions. Literature was examined using PubMed-Medline, EMBASE, Biosis and Science Citation Index. Based on the literature, the proposed algorithm may safely and rapidly distinguish between immediate-type and delayed-type allergic immune reactions....

  12. UTV Expansion Pack: Special-Purpose Rank-Revealing Algorithms

    DEFF Research Database (Denmark)

    Fierro, Ricardo D.; Hansen, Per Christian

    2005-01-01

    This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank-r...... values of a sparse or structured matrix. These new algorithms have applications in signal processing, optimization and LSI information retrieval.......This collection of Matlab 7.0 software supplements and complements the package UTV Tools from 1999, and includes implementations of special-purpose rank-revealing algorithms developed since the publication of the original package. We provide algorithms for computing and modifying symmetric rank......-revealing VSV decompositions, we expand the algorithms for the ULLV decomposition of a matrix pair to handle interference-type problems with a rank-deficient covariance matrix, and we provide a robust and reliable Lanczos algorithm which - despite its simplicity - is able to capture all the dominant singular...

  13. Parallel Algorithms for Groebner-Basis Reduction

    Science.gov (United States)

    1987-09-25

    22209 ELEMENT NO. NO. NO. ACCESSION NO. 11. TITLE (Include Security Classification) * PARALLEL ALGORITHMS FOR GROEBNER -BASIS REDUCTION 12. PERSONAL...All other editions are obsolete. Productivity Engineering in the UNIXt Environment p Parallel Algorithms for Groebner -Basis Reduction Technical Report

  14. A Review of Algorithms for Retinal Vessel Segmentation

    Directory of Open Access Journals (Sweden)

    Monserrate Intriago Pazmiño

    2014-10-01

    Full Text Available This paper presents a review of algorithms for extracting blood vessels network from retinal images. Since retina is a complex and delicate ocular structure, a huge effort in computer vision is devoted to study blood vessels network for helping the diagnosis of pathologies like diabetic retinopathy, hypertension retinopathy, retinopathy of prematurity or glaucoma. To carry out this process many works for normal and abnormal images have been proposed recently. These methods include combinations of algorithms like Gaussian and Gabor filters, histogram equalization, clustering, binarization, motion contrast, matched filters, combined corner/edge detectors, multi-scale line operators, neural networks, ants, genetic algorithms, morphological operators. To apply these algorithms pre-processing tasks are needed. Most of these algorithms have been tested on publicly retinal databases. We have include a table summarizing algorithms and results of their assessment.

  15. Testing a Firefly-Inspired Synchronization Algorithm in a Complex Wireless Sensor Network.

    Science.gov (United States)

    Hao, Chuangbo; Song, Ping; Yang, Cheng; Liu, Xiongjun

    2017-03-08

    Data acquisition is the foundation of soft sensor and data fusion. Distributed data acquisition and its synchronization are the important technologies to ensure the accuracy of soft sensors. As a research topic in bionic science, the firefly-inspired algorithm has attracted widespread attention as a new synchronization method. Aiming at reducing the design difficulty of firefly-inspired synchronization algorithms for Wireless Sensor Networks (WSNs) with complex topologies, this paper presents a firefly-inspired synchronization algorithm based on a multiscale discrete phase model that can optimize the performance tradeoff between the network scalability and synchronization capability in a complex wireless sensor network. The synchronization process can be regarded as a Markov state transition, which ensures the stability of this algorithm. Compared with the Miroll and Steven model and Reachback Firefly Algorithm, the proposed algorithm obtains better stability and performance. Finally, its practicality has been experimentally confirmed using 30 nodes in a real multi-hop topology with low quality links.

  16. Stemming of Slovenian library science texts

    Directory of Open Access Journals (Sweden)

    Polona Vilar

    2002-01-01

    Full Text Available The theme of the article is the preparation of a stemming algorithm for Slovenian library science texts. The procedure consisted of three phases: learning, testing and evaluation.The preparation of the optimal stemmer for Slovenian texts from the field of library science is presented, its testing and comparison with two other stemmers for the Slovenian language: the Popovič stemmer and the Generic stemmer. A corpus of 790.000 words from the field of library science was used for learning. Lists of stems, word endings and stop-words were built. In the testing phase, the component parts of the algorithm were tested on an additional corpus of 167.000 words. In the evaluation phase, a comparison of the three stemmers processing the same word corpus was made. The results of each stemmer were compared with an intellectually prepared control result of the stemming of the corpus. It consisted of groups of semantically connected words with no errors. Understemming was especially monitored – the number of stems for semantically connected words, produced by an algorithm. The results were statistically processed with the Kruskal-Wallis test. The Optimal stemmer produced the best results.It matched best with the reference results and also gave the smallest number of stems for one semantic meaning. The Popovič stemmer followed closely. The Generic stemmer proved to be the least accurate. The procedures described in the thesis can represent a platform for the development of the tools for automatic indexing and retrieval for library science texts in Slovenian language.

  17. Composite Differential Search Algorithm

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2014-01-01

    Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.

  18. Synthesis of Greedy Algorithms Using Dominance Relations

    Science.gov (United States)

    Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.

    2010-01-01

    Greedy algorithms exploit problem structure and constraints to achieve linear-time performance. Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called a matroid, but the existence of such a translation can be as hard to determine as the existence of a greedy algorithm itself. An alternative characterization of greedy algorithms is in terms of dominance relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a process by which dominance relations can be methodically derived for a number of greedy algorithms, including activity selection, and prefix-free codes. By incorporating our approach into an existing framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engineering method for greedy algorithms. We also compare our approach with other characterizations of greedy algorithms.

  19. A Data Forward Stepwise Fitting Algorithm Based on Orthogonal Function System

    Directory of Open Access Journals (Sweden)

    Li Han-Ju

    2017-01-01

    Full Text Available Data fitting is the main method of functional data analysis, and it is widely used in the fields of economy, social science, engineering technology and so on. Least square method is the main method of data fitting, but the least square method is not convergent, no memory property, big fitting error and it is easy to over fitting. Based on the orthogonal trigonometric function system, this paper presents a data forward stepwise fitting algorithm. This algorithm takes forward stepwise fitting strategy, each time using the nearest base function to fit the residual error generated by the previous base function fitting, which makes the residual mean square error minimum. In this paper, we theoretically prove the convergence, the memory property and the fitting error diminishing character for the algorithm. Experimental results show that the proposed algorithm is effective, and the fitting performance is better than that of the least square method and the forward stepwise fitting algorithm based on the non-orthogonal function system.

  20. Content-based and algorithmic classifications of journals: Perspectives on the dynamics of scientific communication and indexer effects

    NARCIS (Netherlands)

    Rafols, I; Leydesdorff, L.

    2009-01-01

    The aggregated journal-journal citation matrix—based on the Journal Citation Reports (JCR) of the Science Citation Index—can be decomposed by indexers or algorithmically. In this study, we test the results of two recently available algorithms for the decomposition of large matrices against two

  1. Development of algorithm for continuous generation of a computer game in terms of usability and optimization of developed code in computer science

    Directory of Open Access Journals (Sweden)

    Tibor Skala

    2018-03-01

    Full Text Available As both hardware and software have become increasingly available and constantly developed, they globally contribute to improvements in technology in every field of technology and arts. Digital tools for creation and processing of graphical contents are very developed and they have been designed to shorten the time required for content creation, which is, in this case, animation. Since contemporary animation has experienced a surge in various visual styles and visualization methods, programming is built-in in everything that is currently in use. There is no doubt that there is a variety of algorithms and software which are the brain and the moving force behind any idea created for a specific purpose and applicability in society. Art and technology combined make a direct and oriented medium for publishing and marketing in every industry, including those which are not necessarily closely related to those that rely heavily on visual aspect of work. Additionally, quality and consistency of an algorithm will also depend on proper integration into the system that will be powered by that algorithm as well as on the way the algorithm is designed. Development of an endless algorithm and its effective use will be shown during the use of the computer game. In order to present the effect of various parameters, in the final phase of the computer game development an endless algorithm was tested with varying number of key input parameters (achieved time, score reached, pace of the game.

  2. XTALOPT: An open-source evolutionary algorithm for crystal structure prediction

    Science.gov (United States)

    Lonie, David C.; Zurek, Eva

    2011-02-01

    The implementation and testing of XTALOPT, an evolutionary algorithm for crystal structure prediction, is outlined. We present our new periodic displacement (ripple) operator which is ideally suited to extended systems. It is demonstrated that hybrid operators, which combine two pure operators, reduce the number of duplicate structures in the search. This allows for better exploration of the potential energy surface of the system in question, while simultaneously zooming in on the most promising regions. A continuous workflow, which makes better use of computational resources as compared to traditional generation based algorithms, is employed. Various parameters in XTALOPT are optimized using a novel benchmarking scheme. XTALOPT is available under the GNU Public License, has been interfaced with various codes commonly used to study extended systems, and has an easy to use, intuitive graphical interface. Program summaryProgram title:XTALOPT Catalogue identifier: AEGX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL v2.1 or later [1] No. of lines in distributed program, including test data, etc.: 36 849 No. of bytes in distributed program, including test data, etc.: 1 149 399 Distribution format: tar.gz Programming language: C++ Computer: PCs, workstations, or clusters Operating system: Linux Classification: 7.7 External routines: QT [2], OpenBabel [3], AVOGADRO [4], SPGLIB [8] and one of: VASP [5], PWSCF [6], GULP [7]. Nature of problem: Predicting the crystal structure of a system from its stoichiometry alone remains a grand challenge in computational materials science, chemistry, and physics. Solution method: Evolutionary algorithms are stochastic search techniques which use concepts from biological evolution in order to locate the global minimum on their potential energy surface. Our evolutionary algorithm, XTALOPT, is freely

  3. Where are the parallel algorithms?

    Science.gov (United States)

    Voigt, R. G.

    1985-01-01

    Four paradigms that can be useful in developing parallel algorithms are discussed. These include computational complexity analysis, changing the order of computation, asynchronous computation, and divide and conquer. Each is illustrated with an example from scientific computation, and it is shown that computational complexity must be used with great care or an inefficient algorithm may be selected.

  4. An Improved Parallel DNA Algorithm of 3-SAT

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2007-09-01

    Full Text Available There are many large-size and difficult computational problems in mathematics and computer science. For many of these problems, traditional computers cannot handle the mass of data in acceptable timeframes, which we call an NP problem. DNA computing is a means of solving a class of intractable computational problems in which the computing time grows exponentially with problem size. This paper proposes a parallel algorithm model for the universal 3-SAT problem based on the Adleman-Lipton model and applies biological operations to handling the mass of data in solution space. In this manner, we can control the run time of the algorithm to be finite and approximately constant.

  5. Sustainable logistics and transportation optimization models and algorithms

    CERN Document Server

    Gakis, Konstantinos; Pardalos, Panos

    2017-01-01

    Focused on the logistics and transportation operations within a supply chain, this book brings together the latest models, algorithms, and optimization possibilities. Logistics and transportation problems are examined within a sustainability perspective to offer a comprehensive assessment of environmental, social, ethical, and economic performance measures. Featured models, techniques, and algorithms may be used to construct policies on alternative transportation modes and technologies, green logistics, and incentives by the incorporation of environmental, economic, and social measures. Researchers, professionals, and graduate students in urban regional planning, logistics, transport systems, optimization, supply chain management, business administration, information science, mathematics, and industrial and systems engineering will find the real life and interdisciplinary issues presented in this book informative and useful.

  6. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Radhakrishnan, Prof. Jaikumar Ph.D. (Rutgers), FNA. Date of birth: 30 May 1964. Specialization: Algorithms, Information Theory, Computational Complexity, Combinatorics and Quantum Computing Address: Professor, School of Technology & Computer Science, Tata Institute of Fundamental Research, Homi Bhabha Road, ...

  7. Citizen science participation in research in the environmental sciences: key factors related to projects' success and longevity.

    Science.gov (United States)

    Cunha, Davi G F; Marques, Jonatas F; Resende, Juliana C DE; Falco, Patrícia B DE; Souza, Chrislaine M DE; Loiselle, Steven A

    2017-01-01

    The potential impacts of citizen science initiatives are increasing across the globe, albeit in an imbalanced manner. In general, there is a strong element of trial and error in most projects, and the comparison of best practices and project structure between different initiatives remains difficult. In Brazil, the participation of volunteers in environmental research is limited. Identifying the factors related to citizen science projects' success and longevity within a global perspective can contribute for consolidating such practices in the country. In this study, we explore past and present projects, including a case study in Brazil, to identify the spatial and temporal trends of citizen science programs as well as their best practices and challenges. We performed a bibliographic search using Google Scholar and considered results from 2005-2014. Although these results are subjective due to the Google Scholar's algorithm and ranking criteria, we highlighted factors to compare projects across geographical and disciplinary areas and identified key matches between project proponents and participants, project goals and local priorities, participant profiles and engagement, scientific methods and funding. This approach is a useful starting point for future citizen science projects, allowing for a systematic analysis of potential inconsistencies and shortcomings in this emerging field.

  8. Research on parallel algorithm for sequential pattern mining

    Science.gov (United States)

    Zhou, Lijuan; Qin, Bai; Wang, Yu; Hao, Zhongxiao

    2008-03-01

    Sequential pattern mining is the mining of frequent sequences related to time or other orders from the sequence database. Its initial motivation is to discover the laws of customer purchasing in a time section by finding the frequent sequences. In recent years, sequential pattern mining has become an important direction of data mining, and its application field has not been confined to the business database and has extended to new data sources such as Web and advanced science fields such as DNA analysis. The data of sequential pattern mining has characteristics as follows: mass data amount and distributed storage. Most existing sequential pattern mining algorithms haven't considered the above-mentioned characteristics synthetically. According to the traits mentioned above and combining the parallel theory, this paper puts forward a new distributed parallel algorithm SPP(Sequential Pattern Parallel). The algorithm abides by the principal of pattern reduction and utilizes the divide-and-conquer strategy for parallelization. The first parallel task is to construct frequent item sets applying frequent concept and search space partition theory and the second task is to structure frequent sequences using the depth-first search method at each processor. The algorithm only needs to access the database twice and doesn't generate the candidated sequences, which abates the access time and improves the mining efficiency. Based on the random data generation procedure and different information structure designed, this paper simulated the SPP algorithm in a concrete parallel environment and implemented the AprioriAll algorithm. The experiments demonstrate that compared with AprioriAll, the SPP algorithm had excellent speedup factor and efficiency.

  9. Algorithms for parallel computers

    International Nuclear Information System (INIS)

    Churchhouse, R.F.

    1985-01-01

    Until relatively recently almost all the algorithms for use on computers had been designed on the (usually unstated) assumption that they were to be run on single processor, serial machines. With the introduction of vector processors, array processors and interconnected systems of mainframes, minis and micros, however, various forms of parallelism have become available. The advantage of parallelism is that it offers increased overall processing speed but it also raises some fundamental questions, including: (i) which, if any, of the existing 'serial' algorithms can be adapted for use in the parallel mode. (ii) How close to optimal can such adapted algorithms be and, where relevant, what are the convergence criteria. (iii) How can we design new algorithms specifically for parallel systems. (iv) For multi-processor systems how can we handle the software aspects of the interprocessor communications. Aspects of these questions illustrated by examples are considered in these lectures. (orig.)

  10. Content-based and algorithmic classifications of journals: perspectives on the dynamics of scientific communication and indexer effects

    NARCIS (Netherlands)

    Rafols, I.; Leydesdorff, L.; Larsen, B.; Leta, J.

    2009-01-01

    The aggregated journal-journal citation matrix—based on the Journal Citation Reports (JCR) of the Science Citation Index—can be decomposed by indexers and/or algorithmically. In this study, we test the results of two recently available algorithms for the decomposition of large matrices against two

  11. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  12. Elementary functions algorithms and implementation

    CERN Document Server

    Muller, Jean-Michel

    2016-01-01

    This textbook presents the concepts and tools necessary to understand, build, and implement algorithms for computing elementary functions (e.g., logarithms, exponentials, and the trigonometric functions). Both hardware- and software-oriented algorithms are included, along with issues related to accurate floating-point implementation. This third edition has been updated and expanded to incorporate the most recent advances in the field, new elementary function algorithms, and function software. After a preliminary chapter that briefly introduces some fundamental concepts of computer arithmetic, such as floating-point arithmetic and redundant number systems, the text is divided into three main parts. Part I considers the computation of elementary functions using algorithms based on polynomial or rational approximations and using table-based methods; the final chapter in this section deals with basic principles of multiple-precision arithmetic. Part II is devoted to a presentation of “shift-and-add” algorithm...

  13. An algorithm for preferential selection of spectroscopic targets in LEGUE

    International Nuclear Information System (INIS)

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Lépine, Sébastien; Deng Licai; Chen Yuqin; Fu Xiaoting; Gao Shuang; Li Jing; Liu Chao; Beers, Timothy C.; Christlieb, Norbert; Grillmair, Carl J.; Guhathakurta, Puragra; Han Zhanwen; Hou Jinliang; Lee, Hsu-Tai; Liu Xiaowei; Pan Kaike; Sellwood, J. A.; Wang Hongchi

    2012-01-01

    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.

  14. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  15. Unconventional Algorithms: Complementarity of Axiomatics and Construction

    Directory of Open Access Journals (Sweden)

    Gordana Dodig Crnkovic

    2012-10-01

    Full Text Available In this paper, we analyze axiomatic and constructive issues of unconventional computations from a methodological and philosophical point of view. We explain how the new models of algorithms and unconventional computations change the algorithmic universe, making it open and allowing increased flexibility and expressive power that augment creativity. At the same time, the greater power of new types of algorithms also results in the greater complexity of the algorithmic universe, transforming it into the algorithmic multiverse and demanding new tools for its study. That is why we analyze new powerful tools brought forth by local mathematics, local logics, logical varieties and the axiomatic theory of algorithms, automata and computation. We demonstrate how these new tools allow efficient navigation in the algorithmic multiverse. Further work includes study of natural computation by unconventional algorithms and constructive approaches.

  16. Fast mode decision algorithm in MPEG-2 to H.264/AVC transcoding including group of picture structure conversion

    Science.gov (United States)

    Lee, Kangjun; Jeon, Gwanggil; Jeong, Jechang

    2009-05-01

    The H.264/AVC baseline profile is used in many applications, including digital multimedia broadcasting, Internet protocol television, and storage devices, while the MPEG-2 main profile is widely used in applications, such as high-definition television and digital versatile disks. The MPEG-2 main profile supports B pictures for bidirectional motion prediction. Therefore, transcoding the MPEG-2 main profile to the H.264/AVC baseline is necessary for universal multimedia access. In the cascaded pixel domain transcoder architecture, the calculation of the rate distortion cost as part of the mode decision process in the H.264/AVC encoder requires extremely complex computations. To reduce the complexity inherent in the implementation of a real-time transcoder, we propose a fast mode decision algorithm based on complexity information from the reference region that is used for motion compensation. In this study, an adaptive mode decision process was used based on the modes assigned to the reference regions. Simulation results indicated that a significant reduction in complexity was achieved without significant degradation of video quality.

  17. Analysis and Improvement of Fireworks Algorithm

    Directory of Open Access Journals (Sweden)

    Xi-Guang Li

    2017-02-01

    Full Text Available The Fireworks Algorithm is a recently developed swarm intelligence algorithm to simulate the explosion process of fireworks. Based on the analysis of each operator of Fireworks Algorithm (FWA, this paper improves the FWA and proves that the improved algorithm converges to the global optimal solution with probability 1. The proposed algorithm improves the goal of further boosting performance and achieving global optimization where mainly include the following strategies. Firstly using the opposition-based learning initialization population. Secondly a new explosion amplitude mechanism for the optimal firework is proposed. In addition, the adaptive t-distribution mutation for non-optimal individuals and elite opposition-based learning for the optimal individual are used. Finally, a new selection strategy, namely Disruptive Selection, is proposed to reduce the running time of the algorithm compared with FWA. In our simulation, we apply the CEC2013 standard functions and compare the proposed algorithm (IFWA with SPSO2011, FWA, EFWA and dynFWA. The results show that the proposed algorithm has better overall performance on the test functions.

  18. An improvement of the fast uncovering community algorithm

    International Nuclear Information System (INIS)

    Wang Li; Wang Jiang; Shen Hua-Wei; Cheng Xue-Qi

    2013-01-01

    Community detection methods have been used in computer, sociology, physics, biology, and brain information science areas. Many methods are based on the optimization of modularity. The algorithm proposed by Blondel et al. (Blondel V D, Guillaume J L, Lambiotte R and Lefebvre E 2008 J. Stat. Mech. 10 10008) is one of the most widely used methods because of its good performance, especially in the big data era. In this paper we make some improvements to this algorithm in correctness and performance. By tests we see that different node orders bring different performances and different community structures. We find some node swings in different communities that influence the performance. So we design some strategies on the sweeping order of node to reduce the computing cost made by repetition swing. We introduce a new concept of overlapping degree (OV) that shows the strength of connection between nodes. Three improvement strategies are proposed that are based on constant OV, adaptive OV, and adaptive weighted OV, respectively. Experiments on synthetic datasets and real datasets are made, showing that our improved strategies can improve the performance and correctness. (interdisciplinary physics and related areas of science and technology)

  19. Glowworm swarm optimization theory, algorithms, and applications

    CERN Document Server

    Kaipa, Krishnanand N

    2017-01-01

    This book provides a comprehensive account of the glowworm swarm optimization (GSO) algorithm, including details of the underlying ideas, theoretical foundations, algorithm development, various applications, and MATLAB programs for the basic GSO algorithm. It also discusses several research problems at different levels of sophistication that can be attempted by interested researchers. The generality of the GSO algorithm is evident in its application to diverse problems ranging from optimization to robotics. Examples include computation of multiple optima, annual crop planning, cooperative exploration, distributed search, multiple source localization, contaminant boundary mapping, wireless sensor networks, clustering, knapsack, numerical integration, solving fixed point equations, solving systems of nonlinear equations, and engineering design optimization. The book is a valuable resource for researchers as well as graduate and undergraduate students in the area of swarm intelligence and computational intellige...

  20. Advances in software science and technology

    CERN Document Server

    Ohno, Yoshio; Kamimura, Tsutomu

    1991-01-01

    Advances in Software Science and Technology, Volume 2 provides information pertinent to the advancement of the science and technology of computer software. This book discusses the various applications for computer systems.Organized into four parts encompassing 12 chapters, this volume begins with an overview of categorical frameworks that are widely used to represent data types in computer science. This text then provides an algorithm for generating vertices of a smoothed polygonal line from the vertices of a digital curve or polygonal curve whose position contains a certain amount of error. O

  1. The CCSDS Lossless Data Compression Algorithm for Space Applications

    Science.gov (United States)

    Yeh, Pen-Shu; Day, John H. (Technical Monitor)

    2001-01-01

    In the late 80's, when the author started working at the Goddard Space Flight Center (GSFC) for the National Aeronautics and Space Administration (NASA), several scientists there were in the process of formulating the next generation of Earth viewing science instruments, the Moderate Resolution Imaging Spectroradiometer (MODIS). The instrument would have over thirty spectral bands and would transmit enormous data through the communications channel. This was when the author was assigned the task of investigating lossless compression algorithms for space implementation to compress science data in order to reduce the requirement on bandwidth and storage.

  2. Koncepcja automatyzacji Leonarda Torresa y Quevedo jako przyczynek do rozwoju computer science

    Directory of Open Access Journals (Sweden)

    Piotr Urbańczyk

    2015-09-01

    Full Text Available The aim of this article is to indicate that the ideas of Leonardo Torres y Que­vedo presented in his short Essays on Automatics constitute essential link between early Babbage’s concepts of analytical engine and modern computer science. These ideas include definition of automatics, classification of automata, theoretical basis for robotics, electromechanical engineering, modern concept of chatbot, the importance of algorithm and last but not least floating point arithmetic.

  3. 75 FR 16514 - Bayer Material Science, LLC, Formally Known as Sheffield Plastics, Including On-Site Leased...

    Science.gov (United States)

    2010-04-01

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-71,045] Bayer Material Science... January 8th, 2010, applicable to workers of Bayer Material Science, LLC, formally known as Sheffield... polycarbonate film products. Information shows that Bayer Material Science, LLC was formally known as Sheffield...

  4. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  5. Photometric Analysis in the Kepler Science Operations Center Pipeline

    Science.gov (United States)

    Twicken, Joseph D.; Clarke, Bruce D.; Bryson, Stephen T.; Tenenbaum, Peter; Wu, Hayley; Jenkins, Jon M.; Girouard, Forrest; Klaus, Todd C.

    2010-01-01

    We describe the Photometric Analysis (PA) software component and its context in the Kepler Science Operations Center (SOC) pipeline. The primary tasks of this module are to compute the photometric flux and photocenters (centroids) for over 160,000 long cadence (thirty minute) and 512 short cadence (one minute) stellar targets from the calibrated pixels in their respective apertures. We discuss the science algorithms for long and short cadence PA: cosmic ray cleaning; background estimation and removal; aperture photometry; and flux-weighted centroiding. We discuss the end-to-end propagation of uncertainties for the science algorithms. Finally, we present examples of photometric apertures, raw flux light curves, and centroid time series from Kepler flight data. PA light curves, centroid time series, and barycentric timestamp corrections are exported to the Multi-mission Archive at Space Telescope [Science Institute] (MAST) and are made available to the general public in accordance with the NASA/Kepler data release policy.

  6. The Role of the Pulmonary Embolism Response Team: How to Build One, Who to Include, Scenarios, Organization, and Algorithms.

    Science.gov (United States)

    Galmer, Andrew; Weinberg, Ido; Giri, Jay; Jaff, Michael; Weinberg, Mitchell

    2017-09-01

    Pulmonary embolism response teams (PERTs) are multidisciplinary response teams aimed at delivering a range of diagnostic and therapeutic modalities to patients with pulmonary embolism. These teams have gained traction on a national scale. However, despite sharing a common goal, individual PERT programs are quite individualized-varying in their methods of operation, team structures, and practice patterns. The tendency of such response teams is to become intensely structured, algorithmic, and inflexible. However, in their current form, PERT programs are quite the opposite. They are being creatively customized to meet the needs of the individual institution based on available resources, skills, personnel, and institutional goals. After a review of the essential core elements needed to create and operate a PERT team in any form, this article will discuss the more flexible feature development of the nascent PERT team. These include team planning, member composition, operational structure, benchmarking, market analysis, and rudimentary financial operations. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Application of Genetic Algorithms in Seismic Tomography

    Science.gov (United States)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the

  8. Generalized phase retrieval algorithm based on information measures

    OpenAIRE

    Shioya, Hiroyuki; Gohara, Kazutoshi

    2006-01-01

    An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.

  9. Testing algorithms for critical slowing down

    Directory of Open Access Journals (Sweden)

    Cossu Guido

    2018-01-01

    Full Text Available We present the preliminary tests on two modifications of the Hybrid Monte Carlo (HMC algorithm. Both algorithms are designed to travel much farther in the Hamiltonian phase space for each trajectory and reduce the autocorrelations among physical observables thus tackling the critical slowing down towards the continuum limit. We present a comparison of costs of the new algorithms with the standard HMC evolution for pure gauge fields, studying the autocorrelation times for various quantities including the topological charge.

  10. New algorithms for the symmetric tridiagonal eigenvalue computation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, V. [City Univ. of New York, Bronx, NY (United States)]|[International Computer Sciences Institute, Berkeley, CA (United States)

    1994-12-31

    The author presents new algorithms that accelerate the bisection method for the symmetric eigenvalue problem. The algorithms rely on some new techniques, which include acceleration of Newton`s iteration and can also be further applied to acceleration of some other iterative processes, in particular, of iterative algorithms for approximating polynomial zeros.

  11. Algorithmic-Reducibility = Renormalization-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') Replacing CRUTCHES!!!: Gauss Modular/Clock-Arithmetic Congruences = Signal X Noise PRODUCTS..

    Science.gov (United States)

    Siegel, J.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Cook-Levin computational-"complexity"(C-C) algorithmic-equivalence reduction-theorem reducibility equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited with Gauss modular/clock-arithmetic/model congruences = signal X noise PRODUCT reinterpretation. Siegel-Baez FUZZYICS=CATEGORYICS(SON of ``TRIZ''): Category-Semantics(C-S) tabular list-format truth-table matrix analytics predicts and implements "noise"-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics(1987)]-Sipser[Intro. Theory Computation(1997) algorithmic C-C: "NIT-picking" to optimize optimization-problems optimally(OOPO). Versus iso-"noise" power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, this "NIT-picking" is "noise" power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-"science" algorithmic C-C models: Turing-machine, finite-state-models/automata, are identified as early-days once-workable but NOW ONLY LIMITING CRUTCHES IMPEDING latter-days new-insights!!!

  12. An algorithm for discovering Lagrangians automatically from data

    Directory of Open Access Journals (Sweden)

    Daniel J.A. Hills

    2015-11-01

    Full Text Available An activity fundamental to science is building mathematical models. These models are used to both predict the results of future experiments and gain insight into the structure of the system under study. We present an algorithm that automates the model building process in a scientifically principled way. The algorithm can take observed trajectories from a wide variety of mechanical systems and, without any other prior knowledge or tuning of parameters, predict the future evolution of the system. It does this by applying the principle of least action and searching for the simplest Lagrangian that describes the system’s behaviour. By generating this Lagrangian in a human interpretable form, it can also provide insight into the workings of the system.

  13. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  14. A Research Agenda and Vision for Data Science

    Science.gov (United States)

    Mattmann, C. A.

    2014-12-01

    Big Data has emerged as a first-class citizen in the research community spanning disciplines in the domain sciences - Astronomy is pushing velocity with new ground-based instruments such as the Square Kilometre Array (SKA) and its unprecedented data rates (700 TB/sec!); Earth-science is pushing the boundaries of volume with increasing experiments in the international Intergovernmental Panel on Climate Change (IPCC) and climate modeling and remote sensing communities increasing the size of the total archives into the Exabytes scale; airborne missions from NASA such as the JPL Airborne Snow Observatory (ASO) is increasing both its velocity and decreasing the overall turnaround time required to receive products and to make them available to water managers and decision makers. Proteomics and the computational biology community are sequencing genomes and providing near real time answers to clinicians, researchers, and ultimately to patients, helping to process and understand and create diagnoses. Data complexity is on the rise, and the norm is no longer 100s of metadata attributes, but thousands to hundreds of thousands, including complex interrelationships between data and metadata and knowledge. I published a vision for data science in Nature 2013 that encapsulates four thrust areas and foci that I believe the computer science, Big Data, and data science communities need to attack over the next decade to make fundamental progress in the data volume, velocity and complexity challenges arising from the domain sciences such as those described above. These areas include: (1) rapid and unobtrusive algorithm integration; (2) intelligent and automatic data movement; (3) automated and rapid extraction text, metadata and language from heterogeneous file formats; and (4) participation and people power via open source communities. In this talk I will revisit these four areas and describe current progress; future work and challenges ahead as we move forward in this exciting age

  15. Development and validation of an algorithm for laser application in wound treatment

    Directory of Open Access Journals (Sweden)

    Diequison Rite da Cunha

    2017-12-01

    Full Text Available ABSTRACT Objective: To develop and validate an algorithm for laser wound therapy. Method: Methodological study and literature review. For the development of the algorithm, a review was performed in the Health Sciences databases of the past ten years. The algorithm evaluation was performed by 24 participants, nurses, physiotherapists, and physicians. For data analysis, the Cronbach’s alpha coefficient and the chi-square test for independence was used. The level of significance of the statistical test was established at 5% (p<0.05. Results: The professionals’ responses regarding the facility to read the algorithm indicated: 41.70%, great; 41.70%, good; 16.70%, regular. With regard the algorithm being sufficient for supporting decisions related to wound evaluation and wound cleaning, 87.5% said yes to both questions. Regarding the participants’ opinion that the algorithm contained enough information to support their decision regarding the choice of laser parameters, 91.7% said yes. The questionnaire presented reliability using the Cronbach’s alpha coefficient test (α = 0.962. Conclusion: The developed and validated algorithm showed reliability for evaluation, wound cleaning, and use of laser therapy in wounds.

  16. ESHOPPS: A COMPUTATIONAL TOOL TO AID THE TEACHING OF SHORTEST PATH ALGORITHMS

    Directory of Open Access Journals (Sweden)

    S. J. de A. LIMA

    2015-07-01

    Full Text Available The development of a computational tool called EShoPPS – Environment for Shortest Path Problem Solving, which is used to assist students in understanding the working of Dijkstra, Greedy search and A*(star algorithms is presented in this paper. Such algorithms are commonly taught in graduate and undergraduate courses of Engineering and Informatics and are used for solving many optimization problems that can be characterized as Shortest Path Problem. The EShoPPS is an interactive tool that allows students to create a graph representing the problem and also helps in developing their knowledge of each specific algorithm. Experiments performed with 155 students of undergraduate and graduate courses such as Industrial Engineering, Computer Science and Information Systems have shown that by using the EShoPPS tool students were able to improve their interpretation of investigated algorithms.

  17. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  18. Numerical methods design, analysis, and computer implementation of algorithms

    CERN Document Server

    Greenbaum, Anne

    2012-01-01

    Numerical Methods provides a clear and concise exploration of standard numerical analysis topics, as well as nontraditional ones, including mathematical modeling, Monte Carlo methods, Markov chains, and fractals. Filled with appealing examples that will motivate students, the textbook considers modern application areas, such as information retrieval and animation, and classical topics from physics and engineering. Exercises use MATLAB and promote understanding of computational results. The book gives instructors the flexibility to emphasize different aspects--design, analysis, or computer implementation--of numerical algorithms, depending on the background and interests of students. Designed for upper-division undergraduates in mathematics or computer science classes, the textbook assumes that students have prior knowledge of linear algebra and calculus, although these topics are reviewed in the text. Short discussions of the history of numerical methods are interspersed throughout the chapters. The book a...

  19. Dynamical Consensus Algorithm for Second-Order Multi-Agent Systems Subjected to Communication Delay

    International Nuclear Information System (INIS)

    Liu Chenglin; Liu Fei

    2013-01-01

    To solve the dynamical consensus problem of second-order multi-agent systems with communication delay, delay-dependent compensations are added into the normal asynchronously-coupled consensus algorithm so as to make the agents achieve a dynamical consensus. Based on frequency-domain analysis, sufficient conditions are gained for second-order multi-agent systems with communication delay under leaderless and leader-following consensus algorithms respectively. Simulation illustrates the correctness of the results. (interdisciplinary physics and related areas of science and technology)

  20. Semiconvergence and Relaxation Parameters for Projected SIRT Algorithms

    DEFF Research Database (Denmark)

    Elfving, Tommy; Hansen, Per Christian; Nikazad, Touraj

    2012-01-01

    We give a detailed study of the semiconverg ence behavior of projected nonstationary simultaneous iterative reconstruction technique (SIRT) algorithms, including the projected Landweber algorithm. We also consider the use of a relaxation parameter strategy, proposed recently for the standard...... algorithms, for controlling the semiconvergence of the projected algorithms. We demonstrate the semiconvergence and the performance of our strategies by examples taken from tomographic imaging. © 2012 Society for Industrial and Applied Mathematics....

  1. Parallel algorithms for numerical linear algebra

    CERN Document Server

    van der Vorst, H

    1990-01-01

    This is the first in a new series of books presenting research results and developments concerning the theory and applications of parallel computers, including vector, pipeline, array, fifth/future generation computers, and neural computers.All aspects of high-speed computing fall within the scope of the series, e.g. algorithm design, applications, software engineering, networking, taxonomy, models and architectural trends, performance, peripheral devices.Papers in Volume One cover the main streams of parallel linear algebra: systolic array algorithms, message-passing systems, algorithms for p

  2. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  3. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  4. Efficient RNA structure comparison algorithms.

    Science.gov (United States)

    Arslan, Abdullah N; Anandan, Jithendar; Fry, Eric; Monschke, Keith; Ganneboina, Nitin; Bowerman, Jason

    2017-12-01

    Recently proposed relative addressing-based ([Formula: see text]) RNA secondary structure representation has important features by which an RNA structure database can be stored into a suffix array. A fast substructure search algorithm has been proposed based on binary search on this suffix array. Using this substructure search algorithm, we present a fast algorithm that finds the largest common substructure of given multiple RNA structures in [Formula: see text] format. The multiple RNA structure comparison problem is NP-hard in its general formulation. We introduced a new problem for comparing multiple RNA structures. This problem has more strict similarity definition and objective, and we propose an algorithm that solves this problem efficiently. We also develop another comparison algorithm that iteratively calls this algorithm to locate nonoverlapping large common substructures in compared RNAs. With the new resulting tools, we improved the RNASSAC website (linked from http://faculty.tamuc.edu/aarslan ). This website now also includes two drawing tools: one specialized for preparing RNA substructures that can be used as input by the search tool, and another one for automatically drawing the entire RNA structure from a given structure sequence.

  5. Robot Science Autonomy in the Atacama Desert and Beyond

    Science.gov (United States)

    Thompson, David R.; Wettergreen, David S.

    2013-01-01

    Science-guided autonomy augments rovers with reasoning to make observations and take actions related to the objectives of scientific exploration. When rovers can directly interpret instrument measurements then scientific goals can inform and adapt ongoing navigation decisions. These autonomous explorers will make better scientific observations and collect massive, accurate datasets. In current astrobiology studies in the Atacama Desert we are applying algorithms for science autonomy to choose effective observations and measurements. Rovers are able to decide when and where to take follow-up actions that deepen scientific understanding. These techniques apply to planetary rovers, which we can illustrate with algorithms now used by Mars rovers and by discussing future missions.

  6. Data clustering theory, algorithms, and applications

    CERN Document Server

    Gan, Guojun; Wu, Jianhong

    2007-01-01

    Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.

  7. Applications of Nuclear Science for Stewardship Science

    International Nuclear Information System (INIS)

    Cizewski, Jolie A

    2013-01-01

    Stewardship science is research important to national security interests that include stockpile stewardship science, homeland security, nuclear forensics, and non-proliferation. To help address challenges in stewardship science and workforce development, the Stewardship Science Academic Alliances (SSAA) was inaugurated ten years ago by the National Nuclear Security Administration of the U. S. Department of Energy. The goal was to enhance connections between NNSA laboratories and the activities of university scientists and their students in research areas important to NNSA, including low-energy nuclear science. This paper presents an overview of recent research in low-energy nuclear science supported by the Stewardship Science Academic Alliances and the applications of this research to stewardship science.

  8. Data-Driven Participation: Algorithms, Cities, Citizens, and Corporate Control

    Directory of Open Access Journals (Sweden)

    Matthew Tenney

    2016-07-01

    Full Text Available In this paper, we critically explore the interplay of algorithms and civic participation in visions of a city governed by equation, sensor and tweet. We begin by discussing the rhetoric surrounding techno-enabled paths to participatory democracy. This leads to us interrogating how the city is impacted by a discourse that promises to harness social/human capital through data science. We move to a praxis level and examine the motivations of local planners to adopt and increasingly automate forms of VGI as a form of citizen engagement. We ground theory and praxis with a report on the uneven impacts of algorithmic civic participation underway in the Canadian city of Toronto.

  9. High-order quantum algorithm for solving linear differential equations

    International Nuclear Information System (INIS)

    Berry, Dominic W

    2014-01-01

    Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

  10. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  11. Development of imaging and reconstructions algorithms on parallel processing architectures for applications in non-destructive testing

    International Nuclear Information System (INIS)

    Pedron, Antoine

    2013-01-01

    This thesis work is placed between the scientific domain of ultrasound non-destructive testing and algorithm-architecture adequation. Ultrasound non-destructive testing includes a group of analysis techniques used in science and industry to evaluate the properties of a material, component, or system without causing damage. In order to characterise possible defects, determining their position, size and shape, imaging and reconstruction tools have been developed at CEA-LIST, within the CIVA software platform. Evolution of acquisition sensors implies a continuous growth of datasets and consequently more and more computing power is needed to maintain interactive reconstructions. General purpose processors (GPP) evolving towards parallelism and emerging architectures such as GPU allow large acceleration possibilities than can be applied to these algorithms. The main goal of the thesis is to evaluate the acceleration than can be obtained for two reconstruction algorithms on these architectures. These two algorithms differ in their parallelization scheme. The first one can be properly parallelized on GPP whereas on GPU, an intensive use of atomic instructions is required. Within the second algorithm, parallelism is easier to express, but loop ordering on GPP, as well as thread scheduling and a good use of shared memory on GPU are necessary in order to obtain efficient results. Different API or libraries, such as OpenMP, CUDA and OpenCL are evaluated through chosen benchmarks. An integration of both algorithms in the CIVA software platform is proposed and different issues related to code maintenance and durability are discussed. (author) [fr

  12. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The availability of high performance computers and development of efficient algorithms has led to the emergence of computational materials science as the third branch of materials research complementing the traditional theoretical and experimental approaches. It has created new virtual realities in materials design that ...

  13. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Logo of the Indian Academy of Sciences. Indian Academy of ... 2013 pp 571-589. An evolutionary approach for colour constancy based on gamut mapping constraint satisfaction ... A new colour constancy algorithm based on automatic determination of gray framework parameters using neural network · Mohammad Mehdi ...

  14. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Vivek J Pandya. Articles written in Sadhana. Volume 40 Issue 1 February 2015 pp 139-153 Electrical and Computer Sciences. Simulation and comparison of perturb and observe and incremental conductance MPPT algorithms for solar energy system connected to grid · Sachin Vrajlal Rajani ...

  15. Sadhana | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Sadhana. Sachin Vrajlal Rajani. Articles written in Sadhana. Volume 40 Issue 1 February 2015 pp 139-153 Electrical and Computer Sciences. Simulation and comparison of perturb and observe and incremental conductance MPPT algorithms for solar energy system connected to grid · Sachin Vrajlal Rajani ...

  16. Zombie algorithms: a timesaving remote sensing systems engineering tool

    Science.gov (United States)

    Ardanuy, Philip E.; Powell, Dylan C.; Marley, Stephen

    2008-08-01

    In modern horror fiction, zombies are generally undead corpses brought back from the dead by supernatural or scientific means, and are rarely under anyone's direct control. They typically have very limited intelligence, and hunger for the flesh of the living [1]. Typical spectroradiometric or hyperspectral instruments providess calibrated radiances for a number of remote sensing algorithms. The algorithms typically must meet specified latency and availability requirements while yielding products at the required quality. These systems, whether research, operational, or a hybrid, are typically cost constrained. Complexity of the algorithms can be high, and may evolve and mature over time as sensor characterization changes, product validation occurs, and areas of scientific basis improvement are identified and completed. This suggests the need for a systems engineering process for algorithm maintenance that is agile, cost efficient, repeatable, and predictable. Experience on remote sensing science data systems suggests the benefits of "plug-n-play" concepts of operation. The concept, while intuitively simple, can be challenging to implement in practice. The use of zombie algorithms-empty shells that outwardly resemble the form, fit, and function of a "complete" algorithm without the implemented theoretical basis-provides the ground systems advantages equivalent to those obtained by integrating sensor engineering models onto the spacecraft bus. Combined with a mature, repeatable process for incorporating the theoretical basis, or scientific core, into the "head" of the zombie algorithm, along with associated scripting and registration, provides an easy "on ramp" for the rapid and low-risk integration of scientific applications into operational systems.

  17. Identifying Clusters with Mixture Models that Include Radial Velocity Observations

    Science.gov (United States)

    Czarnatowicz, Alexis; Ybarra, Jason E.

    2018-01-01

    The study of stellar clusters plays an integral role in the study of star formation. We present a cluster mixture model that considers radial velocity data in addition to spatial data. Maximum likelihood estimation through the Expectation-Maximization (EM) algorithm is used for parameter estimation. Our mixture model analysis can be used to distinguish adjacent or overlapping clusters, and estimate properties for each cluster.Work supported by awards from the Virginia Foundation for Independent Colleges (VFIC) Undergraduate Science Research Fellowship and The Research Experience @Bridgewater (TREB).

  18. Markov chains models, algorithms and applications

    CERN Document Server

    Ching, Wai-Ki; Ng, Michael K; Siu, Tak-Kuen

    2013-01-01

    This new edition of Markov Chains: Models, Algorithms and Applications has been completely reformatted as a text, complete with end-of-chapter exercises, a new focus on management science, new applications of the models, and new examples with applications in financial risk management and modeling of financial data.This book consists of eight chapters.  Chapter 1 gives a brief introduction to the classical theory on both discrete and continuous time Markov chains. The relationship between Markov chains of finite states and matrix theory will also be highlighted. Some classical iterative methods

  19. A spectral algorithm for the seriation problem

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, J.E. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Mathematics; Boman, E.G. [Stanford Univ., CA (United States). Dept. of Computer Science; Hendrickson, B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-11-01

    Given a set of objects and a correlation function f reflecting the desire for two items to be near each other, find all sequences {pi} of the items so that correlation preferences are preserved; that is if {pi}(i) < {pi}(j) < {pi}(k) then f(i,j) {ge} f(i,k) and f(j,k) {ge} f(i,k). This seriation problem has numerous applications, for instance, solving it yields a solution to the consecutive ones problem. We present a spectral algorithm for this problem that has a number of interesting features. Whereas most previous applications of spectral techniques provided bounds or heuristics, our result is an algorithm for a nontrivial combinatorial problem. Our analysis introduces powerful tools from matrix theory to the theoretical computer science community. Also, spectral methods are being applied as heuristics for a variety of sequencing problems and our result helps explain and justify these applications. Although the worst case running time for our approach is not competitive with that of existing methods for well posed problem instances, unlike combinatorial approaches our algorithm remains a credible heuristic for the important cases where there are errors in the data.

  20. Biased Monte Carlo algorithms on unitary groups

    International Nuclear Information System (INIS)

    Creutz, M.; Gausterer, H.; Sanielevici, S.

    1989-01-01

    We introduce a general updating scheme for the simulation of physical systems defined on unitary groups, which eliminates the systematic errors due to inexact exponentiation of algebra elements. The essence is to work directly with group elements for the stochastic noise. Particular cases of the scheme include the algorithm of Metropolis et al., overrelaxation algorithms, and globally corrected Langevin and hybrid algorithms. The latter are studied numerically for the case of SU(3) theory

  1. Parallel Algorithms and Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-16

    This is a powerpoint presentation on parallel algorithms and patterns. A parallel algorithm is a well-defined, step-by-step computational procedure that emphasizes concurrency to solve a problem. Examples of problems include: Sorting, searching, optimization, matrix operations. A parallel pattern is a computational step in a sequence of independent, potentially concurrent operations that occurs in diverse scenarios with some frequency. Examples are: Reductions, prefix scans, ghost cell updates. We only touch on parallel patterns in this presentation. It really deserves its own detailed discussion which Gabe Rockefeller would like to develop.

  2. Conformational Space Annealing explained: A general optimization algorithm, with diverse applications

    Science.gov (United States)

    Joung, InSuk; Kim, Jong Yun; Gross, Steven P.; Joo, Keehyoung; Lee, Jooyoung

    2018-02-01

    Many problems in science and engineering can be formulated as optimization problems. One way to solve these problems is to develop tailored problem-specific approaches. As such development is challenging, an alternative is to develop good generally-applicable algorithms. Such algorithms are easy to apply, typically function robustly, and reduce development time. Here we provide a description for one such algorithm called Conformational Space Annealing (CSA) along with its python version, PyCSA. We previously applied it to many optimization problems including protein structure prediction and graph community detection. To demonstrate its utility, we have applied PyCSA to two continuous test functions, namely Ackley and Eggholder functions. In addition, in order to provide complete generality of PyCSA to any types of an objective function, we demonstrate the way PyCSA can be applied to a discrete objective function, namely a parameter optimization problem. Based on the benchmarking results of the three problems, the performance of CSA is shown to be better than or similar to the most popular optimization method, simulated annealing. For continuous objective functions, we found that, L-BFGS-B was the best performing local optimization method, while for a discrete objective function Nelder-Mead was the best. The current version of PyCSA can be run in parallel at the coarse grained level by calculating multiple independent local optimizations separately. The source code of PyCSA is available from http://lee.kias.re.kr.

  3. Portable Health Algorithms Test System

    Science.gov (United States)

    Melcher, Kevin J.; Wong, Edmond; Fulton, Christopher E.; Sowers, Thomas S.; Maul, William A.

    2010-01-01

    A document discusses the Portable Health Algorithms Test (PHALT) System, which has been designed as a means for evolving the maturity and credibility of algorithms developed to assess the health of aerospace systems. Comprising an integrated hardware-software environment, the PHALT system allows systems health management algorithms to be developed in a graphical programming environment, to be tested and refined using system simulation or test data playback, and to be evaluated in a real-time hardware-in-the-loop mode with a live test article. The integrated hardware and software development environment provides a seamless transition from algorithm development to real-time implementation. The portability of the hardware makes it quick and easy to transport between test facilities. This hard ware/software architecture is flexible enough to support a variety of diagnostic applications and test hardware, and the GUI-based rapid prototyping capability is sufficient to support development execution, and testing of custom diagnostic algorithms. The PHALT operating system supports execution of diagnostic algorithms under real-time constraints. PHALT can perform real-time capture and playback of test rig data with the ability to augment/ modify the data stream (e.g. inject simulated faults). It performs algorithm testing using a variety of data input sources, including real-time data acquisition, test data playback, and system simulations, and also provides system feedback to evaluate closed-loop diagnostic response and mitigation control.

  4. Robustness of Multiple Clustering Algorithms on Hyperspectral Images

    National Research Council Canada - National Science Library

    Williams, Jason P

    2007-01-01

    .... Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms...

  5. New management algorithms in multiple sclerosis

    DEFF Research Database (Denmark)

    Sorensen, Per Soelberg

    2014-01-01

    complex. The purpose of the review has been to work out new management algorithms for treatment of relapsing-remitting multiple sclerosis including new oral therapies and therapeutic monoclonal antibodies. RECENT FINDINGS: Recent large placebo-controlled trials in relapsing-remitting multiple sclerosis......PURPOSE OF REVIEW: Our current treatment algorithms include only IFN-β and glatiramer as available first-line disease-modifying drugs and natalizumab and fingolimod as second-line therapies. Today, 10 drugs have been approved in Europe and nine in the United States making the choice of therapy more...

  6. Online Planning Algorithm

    Science.gov (United States)

    Rabideau, Gregg R.; Chien, Steve A.

    2010-01-01

    AVA v2 software selects goals for execution from a set of goals that oversubscribe shared resources. The term goal refers to a science or engineering request to execute a possibly complex command sequence, such as image targets or ground-station downlinks. Developed as an extension to the Virtual Machine Language (VML) execution system, the software enables onboard and remote goal triggering through the use of an embedded, dynamic goal set that can oversubscribe resources. From the set of conflicting goals, a subset must be chosen that maximizes a given quality metric, which in this case is strict priority selection. A goal can never be pre-empted by a lower priority goal, and high-level goals can be added, removed, or updated at any time, and the "best" goals will be selected for execution. The software addresses the issue of re-planning that must be performed in a short time frame by the embedded system where computational resources are constrained. In particular, the algorithm addresses problems with well-defined goal requests without temporal flexibility that oversubscribes available resources. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. Thereby enabling shorter response times and greater autonomy for the system under control.

  7. 5th Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2016-01-01

    This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.

  8. Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes

    DEFF Research Database (Denmark)

    Häggström, Olle; Lieshout, Marie-Colette van; Møller, Jesper

    1999-01-01

    The area-interaction process and the continuum random-cluster model are characterized in terms of certain functional forms of their respective conditional intensities. In certain cases, these two point process models can be derived from a bivariate point process model which in many respects...... is simpler to analyse and simulate. Using this correspondence we devise a two-component Gibbs sampler, which can be used for fast and exact simulation by extending the recent ideas of Propp and Wilson. We further introduce a Swendsen-Wang type algorithm. The relevance of the results within spatial statistics...

  9. Sciences of geodesy I advances and future directions

    CERN Document Server

    Xu, Guochang

    2010-01-01

    This series of reference books describes sciences of different elds in and around geodesy with independent chapters. Each chapter covers an individual eld and describes the history, theory, objective, technology, development, highlights of research and applications. In addition, problems as well as future directions are discussed. The subjects of this reference book include Absolute and Relative Gravimetry, Adaptively Robust Kalman Filters with Applications in Navigation, Airborne Gravity Field Determination, Analytic Orbit Theory, Deformation and Tectonics, Earth Rotation, Equivalence of GPS Algorithms and its Inference, Marine Geodesy, Satellite Laser Ranging, Superconducting Gravimetry and Synthetic Aperture Radar Interferometry. These are individual subjects in and around geodesy and are for the rst time combined in a unique book which may be used for teaching or for learning basic principles of many subjects related to geodesy. The material is suitable to provide a general overview of geodetic sciences f...

  10. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  11. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    International Nuclear Information System (INIS)

    DeVille, R.E.L.; Riemer, N.; West, M.

    2011-01-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  12. Weighted Flow Algorithms (WFA) for stochastic particle coagulation

    Science.gov (United States)

    DeVille, R. E. L.; Riemer, N.; West, M.

    2011-09-01

    Stochastic particle-resolved methods are a useful way to compute the time evolution of the multi-dimensional size distribution of atmospheric aerosol particles. An effective approach to improve the efficiency of such models is the use of weighted computational particles. Here we introduce particle weighting functions that are power laws in particle size to the recently-developed particle-resolved model PartMC-MOSAIC and present the mathematical formalism of these Weighted Flow Algorithms (WFA) for particle coagulation and growth. We apply this to an urban plume scenario that simulates a particle population undergoing emission of different particle types, dilution, coagulation and aerosol chemistry along a Lagrangian trajectory. We quantify the performance of the Weighted Flow Algorithm for number and mass-based quantities of relevance for atmospheric sciences applications.

  13. Understanding molecular simulation from algorithms to applications

    CERN Document Server

    Frenkel, Daan

    2001-01-01

    Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the ""recipes"" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practic

  14. Hurricane Sandy science plan: impacts of storm surge, including disturbed estuarine and bay hydrology

    Science.gov (United States)

    Caskie, Sarah A.

    2013-01-01

    Hurricane Sandy devastated some of the most heavily populated eastern coastal areas of the Nation. With a storm surge peaking at more than 19 feet, the powerful landscape-altering destruction of Hurricane Sandy is a stark reminder of why the Nation must become more resilient to coastal hazards. In response to this natural disaster, the U.S. Geological Survey (USGS) received a total of $41.2 million in supplemental appropriations from the Department of the Interior (DOI) to support response, recovery, and rebuilding efforts. These funds support a science plan that will provide critical scientific information necessary to inform management decisions for recovery of coastal communities, and aid in preparation for future natural hazards. This science plan is designed to coordinate continuing USGS activities with stakeholders and other agencies to improve data collection and analysis that will guide recovery and restoration efforts. The science plan is split into five distinct themes: • Coastal topography and bathymetry • Impacts to coastal beaches and barriers

  15. Algorithms

    Indian Academy of Sciences (India)

    to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...

  16. Astronautics and aeronautics, 1973: Chronology of science, technology and policy. [including artificial satellites, space probes, and manned space flights

    Science.gov (United States)

    1975-01-01

    A brief chronological account is presented of key events of the year in aerospace sciences. Dates, actions, hardware, persons, scientific discoveries are recorded along with plans, decisions, achievements and preliminary evaluations of results. Samples of public reaction and social impact are included. Sources are identified and an index is provided to aid in tracing related events through the year. The index also serves as a glossary of acronyms and abbreviations.

  17. Rapid mental computation system as a tool for algorithmic thinking of elementary school students development

    OpenAIRE

    Ziatdinov, Rushan; Musa, Sajid

    2013-01-01

    In this paper, we describe the possibilities of using a rapid mental computation system in elementary education. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. These operations are actually simple algorithms which can develop or improve the algorithmic thinking of pupils. Using a rapid mental computation system allows forming the basis for the study of computer science in secondary school.

  18. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  19. A quantum causal discovery algorithm

    Science.gov (United States)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  20. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    Science.gov (United States)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The

  1. An Expert System toward Buiding An Earth Science Knowledge Graph

    Science.gov (United States)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  2. A new taxonomy of sublinear keyword pattern matching algorithms

    NARCIS (Netherlands)

    Cleophas, L.G.W.A.; Watson, B.W.; Zwaan, G.

    2004-01-01

    Abstract This paper presents a new taxonomy of sublinear (multiple) keyword pattern matching algorithms. Based on an earlier taxonomy by Watson and Zwaan [WZ96, WZ95], this new taxonomy includes not only suffix-based algorithms related to the Boyer-Moore, Commentz-Walter and Fan-Su algorithms, but

  3. Dynamic training algorithm for dynamic neural networks

    International Nuclear Information System (INIS)

    Tan, Y.; Van Cauwenberghe, A.; Liu, Z.

    1996-01-01

    The widely used backpropagation algorithm for training neural networks based on the gradient descent has a significant drawback of slow convergence. A Gauss-Newton method based recursive least squares (RLS) type algorithm with dynamic error backpropagation is presented to speed-up the learning procedure of neural networks with local recurrent terms. Finally, simulation examples concerning the applications of the RLS type algorithm to identification of nonlinear processes using a local recurrent neural network are also included in this paper

  4. Algorithmic mathematics

    CERN Document Server

    Hougardy, Stefan

    2016-01-01

    Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.

  5. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Keywords. Number theory; arithmetic; cryptography; RSA; public key cryptosystem; prime numbers; factorization; algorithms; residue class ring; theoretical computer science; internet security; information theory; trapdoor oneway function.

  6. Improved core protection calculator system algorithm

    International Nuclear Information System (INIS)

    Yoon, Tae Young; Park, Young Ho; In, Wang Kee; Bae, Jong Sik; Baeg, Seung Yeob

    2009-01-01

    Core Protection Calculator System (CPCS) is a digitized core protection system which provides core protection functions based on two reactor core operation parameters, Departure from Nucleate Boiling Ratio (DNBR) and Local Power Density (LPD). It generates a reactor trip signal when the core condition exceeds the DNBR or LPD design limit. It consists of four independent channels which adapted a two out of four trip logic. CPCS algorithm improvement for the newly designed core protection calculator system, RCOPS (Reactor COre Protection System), is described in this paper. New features include the improvement of DNBR algorithm for thermal margin, the addition of pre trip alarm generation for auxiliary trip function, VOPT (Variable Over Power Trip) prevention during RPCS (Reactor Power Cutback System) actuation and the improvement of CEA (Control Element Assembly) signal checking algorithm. To verify the improved CPCS algorithm, CPCS algorithm verification tests, 'Module Test' and 'Unit Test', would be performed on RCOPS single channel facility. It is expected that the improved CPCS algorithm will increase DNBR margin and enhance the plant availability by reducing unnecessary reactor trips

  7. Data science ethics in government.

    Science.gov (United States)

    Drew, Cat

    2016-12-28

    Data science can offer huge opportunities for government. With the ability to process larger and more complex datasets than ever before, it can provide better insights for policymakers and make services more tailored and efficient. As with all new technologies, there is a risk that we do not take up its opportunities and miss out on its enormous potential. We want people to feel confident to innovate with data. So, over the past 18 months, the Government Data Science Partnership has taken an open, evidence-based and user-centred approach to creating an ethical framework. It is a practical document that brings all the legal guidance together in one place, and is written in the context of new data science capabilities. As part of its development, we ran a public dialogue on data science ethics, including deliberative workshops, an experimental conjoint survey and an online engagement tool. The research supported the principles set out in the framework as well as provided useful insight into how we need to communicate about data science. It found that people had a low awareness of the term 'data science', but that showing data science examples can increase broad support for government exploring innovative uses of data. But people's support is highly context driven. People consider acceptability on a case-by-case basis, first thinking about the overall policy goals and likely intended outcome, and then weighing up privacy and unintended consequences. The ethical framework is a crucial start, but it does not solve all the challenges it highlights, particularly as technology is creating new challenges and opportunities every day. Continued research is needed into data minimization and anonymization, robust data models, algorithmic accountability, and transparency and data security. It also has revealed the need to set out a renewed deal between the citizen and state on data, to maintain and solidify trust in how we use people's data for social good.This article is part

  8. A retrodictive stochastic simulation algorithm

    International Nuclear Information System (INIS)

    Vaughan, T.G.; Drummond, P.D.; Drummond, A.J.

    2010-01-01

    In this paper we describe a simple method for inferring the initial states of systems evolving stochastically according to master equations, given knowledge of the final states. This is achieved through the use of a retrodictive stochastic simulation algorithm which complements the usual predictive stochastic simulation approach. We demonstrate the utility of this new algorithm by applying it to example problems, including the derivation of likely ancestral states of a gene sequence given a Markovian model of genetic mutation.

  9. Reflections upon the Presentation of Parallel Algorithms Across the Astral and Mathematical Sciences in First-Millennium China

    OpenAIRE

    Morgan, Daniel Patrick

    2015-01-01

    International audience; Most of what changes from one first-millennium lì 曆 procedure text to another are the ‘numbers’ (shù 數) and not the ‘procedures’ (shù 術) for calculating therewith—algorithms, for example, for finding the position of the mean sun at winter solstice or the hour of quarter moon. What changes do occur in the algorithms are generally cumulative and modular—something new is introduced, or something changed, within an otherwise stable framework of tables and algorithms stretc...

  10. An algorithm to include the bremsstrahlung component in the determination of the absorbed dose in electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Klevenhagen, S C [The Royal London Hospital, London (United Kingdom). Medical Physics Dept.

    1996-08-01

    Currently used dosimetry protocols for absolute dose determination of electron beams from accelerators in radiation therapy do not account for the effect of the bremsstrahlung contamination of the beam. This results in slightly erroneous doses calculated from ionization chamber measurements. In this report the deviation is calculated and an improved algorithm, which accounts for the effect of the bremsstrahlung component of the beam, is suggested. (author). 14 refs, 2 figs, 1 tab.

  11. Algorithmic cryptanalysis

    CERN Document Server

    Joux, Antoine

    2009-01-01

    Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic

  12. Bridging Ground Validation and Algorithms: Using Scattering and Integral Tables to Incorporate Observed DSD Correlations into Satellite Algorithms

    Science.gov (United States)

    Williams, C. R.

    2012-12-01

    The NASA Global Precipitation Mission (GPM) raindrop size distribution (DSD) Working Group is composed of NASA PMM Science Team Members and is charged to "investigate the correlations between DSD parameters using Ground Validation (GV) data sets that support, or guide, the assumptions used in satellite retrieval algorithms." Correlations between DSD parameters can be used to constrain the unknowns and reduce the degrees-of-freedom in under-constrained satellite algorithms. Over the past two years, the GPM DSD Working Group has analyzed GV data and has found correlations between the mass-weighted mean raindrop diameter (Dm) and the mass distribution standard deviation (Sm) that follows a power-law relationship. This Dm-Sm power-law relationship appears to be robust and has been observed in surface disdrometer and vertically pointing radar observations. One benefit of a Dm-Sm power-law relationship is that a three parameter DSD can be modeled with just two parameters: Dm and Nw that determines the DSD amplitude. In order to incorporate observed DSD correlations into satellite algorithms, the GPM DSD Working Group is developing scattering and integral tables that can be used by satellite algorithms. Scattering tables describe the interaction of electromagnetic waves on individual particles to generate cross sections of backscattering, extinction, and scattering. Scattering tables are independent of the distribution of particles. Integral tables combine scattering table outputs with DSD parameters and DSD correlations to generate integrated normalized reflectivity, attenuation, scattering, emission, and asymmetry coefficients. Integral tables contain both frequency dependent scattering properties and cloud microphysics. The GPM DSD Working Group has developed scattering tables for raindrops at both Dual Precipitation Radar (DPR) frequencies and at all GMI radiometer frequencies less than 100 GHz. Scattering tables include Mie and T-matrix scattering with H- and V

  13. Modeling biological problems in computer science: a case study in genome assembly.

    Science.gov (United States)

    Medvedev, Paul

    2018-01-30

    As computer scientists working in bioinformatics/computational biology, we often face the challenge of coming up with an algorithm to answer a biological question. This occurs in many areas, such as variant calling, alignment and assembly. In this tutorial, we use the example of the genome assembly problem to demonstrate how to go from a question in the biological realm to a solution in the computer science realm. We show the modeling process step-by-step, including all the intermediate failed attempts. Please note this is not an introduction to how genome assembly algorithms work and, if treated as such, would be incomplete and unnecessarily long-winded. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Decoherence in optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)

  15. Star point centroid algorithm based on background forecast

    Science.gov (United States)

    Wang, Jin; Zhao, Rujin; Zhu, Nan

    2014-09-01

    The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.

  16. Citizen Data Science for Social Good in Complex Systems

    OpenAIRE

    Soumya Banerjee

    2018-01-01

    The confluence of massive amounts of openly available data, sophisticated machine learning algorithms and an enlightened citizenry willing to engage in data science presents novel opportunities for crowd sourced data science for social good. In this submission, I present vignettes of data science projects that I have been involved in and which have impact in various spheres of life and on social good. Complex systems are all around us: from social networks to transportation systems, cities, e...

  17. Evaluation Of Algorithms Of Anti- HIV Antibody Tests

    Directory of Open Access Journals (Sweden)

    Paranjape R.S

    1997-01-01

    Full Text Available Research question: Can alternate algorithms be used in place of conventional algorithm for epidemiological studies of HIV infection with less expenses? Objective: To compare the results of HIV sero- prevalence as determined by test algorithms combining three kits with conventional test algorithm. Study design: Cross â€" sectional. Participants: 282 truck drivers. Statistical analysis: Sensitivity and specificity analysis and predictive values. Results: Three different algorithms that do not include Western Blot (WB were compared with the conventional algorithm, in a truck driver population with 5.6% prevalence of HIV â€"I infection. Algorithms with one EIA (Genetic Systems or Biotest and a rapid test (immunocomb or with two EIAs showed 100% positive predictive value in relation to the conventional algorithm. Using an algorithm with EIA as screening test and a rapid test as a confirmatory test was 50 to 70% less expensive than the conventional algorithm per positive scrum sample. These algorithms obviate the interpretation of indeterminate results and also give differential diagnosis of HIV-2 infection. Alternate algorithms are ideally suited for community based control programme in developing countries. Application of these algorithms in population with low prevalence should also be studied in order to evaluate universal applicability.

  18. Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm

    Science.gov (United States)

    Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.

    2017-12-01

    Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.

  19. A biclustering algorithm for binary matrices based on penalized Bernoulli likelihood

    KAUST Repository

    Lee, Seokho

    2013-01-31

    We propose a new biclustering method for binary data matrices using the maximum penalized Bernoulli likelihood estimation. Our method applies a multi-layer model defined on the logits of the success probabilities, where each layer represents a simple bicluster structure and the combination of multiple layers is able to reveal complicated, multiple biclusters. The method allows for non-pure biclusters, and can simultaneously identify the 1-prevalent blocks and 0-prevalent blocks. A computationally efficient algorithm is developed and guidelines are provided for specifying the tuning parameters, including initial values of model parameters, the number of layers, and the penalty parameters. Missing-data imputation can be handled in the EM framework. The method is tested using synthetic and real datasets and shows good performance. © 2013 Springer Science+Business Media New York.

  20. Adaptive Filtering Algorithms and Practical Implementation

    CERN Document Server

    Diniz, Paulo S R

    2013-01-01

    In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...

  1. Linear Algorithms for Radioelectric Spectrum Forecast

    Directory of Open Access Journals (Sweden)

    Luis F. Pedraza

    2016-12-01

    Full Text Available This paper presents the development and evaluation of two linear algorithms for forecasting reception power for different channels at an assigned spectrum band of global systems for mobile communications (GSM, in order to analyze the spatial opportunity for reuse of frequencies by secondary users (SUs in a cognitive radio (CR network. The algorithms employed correspond to seasonal autoregressive integrated moving average (SARIMA and generalized autoregressive conditional heteroskedasticity (GARCH, which allow for a forecast of channel occupancy status. Results are evaluated using the following criteria: availability and occupancy time for channels, different types of mean absolute error, and observation time. The contributions of this work include a more integral forecast as the algorithm not only forecasts reception power but also the occupancy and availability time of a channel to determine its precision percentage during the use by primary users (PUs and SUs within a CR system. Algorithm analyses demonstrate a better performance for SARIMA over GARCH algorithm in most of the evaluated variables.

  2. Evaluation of the Jonker-Volgenant-Castanon (JVC) assignment algorithm for track association

    Science.gov (United States)

    Malkoff, Donald B.

    1997-07-01

    The Jonker-Volgenant-Castanon (JVC) assignment algorithm was used by Lockheed Martin Advanced Technology Laboratories (ATL) for track association in the Rotorcraft Pilot's Associate (RPA) program. RPA is Army Aviation's largest science and technology program, involving an integrated hardware/software system approach for a next generation helicopter containing advanced sensor equipments and applying artificial intelligence `associate' technologies. ATL is responsible for the multisensor, multitarget, onboard/offboard track fusion. McDonnell Douglas Helicopter Systems is the prime contractor and Lockheed Martin Federal Systems is responsible for developing much of the cognitive decision aiding and controls-and-displays subsystems. RPA is scheduled for flight testing beginning in 1997. RPA is unique in requiring real-time tracking and fusion for large numbers of highly-maneuverable ground (and air) targets in a target-dense environment. It uses diverse sensors and is concerned with a large area of interest. Target class and identification data is tightly integrated with spatial and kinematic data throughout the processing. Because of platform constraints, processing hardware for track fusion was quite limited. No previous experience using JVC in this type environment had been reported. ATL performed extensive testing of the JVC, concentrating on error rates and run- times under a variety of conditions. These included wide ranging numbers and types of targets, sensor uncertainties, target attributes, differing degrees of target maneuverability, and diverse combinations of sensors. Testing utilized Monte Carlo approaches, as well as many kinds of challenging scenarios. Comparisons were made with a nearest-neighbor algorithm and a new, proprietary algorithm (the `Competition' algorithm). The JVC proved to be an excellent choice for the RPA environment, providing a good balance between speed of operation and accuracy of results.

  3. Optimally stopped variational quantum algorithms

    Science.gov (United States)

    Vinci, Walter; Shabani, Alireza

    2018-04-01

    Quantum processors promise a paradigm shift in high-performance computing which needs to be assessed by accurate benchmarking measures. In this article, we introduce a benchmark for the variational quantum algorithm (VQA), recently proposed as a heuristic algorithm for small-scale quantum processors. In VQA, a classical optimization algorithm guides the processor's quantum dynamics to yield the best solution for a given problem. A complete assessment of the scalability and competitiveness of VQA should take into account both the quality and the time of dynamics optimization. The method of optimal stopping, employed here, provides such an assessment by explicitly including time as a cost factor. Here, we showcase this measure for benchmarking VQA as a solver for some quadratic unconstrained binary optimization. Moreover, we show that a better choice for the cost function of the classical routine can significantly improve the performance of the VQA algorithm and even improve its scaling properties.

  4. When algorithms shape collective action: Social media and the dynamics of cloud protesting

    NARCIS (Netherlands)

    Milan, S.

    2015-01-01

    How does the algorithmically mediated environment of social media restructure social action? This article combines social movement studies and science and technology studies to explore the role of social media in the organization, unfolding, and diffusion of contemporary protests. In particular, it

  5. A new algorithm for coding geological terminology

    Science.gov (United States)

    Apon, W.

    The Geological Survey of The Netherlands has developed an algorithm to convert the plain geological language of lithologic well logs into codes suitable for computer processing and link these to existing plotting programs. The algorithm is based on the "direct method" and operates in three steps: (1) searching for defined word combinations and assigning codes; (2) deleting duplicated codes; (3) correcting incorrect code combinations. Two simple auxiliary files are used. A simple PC demonstration program is included to enable readers to experiment with this algorithm. The Department of Quarternary Geology of the Geological Survey of The Netherlands possesses a large database of shallow lithologic well logs in plain language and has been using a program based on this algorithm for about 3 yr. Erroneous codes resulting from using this algorithm are less than 2%.

  6. Evaluating the accuracy of a MODIS direct broadcast algorithm for mapping burned areas over Russia

    Science.gov (United States)

    Petkov, A.; Hao, W. M.; Nordgren, B.; Corley, R.; Urbanski, S. P.; Ponomarev, E. I.

    2012-12-01

    Emission inventories for open area biomass burning rely on burned area estimates as a key component. We have developed an automated algorithm based on MODerate resolution Imaging Spectroradiometer (MODIS) satellite instrument data for estimating burned area from biomass fires. The algorithm is based on active fire detections, burn scars from MODIS calibrated radiances (MOD02HKM), and MODIS land cover classification (MOD12Q1). Our burned area product combines active fires and burn scar detections using spatio-temporal criteria, and has a resolution of 500 x 500 meters. The algorithm has been used for smoke emission estimates over the western United States. We will present the assessed accuracy of our algorithm in different regions of Russia with intense wildfire activity by comparing our results with the burned area product from the Sukachev Institute of Forest (SIF) of the Russian Academy of Sciences in Krasnoyarsk, Russia, as well as burn scars extracted from Landsat imagery. Landsat burned area extraction was based on threshold classification using the Jenks Natural Breaks algorithm to the histogram for each singe scene Normalized Burn Ratio (NBR) image. The final evaluation consisted of a grid-based approach, where the burned area in each 3 km x 3 km grid cell was calculated and compared with the other two sources. A comparison between our burned area estimates and those from SIF showed strong correlation (R2=0.978), although our estimate is approximately 40% lower than the SIF burned areas. The linear fit between the burned area from Landsat scenes and our MODIS algorithm over 18,754 grid cells resulted with a slope of 0.998 and R2=0.7, indicating that our algorithm is suitable for mapping burned areas for fires in boreal forests and other ecosystems. The results of our burned area algorithm will be used for estimating emissions of trace gasses and aerosol particles (including black carbon) from biomass burning in Northern Eurasia for the period of 2002-2011.

  7. Cook-Levin Theorem Algorithmic-Reducibility/Completeness = Wilson Renormalization-(Semi)-Group Fixed-Points; ``Noise''-Induced Phase-Transitions (NITs) to Accelerate Algorithmics (``NIT-Picking'') REPLACING CRUTCHES!!!: Models: Turing-machine, finite-state-models, finite-automata

    Science.gov (United States)

    Young, Frederic; Siegel, Edward

    Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!

  8. Algorithmic Finance and (Limits to) Governmentality

    DEFF Research Database (Denmark)

    Borch, Christian

    2017-01-01

    -frequency trading, such as how algorithms are designed to govern other market participants' anticipations of market dynamics. However, I also argue that, to fully understand the realm of algorithmic finance and high-frequency trading, it is important to supplement a governmentality approach with an analytical......In this essay I discuss algorithmic finance, specifically the use of fully automated trading, including high-frequency trading, in the light of Michel Foucault's notion of governmentality. I argue that a governmentality perspective offers a fruitful way of understanding particular aspects of high...... lexicon which is not primarily centred on productive forms of power. Specifically, I suggest that, according to media discourses on high-frequency trading, algorithmic finance often works in ways that are better grasped through, e.g. Elias Canetti's work on predatory power and Roger Caillois's work...

  9. Parallelization of a blind deconvolution algorithm

    Science.gov (United States)

    Matson, Charles L.; Borelli, Kathy J.

    2006-09-01

    Often it is of interest to deblur imagery in order to obtain higher-resolution images. Deblurring requires knowledge of the blurring function - information that is often not available separately from the blurred imagery. Blind deconvolution algorithms overcome this problem by jointly estimating both the high-resolution image and the blurring function from the blurred imagery. Because blind deconvolution algorithms are iterative in nature, they can take minutes to days to deblur an image depending how many frames of data are used for the deblurring and the platforms on which the algorithms are executed. Here we present our progress in parallelizing a blind deconvolution algorithm to increase its execution speed. This progress includes sub-frame parallelization and a code structure that is not specialized to a specific computer hardware architecture.

  10. Algorithmic Finance and (Limits to) Governmentality

    DEFF Research Database (Denmark)

    Borch, Christian

    2017-01-01

    In this essay I discuss algorithmic finance, specifically the use of fully automated trading, including high-frequency trading, in the light of Michel Foucault's notion of governmentality. I argue that a governmentality perspective offers a fruitful way of understanding particular aspects of high......-frequency trading, such as how algorithms are designed to govern other market participants' anticipations of market dynamics. However, I also argue that, to fully understand the realm of algorithmic finance and high-frequency trading, it is important to supplement a governmentality approach with an analytical...... lexicon which is not primarily centred on productive forms of power. Specifically, I suggest that, according to media discourses on high-frequency trading, algorithmic finance often works in ways that are better grasped through, e.g. Elias Canetti's work on predatory power and Roger Caillois's work...

  11. An implementation of the Heaviside algorithm

    International Nuclear Information System (INIS)

    Dimovski, I.H.; Spiridonova, M.N.

    2011-01-01

    The so-called Heaviside algorithm based on the operational calculus approach is intended for solving initial value problems for linear ordinary differential equations with constant coefficients. We use it in the framework of Mikusinski's operational calculus. A description and implementation of the Heaviside algorithm using a computer algebra system are considered. Special attention is paid to the features making this implementation efficient. Illustrative examples are included

  12. Large-scale Labeled Datasets to Fuel Earth Science Deep Learning Applications

    Science.gov (United States)

    Maskey, M.; Ramachandran, R.; Miller, J.

    2017-12-01

    Deep learning has revolutionized computer vision and natural language processing with various algorithms scaled using high-performance computing. However, generic large-scale labeled datasets such as the ImageNet are the fuel that drives the impressive accuracy of deep learning results. Large-scale labeled datasets already exist in domains such as medical science, but creating them in the Earth science domain is a challenge. While there are ways to apply deep learning using limited labeled datasets, there is a need in the Earth sciences for creating large-scale labeled datasets for benchmarking and scaling deep learning applications. At the NASA Marshall Space Flight Center, we are using deep learning for a variety of Earth science applications where we have encountered the need for large-scale labeled datasets. We will discuss our approaches for creating such datasets and why these datasets are just as valuable as deep learning algorithms. We will also describe successful usage of these large-scale labeled datasets with our deep learning based applications.

  13. The compression algorithm for the data acquisition system in HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhu Lin; Luo Jiarong; Li Guiming; Yue Dongli

    2003-01-01

    HT-7 superconducting tokamak in the Institute of Plasma Physics of the Chinese Academy of Sciences is an experimental device for fusion research in China. The main task of the data acquisition system of HT-7 is to acquire, store, analyze and index the data. The volume of the data is nearly up to hundreds of million bytes. Besides the hardware and software support, a great capacity of data storage, process and transfer is a more important problem. To deal with this problem, the key technology is data compression algorithm. In the paper, the data format in HT-7 is introduced first, then the data compression algorithm, LZO, being a kind of portable lossless data compression algorithm with ANSIC, is analyzed. This compression algorithm, which fits well with the data acquisition and distribution in the nuclear fusion experiment, offers a pretty fast compression and extremely fast decompression. At last the performance evaluation of LZO application in HT-7 is given

  14. The Chandra Source Catalog: Algorithms

    Science.gov (United States)

    McDowell, Jonathan; Evans, I. N.; Primini, F. A.; Glotfelty, K. J.; McCollough, M. L.; Houck, J. C.; Nowak, M. A.; Karovska, M.; Davis, J. E.; Rots, A. H.; Siemiginowska, A. L.; Hain, R.; Evans, J. D.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Doe, S. M.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Lauer, J.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Plummer, D. A.; Refsdal, B. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.

    2009-09-01

    Creation of the Chandra Source Catalog (CSC) required adjustment of existing pipeline processing, adaptation of existing interactive analysis software for automated use, and development of entirely new algorithms. Data calibration was based on the existing pipeline, but more rigorous data cleaning was applied and the latest calibration data products were used. For source detection, a local background map was created including the effects of ACIS source readout streaks. The existing wavelet source detection algorithm was modified and a set of post-processing scripts used to correct the results. To analyse the source properties we ran the SAO Traceray trace code for each source to generate a model point spread function, allowing us to find encircled energy correction factors and estimate source extent. Further algorithms were developed to characterize the spectral, spatial and temporal properties of the sources and to estimate the confidence intervals on count rates and fluxes. Finally, sources detected in multiple observations were matched, and best estimates of their merged properties derived. In this paper we present an overview of the algorithms used, with more detailed treatment of some of the newly developed algorithms presented in companion papers.

  15. Fourth International Conference on Computer Science and Its Applications (CIIA 2013)

    CERN Document Server

    Mohamed, Otmane; Bellatreche, Ladjel; Recent Advances in Robotics and Automation

    2013-01-01

        "During the last decades Computational Intelligence has emerged and showed its contributions in various broad research communities (computer science, engineering, finance, economic, decision making, etc.). This was done by proposing approaches and algorithms based either on turnkey techniques belonging to the large panoply of solutions offered by computational intelligence such as data mining, genetic algorithms, bio-inspired methods, Bayesian networks, machine learning, fuzzy logic, artificial neural networks, etc. or inspired by computational intelligence techniques to develop new ad-hoc algorithms for the problem under consideration.    This volume is a comprehensive collection of extended contributions from the 4th International Conference on Computer Science and Its Applications (CIIA’2013) organized into four main tracks: Track 1: Computational Intelligence, Track  2: Security & Network Technologies, Track  3: Information Technology and Track 4: Computer Systems and Applications. This ...

  16. Algorithm 865

    DEFF Research Database (Denmark)

    Gustavson, Fred G.; Reid, John K.; Wasniewski, Jerzy

    2007-01-01

    We present subroutines for the Cholesky factorization of a positive-definite symmetric matrix and for solving corresponding sets of linear equations. They exploit cache memory by using the block hybrid format proposed by the authors in a companion article. The matrix is packed into n(n + 1)/2 real...... variables, and the speed is usually better than that of the LAPACK algorithm that uses full storage (n2 variables). Included are subroutines for rearranging a matrix whose upper or lower-triangular part is packed by columns to this format and for the inverse rearrangement. Also included is a kernel...

  17. Advances in algorithms, languages, and complexity

    CERN Document Server

    Ko, Ker-I

    1997-01-01

    This book contains a collection of survey papers in the areas of algorithms, languages and complexity, the three areas in which Professor Ronald V. Book has made significant contributions. As a fonner student and a co-author who have been influenced by him directly, we would like to dedicate this book to Professor Ronald V. Book to honor and celebrate his sixtieth birthday. Professor Book initiated his brilliant academic career in 1958, graduating from Grinnell College with a Bachelor of Arts degree. He obtained a Master of Arts in Teaching degree in 1960 and a Master of Arts degree in 1964 both from Wesleyan University, and a Doctor of Philosophy degree from Harvard University in 1969, under the guidance of Professor Sheila A. Greibach. Professor Book's research in discrete mathematics and theoretical com­ puter science is reflected in more than 150 scientific publications. These works have made a strong impact on the development of several areas of theoretical computer science. A more detailed summary of h...

  18. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  19. Algorithms and programming tools for image processing on the MPP:3

    Science.gov (United States)

    Reeves, Anthony P.

    1987-01-01

    This is the third and final report on the work done for NASA Grant 5-403 on Algorithms and Programming Tools for Image Processing on the MPP:3. All the work done for this grant is summarized in the introduction. Work done since August 1986 is reported in detail. Research for this grant falls under the following headings: (1) fundamental algorithms for the MPP; (2) programming utilities for the MPP; (3) the Parallel Pascal Development System; and (4) performance analysis. In this report, the results of two efforts are reported: region growing, and performance analysis of important characteristic algorithms. In each case, timing results from MPP implementations are included. A paper is included in which parallel algorithms for region growing on the MPP is discussed. These algorithms permit different sized regions to be merged in parallel. Details on the implementation and peformance of several important MPP algorithms are given. These include a number of standard permutations, the FFT, convolution, arbitrary data mappings, image warping, and pyramid operations, all of which have been implemented on the MPP. The permutation and image warping functions have been included in the standard development system library.

  20. Packet-Based Control Algorithms for Cooperative Surveillance and Reconnaissance

    National Research Council Canada - National Science Library

    Murray, Richard M

    2007-01-01

    ..., and repeated transmissions. Results include analysis and design of estimation and control algorithms in the presence of packet loss and across multi-hop data networks, distributed estimation and sensor fusion algorithms...

  1. Operation of the Institute for Computer Applications in Science and Engineering

    Science.gov (United States)

    1975-01-01

    The ICASE research program is described in detail; it consists of four major categories: (1) efficient use of vector and parallel computers, with particular emphasis on the CDC STAR-100; (2) numerical analysis, with particular emphasis on the development and analysis of basic numerical algorithms; (3) analysis and planning of large-scale software systems; and (4) computational research in engineering and the natural sciences, with particular emphasis on fluid dynamics. The work in each of these areas is described in detail; other activities are discussed, a prognosis of future activities are included.

  2. Perspective of Dimensional Analysis in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2017-09-01

    Full Text Available This paper presents several applications of the dimensional analysis method to problems investigated in medical sciences. The method is used to analyze various complex processes without using formal laws governing the same. It is particularly suitable for a general analysis of fluid transfer (liquids and gases in the human body. This paper mainly serves as an overview of selected applications, mostly those emerging in the recent years, and includes a discussion of the mathematical fundamentals of dimensional analysis together followed by its critical analysis. Containing detailed calculations of two examples, the paper also serves as training material in the area of the computational method of the dimensional analysis algorithm.

  3. Reflections of Practical Implementation of the academic course Analysis and Design of Algorithms taught in the Universities of Pakistan

    Directory of Open Access Journals (Sweden)

    Faryal Shamsi

    2017-12-01

    Full Text Available This Analysis and Design of Algorithm is considered as a compulsory course in the field of Computer Science. It increases the logical and problem solving skills of the students and make their solutions efficient in terms of time and space.  These objectives can only be achieved if a student practically implements what he or she has studied throughout the course. But if the contents of this course are merely studied and rarely practiced then the actual goals of the course is not fulfilled. This article will explore the extent of practical implementation of the course of analysis and design of algorithm. Problems faced by the computer science community and major barriers in the field are also enumerated. Finally, some recommendations are made to overcome the obstacles in the practical implementation of analysis and design of algorithms.

  4. Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm

    Science.gov (United States)

    Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad

    2018-01-01

    Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.

  5. Value-added Data Services at the Goddard Earth Sciences Data and Information Services Center

    Science.gov (United States)

    Leptoukh, G. G.; Alcott, G. T.; Kempler, S. J.; Lynnes, C. S.; Vollmer, B. E.

    2004-05-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in addition to serving the Earth Science community as one of the major Distributed Active Archive Centers (DAACs), provides much more than just data. Among the value-added services available to general users are subsetting data spatially and/or by parameter, online analysis (to avoid downloading unnecessary all the data), and assistance in obtaining data from other centers. Services available to data producers and high-volume users include consulting on building new products with standard formats and metadata and construction of data management systems. A particularly useful service is data processing at the DISC (i.e., close to the input data) with the users' algorithms. This can take a number of different forms: as a configuration-managed algorithm within the main processing stream; as a stand-alone program next to the on-line data storage; as build-it-yourself code within the Near-Archive Data Mining (NADM) system; or as an on-the-fly analysis with simple algorithms embedded into the web-based tools. Partnerships between the GES DISC and scientists, both producers and users, allow the scientists concentrate on science, while the GES DISC handles the of data management, e.g., formats, integration and data processing. The existing data management infrastructure at the GES DISC supports a wide spectrum of options: from simple data support to sophisticated on-line analysis tools, producing economies of scale and rapid time-to-deploy. At the same time, such partnerships allow the GES DISC to serve the user community more efficiently and to better prioritize on-line holdings. Several examples of successful partnerships are described in the presentation.

  6. A Low-Tech, Hands-On Approach To Teaching Sorting Algorithms to Working Students.

    Science.gov (United States)

    Dios, R.; Geller, J.

    1998-01-01

    Focuses on identifying the educational effects of "activity oriented" instructional techniques. Examines which instructional methods produce enhanced learning and comprehension. Discusses the problem of learning "sorting algorithms," a major topic in every Computer Science curriculum. Presents a low-tech, hands-on teaching method for sorting…

  7. Dose Calculation Accuracy of the Monte Carlo Algorithm for CyberKnife Compared with Other Commercially Available Dose Calculation Algorithms

    International Nuclear Information System (INIS)

    Sharma, Subhash; Ott, Joseph; Williams, Jamone; Dickow, Danny

    2011-01-01

    Monte Carlo dose calculation algorithms have the potential for greater accuracy than traditional model-based algorithms. This enhanced accuracy is particularly evident in regions of lateral scatter disequilibrium, which can develop during treatments incorporating small field sizes and low-density tissue. A heterogeneous slab phantom was used to evaluate the accuracy of several commercially available dose calculation algorithms, including Monte Carlo dose calculation for CyberKnife, Analytical Anisotropic Algorithm and Pencil Beam convolution for the Eclipse planning system, and convolution-superposition for the Xio planning system. The phantom accommodated slabs of varying density; comparisons between planned and measured dose distributions were accomplished with radiochromic film. The Monte Carlo algorithm provided the most accurate comparison between planned and measured dose distributions. In each phantom irradiation, the Monte Carlo predictions resulted in gamma analysis comparisons >97%, using acceptance criteria of 3% dose and 3-mm distance to agreement. In general, the gamma analysis comparisons for the other algorithms were <95%. The Monte Carlo dose calculation algorithm for CyberKnife provides more accurate dose distribution calculations in regions of lateral electron disequilibrium than commercially available model-based algorithms. This is primarily because of the ability of Monte Carlo algorithms to implicitly account for tissue heterogeneities, density scaling functions; and/or effective depth correction factors are not required.

  8. A mathematical approach to research problems of science and technology theoretical basis and developments in mathematical modeling

    CERN Document Server

    Ei, Shin-ichiro; Koiso, Miyuki; Ochiai, Hiroyuki; Okada, Kanzo; Saito, Shingo; Shirai, Tomoyuki

    2014-01-01

    This book deals with one of the most novel advances in mathematical modeling for applied scientific technology, including computer graphics, public-key encryption, data visualization, statistical data analysis, symbolic calculation, encryption, error correcting codes, and risk management. It also shows that mathematics can be used to solve problems from nature, e.g., slime mold algorithms. One of the unique features of this book is that it shows readers how to use pure and applied mathematics, especially those mathematical theory/techniques developed in the twentieth century, and developing now, to solve applied problems in several fields of industry. Each chapter includes clues on how to use "mathematics" to solve concrete problems faced in industry as well as practical applications. The target audience is not limited to researchers working in applied mathematics and includes those in engineering, material sciences, economics, and life sciences.

  9. Sound algorithms

    OpenAIRE

    De Götzen , Amalia; Mion , Luca; Tache , Olivier

    2007-01-01

    International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.

  10. Algorithmic strategies for FPGA-based vision

    OpenAIRE

    Lim, Yoong Kang

    2016-01-01

    As demands for real-time computer vision applications increase, implementations on alternative architectures have been explored. These architectures include Field-Programmable Gate Arrays (FPGAs), which offer a high degree of flexibility and parallelism. A problem with this is that many computer vision algorithms have been optimized for serial processing, and this often does not map well to FPGA implementation. This thesis introduces the concept of FPGA-tailored computer vision algorithms...

  11. Algorithmic foundation of multi-scale spatial representation

    CERN Document Server

    Li, Zhilin

    2006-01-01

    With the widespread use of GIS, multi-scale representation has become an important issue in the realm of spatial data handling. However, no book to date has systematically tackled the different aspects of this discipline. Emphasizing map generalization, Algorithmic Foundation of Multi-Scale Spatial Representation addresses the mathematical basis of multi-scale representation, specifically, the algorithmic foundation.Using easy-to-understand language, the author focuses on geometric transformations, with each chapter surveying a particular spatial feature. After an introduction to the essential operations required for geometric transformations as well as some mathematical and theoretical background, the book describes algorithms for a class of point features/clusters. It then examines algorithms for individual line features, such as the reduction of data points, smoothing (filtering), and scale-driven generalization, followed by a discussion of algorithms for a class of line features including contours, hydrog...

  12. Image/Time Series Mining Algorithms: Applications to Developmental Biology, Document Processing and Data Streams

    Science.gov (United States)

    Tataw, Oben Moses

    2013-01-01

    Interdisciplinary research in computer science requires the development of computational techniques for practical application in different domains. This usually requires careful integration of different areas of technical expertise. This dissertation presents image and time series analysis algorithms, with practical interdisciplinary applications…

  13. Image Encryption Using a Lightweight Stream Encryption Algorithm

    Directory of Open Access Journals (Sweden)

    Saeed Bahrami

    2012-01-01

    Full Text Available Security of the multimedia data including image and video is one of the basic requirements for the telecommunications and computer networks. In this paper, we consider a simple and lightweight stream encryption algorithm for image encryption, and a series of tests are performed to confirm suitability of the described encryption algorithm. These tests include visual test, histogram analysis, information entropy, encryption quality, correlation analysis, differential analysis, and performance analysis. Based on this analysis, it can be concluded that the present algorithm in comparison to A5/1 and W7 stream ciphers has the same security level, is better in terms of the speed of performance, and is used for real-time applications.

  14. GSM Channel Equalization Algorithm - Modern DSP Coprocessor Approach

    Directory of Open Access Journals (Sweden)

    M. Drutarovsky

    1999-12-01

    Full Text Available The paper presents basic equations of efficient GSM Viterbi equalizer algorithm based on approximation of GMSK modulation by linear superposition of amplitude modulated pulses. This approximation allows to use Ungerboeck form of channel equalizer with significantly reduced arithmetic complexity. Proposed algorithm can be effectively implemented on the Viterbi and Filter coprocessors of new Motorola DSP56305 digital signal processor. Short overview of coprocessor features related to the proposed algorithm is included.

  15. Korea's Contribution to Radiological Research Included in Science Citation Index Expanded, 1986-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ku, You Jin; Yoon, Dae Young; Lim, Kyoung Ja; Baek, Sora; Seo, Young Lan; Yun, Eun Joo; Choi, Chul Soon; Bae, Sang Hoon [Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul (Korea, Republic of); Lee, Hyun; Ju, Young Su [Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang (Korea, Republic of)

    2012-09-15

    To evaluate scientific papers published by Korean radiologists in the Science Citation Index Expanded (SCIE) radiology journals, between 1986 and 2010. The Institute for Scientific Information Web of Knowledge-Web of Science (SCIE) database was searched for all articles published by Korean radiologists, in SCIE radiology journals, between 1986 and 2010. We performed the analysis by typing 'Korea' and 'radiol' in the address section and selecting the subject area of 'Radiology, Nuclear Medicine, and Medical Imaging' with the use of the general search function of the software. Analyzed parameters included the total number of publications, document types, journals, and institutions. In addition, we analyzed where Korea ranks, compared to other countries, in terms of the number of published articles. All these data were analyzed according to five time periods: 1986-1990, 1991-1995, 1996-2000, 2001-2005, and 2006-2010. Overall, 4974 papers were published by Korean radiologists, in 99 different SCIE journals, between 1986 and 2010, of which 4237 (85.2%) were article-type papers. Of the total 115395 articles, worldwide, published in radiology journals, Korea's share was 3.7%, with an upward trend over time (p < 0.005). The journal with the highest number of articles was the American Journal of Roentgenology (n 565, 13.3%). The institution which produced the highest number of publications was Seoul National University (n = 932, 22.0%). The number of scientific articles published by Korean radiologists in the SCIE radiology journals has increased significantly between 1986 and 2010. Korea was ranked 4th among countries contributing to radiology research during the last 5 years.

  16. Automatic design of decision-tree induction algorithms

    CERN Document Server

    Barros, Rodrigo C; Freitas, Alex A

    2015-01-01

    Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning, and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain o

  17. Generalization of Risch's algorithm to special functions

    International Nuclear Information System (INIS)

    Raab, Clemens G.

    2013-05-01

    Symbolic integration deals with the evaluation of integrals in closed form. We present an overview of Risch's algorithm including recent developments. The algorithms discussed are suited for both indefinite and definite integration. They can also be used to compute linear relations among integrals and to find identities for special functions given by parameter integrals. The aim of this presentation is twofold: to introduce the reader to some basic ideas of differential algebra in the context of integration and to raise awareness in the physics community of computer algebra algorithms for indefinite and definite integration.

  18. Adaptive discrete-ordinates algorithms and strategies

    International Nuclear Information System (INIS)

    Stone, J.C.; Adams, M.L.

    2005-01-01

    We present our latest algorithms and strategies for adaptively refined discrete-ordinates quadrature sets. In our basic strategy, which we apply here in two-dimensional Cartesian geometry, the spatial domain is divided into regions. Each region has its own quadrature set, which is adapted to the region's angular flux. Our algorithms add a 'test' direction to the quadrature set if the angular flux calculated at that direction differs by more than a user-specified tolerance from the angular flux interpolated from other directions. Different algorithms have different prescriptions for the method of interpolation and/or choice of test directions and/or prescriptions for quadrature weights. We discuss three different algorithms of different interpolation orders. We demonstrate through numerical results that each algorithm is capable of generating solutions with negligible angular discretization error. This includes elimination of ray effects. We demonstrate that all of our algorithms achieve a given level of error with far fewer unknowns than does a standard quadrature set applied to an entire problem. To address a potential issue with other algorithms, we present one algorithm that retains exact integration of high-order spherical-harmonics functions, no matter how much local refinement takes place. To address another potential issue, we demonstrate that all of our methods conserve partial currents across interfaces where quadrature sets change. We conclude that our approach is extremely promising for solving the long-standing problem of angular discretization error in multidimensional transport problems. (authors)

  19. Map of the Physical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Boyack, Kevin W.

    1999-07-02

    Various efforts to map the structure of science have been undertaken over the years. Using a new tool, VxInsight{trademark}, we have mapped and displayed 3000 journals in the physical sciences. This map is navigable and interactively reveals the structure of science at many different levels. Science mapping studies are typically focused at either the macro-or micro-level. At a macro-level such studies seek to determine the basic structural units of science and their interrelationships. The majority of studies are performed at the discipline or specialty level, and seek to inform science policy and technical decision makers. Studies at both levels probe the dynamic nature of science, and the implications of the changes. A variety of databases and methods have been used for these studies. Primary among databases are the citation indices (SCI and SSCI) from the Institute for Scientific Information, which have gained widespread acceptance for bibliometric studies. Maps are most often based on computed similarities between journal articles (co-citation), keywords or topics (co-occurrence or co-classification), or journals (journal-journal citation counts). Once the similarity matrix is defined, algorithms are used to cluster the data.

  20. Scalable algorithms for contact problems

    CERN Document Server

    Dostál, Zdeněk; Sadowská, Marie; Vondrák, Vít

    2016-01-01

    This book presents a comprehensive and self-contained treatment of the authors’ newly developed scalable algorithms for the solutions of multibody contact problems of linear elasticity. The brand new feature of these algorithms is theoretically supported numerical scalability and parallel scalability demonstrated on problems discretized by billions of degrees of freedom. The theory supports solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. It covers BEM discretization, jumping coefficients, floating bodies, mortar non-penetration conditions, etc. The exposition is divided into four parts, the first of which reviews appropriate facets of linear algebra, optimization, and analysis. The most important algorithms and optimality results are presented in the third part of the volume. The presentation is complete, including continuous formulation, discretization, decomposition, optimality results, and numerical experimen...

  1. Writing for computer science

    CERN Document Server

    Zobel, Justin

    2015-01-01

    All researchers need to write or speak about their work, and to have research  that is worth presenting. Based on the author's decades of experience as a researcher and advisor, this third edition provides detailed guidance on writing and presentations and a comprehensive introduction to research methods, the how-to of being a successful scientist.  Topics include: ·         Development of ideas into research questions; ·         How to find, read, evaluate and referee other research; ·         Design and evaluation of experiments and appropriate use of statistics; ·         Ethics, the principles of science and examples of science gone wrong. Much of the book is a step-by-step guide to effective communication, with advice on:  ·         Writing style and editing; ·         Figures, graphs and tables; ·         Mathematics and algorithms; ·         Literature reviews and referees' reports; ·         Structuring of arguments an...

  2. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  3. Science of invention patent

    International Nuclear Information System (INIS)

    Park, Yeong Taek; Park, Su Dong

    1999-02-01

    This book tells science of invention patent about new way of invention and creative solution for problems, basic conception of TRIZ, resolution of physical contradictory and technical contradictory, development of system and types of evolution, change of thinking for solving the problems, analysis of structure for problem solution, problem solution using scientific phenomenon and effect, use of standard solution and algorithm of creative problem solution.

  4. Intelligent systems and soft computing for nuclear science and industry

    International Nuclear Information System (INIS)

    Ruan, D.; D'hondt, P.; Govaerts, P.; Kerre, E.E.

    1996-01-01

    The second international workshop on Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) addresses topics related to intelligent systems and soft computing for nuclear science and industry. The proceedings contain 52 papers in different fields such as radiation protection, nuclear safety (human factors and reliability), safeguards, nuclear reactor control, production processes in the fuel cycle, dismantling, waste and disposal, decision making, and nuclear reactor control. A clear link is made between theory and applications of fuzzy logic such as neural networks, expert systems, robotics, man-machine interfaces, and decision-support techniques by using modern and advanced technologies and tools. The papers are grouped in three sections. The first section (Soft computing techniques) deals with basic tools to treat fuzzy logic, neural networks, genetic algorithms, decision-making, and software used for general soft-computing aspects. The second section (Intelligent engineering systems) includes contributions on engineering problems such as knowledge-based engineering, expert systems, process control integration, diagnosis, measurements, and interpretation by soft computing. The third section (Nuclear applications) focusses on the application of soft computing and intelligent systems in nuclear science and industry

  5. Rapid Mental Сomputation System as a Tool for Algorithmic Thinking of Elementary School Students Development

    Directory of Open Access Journals (Sweden)

    Rushan Ziatdinov

    2012-07-01

    Full Text Available In this paper, we describe the possibilities of using a rapid mental computation system in elementary education. The system consists of a number of readily memorized operations that allow one to perform arithmetic computations very quickly. These operations are actually simple algorithms which can develop or improve the algorithmic thinking of pupils. Using a rapid mental computation system allows forming the basis for the study of computer science in secondary school.

  6. DES Science Portal: Computing Photometric Redshifts

    Energy Technology Data Exchange (ETDEWEB)

    Gschwend, Julia [LIneA, Rio de Janeiro

    2016-01-01

    An important challenge facing photometric surveys for cosmological purposes, such as the Dark Energy Survey (DES), is the need to produce reliable photometric redshifts (photo-z). The choice of adequate algorithms and configurations and the maintenance of an up-to-date spectroscopic database to build training sets, for example, are challenging tasks when dealing with large amounts of data that are regularly updated and constantly growing. In this paper, we present the first of a series of tools developed by DES, provided as part of the DES Science Portal, an integrated web-based data portal developed to facilitate the scientific analysis of the data, while ensuring the reproducibility of the analysis. We present the DES Science Portal photometric redshift tools, starting from the creation of a spectroscopic sample to training the neural network photo-z codes, to the final estimation of photo-zs for a large photometric catalog. We illustrate this operation by calculating well calibrated photo-zs for a galaxy sample extracted from the DES first year (Y1A1) data. The series of processes mentioned above is run entirely within the Portal environment, which automatically produces validation metrics, and maintains the provenance between the different steps. This system allows us to fine tune the many steps involved in the process of calculating photo-zs, making sure that we do not lose the information on the configurations and inputs of the previous processes. By matching the DES Y1A1 photometry to a spectroscopic sample, we define different training sets that we use to feed the photo-z algorithms already installed at the Portal. Finally, we validate the results under several conditions, including the case of a sample limited to i<22.5 with the color properties close to the full DES Y1A1 photometric data. This way we compare the performance of multiple methods and training configurations. The infrastructure presented here is an effcient way to test several methods of

  7. Algorithm aversion: people erroneously avoid algorithms after seeing them err.

    Science.gov (United States)

    Dietvorst, Berkeley J; Simmons, Joseph P; Massey, Cade

    2015-02-01

    Research shows that evidence-based algorithms more accurately predict the future than do human forecasters. Yet when forecasters are deciding whether to use a human forecaster or a statistical algorithm, they often choose the human forecaster. This phenomenon, which we call algorithm aversion, is costly, and it is important to understand its causes. We show that people are especially averse to algorithmic forecasters after seeing them perform, even when they see them outperform a human forecaster. This is because people more quickly lose confidence in algorithmic than human forecasters after seeing them make the same mistake. In 5 studies, participants either saw an algorithm make forecasts, a human make forecasts, both, or neither. They then decided whether to tie their incentives to the future predictions of the algorithm or the human. Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster. This was true even among those who saw the algorithm outperform the human.

  8. Perspective: Materials Informatics and Big Data: Realization of the Fourth Paradigm of Science in Materials Science

    Science.gov (United States)

    2016-08-17

    algorithm Bagging29 Ensembling Builds multiple models on bootstrapped training data subsets to improve model stability by reducing variance Random subspace30...36 053208-6 A. Agrawal and A. Choudhary APL Mater. 4, 053208 (2016) domains like business and marketing,51–53 healthcare,54–60 climate science,61–63

  9. A comparison of three optimization algorithms for intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Pflugfelder, D.; Wilkens, J.J.; Nill, S.; Oelfke, U.

    2008-01-01

    In intensity modulated treatment techniques, the modulation of each treatment field is obtained using an optimization algorithm. Multiple optimization algorithms have been proposed in the literature, e.g. steepest descent, conjugate gradient, quasi-Newton methods to name a few. The standard optimization algorithm in our in-house inverse planning tool KonRad is a quasi-Newton algorithm. Although this algorithm yields good results, it also has some drawbacks. Thus we implemented an improved optimization algorithm based on the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) routine. In this paper the improved optimization algorithm is described. To compare the two algorithms, several treatment plans are optimized using both algorithms. This included photon (IMRT) as well as proton (IMPT) intensity modulated therapy treatment plans. To present the results in a larger context the widely used conjugate gradient algorithm was also included into this comparison. On average, the improved optimization algorithm was six times faster to reach the same objective function value. However, it resulted not only in an acceleration of the optimization. Due to the faster convergence, the improved optimization algorithm usually terminates the optimization process at a lower objective function value. The average of the observed improvement in the objective function value was 37%. This improvement is clearly visible in the corresponding dose-volume-histograms. The benefit of the improved optimization algorithm is particularly pronounced in proton therapy plans. The conjugate gradient algorithm ranked in between the other two algorithms with an average speedup factor of two and an average improvement of the objective function value of 30%. (orig.)

  10. Alchemy & algorithms: perspectives on the philosophy and history of open science

    Directory of Open Access Journals (Sweden)

    Leo Lahti

    2017-05-01

    Full Text Available This paper gives the reader a chance to experience, or revisit, PHOS16: a conference on the History and Philosophy of Open Science. In the winter of 2016, we invited a varied international group to engage with these topics at the University of Helsinki, Finland. Our aim was a critical assessment of the defining features, underlying narratives, and overall objectives of the contemporary open science movement. The event brought together contemporary open science scholars, publishers, and advocates to discuss the philosophical foundations and historical roots of openness in academic research. The eight sessions combined historical views with more contemporary perspectives on topics such as transparency, reproducibility, collaboration, publishing, peer review, research ethics, as well as societal impact and engagement. We gathered together expert panelists and 15 invited speakers who have published extensively on these topics, which allowed us to engage in a thorough and multifaceted discussion. Together with our involved audience we charted the role and foundations of openness of research in our time, considered the accumulation and dissemination of scientific knowledge, and debated the various technical, legal, and ethical challenges of the past and present. In this article, we provide an overview of the topics covered at the conference as well as individual video interviews with each speaker. In addition to this, all the talks were recorded and they are offered here as an openly licensed community resource in both video and audio form.

  11. A phi-competitive algorithm for collecting items with increasing weights from a dynamic queue

    Czech Academy of Sciences Publication Activity Database

    Bienkowski, M.; Chrobak, M.; Dürr, Ch.; Hurand, M.; Jeż, A.; Jeż, Łukasz; Stachowiak, G.

    2013-01-01

    Roč. 475, 4 March (2013), s. 92-102 ISSN 0304-3975 Institutional support: RVO:67985840 Keywords : online algorithms * competitive analysis * buffer management Subject RIV: BA - General Mathematics Impact factor: 0.516, year: 2013 http://www.sciencedirect.com/science/article/pii/S0304397513000121

  12. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  13. Performance data from the ZEPLIN-III second science run

    International Nuclear Information System (INIS)

    Majewski, P; Edwards, B; Kalmus, G E; Lindote, A; Solovov, V N; Chepel, V; DeViveiros, L; Lopes, M I; Akimov, D Yu; Belov, V A; Burenkov, A A; Kobyakin, A S; Kovalenko, A G; Araújo, H M; Currie, A; Horn, M; Lebedenko, V N; Barnes, E J; Ghag, C; Hollingsworth, A

    2012-01-01

    ZEPLIN-III is a two-phase xenon direct dark matter experiment located at the Boulby Mine (U.K.). After its first science run in 2008 it was upgraded with: an array of low background photomultipliers, a new anti-coincidence detector system with plastic scintillator and an improved calibration system. After 319 days of data taking the second science run ended in May 2011. In this paper we describe the instrument performance with emphasis on the position and energy reconstruction algorithm and summarise the final science results.

  14. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.

    2017-12-01

    Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.

  15. Target-type probability combining algorithms for multisensor tracking

    Science.gov (United States)

    Wigren, Torbjorn

    2001-08-01

    Algorithms for the handing of target type information in an operational multi-sensor tracking system are presented. The paper discusses recursive target type estimation, computation of crosses from passive data (strobe track triangulation), as well as the computation of the quality of the crosses for deghosting purposes. The focus is on Bayesian algorithms that operate in the discrete target type probability space, and on the approximations introduced for computational complexity reduction. The centralized algorithms are able to fuse discrete data from a variety of sensors and information sources, including IFF equipment, ESM's, IRST's as well as flight envelopes estimated from track data. All algorithms are asynchronous and can be tuned to handle clutter, erroneous associations as well as missed and erroneous detections. A key to obtain this ability is the inclusion of data forgetting by a procedure for propagation of target type probability states between measurement time instances. Other important properties of the algorithms are their abilities to handle ambiguous data and scenarios. The above aspects are illustrated in a simulations study. The simulation setup includes 46 air targets of 6 different types that are tracked by 5 airborne sensor platforms using ESM's and IRST's as data sources.

  16. The Texas Medication Algorithm Project (TMAP) schizophrenia algorithms.

    Science.gov (United States)

    Miller, A L; Chiles, J A; Chiles, J K; Crismon, M L; Rush, A J; Shon, S P

    1999-10-01

    In the Texas Medication Algorithm Project (TMAP), detailed guidelines for medication management of schizophrenia and related disorders, bipolar disorders, and major depressive disorders have been developed and implemented. This article describes the algorithms developed for medication treatment of schizophrenia and related disorders. The guidelines recommend a sequence of medications and discuss dosing, duration, and switch-over tactics. They also specify response criteria at each stage of the algorithm for both positive and negative symptoms. The rationale and evidence for each aspect of the algorithms are presented.

  17. Everyday science & science every day: Science-related talk & activities across settings

    Science.gov (United States)

    Zimmerman, Heather

    To understand the development of science-related thinking, acting, and learning in middle childhood, I studied youth in schools, homes, and other neighborhood settings over a three-year period. The research goal was to analyze how multiple everyday experiences influence children's participation in science-related practices and their thinking about science and scientists. Ethnographic and interaction analysis methodologies were to study the cognition and social interactions of the children as they participated in activities with peers, family, and teachers (n=128). Interviews and participant self-documentation protocols elucidated the participants' understandings of science. An Everyday Expertise (Bell et al., 2006) theoretical framework was employed to study the development of science understandings on three analytical planes: individual learner, social groups, and societal/community resources. Findings came from a cross-case analysis of urban science learners and from two within-case analyses of girls' science-related practices as they transitioned from elementary to middle school. Results included: (1) children participated actively in science across settings---including in their homes as well as in schools, (2) children's interests in science were not always aligned to the school science content, pedagogy, or school structures for participation, yet children found ways to engage with science despite these differences through crafting multiple pathways into science, (3) urban parents were active supporters of STEM-related learning environments through brokering access to social and material resources, (4) the youth often found science in their daily activities that formal education did not make use of, and (5) children's involvement with science-related practices can be developed into design principles to reach youth in culturally relevant ways.

  18. International Logistics Science Conference

    CERN Document Server

    Hompel, Michael; Meier, J

    2014-01-01

    The importance of logistics in all its variations is still increasing. New technologies emerge, new planning methods and algorithms are developed, only to face a market with a growing complexity and the need of weighting monetary costs against ecological impact. Mastering these challenges requires a scientific viewpoint on logistics, but always with applications in mind. This volume presents up-to-date logistics research in all its diversity and interconnectedness. It grew out of the “International Logistics Science Conference” (ILSC) held in Dortmund in September 2013, bringing together leading scientists and young academics from nine different countries. The conference was jointly organized by the “Efficiency Cluster Logistics” and the “Fraunhofer Institute for Material Flow and Logistics”. The Program Committee used a double blind review process to choose the 12 strongest contributions, which were then grouped in four areas: - Sustainability logistics, including electric mobility, smart inform...

  19. The Copenhagen Triage Algorithm

    DEFF Research Database (Denmark)

    Hasselbalch, Rasmus Bo; Plesner, Louis Lind; Pries-Heje, Mia

    2016-01-01

    is non-inferior to an existing triage model in a prospective randomized trial. METHODS: The Copenhagen Triage Algorithm (CTA) study is a prospective two-center, cluster-randomized, cross-over, non-inferiority trial comparing CTA to the Danish Emergency Process Triage (DEPT). We include patients ≥16 years...

  20. Genetic Algorithms for the Optimization of Chemical Processes Based on Problem Descriptions

    Czech Academy of Sciences Publication Activity Database

    Holeňa, Martin; Rodemerck, U.; Čukić, T.; Linke, D.; Dingerdissen, U.

    2007-01-01

    Roč. 6, č. 4 (2007), s. 615-621 ISSN 1109-2769 R&D Projects: GA ČR GA201/05/0325 Institutional research plan: CEZ:AV0Z10300504 Keywords : computer applications in chemistry * optimization methods * empirical objective function * genetic algorithms * problem-tailoring * formal description language * program generator Subject RIV: IN - Informatics, Computer Science

  1. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  2. Resource-Aware Data Fusion Algorithms for Wireless Sensor Networks

    CERN Document Server

    Abdelgawad, Ahmed

    2012-01-01

    This book introduces resource-aware data fusion algorithms to gather and combine data from multiple sources (e.g., sensors) in order to achieve inferences.  These techniques can be used in centralized and distributed systems to overcome sensor failure, technological limitation, and spatial and temporal coverage problems. The algorithms described in this book are evaluated with simulation and experimental results to show they will maintain data integrity and make data useful and informative.   Describes techniques to overcome real problems posed by wireless sensor networks deployed in circumstances that might interfere with measurements provided, such as strong variations of pressure, temperature, radiation, and electromagnetic noise; Uses simulation and experimental results to evaluate algorithms presented and includes real test-bed; Includes case study implementing data fusion algorithms on a remote monitoring framework for sand production in oil pipelines.

  3. Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics

    Science.gov (United States)

    Hartmann, Alexander K.; Weigt, Martin

    2005-10-01

    A concise, comprehensive introduction to the topic of statistical physics of combinatorial optimization, bringing together theoretical concepts and algorithms from computer science with analytical methods from physics. The result bridges the gap between statistical physics and combinatorial optimization, investigating problems taken from theoretical computing, such as the vertex-cover problem, with the concepts and methods of theoretical physics. The authors cover rapid developments and analytical methods that are both extremely complex and spread by word-of-mouth, providing all the necessary basics in required detail. Throughout, the algorithms are shown with examples and calculations, while the proofs are given in a way suitable for graduate students, post-docs, and researchers. Ideal for newcomers to this young, multidisciplinary field.

  4. Teacher-Made Tactile Science Materials with Critical and Creative Thinking Activities for Learners Including Those with Visual Impairments

    Science.gov (United States)

    Teske, Jolene K.; Gray, Phyllis; Kuhn, Mason A.; Clausen, Courtney K.; Smith, Latisha L.; Alsubia, Sukainah A.; Ghayoorad, Maryam; Rule, Audrey C.; Schneider, Jean Suchsland

    2014-01-01

    Gifted students with visual impairments are twice exceptional learners and may not evidence their advanced science aptitudes without appropriate accommodations for learning science. However, effective tactile science teaching materials may be easily made. Recent research has shown that when tactile materials are used with "all" students…

  5. Algorithming the Algorithm

    DEFF Research Database (Denmark)

    Mahnke, Martina; Uprichard, Emma

    2014-01-01

    Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...

  6. Recursive Algorithm For Linear Regression

    Science.gov (United States)

    Varanasi, S. V.

    1988-01-01

    Order of model determined easily. Linear-regression algorithhm includes recursive equations for coefficients of model of increased order. Algorithm eliminates duplicative calculations, facilitates search for minimum order of linear-regression model fitting set of data satisfactory.

  7. A scalable parallel algorithm for multiple objective linear programs

    Science.gov (United States)

    Wiecek, Malgorzata M.; Zhang, Hong

    1994-01-01

    This paper presents an ADBASE-based parallel algorithm for solving multiple objective linear programs (MOLP's). Job balance, speedup and scalability are of primary interest in evaluating efficiency of the new algorithm. Implementation results on Intel iPSC/2 and Paragon multiprocessors show that the algorithm significantly speeds up the process of solving MOLP's, which is understood as generating all or some efficient extreme points and unbounded efficient edges. The algorithm gives specially good results for large and very large problems. Motivation and justification for solving such large MOLP's are also included.

  8. Pseudo-deterministic Algorithms

    OpenAIRE

    Goldwasser , Shafi

    2012-01-01

    International audience; In this talk we describe a new type of probabilistic algorithm which we call Bellagio Algorithms: a randomized algorithm which is guaranteed to run in expected polynomial time, and to produce a correct and unique solution with high probability. These algorithms are pseudo-deterministic: they can not be distinguished from deterministic algorithms in polynomial time by a probabilistic polynomial time observer with black box access to the algorithm. We show a necessary an...

  9. The Algorithmic Imaginary

    DEFF Research Database (Denmark)

    Bucher, Taina

    2017-01-01

    the notion of the algorithmic imaginary. It is argued that the algorithmic imaginary – ways of thinking about what algorithms are, what they should be and how they function – is not just productive of different moods and sensations but plays a generative role in moulding the Facebook algorithm itself...... of algorithms affect people's use of these platforms, if at all? To help answer these questions, this article examines people's personal stories about the Facebook algorithm through tweets and interviews with 25 ordinary users. To understand the spaces where people and algorithms meet, this article develops...

  10. Algorithms for the Computation of Debris Risk

    Science.gov (United States)

    Matney, Mark J.

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of satellites. A number of tools have been developed in NASA’s Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA’s Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper presents an introduction to these algorithms and the assumptions upon which they are based.

  11. Enabling Data Intensive Science through Service Oriented Science: Virtual Laboratories and Science Gateways

    Science.gov (United States)

    Lescinsky, D. T.; Wyborn, L. A.; Evans, B. J. K.; Allen, C.; Fraser, R.; Rankine, T.

    2014-12-01

    We present collaborative work on a generic, modular infrastructure for virtual laboratories (VLs, similar to science gateways) that combine online access to data, scientific code, and computing resources as services that support multiple data intensive scientific computing needs across a wide range of science disciplines. We are leveraging access to 10+ PB of earth science data on Lustre filesystems at Australia's National Computational Infrastructure (NCI) Research Data Storage Infrastructure (RDSI) node, co-located with NCI's 1.2 PFlop Raijin supercomputer and a 3000 CPU core research cloud. The development, maintenance and sustainability of VLs is best accomplished through modularisation and standardisation of interfaces between components. Our approach has been to break up tightly-coupled, specialised application packages into modules, with identified best techniques and algorithms repackaged either as data services or scientific tools that are accessible across domains. The data services can be used to manipulate, visualise and transform multiple data types whilst the scientific tools can be used in concert with multiple scientific codes. We are currently designing a scalable generic infrastructure that will handle scientific code as modularised services and thereby enable the rapid/easy deployment of new codes or versions of codes. The goal is to build open source libraries/collections of scientific tools, scripts and modelling codes that can be combined in specially designed deployments. Additional services in development include: provenance, publication of results, monitoring, workflow tools, etc. The generic VL infrastructure will be hosted at NCI, but can access alternative computing infrastructures (i.e., public/private cloud, HPC).The Virtual Geophysics Laboratory (VGL) was developed as a pilot project to demonstrate the underlying technology. This base is now being redesigned and generalised to develop a Virtual Hazards Impact and Risk Laboratory

  12. Data Mining Web Services for Science Data Repositories

    Science.gov (United States)

    Graves, S.; Ramachandran, R.; Keiser, K.; Maskey, M.; Lynnes, C.; Pham, L.

    2006-12-01

    The maturation of web services standards and technologies sets the stage for a distributed "Service-Oriented Architecture" (SOA) for NASA's next generation science data processing. This architecture will allow members of the scientific community to create and combine persistent distributed data processing services and make them available to other users over the Internet. NASA has initiated a project to create a suite of specialized data mining web services designed specifically for science data. The project leverages the Algorithm Development and Mining (ADaM) toolkit as its basis. The ADaM toolkit is a robust, mature and freely available science data mining toolkit that is being used by several research organizations and educational institutions worldwide. These mining services will give the scientific community a powerful and versatile data mining capability that can be used to create higher order products such as thematic maps from current and future NASA satellite data records with methods that are not currently available. The package of mining and related services are being developed using Web Services standards so that community-based measurement processing systems can access and interoperate with them. These standards-based services allow users different options for utilizing them, from direct remote invocation by a client application to deployment of a Business Process Execution Language (BPEL) solutions package where a complex data mining workflow is exposed to others as a single service. The ability to deploy and operate these services at a data archive allows the data mining algorithms to be run where the data are stored, a more efficient scenario than moving large amounts of data over the network. This will be demonstrated in a scenario in which a user uses a remote Web-Service-enabled clustering algorithm to create cloud masks from satellite imagery at the Goddard Earth Sciences Data and Information Services Center (GES DISC).

  13. Discrete calculus applied analysis on graphs for computational science

    CERN Document Server

    Grady, Leo J

    2010-01-01

    This unique text brings together into a single framework current research in the three areas of discrete calculus, complex networks, and algorithmic content extraction. Many example applications from several fields of computational science are provided.

  14. (including travel dates) Proposed itinerary

    Indian Academy of Sciences (India)

    Ashok

    31 July to 22 August 2012 (including travel dates). Proposed itinerary: Arrival in Bangalore on 1 August. 1-5 August: Bangalore, Karnataka. Suggested institutions: Indian Institute of Science, Bangalore. St Johns Medical College & Hospital, Bangalore. Jawaharlal Nehru Centre, Bangalore. 6-8 August: Chennai, TN.

  15. A new hybrid evolutionary algorithm based on new fuzzy adaptive PSO and NM algorithms for Distribution Feeder Reconfiguration

    International Nuclear Information System (INIS)

    Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud

    2012-01-01

    Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.

  16. Minutes of TOPEX/POSEIDON Science Working Team Meeting and Ocean Tides Workshop

    Science.gov (United States)

    Fu, Lee-Lueng (Editor)

    1995-01-01

    This third TOPEX/POSEIDON Science Working Team meeting was held on December 4, 1994 to review progress in defining ocean tide models, precision Earth orbits, and various science algorithms. A related workshop on ocean tides convened to select the best models to be used by scientists in the Geophysical Data Records.

  17. Adaptive Proximal Point Algorithms for Total Variation Image Restoration

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-02-01

    Full Text Available Image restoration is a fundamental problem in various areas of imaging sciences. This paper presents a class of adaptive proximal point algorithms (APPA with contraction strategy for total variational image restoration. In each iteration, the proposed methods choose an adaptive proximal parameter matrix which is not necessary symmetric. In fact, there is an inner extrapolation in the prediction step, which is followed by a correction step for contraction. And the inner extrapolation is implemented by an adaptive scheme. By using the framework of contraction method, global convergence result and a convergence rate of O(1/N could be established for the proposed methods. Numerical results are reported to illustrate the efficiency of the APPA methods for solving total variation image restoration problems. Comparisons with the state-of-the-art algorithms demonstrate that the proposed methods are comparable and promising.

  18. A Cooperative Harmony Search Algorithm for Function Optimization

    Directory of Open Access Journals (Sweden)

    Gang Li

    2014-01-01

    Full Text Available Harmony search algorithm (HS is a new metaheuristic algorithm which is inspired by a process involving musical improvisation. HS is a stochastic optimization technique that is similar to genetic algorithms (GAs and particle swarm optimizers (PSOs. It has been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such as structure design, and function optimization. A cooperative harmony search algorithm (CHS is developed in this paper, with cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional problems.

  19. How the machine ‘thinks’: Understanding opacity in machine learning algorithms

    Directory of Open Access Journals (Sweden)

    Jenna Burrell

    2016-01-01

    Full Text Available This article considers the issue of opacity as a problem for socially consequential mechanisms of classification and ranking, such as spam filters, credit card fraud detection, search engines, news trends, market segmentation and advertising, insurance or loan qualification, and credit scoring. These mechanisms of classification all frequently rely on computational algorithms, and in many cases on machine learning algorithms to do this work. In this article, I draw a distinction between three forms of opacity: (1 opacity as intentional corporate or state secrecy, (2 opacity as technical illiteracy, and (3 an opacity that arises from the characteristics of machine learning algorithms and the scale required to apply them usefully. The analysis in this article gets inside the algorithms themselves. I cite existing literatures in computer science, known industry practices (as they are publicly presented, and do some testing and manipulation of code as a form of lightweight code audit. I argue that recognizing the distinct forms of opacity that may be coming into play in a given application is a key to determining which of a variety of technical and non-technical solutions could help to prevent harm.

  20. Algorithms for optimization of branching gravity-driven water networks

    Directory of Open Access Journals (Sweden)

    I. Dardani

    2018-05-01

    Full Text Available The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs, this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011 to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel

  1. Algorithms for optimization of branching gravity-driven water networks

    Science.gov (United States)

    Dardani, Ian; Jones, Gerard F.

    2018-05-01

    The design of a water network involves the selection of pipe diameters that satisfy pressure and flow requirements while considering cost. A variety of design approaches can be used to optimize for hydraulic performance or reduce costs. To help designers select an appropriate approach in the context of gravity-driven water networks (GDWNs), this work assesses three cost-minimization algorithms on six moderate-scale GDWN test cases. Two algorithms, a backtracking algorithm and a genetic algorithm, use a set of discrete pipe diameters, while a new calculus-based algorithm produces a continuous-diameter solution which is mapped onto a discrete-diameter set. The backtracking algorithm finds the global optimum for all but the largest of cases tested, for which its long runtime makes it an infeasible option. The calculus-based algorithm's discrete-diameter solution produced slightly higher-cost results but was more scalable to larger network cases. Furthermore, the new calculus-based algorithm's continuous-diameter and mapped solutions provided lower and upper bounds, respectively, on the discrete-diameter global optimum cost, where the mapped solutions were typically within one diameter size of the global optimum. The genetic algorithm produced solutions even closer to the global optimum with consistently short run times, although slightly higher solution costs were seen for the larger network cases tested. The results of this study highlight the advantages and weaknesses of each GDWN design method including closeness to the global optimum, the ability to prune the solution space of infeasible and suboptimal candidates without missing the global optimum, and algorithm run time. We also extend an existing closed-form model of Jones (2011) to include minor losses and a more comprehensive two-part cost model, which realistically applies to pipe sizes that span a broad range typical of GDWNs of interest in this work, and for smooth and commercial steel roughness values.

  2. FPGA helix tracking algorithm for PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yutie; Galuska, Martin; Gessler, Thomas; Kuehn, Wolfgang; Lange, Jens Soeren; Muenchow, David [II. Physikalisches Institut, University of Giessen (Germany); Ye, Hua [Institute of High Energy Physics, CAS (China); Collaboration: PANDA-Collaboration

    2016-07-01

    The PANDA detector is a general-purpose detector for physics with high luminosity cooled antiproton beams, planed to operate at the FAIR facility in Darmstadt, Germany. The central detector includes a silicon Micro Vertex Detector (MVD) and a Straw Tube Tracker (STT). Without any hardware trigger, large amounts of raw data are streaming into the data acquisition system. The data reduction task is performed in the online system by reconstruction algorithms programmed on FPGAs (Field Programmable Gate Arrays) as first level and on a farm of GPUs or PCs as a second level. One important part in the system is the online track reconstruction. In this presentation, an online tracking algorithm for helix tracking reconstruction in the solenoidal field is shown. The VHDL-based algorithm is tested with different types of events, at different event rate. Furthermore, a study of T0 extraction from the tracking algorithm is performed. A concept of simultaneous tracking and T0 determination is presented.

  3. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  4. Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors

    Science.gov (United States)

    Flatley, Thomas P.

    2015-01-01

    SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.

  5. The DataBridge: A System For Optimizing The Use Of Dark Data From The Long Tail Of Science

    Science.gov (United States)

    Lander, H.; Rajasekar, A.

    2015-12-01

    The DataBridge is a National Science Foundation funded collaborative project (OCI-1247652, OCI-1247602, OCI-1247663) designed to assist in the discovery of dark data sets from the long tail of science. The DataBridge aims to to build queryable communities of datasets using sociometric network analysis. This approach is being tested to evaluate the ability to leverage various forms of metadata to facilitate discovery of new knowledge. Each dataset in the Databridge has an associated name space used as a first level partitioning. In addition to testing known algorithms for SNA community building, the DataBridge project has built a message-based platform that allows users to provide their own algorithms for each of the stages in the community building process. The stages are: Signature Generation (SG): An SG algorithm creates a metadata signature for a dataset. Signature algorithms might use text metadata provided by the dataset creator or derive metadata. Relevance Algorithm (RA): An RA compares a pair of datasets and produces a similarity value between 0 and 1 for the two datasets. Sociometric Network Analysis (SNA): The SNA will operate on a similarity matrix produced by an RA to partition all of the datasets in the name space into a set of clusters. These clusters represent communities of closely related datasets. The DataBridge also includes a web application that produces a visual representation of the clustering. Future work includes a more complete application that will allow different types of searching of the network of datasets. The DataBridge approach is relevant to geoscience research and informatics. In this presentation we will outline the project, illustrate the deployment of the approach, and discuss other potential applications and next steps for the research such as applying this approach to models. In addition we will explore the relevance of DataBridge to other geoscience projects such as various EarthCube Building Blocks and DIBBS projects.

  6. Heterogeneous architecture to process swarm optimization algorithms

    Directory of Open Access Journals (Sweden)

    Maria A. Dávila-Guzmán

    2014-01-01

    Full Text Available Since few years ago, the parallel processing has been embedded in personal computers by including co-processing units as the graphics processing units resulting in a heterogeneous platform. This paper presents the implementation of swarm algorithms on this platform to solve several functions from optimization problems, where they highlight their inherent parallel processing and distributed control features. In the swarm algorithms, each individual and dimension problem are parallelized by the granularity of the processing system which also offer low communication latency between individuals through the embedded processing. To evaluate the potential of swarm algorithms on graphics processing units we have implemented two of them: the particle swarm optimization algorithm and the bacterial foraging optimization algorithm. The algorithms’ performance is measured using the acceleration where they are contrasted between a typical sequential processing platform and the NVIDIA GeForce GTX480 heterogeneous platform; the results show that the particle swarm algorithm obtained up to 36.82x and the bacterial foraging swarm algorithm obtained up to 9.26x. Finally, the effect to increase the size of the population is evaluated where we show both the dispersion and the quality of the solutions are decreased despite of high acceleration performance since the initial distribution of the individuals can converge to local optimal solution.

  7. A New Approximate Chimera Donor Cell Search Algorithm

    Science.gov (United States)

    Holst, Terry L.; Nixon, David (Technical Monitor)

    1998-01-01

    The objectives of this study were to develop chimera-based full potential methodology which is compatible with overflow (Euler/Navier-Stokes) chimera flow solver and to develop a fast donor cell search algorithm that is compatible with the chimera full potential approach. Results of this work included presenting a new donor cell search algorithm suitable for use with a chimera-based full potential solver. This algorithm was found to be extremely fast and simple producing donor cells as fast as 60,000 per second.

  8. Public status toward radiation and irradiated potatoes at 'Youngster's Science Festival' in several cities including Tokyo, Osaka, and Hiroshima, Japan

    International Nuclear Information System (INIS)

    Furuta, Masakazu; Hayashi, Toshio; Kakefu, Tomohisa; Nishihara, Hideaki

    2000-01-01

    'Youngster's Science Festival' has been held in several big cities in various districts in Japan for the purpose of induction of young students' interests in science and scientific experiments. On the basis of the survey results from the participants of the 'Radiation Fair' in Osaka, Japan, which was presented at the last IMRP, we expanded the area of survey and distributed questionnaires to the visitors of the above event to inquire their status toward radiation and irradiated products including irradiated potatoes. The survey results indicated the same trends as that of the 'Radiation Fair' survey. That is, more than half of the older visitors (16 years old and upward) indicated that they recognized the word of 'radiation' when they were at elementary school and the most significant sources of this information were school lessons and the mass media. We will discuss the relationship between consumer's image toward radiation and the description of radiation related topic in school textbooks. (author)

  9. Algorithm for repairing the damaged images of grain structures obtained from the cellular automata and measurement of grain size

    Science.gov (United States)

    Ramírez-López, A.; Romero-Romo, M. A.; Muñoz-Negron, D.; López-Ramírez, S.; Escarela-Pérez, R.; Duran-Valencia, C.

    2012-10-01

    Computational models are developed to create grain structures using mathematical algorithms based on the chaos theory such as cellular automaton, geometrical models, fractals, and stochastic methods. Because of the chaotic nature of grain structures, some of the most popular routines are based on the Monte Carlo method, statistical distributions, and random walk methods, which can be easily programmed and included in nested loops. Nevertheless, grain structures are not well defined as the results of computational errors and numerical inconsistencies on mathematical methods. Due to the finite definition of numbers or the numerical restrictions during the simulation of solidification, damaged images appear on the screen. These images must be repaired to obtain a good measurement of grain geometrical properties. Some mathematical algorithms were developed to repair, measure, and characterize grain structures obtained from cellular automata in the present work. An appropriate measurement of grain size and the corrected identification of interfaces and length are very important topics in materials science because they are the representation and validation of mathematical models with real samples. As a result, the developed algorithms are tested and proved to be appropriate and efficient to eliminate the errors and characterize the grain structures.

  10. A study of metaheuristic algorithms for high dimensional feature selection on microarray data

    Science.gov (United States)

    Dankolo, Muhammad Nasiru; Radzi, Nor Haizan Mohamed; Sallehuddin, Roselina; Mustaffa, Noorfa Haszlinna

    2017-11-01

    Microarray systems enable experts to examine gene profile at molecular level using machine learning algorithms. It increases the potentials of classification and diagnosis of many diseases at gene expression level. Though, numerous difficulties may affect the efficiency of machine learning algorithms which includes vast number of genes features comprised in the original data. Many of these features may be unrelated to the intended analysis. Therefore, feature selection is necessary to be performed in the data pre-processing. Many feature selection algorithms are developed and applied on microarray which including the metaheuristic optimization algorithms. This paper discusses the application of the metaheuristics algorithms for feature selection in microarray dataset. This study reveals that, the algorithms have yield an interesting result with limited resources thereby saving computational expenses of machine learning algorithms.

  11. Research on data auto-analysis algorithms in the explosive detection system

    International Nuclear Information System (INIS)

    Wang Haidong; Li Yuanjing; Yang Yigang; Li Tiezhu; Chen Boxian; Cheng Jianping

    2006-01-01

    This paper mainly describe some auto-analysis algorithms in explosive detection system with TNA method. These include the auto-calibration algorithm when disturbed by other factors, MCA auto-calibration algorithm with calibrated spectrum, the auto-fitting and integral of hydrogen and nitrogen elements data. With these numerical algorithms, the authors can automatically and precisely analysis the gamma-spectra and ultimately achieve the explosive auto-detection. (authors)

  12. Conjugate gradient algorithms using multiple recursions

    Energy Technology Data Exchange (ETDEWEB)

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  13. Convex hull ranking algorithm for multi-objective evolutionary algorithms

    NARCIS (Netherlands)

    Davoodi Monfrared, M.; Mohades, A.; Rezaei, J.

    2012-01-01

    Due to many applications of multi-objective evolutionary algorithms in real world optimization problems, several studies have been done to improve these algorithms in recent years. Since most multi-objective evolutionary algorithms are based on the non-dominated principle, and their complexity

  14. The gradient boosting algorithm and random boosting for genome-assisted evaluation in large data sets.

    Science.gov (United States)

    González-Recio, O; Jiménez-Montero, J A; Alenda, R

    2013-01-01

    In the next few years, with the advent of high-density single nucleotide polymorphism (SNP) arrays and genome sequencing, genomic evaluation methods will need to deal with a large number of genetic variants and an increasing sample size. The boosting algorithm is a machine-learning technique that may alleviate the drawbacks of dealing with such large data sets. This algorithm combines different predictors in a sequential manner with some shrinkage on them; each predictor is applied consecutively to the residuals from the committee formed by the previous ones to form a final prediction based on a subset of covariates. Here, a detailed description is provided and examples using a toy data set are included. A modification of the algorithm called "random boosting" was proposed to increase predictive ability and decrease computation time of genome-assisted evaluation in large data sets. Random boosting uses a random selection of markers to add a subsequent weak learner to the predictive model. These modifications were applied to a real data set composed of 1,797 bulls genotyped for 39,714 SNP. Deregressed proofs of 4 yield traits and 1 type trait from January 2009 routine evaluations were used as dependent variables. A 2-fold cross-validation scenario was implemented. Sires born before 2005 were used as a training sample (1,576 and 1,562 for production and type traits, respectively), whereas younger sires were used as a testing sample to evaluate predictive ability of the algorithm on yet-to-be-observed phenotypes. Comparison with the original algorithm was provided. The predictive ability of the algorithm was measured as Pearson correlations between observed and predicted responses. Further, estimated bias was computed as the average difference between observed and predicted phenotypes. The results showed that the modification of the original boosting algorithm could be run in 1% of the time used with the original algorithm and with negligible differences in accuracy

  15. Total algorithms

    NARCIS (Netherlands)

    Tel, G.

    We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of

  16. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  17. Fundamental Parallel Algorithms for Private-Cache Chip Multiprocessors

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Nelson, Michael

    2008-01-01

    about the way cores are interconnected, for we assume that all inter-processor communication occurs through the memory hierarchy. We study several fundamental problems, including prefix sums, selection, and sorting, which often form the building blocks of other parallel algorithms. Indeed, we present...... two sorting algorithms, a distribution sort and a mergesort. Our algorithms are asymptotically optimal in terms of parallel cache accesses and space complexity under reasonable assumptions about the relationships between the number of processors, the size of memory, and the size of cache blocks....... In addition, we study sorting lower bounds in a computational model, which we call the parallel external-memory (PEM) model, that formalizes the essential properties of our algorithms for private-cache CMPs....

  18. Including an Exam P/1 Prep Course in a Growing Actuarial Science Program

    Science.gov (United States)

    Wakefield, Thomas P.

    2014-01-01

    The purpose of this article is to describe the actuarial science program at our university and the development of a course to enhance students' problem solving skills while preparing them for Exam P/1 of the Society of Actuaries (SOA) and the Casualty Actuary Society (CAS). The Exam P/1 prep course, formally titled Mathematical Foundations of…

  19. Differential harmony search algorithm to optimize PWRs loading pattern

    Energy Technology Data Exchange (ETDEWEB)

    Poursalehi, N., E-mail: npsalehi@yahoo.com [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of); Zolfaghari, A.; Minuchehr, A. [Engineering Department, Shahid Beheshti University, G.C, P.O.Box: 1983963113, Tehran (Iran, Islamic Republic of)

    2013-04-15

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms.

  20. Differential harmony search algorithm to optimize PWRs loading pattern

    International Nuclear Information System (INIS)

    Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.

    2013-01-01

    Highlights: ► Exploit of DHS algorithm in LP optimization reveals its flexibility, robustness and reliability. ► Upshot of our experiments with DHS shows that the search approach to optimal LP is quickly. ► On the average, the final band width of DHS fitness values is narrow relative to HS and GHS. -- Abstract: The objective of this work is to develop a core loading optimization technique using differential harmony search algorithm in the context of obtaining an optimal configuration of fuel assemblies in pressurized water reactors. To implement and evaluate the proposed technique, differential harmony search nodal expansion package for 2-D geometry, DHSNEP-2D, is developed. The package includes two modules; in the first modules differential harmony search (DHS) is implemented and nodal expansion code which solves two dimensional-multi group neutron diffusion equations using fourth degree flux expansion with one node per a fuel assembly is in the second module. For evaluation of DHS algorithm, classical harmony search (HS) and global-best harmony search (GHS) algorithms are also included in DHSNEP-2D in order to compare the outcome of techniques together. For this purpose, two PWR test cases have been investigated to demonstrate the DHS algorithm capability in obtaining near optimal loading pattern. Results show that the convergence rate of DHS and execution times are quite promising and also is reliable for the fuel management operation. Moreover, numerical results show the good performance of DHS relative to other competitive algorithms such as genetic algorithm (GA), classical harmony search (HS) and global-best harmony search (GHS) algorithms

  1. AFRREV STECH: An International Journal of Science and ...

    African Journals Online (AJOL)

    Overview of Environmental Impact Assessment of Oil and Gas Projects in Nigeria ... Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm ... Integration in Science Teaching - Learning: Problems and Prospects · EMAIL FREE FULL ... Statistical Investigation of Satisfaction Level of Automated Teller Machine ...

  2. Evaluation of Science.

    Science.gov (United States)

    Usmani, Adnan Mahmmood; Meo, Sultan Ayoub

    2011-01-01

    Scientific achievement by publishing a scientific manuscript in a peer reviewed biomedical journal is an important ingredient of research along with a career-enhancing advantages and significant amount of personal satisfaction. The road to evaluate science (research, scientific publications) among scientists often seems complicated. Scientist's career is generally summarized by the number of publications / citations, teaching the undergraduate, graduate and post-doctoral students, writing or reviewing grants and papers, preparing for and organizing meetings, participating in collaborations and conferences, advising colleagues, and serving on editorial boards of scientific journals. Scientists have been sizing up their colleagues since science began. Scientometricians have invented a wide variety of algorithms called science metrics to evaluate science. Many of the science metrics are even unknown to the everyday scientist. Unfortunately, there is no all-in-one metric. Each of them has its own strength, limitation and scope. Some of them are mistakenly applied to evaluate individuals, and each is surrounded by a cloud of variants designed to help them apply across different scientific fields or different career stages [1]. A suitable indicator should be chosen by considering the purpose of the evaluation, and how the results will be used. Scientific Evaluation assists us in: computing the research performance, comparison with peers, forecasting the growth, identifying the excellence in research, citation ranking, finding the influence of research, measuring the productivity, making policy decisions, securing funds for research and spotting trends. Key concepts in science metrics are output and impact. Evaluation of science is traditionally expressed in terms of citation counts. Although most of the science metrics are based on citation counts but two most commonly used are impact factor [2] and h-index [3].

  3. Comparison of turbulence mitigation algorithms

    Science.gov (United States)

    Kozacik, Stephen T.; Paolini, Aaron; Sherman, Ariel; Bonnett, James; Kelmelis, Eric

    2017-07-01

    When capturing imagery over long distances, atmospheric turbulence often degrades the data, especially when observation paths are close to the ground or in hot environments. These issues manifest as time-varying scintillation and warping effects that decrease the effective resolution of the sensor and reduce actionable intelligence. In recent years, several image processing approaches to turbulence mitigation have shown promise. Each of these algorithms has different computational requirements, usability demands, and degrees of independence from camera sensors. They also produce different degrees of enhancement when applied to turbulent imagery. Additionally, some of these algorithms are applicable to real-time operational scenarios while others may only be suitable for postprocessing workflows. EM Photonics has been developing image-processing-based turbulence mitigation technology since 2005. We will compare techniques from the literature with our commercially available, real-time, GPU-accelerated turbulence mitigation software. These comparisons will be made using real (not synthetic), experimentally obtained data for a variety of conditions, including varying optical hardware, imaging range, subjects, and turbulence conditions. Comparison metrics will include image quality, video latency, computational complexity, and potential for real-time operation. Additionally, we will present a technique for quantitatively comparing turbulence mitigation algorithms using real images of radial resolution targets.

  4. `INCLUDING' Partnerships to Build Authentic Research Into K-12 Science Education

    Science.gov (United States)

    Turrin, M.; Lev, E.; Newton, R.; Xu, C.

    2017-12-01

    Opportunities for authentic research experiences have been shown effective for recruiting and retaining students in STEM fields. Meaningful research experiences entail significant time in project design, modeling ethical practice, providing training, instruction, and ongoing guidance. We propose that in order to be sustainable, a new instructional paradigm is needed, one that shifts from being top-weighted in instruction to a distributed weight model. This model relies on partnerships where everyone has buy-in and reaps rewards, establishing broadened networks for support, and adjusting the mentoring model. We use our successful Secondary School Field Research Program as a model for this new paradigm. For over a decade this program has provided authentic geoscience field research for an expanding group of predominantly inner city high school youth from communities underrepresented in the sciences. The program has shifted the balance with returning participants now serving as undergraduate mentors for the high school student `researchers', providing much of the ongoing training, instruction, guidance and feedback needed. But in order to be sustainable and impactful we need to broaden our base. A recent NSF-INCLUDES pilot project has allowed us to expand this model, linking schools, informal education non-profits, other academic institutions, community partners and private funding agencies into geographically organized `clusters'. Starting with a tiered mentoring model with scientists as consultants, teachers as team members, undergraduates as team leaders and high school students as researchers, each cluster will customize its program to reflect the needs and strengths of the team. To be successful each organization must identify how the program fits their organizational goals, the resources they can contribute and what they need back. Widening the partnership base spreads institutional commitments for research scientists, research locations and lab space

  5. Genetic Algorithms for Multiple-Choice Problems

    Science.gov (United States)

    Aickelin, Uwe

    2010-04-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structure exploiting repair schemes and indirect genetic algorithms with self-adjusting decoder functions are identified as promising approaches.The research starts by applying standard genetic algorithms to the problems and explaining the failure of such approaches due to epistasis.To overcome this, problem-specific information is added in a variety of ways, some of which are designed to increase the number of feasible solutions found whilst others are intended to improve the quality of such solutions.As well as a theoretical discussion as to the underlying reasons for using each operator,extensive computational experiments are carried out on a variety of data.These show that the indirect approach relies less on problem structure and hence is easier to implement and superior in solution quality.

  6. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    Science.gov (United States)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  7. Progressive geometric algorithms

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Bagautdinov, T.M.; de Berg, M.T.; Bouts, Q.W.; ten Brink, Alex P.; Buchin, K.A.; Westenberg, M.A.

    2015-01-01

    Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms

  8. Progressive geometric algorithms

    NARCIS (Netherlands)

    Alewijnse, S.P.A.; Bagautdinov, T.M.; Berg, de M.T.; Bouts, Q.W.; Brink, ten A.P.; Buchin, K.; Westenberg, M.A.

    2014-01-01

    Progressive algorithms are algorithms that, on the way to computing a complete solution to the problem at hand, output intermediate solutions that approximate the complete solution increasingly well. We present a framework for analyzing such algorithms, and develop efficient progressive algorithms

  9. Metaheuristic algorithms for building Covering Arrays: A review

    Directory of Open Access Journals (Sweden)

    Jimena Adriana Timaná-Peña

    2016-09-01

    Full Text Available Covering Arrays (CA are mathematical objects used in the functional testing of software components. They enable the testing of all interactions of a given size of input parameters in a procedure, function, or logical unit in general, using the minimum number of test cases. Building CA is a complex task (NP-complete problem that involves lengthy execution times and high computational loads. The most effective methods for building CAs are algebraic, Greedy, and metaheuristic-based. The latter have reported the best results to date. This paper presents a description of the major contributions made by a selection of different metaheuristics, including simulated annealing, tabu search, genetic algorithms, ant colony algorithms, particle swarm algorithms, and harmony search algorithms. It is worth noting that simulated annealing-based algorithms have evolved as the most competitive, and currently form the state of the art.

  10. A continuation multilevel Monte Carlo algorithm

    KAUST Repository

    Collier, Nathan

    2014-09-05

    We propose a novel Continuation Multi Level Monte Carlo (CMLMC) algorithm for weak approximation of stochastic models. The CMLMC algorithm solves the given approximation problem for a sequence of decreasing tolerances, ending when the required error tolerance is satisfied. CMLMC assumes discretization hierarchies that are defined a priori for each level and are geometrically refined across levels. The actual choice of computational work across levels is based on parametric models for the average cost per sample and the corresponding variance and weak error. These parameters are calibrated using Bayesian estimation, taking particular notice of the deepest levels of the discretization hierarchy, where only few realizations are available to produce the estimates. The resulting CMLMC estimator exhibits a non-trivial splitting between bias and statistical contributions. We also show the asymptotic normality of the statistical error in the MLMC estimator and justify in this way our error estimate that allows prescribing both required accuracy and confidence in the final result. Numerical results substantiate the above results and illustrate the corresponding computational savings in examples that are described in terms of differential equations either driven by random measures or with random coefficients. © 2014, Springer Science+Business Media Dordrecht.

  11. Taming the Wild: A Unified Analysis of Hogwild!-Style Algorithms.

    Science.gov (United States)

    De Sa, Christopher; Zhang, Ce; Olukotun, Kunle; Ré, Christopher

    2015-12-01

    Stochastic gradient descent (SGD) is a ubiquitous algorithm for a variety of machine learning problems. Researchers and industry have developed several techniques to optimize SGD's runtime performance, including asynchronous execution and reduced precision. Our main result is a martingale-based analysis that enables us to capture the rich noise models that may arise from such techniques. Specifically, we use our new analysis in three ways: (1) we derive convergence rates for the convex case (Hogwild!) with relaxed assumptions on the sparsity of the problem; (2) we analyze asynchronous SGD algorithms for non-convex matrix problems including matrix completion; and (3) we design and analyze an asynchronous SGD algorithm, called Buckwild!, that uses lower-precision arithmetic. We show experimentally that our algorithms run efficiently for a variety of problems on modern hardware.

  12. Creation of operation algorithms for combined operation of anti-lock braking system (ABS) and electric machine included in the combined power plant

    Science.gov (United States)

    Bakhmutov, S. V.; Ivanov, V. G.; Karpukhin, K. E.; Umnitsyn, A. A.

    2018-02-01

    The paper considers the Anti-lock Braking System (ABS) operation algorithm, which enables the implementation of hybrid braking, i.e. the braking process combining friction brake mechanisms and e-machine (electric machine), which operates in the energy recovery mode. The provided materials focus only on the rectilinear motion of the vehicle. That the ABS task consists in the maintenance of the target wheel slip ratio, which depends on the tyre-road adhesion coefficient. The tyre-road adhesion coefficient was defined based on the vehicle deceleration. In the course of calculated studies, the following operation algorithm of hybrid braking was determined. At adhesion coefficient ≤0.1, driving axle braking occurs only due to the e-machine operating in the energy recovery mode. In other cases, depending on adhesion coefficient, the e-machine provides the brake torque, which changes from 35 to 100% of the maximum available brake torque. Virtual tests showed that values of the wheel slip ratio are close to the required ones. Thus, this algorithm makes it possible to implement hybrid braking by means of the two sources creating the brake torque.

  13. Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Haidong Xu; Mingyan Jiang; Kun Xu

    2015-01-01

    The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.

  14. Accelerating the XGBoost algorithm using GPU computing

    Directory of Open Access Journals (Sweden)

    Rory Mitchell

    2017-07-01

    Full Text Available We present a CUDA-based implementation of a decision tree construction algorithm within the gradient boosting library XGBoost. The tree construction algorithm is executed entirely on the graphics processing unit (GPU and shows high performance with a variety of datasets and settings, including sparse input matrices. Individual boosting iterations are parallelised, combining two approaches. An interleaved approach is used for shallow trees, switching to a more conventional radix sort-based approach for larger depths. We show speedups of between 3× and 6× using a Titan X compared to a 4 core i7 CPU, and 1.2× using a Titan X compared to 2× Xeon CPUs (24 cores. We show that it is possible to process the Higgs dataset (10 million instances, 28 features entirely within GPU memory. The algorithm is made available as a plug-in within the XGBoost library and fully supports all XGBoost features including classification, regression and ranking tasks.

  15. Special Section on "Tools and Algorithms for the Construction and Analysis of Systems"

    DEFF Research Database (Denmark)

    2006-01-01

    in the Lecture Notes in Computer Science series published by Springer. TACAS is a forum for researchers, developers and users interested in rigorously based tools for the construction and analysis of systems. The conference serves to bridge the gaps between different communities – including but not limited......This special section contains the revised and expanded versions of eight of the papers from the 10th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) held in March/April 2004 in Barcelona, Spain. The conference proceedings appeared as volume 2988...... to those devoted to formal methods, software and hardware verification, static analysis, programming languages, software engineering, real-time systems, and communications protocols – that share common interests in, and techniques for, tool development. Other more theoretical papers from the conference...

  16. Performance evaluation of firefly algorithm with variation in sorting for non-linear benchmark problems

    Science.gov (United States)

    Umbarkar, A. J.; Balande, U. T.; Seth, P. D.

    2017-06-01

    The field of nature inspired computing and optimization techniques have evolved to solve difficult optimization problems in diverse fields of engineering, science and technology. The firefly attraction process is mimicked in the algorithm for solving optimization problems. In Firefly Algorithm (FA) sorting of fireflies is done by using sorting algorithm. The original FA is proposed with bubble sort for ranking the fireflies. In this paper, the quick sort replaces bubble sort to decrease the time complexity of FA. The dataset used is unconstrained benchmark functions from CEC 2005 [22]. The comparison of FA using bubble sort and FA using quick sort is performed with respect to best, worst, mean, standard deviation, number of comparisons and execution time. The experimental result shows that FA using quick sort requires less number of comparisons but requires more execution time. The increased number of fireflies helps to converge into optimal solution whereas by varying dimension for algorithm performed better at a lower dimension than higher dimension.

  17. A filtered backprojection algorithm with characteristics of the iterative landweber algorithm

    OpenAIRE

    L. Zeng, Gengsheng

    2012-01-01

    Purpose: In order to eventually develop an analytical algorithm with noise characteristics of an iterative algorithm, this technical note develops a window function for the filtered backprojection (FBP) algorithm in tomography that behaves as an iterative Landweber algorithm.

  18. Comparison of SeaWinds Backscatter Imaging Algorithms

    Science.gov (United States)

    Long, David G.

    2017-01-01

    This paper compares the performance and tradeoffs of various backscatter imaging algorithms for the SeaWinds scatterometer when multiple passes over a target are available. Reconstruction methods are compared with conventional gridding algorithms. In particular, the performance and tradeoffs in conventional ‘drop in the bucket’ (DIB) gridding at the intrinsic sensor resolution are compared to high-spatial-resolution imaging algorithms such as fine-resolution DIB and the scatterometer image reconstruction (SIR) that generate enhanced-resolution backscatter images. Various options for each algorithm are explored, including considering both linear and dB computation. The effects of sampling density and reconstruction quality versus time are explored. Both simulated and actual data results are considered. The results demonstrate the effectiveness of high-resolution reconstruction using SIR as well as its limitations and the limitations of DIB and fDIB. PMID:28828143

  19. Prediction of insemination outcomes in Holstein dairy cattle using alternative machine learning algorithms.

    Science.gov (United States)

    Shahinfar, Saleh; Page, David; Guenther, Jerry; Cabrera, Victor; Fricke, Paul; Weigel, Kent

    2014-02-01

    When making the decision about whether or not to breed a given cow, knowledge about the expected outcome would have an economic impact on profitability of the breeding program and net income of the farm. The outcome of each breeding can be affected by many management and physiological features that vary between farms and interact with each other. Hence, the ability of machine learning algorithms to accommodate complex relationships in the data and missing values for explanatory variables makes these algorithms well suited for investigation of reproduction performance in dairy cattle. The objective of this study was to develop a user-friendly and intuitive on-farm tool to help farmers make reproduction management decisions. Several different machine learning algorithms were applied to predict the insemination outcomes of individual cows based on phenotypic and genotypic data. Data from 26 dairy farms in the Alta Genetics (Watertown, WI) Advantage Progeny Testing Program were used, representing a 10-yr period from 2000 to 2010. Health, reproduction, and production data were extracted from on-farm dairy management software, and estimated breeding values were downloaded from the US Department of Agriculture Agricultural Research Service Animal Improvement Programs Laboratory (Beltsville, MD) database. The edited data set consisted of 129,245 breeding records from primiparous Holstein cows and 195,128 breeding records from multiparous Holstein cows. Each data point in the final data set included 23 and 25 explanatory variables and 1 binary outcome for of 0.756 ± 0.005 and 0.736 ± 0.005 for primiparous and multiparous cows, respectively. The naïve Bayes algorithm, Bayesian network, and decision tree algorithms showed somewhat poorer classification performance. An information-based variable selection procedure identified herd average conception rate, incidence of ketosis, number of previous (failed) inseminations, days in milk at breeding, and mastitis as the most

  20. Parallelizing flow-accumulation calculations on graphics processing units—From iterative DEM preprocessing algorithm to recursive multiple-flow-direction algorithm

    Science.gov (United States)

    Qin, Cheng-Zhi; Zhan, Lijun

    2012-06-01

    As one of the important tasks in digital terrain analysis, the calculation of flow accumulations from gridded digital elevation models (DEMs) usually involves two steps in a real application: (1) using an iterative DEM preprocessing algorithm to remove the depressions and flat areas commonly contained in real DEMs, and (2) using a recursive flow-direction algorithm to calculate the flow accumulation for every cell in the DEM. Because both algorithms are computationally intensive, quick calculation of the flow accumulations from a DEM (especially for a large area) presents a practical challenge to personal computer (PC) users. In recent years, rapid increases in hardware capacity of the graphics processing units (GPUs) provided in modern PCs have made it possible to meet this challenge in a PC environment. Parallel computing on GPUs using a compute-unified-device-architecture (CUDA) programming model has been explored to speed up the execution of the single-flow-direction algorithm (SFD). However, the parallel implementation on a GPU of the multiple-flow-direction (MFD) algorithm, which generally performs better than the SFD algorithm, has not been reported. Moreover, GPU-based parallelization of the DEM preprocessing step in the flow-accumulation calculations has not been addressed. This paper proposes a parallel approach to calculate flow accumulations (including both iterative DEM preprocessing and a recursive MFD algorithm) on a CUDA-compatible GPU. For the parallelization of an MFD algorithm (MFD-md), two different parallelization strategies using a GPU are explored. The first parallelization strategy, which has been used in the existing parallel SFD algorithm on GPU, has the problem of computing redundancy. Therefore, we designed a parallelization strategy based on graph theory. The application results show that the proposed parallel approach to calculate flow accumulations on a GPU performs much faster than either sequential algorithms or other parallel GPU

  1. Various Political and Social Challenges Including Wars and Displacement in Empowering Women and Girls in Science

    Directory of Open Access Journals (Sweden)

    Nilüfer Narli

    2016-02-01

    Full Text Available Poor gender ratio in science and engineering has been a global concern, despite growing number of female scientists in the world. Women’s empowerment in science is key to achieve human progress and dignity and directly related to accomplishing SDG 16: "Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels". What are the challenges that hinder women and girls’ progress in science? Added to several challenges discussed below, wars and displaced population create obstacles for female education and women’s advancement in science and technology. There are some challenges that have prevailed for the last two decades (e.g. economic insecurity and new challenges that are the results of the new forms wars, civil wars and extremism (e.g., large scale armed conflicts that involves state and non-state actors which have produced large numbers of displaced women in the Middle East who lost their jobs and isolated elsewhere, many young displaced females and refugees and who have no access to formal education and who face health risks in conflict and displacement settings, and new forms of gender discrimination produced by religious extremism.......

  2. Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions

    International Nuclear Information System (INIS)

    Liu, Hui; Tian, Hong-qi; Li, Yan-fei; Zhang, Lei

    2015-01-01

    Highlights: • Four hybrid algorithms are proposed for the wind speed decomposition. • Adaboost algorithm is adopted to provide a hybrid training framework. • MLP neural networks are built to do the forecasting computation. • Four important network training algorithms are included in the MLP networks. • All the proposed hybrid algorithms are suitable for the wind speed predictions. - Abstract: The technology of wind speed prediction is important to guarantee the safety of wind power utilization. In this paper, four different hybrid methods are proposed for the high-precision multi-step wind speed predictions based on the Adaboost (Adaptive Boosting) algorithm and the MLP (Multilayer Perceptron) neural networks. In the hybrid Adaboost–MLP forecasting architecture, four important algorithms are adopted for the training and modeling of the MLP neural networks, including GD-ALR-BP algorithm, GDM-ALR-BP algorithm, CG-BP-FR algorithm and BFGS algorithm. The aim of the study is to investigate the promoted forecasting percentages of the MLP neural networks by the Adaboost algorithm’ optimization under various training algorithms. The hybrid models in the performance comparison include Adaboost–GD-ALR-BP–MLP, Adaboost–GDM-ALR-BP–MLP, Adaboost–CG-BP-FR–MLP, Adaboost–BFGS–MLP, GD-ALR-BP–MLP, GDM-ALR-BP–MLP, CG-BP-FR–MLP and BFGS–MLP. Two experimental results show that: (1) the proposed hybrid Adaboost–MLP forecasting architecture is effective for the wind speed predictions; (2) the Adaboost algorithm has promoted the forecasting performance of the MLP neural networks considerably; (3) among the proposed Adaboost–MLP forecasting models, the Adaboost–CG-BP-FR–MLP model has the best performance; and (4) the improved percentages of the MLP neural networks by the Adaboost algorithm decrease step by step with the following sequence of training algorithms as: GD-ALR-BP, GDM-ALR-BP, CG-BP-FR and BFGS

  3. Algorithms for the Computation of Debris Risks

    Science.gov (United States)

    Matney, Mark

    2017-01-01

    Determining the risks from space debris involve a number of statistical calculations. These calculations inevitably involve assumptions about geometry - including the physical geometry of orbits and the geometry of non-spherical satellites. A number of tools have been developed in NASA's Orbital Debris Program Office to handle these calculations; many of which have never been published before. These include algorithms that are used in NASA's Orbital Debris Engineering Model ORDEM 3.0, as well as other tools useful for computing orbital collision rates and ground casualty risks. This paper will present an introduction to these algorithms and the assumptions upon which they are based.

  4. Comparison of several algorithms of the electric force calculation in particle plasma models

    International Nuclear Information System (INIS)

    Lachnitt, J; Hrach, R

    2014-01-01

    This work is devoted to plasma modelling using the technique of molecular dynamics. The crucial problem of most such models is the efficient calculation of electric force. This is usually solved by using the particle-in-cell (PIC) algorithm. However, PIC is an approximative algorithm as it underestimates the short-range interactions of charged particles. We propose a hybrid algorithm which adds these interactions to PIC. Then we include this algorithm in a set of algorithms which we test against each other in a two-dimensional collisionless magnetized plasma model. Besides our hybrid algorithm, this set includes two variants of pure PIC and the direct application of Coulomb's law. We compare particle forces, particle trajectories, total energy conservation and the speed of the algorithms. We find out that the hybrid algorithm can be a good replacement of direct Coulomb's law application (quite accurate and much faster). It is however probably unnecessary to use it in practical 2D models.

  5. Islam and Science

    Science.gov (United States)

    Salam, Abdus

    The following sections are included: * The Holy Quran and Science * Modem Science, A Greco- Islamic Legacy * The Decline of Sciences in Islam * The Limitations of Science * Faith and Science * The Present Picture of Sciences in the Islamic Countries * Renaissance of Sciences in Islam * Steps Needed for Building up Sciences in the Islamic Countries * Science Education * Science Foundations in Islam * Technology in Our Countries * Concluding Remarks * REFERENCES

  6. Seismic noise attenuation using an online subspace tracking algorithm

    Science.gov (United States)

    Zhou, Yatong; Li, Shuhua; Zhang, Dong; Chen, Yangkang

    2018-02-01

    We propose a new low-rank based noise attenuation method using an efficient algorithm for tracking subspaces from highly corrupted seismic observations. The subspace tracking algorithm requires only basic linear algebraic manipulations. The algorithm is derived by analysing incremental gradient descent on the Grassmannian manifold of subspaces. When the multidimensional seismic data are mapped to a low-rank space, the subspace tracking algorithm can be directly applied to the input low-rank matrix to estimate the useful signals. Since the subspace tracking algorithm is an online algorithm, it is more robust to random noise than traditional truncated singular value decomposition (TSVD) based subspace tracking algorithm. Compared with the state-of-the-art algorithms, the proposed denoising method can obtain better performance. More specifically, the proposed method outperforms the TSVD-based singular spectrum analysis method in causing less residual noise and also in saving half of the computational cost. Several synthetic and field data examples with different levels of complexities demonstrate the effectiveness and robustness of the presented algorithm in rejecting different types of noise including random noise, spiky noise, blending noise, and coherent noise.

  7. Fast algorithm of track detection

    International Nuclear Information System (INIS)

    Nehrguj, B.

    1980-01-01

    A fast algorithm of variable-slope histograms is proposed, which allows a considerable reduction of computer memory size and is quite simple to carry out. Corresponding FORTRAN subprograms given a triple speed gain have been included in spiral reader data handling software

  8. 3rd International Conference on Harmony Search Algorithm

    CERN Document Server

    2017-01-01

    This book presents state-of-the-art technical contributions based around one of the most successful evolutionary optimization algorithms published to date: Harmony Search. Contributions span from novel technical derivations of this algorithm to applications in the broad fields of civil engineering, energy, transportation & mobility and health, among many others and focus not only on its cross-domain applicability, but also on its core evolutionary operators, including elements inspired from other meta-heuristics. The global scientific community is witnessing an upsurge in groundbreaking, new advances in all areas of computational intelligence, with a particular flurry of research focusing on evolutionary computation and bio-inspired optimization. Observed processes in nature and sociology have provided the basis for innovative algorithmic developments aimed at leveraging the inherent capability to adapt characterized by various animals, including ants, fireflies, wolves and humans. However, it is the beha...

  9. The LLL algorithm survey and applications

    CERN Document Server

    Nguyen, Phong Q

    2010-01-01

    The first book to offer a comprehensive view of the LLL algorithm, this text surveys computational aspects of Euclidean lattices and their main applications. It includes many detailed motivations, explanations and examples.

  10. Development of radio frequency interference detection algorithms for passive microwave remote sensing

    Science.gov (United States)

    Misra, Sidharth

    Radio Frequency Interference (RFI) signals are man-made sources that are increasingly plaguing passive microwave remote sensing measurements. RFI is of insidious nature, with some signals low power enough to go undetected but large enough to impact science measurements and their results. With the launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in November 2009 and the upcoming launches of the new NASA sea-surface salinity measuring Aquarius mission in June 2011 and soil-moisture measuring Soil Moisture Active Passive (SMAP) mission around 2015, active steps are being taken to detect and mitigate RFI at L-band. An RFI detection algorithm was designed for the Aquarius mission. The algorithm performance was analyzed using kurtosis based RFI ground-truth. The algorithm has been developed with several adjustable location dependant parameters to control the detection statistics (false-alarm rate and probability of detection). The kurtosis statistical detection algorithm has been compared with the Aquarius pulse detection method. The comparative study determines the feasibility of the kurtosis detector for the SMAP radiometer, as a primary RFI detection algorithm in terms of detectability and data bandwidth. The kurtosis algorithm has superior detection capabilities for low duty-cycle radar like pulses, which are more prevalent according to analysis of field campaign data. Most RFI algorithms developed have generally been optimized for performance with individual pulsed-sinusoidal RFI sources. A new RFI detection model is developed that takes into account multiple RFI sources within an antenna footprint. The performance of the kurtosis detection algorithm under such central-limit conditions is evaluated. The SMOS mission has a unique hardware system, and conventional RFI detection techniques cannot be applied. Instead, an RFI detection algorithm for SMOS is developed and applied in the angular domain. This algorithm compares

  11. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  12. Unsupervised Learning Through Randomized Algorithms for High-Volume High-Velocity Data (ULTRA-HV).

    Energy Technology Data Exchange (ETDEWEB)

    Pinar, Ali [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Wake Forest Univ., Winston-Salem, MA (United States); Ballard, Grey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mahoney, Michael [Univ. of California, Berkeley, CA (United States)

    2018-01-01

    Through long-term investments in computing, algorithms, facilities, and instrumentation, DOE is an established leader in massive-scale, high-fidelity simulations, as well as science-leading experimentation. In both cases, DOE is generating more data than it can analyze and the problem is intensifying quickly. The need for advanced algorithms that can automatically convert the abundance of data into a wealth of useful information by discovering hidden structures is well recognized. Such efforts however, are hindered by the massive volume of the data and its high velocity. Here, the challenge is developing unsupervised learning methods to discover hidden structure in high-volume, high-velocity data.

  13. Plasma Science Contribution to the SCaLeS Report

    International Nuclear Information System (INIS)

    Jardin, S.C.

    2003-01-01

    In June of 2003, about 250 computational scientists and mathematicians being funded by the DOE Office of Science met in Arlington, VA, to attend a 2-day workshop on the Science Case for Large-scale Simulation (SCaLeS). This document was the output of the Plasma Science Section of that workshop. The conclusion is that exciting and important progress can be made in the field of Plasma Science if computer power continues to grow and algorithmic development continues to occur at the rate that it has in the past. Full simulations of burning plasma experiments could be possible in the 5-10 year time frame if an aggressive growth program is launched in this area

  14. Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed Azouaoui

    2012-01-01

    Full Text Available A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA. The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.

  15. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  16. Algorithmic detectability threshold of the stochastic block model

    Science.gov (United States)

    Kawamoto, Tatsuro

    2018-03-01

    The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.

  17. Primal-dual path-following algorithms for circular programming

    Directory of Open Access Journals (Sweden)

    Baha Alzalg

    2017-06-01

    Full Text Available Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case‎. ‎Alizadeh and Goldfarb [Math‎. ‎Program‎. ‎Ser‎. ‎A 95 (2003 3--51] introduced primal-dual path-following algorithms for solving second-order cone programming problems‎. ‎In this paper‎, ‎we generalize their work by using the machinery of Euclidean Jordan algebras associated with the circular cones to derive primal-dual path-following interior point algorithms for circular programming problems‎. ‎We prove polynomial convergence of the proposed algorithms by showing that the circular logarithmic barrier is a strongly self-concordant barrier‎. ‎The numerical examples show the path-following algorithms are simple and efficient‎.

  18. Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm

    Science.gov (United States)

    Bian, Haiyi; Wang, Peng; Wang, Jun; Yin, Huancai; Tian, Yubing; Bai, Pengli; Wu, Xiaodong; Wang, Ning; Tang, Yuguo; Gao, Jing

    2017-09-01

    We report a self-reference algorithm to discriminate human and nonhuman blood by calculating the ratios of identification Raman peaks to reference Raman peaks and choosing appropriate threshold values. The influence of using different reference peaks and identification peaks was analyzed in detail. The Raman peak at 1003 cm-1 was proved to be a stable reference peak to avoid the influencing factors, such as the incident laser intensity and the amount of sample. The Raman peak at 1341 cm-1 was found to be an efficient identification peak, which indicates that the difference between human and nonhuman blood results from the C-H bend in tryptophan. The comparison between self-reference algorithm and partial least square method was made. It was found that the self-reference algorithm not only obtained the discrimination results with the same accuracy, but also provided information on the difference of chemical composition. In addition, the performance of self-reference algorithm whose true positive rate is 100% is significant for customs inspection to avoid genetic disclosure and forensic science.

  19. New Algorithm to Enable Construction and Display of 3D Structures from Scanning Probe Microscopy Images Acquired Layer-by-Layer.

    Science.gov (United States)

    Deng, William Nanqiao; Wang, Shuo; Ventrici de Souza, Joao Francisco; Kuhl, Tonya L; Liu, Gang-Yu

    2018-06-11

    Scanning probe microscopy (SPM) such as atomic force microscopy (AFM) is widely known for high-resolution imaging of surface structures and nanolithography in two dimension (2D), which provides important physical insights in surface science and material science. This work reports a new algorithm to enable construction and display of layer-by-layer 3D structures from SPM images. The algorithm enables alignment of SPM images acquired during layer-by-layer deposition, removal of redundant features, and faithfully constructs the deposited 3D structures. The display uses a "see-through" strategy to enable the structure of each layer to be visible. The results demonstrate high spatial accuracy as well as algorithm versatility; users can set parameters for reconstruction and display as per image quality and research needs. To the best of our knowledge, this method represents the first report to enable SPM technology for 3D imaging construction and display. The detailed algorithm is provided to facilitate usage of the same approach in any SPM software. These new capabilities support wide applications of SPM that require 3D image reconstruction and display, such as 3D nanoprinting, and 3D additive and subtractive manufacturing and imaging.

  20. Universal algorithm of time sharing

    International Nuclear Information System (INIS)

    Silin, I.N.; Fedyun'kin, E.D.

    1979-01-01

    Timesharing system algorithm is proposed for the wide class of one- and multiprocessor computer configurations. Dynamical priority is the piece constant function of the channel characteristic and system time quantum. The interactive job quantum has variable length. Characteristic recurrent formula is received. The concept of the background job is introduced. Background job loads processor if high priority jobs are inactive. Background quality function is given on the base of the statistical data received in the timesharing process. Algorithm includes optimal trashing off procedure for the jobs replacements in the memory. Sharing of the system time in proportion to the external priorities is guaranteed for the all active enough computing channels (back-ground too). The fast answer is guaranteed for the interactive jobs, which use small time and memory. The external priority control is saved for the high level scheduler. The experience of the algorithm realization on the BESM-6 computer in JINR is discussed