WorldWideScience

Sample records for schwinger time gauges

  1. Schwinger effect for non-Abelian gauge bosons

    Science.gov (United States)

    Ragsdale, Michael; Singleton, Douglas

    2017-08-01

    We investigate the Schwinger effect for the gauge bosons in an unbroken non-Abelian gauge theory (e.g. the gluons of QCD). We consider both constant “color electric” fields and “color magnetic” fields as backgrounds. As in the Abelian Schwinger effect we find there is production of “gluons” for the color electric field, but no particle production for the color magnetic field case. Since the non-Abelian gauge bosons are massless there is no exponential suppression of particle production due to the mass of the electron/positron that one finds in the Abelian Schwinger effect. Despite the lack of an exponential suppression of the gluon production rate due to the masslessness of the gluons, we find that the critical field strength is even larger in the non-Abelian case as compared to the Abelian case. This is the result of the confinement phenomenon on QCD.

  2. Schwinger-Fronsdal Theory of Abelian Tensor Gauge Fields

    Directory of Open Access Journals (Sweden)

    Sebastian Guttenberg

    2008-09-01

    Full Text Available This review is devoted to the Schwinger and Fronsdal theory of Abelian tensor gauge fields. The theory describes the propagation of free massless gauge bosons of integer helicities and their interaction with external currents. Self-consistency of its equations requires only the traceless part of the current divergence to vanish. The essence of the theory is given by the fact that this weaker current conservation is enough to guarantee the unitarity of the theory. Physically this means that only waves with transverse polarizations are propagating very far from the sources. The question whether such currents exist should be answered by a fully interacting theory. We also suggest an equivalent representation of the corresponding action.

  3. From the Dyson-Schwinger to the transport equation in the background field gauge of QCD

    CERN Document Server

    Wang Qun; Stöcker, H; Greiner, W

    2003-01-01

    The non-equilibrium quantum field dynamics is usually described in the closed-time-path formalism. The initial state correlations are introduced into the generating functional by non-local source terms. We propose a functional approach to the Dyson-Schwinger equation, which treats the non-local and local source terms in the same way. In this approach, the generating functional is formulated for the connected Green functions and one-particle-irreducible vertices. The great advantages of our approach over the widely used two-particle-irreducible method are that it is much simpler and that it is easy to implement the procedure in a computer program to automatically generate the Feynman diagrams for a given process. The method is then applied to a pure gluon plasma to derive the gauge-covariant transport equation from the Dyson-Schwinger equation in the background-covariant gauge. We discuss the structure of the kinetic equation and show its relationship with the classical one. We derive the gauge-covariant colli...

  4. Canonical field anticommutators in the extended gauged Rarita-Schwinger theory

    Science.gov (United States)

    Adler, Stephen L.; Henneaux, Marc; Pais, Pablo

    2017-10-01

    We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.

  5. How to solve the Schwinger-Dyson equations once and for all gauges

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, A [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-82, Morelia, Michoacan 58040 (Mexico); Raya, A [Facultad de Ciencias, Universidad de Colima. Bernal DIaz del Castillo hashmark 340, Col. Villa San Sebastian, Colima, Colima 28045 (Mexico)

    2006-05-15

    Study of the Schwinger-Dyson equation (SDE) for the fermion propagator to obtain dynamically generated chirally asymmetric solution in any covariant gauge is a complicated numerical exercise specially if one employs a sophisticated form of the fermion-boson interaction complying with the key features of a gauge field theory. However, constraints of gauge invariance can help construct such a solution without having the need to solve the SDE for every value of the gauge parameter. Starting from the Landau gauge where the computational complications are still manageable, we apply the Landau-Khalatnikov-Fradkin transformation (LKFT) on the dynamically generated solution and find approximate analytical results for arbitrary value of the covariant gauge parameter. We also compare our results with exact numerical solutions.

  6. Solution of the Dyson-Schwinger-Equations of the Hamiltonian approach to Yang-Mills-Theory in Coulomb-gauge; Loesung der Dyson-Schwinger-Gleichungen des Hamilton-Zugangs zur Yang-Mills-Theorie in Coulomb-Eichung

    Energy Technology Data Exchange (ETDEWEB)

    Epple, Mark Dominik

    2008-12-03

    In this work we examine the Yang-Mills-Schroedinger equation, which is a result from minimizing the vacuum energy density in Coulomb gauge. We use an ansatz for the vacuum wave functional which is motivated by the exact wave functional of quantum electrodynamics. The wave functional is by construction singular on the Gribov horizon and has a variational kernel in the exponent which represents the gluon energy. We derive the so-called Dyson-Schwinger-equations from the variational principle, that the vacuum energy density is stationary under variation with respect to the variational kernel. These Dyson-Schwinger-equations build a set of coupled integral equations for the gluon and ghost propagator, and for the curvature in gauge orbit space. These equations have been derived in the last few years, have been examined analytically in certain approximations, and first numerical results have been obtained. The case of the so-called horizon condition, which means that the ghost form factor is divergent in the infrared, has always been of special interest. But is has been found in certain approximations analytically as well als numerically that the fully coupled system has no self-consistent solution within the employed truncation on two-loop level in the energy. But one can obtain a solvable system by inserting the bare ghost-propagator into the Coulomb equation. This system possesses two different kind of infrared-divergent solutions which differ in the exponents of the power laws of the form factors in the infrared. The weaker divergent solution has previously been found, but not the stronger divergent solution. The subject of this work is to develop a deeper understanding of the presented system. We present a new renormalization scheme which enables us to reduce the number of renormalization parameters by one. This new system of integral equations is solved numerically with greatly increased precision. Doing so we found the stronger divergent solution for the first

  7. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.

    Science.gov (United States)

    Martinez, Esteban A; Muschik, Christine A; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-23

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman's idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments-the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  8. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

    Science.gov (United States)

    Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer

    2016-06-01

    Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.

  9. Real-Time Dynamics in U(1 Lattice Gauge Theories with Tensor Networks

    Directory of Open Access Journals (Sweden)

    T. Pichler

    2016-03-01

    Full Text Available Tensor network algorithms provide a suitable route for tackling real-time-dependent problems in lattice gauge theories, enabling the investigation of out-of-equilibrium dynamics. We analyze a U(1 lattice gauge theory in (1+1 dimensions in the presence of dynamical matter for different mass and electric-field couplings, a theory akin to quantum electrodynamics in one dimension, which displays string breaking: The confining string between charges can spontaneously break during quench experiments, giving rise to charge-anticharge pairs according to the Schwinger mechanism. We study the real-time spreading of excitations in the system by means of electric-field and particle fluctuations. We determine a dynamical state diagram for string breaking and quantitatively evaluate the time scales for mass production. We also show that the time evolution of the quantum correlations can be detected via bipartite von Neumann entropies, thus demonstrating that the Schwinger mechanism is tightly linked to entanglement spreading. To present a variety of possible applications of this simulation platform, we show how one could follow the real-time scattering processes between mesons and the creation of entanglement during scattering processes. Finally, we test the quality of quantum simulations of these dynamics, quantifying the role of possible imperfections in cold atoms, trapped ions, and superconducting circuit systems. Our results demonstrate how entanglement properties can be used to deepen our understanding of basic phenomena in the real-time dynamics of gauge theories such as string breaking and collisions.

  10. Are Crab nanoshots Schwinger sparks?

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, Albert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  11. Symmetries of Particle Physics: Space-time and Local Gauge ...

    Indian Academy of Sciences (India)

    GENERAL I ARTICLE. Symmetries of Particle Physics: Space-time and. Local Gauge Symmetries. Sourendu Gupta works on the physics of matter under extreme conditions. He works at the Tata. Institute of Fundamental. Research, Mumbai. Figure 1. Experiment and theory feed on each other. Sourendu Gupta. Introduction.

  12. Symmetries of Particle Physics: Space-time and Local Gauge ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Schwinger's Approach to Einstein's Gravity

    Science.gov (United States)

    Milton, Kim

    2012-05-01

    Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.

  14. Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Román Juarez

    2008-07-01

    Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

  15. Chiral condensate in the Schwinger model with matrix product operators

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [Tsukuba Univ. (Japan). Center for Computational Sciences

    2016-03-15

    Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.

  16. The inverse problem for Schwinger pair production

    Directory of Open Access Journals (Sweden)

    F. Hebenstreit

    2016-02-01

    Full Text Available The production of electron–positron pairs in time-dependent electric fields (Schwinger mechanism depends non-linearly on the applied field profile. Accordingly, the resulting momentum spectrum is extremely sensitive to small variations of the field parameters. Owing to this non-linear dependence it is so far unpredictable how to choose a field configuration such that a predetermined momentum distribution is generated. We show that quantum kinetic theory along with optimal control theory can be used to approximately solve this inverse problem for Schwinger pair production. We exemplify this by studying the superposition of a small number of harmonic components resulting in predetermined signatures in the asymptotic momentum spectrum. In the long run, our results could facilitate the observation of this yet unobserved pair production mechanism in quantum electrodynamics by providing suggestions for tailored field configurations.

  17. Time-frequency analyses of tide-gauge sensor data.

    Science.gov (United States)

    Erol, Serdar

    2011-01-01

    The real world phenomena being observed by sensors are generally non-stationary in nature. The classical linear techniques for analysis and modeling natural time-series observations are inefficient and should be replaced by non-linear techniques of whose theoretical aspects and performances are varied. In this manner adopting the most appropriate technique and strategy is essential in evaluating sensors' data. In this study, two different time-series analysis approaches, namely least squares spectral analysis (LSSA) and wavelet analysis (continuous wavelet transform, cross wavelet transform and wavelet coherence algorithms as extensions of wavelet analysis), are applied to sea-level observations recorded by tide-gauge sensors, and the advantages and drawbacks of these methods are reviewed. The analyses were carried out using sea-level observations recorded at the Antalya-II and Erdek tide-gauge stations of the Turkish National Sea-Level Monitoring System. In the analyses, the useful information hidden in the noisy signals was detected, and the common features between the two sea-level time series were clarified. The tide-gauge records have data gaps in time because of issues such as instrumental shortcomings and power outages. Concerning the difficulties of the time-frequency analysis of data with voids, the sea-level observations were preprocessed, and the missing parts were predicted using the neural network method prior to the analysis. In conclusion the merits and limitations of the techniques in evaluating non-stationary observations by means of tide-gauge sensors records were documented and an analysis strategy for the sequential sensors observations was presented.

  18. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  19. The sources of Schwinger's Green's functions.

    Science.gov (United States)

    Schweber, Silvan S

    2005-05-31

    Julian Schwinger's development of his Green's functions methods in quantum field theory is placed in historical context. The relation of Schwinger's quantum action principle to Richard Feynman's path-integral formulation of quantum mechanics is reviewed. The nonperturbative character of Schwinger's approach is stressed as well as the ease with which it can be extended to finite temperature situations.

  20. Time evolution of linearized gauge field fluctuations on a real-time lattice

    CERN Document Server

    Kurkela, Aleksi; Peuron, Jarkko

    2016-01-01

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss's law.

  1. Time evolution of linearized gauge field fluctuations on a real-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Stavanger, Faculty of Science and Technology, Stavanger (Norway); Lappi, T. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland); University of Helsinki, Helsinki Institute of Physics, P.O. Box 64, Helsinki (Finland); Peuron, J. [University of Jyvaeskylae, Department of Physics, P.O. Box 35, Jyvaeskylae (Finland)

    2016-12-15

    Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Due to instabilities, small quantum fluctuations on top of the classical background may significantly affect the dynamics of the system. In this paper we argue for the need for a numerical calculation of a system of classical gauge fields and small linearized fluctuations in a way that keeps the separation between the two manifest. We derive and test an explicit algorithm to solve these equations on the lattice, maintaining gauge invariance and Gauss' law. (orig.)

  2. The Feynman-Schwinger representation in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Yu. A. Simonov; J.A. Tjon

    2002-05-01

    The proper time path integral representation is derived explicitly for Green's functions in QCD. After an introductory analysis of perturbative properties, the total gluonic field is separated in a rigorous way into a nonperturbative background and valence gluon part. For nonperturbative contributions the background perturbation theory is used systematically, yielding two types of expansions,illustrated by direct physical applications. As an application, we discuss the collinear singularities in the Feynman-Schwinger representation formalism. Moreover, the generalization to nonzero temperature is made and expressions for partition functions in perturbation theory and nonperturbative background are explicitly written down.

  3. Gauge theory of massless spin- field in de Sitter space-time

    Science.gov (United States)

    Parsamehr, S.; Mohsenzadeh, M.

    2016-11-01

    On several levels of theoretical physics, especially particle physics and early universe cosmology, de Sitter space-time has become an attractive possibility. The principle of local gauge invariance governs all known fundamental interactions of elementary particles, from electromagnetism and weak interactions to strong interactions and gravity. This paper presents a procedure for defining the gauge-covariant derivative and gauge invariant Lagrangian density in de Sitter ambient space-time formalism. The gauge invariant field equation is then explicitly calculated in detail for a massless spin- gauge field.

  4. The multi-flavor Schwinger model with chemical potential. Overcoming the sign problem with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [AISIN AW Co., Ltd., Aichi (Japan)

    2016-11-15

    During recent years there has been an increasing interest in the application of matrix product states, and more generally tensor networks, to lattice gauge theories. This non-perturbative method is sign problem free and has already been successfully used to compute mass spectra, thermal states and phase diagrams, as well as real-time dynamics for Abelian and non-Abelian gauge models. In previous work we showed the suitability of the method to explore the zero-temperature phase structure of the multi-flavor Schwinger model at non-zero chemical potential, a regime where the conventional Monte Carlo approach suffers from the sign problem. Here we extend our numerical study by looking at the spatially resolved chiral condensate in the massless case. We recover spatial oscillations, similar to the theoretical predictions for the single-flavor case, with a chemical potential dependent frequency and an amplitude approximately given by the homogeneous zero density condensate value.

  5. Schwinger-Keldysh formalism. Part II: thermal equivariant cohomology

    Science.gov (United States)

    Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund

    2017-06-01

    Causally ordered correlation functions of local operators in near-thermal quantum systems computed using the Schwinger-Keldysh formalism obey a set of Ward identities. These can be understood rather simply as the consequence of a topological (BRST) algebra, called the universal Schwinger-Keldysh superalgebra, as explained in our compan-ion paper [1]. In the present paper we provide a mathematical discussion of this topological algebra. In particular, we argue that the structures can be understood in the language of extended equivariant cohomology. To keep the discussion self-contained, we provide a ba-sic review of the algebraic construction of equivariant cohomology and explain how it can be understood in familiar terms as a superspace gauge algebra. We demonstrate how the Schwinger-Keldysh construction can be succinctly encoded in terms a thermal equivariant cohomology algebra which naturally acts on the operator (super)-algebra of the quantum system. The main rationale behind this exploration is to extract symmetry statements which are robust under renormalization group flow and can hence be used to understand low-energy effective field theory of near-thermal physics. To illustrate the general prin-ciples, we focus on Langevin dynamics of a Brownian particle, rephrasing some known results in terms of thermal equivariant cohomology. As described elsewhere, the general framework enables construction of effective actions for dissipative hydrodynamics and could potentially illumine our understanding of black holes.

  6. A Dyson-Schwinger approach to finite temperature QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Jens Andreas

    2011-10-26

    The different phases of quantum chromodynamics at finite temperature are studied. To this end the nonperturbative quark propagator in Matsubara formalism is determined from its equation of motion, the Dyson-Schwinger equation. A novel truncation scheme is introduced including the nonperturbative, temperature dependent gluon propagator as extracted from lattice gauge theory. In the first part of the thesis a deconfinement order parameter, the dual condensate, and the critical temperature are determined from the dependence of the quark propagator on the temporal boundary conditions. The chiral transition is investigated by means of the quark condensate as order parameter. In addition differences in the chiral and deconfinement transition between gauge groups SU(2) and SU(3) are explored. In the following the quenched quark propagator is studied with respect to a possible spectral representation at finite temperature. In doing so, the quark propagator turns out to possess different analytic properties below and above the deconfinement transition. This result motivates the consideration of an alternative deconfinement order parameter signaling positivity violations of the spectral function. A criterion for positivity violations of the spectral function based on the curvature of the Schwinger function is derived. Using a variety of ansaetze for the spectral function, the possible quasi-particle spectrum is analyzed, in particular its quark mass and momentum dependence. The results motivate a more direct determination of the spectral function in the framework of Dyson-Schwinger equations. In the two subsequent chapters extensions of the truncation scheme are considered. The influence of dynamical quark degrees of freedom on the chiral and deconfinement transition is investigated. This serves as a first step towards a complete self-consistent consideration of dynamical quarks and the extension to finite chemical potential. The goodness of the truncation is verified first

  7. Julian Schwinger — Personal Recollections

    Science.gov (United States)

    Martin, Paul C.

    We're gathered here today to salute Julian Schwinger, a towering figure of the golden age of physics — and a kind and gentle human being. Even at our best universities, people with Julian's talent and his passion for discovery and perfection are rare — so rare that neither they nor the rest of us know how to take best advantage of their genius. The failure to find a happier solution to this dilemma in recent years has concerned many of us. It should not becloud the fact that over their lifetimes, few physicists, if any, have surmounted this impedance mismatch more effectively than Julian, conveying not only knowledge but lofty values and aspirations directly and indirectly to thousands of physicists…

  8. Unification of gauge and gravity Chern-Simons theories in 3-D space-time

    Science.gov (United States)

    Saghir, Chireen A.; Shamseddine, Laurence W.

    2017-11-01

    Chamseddine and Mukhanov showed that gravity and gauge theories could be unified in one geometric construction provided that a metricity condition is imposed on the vielbein. In this paper we are going to show that by enlarging the gauge group we are able to unify Chern-Simons gauge theory and Chern-Simons gravity in 3-D space-time. Such a unification leads to the quantization of the coefficients for both Chern-Simons terms for compact groups but not for non-compact groups. Moreover, it leads to a topological invariant quantity of the 3-dimensional space-time manifold on which they are defined.

  9. Pair production by three fields dynamically assisted Schwinger process

    Science.gov (United States)

    Sitiwaldi, Ibrahim; Xie, Bai-Song

    2018-02-01

    The dynamically assisted Schwinger mechanism for vacuum pair production from two fields to three fields is proposed and examined. Numerical results for enhanced electron-positron pair production in the combination of three fields with different time scales are obtained using the quantum Vlasov equation. The significance of the combination of three fields in the regime of super low field strength is verified. Although the strengths of each of the three fields are far below the critical field strength, we obtain a significant enhancement of the production rate and a considerable yields in this combination, where the nonperturbative field is dynamically assisted by two oscillating fields. The number density depending on field parameters are also investigated. It is shown that the field threshold to detect the Schwinger effect can be lowered significantly if the configuration of three fields with different time scales are chosen carefully.

  10. SU(N) irreducible Schwinger bosons

    Science.gov (United States)

    Mathur, Manu; Raychowdhury, Indrakshi; Anishetty, Ramesh

    2010-09-01

    We construct SU(N) irreducible Schwinger bosons satisfying certain U(N-1) constraints which implement the symmetries of SU(N) Young tableaues. As a result all SU(N) irreducible representations are simple monomials of (N -1) types of SU(N) irreducible Schwinger bosons. Further, we show that these representations are free of multiplicity problems. Thus, all SU(N) representations are made as simple as SU(2).

  11. Thermal evolution of the Schwinger model with matrix product operators

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC); Jansen, K.; Saito, H. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing (NIC)

    2015-10-15

    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.

  12. U(1) Wilson lattice gauge theories in digital quantum simulators

    Science.gov (United States)

    Muschik, Christine; Heyl, Markus; Martinez, Esteban; Monz, Thomas; Schindler, Philipp; Vogell, Berit; Dalmonte, Marcello; Hauke, Philipp; Blatt, Rainer; Zoller, Peter

    2017-10-01

    Lattice gauge theories describe fundamental phenomena in nature, but calculating their real-time dynamics on classical computers is notoriously difficult. In a recent publication (Martinez et al 2016 Nature 534 516), we proposed and experimentally demonstrated a digital quantum simulation of the paradigmatic Schwinger model, a U(1)-Wilson lattice gauge theory describing the interplay between fermionic matter and gauge bosons. Here, we provide a detailed theoretical analysis of the performance and the potential of this protocol. Our strategy is based on analytically integrating out the gauge bosons, which preserves exact gauge invariance but results in complicated long-range interactions between the matter fields. Trapped-ion platforms are naturally suited to implementing these interactions, allowing for an efficient quantum simulation of the model, with a number of gate operations that scales polynomially with system size. Employing numerical simulations, we illustrate that relevant phenomena can be observed in larger experimental systems, using as an example the production of particle–antiparticle pairs after a quantum quench. We investigate theoretically the robustness of the scheme towards generic error sources, and show that near-future experiments can reach regimes where finite-size effects are insignificant. We also discuss the challenges in quantum simulating the continuum limit of the theory. Using our scheme, fundamental phenomena of lattice gauge theories can be probed using a broad set of experimentally accessible observables, including the entanglement entropy and the vacuum persistence amplitude.

  13. Pion transition form factor through Dyson-Schwinger equations

    Science.gov (United States)

    Raya, Khépani

    2016-10-01

    In the framework of Dyson-Schwinger equations (DSE), we compute the γ*γ→π0 transition form factor, G(Q2). For the first time, in a continuum approach to quantun chromodynamics (QCD), it was possible to compute G(Q2) on the whole domain of space-like momenta. Our result agrees with CELLO, CLEO and Belle collaborations and, with the well- known asymptotic QCD limit, 2ƒπ. Our analysis unifies this prediction with that of the pion's valence-quark parton distribution amplitude (PDA) and elastic electromagnetic form factor.

  14. Towards a model of pion generalized parton distributions from Dyson-Schwinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Moutarde, H. [CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette (France)

    2015-04-10

    We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.

  15. Massive Schwinger model at finite θ

    Science.gov (United States)

    Azcoiti, Vicente; Follana, Eduardo; Royo-Amondarain, Eduardo; Di Carlo, Giuseppe; Vaquero Avilés-Casco, Alejandro

    2018-01-01

    Using the approach developed by V. Azcoiti et al. [Phys. Lett. B 563, 117 (2003), 10.1016/S0370-2693(03)00601-4], we are able to reconstruct the behavior of the massive one-flavor Schwinger model with a θ term and a quantized topological charge. We calculate the full dependence of the order parameter with θ . Our results at θ =π are compatible with Coleman's conjecture on the phase diagram of this model.

  16. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    Science.gov (United States)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  17. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    OpenAIRE

    Lee, Taejin

    2017-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field...

  18. Holographic Schwinger effect with a moving D3-brane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zi-qiang; Chen, Gang [China University of Geosciences (Wuhan), School of Mathematics and Physics, Wuhan (China); Hou, De-fu [Central China Normal University, Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOS), Wuhan (China)

    2017-03-15

    We study the Schwinger effect with a moving D3-brane in a N = 4 SYM plasma with the aid of AdS/CFT correspondence. We discuss the test particle pair moving transverse and parallel to the plasma wind, respectively. It is found that for both cases the presence of velocity tends to increase the Schwinger effect. In addition, the velocity has a stronger influence on the Schwinger effect when the pair moves transverse to the plasma wind rather than parallel. (orig.)

  19. Gauging N=2 supersymmetric non-linear {sigma}-models in the Atiyah-Ward space-time

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, M.; Oliveira, M.W. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1996-11-01

    It was built up a class of N=2 supersymmetric non-linear {sigma}-models in an N=1 superspace based on the Atiyah-Ward space-time of (2+2)-signature metric. Is also discussed the gauging of isometries of the associated hyper-Kaehlerian target spaces and present the resulting gauge-covariant supersymmetric action functional. (author). 27 refs.

  20. The bosonized version of the Schwinger model in four dimensions: A blueprint for confinement?

    Science.gov (United States)

    Aurilia, Antonio; Gaete, Patricio; Helayël-Neto, José A.; Spallucci, Euro

    2017-03-01

    For a (3 + 1)-dimensional generalization of the Schwinger model, we compute the interaction energy between two test charges. The result shows that the static potential profile contains a linear term leading to the confinement of probe charges, exactly as in the original model in two dimensions. We further show that the same 4-dimensional model also appears as one version of the B ∧ F models in (3 + 1) dimensions under dualization of Stueckelberg-like massive gauge theories. Interestingly, this particular model is characterized by the mixing between a U(1) potential and an Abelian 3-form field of the type that appears in the topological sector of QCD.

  1. Density induced phase transitions in the Schwinger model. A study with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, Mari Carmen; Cirac, J. Ignacio; Kuehn, Stefan [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-02-15

    We numerically study the zero temperature phase structure of the multiflavor Schwinger model at nonzero chemical potential. Using matrix product states, we reproduce analytical results for the phase structure for two flavors in the massless case and extend the computation to the massive case, where no analytical predictions are available. Our calculations allow us to locate phase transitions in the mass-chemical potential plane with great precision and provide a concrete example of tensor networks overcoming the sign problem in a lattice gauge theory calculation.

  2. The mass spectrum of the Schwinger model with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Banuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Poznan Univ. (Poland). Faculty of Physics; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics

    2013-07-15

    We show the feasibility of tensor network solutions for lattice gauge theories in Hamiltonian formulation by applying matrix product states algorithms to the Schwinger model with zero and non-vanishing fermion mass. We introduce new techniques to compute excitations in a system with open boundary conditions, and to identify the states corresponding to low momentum and different quantum numbers in the continuum. For the ground state and both the vector and scalar mass gaps in the massive case, the MPS technique attains precisions comparable to the best results available from other techniques.

  3. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  4. Schwinger variational calculation of ionization of hydrogen atoms for ...

    Indian Academy of Sciences (India)

    Schwinger variational calculation of ionization of hydrogen atoms for large momentum transfers. K CHAKRABARTI. Department of Mathematics, Scottish Church College, 1 & 3 Urquhart Square,. Kolkata 700 006, India. MS received 7 July 2001; revised 10 October 2001. Abstract. Schwinger variational principle is used here ...

  5. Revising time series of the Elbe river discharge for flood frequency determination at gauge Dresden

    Directory of Open Access Journals (Sweden)

    S. Bartl

    2009-11-01

    Full Text Available The German research programme RIsk MAnagment of eXtreme flood events has accomplished the improvement of regional hazard assessment for the large rivers in Germany. Here we focused on the Elbe river at its gauge Dresden, which belongs to the oldest gauges in Europe with officially available daily discharge time series beginning on 1 January 1890. The project on the one hand aimed to extend and to revise the existing time series, and on the other hand to examine the variability of the Elbe river discharge conditions on a greater time scale. Therefore one major task were the historical searches and the examination of the retrieved documents and the contained information. After analysing this information the development of the river course and the discharge conditions were discussed. Using the provided knowledge, in an other subproject, a historical hydraulic model was established. Its results then again were used here. A further purpose was the determining of flood frequency based on all pre-processed data. The obtained knowledge about historical changes was also used to get an idea about possible future variations under climate change conditions. Especially variations in the runoff characteristic of the Elbe river over the course of the year were analysed. It succeeded to obtain a much longer discharge time series which contain fewer errors and uncertainties. Hence an optimized regional hazard assessment was realised.

  6. Revising time series of the Elbe river discharge for flood frequency determination at gauge Dresden

    Science.gov (United States)

    Bartl, S.; Schümberg, S.; Deutsch, M.

    2009-11-01

    The German research programme RIsk MAnagment of eXtreme flood events has accomplished the improvement of regional hazard assessment for the large rivers in Germany. Here we focused on the Elbe river at its gauge Dresden, which belongs to the oldest gauges in Europe with officially available daily discharge time series beginning on 1 January 1890. The project on the one hand aimed to extend and to revise the existing time series, and on the other hand to examine the variability of the Elbe river discharge conditions on a greater time scale. Therefore one major task were the historical searches and the examination of the retrieved documents and the contained information. After analysing this information the development of the river course and the discharge conditions were discussed. Using the provided knowledge, in an other subproject, a historical hydraulic model was established. Its results then again were used here. A further purpose was the determining of flood frequency based on all pre-processed data. The obtained knowledge about historical changes was also used to get an idea about possible future variations under climate change conditions. Especially variations in the runoff characteristic of the Elbe river over the course of the year were analysed. It succeeded to obtain a much longer discharge time series which contain fewer errors and uncertainties. Hence an optimized regional hazard assessment was realised.

  7. Development and implementation of cellular-based real-time reporting and internet accessible coastal sea-level gauge - A vital tool for monitoring storm surge and tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A; Agarvadekar, Y; Dabholkar, N; Mehra, P.; Gouveia, A; Tengali, S.; VijayKumar, K.; Parab, A

    We describe the development and implementation of real-time reporting and Internet-accessible coastal sealevel gauge, wherein data communication between the gauge and an Internet server has been established through a cellular modem utilizing General...

  8. The. delta. expansion and local gauge invariance

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.M. (Department of Physics, Washington University, St. Louis, Missouri 63130 (US)); Cooper, F. (Department of Physics, Brown University, Providence, Rhode Island 02912 Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexic o 87545); Milton, K.A. (Department of Physics, The Ohio State University, Columbus, Ohio 43210 Department of Physics and Astronomy, University of Oklahoma, Norman, Oklaho ma 73019)

    1989-08-15

    A recently proposed approximation method, called the {delta} expansion, was introduced in the context of a self-interacting scalar field theory. This approximation method offers the hope of obtaining nonperturbative information about a quantum field theory using perturbative techniques. In this paper we extend formally the {delta}-expansion methods to field theories having local gauge symmetry. We then compute the anomaly in the Schwinger model.

  9. Multifaceted Schwinger effect in de Sitter space

    Science.gov (United States)

    Sharma, Ramkishor; Singh, Suprit

    2017-07-01

    We investigate particle production à la the Schwinger mechanism in an expanding, flat de Sitter patch as is relevant for the inflationary epoch of our Universe. Defining states and particle content in curved spacetime is certainly not a unique process. There being different prescriptions on how that can be done, we have used the Schrödinger formalism to define instantaneous particle content of the state, etc. This allows us to go past the adiabatic regime to which the effect has been restricted in the previous studies and bring out its multifaceted nature in different settings. Each of these settings gives rise to contrasting features and behavior as per the effect of the electric field and expansion rate on the instantaneous mean particle number. We also quantify the degree of classicality of the process during its evolution using a "classicality parameter" constructed out of parameters of the Wigner function to obtain information about the quantum to classical transition in this case.

  10. Schwinger-Keldysh diagrammatics for primordial perturbations

    Science.gov (United States)

    Chen, Xingang; Wang, Yi; Xianyu, Zhong-Zhi

    2017-12-01

    We present a systematic introduction to the diagrammatic method for practical calculations in inflationary cosmology, based on Schwinger-Keldysh path integral formalism. We show in particular that the diagrammatic rules can be derived directly from a classical Lagrangian even in the presence of derivative couplings. Furthermore, we use a quasi-single-field inflation model as an example to show how this formalism, combined with the trick of mixed propagator, can significantly simplify the calculation of some in-in correlation functions. The resulting bispectrum includes the lighter scalar case (m3H/2) that has not been explicitly computed for this model. The latter provides a concrete example of quantum primordial standard clocks, in which the clock signals can be observably large.

  11. CrasyDSE: A framework for solving Dyson-Schwinger equations

    Science.gov (United States)

    Huber, Markus Q.; Mitter, Mario

    2012-11-01

    Dyson-Schwinger equations are important tools for non-perturbative analyses of quantum field theories. For example, they are very useful for investigations in quantum chromodynamics and related theories. However, sometimes progress is impeded by the complexity of the equations. Thus automating parts of the calculations will certainly be helpful in future investigations. In this article we present a framework for such an automation based on a C++ code that can deal with a large number of Green functions. Since also the creation of the expressions for the integrals of the Dyson-Schwinger equations needs to be automated, we defer this task to a Mathematica notebook. We illustrate the complete workflow with an example from Yang-Mills theory coupled to a fundamental scalar field that has been investigated recently. As a second example we calculate the propagators of pure Yang-Mills theory. Our code can serve as a basis for many further investigations where the equations are too complicated to tackle by hand. It also can easily be combined with DoFun, a program for the derivation of Dyson-Schwinger equations.language: Mathematica 8 and higher, C++. Computer: All on which Mathematica and C++ are available. Operating system: All on which Mathematica and C++ are available (Windows, Unix, Mac OS). Classification: 11.1, 11.4, 11.5, 11.6. Nature of problem: Solve (large) systems of Dyson-Schwinger equations numerically. Solution method: Create C++ functions in Mathematica to be used for the numeric code in C++. This code uses structures to handle large numbers of Green functions. Unusual features: Provides a tool to convert Mathematica expressions into C++ expressions including conversion of function names. Running time: Depending on the complexity of the investigated system solving the equations numerically can take seconds on a desktop PC to hours on a cluster.

  12. GPRS based real-time reporting and internet accessible sea level gauge for monitoring storm surge and tsunami

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Dabholkar, N.; Mehra, P.; Gouveia, A.D.; Tengali, S.; VijayKumar, K.; Parab, A.

    ) for accessing data from remote sea level gauge. By using a microcontroller and existing mobile phone network with a GPRS support, a continuous connection to the Internet is implemented for real time update of sea level data on a web server. The system provides a...

  13. Noether Gauge Symmetries for Petrov Type D-Levi-Civita Space-Time in Spherical and Cylindrical Coordinates

    Directory of Open Access Journals (Sweden)

    Adil Jhangeer

    2016-01-01

    Full Text Available Petrov Type D-Levi-Civita (DLC space-time is considered in two different coordinates, that is, spherical and cylindrical. Noether gauge symmetries and their corresponding conserved quantities for respective metric with the restricted range of parameters and coordinates are discussed.

  14. Color-superconductivity from a Dyson-Schwinger perspective

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, M.D.J.

    2007-12-20

    Color-superconducting phases of quantum chromodynamics at vanishing temperatures and high densities are investigated. The central object is the one-particle Green's function of the fermions, the so-called quark propagator. It is determined by its equation of motion, the Dyson-Schwinger equation. To handle Dyson-Schwinger equations a successfully applied truncation scheme in the vacuum is extended to finite densities and gradually improved. It is thereby guaranteed that analytical results at asymptotically large densities are reproduced. This way an approach that is capable to describe known results in the vacuum as well as at high densities is applied to densities of astrophysical relevance for the first time. In the first part of the thesis the framework of the investigations with focus on the extension to finite densities is outlined. Physical observables are introduced which can be extracted from the propagator. In the following a minimal truncation scheme is presented. To point out the complexity of our approach in comparison to phenomenological models of quantum chromodynamics the chirally unbroken phase is discussed first. Subsequently color-superconducting phases for massless quarks are investigated. Furthermore the role of finite quark masses and neutrality constraints at moderate densities is studied. In contrast to phenomenological models the so-called CFL phase is found to be the ground state for all relevant densities. In the following part the applicability of the maximum entropy method for the extraction of spectral functions from numerical results in Euclidean space-time is demonstrated. As an example the spectral functions of quarks in the chirally unbroken and color-superconducting phases are determined. Hereby the results of our approach are presented in a new light. For instance the finite width of the quasiparticles in the color-superconducting phase becomes apparent. In the final chapter of this work extensions of our truncation scheme in

  15. Thermal evolution of the one-flavour Schwinger model using matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H.; Jansen, K. [DESY Zeuthen (Germany). John von Neumann Institute for Computing; Banuls, M.C.; Cirac, J.I. [Max-Planck Institute of Quantum Optics, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics

    2015-11-15

    The Schwinger model, or 1+1 dimensional QED, offers an interesting object of study, both at zero and non-zero temperature, because of its similarities to QCD. In this proceeding, we present the a full calculation of the temperature dependent chiral condensate of this model in the continuum limit using Matrix Product States (MPS). MPS methods, in general tensor networks, constitute a very promising technique for the non-perturbative study of Hamiltonian quantum systems. In the last few years, they have shown their suitability as ansatzes for ground states and low-lying excitations of lattice gauge theories. We show the feasibility of the approach also for finite temperature, both in the massless and in the massive case.

  16. Resurgent transseries & Dyson–Schwinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Klaczynski, Lutz, E-mail: klacz@mathematik.hu-berlin.de

    2016-09-15

    We employ resurgent transseries as algebraic tools to investigate two self-consistent Dyson–Schwinger equations, one in Yukawa theory and one in quantum electrodynamics. After a brief but pedagogical review, we derive fixed point equations for the associated anomalous dimensions and insert a moderately generic log-free transseries ansatz to study the possible strictures imposed. While proceeding in various stages, we develop an algebraic method to keep track of the transseries’ coefficients. We explore what conditions must be violated in order to stay clear of fixed point theorems to eschew a unique solution, if so desired, as we explain. An interesting finding is that the flow of data between the different sectors of the transseries shows a pattern typical of resurgence, i.e. the phenomenon that the perturbative sector of the transseries talks to the nonperturbative ones in a one-way fashion. However, our ansatz is not exotic enough as it leads to trivial solutions with vanishing nonperturbative sectors, even when logarithmic monomials are included. We see our result as a harbinger of what future work might reveal about the transseries representations of observables in fully renormalised four-dimensional quantum field theories and adduce a tentative yet to our mind weighty argument as to why one should not expect otherwise. This paper is considerably self-contained. Readers with little prior knowledge are let in on the basic reasons why perturbative series in quantum field theory eventually require an upgrade to transseries. Furthermore, in order to acquaint the reader with the language utilised extensively in this work, we also provide a concise mathematical introduction to grid-based transseries.

  17. Resurgent transseries & Dyson-Schwinger equations

    Science.gov (United States)

    Klaczynski, Lutz

    2016-09-01

    We employ resurgent transseries as algebraic tools to investigate two self-consistent Dyson-Schwinger equations, one in Yukawa theory and one in quantum electrodynamics. After a brief but pedagogical review, we derive fixed point equations for the associated anomalous dimensions and insert a moderately generic log-free transseries ansatz to study the possible strictures imposed. While proceeding in various stages, we develop an algebraic method to keep track of the transseries' coefficients. We explore what conditions must be violated in order to stay clear of fixed point theorems to eschew a unique solution, if so desired, as we explain. An interesting finding is that the flow of data between the different sectors of the transseries shows a pattern typical of resurgence, i.e. the phenomenon that the perturbative sector of the transseries talks to the nonperturbative ones in a one-way fashion. However, our ansatz is not exotic enough as it leads to trivial solutions with vanishing nonperturbative sectors, even when logarithmic monomials are included. We see our result as a harbinger of what future work might reveal about the transseries representations of observables in fully renormalised four-dimensional quantum field theories and adduce a tentative yet to our mind weighty argument as to why one should not expect otherwise. This paper is considerably self-contained. Readers with little prior knowledge are let in on the basic reasons why perturbative series in quantum field theory eventually require an upgrade to transseries. Furthermore, in order to acquaint the reader with the language utilised extensively in this work, we also provide a concise mathematical introduction to grid-based transseries.

  18. Schwinger-Keldysh formalism. Part I: BRST symmetries and superspace

    Science.gov (United States)

    Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund

    2017-06-01

    We review the Schwinger-Keldysh, or in-in, formalism for studying quantum dynamics of systems out-of-equilibrium. The main motivation is to rephrase well known facts in the subject in a mathematically elegant setting, by exhibiting a set of BRST symmetries inherent in the construction. We show how these fundamental symmetries can be made manifest by working in a superspace formalism. We argue that this rephrasing is extremely efficacious in understanding low energy dynamics following the usual renormalization group approach, for the BRST symmetries are robust under integrating out degrees of freedom. In addition we discuss potential generalizations of the formalism that allow us to compute out-of-time-order correlation functions that have been the focus of recent attention in the context of chaos and scrambling. We also outline a set of problems ranging from stochastic dynamics, hydrodynamics, dynamics of entanglement in QFTs, and the physics of black holes and cosmology, where we believe this framework could play a crucial role in demystifying various confusions. Our companion paper [1] describes in greater detail the mathematical framework embodying the topological symmetries we uncover here.

  19. Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass

    Energy Technology Data Exchange (ETDEWEB)

    Das, Ashok K., E-mail: das@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700064 (India); Frenkel, J., E-mail: jfrenkel@fma.if.usp.br [Instituto de Física, Universidade de São Paulo, 05508-090, São Paulo, SP (Brazil); Schubert, C., E-mail: schubert@ifm.umich.mx [Institute for Physics, Michoacan University, C.P. 58040, Morelia, Michoacan (Mexico)

    2013-03-26

    We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop.

  20. Julian Schwinger the physicist, the teacher, and the man

    CERN Document Server

    1996-01-01

    In the post-quantum-mechanics era, few physicists, if any, have matched Julian Schwinger in contributions to and influence on the development of physics. A deep and provocative thinker, Schwinger left his indelible mark on all areas of theoretical physics; an eloquent lecturer and immensely successful mentor, he was gentle, intensely private, and known for being "modest about everything except his physics". This book is a collection of talks in memory of him by some of his contemporaries and his former students: A Klein, F Dyson, B DeWitt, W Kohn, D Saxon, P C Martin, K Johnson, S Deser, R Fin

  1. Gauge fields emerging from time-reversal symmetry breaking for spin-5/2 fermions in a honeycomb lattice

    Energy Technology Data Exchange (ETDEWEB)

    Szirmai, G.; Szirmai, E. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Research Institute for Solid State Physics and Optics, P.O. Box 49, H-1525 Budapest (Hungary); Zamora, A. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, Lluis Companys 23, E-08010 Barcelona (Spain)

    2011-07-15

    We propose an experimentally feasible setup with ultracold alkaline-earth-metal atoms to simulate the dynamics of U(1) lattice gauge theories in 2 + 1 dimensions with a Chern-Simons term. To this end we consider the ground-state properties of spin-5/2 alkaline-earth-metal fermions in a honeycomb lattice. We use the Gutzwiller projected variational approach in the strongly repulsive regime in the case of filling 1/6. The ground state of the system is a chiral spin-liquid state with 2{pi}/3 flux per plaquette, which violates time-reversal invariance. We demonstrate that due to the breaking of time-reversal symmetry the system exhibits quantum Hall effect and chiral edge states. We relate the experimentally accessible spin fluctuations to the emerging gauge-field dynamics. We discuss also properties of the lowest energy competing orders.

  2. Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites

    Directory of Open Access Journals (Sweden)

    Yen-Ming Chiang

    2010-07-01

    Full Text Available In this research, we propose recurrent neural networks (RNNs to build a relationship between rainfalls and water level patterns of an urban sewerage system based on historical torrential rain/storm events. The RNN allows signals to propagate in both forward and backward directions, which offers the network dynamic memories. Besides, the information at the current time-step with a feedback operation can yield a time-delay unit that provides internal input information at the next time-step to effectively deal with time-varying systems. The RNN is implemented at both gauged and ungauged sites for 5-, 10-, 15-, and 20-min-ahead water level predictions. The results show that the RNN is capable of learning the nonlinear sewerage system and producing satisfactory predictions at the gauged sites. Concerning the ungauged sites, there are no historical data of water level to support prediction. In order to overcome such problem, a set of synthetic data, generated from a storm water management model (SWMM under cautious verification process of applicability based on the data from nearby gauging stations, are introduced as the learning target to the training procedure of the RNN and moreover evaluating the performance of the RNN at the ungauged sites. The results demonstrate that the potential role of the SWMM coupled with nearby rainfall and water level information can be of great use in enhancing the capability of the RNN at the ungauged sites. Hence we can conclude that the RNN is an effective and suitable model for successfully predicting the water levels at both gauged and ungauged sites in urban sewerage systems.

  3. Short-distance Schwinger-mechanism and chiral symmetry

    DEFF Research Database (Denmark)

    McGady, David A.; Brogård, Jon

    2017-01-01

    In this paper, we study Schwinger pair production of charged massless particles in constant electric fields of finite-extent. Exploiting a map from the Dirac and Klein-Gordon equation to the harmonic oscillator, we find exact pair production rates for massless fermions and scalars. Pair productio...

  4. An Investigation of the Infrared Behaviour of the Gluon Propagator in the Axial Gauge

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase

    1983-01-01

    In the axial gauge an integral equation for the gluon propagator of a pure Yang-Mills theory is derived based on the Dyson-Schwinger equation and the Slavnov-Taylor identities. Dimensional regularization is used. The solution of this equation is investigated in the case where the variable (nk)^2/(n...

  5. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    Science.gov (United States)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  6. Real-time gauge/gravity duality and ingoing boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Balt C. van [ITFA, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2009-07-15

    In Lorentzian gauge/gravity duality, a proper understanding of initial conditions is essential. I discuss the precise relation between purely ingoing conditions at the horizon for bulk fields and retarded boundary correlation functions, as well as the generalization to higher-point functions. Some open questions can be answered only within the recently developed framework of [K. Skenderis and B. C. van Rees Phys. Rev. Lett. 101 (2008) 081601, (arXiv:0805.0150 [hep-th]), K. Skenderis and B. C. van Rees (arXiv:0812.2909 [hep-th])].

  7. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuebing; Chen, Ting; Qi, Xintong [Department of Geosciences, Stony Brook University, Stony Brook, New York 11794 (United States); Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng [Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794 (United States); Kung, Jennifer [Department of Earth Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Yu, Tony; Wang, Yanbin [GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637 (United States)

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  8. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction. The reinforce......The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  9. Quantum Boltzmann equations for electroweak baryogenesis including gauge fields

    CERN Document Server

    Kainulainen, K; Schmidt, M G; Weinstock, S; Kainulainen, Kimmo; Prokopec, Tomislav; Schmidt, Michael G.; Weinstock, Steffen

    2002-01-01

    We review and extend to include the gauge fields our derivation of the semiclassical limit of the collisionless quantum transport equations for the fermions in presence of a CP-violating bubble wall at a first order electroweak phase transition. We show how the (gradient correction modified) Lorenz-force appears both in the Schwinger-Keldysh approach and in the semiclassical WKB-treatment. In the latter approach the inclusion of gauge fields removes the apparent phase reparametrization dependence of the intermediate calculations. We also discuss setting up the fluid equations for practical calculations in electroweak baryogenesis including the self-consistent (hyper)electric field and the anomaly.

  10. Gauge fields

    CERN Document Server

    Itzykson, C

    1978-01-01

    Some background on the theory of gauge fields, a subject of increasing popularity among particle physicists, is provided. The aim will be to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (8 refs).

  11. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Physik

    2012-05-15

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  12. Schwinger-Dyson operators as invariant vector fields on a matrix model analog of the group of loops

    Science.gov (United States)

    Krishnaswami, Govind S.

    2008-06-01

    For a class of large-N multimatrix models, we identify a group G that plays the same role as the group of loops on space-time does for Yang-Mills theory. G is the spectrum of a commutative shuffle-deconcatenation Hopf algebra that we associate with correlations. G is the exponential of the free Lie algebra. The generating series of correlations is a function on G and satisfies quadratic equations in convolution. These factorized Schwinger-Dyson or loop equations involve a collection of Schwinger-Dyson operators, which are shown to be right-invariant vector fields on G, one for each linearly independent primitive of the Hopf algebra. A large class of formal matrix models satisfying these properties are identified, including as special cases, the zero momentum limits of the Gaussian, Chern-Simons, and Yang-Mills field theories. Moreover, the Schwinger-Dyson operators of the continuum Yang-Mills action are shown to be right-invariant derivations of the shuffle-deconcatenation Hopf algebra generated by sources labeled by position and polarization.

  13. Space-time symmetry and quantum Yang-Mills gravity how space-time translational gauge symmetry enables the unification of gravity with other forces

    CERN Document Server

    Hsu, Jong-Ping

    2013-01-01

    Yang-Mills gravity is a new theory, consistent with experiments, that brings gravity back to the arena of gauge field theory and quantum mechanics in flat space-time. It provides solutions to long-standing difficulties in physics, such as the incompatibility between Einstein's principle of general coordinate invariance and modern schemes for a quantum mechanical description of nature, and Noether's 'Theorem II' which showed that the principle of general coordinate invariance in general relativity leads to the failure of the law of conservation of energy. Yang-Mills gravity in flat space-time a

  14. Rotating hybrid stars with the Dyson-Schwinger quark model

    Science.gov (United States)

    Wei, J.-B.; Chen, H.; Burgio, G. F.; Schulze, H.-J.

    2017-08-01

    We study rapidly rotating hybrid stars with the Dyson-Schwinger model for quark matter and the Brueckner-Hartree-Fock many-body theory with realistic two-body and three-body forces for nuclear matter. We determine the maximum gravitational mass, equatorial radius, and rotation frequency of stable stellar configurations by considering the constraints of the Keplerian limit and the secular axisymmetric instability, and compare with observational data. We also discuss the rotational evolution for constant baryonic mass and find a spin-up phenomenon for supramassive stars before they collapse to black holes.

  15. Schwinger mechanism in electromagnetic field in de Sitter spacetime

    Science.gov (United States)

    Bavarsad, Ehsan; Pyo Kim, Sang; Stahl, Clément; Xue, She-Sheng

    2018-01-01

    We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS) spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.

  16. Combining meteorological radar and network of rain gauges data for space–time model development

    OpenAIRE

    Pastoriza, Vicente; Núñez Fernández, Adolfo; Machado, Fernando; Mariño, Perfecto; Pérez Fontán, Fernando; Fiebig, Uwe-Carsten

    2009-01-01

    Technological developments and the trend to go higher and higher in frequency give rise to the need for true space–time rain field models for testing the dynamics of fade countermeasures. There are many models that capture the spatial correlation of rain fields. Worth mentioning are those models based on cell ensembles. However, the rain rate fields created in this way need the introduction of the time variable to reproduce their dynamics. In this paper, we have concentrated on ad...

  17. Real-time reporting and internet-accessible coastal sea-level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.; Agarvadekar, Y.; Mehra, P.; Dabholkar, N.; Parab, A.; Gouveia, A.D.; Tengali, S.

    Service (GPRS) technology. By using a microcontroller and existing cellular phone network, a continuous connection to the Internet is realized on a web-server for real-time update of coastal sea-level. The system implemented presents to the internet viewer...

  18. Multivariate Regression Approach To Integrate Multiple Satellite And Tide Gauge Data For Real Time Sea Level Prediction

    DEFF Research Database (Denmark)

    Cheng, Yongcun; Andersen, Ole Baltazar; Knudsen, Per

    2010-01-01

    of GMES marine core service. One such added value will be a multivariate regression model of sea level variability of multisatellite and in-situ tide gauge observations with the aim at improved future high spatial and temporal sea level prediction for i.e., human safety. Tide gauges and satellite...... altimetry data from the last seventeen years have been compared for an area around UK and temporal correlation coefficients between them were calculated. The results are extremely encouraging, as we have shown that the detided signal from response method correlates to more than 90% for nearly all tide gauge...

  19. Gauge Coupling Instability and Dynamical Mass Generation in N=1 Supersymmetric QED(3)

    CERN Document Server

    Campbell-Smith, A; Papavassiliou, J

    1999-01-01

    Using superfield Dyson-Schwinger equations, we compute the infrared dynamics of the semi-amputated full vertex, corresponding to the effective running gauge coupling, in N-flavour {\\mathcal N}=1 supersymmetric QED(3). It is shown that the presence of a supersymmetry-preserving mass for the matter multiplet stabilizes the infrared gauge coupling against oscillations present in the massless case, and we therefore infer that the massive vacuum is thus selected at the level of the (quantum) effective action. We further demonstrate that such a mass can indeed be generated dynamically in a self-consistent way by appealing to the superfield Dyson-Schwinger gap equation for the full matter propagator.

  20. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christian; Schützhold, Ralf [Fakultät für Physik, Universität Duisburg-Essen,Lotharstrasse 1, 47057 Duisburg (Germany)

    2016-02-24

    Via the world-line instanton method, we study electron-positron pair creation by a strong (but sub-critical) electric field of the profile E/cosh{sup 2} (kx) superimposed by a weaker pulse E{sup ′}/cosh{sup 2} (ωt). If the temporal Keldysh parameter γ{sub ω}=mω/(qE) exceeds a threshold value γ{sub ω}{sup crit} which depends on the spatial Keldysh parameter γ{sub k}=mk/(qE), we find a drastic enhancement of the pair creation probability — reporting on what we believe to be the first analytic non-perturbative result for the interplay between temporal and spatial field dependences E(t,x) in the Sauter-Schwinger effect. Finally, we speculate whether an analogous effect (drastic enhancement of tunneling probability) could occur in other scenarios such as stimulated nuclear decay, for example.

  1. Development of a low-budget, remote, solar powered, and self-operating rain gauge for spatial rainfall real time data monitoring in pristine and urban areas

    Science.gov (United States)

    Shafiei Shiva, J.; Chandler, D. G.; Nucera, K. J.; Valinski, N.

    2016-12-01

    Precipitation is one of the main components of the hydrological cycle and simulations and it is generally stated as an average value for the study area. However, due to high spatial variability of precipitation in some situations, more precise local data is required. In order to acquire the precipitation data, interpolation of neighbor gauged precipitation data is used which is the most affordable technique for a watershed scale study. Moreover, novel spatial rain measurements such as Doppler radars and satellite image processing have been widely used in recent studies. Although, due to impediments in the radar data processing and the effect of the local setting on the accuracy of the interpolated data, the local measurement of the precipitation remains as one of the most reliable approaches in attaining rain data. In this regard, development of a low-budget, remote, solar powered, and self-operating rain gauge for spatial rainfall real time data monitoring for pristine and urban areas has been presented in this research. The proposed rain gauge consists of two main parts: (a) hydraulic instruments and (b) electrical devices. The hydraulic instruments will collect the rain fall and store it in a PVC container which is connected to the high sensitivity pressure transducer systems. These electrical devices will transmit the data via cellphone networks which will be available for further analysis in less than one minute, after processing. The above-mentioned real time rain fall data can be employed in the precipitation measurement and the evaporation estimation. Due to the installed solar panel for battery recharging and designed siphon system for draining cumulative rain, this device is considered as a self-operating rain gauge. At this time, more than ten rain gauges are built and installed in the urban area of Syracuse, NY. Furthermore, these data are also useful for calibration and validation of data obtained by other rain gauging devices and estimation techniques

  2. Gauge mechanics

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    This book presents in a unified way modern geometric methods in analytical mechanics based on the application of fibre bundles, jet manifold formalism and the related concept of connection. Non-relativistic mechanics is seen as a particular field theory over a one-dimensional base. In fact, the concept of connection is the major link throughout the book. In the gauge scheme of mechanics, connections appear as reference frames, dynamic equations, and in Lagrangian and Hamiltonian formalisms. Inertial forces, energy conservation laws and other phenomena related to reference frames are analyzed;

  3. Accelerating abelian gauge dynamics

    CERN Document Server

    Adler, Stephen Louis

    1991-01-01

    In this paper, we suggest a new acceleration method for Abelian gauge theories based on linear transformations to variables which weight all length scales equally. We measure the autocorrelation time for the Polyakov loop and the plaquette at β=1.0 in the U(1) gauge theory in four dimensions, for the new method and for standard Metropolis updates. We find a dramatic improvement for the new method over the Metropolis method. Computing the critical exponent z for the new method remains an important open issue.

  4. Relativistic gauge invariant potentials

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Negro, J. (Valladolid Univ. (Spain). Dept. de Fisica Teorica); Olmo, M.A. del (Valladolid Univ. (Spain). Dept. de Fisica Teorica)

    1995-01-01

    A global method characterizing the invariant connections on an abelian principal bundle under a group of transformations is applied in order to get gauge invariant electromagnetic (elm.) potentials in a systematic way. So, we have classified all the elm. gauge invariant potentials under the Poincare subgroups of dimensions 4, 5, and 6, up to conjugation. It is paid attention in particular to the situation where these subgroups do not act transitively on the space-time manifold. We have used the same procedure for some galilean subgroups to get nonrelativistic potentials and study the way they are related to their relativistic partners by means of contractions. Some conformal gauge invariant potentials have also been derived and considered when they are seen as consequence of an enlargement of the Poincare symmetries. (orig.)

  5. Higher spin gauge theories

    CERN Document Server

    Henneaux, Marc; Vasiliev, Mikhail A

    2017-01-01

    Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...

  6. Parametric representation of Feynman amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Sars, Matthias Christiaan Bernhard

    2015-09-01

    In this thesis a systematic method is given for writing the amplitudes in (scalar) quantum electrodynamics and non-Abelian gauge theories in Schwinger parametric form. This is done by turning the numerator of the Feynman rules in momentum space into a differential operator. It acts then on the parametric integrand of the scalar theory. For QED it is the most straightforward, because the Leibniz rule is not involved here. In the case of sQED and non-Abelian gauge theories, the contributions from the Leibniz rule are satisfyingly related to 4-valent vertices. Another feature of this method is that in the used renormalization scheme, the subtractions for 1-scale graphs cause significant simplifications. Furthermore, the Ward identities for mentioned three theories are studied.

  7. ESOLIP - estimate of solid and liquid precipitation at sub-daily time resolution by combining snow height and rain gauge measurements

    Science.gov (United States)

    Mair, E.; Bertoldi, G.; Leitinger, G.; Della Chiesa, S.; Niedrist, G.; Tappeiner, U.

    2013-07-01

    Measuring precipitation in mountain areas is a demanding task, but essential for hydrological and environmental themes. Especially in small Alpine catchments with short hydrological response, precipitation data with high temporal resolution are required for a better understanding of the hydrological cycle. Since most climate/meteorological stations are situated at the easily accessible bottom of valleys, and the few heated rain gauges installed at higher elevation sites are problematic in winter conditions, an accurate quantification of winter (snow) precipitation at high elevations remains difficult. However, there are an increasing number of micro-meteorological stations and snow height sensors at high elevation locations in Alpine catchments. To benefit from data of such stations, an improved approach to estimate solid and liquid precipitation (ESOLIP) is proposed. ESOLIP allows gathering hourly precipitation data throughout the year by using unheated rain gauge data, careful filtering of snow height sensors as well as standard meteorological data (air temperature, relative humidity, global shortwave radiation, wind speed). ESOLIP was validated at a well-equipped test site in Stubai Valley (Tyrol, Austria), comparing results to winter precipitation measured with a snow pillow and a heated rain gauge. The snow height filtering routine and indicators for possible precipitation were tested at a field site in Matsch Valley (South Tyrol, Italy). Results show a good match with measured data because variable snow density is taken into account, which is important when working with freshly fallen snow. Furthermore, the results show the need for accurate filtering of the noise of the snow height signal and they confirm the unreliability of heated rain gauges for estimating winter precipitation. The described improved precipitation estimate ESOLIP at sub-daily time resolution is helpful for precipitation analysis and for several hydrological applications like monitoring

  8. Finite-representation approximation of lattice gauge theories at the continuum limit with tensor networks

    Science.gov (United States)

    Buyens, Boye; Montangero, Simone; Haegeman, Jutho; Verstraete, Frank; Van Acoleyen, Karel

    2017-05-01

    It has been established that matrix product states can be used to compute the ground state and single-particle excitations and their properties of lattice gauge theories at the continuum limit. However, by construction, in this formalism the Hilbert space of the gauge fields is truncated to a finite number of irreducible representations of the gauge group. We investigate quantitatively the influence of the truncation of the infinite number of representations in the Schwinger model, one-flavor QED2 , with a uniform electric background field. We compute the two-site reduced density matrix of the ground state and the weight of each of the representations. We find that this weight decays exponentially with the quadratic Casimir invariant of the representation which justifies the approach of truncating the Hilbert space of the gauge fields. Finally, we compute the single-particle spectrum of the model as a function of the electric background field.

  9. Optical Abelian lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Tagliacozzo, L., E-mail: luca.tagliacozzo@icfo.es [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Celi, A., E-mail: alessio.celi@gmail.com [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Zamora, A. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); Lewenstein, M. [ICFO The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, E-08860 Castelldefels (Barcelona) (Spain); ICREA-Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2013-03-15

    We discuss a general framework for the realization of a family of Abelian lattice gauge theories, i.e., link models or gauge magnets, in optical lattices. We analyze the properties of these models that make them suitable for quantum simulations. Within this class, we study in detail the phases of a U(1)-invariant lattice gauge theory in 2+1 dimensions, originally proposed by P. Orland. By using exact diagonalization, we extract the low-energy states for small lattices, up to 4 Multiplication-Sign 4. We confirm that the model has two phases, with the confined entangled one characterized by strings wrapping around the whole lattice. We explain how to study larger lattices by using either tensor network techniques or digital quantum simulations with Rydberg atoms loaded in optical lattices, where we discuss in detail a protocol for the preparation of the ground-state. We propose two key experimental tests that can be used as smoking gun of the proper implementation of a gauge theory in optical lattices. These tests consist in verifying the absence of spontaneous (gauge) symmetry breaking of the ground-state and the presence of charge confinement. We also comment on the relation between standard compact U(1) lattice gauge theory and the model considered in this paper. - Highlights: Black-Right-Pointing-Pointer We study the quantum simulation of dynamical gauge theories in optical lattices. Black-Right-Pointing-Pointer We focus on digital simulation of abelian lattice gauge theory. Black-Right-Pointing-Pointer We rediscover and discuss the puzzling phase diagram of gauge magnets. Black-Right-Pointing-Pointer We detail the protocol for time evolution and ground-state preparation in any phase. Black-Right-Pointing-Pointer We provide two experimental tests to validate gauge theory quantum simulators.

  10. Covariant gauges at finite temperature

    OpenAIRE

    Landshoff, P V; Rebhan, A

    1992-01-01

    A prescription is presented for real-time finite-temperature perturbation theory in covariant gauges, in which only the two physical degrees of freedom of the gauge-field propagator acquire thermal parts. The propagators for the unphysical degrees of freedom of the gauge field, and for the Faddeev-Popov ghost field, are independent of temperature. This prescription is applied to the calculation of the one-loop gluon self-energy and the two-loop interaction pressure, and is found to be simpler...

  11. Lattice gauge theories

    Science.gov (United States)

    Weisz, Peter; Majumdar, Pushan

    2012-03-01

    Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.

  12. Dissecting the hadronic contributions to $(g-2)_\\mu $ by Schwinger's sum rule

    OpenAIRE

    Hagelstein, Franziska; Pascalutsa, Vladimir

    2017-01-01

    The theoretical uncertainty of $(g-2)_\\mu $ is currently dominated by hadronic contributions. In order to express those in terms of directly measurable quantities, we consider a sum rule relating $g-2$ to an integral of a photo-absorption cross section. The sum rule, attributed to Schwinger, can be viewed as a combination of two older sum rules: Gerasimov-Drell-Hearn (GDH) and Burkhardt-Cottingham (BC). The Schwinger sum rule has an important feature, distinguishing it from the other two: the...

  13. Electromagnetic Radiation : Variational Methods, Waveguides and Accelerators Including seminal papers of Julian Schwinger

    CERN Document Server

    Milton, Kimball A

    2006-01-01

    This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications.

  14. Dynamical fermion masses and constraints of gauge invariance in quenched QED3

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, A. [Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo, Apartado Postal 2-82, Morelia, Michoacan 58040 (Mexico)]. E-mail: adnan@itzel.ifm.umich.mx; Raya, A. [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo no. 340, Col. Villa San Sebastian, Colima, Colima 28045 (Mexico)

    2005-03-07

    Numerical study of the Schwinger-Dyson equation (SDE) for the fermion propagator (FP) to obtain dynamically generated chirally asymmetric solution in an arbitrary covariant gauge {xi} is a complicated exercise specially if one employs a sophisticated form of the fermion-boson interaction complying with the key features of a gauge field theory. However, constraints of gauge invariance can help construct such a solution without having the need to solve the Schwinger-Dyson equation for every value of {xi}. In this article, we propose and implement a method to carry out this task in quenched quantum electrodynamics in a plane (QED3). We start from an approximate analytical form of the solution of the SDE for the FP in the Landau gauge. We consider the cases in which the interaction vertex (i) is bare and (ii) is full. We then apply the Landau-Khalatnikov-Fradkin transformations (LKFT) on the dynamically generated solution and find analytical results for arbitrary value of {xi}. We also compare our results with exact numerical solutions available for a small number of values of {xi} obtained through a direct analysis of the corresponding SDE.

  15. Gauge Theories in the Twentieth Century

    CERN Document Server

    2001-01-01

    By the end of the 1970s, it was clear that all the known forces of nature (including, in a sense, gravity) were examples of gauge theories , characterized by invariance under symmetry transformations chosen independently at each position and each time. These ideas culminated with the finding of the W and Z gauge bosons (and perhaps also the Higgs boson). This important book brings together the key papers in the history of gauge theories, including the discoveries of: the role of gauge transformations in the quantum theory of electrically charged particles in the 1920s; nonabelian gauge groups

  16. Schwinger representation for the symmetric group: Two explicit constructions for the carrier space

    Science.gov (United States)

    Chaturvedi, S.; Marmo, G.; Mukunda, N.; Simon, R.

    2008-05-01

    We give two explicit constructions for the carrier space for the Schwinger representation of the group S. While the first relies on a class of functions consisting of monomials in antisymmetric variables, the second is based on the Fock space associated with the Greenberg algebra.

  17. Schwinger α-PARAMETRIC Representation of Finite Temperature Field Theories:. Renormalization

    Science.gov (United States)

    Benhamou, M.; Kassou-Ou-Ali, A.

    We present the extension of the zero temperature Schwinger α-representation to the finite temperature scalar field theories. We give, in a compact form, the α-integrand of Feynman amplitudes of these theories. Using this representation, we analyze short-range divergences, and recover in a simple way the known result that the counterterms are temperature-independent.

  18. Schwinger Model and String Percolation in Hadron-Hadron and Heavy Ion Collisions

    OpenAIRE

    Dias De Deus, J; Ferreiro, E. G.; Pajares, C.; Ugoccioni, R.

    2003-01-01

    In the framework of the Schwinger Model for percolating strings we establish a general relation between multiplicity and transverse momentum square distributions in hadron-hadron and heavy ion collisions. Some of our results agree with the Colour Glass Condensate model.

  19. Phases of N=\\infty Gauge Theories on S^3 \\times S^1 and Nonperturbative Orbifold-orientifold Equivalences

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat

    2007-03-06

    We study the phase diagrams of N = {infinity} vector-like, asymptotically free gauge theories as a function of volume, on S{sup 3} x S{sup 1}. The theories of interest are the ones with fermions in two index representations [adjoint, (anti)symmetric, and bifundamental abbreviated as QCD(adj), QCD(AS/S) and QCD(BF)], and are interrelated via orbifold or orientifold projections. The phase diagrams reveal interesting phenomena such as disentangled realizations of chiral and center symmetry, confinement without chiral symmetry breaking, zero temperature chiral transitions, and in some cases, exotic phases which spontaneously break the discrete symmetries such as C, P, T as well as CPT. In a regime where the theories are perturbative, the deconfinement temperature in SYM, and QCD(AS/S/BF) coincide. The thermal phase diagrams of thermal orbifold QCD(BF), orientifold QCD(AS/S), and N = 1 SYM coincide, provided charge conjugation symmetry for QCD(AS/S) and Z{sub 2} interchange symmetry of the QCD(BF) are not broken in the phase continuously connected to R{sup 4} limit. When the S{sup 1} circle is endowed with periodic boundary conditions, the (nonthermal) phase diagrams of orbifold and orientifold QCD are still the same, however, both theories possess chirally symmetric phases which are absent in N=1 SYM. The match and mismatch of the phase diagrams depending on the spin structure of fermions along the S{sup 1} circle is naturally explained in terms of the necessary and sufficient symmetry realization conditions which determine the validity of the nonperturbative orbifold orientifold equivalence.

  20. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... the measurement grid sections at their ends. The end loops at both ends of the measurement grid extend a length (L, 500) in the axial direction in millimetres of a factor times a ratio between a width of a grid section and the gap distance, wherein the factor is larger or equal to 1.5. The invention further...

  1. Thermistor Pressure Gauge Design

    Science.gov (United States)

    Flanick, A. P.; Ainsworth, J. E.

    1961-01-01

    Thermistor pressure gauges are characterized by large pressure range, good accuracy and stability, fast measurement, insensitivity to over-pressure, negligible out-gassing, ease in cleaning, and physical and electrical simplicity and ruggedness. A number of excellent papers have been published describing these gauges. However, a detailed account of design procedure and characteristics for a specific gauge would eliminate much of the trial and error encountered in designing a gauge having prescribed range, sensitivity, and stability.

  2. Discrete gauge theories

    NARCIS (Netherlands)

    de Wild Propitius, M.; Bais, F.A.; Semenoff, G.; Vinet, L.

    1999-01-01

    In these lectures, we present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group $H$ via the Higgs mechanism. The main focus is on the discrete $H$ gauge theory describing the long distance physics of such a model. The spectrum features global $H$

  3. Alternate Gauge Electroweak Model

    CERN Document Server

    Dalton, Bill

    2010-01-01

    We describe an alternate gauge electroweak model that permits neutrinos with mass, and at the same time explains why right-handed neutrinos do not appear in weak interactions. This is a local gauge theory involving a space [V ] of three scalar functions. The standard Lagrangian density for the Yang-Mills field part and Higgs doublet remain invariant. A ma jor change is made in the transformation and corresponding Lagrangian density parts involving the right-handed leptons. A picture involving two types of right-handed leptons emerges. A dichotomy of matter on the [V ] space corresponds to coupled and uncoupled right-handed Leptons. Here, we describe a covariant dipole-mode solution in which the neutral bosons A{\\mu} and Z{\\mu} produce precessions on [V ]. The W {\\pm} {\\mu} bosons provide nutations on [V ], and consequently, provide transitions between the coupled and uncoupled regions. To elucidate the [V ] space matter dichotomy, and to generate the boson masses, we also provide an alternate potential Lagran...

  4. Comparing Erlang Distribution and Schwinger Mechanism on Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2016-01-01

    Full Text Available We study the transverse momentum spectra of J/ψ and Υ mesons by using two methods: the two-component Erlang distribution and the two-component Schwinger mechanism. The results obtained by the two methods are compared and found to be in agreement with the experimental data of proton-proton (pp, proton-lead (p-Pb, and lead-lead (Pb-Pb collisions measured by the LHCb and ALICE Collaborations at the large hadron collider (LHC. The related parameters such as the mean transverse momentum contributed by each parton in the first (second component in the two-component Erlang distribution and the string tension between two partons in the first (second component in the two-component Schwinger mechanism are extracted.

  5. ERG and Schwinger-Dyson Equations - Comparison in Formulations and Applications -

    Science.gov (United States)

    Terao, Haruhiko

    The advantageous points of ERG in applications to non-perturbative analyses of quantum field theories are discussed in comparison with the Schwinger-Dyson equations. First we consider the relation between these two formulations specially by examining the large N field theories. In the second part we study the phase structure of dynamical symmetry breaking in three dimensional QED as a typical example of the practical application.

  6. Lattice Hamiltonian approach to the massless Schwinger model. Precise extraction of the mass gap

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Kujawa-Cichy, Agnieszka [Poznan Univ. (Poland). Faculty of Physics; Szyniszewski, Marcin [Poznan Univ. (Poland). Faculty of Physics; Manchester Univ. (United Kingdom). NOWNano DTC

    2012-12-15

    We present results of applying the Hamiltonian approach to the massless Schwinger model. A finite basis is constructed using the strong coupling expansion to a very high order. Using exact diagonalization, the continuum limit can be reliably approached. This allows to reproduce the analytical results for the ground state energy, as well as the vector and scalar mass gaps to an outstanding precision better than 10{sup -6} %.

  7. Quark Propagator with electroweak interactions in the Dyson-Schwinger approach

    Directory of Open Access Journals (Sweden)

    Mian Walid Ahmed

    2017-01-01

    To asses the impact, we study the influence of especially parity violation on the propagator for various masses. For this purpose the functional methods in form of Dyson-Schwinger-Equations are employed. We find that explicit isospin breaking leads to a qualitative change of behavior even for a slight explicit breaking, which is in contrast to the expectations from perturbation theory. Our results thus suggest that non-perturbative backcoupling effects could be larger than expected.

  8. Goverment R&D unit create new chip to gauge time. Japan Toshiba co-develops new precision system chip

    CERN Multimedia

    2002-01-01

    In Japan, the Toshiba Corp and the state-affiliated High Energy Accelerator Research Organisation have developed a new precision system chip that features a time-measurement function. CERN plans to use it in the LHC (1/2 page).

  9. Gauge symmetry from decoupling

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-02-01

    Full Text Available Gauge symmetries emerge from a redundant description of the effective action for light degrees of freedom after the decoupling of heavy modes. This redundant description avoids the use of explicit constraints in configuration space. For non-linear constraints the gauge symmetries are non-linear. In a quantum field theory setting the gauge symmetries are local and can describe Yang–Mills theories or quantum gravity. We formulate gauge invariant fields that correspond to the non-linear light degrees of freedom. In the context of functional renormalization gauge symmetries can emerge if the flow generates or preserves large mass-like terms for the heavy degrees of freedom. They correspond to a particular form of gauge fixing terms in quantum field theories.

  10. The relationship of the Laplacian gauge to the Landau gauge

    Science.gov (United States)

    Mandula, Jeffrey E.

    2002-03-01

    The Laplacian gauge for gauge group SU( N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order ( O( g1), configurations in the Laplacian automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O( g2) they do not remain in the Landau gauge.

  11. Effects of time-series length and gauge network density on rainfall climatology estimates in Latin America

    Science.gov (United States)

    Maeda, E.; Arevalo, J.; Carmona-Moreno, C.

    2012-04-01

    weighting method. Furthermore, the effect of the density of stations was also considered by penalizing the interpolated errors proportionally to the station density in the site. The results showed a large discrepancy on rainfall estimate uncertainties among Latin American countries. The uncertainties varied from less than 2% in the Southeastern region of Brazil, to around 40% in regions with low stations density and short time-series at Southern Peru. Therefore, the results highlight the importance of international cooperation for climate data sharing among Latin American countries. In this context, projects aiming at improving scientific cooperation and fostering information based policy such as EUROCLIMA and RALCEA, funded by the European Commission, offer an important opportunity for reducing uncertainties on estimates of climate variables in Latin America.

  12. Rain Gauges Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, M. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-01

    To improve the quantitative description of precipitation processes in climate models, the Atmospheric Radiation Measurement (ARM) Climate Research Facility deployed rain gauges located near disdrometers (DISD and VDIS data streams). This handbook deals specifically with the rain gauges that make the observations for the RAIN data stream. Other precipitation observations are made by the surface meteorology instrument suite (i.e., MET data stream).

  13. Gauge-Invariant Formulation of Circular Dichroism.

    Science.gov (United States)

    Raimbault, Nathaniel; de Boeij, Paul L; Romaniello, Pina; Berger, J A

    2016-07-12

    Standard formulations of magnetic response properties, such as circular dichroism spectra, are plagued by gauge dependencies, which can lead to unphysical results. In this work, we present a general gauge-invariant and numerically efficient approach for the calculation of circular dichroism spectra from the current density. First we show that in this formulation the optical rotation tensor, the response function from which circular dichroism spectra can be obtained, is independent of the origin of the coordinate system. We then demonstrate that its trace is independent of the gauge origin of the vector potential. We also show how gauge invariance can be retained in practical calculations with finite basis sets. As an example, we explain how our method can be applied to time-dependent current-density-functional theory. Finally, we report gauge-invariant circular dichroism spectra obtained using the adiabatic local-density approximation. The circular dichroism spectra we thus obtain are in good agreement with experiment.

  14. Lessons learned from 118,970 multidetector computed tomographic intravenous contrast material administrations: impact of catheter dwell time and gauge, catheter location, rate of contrast material administration, and patient age and sex on volume of extravasate.

    Science.gov (United States)

    Moreno, Courtney Coursey; Pinho, Daniella; Nelson, Rendon C; Sahani, Dushyant V; Jenkins, Melissa; Zabrycki, MaryAnne; Chaudhry, Humaira; Kang, Jian; Chen, Zhengjia

    2013-01-01

    The aim of this study was to determine the impact of catheter dwell time and gauge, catheter location, rate of contrast material administration, and patient age and sex on volume of extravasate at intravenous contrast-enhanced multidetector computed tomography. Incident reports were reviewed for all extravasation events that occurred in adult patients between March 2006 and December 2009 at 2 institutions. Patient age and sex; catheter dwell time, gauge, and location; rate of contrast material administration; and estimated volume of extravasated contrast material were recorded. Three hundred thirty extravasation events were recorded for the 118,970 contrast material administrations (0.3%). Mean volume of extravasated contrast material was statistically significantly less for catheters newly placed in the radiology department, for higher flow rates, for smaller gauge catheters, and for catheters placed in the hand. Mean volume of extravasated contrast material did not vary significantly based on patient age or sex. The volume of extravasate was likely to be smaller for smaller-gauge catheters in the hand with higher flow rates and for catheters newly placed in the radiology department.

  15. Gauge theory by canonical transformations

    Science.gov (United States)

    Koenigstein, Adrian; Kirsch, Johannes; Stoecker, Horst; Struckmeier, Juergen; Vasak, David; Hanauske, Matthias

    2016-06-01

    Electromagnetism, the strong and the weak interactions are commonly formulated as gauge theories in a Lagrangian description. In this paper, we present an alternative formal derivation of U(1)-gauge theory in a manifestly covariant Hamilton formalism. We make use of canonical transformations as our guiding tool to formalize the gauging procedure. The introduction of the gauge field, its transformation behavior and a dynamical gauge field Lagrangian/Hamiltonian are unavoidable consequences of this formalism, whereas the form of the free gauge Lagrangian/Hamiltonian depends on the selection of the gauge dependence of the canonically conjugate gauge fields.

  16. Strange quark matter and quark stars with the Dyson-Schwinger quark model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Wei, J.B. [China University of Geosciences, School of Mathematics and Physics, Wuhan (China); Schulze, H.J. [Universita di Catania, Dipartimento di Fisica, Catania (Italy); INFN, Sezione di Catania (Italy)

    2016-09-15

    We calculate the equation of state of strange quark matter and the interior structure of strange quark stars in a Dyson-Schwinger quark model within rainbow or Ball-Chiu vertex approximation. We emphasize constraints on the parameter space of the model due to stability conditions of ordinary nuclear matter. Respecting these constraints, we find that the maximum mass of strange quark stars is about 1.9 solar masses, and typical radii are 9-11 km. We obtain an energy release as large as 3.6 x 10{sup 53} erg from conversion of neutron stars into strange quark stars. (orig.)

  17. Delta and Omega electromagnetic form factors in a Dyson-Schwinger/Bethe-Salpeter approach

    Energy Technology Data Exchange (ETDEWEB)

    Diana Nicmorus, Gernot Eichmann, Reinhard Alkofer

    2010-12-01

    We investigate the electromagnetic form factors of the Delta and the Omega baryons within the Poincare-covariant framework of Dyson-Schwinger and Bethe-Salpeter equations. The three-quark core contributions of the form factors are evaluated by employing a quark-diquark approximation. We use a consistent setup for the quark-gluon dressing, the quark-quark bound-state kernel and the quark-photon interaction. Our predictions for the multipole form factors are compatible with available experimental data and quark-model estimates. The current-quark mass evolution of the static electromagnetic properties agrees with results provided by lattice calculations.

  18. Holographic description of the Schwinger effect in electric and magnetic field

    Science.gov (United States)

    Sato, Yoshiki; Yoshida, Kentaroh

    2013-04-01

    We consider a generalization of the holographic Schwinger effect proposed by Semenoff and Zarembo to the case with constant electric and magnetic fields. There are two ways to turn on magnetic fields, i) the probe D3-brane picture and ii) the string world-sheet picture. In the former picture, magnetic fields both perpendicular and parallel to the electric field are activated by a Lorentz transformation and a spatial rotation. In the latter one, the classical solutions of the string world-sheet corresponding to circular Wilson loops is generalized to contain two additional parameters encoding the presence of magnetic fields.

  19. CogGauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cog-Gauge is a portable hand-held game that can be used by astronauts and crew members during space exploration missions to assess their cognitive workload...

  20. Non-perturbatively gauge-fixed compact U(1) lattice gauge theory

    Science.gov (United States)

    De, Asit K.; Sarkar, Mugdha

    2017-10-01

    An extensive study of the compact U(1) lattice gauge theory with a higher derivative gauge-fixing term and a suitable counter-term has been undertaken to determine the nature of the possible continuum limits for a wide range of the parameters, especially at strong gauge couplings ( g > 1), adding to our previous study at a single gauge coupling g = 1 .3 [1]. Our major conclusion is that a continuum limit of free massless photons(with the redundant pure gauge degrees of freedom decoupled) is achieved at any gauge coupling, not necessarily small, provided the coefficient \\tilde{κ} of the gauge-fixing term is sufficiently large. In fact, the region of continuous phase transition leading to the above physics in the strong gauge coupling region is found to be analytically connected to the point g = 0 and \\tilde{κ}\\to ∞ where the classical action has a global unique minimum, around which weak coupling perturbation theory in bare parameters is defined, controlling the physics of the whole region. A second major conclusion is that, local algorithms like Multihit Metropolis fail to produce faithful field configurations with large values of the coefficient \\tilde{κ} of the higher derivative gauge-fixing term and at large lattice volumes. A global algorithm like Hybrid Monte Carlo, although at times slow to move out of metastabilities, generally is able to produce faithful configurations and has been used extensively in the current study.

  1. Viscous conformal gauge theories

    DEFF Research Database (Denmark)

    Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.

    2017-01-01

    We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....

  2. Improving real-time estimation of heavy-to-extreme precipitation using rain gauge data via conditional bias-penalized optimal estimation

    Science.gov (United States)

    Seo, Dong-Jun; Siddique, Ridwan; Zhang, Yu; Kim, Dongsoo

    2014-11-01

    A new technique for gauge-only precipitation analysis for improved estimation of heavy-to-extreme precipitation is described and evaluated. The technique is based on a novel extension of classical optimal linear estimation theory in which, in addition to error variance, Type-II conditional bias (CB) is explicitly minimized. When cast in the form of well-known kriging, the methodology yields a new kriging estimator, referred to as CB-penalized kriging (CBPK). CBPK, however, tends to yield negative estimates in areas of no or light precipitation. To address this, an extension of CBPK, referred to herein as extended conditional bias penalized kriging (ECBPK), has been developed which combines the CBPK estimate with a trivial estimate of zero precipitation. To evaluate ECBPK, we carried out real-world and synthetic experiments in which ECBPK and the gauge-only precipitation analysis procedure used in the NWS's Multisensor Precipitation Estimator (MPE) were compared for estimation of point precipitation and mean areal precipitation (MAP), respectively. The results indicate that ECBPK improves hourly gauge-only estimation of heavy-to-extreme precipitation significantly. The improvement is particularly large for estimation of MAP for a range of combinations of basin size and rain gauge network density. This paper describes the technique, summarizes the results and shares ideas for future research.

  3. Differential renormalization of gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, F. del; Perez-Victoria, M. [Dept. de Fisica Teorica y del Cosmos, Universidad de Granada, Granada (Spain)

    1998-10-01

    The scope of constrained differential renormalization is to provide renormalized expressions for Feynman graphs, preserving at the same time the Ward identities of the theory. It has been shown recently that this can be done consistently at least to one loop for Abelian and non-Abelian gauge theories. We briefly review these results, evaluate as an example the gluon self energy in both coordinate and momentum space, and comment on anomalies. (author) 9 refs, 1 fig., 1 tab

  4. Constraints on Gauge Field Production during Inflation

    DEFF Research Database (Denmark)

    Nurmi, Sami; Sloth, Martin Snoager

    2014-01-01

    In order to gain new insights into the gauge field couplings in the early universe, we consider the constraints on gauge field production during inflation imposed by requiring that their effect on the CMB anisotropies are subdominant. In particular, we calculate systematically the bispectrum...... of the primordial curvature perturbation induced by the presence of vector gauge fields during inflation. Using a model independent parametrization in terms of magnetic non-linearity parameters, we calculate for the first time the contribution to the bispectrum from the cross correlation between the inflaton...

  5. Origin of gauge invariance in string theory

    Science.gov (United States)

    Horowitz, G. T.; Strominger, A.

    1986-01-01

    A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.

  6. The relationship of the Laplacian gauge to the Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, Jeffrey E

    2002-03-01

    The Laplacian gauge for gauge group SU(N) is discussed in perturbation theory. It is shown that to the lowest non-trivial order O(g{sup 1}), configurations in the Laplacian automatically satisfy the (finite difference) Landau gauge condition. Laplacian gauge fixed configurations are examined numerically and it is seen that to O(g{sup 2}) they do not remain in the Landau gauge.

  7. Quantum Critical Behaviour of Semisimple Gauge Theories

    DEFF Research Database (Denmark)

    Kamuk Esbensen, Jacob; Ryttov, Thomas A.; Sannino, Francesco

    2016-01-01

    We study the perturbative phase diagram of semi-simple fermionic gauge theories resembling the Standard Model. We investigate an $SU(N)$ gauge theory with $M$ Dirac flavors where we gauge first an $SU(M)_L$ and then an $SU(2)_L \\subset SU(M)_L$ of the original global symmetry $SU(M)_L\\times SU......(M)_R \\times U(1) $ of the theory. To avoid gauge anomalies we add lepton-like particles. At the two-loops level an intriguing phase diagram appears. We uncover phases in which one, two or three fixed points exist and discuss the associated flows of the coupling constants. We discover a phase featuring...

  8. Inverse scattering theory: renormalization of the Lippmann-Schwinger equation for acoustic scattering in one dimension.

    Science.gov (United States)

    Kouri, Donald J; Vijay, Amrendra

    2003-04-01

    The most robust treatment of the inverse acoustic scattering problem is based on the reversion of the Born-Neumann series solution of the Lippmann-Schwinger equation. An important issue for this approach to inversion is the radius of convergence of the Born-Neumann series for Fredholm integral kernels, and especially for acoustic scattering for which the interaction depends on the square of the frequency. By contrast, it is well known that the Born-Neumann series for the Volterra integral equations in quantum scattering are absolutely convergent, independent of the strength of the coupling characterizing the interaction. The transformation of the Lippmann-Schwinger equation from a Fredholm to a Volterra structure by renormalization has been considered previously for quantum scattering calculations and electromagnetic scattering. In this paper, we employ the renormalization technique to obtain a Volterra equation framework for the inverse acoustic scattering series, proving that this series also converges absolutely in the entire complex plane of coupling constant and frequency values. The present results are for acoustic scattering in one dimension, but the method is general. The approach is illustrated by applications to two simple one-dimensional models for acoustic scattering.

  9. Gauge Freedom in Astrodynamics

    Science.gov (United States)

    Efroimsky, Michael

    2006-11-01

    Both orbital and attitude dynamics employ the method of variation of parameters. In a non-perturbed setting, the coordinates (or the Euler angles) get expressed as functions of the time and six adjustable constants called elements. Under disturbance, each such expression becomes ansatz, the "constants" being endowed with time dependence. The perturbed velocity (linear or angular) consists of a partial time derivative and a convective term containing time derivatives of the "constants." It can be shown that this construction leaves one with a freedom to impose three arbitrary conditions upon the "constants" and/or their derivatives. Out of convenience, the Lagrange constraint is often imposed. It nullifies the convective term and thereby guarantees that under perturbation the functional dependence of the velocity upon the time and "constants" stays the same as in the undisturbed case. "Constants" obeying this condition are called osculating elements. The "constants" chosen to be canonical are called Delaunay elements, in the orbital case, or Andoyer elements, in the spin case. (As some of the Andoyer elements are time-dependent even in the free-spin case, the role of "constants" is played by these elements' initial values.) The Andoyer and Delaunay sets of elements share a feature not readily apparent: in certain cases the standard equations render these elements non-osculating. In orbital mechanics, elements calculated via the standard planetary equations come out non-osculating when perturbations depend on velocities. To keep elements osculating under such perturbations, the equations must be amended with extra terms that are not part of the disturbing function (Efroimsky and Goldreich 2003, 2004). For the Kepler elements, this merely complicates the equations. In the case of Delaunay parameterisation, these extra terms not only complicate the equations, but also destroy their canonicity. So under velocity-dependent disturbances, osculation and canonicity are

  10. Statistical properties of coastal long waves analysed through sea-level time-gradient functions: exemplary analysis of the Siracusa, Italy, tide-gauge data

    Directory of Open Access Journals (Sweden)

    L. Bressan

    2016-01-01

    reconstructed sea level (RSL, the background slope (BS and the control function (CF. These functions are examined through a traditional spectral fast Fourier transform (FFT analysis and also through a statistical analysis, showing that they can be characterised by probability distribution functions PDFs such as the Student's t distribution (IS and RSL and the beta distribution (CF. As an example, the method has been applied to data from the tide-gauge station of Siracusa, Italy.

  11. Gauge invariance for a whole Abelian model

    Science.gov (United States)

    Chauca, J.; Doria, R.; Soares, W.

    2012-10-01

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the (1/2,1/2) representation there is a fields family {AμI} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.

  12. Gauge invariance for a whole Abelian model

    Energy Technology Data Exchange (ETDEWEB)

    Chauca, J.; Doria, R.; Soares, W. [CBPF, Rio de Janeiro (Brazil); Aprendanet, Petropolis, 25600 (Brazil)

    2012-09-24

    Light invariance is a fundamental principle for physics be done. It generates Maxwell equations, relativity, Lorentz group. However there is still space for a fourth picture be developed which is to include fields with same Lorentz nature. It brings a new room for field theory. It says that light invariance does not work just to connect space and time but it also associates different fields with same nature. Thus for the ((1/2),(1/2)) representation there is a fields family {l_brace}A{sub {mu}I}{r_brace} to be studied. This means that given such fields association one should derive its corresponding gauge theory. This is the effort at this work. Show that there is a whole gauge theory to cover these fields relationships. Considering the abelian case, prove its gauge invariance. It yields the kinetic, massive, trilinear and quadrilinear gauge invariant terms.

  13. Algebraic formulation of higher gauge theory

    Science.gov (United States)

    Zucchini, Roberto

    2017-06-01

    In this paper, we present a purely algebraic formulation of higher gauge theory and gauged sigma models based on the abstract theory of graded commutative algebras and their morphisms. The formulation incorporates naturally Becchi - Rouet -Stora - Tyutin (BRST) symmetry and is also suitable for Alexandrov - Kontsevich - Schwartz-Zaboronsky (AKSZ) type constructions. It is also shown that for a full-fledged Batalin-Vilkovisky formulation including ghost degrees of freedom, higher gauge and gauged sigma model fields must be viewed as internal smooth functions on the shifted tangent bundle of a space-time manifold valued in a shifted L∞-algebroid encoding symmetry. The relationship to other formulations where the L∞-algebroid arises from a higher Lie groupoid by Lie differentiation is highlighted.

  14. Strong Coupling Gauge Theories in LHC ERA

    Science.gov (United States)

    Fukaya, H.; Harada, M.; Tanabashi, M.; Yamawaki, K.

    2011-01-01

    conformal Higgs / Kazumoto Haba, Shinya Matsuzaki and Koichi Yamawaki -- Phase structure of topologically massive gauge theory with fermion / Yuichi Hoshino -- New regularization in extra dimensional model and renormalization group flow of the cosmological constant / Shoichi Ichinose -- Spectral analysis of dense two-color QCD / T. Kanazawa, T. Wettig and N. Yamamoto -- NJL model with dimensional regularization at finite temperature / T. Fujihara ... [et al.] -- A new method of evaluating the dynamical chiral symmetry breaking scale and the chiral restoration temperature in general gauge theories by using the non-perturbative renormalization group analyses with general 4-Fermi effective interaction space / Ken-Ichi Aoki, Daisuke Sato and Kazuhiro Miyashita -- The effective chiral Lagrangian with vector mesons and hadronic [symbol] decays / D. Kimura ... [et al.] -- Spontaneous SUSY breaking with anomalous U(1) symmetry in metastable vacua and moduli stabilization / Hiroyuki Nishino -- A new description of the lattice Yang-Mills theory and non-abelian magnetic monopole dominance in the string tension / Akihiro Shibata -- Thermodynamics with unbroken center symmetry in two-flavor QCD / S. Takemoto, M. Harada and C. Sasaki -- Masses of vector bosons in two-color QCD based on the hidden local symmetry / T. Yamaoka, M. Harada and C. Nonaka -- Walking dynamics from string duals / Maurizio Piai -- The quark mass dependence of the nucleon mass in AdS/QCD / Hyo Chul Ahn -- Structure of thermal quasi-fermion in QED/QCD from the Dyson-Schwinger equation / Hisao Nakkagawa -- Critical behaviors of sigma-mode and pion in holographic superconductors / Cheonsoo Park.

  15. Non-Abelian gauge fields

    Science.gov (United States)

    Gerbier, Fabrice; Goldman, Nathan; Lewenstein, Maciej; Sengstock, Klaus

    2013-07-01

    -orbit coupling (Rashba and Dresselhaus couplings), familiar from AMO and condensed matter physics. They lead to yet another variety of fascinating phenomena such as the quantum spin Hall effect, three-dimensional topological insulators, topological superconductors and superfluids of various kinds. One also expects here the appearance of excitations in a form of topological edge states that can support robust transport, or entangled Majorana fermions in the case of topological superconductors or superfluids. Again, while many kinds of topological insulators have been realized in condensed matter systems, a controlled way of creating them in AMO systems and studying quantum phase transitions between various kinds of them is obviously very appealing and challenging. The various systems listed so far correspond to static gauge fields, which are externally imposed by the experimentalists. Even more fascinating is the possibility of generating synthetically dynamical gauge fields, i.e. gauge fields that evolve in time according to an interacting gauge theory, e.g., a full lattice gauge theory (LGT). These dynamical gauge fields can also couple to matter fields, allowing the quantum simulation of such complex systems (notoriously hard to simulate using 'traditional' computers), which are particularly relevant for modern high-energy physics. So far, most of the theoretical proposals concern the simulation of Abelian gauge theories, however, several groups have recently proposed extensions to the non-Abelian scenarios. The scope of the present focused issue of Journal of Physics B is to cover all of these developments, with particular emphasis on the non-Abelian gauge fields. The 14 papers in this issue include contributions from the leading theory groups working in this field; we believe that this collection will provide the reference set for quantum simulations of gauge fields. Although the special issue contains exclusively theoretical proposals and studies, it should be stressed that

  16. Gauge theory and renormalization

    NARCIS (Netherlands)

    Hooft, G. 't

    1996-01-01

    Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in

  17. Finite quantum gauge theories

    Science.gov (United States)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  18. On the dynamical equivalence of Lagrangians differing up to the total time derivative of an arbitrary function of coordinates and time - A note on the foundation of electromagnetic theory as a gauge theory

    National Research Council Canada - National Science Library

    Gaetano Giaquinta

    2012-01-01

    ... ("direct problem" versus "inverse problem"). In this note it is shown that by a proper identification of such redundance term the whole of the Maxwell equations can be readily derived, the gauge symmetry of the electromagnetic theory emerging...

  19. Quark Propagator with electroweak interactions in the Dyson-Schwinger approach

    Science.gov (United States)

    Mian, Walid Ahmed; Maas, Axel

    2017-03-01

    Motivated by the non-negligible dynamical backcoupling of the electroweak interactions with the strong interaction during neutron star mergers, we study the effects of the explicit breaking of C, P and flavor symmetry on the strong sector. The quark propagator is the simplest object which encodes the consequences of these breakings. To asses the impact, we study the influence of especially parity violation on the propagator for various masses. For this purpose the functional methods in form of Dyson-Schwinger-Equations are employed. We find that explicit isospin breaking leads to a qualitative change of behavior even for a slight explicit breaking, which is in contrast to the expectations from perturbation theory. Our results thus suggest that non-perturbative backcoupling effects could be larger than expected.

  20. Transcendental equations in the Schwinger-Keldysh nonequilibrium theory and nonvanishing correlations

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, Filippo [School of Chemistry and Physics, University of KwaZulu-Natal and National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, Westville Campus, Durban 4000, South Africa and Gruppo Nazionale per la Fisica Matematica (GNFM-INdAM), c/o Istituto Nazionale di Alta Matematica Francesco Severi, Città Universitaria, Piazza Aldo Moro 5, 00185 Roma (Italy)

    2015-09-15

    The Schwinger-Keldysh nonequilibrium theory allows the description of various transport phenomena involving bosons (fermions) embedded in bosonic (fermionic) environments. The retarded Green’s function obeys the Dyson equation and determines via its non-vanishing asymptotic behavior the dissipationless open dynamics. The appearance of this regime is conditioned by the existence of the solution of a general class of transcendental equations in complex domain that we study. Particular cases consist in transcendental equations containing exponential, hyperbolic, power law, logarithmic, and special functions. The present analysis provides an analytical description of the thermal and temporal correlation function of two general observables of a quantum system in terms of the corresponding spectral function. Special integral properties of the spectral function guarantee non-vanishing asymptotic behavior of the correlation function.

  1. Princípio de ação quântica de Schwinger

    OpenAIRE

    Melo,C.A.M. de; Pimentel,B.M.; Ramirez,J.A.

    2013-01-01

    O princípio de ação quântica de Schwinger é uma caracterização dinâmica das funções de transformação e está fundamentado na estrutura algébrica derivada da análise cinemática dos procesos de medida em nível quântico. Como tal, este princípio variacional permite derivar as relações de comutação canônicas numa forma totalmente consistente. Além disso, propociona as descrições dinâmicas de Schrödinger, Heisenberg e uma equação de Hamilton-Jacobi em nível quântico. Implementaremos este formalismo...

  2. Simplicial gauge theory and quantum gauge theory simulation

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Tore Gunnar, E-mail: toregha@gmail.com [Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Sorensen, Torquil Macdonald, E-mail: t.m.sorensen@matnat.uio.no [Centre of Mathematics for Applications, University of Oslo, NO-0316 Oslo (Norway)

    2012-01-01

    We propose a general formulation of simplicial lattice gauge theory inspired by the finite element method. Numerical tests of convergence towards continuum results are performed for several SU(2) gauge fields. Additionally, we perform simplicial Monte Carlo quantum gauge field simulations involving measurements of the action as well as differently sized Wilson loops as functions of {beta}.

  3. Gauge symmetry breaking in gauge theories -- in search of clarification

    NARCIS (Netherlands)

    Friederich, Simon

    2013-01-01

    The paper investigates the spontaneous breaking of gauge symmetries in gauge theories from a philosophical angle, taking into account the fact that the notion of a spontaneously broken local gauge symmetry, though widely employed in textbook expositions of the Higgs mechanism, is not supported by

  4. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory.

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-12

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994)NUPBBO0550-321310.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  5. Bloch Waves in Minimal Landau Gauge and the Infinite-Volume Limit of Lattice Gauge Theory

    Science.gov (United States)

    Cucchieri, Attilio; Mendes, Tereza

    2017-05-01

    By exploiting the similarity between Bloch's theorem for electrons in crystalline solids and the problem of Landau gauge fixing in Yang-Mills theory on a "replicated" lattice, we show that large-volume results can be reproduced by simulations performed on much smaller lattices. This approach, proposed by Zwanziger [Nucl. Phys. B412, 657 (1994), 10.1016/0550-3213(94)90396-4], corresponds to taking the infinite-volume limit for Landau-gauge field configurations in two steps: first for the gauge transformation alone, while keeping the lattice volume finite, and second for the gauge-field configuration itself. The solutions to the gauge-fixing condition are then given in terms of Bloch waves. Applying the method to data from Monte Carlo simulations of pure SU(2) gauge theory in two and three space-time dimensions, we are able to evaluate the Landau-gauge gluon propagator for lattices of linear extent up to 16 times larger than that of the simulated lattice. This approach is reminiscent of the Fisher-Ruelle construction of the thermodynamic limit in classical statistical mechanics.

  6. Weighing Rain Gauge Recording Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weighing rain gauge charts record the amount of precipitation that falls at a given location. The vast majority of the Weighing Rain Gauge Recording Charts...

  7. Renormalisation group flows for gauge theories in axial gauges

    CERN Document Server

    Litim, Daniel F; Litim, Daniel F.; Pawlowski, Jan M.

    2002-01-01

    Gauge theories in axial gauges are studied using Exact Renormalisation Group flows. We introduce a background field in the infrared regulator, but not in the gauge fixing, in contrast to the usual background field gauge. It is shown how heat-kernel methods can be used to obtain approximate solutions to the flow and the corresponding Ward identities. Expansion schemes are discussed, which are not applicable in covariant gauges. As an application, we derive the one-loop effective action for covariantly constant field strength, and the one-loop beta-function for arbitrary regulator.

  8. Safety of hydrogen pressure gauges.

    Science.gov (United States)

    Voth, R. O.

    1972-01-01

    Study of the relative safety afforded an operator by various hydrogen-pressure gauge case designs. It is shown that assurance of personnel safety, should a failure occur, requires careful selection of available gauge designs, together with proper mounting. Specific gauge case features and mounting requirements are recommended.

  9. Triple gauge boson couplings

    CERN Document Server

    Gounaris, George J; Zeppenfeld, Dieter; Ajaltouni, Ziad J; Arhrib, A; Bella, G; Berends, F A; Bilenky, S M; Blondel, A; Busenitz, J K; Choudhury, D; Clarke, P; Conboy, J E; Diehl, M; Fassouliotis, D; Frère, J M; Georgiopoulos, C H; Gibbs, M; Grünewald, M W; Hansen, J B; Hartmann, C; Jin, B N; Jousset, J; Kalinowski, Jan; Kocian, M L; Lahanas, Athanasios B; Layssac, J; Lieb, E H; Markou, C; Matteuzzi, C; Mättig, P; Moreno, J M; Moultaka, G; Nippe, A; Orloff, J; Papadopoulos, C G; Paschalis, J; Petridou, C; Phillips, H; Podlyski, F; Pohl, M; Renard, F M; Rossignol, J M; Rylko, R; Sekulin, R L; Van Sighem, A; Simopoulou, Errietta; Skillman, A; Spanos, V C; Tonazzo, A; Tytgat, M H G; Tzamarias, S; Verzegnassi, Claudio; Vlachos, N D; Zevgolatakos, E

    1996-01-01

    We present the results obtained by the "Triple Gauge Couplings" working group during the LEP2 Workshop (1994-1995). The report concentrates on the measurement of WW\\gamma and WWZ couplings in e^-e^+\\to W^-W^+ or, more generally, four-fermion production at LEP2. In addition the detection of new interactions in the bosonic sector via other production channels is discussed.

  10. Gauging Variational Inference

    Energy Technology Data Exchange (ETDEWEB)

    Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ahn, Sungsoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Shin, Jinwoo [Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2017-05-25

    Computing partition function is the most important statistical inference task arising in applications of Graphical Models (GM). Since it is computationally intractable, approximate methods have been used to resolve the issue in practice, where meanfield (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments, on complete GMs of relatively small size and on large GM (up-to 300 variables) confirm that the newly proposed algorithms outperform and generalize MF and BP.

  11. Treatment of the classical relativistic string in any orthornomal gauge

    CERN Document Server

    Marnelius, R

    1976-01-01

    It is shown that a certain set of gauge invariant functions are, for an appropriate choice of a parameter on which they depend, equal to the Fourier components of the classical relativistic string in any orthonormal gauge. These variables are natural generalizations of the classical DDF operators recently introduced by Goddard, Hanson and Ponzano (see ibid., vol.B89, p.76 (1975)). The Poisson algebra of the relativistic string in any orthonormal gauge (including the proper time gauge) is written down. Application to quantization is briefly discussed. (12 refs).

  12. Fermionic continuous spin gauge field in (AdS space

    Directory of Open Access Journals (Sweden)

    R.R. Metsaev

    2017-10-01

    Full Text Available Fermionic continuous spin field propagating in (AdS space–time is studied. Gauge invariant Lagrangian formulation for such fermionic field is developed. Lagrangian of the fermionic continuous spin field is constructed in terms of triple gamma-traceless tensor–spinor Dirac fields, while gauge symmetries are realized by using gamma-traceless gauge transformation parameters. It is demonstrated that partition function of fermionic continuous spin field is equal to one. Modified de Donder gauge condition that considerably simplifies analysis of equations of motion is found. Decoupling limits leading to arbitrary spin massless, partial-massless, and massive fermionic fields are studied.

  13. Influence analysis of Arctic tide gauges using leverages

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way...

  14. Influence analysis of Arctic tide gauges using leverages

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2014-01-01

    Reconstructions of historical sea level in the Arctic Ocean are fraught with difficulties related to lack of data, uneven distribution of tide gauges and seasonal ice cover. Considering the period from 1950 to the present, we attempt to identify conspicuous tide gauges in an automated way, using...... a calibration period, in this preliminary case Drakkar ocean model data, which are forced using historical tide gauge data from the PSMSL database. The resulting leverage for each tide gauge may indicate that it represents a distinct mode of variability, or that its time series is perturbed in a way...

  15. Local gauge coupling running in supersymmetric gauge theories on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Hillenbach, M.

    2007-11-21

    By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)

  16. A gauge-theoretic approach to gravity

    Science.gov (United States)

    Krasnov, Kirill

    2012-01-01

    Einstein's general relativity (GR) is a dynamical theory of the space–time metric. We describe an approach in which GR becomes an SU(2) gauge theory. We start at the linearized level and show how a gauge-theoretic Lagrangian for non-interacting massless spin two particles (gravitons) takes a much more simple and compact form than in the standard metric description. Moreover, in contrast to the GR situation, the gauge theory Lagrangian is convex. We then proceed with a formulation of the full nonlinear theory. The equivalence to the metric-based GR holds only at the level of solutions of the field equations, that is, on-shell. The gauge-theoretic approach also makes it clear that GR is not the only interacting theory of massless spin two particles, in spite of the GR uniqueness theorems available in the metric description. Thus, there is an infinite-parameter class of gravity theories all describing just two propagating polarizations of the graviton. We describe how matter can be coupled to gravity in this formulation and, in particular, how both the gravity and Yang–Mills arise as sectors of a general diffeomorphism-invariant gauge theory. We finish by outlining a possible scenario of the ultraviolet completion of quantum gravity within this approach. PMID:22792040

  17. Anomalous Gauge Boson Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, Timothy L

    2003-06-16

    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approx} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup -2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.

  18. Anomalous gauge boson interactions

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, H. [Lawrence Berkeley Lab., CA (United States); Barklow, T. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Baur, U. [State Univ. of New York, Buffalo, NY (United States). Dept. of Physics]|[Florida State Univ., Tallahassee, FL (United States). Dept. of Physics] [and others

    1995-03-01

    We discuss the direct measurement of the trilinear vector boson couplings in present and future collider experiments. The major goals of such experiments will be the confirmation of the Standard Model (SM) predictions and the search for signals of new physics. We review our current theoretical understanding of anomalous trilinear gauge-boson self interactions. If the energy scale of the new physics is {approximately} 1 TeV, these low energy anomalous couplings are expected to be no larger than {Omicron}(10{sup {minus}2}). Constraints from high precision measurements at LEP and low energy charged and neutral current processes are critically reviewed.

  19. Gauge fields and infinite chains of dualities

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Nicolas [Service de Mécanique et Gravitation, Université de Mons - UMONS,20 place du Parc, B-7000 Mons (Belgium); Sundell, Per [Departamento de Ciencias Físicas, Universidad Andres Bello - UNAB,Av. República 252, Santiago (Chile); West, Peter [Department of Mathematics, King’s College,London WC2R 2LS (United Kingdom)

    2015-09-28

    We show that the particle states of Maxwell’s theory, in D dimensions, can be represented in an infinite number of ways by using different gauge fields. Using this result we formulate the dynamics in terms of an infinite set of duality relations which are first order in space-time derivatives. We derive a similar result for the three form in eleven dimensions where such a possibility was first observed in the context of E{sub 11}. We also give an action formulation for some of the gauge fields. In this paper we give a pedagogical account of the Lorentz and gauge covariant formulation of the irreducible representations of the Poincaré group, used previously in higher spin theories, as this plays a key role in our constructions. It is clear that our results can be generalised to any particle.

  20. Ward identities and gauge independence in general chiral gauge theories

    Science.gov (United States)

    Anselmi, Damiano

    2015-07-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

  1. Gravitation and Gauge Symmetries

    CERN Document Server

    Stewart, J

    2002-01-01

    The purpose of this book (I quote verbatim from the back cover) is to 'shed light upon the intrinsic structure of gravity and the principle of gauge invariance, which may lead to a consistent unified field theory', a very laudable aim. The content divides fairly clearly into four sections (and origins). After a brief introduction, chapters 2-6 review the 'Structure of gravity as a theory based on spacetime gauge symmetries'. This is fairly straightforward material, apparently based on a one-semester graduate course taught at the University of Belgrade for about two decades, and, by implication, this is a reasonably accurate description of its level and assumed knowledge. There follow two chapters of new material entitled 'Gravity in flat spacetime' and 'Nonlinear effects in gravity'. The final three chapters, entitled 'Supersymmetry and supergravity', 'Kaluza-Klein theory' and 'String theory' have been used for the basis of a one-semester graduate course on the unification of fundamental interactions. The boo...

  2. More about discrete gauge anomalies

    CERN Document Server

    Ibáñez, L E

    1993-01-01

    I discuss and extend several results concerning the cancellation of discrete gauge anomalies. I show how heavy fermions do not decouple in the presence of discrete gauge anomalies. As a consequence, in general, cancellation of discrete gauge anomalies cannot be described merely in terms of low energy operators involving only the light fermions. I also discuss cancellation of discrete gauge anomalies through a discrete version of the Green-Schwarz (GS) mechanism as well as the possibility of discrete gauge R-symmetries and their anomalies. Finally, some phenomenological applications are discussed. This includes symmetries guaranteeing absence of FCNC in two-Higgs models and generalized matter parities stabilizing the proton in the supersymmetric standard model. In the presence of a discrete GS mechanism or/and gauge R-symmetries, new possibilities for anomaly free such symmetries are found.

  3. Calibration of thin-foil manganin gauge in ALOX material

    Science.gov (United States)

    Benham, R. A.; Weirick, L. J.; Lee, L. M.

    1996-05-01

    The purpose of this program was to develop a calibration curve (stress as a function of change in gauge resistance/gauge resistance) and to obtain gauge repeatability data for Micro-Measurements stripped manganin thin-foiled gauges up to 6.1 GPa in ALOX (42% by volume alumina in Epon 828 epoxy) material. A light-gas gun was used to drive an ALOX impactor into the ALOX target containing four gauges in a centered diamond arrangement. Tilt and velocity of the impactor were measured along with the gauge outputs. Impact stresses from 0.5 to 6.1 GPa were selected in increments of 0.7 GPa with duplicate tests done at 0.5, 3.3 and 6.1 GPa. A total of twelve tests was conducted using ALOX. Three initial tests were done using polymethyl methacrylate (PMMA) as the impactor and target at an impact pressure of 3.0 GPa for comparison of gauge output with analysis and literature values. The installed gauge, stripped of its backing, has a nominal thickness of 5 μm. The thin gauge and high speed instrumentation allowed higher time resolution measurements than can be obtained with manganin wire.

  4. Challenges in inflationary magnetogenesis: Constraints from strong coupling, backreaction, and the Schwinger effect

    Science.gov (United States)

    Sharma, Ramkishor; Jagannathan, Sandhya; Seshadri, T. R.; Subramanian, Kandaswamy

    2017-10-01

    Models of inflationary magnetogenesis with a coupling to the electromagnetic action of the form f2Fμ νFμ ν , are known to suffer from several problems. These include the strong coupling problem, the backreaction problem and also strong constraints due to the Schwinger effect. We propose a model which resolves all these issues. In our model, the coupling function, f , grows during inflation and transits to a decaying phase post-inflation. This evolutionary behavior is chosen so as to avoid the problem of strong coupling. By assuming a suitable power-law form of the coupling function, we can also neglect backreaction effects during inflation. To avoid backreaction post-inflation, we find that the reheating temperature is restricted to be below ≈1.7 ×104 GeV . The magnetic energy spectrum is predicted to be nonhelical and generically blue. The estimated present day magnetic field strength and the corresponding coherence length taking reheating at the QCD epoch (150 MeV) are 1.4 ×10-12 G and 6.1 ×10-4 Mpc , respectively. This is obtained after taking account of nonlinear processing over and above the flux-freezing evolution after reheating. If we consider also the possibility of a nonhelical inverse transfer, as indicated in direct numerical simulations, the coherence length and the magnetic field strength are even larger. In all cases mentioned above, the magnetic fields generated in our models satisfy the γ -ray bound below a certain reheating temperature.

  5. Realization of Massive Relativistic Spin- 3 / 2 Rarita-Schwinger Quasiparticle in Condensed Matter Systems

    Science.gov (United States)

    Tang, Feng; Luo, Xi; Du, Yongping; Yu, Yue; Wan, Xiangang

    Very recently, there has been significant progress in realizing high-energy particles in condensed matter system (CMS) such as the Dirac, Weyl and Majorana fermions. Besides the spin-1/2 particles, the spin-3/2 elementary particle, known as the Rarita-Schwinger (RS) fermion, has not been observed or simulated in the laboratory. The main obstacle of realizing RS fermion in CMS lies in the nontrivial constraints that eliminate the redundant degrees of freedom in its representation of the Poincaré group. In this Letter, we propose a generic method that automatically contains the constraints in the Hamiltonian and prove the RS modes always exist and can be separated from the other non-RS bands. Through symmetry considerations, we show that the two dimensional (2D) massive RS (M-RS) quasiparticle can emerge in several trigonal and hexagonal lattices. Based on ab initio calculations, we predict that the thin film of CaLiX (X=Ge and Si) may host 2D M-RS excitations near the Fermi level. and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.

  6. Multiloop Euler-Heisenberg Lagrangians, Schwinger Pair Creation, and the Photon S-Matrix

    Science.gov (United States)

    Huet, I.; de Traubenberg, M. R.; Schubert, C.

    2017-03-01

    Although the perturbation series in quantum electrodynamics has been studied for eighty years concerning its high-order behavior, our present understanding is still poorer than for many other field theories. An interesting case is Schwinger pair creation in a constant electric field, which may possibly provide a window to high loop orders; simple non-perturbative closed-form expressions have been conjectured for the pair creation rate in the weak field limit, for scalar QED in 1982 by Affleck, Alvarez, and Manton, and for spinor QED by Lebedev and Ritus in 1984. Using Borel analysis, these can be used to obtain non-perturbative information on the on-shell renormalized N-photon amplitudes at large N and low energy. This line of reasoning also leads to a number of nontrivial predictions for the effective QED Lagrangian in either four or two dimensions at any loop order, and preliminary results of a calculation of the three-loop Euler-Heisenberg Lagrangian in two dimensions are presented.

  7. First-principles calculation method for electron transport based on the grid Lippmann-Schwinger equation

    Science.gov (United States)

    Egami, Yoshiyuki; Iwase, Shigeru; Tsukamoto, Shigeru; Ono, Tomoya; Hirose, Kikuji

    2015-09-01

    We develop a first-principles electron-transport simulator based on the Lippmann-Schwinger (LS) equation within the framework of the real-space finite-difference scheme. In our fully real-space-based LS (grid LS) method, the ratio expression technique for the scattering wave functions and the Green's function elements of the reference system is employed to avoid numerical collapse. Furthermore, we present analytical expressions and/or prominent calculation procedures for the retarded Green's function, which are utilized in the grid LS approach. In order to demonstrate the performance of the grid LS method, we simulate the electron-transport properties of the semiconductor-oxide interfaces sandwiched between semi-infinite jellium electrodes. The results confirm that the leakage current through the (001 )Si -SiO2 model becomes much larger when the dangling-bond state is induced by a defect in the oxygen layer, while that through the (001 )Ge -GeO2 model is insensitive to the dangling bond state.

  8. Operator Gauge Symmetry in QED

    Directory of Open Access Journals (Sweden)

    Siamak Khademi

    2006-01-01

    Full Text Available In this paper, operator gauge transformation, first introduced by Kobe, is applied to Maxwell's equations and continuity equation in QED. The gauge invariance is satisfied after quantization of electromagnetic fields. Inherent nonlinearity in Maxwell's equations is obtained as a direct result due to the nonlinearity of the operator gauge transformations. The operator gauge invariant Maxwell's equations and corresponding charge conservation are obtained by defining the generalized derivatives of the first and second kinds. Conservation laws for the real and virtual charges are obtained too. The additional terms in the field strength tensor are interpreted as electric and magnetic polarization of the vacuum.

  9. Vacuum-assisted breast biopsy: A comparison of 11-gauge and 8-gauge needles in benign breast disease

    Directory of Open Access Journals (Sweden)

    Kraemer Bernhard

    2008-05-01

    Full Text Available Abstract Background Minimal invasive breast biopsy is standard care for the diagnosis of suspicious breast lesions. There are different vacuum biopsy (VB systems in use. The aim of the study was to determine the differences between the 8-gauge and the 11-gauge needle with respect to a diagnostic reliability, b complication rate and c subjective perception of pain when used for vacuum-assisted breast biopsy. Methods Between 01/2000 and 09/2004, 923 patients at St. Josefs-Hospital Wiesbaden underwent VB using the Mammotome® (Ethicon Endosurgery, Hamburg. Depending on preoperative detection, the procedure was performed under sonographic or mammographic guidance under local anaesthesia. All patients included in the study were followed up both clinically and using imaging techniques one week after the VB and a second time after a median of 41 months. Excisional biopsy on the ipsilateral breast was an exclusion criteria. Subjective pain scores were recorded on a scale of 0 – 10 (0 = no pain, 10 = unbearable pain. The mean age of the patients was 53 years (30 – 88. Results 123 patients were included in the study in total. 48 patients were biopsied with the 8-gauge needle and 75 with the 11-gauge needle. The use of the 8-gauge needle did not show any significant differences to the 11-gauge needle with regard to diagnostic reliability, complication rate and subjective perception of pain. Conclusion Our data show that there are no relevant differences between the 8-gauge and 11-gauge needle when used for VB. Under sonographic guidance, the use of the 8-gauge needle is recommended for firm breast tissue due to its sharp scalpel point and especially for complete removal of benign lesions. We did not find any advantages in the use of the larger 8-gauge needle compared to the 11-gauge needle in the mammography setting. The utilisation costs of the 8-gauge needle are somewhat higher.

  10. Gauges for fine and high vacuum

    CERN Document Server

    Jousten, K

    2007-01-01

    Vacuum gauges for use in accelerators have to cover about 17 decades of pressure, from 10–12 Pa to 105 Pa. In this article we describe the history, measurement mode, design, accuracy and calibration of the gauges used down to 10–5 Pa. We focus on commercially available types of gauges, i.e., mechanical gauges, piezoresistive and capacitance diaphragm gauges, thermal conductivity gauges, and spinning rotor gauges.

  11. Gauged Lepton Flavour

    CERN Document Server

    Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.

    2016-12-22

    The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.

  12. Hot Conformal Gauge Theories

    DEFF Research Database (Denmark)

    Mojaza, Matin; Pica, Claudio; Sannino, Francesco

    2010-01-01

    in such a way that the theory develops a perturbative stable infrared fixed point at zero temperature. Due to large distance conformality we trade the coupling constant with its fixed point value and define a reduced free energy which depends only on the number of flavors, colors and matter representation. We...... show that the reduced free energy changes sign, at the second, fifth and sixth order in the coupling, when decreasing the number of flavors from the upper end of the conformal window. If the change in sign is interpreted as signal of an instability of the system then we infer a critical number...... of flavors. Surprisingly this number, if computed to the order g^2, agrees with previous predictions for the lower boundary of the conformal window for nonsupersymmetric gauge theories. The higher order results tend to predict a higher number of critical flavors. These are universal properties, i...

  13. Manifestly gauge invariant discretizations of the Schrödinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Halvorsen, Tore Gunnar, E-mail: toregha@gmail.com [University of Oslo, Centre of Mathematics for Applications, N-0316 Oslo (Norway); Kvaal, Simen, E-mail: simen.kvaal@cma.uio.no [University of Oslo, Centre of Mathematics for Applications, N-0316 Oslo (Norway)

    2012-02-27

    Grid-based discretizations of the time dependent Schrödinger equation coupled to an external magnetic field are converted to manifest gauge invariant discretizations. This is done using generalizations of ideas used in classical lattice gauge theory, and the process defined is applicable to a large class of discretized differential operators. In particular, popular discretizations such as pseudospectral discretizations using the fast Fourier transform can be transformed to gauge invariant schemes. Also generic gauge invariant versions of generic time integration methods are considered, enabling completely gauge invariant calculations of the time dependent Schrödinger equation. Numerical examples illuminating the differences between a gauge invariant discretization and conventional discretization procedures are also presented. -- Highlights: ► We investigate the Schrödinger equation coupled to an external magnetic field. ► Any grid-based discretization is made trivially gauge invariant. ► An extension of classical lattice gauge theory.

  14. Universality in the relaxation dynamics of the composed black-hole-charged-massive-scalar-field system: The role of quantum Schwinger discharge

    Directory of Open Access Journals (Sweden)

    Shahar Hod

    2015-07-01

    Full Text Available The quasinormal resonance spectrum {ωn(μ,q,M,Q}n=0n=∞ of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime is studied analytically in the large-coupling regime qQ≫Mμ (here {μ,q} are respectively the mass and charge coupling constant of the field, and {M,Q} are respectively the mass and electric charge of the black hole. This physical system provides a striking illustration for the validity of the universal relaxation bound τ×T≥ħ/π in black-hole physics (here τ≡1/ℑω0 is the characteristic relaxation time of the composed black-hole-scalar-field system, and T is the Bekenstein–Hawking temperature of the black hole. In particular, it is shown that the relaxation dynamics of charged massive scalar fields in the charged Reissner–Nordström black-hole spacetime may saturate this quantum time-times-temperature inequality. Interestingly, we prove that potential violations of the bound by light scalar fields are excluded by the Schwinger-type pair-production mechanism (a vacuum polarization effect, a quantum phenomenon which restricts the physical parameters of the composed black-hole-charged-field system to the regime qQ≪M2μ2/ħ.

  15. QCD perturbation theory in the temporal gauge

    Science.gov (United States)

    Leroy, J. P.; Micheli, J.; Rossi, G. C.; Yoshida, K.

    1990-12-01

    In this paper we present a non-trivial check of the consistency of the quantization of a gauge theory with fermions (QCD) in the temporal gauge. We use the approach based on the finite time Feynman propagation kernel, in which the Gauss law is imposed as a constraint on the states by means of a functional integration over all the time independent gauge transformations acting on the boundary values of the fields. We spell out in detail the “Feynman rules” when fermions are present and we compute, as an example, the gauge invariant correlation function 10052_2005_Article_BF01614701_TeX2GIFE1.gif begin{gathered} G(t) = left< {bar ψ (0,t)(γ _5 γ _0 ){1 - γ _0 }/2P} right. \\ left. { \\cdot exp left( {igintlimits_0^t {A_0 (0,t')dt'} } right)(γ _5 γ _0 )^ + (0,0)} rightrangle \\ up to order g 2, obtaining the expected result.

  16. Gauging away a big bang

    Science.gov (United States)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  17. Hamiltonian approach to second order gauge invariant cosmological perturbations

    Science.gov (United States)

    Domènech, Guillem; Sasaki, Misao

    2018-01-01

    In view of growing interest in tensor modes and their possible detection, we clarify the definition of tensor modes up to 2nd order in perturbation theory within the Hamiltonian formalism. Like in gauge theory, in cosmology the Hamiltonian is a suitable and consistent approach to reduce the gauge degrees of freedom. In this paper we employ the Faddeev-Jackiw method of Hamiltonian reduction. An appropriate set of gauge invariant variables that describe the dynamical degrees of freedom may be obtained by suitable canonical transformations in the phase space. We derive a set of gauge invariant variables up to 2nd order in perturbation expansion and for the first time we reduce the 3rd order action without adding gauge fixing terms. In particular, we are able to show the relation between the uniform-ϕ and Newtonian slicings, and study the difference in the definition of tensor modes in these two slicings.

  18. Sea level reconstruction from satellite altimetry and tide gauge data

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2012-01-01

    Ocean satellite altimetry has provided global sets of sea level data for the last two decades, allowing determination of spatial patterns in global sea level. For reconstructions going back further than this period, tide gauge data can be used as a proxy. We examine different methods of combining...... satellite altimetry and tide gauge data using optimal weighting of tide gauge data, linear regression and EOFs, including automatic quality checks of the tide gauge time series. We attempt to augment the model using various proxies such as climate indices like the NAO and PDO, and investigate alternative...... of itself, whereas the desired signal will exhibit autocorrelation. This will be applied to a global dataset, necessitating wrap-around consideration of spatial shifts. Our focus is a timescale going back approximately 50 years, allowing reasonable global availability of tide gauge data. This allows...

  19. Phase diagram of two-color QCD in a Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Pascal Joachim

    2014-04-28

    We investigate two-color QCD with N{sub f}=2 at finite temperatures and chemical potentials using a Dyson-Schwinger approach. We employ two different truncations for the quark loop in the gluon DSE: one based on the Hard-Dense/Hard-Thermal Loop (HDTL) approximation of the quark loop and one based on the back-coupling of the full, self-consistent quark propagator (SCQL). We compare results for the different truncations with each other as well as with other approaches. As expected, we find a phase dominated by the condensation of quark-quark pairs. This diquark condensation phase overshadows the critical end point and first-order phase transition which one finds if diquark condensation is neglected. The phase transition from the phase without diquark condensation to the diquark-condensation phase is of second order. We observe that the dressing with massless quarks in the HDTL approximation leads to a significant violation of the Silver Blaze property and to a too small diquark condensate. The SCQL truncation, on the other hand, is found to reproduce all expected features of the μ-dependent quark condensates. Moreover, with parameters adapted to the situation in other approaches, we also find good to very good agreement with model and lattice calculations in all quark quantities. We find indictions that the physics in recent lattice calculations is likely to be driven solely by the explicit chiral symmetry breaking. Discrepancies w.r.t. the lattice are, however, observed in two quantities that are very sensitive to the screening of the gluon propagator, the dressed gluon propagator itself and the phase-transition line at high temperatures.

  20. Gauge invariants and correlators in flavoured quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Mattioli, Paolo, E-mail: p.mattioli@qmul.ac.uk; Ramgoolam, Sanjaye, E-mail: s.ramgoolam@qmul.ac.uk

    2016-10-15

    In this paper we study the construction of holomorphic gauge invariant operators for general quiver gauge theories with flavour symmetries. Using a characterisation of the gauge invariants in terms of equivalence classes generated by permutation actions, along with representation theory results in symmetric groups and unitary groups, we give a diagonal basis for the 2-point functions of holomorphic and anti-holomorphic operators. This involves a generalisation of the previously constructed Quiver Restricted Schur operators to the flavoured case. The 3-point functions are derived and shown to be given in terms of networks of symmetric group branching coefficients. The networks are constructed through cutting and gluing operations on the quivers.

  1. Pure gauge spin-orbit couplings

    Science.gov (United States)

    Shikakhwa, M. S.

    2017-01-01

    Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2×2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, both of which being characteristics of the SOI involved. The experimentally important case of equal-strength Rashba and Dresselhaus SOI (R+D SOI) is shown to fall within this special class of Abelian gauge fields, and the phenomenon of persistent spin helix (PSH) that emerges in the presence of this latter SOI in a plane is shown to fit naturally within the general formalism developed. The general formalism is also extended to the case of a particle confined to a ring. It is shown that the Hamiltonian on a ring in the presence of equal-strength R+D SOI is unitarily equivalent to that of a particle subject to only a spin-independent but θ-dependent potential with the unitary transformation relating the two being again the space-dependent rotation operator characteristic of R+D SOI.

  2. NAMMA SENEGAL RAIN GAUGE NETWORK V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. The Rain Gauge Network...

  3. En-gauging naturalness

    Energy Technology Data Exchange (ETDEWEB)

    Bharucha, Aoife [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Technische Univ. Muenchen, Garching (Germany). Physik-Dept. T31; Goudelis, Andreas [Savoie Univ., CNRS, Annecy-le-Vieux (France). LAPTh; McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-10-15

    The discovery of a 125.5 GeV Higgs with standard model-like couplings and naturalness considerations motivate gauge extensions of the MSSM. We analyse two variants of such an extension and carry out a phenomenological study of regions of the parameter space statisfying current direct and indirect constraints, employing state-of-the-art two-loop RGE evolution and GMSB boundary conditions. We find that due to the appearance of non-decoupled D-terms it is possible to obtain a 125.5 GeV Higgs with stops below 2 TeV, while the uncolored sparticles could still lie within reach of the LHC. We compare the contributions of the stop sector and the non-decoupled D-terms to the Higgs mass, and study their effect on the Higgs couplings. We further investigate the nature of the next-to lightest supersymmetric particle, in light of the GMSB motivated searches currently being pursued by ATLAS and CMS.

  4. Dynamical Messengers for Gauge Mediation

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2011-08-17

    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.

  5. A review of non-commutative gauge theories

    Indian Academy of Sciences (India)

    -commutative space-time operators is reviewed. Examples of 4 theory and QED are then discussed. Problems of extending the theories to () gauge theories and arbitrary charges in QED are considered. Construction of standard model ...

  6. Quantum field theory I foundations and Abelian and non-Abelian gauge theories

    CERN Document Server

    Manoukian, Edouard B

    2016-01-01

    This textbook covers a broad spectrum of developments in QFT, emphasizing those aspects that are now well consolidated and for which satisfactory theoretical descriptions have been provided. The book is unique in that it offers a new approach to the subject and explores many topics merely touched upon, if covered at all, in standard reference works. A detailed and largely non-technical introductory chapter traces the development of QFT from its inception in 1926. The elegant functional differential approach put forward by Schwinger, referred to as the quantum dynamical (action) principle, and its underlying theory are used systematically in order to generate the so-called vacuum-to-vacuum transition amplitude of both abelian and non-abelian gauge theories, in addition to Feynman’s well-known functional integral approach, referred to as the path-integral approach. Given the wealth of information also to be found in the abelian case, equal importance is put on both abelian and non-abelian gauge theories. Pa...

  7. Cosmic Gauge-Field Dark Energy

    Science.gov (United States)

    Devulder, Christopher; Caldwell, Robert

    2017-01-01

    We present a cosmological model in which dark energy consists of a cosmic gauge field. At early times it behaves like radiation; at late times it drives cosmic acceleration. By varying the number of fields, their coupling strength and handedness, a wide range of behavior is shown to emerge. Joint constraints on the model from SNe, BAO and CMB data are presented. We discuss the possibility that the gauge field may seed a spectrum of primordial gravitational waves with a distinct imprint on the power spectrum, as well as act like a dissipative medium for high frequency gravitational waves. We show that this model could have an impact on the B-mode polarization pattern in the CMB, as well as future probes that use standard sirens to constrain the energy budget of the Universe.

  8. A Propellant Mass Gauge Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Liquid-Oxygen Mass Gauge, (LMG) for In-Space cryogenic storage capable of continuous monitoring of...

  9. Optical Rain Gauge Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, Mary Jane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    To improve the quantitative description of precipitation processes in climate models, the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility deploys several types of rain gauges (MET, RAIN, and optical rain gauge [ORG] datastreams) as well as disdrometers (DISD and VDIS datastreams) at the Southern Great Plains (SGP) Site. This handbook deals specifically with the independent analog ORG (i.e., the ORG datastream).

  10. The 3He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic time series site

    Science.gov (United States)

    Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott, D. E., III

    2015-03-01

    We provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic based on a three year time-series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site. We combine the 3He data with a sophisticated noble gas calibrated air-sea gas exchange model to constrain the 3He flux across the sea-air interface, which must closely balance the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate-3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also applied the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost three-fold difference in the nitrate-3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003-2006 is estimated to be 0.65 ± 0.3 mol m-2 y-1, which is ~ 40% smaller than the calculated flux for the period from 1985 to 1988. The difference between the time periods, which is barely significant, may be due to a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by decoupling of 3He and nitrate during obduction of water masses from the main thermocline into the upper ocean.

  11. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model...

  12. The gauge-Higgs legacy of the LHC Run I

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Anja [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany); Éboli, Oscar J.P. [Instituto de Física, Universidade de São Paulo,C.P. 66318, 05315-970, São Paulo SP (Brazil); Gonzalez-Fraile, J. [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany); Gonzalez-Garcia, M.C. [C.N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Departament d’Estructura i Constituents de la Matèria and ICC-UB Universitat de Barcelona,Diagonal 647, 08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig de Lluís Companys 23, 08010 Barcelona (Spain); Plehn, Tilman [Institut für Theoretische Physik, Universität Heidelberg,Philosophenweg 16, 69120 Heidelberg (Germany); Rauch, Michael [Institute for Theoretical Physics, Karlsruhe Institute of Technology,Wolfgang-Gaede-Str. 1, 76131 Karlsruhe (Germany)

    2016-07-29

    The effective Lagrangian expansion provides a framework to study effects of new physics at the electroweak scale. To make full use of LHC data in constraining higher-dimensional operators we need to include both the Higgs and the electroweak gauge sector in our study. We first present an analysis of the relevant di-boson production LHC results to update constraints on triple gauge boson couplings. Our bounds are several times stronger than those obtained from LEP data. Next, we show how in combination with Higgs measurements the triple gauge vertices lead to a significant improvement in the entire set of operators, including operators describing Higgs couplings.

  13. The 3He flux gauge in the Sargasso Sea: a determination of physical nutrient fluxes to the euphotic zone at the Bermuda Atlantic Time-series Site

    Science.gov (United States)

    Stanley, R. H. R.; Jenkins, W. J.; Doney, S. C.; Lott, D. E., III

    2015-09-01

    Significant rates of primary production occur in the oligotrophic ocean, without any measurable nutrients present in the mixed layer, fueling a scientific paradox that has lasted for decades. Here, we provide a new determination of the annual mean physical supply of nitrate to the euphotic zone in the western subtropical North Atlantic. We combine a 3-year time series of measurements of tritiugenic 3He from 2003 to 2006 in the surface ocean at the Bermuda Atlantic Time-series Study (BATS) site with a sophisticated noble gas calibrated air-sea gas exchange model to constrain the 3He flux across the sea-air interface, which must closely mirror the upward 3He flux into the euphotic zone. The product of the 3He flux and the observed subsurface nitrate-3He relationship provides an estimate of the minimum rate of new production in the BATS region. We also apply the gas model to an earlier time series of 3He measurements at BATS in order to recalculate new production fluxes for the 1985 to 1988 time period. The observations, despite an almost 3-fold difference in the nitrate-3He relationship, yield a roughly consistent estimate of nitrate flux. In particular, the nitrate flux from 2003 to 2006 is estimated to be 0.65 ± 0.14 mol m-2 yr-1, which is ~40 % smaller than the calculated flux for the period from 1985 to 1988. The difference in nitrate flux between the time periods may be signifying a real difference in new production resulting from changes in subtropical mode water formation. Overall, the nitrate flux is larger than most estimates of export fluxes or net community production fluxes made locally for the BATS site, which is likely a reflection of the larger spatial scale covered by the 3He technique and potentially also by the decoupling of 3He and nitrate during the obduction of water masses from the main thermocline into the upper ocean. The upward nitrate flux is certainly large enough to support observed rates of primary production at BATS and more generally

  14. 49 CFR 230.43 - Gauge siphon.

    Science.gov (United States)

    2010-10-01

    ... TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.43 Gauge siphon. The steam gauge supply pipe shall have a siphon on it of ample capacity to prevent steam from entering the gauge. The supply pipe shall directly enter the boiler and be maintained steam...

  15. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin [RWTH Aachen Univ. (Germany)

    2007-11-02

    Additional gauge bosons are introduced in many theoretical extensions to the Standard Model. A search for a new heavy charged gauge boson W' decaying into an electron and a neutrino is presented. The data used in this analysis was taken with the D0 detector at the Fermilab proton-antiproton collider at a center-of-mass energy of 1.96 TeV and corresponds to an integrated luminosity of about 1 fb-1. Since no significant excess is observed in the data, an upper limit is set on the production cross section times branching fraction σW'xBr (W' → ev). Using this limit, a W' boson with mass below ~1 TeV can be excluded at the 95% confidence level assuming that the new boson has the same couplings to fermions as the Standard Model W boson.

  16. Local gauge symmetry on optical lattices?

    CERN Document Server

    Liu, Yuzhi; Tsai, Shan-Wen

    2012-01-01

    The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.

  17. Performance of modern tide gauges: towards mm-level accuracy

    Directory of Open Access Journals (Sweden)

    Belén Martín Míguez

    2012-09-01

    Full Text Available Considerable efforts are being made worldwide to upgrade tide gauge networks using new technologies. Because of the unique location of the Kerguelen Islands, the measurement of sea level there has received particular attention, with up to four systems equipped with modern sensors functioning simultaneously (two pressure tide gauges, a radar tide gauge, and a GPS-equipped buoy. We analysed and compared the sea level data obtained with these systems from 2003 to 2010, together with a time series of tide pole observations. This is the first time that a multi-comparison study with tide gauges has been undertaken over such a long time span and that the stability of modern radar tide gauges has been examined. The multi-comparison enabled us to evaluate the performance of the tide gauges in several frequency ranges, identify errors and estimate their magnitude. The drift of the pressure sensors (up to 8.0 mm/yr was found to be one of the most relevant sources of systematic error. Other sources of difference such as clock drift, scale error and different locations of the instruments were also detected. After correcting the time series of sea level for these errors we estimated an upper bound for the radar instrumental error in field condition at ~0.3 cm.

  18. Statistical selection of tide gauges for Arctic sea-level reconstruction

    DEFF Research Database (Denmark)

    Svendsen, Peter Limkilde; Andersen, Ole Baltazar; Nielsen, Allan Aasbjerg

    2015-01-01

    In this paper, we seek an appropriate selection of tide gauges for Arctic Ocean sea-level reconstruction based on a combination of empirical criteria and statistical properties (leverages). Tide gauges provide the only in situ observations of sea level prior to the altimetry era. However, tide...... for the period 1950-2010 for the Arctic Ocean, constrained by tide gauge records, using the basic approach of Church et al. (2004). A major challenge is the sparsity of both satellite and tide gauge data beyond what can be covered with interpolation, necessitating a time-variable selection of tide gauges...... and the use of an ocean circulation model to provide gridded time series of sea level. As a surrogate for satellite altimetry, we have used the Drakkar ocean model to yield the EOFs. We initially evaluate the tide gauges through empirical criteria to reject obvious outlier gauges. Subsequently, we evaluate...

  19. All consistent interactions for exterior form gauge fields

    OpenAIRE

    Henneaux, Marc; Knaepen, Bernard

    1997-01-01

    We give the complete list of all first-order consistent interaction vertices for a set of exterior form gauge fields of form degree >1, described in the free limit by the standard Maxwell-like action. A special attention is paid to the interactions that deform the gauge transformations. These are shown to be necessarily of the Noether form "conserved antisymmetric tensor" times "p-form potential" and exist only in particular spacetime dimensions. Conditions for consistency to all orders in th...

  20. Supersymmetry breaking from superstrings and the gauge hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, M.K. (Lawrence Berkeley Lab., CA (USA) California Univ., Berkeley, CA (USA). Dept. of Physics)

    1990-07-11

    The gauge hierarchy problem is reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 39 refs.

  1. String field theory in the Siegel gauge

    Energy Technology Data Exchange (ETDEWEB)

    Bochicchio, M.

    1987-04-16

    We specialize the gauge-fixing procedure for the Witten action of the open bosonic string, given in a preceding paper, choosing the Siegel gauge. We find that the BRST-invariant gauge-fixed action is the gauge invariant one with ghost number unrestricted plus a gauge-fixing term. The BRST invariance of the measure in the functional integral is briefly discussed. As a technical tool the Hodge dual of a string functional is defined.

  2. Gauge bosons production and properties

    CERN Document Server

    Rebassoo, Finn O'neill

    2015-01-01

    Studies of the production and decay of gauge bosons are an important probe of the electroweak sector of the standard model. Anomalies in these processes could be a sign of new physics, and are an indirect search for physics beyond the scale that can be directly measured at accelerators. The sensitivity to new physics depends on both the experimental uncertainty and standard model theoretical uncertainty, so reducing both of these is important for any discovery of new physics. This article will focus on the experimental measurements of these processes and specifically on results from the last year at the Tevatron and LHC, though relevant earlier measurements will be referenced. In addition to being sensitive to new physics, gauge boson production is a background to a lot of new physics models and Higgs measurements. Thus, measuring these processes precisely is of the utmost importance. Gauge boson production is also an important way to constrain parton distribution functions (pdfs), and test perturbative and n...

  3. Introduzione alle teorie di gauge

    CERN Document Server

    Cabibbo, Nicola; Benhar, Omar

    2016-01-01

    "Introduzione alle Teorie di Gauge" completa la serie di tre volumi basati sulle lezioni dei corsi di Meccanica Quantistica Relativistica, Interazioni Elettrodeboli e Teorie di Gauge, impartite dagli autori agli studenti delle Lauree Magistrali in Fisica e Astronomia & Astrofisica dell'Universita "La Sapienza" di Roma, nell'arco di qualche decennio. L'obiettivo principale del volume è di introdurre i concetti di base della rinormalizzazione nella teoria quantistica dei campi e i fondamenti delle moderne teorie di Gauge. Anche se collegato ai volumi precedenti, il libro si presta ad una lettura indipendente, che presume solo conoscenze generali di relativita speciale, della seconda quantizzazione e della fenomenologia delle interazioni elettrodeboli. Lo strumento di base è l'integrale sui cammini di Feynman, introdotto nei capitoli iniziali e sistematicamente impiegato nel seguito. L'esposizione segue un percorso pedagogico, che parte dal caso semplice dell'ampiezza di transizione in meccanica quantistic...

  4. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  5. Carbon nanotubes based vacuum gauge

    Science.gov (United States)

    Rudyk, N. N.; Il’in, O. I.; Il’ina, M. V.; Fedotov, A. A.; Klimin, V. S.; Ageev, O. A.

    2017-11-01

    We have created an ionization type Vacuum gauge with sensor element based on an array of vertically aligned carbon nanotubes. Obtained asymmetrical current-voltage characteristics at different voltage polarity on the electrode with the CNTs. It was found that when applying a negative potential on an electrode with the CNTs, the current in the gap is higher than at a positive potential. In the pressure range of 1 ÷ 103 Torr vacuum gauge sensitivity was 6 mV/Torr (at a current of 4.5·10-5 A) and in the range of 10-5 ÷ 1 Torr was 10 mV/Torr (at a current of 1.3·10-5 A). It is shown that the energy efficiency of vacuum gauge can be increased in the case where electrode with CNT operates as an emitter of electrons.

  6. Air Gauge Characteristics Linearity Improvement

    Directory of Open Access Journals (Sweden)

    Cz. J. Jermak

    2016-01-01

    Full Text Available This paper discusses calibration uncertainty and linearity issues of the typical back-pressure air gauge. In this sort of air gauge, the correlation between the measured dimension (represented by the slot width and the air pressure in the measuring chamber is used in a proportional range. However, when high linearity is required (e.g., nonlinearity less than 1%, the measuring range should be shortened. In the proposed method, based on knowledge of the static characteristics of air gauges, the measuring range is kept unchanged but the nonlinearity is decreased. The static characteristics may be separated into two sections, each of them approximated with a different linear function. As a result, the nonlinearity is reduced from 5% down to 1% and even below.

  7. Characterisation of an Optical Strain Gauge for Pantograph Applications

    Directory of Open Access Journals (Sweden)

    R. Khanniche

    2005-09-01

    Full Text Available An optical strain gauge is developed and characterised for an active pantograph for high-speed electrical trains applications. Indeed, the pantograph is subjected to a continuous impact forces when it makes contact with the 25 kV overhead ac line. To detect load behaviour experienced, by the electrical pick-up on the pantograph, tests were carried out. The results show that the strain gauge responded linearly to static load over the range 0 to 80 Newton. Also, a high repeatability was achieved and acceptable amount of hysterisis was experienced. The influence of the electromagnetic field on the optical strain gauge was sufficiently weak to be neglected. Beside that the optical strain gauge has proved a high resistance to time varying forces.

  8. Gauge theory and variational principles

    CERN Document Server

    Bleecker, David

    2005-01-01

    This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas.Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field

  9. Dynamics of gauge field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino, E-mail: stephon.alexander@dartmouth.edu, E-mail: dhrubo.jyoti@dartmouth.edu, E-mail: kosowsky@pitt.edu, E-mail: marciano@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)

    2015-05-01

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  10. Dynamics of gauge field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)

    2015-05-05

    We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.

  11. Dark Coupling and Gauge Invariance

    CERN Document Server

    Gavela, M B; Mena, O; Rigolin, S

    2010-01-01

    We study a coupled dark energy-dark matter model in which the energy-momentum exchange is proportional to the Hubble expansion rate. The inclusion of its perturbation is required by gauge invariance. We derive the linear perturbation equations for the gauge invariant energy density contrast and velocity of the coupled fluids, and we determine the initial conditions. The latter turn out to be adiabatic for dark energy, when assuming adiabatic initial conditions for all the standard fluids. We perform a full Monte Carlo Markov Chain likelihood analysis of the model, using WMAP 7-year data.

  12. Stream Gauges and Satellite Measurements

    Science.gov (United States)

    Alsdorf, D. E.

    2010-12-01

    Satellite measurements should not be viewed as a replacement for stream gauges. However, occasionally it is suggested that because satellite-based measurements can provide river discharge, a motivation for satellite approaches is an increasing lack of stream gauges. This is an argument for more stream gauges, but not necessarily for satellite measurements. Rather, in-situ and spaceborne methods of estimating discharge are complementary. Stream gauges provide frequent measurements at one point in the river reach whereas satellites have the potential to measure throughout all reaches but at orbital repeat intervals of days to weeks. The Surface Water and Ocean Topography satellite mission (SWOT) is an opportunity to further develop these complements. The motivation for SWOT, and indeed for any satellite based method of estimating discharge, should not be as a replacement for stream gauges. Scientific and application uses should motivate the measurements. For example, understanding floods with their dynamic water surfaces are best sampled from remote platforms that provide water surface elevations throughout the floodwave. As another example, today’s water and energy balance models are giving outputs at increasing spatial resolution and are making use of water surface elevations throughout the modeled basin. These models require a similar resolution in the calibrating and validating observations. We should also be aware of practical limitations. In addition to providing spatially distributed hydrodynamic measurements on rivers, SWOT will be able to measure storage changes in the estimated 30 million lakes in the world that are larger than a hectare. Knowing the storage changes in these lakes is especially important in certain regions such as the Arctic but gauging even a small fraction of these is impractical. Another motivator for satellite methods is that even in the presence of stream gauges, discharge data is not always well shared throughout all countries

  13. An introduction to gauge theories

    CERN Document Server

    Cabibbo, Nicola; Benhar, Omar

    2017-01-01

    Written by three of the world's leading experts on particle physics and the standard model, including an award-winning former director general of CERN, this book provides a completely up-to-date account of gauge theories. Starting from Feynman’s path integrals, Feynman rules are derived, gauge fixing and Faddeev-Popov ghosts are discussed, and renormalization group equations are derived. Several important applications to quantum electrodynamics and quantum chromodynamics (QCD) are discussed, including the one-loop derivation of asymptotic freedom for QCD.

  14. Some observations on interpolating gauges and non-covariant gauges

    Indian Academy of Sciences (India)

    tion that are not normally taken into account in the BRST formalism that ignores the ε-term, and that they are characteristic of the way the singularities in propagators are handled. We argue that a prescription, in general, will require renormalization; if at all it is to be viable. Keywords. Non-covariant gauges; interpolating ...

  15. Comparison between length and velocity gauges in quantum simulations of high-order harmonic generation

    DEFF Research Database (Denmark)

    Han, Yong-Chang; Madsen, Lars Bojer

    2010-01-01

    We solve the time-dependent Schrödinger equation for atomic hydrogen in an intense field using spherical coordinates with a radial grid and a spherical harmonic basis for the angular part. We present the high-order harmonic spectra based on three different forms, the dipole, dipole velocity......, and acceleration forms, and two gauges, the length and velocity gauges. The relationships among the harmonic phases obtained from the Fourier transform of the three forms are discussed in detail. Although quantum mechanics is gauge invariant and the length and velocity gauges should give identical results, the two...... gauges present different computation efficiencies, which reflects the different behavior in terms of characteristics of the physical couplings acting in the two gauges. In order to obtain convergence, more angular momentum states are required in the length gauge, while more grid points are required...

  16. Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale

    Science.gov (United States)

    Bellon, Marc P.; Clavier, Pierre J.

    2017-10-01

    Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.

  17. Quantum statistical field theory an introduction to Schwinger's variational method with Green's function nanoapplications, graphene and superconductivity

    CERN Document Server

    Morgenstern Horing, Norman J

    2017-01-01

    This book provides an introduction to the methods of coupled quantum statistical field theory and Green's functions. The methods of coupled quantum field theory have played a major role in the extensive development of nonrelativistic quantum many-particle theory and condensed matter physics. This introduction to the subject is intended to facilitate delivery of the material in an easily digestible form to advanced undergraduate physics majors at a relatively early stage of their scientific development. The main mechanism to accomplish this is the early introduction of variational calculus and the Schwinger Action Principle, accompanied by Green's functions. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green's function equations-of-motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and nonequilibrium Green's functions...

  18. Revisiting the equation of state of hybrid stars in the Dyson-Schwinger equation approach to QCD

    Science.gov (United States)

    Bai, Zhan; Chen, Huan; Liu, Yu-xin

    2018-01-01

    We investigate the equation of state (EoS) and the effect of the hadron-quark phase transition of strong interaction matter in compact stars. The hadron matter is described with the relativistic mean field theory, and the quark matter is described with the Dyson-Schwinger equation approach of QCD. The complete EoS of the hybrid star matter is constructed with not only the Gibbs construction but also the 3-window interpolation. The mass-radius relation of hybrid stars is also investigated. We find that, although the EoS of both the hadron matter with hyperon and Δ -baryon and the quark matter are generally softer than that of the nucleon matter, the 3-window interpolation construction may provide an EoS stiff enough for a hybrid star with mass exceeding 2 M⊙ and, in turn, solve the so-called "hyperon puzzle."

  19. Alien calculus and a Schwinger-Dyson equation: two-point function with a nonperturbative mass scale

    Science.gov (United States)

    Bellon, Marc P.; Clavier, Pierre J.

    2018-02-01

    Starting from the Schwinger-Dyson equation and the renormalization group equation for the massless Wess-Zumino model, we compute the dominant nonperturbative contributions to the anomalous dimension of the theory, which are related by alien calculus to singularities of the Borel transform on integer points. The sum of these dominant contributions has an analytic expression. When applied to the two-point function, this analysis gives a tame evolution in the deep euclidean domain at this approximation level, making doubtful the arguments on the triviality of the quantum field theory with positive β -function. On the other side, we have a singularity of the propagator for timelike momenta of the order of the renormalization group invariant scale of the theory, which has a nonperturbative relationship with the renormalization point of the theory. All these results do not seem to have an interpretation in terms of semiclassical analysis of a Feynman path integral.

  20. Leading-order calculation of hadronic contributions to the Muon g-2 using the Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Goecke, Tobias [Institut fuer Theoretische Physik, Universitaet Giessen, 35392 Giessen (Germany); Fischer, Christian S., E-mail: christian.fischer@theo.physik.uni-giessen.de [Institut fuer Theoretische Physik, Universitaet Giessen, 35392 Giessen (Germany); Gesellschaft fuer Schwerionenforschung mbH, Planckstr. 1, D-64291 Darmstadt (Germany); Williams, Richard [Dept. Fisica Teorica I, Universidad Complutense, 28040 Madrid (Spain)

    2011-10-13

    We present a calculation of the hadronic vacuum polarisation (HVP) tensor within the framework of Dyson-Schwinger equations. To this end we use a well-established phenomenological model for the quark-gluon interaction with parameters fixed to reproduce hadronic observables. From the HVP tensor we compute both the Adler function and the HVP contribution to the anomalous magnetic moment of the muon, a{sub {mu}}. We find a{sub {mu}}{sup HVP}=6760x10{sup -11} which deviates about two percent from the value extracted from experiment. Additionally, we make comparison with a recent lattice determination of a{sub {mu}}{sup HVP} and find good agreement within our approach. We also discuss the implications of our result for a corresponding calculation of the hadronic light-by-light scattering contribution to a{sub {mu}.}

  1. Quantum gauge freedom in very special relativity

    Directory of Open Access Journals (Sweden)

    Sudhaker Upadhyay

    2017-02-01

    Full Text Available We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell as well as for Abelian two-form gauge theory in the very special relativity (VSR framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  2. Quantum gauge freedom in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Centre for Theoretical Studies, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal (India); Panigrahi, Prasanta K., E-mail: pprasanta@iiserkol.ac.in [Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal (India)

    2017-02-15

    We demonstrate Yokoyama gaugeon formalism for the Abelian one-form gauge (Maxwell) as well as for Abelian two-form gauge theory in the very special relativity (VSR) framework. In VSR scenario, the extended action due to introduction of gaugeon fields also possesses form invariance under quantum gauge transformations. It is observed that the gaugeon field together with gauge field naturally acquire mass, which is different from the conventional Higgs mechanism. The quantum gauge transformation implements a shift in gauge parameter. Further, we analyze the BRST symmetric gaugeon formalism in VSR which embeds only one subsidiary condition rather than two.

  3. Tracer gauge: an automated dye dilution gauging system for ice-affected streams

    Science.gov (United States)

    Clow, D.W.; Fleming, A.C.

    2008-01-01

    In-stream flow protection programs require accurate, real-time streamflow data to aid in the protection of aquatic ecosystems during winter base flow periods. In cold regions, however, winter streamflow often can only be estimated because in-channel ice causes variable backwater conditions and alters the stage-discharge relation. In this study, an automated dye dilution gauging system, a tracer gauge, was developed for measuring discharge in ice-affected streams. Rhodamine WT is injected into the stream at a constant rate, and downstream concentrations are measured with a submersible fluorometer. Data loggers control system operations, monitor key variables, and perform discharge calculations. Comparison of discharge from the tracer gauge and from a Cipoletti weir during periods of extensive ice cover indicated that the root-mean-square error of the tracer gauge was 0.029 m3 s−1, or 6.3% of average discharge for the study period. The tracer gauge system can provide much more accurate data than is currently available for streams that are strongly ice affected and, thus, could substantially improve management of in-stream flow protection programs during winter in cold regions. Care must be taken, however, to test for the validity of key assumptions, including complete mixing and conservative behavior of dye, no changes in storage, and no gains or losses of water to or from the stream along the study reach. These assumptions may be tested by measuring flow-weighted dye concentrations across the stream, performing dye mass balance analyses, and evaluating breakthrough curve behavior.

  4. Gauged multisoliton baby Skyrme model

    Science.gov (United States)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  5. Spacetime Metrics from Gauge Potentials

    Directory of Open Access Journals (Sweden)

    Ettore Minguzzi

    2014-03-01

    Full Text Available I present an approach to gravity in which the spacetime metric is constructed from a non-Abelian gauge potential with values in the Lie algebra of the group U(2 (or the Lie algebra of quaternions. If the curvature of this potential vanishes, the metric reduces to a canonical curved background form reminiscent of the Friedmann S3 cosmological metric.

  6. A 2-D imaging heat-flux gauge

    Energy Technology Data Exchange (ETDEWEB)

    Noel, B.W.; Borella, H.M. (Los Alamos National Lab., NM (United States)); Beshears, D.L.; Sartory, W.K.; Tobin, K.W.; Williams, R.K. (Oak Ridge National Lab., TN (United States)); Turley, W.D. (EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations)

    1991-07-01

    This report describes a new leadless two-dimensional imaging optical heat-flux gauge. The gauge is made by depositing arrays of thermorgraphic-phosphor (TP) spots onto the faces of a polymethylpentene is insulator. In the first section of the report, we describe several gauge configurations and their prototype realizations. A satisfactory configuration is an array of right triangles on each face that overlay to form squares when the gauge is viewed normal to the surface. The next section of the report treats the thermal conductivity of TPs. We set up an experiment using a comparative longitudinal heat-flow apparatus to measure the previously unknown thermal conductivity of these materials. The thermal conductivity of one TP, Y{sub 2}O{sub 3}:Eu, is 0.0137 W/cm{center dot}K over the temperature range from about 300 to 360 K. The theories underlying the time response of TP gauges and the imaging characteristics are discussed in the next section. Then we discuss several laboratory experiments to (1) demonstrate that the TP heat-flux gauge can be used in imaging applications; (2) obtain a quantum yield that enumerates what typical optical output signal amplitudes can be obtained from TP heat-flux gauges; and (3) determine whether LANL-designed intensified video cameras have sufficient sensitivity to acquire images from the heat-flux gauges. We obtained positive results from all the measurements. Throughout the text, we note limitations, areas where improvements are needed, and where further research is necessary. 12 refs., 25 figs., 4 tabs.

  7. On magnetohydrodynamic gauge field theory

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2017-06-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.

  8. Improving Rainfall Erosivity Estimates Using Merged TRMM and Gauge Data

    Directory of Open Access Journals (Sweden)

    Hongfen Teng

    2017-11-01

    Full Text Available Soil erosion is a global issue that threatens food security and causes environmental degradation. Management of water erosion requires accurate estimates of the spatial and temporal variations in the erosive power of rainfall (erosivity. Rainfall erosivity can be estimated from rain gauge stations and satellites. However, the time series rainfall data that has a high temporal resolution are often unavailable in many areas of the world. Satellite remote sensing allows provision of the continuous gridded estimates of rainfall, yet it is generally characterized by significant bias. Here we present a methodology that merges daily rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM 3B42 data using collocated cokriging (ColCOK to quantify the spatial distribution of rainfall and thereby to estimate rainfall erosivity across China. This study also used block kriging (BK and TRMM to estimate rainfall and rainfall erosivity. The methodologies are evaluated based on the individual rain gauge stations. The results from the present study generally indicate that the ColCOK technique, in combination with TRMM and gauge data, provides merged rainfall fields with good agreement with rain gauges and with the best accuracy with rainfall erosivity estimates, when compared with BK gauges and TRMM alone.

  9. NAMMA SENEGAL RAIN GAUGE NETWORK V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA Senegal Rain Gauge Network consisted of 40 rain gauge sites (AMMA 1-40) located in various places throughout Senegal, West Africa. These data files were...

  10. Calibration of pressure gauge for Cherenkov detector

    CERN Document Server

    Saponjic, Nevena

    2013-01-01

    Solartron/Hamilton pressure gauges are used to monitor the gas pressure in the particle beam detectors installed in the experimental areas. Here is description of the test bench for the calibration of these gauges in Labview.

  11. Emergent Abelian Gauge Fields from Noncommutative Gravity

    Directory of Open Access Journals (Sweden)

    Allen Stern

    2010-02-01

    Full Text Available We construct exact solutions to noncommutative gravity following the formulation of Chamseddine and show that they are in general accompanied by Abelian gauge fields which are first order in the noncommutative scale. This provides a mechanism for generating cosmological electromagnetic fields in an expanding space-time background, and also leads to multipole-like fields surrounding black holes. Exact solutions to noncommutative Einstein-Maxwell theory can give rise to first order corrections to the metric tensor, as well as to the electromagnetic fields. This leads to first order shifts in the horizons of charged black holes.

  12. Gauge theory: form Physics to Geometry

    OpenAIRE

    Bruzzo, Ugo

    2010-01-01

    Maxwell theory may be regarded as a prototype of gauge theory and generalized to nonabelian gauge theory. We briefly sketch the history of gauge theories, from Maxwell to Yang-Mills theory, and the identification of gauge fields with connections on fibre bundles. We introduce the notion of instanton and consider the moduli spaces of such objects. Finally, we discuss some modern techniques for studying the topology of these moduli spaces.

  13. Theorems for asymptotic safety of gauge theories

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-06-01

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasised. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.

  14. Split Dimensional Regularization for the Temporal Gauge

    OpenAIRE

    Chen, Yaw-Hwang; Hsieh, Ron-Jou; Lin, Chilong

    1996-01-01

    A split dimensional regularization, which was introduced for the Coulomb gauge by Leibbrandt and Williams, is used to regularize the spurious singularities of Yang-Mills theory in the temporal gauge. Typical one-loop split dimensionally regularized temporal gauge integrals, and hence the renormalization structure of the theory are shown to be the same as those calculated with some nonprincipal-value prescriptions.

  15. Chiral gauge theories with domain wall fermions

    OpenAIRE

    Golterman, M.; Jansen, K.; Petcher, D.; Vink, J.

    1993-01-01

    We have investigated a proposal to construct chiral gauge theories on the lattice using domain wall fermions. The model contains two opposite chirality zeromodes, which live on two domain walls. We couple only one of them to a gauge field, but find that mirror fermions which also couple to the gauge field always seem to exist.

  16. Nonequilibrium formulation of abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Zoeller, Thorsten

    2013-09-01

    This work is about a formulation of abelian gauge theories out-of-equilibrium. In contrast to thermal equilibrium, systems out-of-equilibrium are not constant in time, and the interesting questions in such systems refer to time evolution problems. After a short introduction to quantum electrodynamics (QED), the two-particle irreducible (2PI) effective action is introduced as an essential technique for the study of quantum field theories out-of-equilibrium. The equations of motion (EOMs) for the propagators of the theory are then derived from it. It follows a discussion of the physical degrees of freedom (DOFs) of the theory, in particular with respect to the photons, since in covariant formulations of gauge theories unphysical DOFs are necessarily contained. After that the EOMs for the photon propagator are examined more closely. It turns out that they are structurally complicated, and a reformulation of the equations is presented which for the untruncated theory leads to an essential structural simplification of the EOMs. After providing the initial conditions which are necessary in order to solve the EOMs, the free photon EOMs are solved with the help of the reformulated equations. It turns out that the solutions diverge in time, i.e. they are secular. This is a manifestation of the fact that gauge theories contain unphysical DOFs. It is reasoned that these secularities exist only in the free case and are therefore ''artificial''. It is however emphasized that they may not be a problem in principle, but certainly are in practice, in particular for the numerical solution of the EOMs. Further, the origin of the secularities, for which there exists an illustrative explanation, is discussed in more detail. Another characteristic feature of 2PI formulations of gauge theories is the fact that quantities calculated from approximations of the 2PI effective action, which are gauge invariant in the exact theory as well as in an approximated theory at

  17. Scattering amplitudes in gauge theories

    CERN Document Server

    Henn, Johannes M

    2014-01-01

    At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge.   These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...

  18. Geometrodynamics of gauge fields on the geometry of Yang-Mills and gravitational gauge theories

    CERN Document Server

    Mielke, Eckehard W

    2016-01-01

    This monograph aims to provide a unified, geometrical foundation of gauge theories of elementary particle physics. The underlying geometrical structure is unfolded in a coordinate-free manner via the modern mathematical notions of fibre bundles and exterior forms. Topics such as the dynamics of Yang-Mills theories, instanton solutions and topological invariants are included. By transferring these concepts to local space-time symmetries, generalizations of Einstein's theory of gravity arise in a Riemann-Cartan space with curvature and torsion. It provides the framework in which the (broken) Poincaré gauge theory, the Rainich geometrization of the Einstein-Maxwell system, and higher-dimensional, non-abelian Kaluza-Klein theories are developed. Since the discovery of the Higgs boson, concepts of spontaneous symmetry breaking in gravity have come again into focus, and, in this revised edition, these will be exposed in geometric terms. Quantizing gravity remains an open issue: formulating it as a de Sitter t...

  19. On Magnetohydrodynamic Gauge Field Theory

    OpenAIRE

    Webb, G. M.; Anco, S. C.

    2017-01-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector ${\\bf P}$ in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction ${\\bf B}$, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of ${\\bf B}$ is zero), is incorporated in the variational principle...

  20. Dryson equations, Ward identities, and the infrared behavior of Yang-Mills theories. [Schwinger-Dyson equations, Slavnov-Taylor identities

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.

    1979-01-01

    It was shown using the Schwinger-Dyson equations and the Slavnov-Taylor identities of Yang-Mills theory that no inconsistency arises if the gluon propagator behaves like (1/p/sup 2/)/sup 2/ for small p/sup 2/. To see whether the theory actually contains such singular long range behavior, a nonperturbative closed set of equations was formulated by neglecting the transverse parts of GAMMA and GAMMA/sub 4/ in the Schwinger-Dyson equations. This simplification preserves all the symmetries of the theory and allows the possibility for a singular low-momentum behavior of the gluon propagator. The justification for neglecting GAMMA/sup (T)/ and GAMMA/sub 4//sup (T)/ is not evident but it is expected that the present study of the resulting equations will elucidate this simplification, which leads to a closed set of equations.

  1. Asymptotically Free Gauge Theories. I

    Science.gov (United States)

    Wilczek, Frank; Gross, David J.

    1973-07-01

    Asymptotically free gauge theories of the strong interactions are constructed and analyzed. The reasons for doing this are recounted, including a review of renormalization group techniques and their application to scaling phenomena. The renormalization group equations are derived for Yang-Mills theories. The parameters that enter into the equations are calculated to lowest order and it is shown that these theories are asymptotically free. More specifically the effective coupling constant, which determines the ultraviolet behavior of the theory, vanishes for large space-like momenta. Fermions are incorporated and the construction of realistic models is discussed. We propose that the strong interactions be mediated by a "color" gauge group which commutes with SU(3)xSU(3). The problem of symmetry breaking is discussed. It appears likely that this would have a dynamical origin. It is suggested that the gauge symmetry might not be broken, and that the severe infrared singularities prevent the occurrence of non-color singlet physical states. The deep inelastic structure functions, as well as the electron position total annihilation cross section are analyzed. Scaling obtains up to calculable logarithmic corrections, and the naive lightcone or parton model results follow. The problems of incorporating scalar mesons and breaking the symmetry by the Higgs mechanism are explained in detail.

  2. Gauge fixing and the gibbs phenomenon

    Science.gov (United States)

    Mandula, Jeffrey E.

    1999-03-01

    We address the question of why global gauge fixing, specifically to the lattice Landau gauge, becomes an extremely lengthy process for large lattices. We construct an artificial "gauge-fixing" problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polynomials. The series converges slowly, as expected. It also converges non-uniformly, which is an observed characteristic of gauge fixing. In the limiting example, the non-uniformity arises through the Gibbs phenomenon.

  3. Gauge fixing and the gibbs phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Mandula, Jeffrey E

    1999-03-01

    We address the question of why global gauge fixing, specifically to the lattice Landau gauge, becomes an extremely lengthy process for large lattices. We construct an artificial 'gauge-fixing' problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polynomials. The series converges slowly, as expected. It also converges non-uniformly, which is an observed characteristic of gauge fixing. In the limiting example, the non-uniformity arises through the Gibbs phenomenon.

  4. Rapid Thermalization by Baryon Injection in Gauge/Gravity Duality

    CERN Document Server

    Hashimoto, Koji; Oka, Takashi

    2011-01-01

    Using the AdS/CFT correspondence for strongly coupled gauge theories, we calculate thermalization of mesons caused by a time-dependent change of a baryon number chemical potential. On the gravity side, the thermalization corresponds to a horizon formation on the probe flavor brane in the AdS throat. Since heavy ion collisions are locally approximated by a sudden change of the baryon number chemical potential, we discuss implication of our results to RHIC and LHC experiments, to find a rough estimate of rather rapid thermalization time-scale t_{th} < 1 [fm/c]. We also discuss universality of our analysis against varying gauge theories.

  5. The fate of unstable gauge flux compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [McMaster Univ., Hamilton, ON (Canada). Dept. of Physics and Astronomy]|[Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Parameswaran, S.L. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Zavala, I. [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.

    2008-12-15

    Fluxes are widely used to stabilise extra dimensions, but the supporting monopolelike configurations are often unstable, particularly if they arise as gauge flux within a non-abelian gauge sector. We here seek the endpoint geometries to which this instability leads, focussing on the simplest concrete examples: sphere-monopole compactifications in six dimensions. Without gravity most monopoles in non-abelian gauge groups are unstable, decaying into the unique stable monopole in the same topological class. We show that the same is true in Einstein-YM systems, with the new twist that the decay leads to a shrinkage in the size of the extra dimensions and curves the non-compact directions: in D dimensions a Mink{sub D-2} x S{sub 2} geometry supported by an unstable monopole relaxes to AdS{sub D-2} x S{sub 2}, with the endpoint sphere smaller than the initial one. For supergravity the situation is more complicated because the dilaton obstructs such a simple evolution. The endpoint instead acquires a dilaton gradient, thereby breaking some of the spacetime symmetries. For 6D supergravity we argue that it is the 4D symmetries that break, and examine several candidates for the endpoint geometry. By using the trick of dimensional oxidation it is possible to recast the supergravity system as a higher-dimensional Einstein-YM monopole, allowing understanding of this system to guide us to the corresponding endpoint. The result is a Kasner-like geometry conformal to Mink{sub 4} times S{sub 2}, with nontrivial conformal factor and dilaton breaking the maximal 4D symmetry and generating a singularity. Yet the resulting configuration has a lower potential energy than did the initial one, and is perturbatively stable, making it a sensible candidate endpoint for the evolution. (orig.)

  6. Nuclear gauge application in road industry

    Science.gov (United States)

    Azmi Ismail, Mohd

    2017-11-01

    Soil compaction is essential in road construction. The evaluation of the degree of compaction relies on the knowledge of density and moisture of the compacted layers is very important to the performance of the pavement structure. Among the various tests used for making these determinations, the sand replacement density test and the moisture content determination by oven drying are perhaps the most widely used. However, these methods are not only time consuming and need wearisome procedures to obtain the results but also destructive and the number of measurements that can be taken at any time is limited. The test can on be fed back to the construction site the next day. To solve these problems, a nuclear technique has been introduced as a quicker and easier way of measuring the density and moisture of construction materials. Nuclear moisture density gauges have been used for many years in pavement construction as a method of non-destructive density testing The technique which can determine both wet density and moisture content offers an in situ method for construction control at the work site. The simplicity, the speed, and non-destructive nature offer a great advantage for quality control. This paper provides an overview of nuclear gauge application in road construction and presents a case study of monitoring compaction status of in Sedenak - Skudai, Johor rehabilitation projects.

  7. Gauge Properties Of The Guiding Center Variational Symplectic Integrator

    Energy Technology Data Exchange (ETDEWEB)

    J. Squire, H. Qin and W. Tang

    2012-03-05

    Recently, variational symplectic algorithms have been developed for the long-time simulation of charged particles in magnetic fields1-3. As a direct consequence of their derivation from a discrete variational principle, these algorithms have very good long-time energy conservation, as well as exactly preserving discrete momenta. We present stability results for these algorithms, focusing on understanding how explicit variational integrators can be designed for this type of system. It is found that for explicit algorithms an instability arises because the discrete symplectic structure does not become the continuous structure in the t → 0 limit. We examine how a generalized gauge transformation can be used to put the Lagrangian in the "antisymmetric discretization gauge," in which the discrete symplectic structure has the correct form, thus eliminating the numerical instability. Finally, it is noted that the variational guiding center algorithms are not electromagnetically gauge invariant. By designing a model discrete Lagrangian, we show that the algorithms are approximately gauge invariant as long as A and are relatively smooth. A gauge invariant discrete Lagrangian is very important in a variational particle-in-cell algorithm where it ensures current continuity and preservation of Gauss's law4.

  8. Measurement of low shock pressures with piezoresistive carbon gauges.

    Science.gov (United States)

    Krehl, P

    1978-10-01

    A new sensitive technique which permits the detection of small pressures in shock waves down to 5 bars with good time resolution has been developed. It consists of a pulsed double-compensated Wheatstone bridge in conjunction with piezoresistive carbon gauge transducers. It is shown that the advantages of piezoresistive gauges, such as short rise time, small dimensions, and in-material stress measurement, may be utilized for low shock pressure recording even in explosive environments, an area previously dominated by piezoelectric gauges. Comparative data for the two types of sensors are presented for shock tube side-on and head-on collision experiments and underwater explosions. This new development opens the possibility of PRG applications in classical fields of low shock pressure recording such as gas dynamics and underwater explosions.

  9. A lattice formulation of chiral gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Bodwin, G.T. [Argonne National Lab., IL (United States). High Energy Physics Div.

    1995-12-01

    The authors present a method for formulating gauge theories of chiral fermions in lattice field theory. The method makes use of a Wilson mass to remove doublers. Gauge invariance is then restored by modifying the theory in two ways: the magnitude of the fermion determinant is replaced with the square root of the determinant for a fermion with vector-like couplings to the gauge field; a double limit is taken in which the lattice spacing associated with the fermion field is taken to zero before the lattice spacing associated with the gauge field. The method applies only to theories whose fermions are in an anomaly-free representation of the gauge group. They also present a related technique for computing matrix elements of operators involving fermion fields. Although the analyses of these methods are couched in weak-coupling perturbation theory, it is argued that computational prescriptions are gauge invariant in the presence of a nonperturbative gauge-field configuration.

  10. A gauge-invariant reorganization of thermal gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Su, Nan

    2010-07-01

    This dissertation is devoted to the study of thermodynamics for quantum gauge theories. The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in m{sub D}/T, m{sub f}/T and e{sup 2}, where m{sub D} and m{sub f} are the photon and electron thermal masses, respectively, and e is the coupling constant. I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e {proportional_to} 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in m{sub D}/T and g{sup 2}, where m{sub D} is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T {proportional_to} 2 - 3 T{sub c}. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC. (orig.)

  11. OTDR strain gauge for smart skins

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1993-09-01

    Optical time-domain reflectometry (OTDR) is a simple and rugged technique for measuring quantities such as strain that affect the propagation of light in an optical fiber. For engineering applications of OTDR, it is important to know the repeatable limits of its performance. The author constructed an OTDR-based, submillimeter resolution strain measurement system from off-the-shelf components. The systems repeatably resolves changes in time of flight to within {plus_minus}2 ps. Using a 1-m, single-mode fiber as a gauge and observing the time of flight between Fresnel reflections, a repeatable sensitivity of 400 microstrains was observed. Using the same fiber to connect the legs of a 3-dB directional coupler to form a loop, a repeatable sensitivity of 200 microstrains was observed. Realizable changes to the system that should improve the repeatable sensitivity to 20 microstrains or less are discussed.

  12. Improved fast response pressure gauge for shock reflection studies in ionized gases.

    Science.gov (United States)

    Hanson, R. K.; Baganoff, D.

    1972-01-01

    An improved design is presented for a fast response pressure gauge (0.1 microsec risetime) suitable for short duration measurements on the end wall of a shock tube. The design includes standard components to facilitate gauge construction, and it utilizes dual capacitive sensing elements together with a signal differencing scheme to permit use of the gauge in ionized gases. Pressure-time records obtained with the gauge are presented showing details of pressure profiles on the shock tube end wall for reflecting shock waves in ionized gases.

  13. Assessment of respiratory effort by means of strain gauges and esophageal pressure swings: a comparative study.

    Science.gov (United States)

    Boudewyns, A; Willemen, M; Wagemans, M; De Cock, W; Van de Heyning, P; De Backer, W

    1997-02-01

    We characterized apneas by a quantitative method (esophageal pressure measurements) and by a qualitative method (strain gauges) at the same time in 22 patients with sleep-related breathing disorders. Detection of respiratory effort by strain gauges significantly overestimated the total number of central apneas in each patient. Despite this overestimation, none of the patients was wrongly diagnosed as having pure central sleep apnea syndrome. Strain gauges are sufficiently reliable for the characterization of apneas in most patients. When strain gauges reveal that most apneas are central in origin, verification by esophageal pressure measurements is recommended.

  14. The energy–momentum tensor(s) in classical gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Daniel N., E-mail: dblaschke@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gieres, François, E-mail: gieres@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Reboud, Méril, E-mail: meril.reboud@ens-lyon.fr [Institut de Physique Nucléaire de Lyon, Université de Lyon, Université Claude Bernard Lyon 1 and CNRS/IN2P3, Bat. P. Dirac, 4 rue Enrico Fermi, F-69622 Villeurbanne (France); Ecole Normale Supérieure de Lyon, 46 allée d' Italie, F-69364 Lyon CEDEX 07 (France); Schweda, Manfred, E-mail: mschweda@tph.tuwien.ac.at [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna (Austria)

    2016-11-15

    We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  15. The energy–momentum tensor(s in classical gauge theories

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke

    2016-11-01

    Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  16. Gauge turbulence, topological defect dynamics, and condensation in Higgs models

    Energy Technology Data Exchange (ETDEWEB)

    Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)

    2014-10-15

    The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.

  17. So, how much of the Earth's surface is covered by rain gauges?

    Science.gov (United States)

    Kidd, Chris; Huffman, George; Kirschbaum, Dalia; Skofronick-Jackson, Gail; Joe, Paul; Muller, Catherine

    2014-05-01

    The measurement of global precipitation, both rainfall and snowfall, is of critical importance to a wide range of users and applications. The fundamental means of measuring precipitation is the rain gauge. Although rain gauges have many drawbacks (including not measuring snowfall well), they remain the de facto source of precipitation information across the Earth surface for hydro-meteorological purposes. While the accuracy and representative of each gauge can be assessed and monitored, a key limitation of rain and snow gauges is in their distribution across the globe. Gauges tend to be limited to the land surface where their distribution and density is very variable, while over the oceans very few gauges are available and measurements available at island locations may not truly represent those of the surrounding oceans. The total numbers of gauges across the Earth, as noted in the literature, varies greatly primarily due to temporal sampling resolutions, periods of operation, the latency of the data and the availability of the data. These numbers range from a few thousand which are available in near real time, to an estimated hundreds of thousands if one includes all available 'official' gauges (this number might swell more if all amateur gauges are included, with crowdsourcing capable of providing even more). Considering those gauges that are routinely used in the generation of global precipitation products (i.e. those available and of reasonable quality), the physical area covered by rain gauges varies by a factor of about 25. Calculations suggest that if all available rain gauges are included, they would cover between 120 and 3,000 m2. For comparison, equivalent areas range from 267 m2 for the centre circle of a football (soccer) pitch, or about 260 m2 for a tennis court to about 3,000 m2 for half a football pitch. Each gauge should represent more than just the orifice of the gauge itself, however, observations and modelling suggest that the correlation

  18. A generalization of gauge invariance

    Science.gov (United States)

    Grigore, Dan-Radu

    2017-08-01

    We consider perturbative quantum field theory in the causal framework. Gauge invariance is, in this framework, an identity involving chronological products of the interaction Lagrangian; it expresses the fact that the scattering matrix must leave invariant the sub-space of physical states. We are interested in generalizations of such identity involving Wick sub-monomials of the interaction Lagrangian. The analysis can be performed by direct computation in the lower orders of perturbation theory; guided by these computations, we conjecture a generalization for arbitrary orders.

  19. Quark number fluctuations at finite temperature and finite chemical potential via the Dyson-Schwinger equation approach

    Science.gov (United States)

    Xin, Xian-yin; Qin, Si-xue; Liu, Yu-xin

    2014-10-01

    We investigate the quark number fluctuations up to the fourth order in the matter composed of two light flavor quarks with isospin symmetry and at finite temperature and finite chemical potential using the Dyson-Schwinger equation approach of QCD. In order to solve the quark gap equation, we approximate the dressed quark-gluon vertex with the bare one and adopt both the Maris-Tandy model and the infrared constant (Qin-Chang) model for the dressed gluon propagator. Our results indicate that the second, third, and fourth order fluctuations of net quark number all diverge at the critical endpoint (CEP). Around the CEP, the second order fluctuation possesses obvious pump while the third and fourth order ones exhibit distinct wiggles between positive and negative. For the Maris-Tandy model and the Qin-Chang model, we give the pseudocritical temperature at zero quark chemical potential as Tc=146 MeV and 150 MeV, and locate the CEP at (μEq,TE)=(120,124) MeV and (124,129) MeV, respectively. In addition, our results manifest that the fluctuations are insensitive to the details of the model, but the location of the CEP shifts to low chemical potential and high temperature as the confinement length scale increases.

  20. Modernization of Koesters interferometer and high accuracy calibration gauge blocks

    Science.gov (United States)

    França, R. S.; Silva, I. L. M.; Couceiro, I. B.; Torres, M. A. C.; Bessa, M. S.; Costa, P. A.; Oliveira, W., Jr.; Grieneisen, H. P. H.

    2016-07-01

    The Optical Metrology Division (Diopt) of Inmetro is responsible for maintaining the national reference of the length unit according to International System of Units (SI) definitions. The length unit is realized by interferometric techniques and is disseminated to the dimensional community through calibrations of gauge blocks. Calibration of large gauge blocks from 100 mm to 1000 mm has been performed by Diopt with a Koesters interferometer with reference to spectral lines of a krypton discharge lamp. Replacement of this lamp by frequency stabilized lasers, traceable now to the time and frequency scale, is described and the first results are reported.

  1. P T -invariant Weyl semimetals in gauge-symmetric systems

    DEFF Research Database (Denmark)

    Lepori, L.; Fulga, I. C.; Trombettoni, A.

    2016-01-01

    Weyl semimetals typically appear in systems in which either time-reversal (T ) or inversion (P ) symmetry is broken. Here we show that in the presence of gauge potentials these topological states of matter can also arise in fermionic lattices preserving both T and P . We analyze in detail the case...... of a cubic lattice model with π fluxes, discussing the role of gauge symmetries in the formation of Weyl points and the difference between the physical and the canonical T and P symmetries. We examine the robustness of this P T -invariant Weyl semimetal phase against perturbations that remove the chiral...

  2. Gauge invariant determination of charged hadron masses arXiv

    CERN Document Server

    Hansen, Martin; Patella, Agostino; Tantalo, Nazario

    In this paper we show, for the first time, that charged-hadron masses can be calculated on the lattice without relying on gauge fixing at any stage of the calculations. In our simulations we follow a recent proposal and formulate full QCD+QED on a finite volume, without spoiling locality, by imposing C-periodic boundary conditions in the spatial directions. Electrically charged states are interpolated with a class of operators, originally suggested by Dirac and built as functionals of the photon field, that are invariant under local gauge transformations. We show that the quality of the numerical signal of charged-hadron masses is the same as in the neutral sector and that charged-neutral mass splittings can be calculated with satisfactory accuracy in this setup. We also discuss how to describe states of charged hadrons with real photons in a fully gauge-invariant way by providing a first evidence that the proposed strategy can be numerically viable.

  3. Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories

    CERN Document Server

    Aniceto, Inês; Schiappa, Ricardo

    2015-01-01

    Localization methods have recently led to a plethora of new exact results in supersymmetric gauge theories, as certain observables may be computed in terms of matrix integrals. These can then be evaluated by making use of standard large N techniques, or else via perturbative expansions in the gauge coupling. Either approximation often leads to observables given in terms of asymptotic series, which need to be properly defined in order to obtain nonperturbative results. At the same time, resurgent analysis has recently been successfully applied to several problems, e.g., in quantum, field and string theories, precisely to overcome this issue and construct nonperturbative answers out of asymptotic perturbative expansions. The present work uses exact results from supersymmetric localization to address the resurgent structure of the free energy and partition function of Chern-Simons and ABJM gauge theories in three dimensions, and of N=2 supersymmetric Yang-Mills theories in four dimensions. For each case, the com...

  4. Scattering amplitudes in gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Henn, Johannes M. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Plefka, Jan C. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2014-03-01

    First monographical text on this fundamental topic. Course-tested, pedagogical and self-contained exposition. Includes exercises and solutions. At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum field theory. Bridging the gap between introductory courses on quantum field theory and state-of-the-art research, these concise yet self-contained and course-tested lecture notes are well-suited for a one-semester graduate level course or as a self-study guide for anyone interested in fundamental aspects of quantum field theory and its applications. The numerous exercises and solutions included will help readers to embrace and apply the material presented in the main text.

  5. Altered Maxwell equations in the length gauge

    CERN Document Server

    Reiss, H R

    2013-01-01

    The length gauge uses a scalar potential to describe a laser field, thus treating it as a longitudinal field rather than as a transverse field. This distinction is revealed in the fact that the Maxwell equations that relate to the length gauge are not the same as those for transverse fields. In particular, a source term is necessary in the length-gauge Maxwell equations, whereas the Coulomb-gauge description of plane waves possesses the basic property of transverse fields that they propagate with no source terms at all. This difference is shown to be importantly consequential in some previously unremarked circumstances; and it explains why the G\\"oppert-Mayer gauge transformation does not provide the security that might be expected of full gauge equivalence.

  6. Entanglement of Distillation for Lattice Gauge Theories.

    Science.gov (United States)

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  7. On BPS bounds in D = 4 N = 2 gauged supergravity

    NARCIS (Netherlands)

    Hristov, K.; Toldo, C.|info:eu-repo/dai/nl/355384027; Vandoren, S.J.G.|info:eu-repo/dai/nl/304830739

    2011-01-01

    We determine the BPS bounds in minimal gauged supergravity in four space- time dimensions. We concentrate on asymptotically anti-de Sitter (AdS) spacetimes, and find that there exist two disconnected BPS ground states of the theory, depending on the presence of magnetic charge. Each of these ground

  8. A review of non-commutative gauge theories

    Indian Academy of Sciences (India)

    Abstract. Construction of quantum field theory based on operators that are functions of non- commutative space-time operators is reviewed. Examples of φ4 theory and QED are then discussed. Problems of extending the theories toSU´Nµ gauge theories and arbitrary charges in QED are consid- ered. Construction of ...

  9. Inflationary dynamics of kinetically-coupled gauge fields

    DEFF Research Database (Denmark)

    Ferreira, Ricardo J. Z.; Ganc, Jonathan

    2015-01-01

    We investigate the inflationary dynamics of two kinetically-coupled massless U(1) gauge fields with time-varying kinetic-term coefficients. Ensuring that the system does not have strongly coupled regimes shrinks the parameter space. Also, we further restrict ourselves to systems that can be quant...

  10. Electroweak Measurements with Multiple Gauge Boson Interactions

    CERN Document Server

    Sood, A; The ATLAS collaboration

    2014-01-01

    This talk presents measurements from ATLAS and CMS that are sensitive interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW $Z$ production, and $VV^{\\prime}$ cross sections where $V=W/Z$ and $V^{\\prime}=W/Z/\\gamma$, while $\\gamma\\gamma\\rightarrow WW$, $WV\\gamma$ where $V=W/Z$, and $W^{\\pm}W^{\\pm}jj$ production are present as probes of quartic gauge couplings.

  11. Alpha-particle Gas Pressure Gauge

    Science.gov (United States)

    Buehler, M. G.; Bell, L. D.; Hecht, M. H.

    1995-01-01

    Described are preliminary results obtained on a novel gas pressure gauge that operates between 0.1 and 1000 mb. This gauge uses a 1- micron Ci alpha particle source to ionize the gas in a small chamber with an electric field imposed between anode and cathode electrodes that drives positive ions to the cathode where they are collected electronically. This gauge could make Martian pressure measurements.

  12. Microminiature temperature-compensated magnetoelastic strain gauge

    Science.gov (United States)

    Arms, Steven W.; Townsend, Christopher P.

    2002-07-01

    Our objective was to demonstrate a microminiature magnetoelastic strain gauge that provides both strain and temperature signals without additional sensors. Iron based magnetoelastic materials were embedded within superelastic nickel/titanium (NiTi) tubing. NiTi stress was transferred to the ferrite, causing a permeability change sensed by a tiny coil. The coil/bridge was excited (70 KHz AC), synchronously demodulated, and amplified to produce a voltage output proportional to coil/ferrite impedance. A DC voltage was also applied and separately conditioned to provide an output proportional to coil resistance; this signal was used to provide thermal compensation. Controlled strains were applied and 6 Hz cyclic outputs recorded simultaneously from the magnetoelastic strain gauge and conventional foil strain gauges. The magnetoelastic strain gauge tracked the foil gauge with minimal hysteresis and good linearity over 600 microstrain; repeatability was approximately 1.5 microstrain. The magnetoelastic strain gauge's gauge factor was computed from delta inductance/original inductance under static strain conditions. Temperatures of 25-140 deg C resulted in an uncompensated shift of 15 microstrain/deg C, and compensated shift of 1.0 microstrain/deg C. A sensitive micro-magnetoelastic strain gauge was demonstrated using the same sensor to detect stress and temperature with no moving parts, high gauge factor, and good thermal stability.

  13. Reducible gauge theories in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, 208016, Kanpur (India)

    2015-12-14

    In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb–Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb–Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin–Vilkovisy (BV) formulation in VSR.

  14. Reducible gauge theories in very special relativity

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India)

    2015-12-15

    In this paper we analyze the tensor field (reducible gauge) theories in the context of very special relativity (VSR). Particularly, we study the VSR gauge symmetry as well as VSR BRST symmetry of Kalb-Ramond and Abelian 3-form fields involving a fixed null vector. We observe that the Kalb-Ramond and Abelian 3-form fields and corresponding ghosts get masses in the VSR framework. The effective action in VSR-type axial gauge is greatly simplified compared with the VSR-type Lorenz gauge. Further, we quantize these models using a Batalin-Vilkovisy (BV) formulation in VSR. (orig.)

  15. Review of non-nuclear density gauges as possible replacements for ITD's nuclear density gauges.

    Science.gov (United States)

    2015-01-01

    This report examines the possibility of replacing nuclear density gauges (NDGs) with non-nuclear density gauges (NNDGs) to : measure density of hot mix asphalt (HMA) and unbound pavement layers in the field. The research team evaluated the : effectiv...

  16. Annihilation probability density and other applications of the Schwinger multichannel method to the positron and electron scattering; Densidade de probabilidade de aniquilacao e outras aplicacoes do metodo multicanal de Schwinger ao espalhamento de positrons e eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Varella, Marcio Teixeira do Nascimento

    2001-12-15

    We have calculated annihilation probability densities (APD) for positron collisions against He atom and H{sub 2} molecule. It was found that direct annihilation prevails at low energies, while annihilation following virtual positronium (Ps) formation is the dominant mechanism at higher energies. In room-temperature collisions (10{sup -2} eV) the APD spread over a considerable extension, being quite similar to the electronic densities of the targets. The capture of the positron in an electronic Feshbach resonance strongly enhanced the annihilation rate in e{sup +}-H{sub 2} collisions. We also discuss strategies to improve the calculation of the annihilation parameter (Z{sub eff} ), after debugging the computational codes of the Schwinger Multichannel Method (SMC). Finally, we consider the inclusion of the Ps formation channel in the SMC and show that effective configurations (pseudo eigenstates of the Hamiltonian of the collision ) are able to significantly reduce the computational effort in positron scattering calculations. Cross sections for electron scattering by polyatomic molecules were obtained in three different approximations: static-exchange (SE); tatic-exchange-plus-polarization (SEP); and multichannel coupling. The calculations for polar targets were improved through the rotational resolution of scattering amplitudes in which the SMC was combined with the first Born approximation (FBA). In general, elastic cross sections (SE and SEP approximations) showed good agreement with available experimental data for several targets. Multichannel calculations for e{sup -} -H{sub 2}O scattering, on the other hand, presented spurious structures at the electronic excitation thresholds (author)

  17. Gauge Trimming of Neutrino Masses

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mu-Chun; /Fermilab /UC, Irvine; de Gouvea, Andre; /Northwestern U. /Fermilab; Dobrescu, Bogdan A.; /Fermilab

    2006-12-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses.

  18. Gauge choice in conformal gravity

    Science.gov (United States)

    Sultana, Joseph; Kazanas, Demosthenes

    2017-04-01

    In a recent paper, K. Horne examined the effect of a conformally coupled scalar field (referred to as Higgs field) on the Mannheim-Kazanas metric gμν, i.e. the static spherically symmetric metric within the context of conformal gravity, and studied its effect on the rotation curves of galaxies. He showed that for a Higgs field of the form S(r) = S0a/(r + a), where a is a radial length-scale, the equivalent Higgs-frame Mannheim-Kazanas metric \\tilde{g}_{μ ν } = Ω ^2 g_{μ ν }, with Ω = S(r)/S0, lacks the linear γr term, which has been employed in the fitting of the galactic rotation curves without the need to invoke dark matter. In this brief note, we point out that the representation of the Mannheim-Kazanas metric in a gauge, where it lacks the linear term, has already been presented by others, including Mannheim and Kazanas themselves, without the need to introduce a conformally coupled Higgs field. Furthermore, Horne argues that the absence of the linear term resolves the issue of light bending in the wrong direction, i.e. away from the gravitating mass, if γr > 0 in the Mannheim-Kazanas metric, a condition necessary to resolve the galactic dynamics in the absence of dark matter. In this case, we also point out that the elimination of the linear term is not even required because the sign of the γr term in the metric can be easily reversed by a simple gauge transformation, and also that the effects of this term are indeed too small to be observed.

  19. 27 CFR 19.319 - Production gauge.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Production gauge. 19.319... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Production § 19.319 Production gauge. (a) General... production is completed. Except as otherwise specifically provided in this section, quantities may be...

  20. Infrared behaviors of SU(2 gauge theory

    Directory of Open Access Journals (Sweden)

    Tuominen Kimmo

    2017-01-01

    Full Text Available We will discuss some recent results in the determination of the location of the conformal window in SU(2 gauge theory with Nf fermions in the fundamental representation of the gauge group. In particular, we will demonstrate that the long distance behavior of the continuum theory with Nf = 6 is governed by an infrared stable fixed point.

  1. Gauged matter coupling in N = 4 supergravity

    NARCIS (Netherlands)

    Roo, M. de; Wagemans, P.

    1985-01-01

    Gauged N = 4 supergravity with an arbitrary number of matter multiplets is constructed from a superconformal starting point. It includes both the SO(4) and SU(4) symmetric N = 4 supergravity theories, and all their gaugings. Noncompact Yang-Mills symmetries may mix the matter and supergravity vector

  2. Measuring Fluctuating Pressures With Recessed Gauges

    Science.gov (United States)

    Parrott, Tony L.; Jones, Michael G.

    1993-01-01

    Report discusses use of pressure gauges mounted in recesses in interior wall of model scramjet engine. Consists of brief memorandum plus excerpts from NASA Technical Paper 3189, "Unsteady Pressure Loads In A Generic High-Speed Engine Model." Focuses mainly on factors affecting accuracy of gauge readings.

  3. GEANT simulation of the $\\gamma$ nuclear gauge

    CERN Document Server

    Ouardi, A; Benchekroun, D; Hoummada, A

    2003-01-01

    The gamma nuclear gauging technique used for monitoring the sediment load suspended in water, is based on the detection of gamma rays emitted by a radioactive source. The GEANT321 Monte Carlo simulation tool, originally developed at CERN for high energy physics experiments, is used for the evaluation and calibration of gamma nuclear gauges. A set of parameters, principally the source energy, the source-detector separation, the lead block thickness and the energy threshold below which the sediments elemental composition affects the measurement or the energy corresponding to the Compton and photoelectric windows separation, are discussed and evaluated in the case of the gamma scattering gauge. For the gamma transmission gauge, the GEANT321 code has been used to define the optimal source detector distance interval, particularly for the Moroccan sediment samplers, and to check the influence of the radionuclide existing in the suspension, on the gauge response accuracy. Experimental calibration was also carried ou...

  4. Electrically tunable artificial gauge potential for polaritons

    Science.gov (United States)

    Lim, Hyang-Tag; Togan, Emre; Kroner, Martin; Miguel-Sanchez, Javier; Imamoğlu, Atac

    2017-02-01

    Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton-polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons.

  5. Determining partial differential cross sections for low-energy electron photodetachment involving conical intersections using the solution of a Lippmann-Schwinger equation constructed with standard electronic structure techniques.

    Science.gov (United States)

    Han, Seungsuk; Yarkony, David R

    2011-05-07

    A method for obtaining partial differential cross sections for low energy electron photodetachment in which the electronic states of the residual molecule are strongly coupled by conical intersections is reported. The method is based on the iterative solution to a Lippmann-Schwinger equation, using a zeroth order Hamiltonian consisting of the bound nonadiabatically coupled residual molecule and a free electron. The solution to the Lippmann-Schwinger equation involves only standard electronic structure techniques and a standard three-dimensional free particle Green's function quadrature for which fast techniques exist. The transition dipole moment for electron photodetachment, is a sum of matrix elements each involving one nonorthogonal orbital obtained from the solution to the Lippmann-Schwinger equation. An expression for the electron photodetachment transition dipole matrix element in terms of Dyson orbitals, which does not make the usual orthogonality assumptions, is derived.

  6. On Schwinger mechanics of electron-positron pair production from vacuum by the field of optical and x-ray laser

    CERN Document Server

    Popov, V S

    2001-01-01

    One calculated W probability of e sup + e sup - -pair production from vacuum under the effect of the intensive a-c field generated by optical or X-ray range lasers. One studied two peculiar ranges: gamma 1 and gamma 1, where gamma - parameter of adiabatic nature. It is shown that with rise of gamma, as well as, at transition from monochromatic radiation to finite duration laser pulse W probability increases abruptly (at similar value of field intensity). One discusses dependence of W probability and pulsed spectrum of electrons and positrons on the shape of laser pulse (the Schwinger dynamic effect)

  7. Gauge bridges in classical field theory; Eichbruecken in der klassischen Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Jakobs, S.

    2009-03-15

    In this thesis Poisson structures of two classical gauge field theories (Maxwell-Klein-Gordon- and Maxwell-Dirac-system) are constructed using the parametrix construction of Green's functions. Parametrices for the Maxwell-Klein-Gordon- and Maxwell-Dirac-system are constructed in Minkowski space and this construction is later generalized to curved space times for the Maxwell-Klein-Gordon-system. With these Green's functions Poisson brackets will be defined as Peierls brackets. Finally non-local, gauge invariant observables, the so-called 'gauge bridges'are constructed. Gauge bridges are the matrix elements of holonomy operators. It is shown, that these emerge from Poisson brackets of local, gauge invariant observables. (orig.)

  8. Study of Vertical Movements of the European Crust Using Tide Gauge and Gnss Observations

    Directory of Open Access Journals (Sweden)

    Tretyak Kornyliy

    2015-02-01

    Full Text Available This research is devoted to the study of vertical movements of the European crust on the basis of two independent methods, namely tide gauge and GNSS observations results. The description and classification of factors affecting sea level change has been made. The precision with which the movement of the earth's crust according to the results of tide gauge observations can be explored has been calculated . A methodology to identify the duration of tide gauge observations required for studies of vertical movements of the earth 's crust has been presented. Approximation of tide gauge time series with the help of Fourier series has been implemented, the need for long-term observations in certain areas has been explained. The diagram of the velocities of the vertical movements of the European crust on the basis of the tide gauge data and GNSS observations has been built and the anomalous areas where the observations do not coincide have been identified.

  9. Duality and Confinement in Massive Antisymmetric Tensor Gauge Theories

    CERN Document Server

    Diamantini, M Cristina

    2001-01-01

    We extend the duality between massive and topologically massive antisymmetric tensor gauge theories in arbitrary space-time dimensions to include topological defects. We show explicitly that the condensation of these defects leads, in 4 dimensions, to confinement of electric strings in the two dual models. The dual phase, in which magnetic strings are confined is absent. The presence of the confinement phase explicitely found in the 4-dimensional case, is generalized, using duality arguments, to arbitrary space-time dimensions.

  10. Gauge invariance and equations of motion for closed string modes

    Directory of Open Access Journals (Sweden)

    B. Sathiapalan

    2014-12-01

    Full Text Available We continue earlier discussions on loop variables and the exact renormalization group on the string world sheet for closed and open string backgrounds. The world sheet action with a UV regulator is written in a generally background covariant way by introducing a background metric. It is shown that the renormalization group gives background covariant equations of motion – this is the gauge invariance of the graviton. Interaction is written in terms of gauge invariant and generally covariant field strength tensors. The basic idea is to work in Riemann normal coordinates and covariantize the final equation. It turns out that the equations for massive modes are gauge invariant only if the space–time curvature of the (arbitrary background is zero. The exact RG equations give quadratic equations of motion for all the modes including the physical graviton. The level (2,2¯ massive field equations are used to illustrate the techniques. At this level there are mixed symmetry tensors. Gauge invariant interacting equations can be written down. In flat space an action can also be written for the free theory.

  11. Massive Axial Gauge in the Exact Renormalization Group Approach

    Science.gov (United States)

    Panza, P.; Soldati, R.

    The Exact Renormalization Group (ERG) approach to massive gauge theories in the axial gauge is studied and the smoothness of the massless limit is analysed for a formally gauge invariant quantity such as the Euclidean Wilson loop.

  12. 49 CFR 230.42 - Location of gauges.

    Science.gov (United States)

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Gauges § 230.42 Location of gauges. Every boiler shall have at least one steam gauge which will...

  13. GPM GROUND VALIDATION RAIN GAUGES NASA ACHIEVE IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Rain Gauges NASA ACHIEVE IPHEx dataset includes data from the OSi Optical Rain Gauge (ORG815), and a standard tipping bucket rain gauge....

  14. 46 CFR 52.01-110 - Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure gauges...

    Science.gov (United States)

    2010-10-01

    ... connections, gauge cocks, and pressure gauges (modifies PG-60). 52.01-110 Section 52.01-110 Shipping COAST... § 52.01-110 Water-level indicators, water columns, gauge-glass connections, gauge cocks, and pressure.... (Modifies PG-60.3.) Gage glasses and gage cocks shall be connected directly to the head or shell of a boiler...

  15. Conformal Gauge Transformations in Thermodynamics

    Directory of Open Access Journals (Sweden)

    Alessandro Bravetti

    2015-09-01

    Full Text Available In this work, we show that the thermodynamic phase space is naturally endowed with a non-integrable connection, defined by all of those processes that annihilate the Gibbs one-form, i.e., reversible processes. We argue that such a connection is invariant under re-scalings of the connection one-form, whilst, as a consequence of the non-integrability of the connection, its curvature is not and, therefore, neither is the associated pseudo-Riemannian geometry. We claim that this is not surprising, since these two objects are associated with irreversible processes. Moreover, we provide the explicit form in which all of the elements of the geometric structure of the thermodynamic phase space change under a re-scaling of the connection one-form. We call this transformation of the geometric structure a conformal gauge transformation. As an example, we revisit the change of the thermodynamic representation and consider the resulting change between the two metrics on the thermodynamic phase space, which induce Weinhold’s energy metric and Ruppeiner’s entropy metric. As a by-product, we obtain a proof of the well-known conformal relation between Weinhold’s and Ruppeiner’s metrics along the equilibrium directions. Finally, we find interesting properties of the almost para-contact structure and of its eigenvectors, which may be of physical interest.

  16. Lattice gauge theories and spin models

    Science.gov (United States)

    Mathur, Manu; Sreeraj, T. P.

    2016-10-01

    The Wegner Z2 gauge theory-Z2 Ising spin model duality in (2 +1 ) dimensions is revisited and derived through a series of canonical transformations. The Kramers-Wannier duality is similarly obtained. The Wegner Z2 gauge-spin duality is directly generalized to SU(N) lattice gauge theory in (2 +1 ) dimensions to obtain the SU(N) spin model in terms of the SU(N) magnetic fields and their conjugate SU(N) electric scalar potentials. The exact and complete solutions of the Z2, U(1), SU(N) Gauss law constraints in terms of the corresponding spin or dual potential operators are given. The gauge-spin duality naturally leads to a new gauge invariant magnetic disorder operator for SU(N) lattice gauge theory which produces a magnetic vortex on the plaquette. A variational ground state of the SU(2) spin model with nearest neighbor interactions is constructed to analyze SU(2) gauge theory.

  17. Gauge field entanglement in Kitaev's honeycomb model

    Science.gov (United States)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  18. Perturbative unitarity constraints on gauge portals

    Science.gov (United States)

    El Hedri, Sonia; Shepherd, William; Walker, Devin G. E.

    2017-12-01

    Dark matter that was once in thermal equilibrium with the Standard Model is generally prohibited from obtaining all of its mass from the electroweak phase transition. This implies a new scale of physics and mediator particles to facilitate dark matter annihilation. In this work, we focus on dark matter that annihilates through a generic gauge boson portal. We show how partial wave unitarity places upper bounds on the dark gauge boson, dark Higgs and dark matter masses. Outside of well-defined fine-tuned regions, we find an upper bound of 9 TeV for the dark matter mass when the dark Higgs and dark gauge bosons both facilitate the dark matter annihilations. In this scenario, the upper bound on the dark Higgs and dark gauge boson masses are 10 TeV and 16 TeV, respectively. When only the dark gauge boson facilitates dark matter annihilations, we find an upper bound of 3 TeV and 6 TeV for the dark matter and dark gauge boson, respectively. Overall, using the gauge portal as a template, we describe a method to not only place upper bounds on the dark matter mass but also on the new particles with Standard Model quantum numbers. We briefly discuss the reach of future accelerator, direct and indirect detection experiments for this class of models.

  19. Numerical Computation of Dynamical Schwinger-like Pair Production in Graphene

    Science.gov (United States)

    Fillion-Gourdeau, F.; Blain, P.; Gagnon, D.; Lefebvre, C.; Maclean, S.

    2017-03-01

    The density of electron-hole pairs produced in a graphene sample immersed in a homogeneous time-dependent electric field is evaluated. Because low energy charge carriers in graphene are described by relativistic quantum mechanics, the calculation is performed within the strong field quantum electrodynamics formalism, requiring a solution of the Dirac equation in momentum space. The equation is solved using a split-operator numerical scheme on parallel computers, allowing for the investigation of several field configurations. The strength of the method is illustrated by computing the electron momentum density generated from a realistic laser pulse model. We observe quantum interference patterns reminiscent of Landau-Zener-Stückelberg interferometry.

  20. Time transients in the quantum corrected Newtonian potential induced by a massless nonminimally coupled scalar field

    NARCIS (Netherlands)

    Marunovic, A.; Prokopec, T.

    2011-01-01

    We calculate the one-loop graviton vacuum polarization induced by a massless, nonminimally coupled scalar field on Minkowski background. We make use of the Schwinger-Keldysh formalism, which allows us to study time dependent phenomena. As an application we compute the leading quantum correction to

  1. Performance assessment of engineering structures based on long-gauge FBG sensors: a review

    Science.gov (United States)

    Hong, Wan; Chen, Shizhi

    2017-04-01

    Long-gauge fiber Bragg grating (FBG) strain response is characterized by sensitivity to local damage and obtaining global behavior (e.g., deflection, natural frequency) of structures, and can be measured with high-accuracy and high sampling frequency. Recent research about performance assessment of engineering structures using long-gauge FBG sensors is reviewed in this paper. Firstly, description of long-gauge FBG sensing technique is presented. Secondly, assessment methods of structural local behavior using long-gauge strain response are classified into two types (time domain-based and frequency domain-based method). Time domain-based methods are those methods which directly use long-gauge strain to identify local damage of structures. Frequency domain-based methods are those methods which extract frequency features (e.g., modal macro-strain) of structures for damage identification. Thirdly, assessment methods of structural global behavior using long-gauge strain response are summarized. These methods include calculating deflection of structures from long-gauge strain response, extraction of natural frequency from dynamic strain time-history, and calculating displacement mode shape from modal macro-strain. Finally, suggestions on the selection of methods for performance assessment of engineering structures are proposed and some challenges are discussed.

  2. Expanding the Bethe/Gauge dictionary

    Science.gov (United States)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  3. Gauge Fields as Composite Boundary Excitations

    CERN Document Server

    Ferrara, Sergio; Ferrara, Sergio; Fronsdal, Christian

    1998-01-01

    We investigate representations of the conformal group that describe "massless" particles in the interior and at the boundary of anti-de Sitter space. It turns out that massless gauge excitations in anti-de Sitter are gauge "current" operators at the boundary. Conversely, massless excitations at the boundary are topological singletons in the interior. These representations lie at the threshold of two "unitary bounds" that apply to any conformally invariant field theory. Gravity and Yang-Mills gauge symmetry in anti-De Sitter is translated to global translational symmetry and continuous R-symmetry of the boundary superconformal field theory.

  4. Electroweak Measurements with Multiple Gauge Boson Interactions

    CERN Document Server

    Sood, Alexander; The ATLAS collaboration

    2014-01-01

    These proceedings present measurements from ATLAS and CMS using proton-proton collisions with center-of-mass energies of 7 TeV and 8 TeV at the LHC that are sensitive to interactions between EW gauge bosons. Included analyses sensitive to triple gauge couplings are EW Z production, and $VV^{\\prime}$ cross sections where $V=W,Z$ and $V^{\\prime}=W,Z,γ$, while $\\gamma\\gamma \\rightarrow WW$, $WV\\gamma$ where $V=W,Z$, and $W^{\\pm}W^{\\pm}jj$ production are presented as probes of quartic gauge couplings.

  5. CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC Unified Gauge-Based Analysis of Daily Precipitation over CONUS at PSD: Gridded Monthly Values. Monthly Values after 2006 are from the real time files (RT)

  6. Bulk gauge fields in warped space and localized supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Chacko, Z.; Ponton, Eduardo

    2003-11-01

    We consider five dimensional supersymmetric warped scenarios in which the Standard Model quark and lepton fields are localized on the ultraviolet brane, while the Standard Model gauge fields propagate in the bulk. Supersymmetry is assumed to be broken on the infrared brane. The relative sizes of supersymmetry breaking effects are found to depend on the hierarchy between the infrared scale and the weak scale. If the infrared scale is much larger than the weak scale the leading supersymmetry breaking effect on the visible brane is given by gaugino mediation. The gaugino masses at the weak scale are proportional to the square of the corresponding gauge coupling, while the dominant contribution to the scalar masses arises from logarithmically enhanced radiative effects involving the gaugino mass that are cutoff at the infrared scale. While the LSP is the gravitino, the NLSP which is the stau is stable on collider time scales. If however the infrared scale is close to the weak scale then the effects of hard supersymmetry breaking operators on the scalar masses can become comparable to those from gaugino mediation. These operators alter the relative strengths of the couplings of gauge bosons and gauginos to matter, and give loop contributions to the scalar masses that are also cutoff at the infrared scale. The gaugino masses, while exhibiting a more complicated dependence on the corresponding gauge coupling, remain hierarchical and become proportional to the corresponding gauge coupling in the limit of strong supersymmetry breaking. The scalar masses are finite and a loop factor smaller than the gaugino masses. The LSP remains the gravitino.

  7. Thermalization and confinement in strongly coupled gauge theories

    Directory of Open Access Journals (Sweden)

    Ishii Takaaki

    2016-01-01

    Full Text Available Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which “real world” theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory’s confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the “abrupt quench” limit.

  8. Gauge invariance and Weyl-polymer quantization

    CERN Document Server

    Strocchi, Franco

    2016-01-01

    The book gives an introduction to Weyl non-regular quantization suitable for the description of physically interesting quantum systems, where the traditional Dirac-Heisenberg quantization is not applicable.  The latter implicitly assumes that the canonical variables describe observables, entailing necessarily the regularity of their exponentials (Weyl operators). However, in physically interesting cases -- typically in the presence of a gauge symmetry -- non-observable canonical variables are introduced for the description of the states, namely of the relevant representations of the observable algebra. In general, a gauge invariant ground state defines a non-regular representation of the gauge dependent Weyl operators, providing a mathematically consistent treatment of familiar quantum systems -- such as the electron in a periodic potential (Bloch electron), the Quantum Hall electron, or the quantum particle on a circle -- where the gauge transformations are, respectively, the lattice translations, the magne...

  9. 77 FR 31894 - Portable Gauge Licenses

    Science.gov (United States)

    2012-05-30

    ... Gauge Licenses.'' The document has been updated to include safety culture, security of radioactive... and Environmental Management Programs; U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001... Materials and Environmental Management Programs. BILLING CODE 7590-01-P ...

  10. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  11. Non-linear Abelian gauge model

    Science.gov (United States)

    Chauca, J.; Doria, R.; Soares, W.

    2012-10-01

    Based on the principle that nature acts together one proposes the presence of N-potential fields rotating under a same group. It introduces a new performance for the gauge approach. It yields a set of N-fields where each one is associated to a proper polynomial gauge transformation. As consequence, a non-linear abelian gauge model is obtained. It derives an abelian Lagrangian that beyond the usual case contains a longitudinal kinetic sector plus massive and interactive terms. This work establishes their gauge invariant conditions and writes the so-called Global Maxwell's equations and associated Global Lorentz force. Beyond Faraday lines, it yields physical lines of force in terms of potential fields.

  12. Bethe/gauge correspondence on curved spaces

    Energy Technology Data Exchange (ETDEWEB)

    Nekrasov, Nikita [Simons Center for Geometry and Physics,Stony Brook, NY 11794-3636 (United States); Shatashvili, Samson [Simons Center for Geometry and Physics,Stony Brook, NY 11794-3636 (United States); Hamilton Mathematical Institute, Trinity College,Dublin 2 (Ireland); School of Mathematics, Trinity College,Dublin 2 (Ireland)

    2015-01-20

    Bethe/gauge correspondence identifies supersymmetric vacua of massive gauge theories invariant under the two dimensional N=2 Poincare supersymmetry with the stationary states of some quantum integrable system. The supersymmetric theory can be twisted in a number of ways, producing a topological field theory. For these theories we compute the handle gluing operator H. We also discuss the Gaudin conjecture on the norm of Bethe states and its connection to H.

  13. A Gauge Invariant Regulator for the ERG

    Science.gov (United States)

    Arnone, S.; Kubyshin, Yu. A.; Morris, T. R.; Tighe, J. F.

    A gauge invariant regularisation for dealing with pure Yang-Mills theories within the exact renormalization group approach is proposed. It is based on the regularisation via covariant higher derivatives and includes auxiliary Pauli-Villars fields which amounts to a spontaneously broken SU(N|N) super-gauge theory. We demonstrate perturbatively that the extended theory is ultra-violet finite in four dimensions and argue that it has a sensible limit when the regularization cutoff is removed.

  14. Gauge anomalies in Lorentz-violating QED

    Science.gov (United States)

    Santos, Tiago R. S.; Sobreiro, Rodrigo F.

    2016-12-01

    In this work we study the issue of gauge anomalies in Lorentz-violating QED. To do so, we opt to use the Becchi-Rouet-Stora-Tyutin formalism within the algebraic renormalization approach, reducing our study to a cohomology problem. Since this approach is independent of the renormalization scheme, the results obtained here are expected to be general. We find that the Lorentz-violating QED is free of gauge anomalies to all orders in perturbation theory.

  15. Diagrammatics of braided group gauge theory

    CERN Document Server

    Majid, S

    1996-01-01

    We develop a gauge theory or theory of bundles and connections on them at the level of braids and tangles. Extending recent algebraic work, we provide now a fully diagrammatic treatment of principal bundles, a theory of global gauge transformations, associated braided fiber bundles and covariant derivatives on them. We describe the local structure for a concrete Z_3-graded or `anyonic' realization of the theory.

  16. Supersymmetry of Bianchi attractors in gauged supergravity

    Science.gov (United States)

    Chakrabarty, Bidisha; Inbasekar, Karthik; Samanta, Rickmoy

    2017-09-01

    Bianchi attractors are near horizon geometries with homogeneous symmetries in spatial directions. We construct supersymmetric Bianchi attractors in N =2 ,d =4 , 5 gauged supergravity. In d =4 , we consider gauged supergravity coupled to vector and hypermultiplets. In d =5 , we consider gauged supergravity coupled to vector multiplets with a generic gauging of symmetries of the scalar manifold and the U (1 )R gauging of the R -symmetry. Analyzing the gaugino conditions, we show that when the fermionic shifts do not vanish, there are no supersymmetric Bianchi attractors. This is analogous to the known condition that for maximally supersymmetric solutions, all of the fermionic shifts must vanish. When the central charge satisfies an extremization condition, some of the fermionic shifts vanish and supersymmetry requires that the symmetries of the scalar manifold are not gauged. This allows supersymmetric Bianchi attractors sourced by massless gauge fields and a cosmological constant. In five dimensions in the Bianchi I class, we show that the anisotropic AdS3×R2 solution is 1 /2 BPS (Bogomol'nyi-Prasad-Sommerfield). We also construct a new class of 1 /2 BPS Bianchi III geometries labeled by the central charge. When the central charge takes a special value, the Bianchi III geometry reduces to the known AdS3×H2 solution. For the Bianchi V and VII classes, the radial spinor breaks all of supersymmetry. We briefly discuss the conditions for possible massive supersymmetric Bianchi solutions by generalizing the matter content to include tensor, hypermultiplets, and a generic gauging on the R -symmetry.

  17. New gaugings and non-geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghoon [Quantum Universe Center, Korea Institute for Advanced Study, Seoul (Korea, Republic of); Strickland-Constable, Charles [Institut de Physique Theorique, Universite Paris Saclay, CEA, CNRS, Gif-sur-Yvette (France); Waldram, Daniel [Department of Physics, Imperial College London (United Kingdom); Berkeley Center for Theoretical Physics, University of California, Berkeley, CA (United States)

    2017-10-15

    We discuss the possible realisation in string/M theory of the recently discovered family of four-dimensional maximal SO(8) gauged supergravities, and of an analogous family of seven-dimensional half-maximal SO(4) gauged supergravities. We first prove a no-go theorem that neither class of gaugings can be realised via a compactification that is locally described by ten- or eleven-dimensional supergravity. In the language of Double Field Theory and its M theory analogue, this implies that the section condition must be violated. Introducing the minimal number of additional coordinates possible, we then show that the standard S{sup 3} and S{sup 7} compactifications of ten- and eleven-dimensional supergravity admit a new class of section-violating generalised frames with a generalised Lie derivative algebra that reproduces the embedding tensor of the SO(4) and SO(8) gaugings respectively. The physical meaning, if any, of these constructions is unclear. They highlight a number of the issues that arise when attempting to apply the formalism of Double Field Theory to non-toroidal backgrounds. Using a naive brane charge quantisation to determine the periodicities of the additional coordinates restricts the SO(4) gaugings to an infinite discrete set and excludes all the SO(8) gaugings other than the standard one. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Gauge theory loop operators and Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Drukker, Nadav [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Gomis, Jaume; Okuda, Takuda [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); Teschner, Joerg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-10-15

    We propose a correspondence between loop operators in a family of four dimensional N=2 gauge theories on S{sup 4} - including Wilson, 't Hooft and dyonic operators - and Liouville theory loop operators on a Riemann surface. This extends the beautiful relation between the partition function of these N=2 gauge theories and Liouville correlators found by Alday, Gaiotto and Tachikawa. We show that the computation of these Liouville correlators with the insertion of a Liouville loop operator reproduces Pestun's formula capturing the expectation value of a Wilson loop operator in the corresponding gauge theory. We prove that our definition of Liouville loop operators is invariant under modular transformations, which given our correspondence, implies the conjectured action of S-duality on the gauge theory loop operators. Our computations in Liouville theory make an explicit prediction for the exact expectation value of 't Hooft and dyonic loop operators in these N=2 gauge theories. The Liouville loop operators are also found to admit a simple geometric interpretation within quantum Teichmueller theory as the quantum operators representing the length of geodesics. We study the algebra of Liouville loop operators and show that it gives evidence for our proposal as well as providing definite predictions for the operator product expansion of loop operators in gauge theory. (orig.)

  19. Novel circuits for energizing manganin stress gauges

    Science.gov (United States)

    Tasker, Douglas G.

    2017-01-01

    This paper describes the design of a novel MOSFET pulsed constant current supplies for low impedance Manganin stress gauges. The design emphasis has been on high accuracy, low noise, simple, low cost, disposable supplies that can be used to energize multiple gauges in explosive or shock experiments. The Manganin gauges used to measure stresses in detonating explosive experiments have typical resistances of 50 mΩ and are energized with pulsed currents of 50 A. Conventional pulsed, constant current supplies for these gauges are high voltage devices with outputs as high as 500 V. Common problems with the use of high voltage supplies at explosive firing sites are: erroneous signals caused by ground loops; overdrive of oscilloscopes on gauge failure; gauge signal crosstalk; cost; and errors due to changing load impedances. The new circuit corrects these issues. It is an 18-V circuit, powered by 9-V alkaline batteries, and features an optically isolated trigger, and single-point grounding. These circuits have been successfully tested at the Los Alamos National Laboratory in explosive experiments. [LA-UR-15-24819

  20. Comparing the Rξ gauge and the unitary gauge for the standard model: An example

    Directory of Open Access Journals (Sweden)

    Tai Tsun Wu

    2017-01-01

    Full Text Available For gauge theory, the matrix element for any physical process is independent of the gauge used. However, since this is a formal statement, it does not guarantee this gauge independence in every case. An example is given here where, for a physical process in the standard model, the matrix elements calculated with two different gauge – the Rξ gauge and the unitary gauge – are explicitly verified to be different. This is accomplished by subtracting one matrix element from the other. This non-zero difference turns out to have a subtle origin. Two simple operators are found not to commute with each other: in one gauge these two operations are carried out in one order, while in the other gauge these same two operations are carried out in the opposite order. Because of this result, a series of question are raised such that the answers to these question may lead to a deeper understanding of the Yang–Mills non-Abelian gauge theory in general and the standard model in particular.

  1. Topology in SU(2) lattice gauge theory and parallelization of functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Stefan

    2008-07-01

    In this thesis, I discuss topological properties of quenched SU(2) lattice gauge fields. In particular, clusters of topological charge density exhibit a power-law. The exponent of that power-law can be used to validate models for lattice gauge fields. Instead of working with fixed cutoffs of the topological charge density, using the notion of a ''watermark'' is more convenient. Furthermore, I discuss how a parallel computer, originally designed for lattice gauge field simulations, can be used for functional magnetic resonance imaging. Multi parameter fits can be parallelized to achieve almost real-time evaluation of fMRI data. (orig.)

  2. On the geometry and the moduli space of $\\beta$-deformed quiver gauge theories

    CERN Document Server

    Butti, Agostino; Martucci, Luca; Minasian, Ruben; Petrini, Michela; Zaffaroni, Alberto

    2008-01-01

    We consider a class of super-conformal beta-deformed N=1 gauge theories dual to string theory on $AdS_5 \\times X$ with fluxes, where $X$ is a deformed Sasaki-Einstein manifold. The supergravity backgrounds are explicit examples of Generalised Calabi-Yau manifolds: the cone over $X$ admits an integrable generalised complex structure in terms of which the BPS sector of the gauge theory can be described. The moduli spaces of the deformed toric N=1 gauge theories are studied on a number of examples and are in agreement with the moduli spaces of D3 and D5 static and dual giant probes.

  3. Coulomb Solutions from Improper Pseudo-Unitary Free Gauge Field Operator Translations

    Directory of Open Access Journals (Sweden)

    Andreas Aste

    2014-12-01

    Full Text Available Fundamental problems of quantum field theory related to the representation problem of canonical commutation relations are discussed within a gauge field version of a van Hove-type model. The Coulomb field generated by a static charge distribution is described as a formal superposition of time-like pseudo-photons in Fock space with a Krein structure. In this context, a generalization of operator gauge transformations is introduced to generate coherent states of Abelian gauge fields interacting with a charged background.

  4. Gauging the Carroll algebra and ultra-relativistic gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium)

    2015-08-14

    It is well known that the geometrical framework of Riemannian geometry that underlies general relativity and its torsionful extension to Riemann-Cartan geometry can be obtained from a procedure known as gauging the Poincaré algebra. Recently it has been shown that gauging the centrally extended Galilei algebra, known as the Bargmann algebra, leads to a geometrical framework that when made dynamical gives rise to Hořava-Lifshitz gravity. Here we consider the case where we contract the Poincaré algebra by sending the speed of light to zero leading to the Carroll algebra. We show how this algebra can be gauged and we construct the most general affine connection leading to the geometry of so-called Carrollian space-times. Carrollian space-times appear for example as the geometry on null hypersurfaces in a Lorentzian space-time of one dimension higher. We also construct theories of ultra-relativistic (Carrollian) gravity in 2+1 dimensions with dynamical exponent z<1 including cases that have anisotropic Weyl invariance for z=0.

  5. The infrared behavior of lattice QCD Green's functions. A numerical study of lattice QCD in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Sternbeck, A.

    2006-07-18

    Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)

  6. Plasma instabilities and turbulence in non-Abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, Sebastian Herwig Juergen

    2010-02-17

    Several aspects of the thermalisation process in non-Abelian gauge theories are investigated. Both numerical simulations in the classical statistical approximation and analytical computations in the framework of the two-particle-irreducible effective action are carried out and their results are compared to each other. The physical quantities of central importance are the correlation functions of the gauge field in Coulomb and temporal axial gauge as well as the gauge invariant energy-momentum tensor. Following a general introduction, the theoretical framework of the ensuing investigations is outlined. In doing so, the range of validity of the employed approximation schemes is discussed as well. The first main part of the thesis is concerned with the early stage of the thermalisation process where particular emphasis is on the role of plasma instabilities. These investigations are relevant to the phenomenological understanding of present heavy ion collision experiments. First, an ensemble of initial conditions motivated by the ''colour glass condensate'' is developed which captures characteristic properties of the plasma created in heavy ion collisions. Here, the strong anisotropy and the large occupation numbers of low-momentum degrees of freedom are to be highlighted. Numerical calculations demonstrate the occurrence of two kinds of instabilities. Primary instabilities result from the specific initial conditions. Secondary instabilities are caused by nonlinear fluctuation effects of the preceding primary instabilities. The time scale associated with the instabilities is of order 1 fm/c. It is shown that the plasma instabilities isotropize the initially strongly anisotropic ensemble in the domain of low momenta (gauge group SU(2) to SU(3) by a simple rescaling procedure. Finally, the role of Nielsen-Olesen instabilities in an idealised setup is investigated. In the second part, the

  7. 27 CFR 19.454 - Gauge for denaturation.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Gauge for denaturation. 19... Denaturation § 19.454 Gauge for denaturation. The proprietor shall gauge spirits before denaturation and after denaturation and record each gauge on the record of denaturation as prescribed in § 19.752(b). However, spirits...

  8. Three Instanton Computations In Gauge Theory And String Theory

    CERN Document Server

    Beasley, C E

    2005-01-01

    We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc − 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi- fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relie...

  9. Description and preliminary results of a 100 square meter rain gauge

    Science.gov (United States)

    Grimaldi, Salvatore; Petroselli, Andrea; Baldini, Luca; Gorgucci, Eugenio

    2018-01-01

    Rainfall is one of the most crucial processes in hydrology, and the direct and indirect rainfall measurement methods are constantly being updated and improved. The standard instrument used to measure rainfall rate and accumulation is the rain gauge, which provides direct observations. Though the small dimension of the orifice allows rain gauges to be installed anywhere, it also causes errors due to the splash and wind effects. To investigate the role of the orifice dimension, this study, for the first time, introduces and demonstrates an apparatus for observing rainfall called a giant-rain gauge that is characterised by a collecting surface of 100 m2. To discuss the new instrument and its technical details, a preliminary analysis of 26 rainfall events is provided. The results suggest that there are significant differences between the standard and proposed rain gauges. Specifically, major discrepancies are evident for low time aggregation scale (5, 10, and 15 min) and for high rainfall intensity values.

  10. Analysis of the most recent data of Cascais Tide Gauge

    Science.gov (United States)

    Antunes, Carlos; Taborda, Rui; Mendes, Virgílio B.

    2010-05-01

    In order to meet international standards and to integrate sea level changes and tsunami monitoring networks, Cascais tide gauge, one of the oldest in the world, has been upgraded in 2003 with new acoustic equipment with digital data acquisition, temperature and air-pressure sensors, and internet connection for real time data. The new tide gauge is located very close to the old analogical gauge, which is still working. Datum links between both gauges and the permanent GPS station of Cascais were made and height differences between gauges and the GPS station have been monitored to verify site stability and to estimate the absolute vertical velocity of the site, and therefore, the absolute sea level changes. Tide gauge data from 2000 to 2009 has been analyzed and relative and absolute sea level rise rates have been estimated. The estimation of sea level rise rate with the short baseline of 10 years is made with the daily mean sea level data corrected from the inverse barometric effect. The relative sea level trend is obtained from a 60-day moving average run over the corrected daily mean sea level. The estimated rate has shown greater stability in contrast to the analysis of daily mean sea level raw data, which shows greater variability and uncertainty. Our results show a sea level rise rate of 2.6 mm/year (± 0.3 mm/year), higher than previous rates (2.1 mm/year for 1990 decade and 1.6 mm/year from 1920 to 2000), which is compatible with a sea level rise acceleration scenario. From the analysis of Cascais GPS data, for the period 1990.0 to 2010.0 we obtain an uplift rate of 0.3 mm/year leading to an absolute sea level rise of 2.9 mm/year for Cascais, under the assumption, as predicted by the ICE-5G model, that Cascais has no vertical displacement caused by the post-glacial isostatic adjustment.

  11. A Unified Field Theory of Gravity, Electromagnetism, and the Yang-Mills Gauge Field

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work, we attempt at constructing a comprehensive four-dimensional unified field theory of gravity, electromagnetism, and the non-Abelian Yang-Mills gauge field in which the gravitational, electromagnetic, and material spin fields are unified as intrinsic geometric objects of the space-time manifold S4 via the connection, with the general- ized non-Abelian Yang-Mills gauge field appearing in particular as a sub-field of the geometrized electromagnetic interaction.

  12. Investigation on a replica step gauge for optical 3D scanning of micro parts

    DEFF Research Database (Denmark)

    Cantatore, Angela; De Chiffre, Leonardo; Carmignato, S.

    2010-01-01

    This work deals with investigation of the stability over time and surface cooperativeness of a calibration artefact intended for optical scanner verification. A replica step gauge with 11 grooves, made of bisacryl material for dental applications (luxabite) and previously fabricated was studied. ...... measurements. Results demonstrate good stability of the step gauge and material transparency good cooperativeness, which is compensated when a unidirectional strategy is followed....

  13. Evaluation of 25-gauge Quincke and 24 — gauge Gertie Marx ...

    African Journals Online (AJOL)

    Objective: To compare the insertion characteristics and rate of complications between 25-gauge Quincke and 24-gauge Gertie Marx needles. Design: Prospective, randomized. Setting: University of Benin Teaching Hospital; a university-affiliated tertiary centre. Subjects: Parturients (ASA 1 and 2) scheduled for elective ...

  14. Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields

    Directory of Open Access Journals (Sweden)

    S. Vogl

    2012-07-01

    Full Text Available This study addresses the problem of combining radar information and gauge measurements. Gauge measurements are the best available source of absolute rainfall intensity albeit their spatial availability is limited. Precipitation information obtained by radar mimics well the spatial patterns but is biased for their absolute values.

    In this study copula models are used to describe the dependence structure between gauge observations and rainfall derived from radar reflectivity at the corresponding grid cells. After appropriate time series transformation to generate "iid" variates, only the positive pairs (radar >0, gauge >0 of the residuals are considered. As not each grid cell can be assigned to one gauge, the integration of point information, i.e. gauge rainfall intensities, is achieved by considering the structure and the strength of dependence between the radar pixels and all the gauges within the radar image. Two different approaches, namely Maximum Theta and Multiple Theta, are presented. They finally allow for generating precipitation fields that mimic the spatial patterns of the radar fields and correct them for biases in their absolute rainfall intensities. The performance of the approach, which can be seen as a bias-correction for radar fields, is demonstrated for the Bavarian Alps. The bias-corrected rainfall fields are compared to a field of interpolated gauge values (ordinary kriging and are validated with available gauge measurements. The simulated precipitation fields are compared to an operationally corrected radar precipitation field (RADOLAN. The copula-based approach performs similarly well as indicated by different validation measures and successfully corrects for errors in the radar precipitation.

  15. Lattice implementation of Abelian gauge theories with Chern-Simons number and an axion field arXiv

    CERN Document Server

    Figueroa, Daniel G.

    Real time evolution of classical gauge fields is relevant for a number of applications in particle physics and cosmology, ranging from the early Universe to dynamics of quark-gluon plasma. We present a lattice formulation of the interaction between a $shift$-symmetric field and some $U(1)$ gauge sector, $a(x)\\tilde{F}_{\\mu\

  16. Entanglement entropy in lattice gauge theories

    Science.gov (United States)

    Buividovich, . P. V.

    We report on the recent progress in theoretical and numerical studies of entanglement entropy in lattice gauge theories. It is shown that the concept of quantum entanglement between gauge fields in two complementary regions of space can only be introduced if the Hilbert space of physical states is extended in a certain way. In the extended Hilbert space, the entanglement entropy can be partially interpreted as the classical Shannon entropy of the flux of the gauge fields through the boundary between the two regions. Such an extension leads to a reduction procedure which can be easily implemented in lattice simulations by constructing lattices with special topology. This enables us to measure the entanglement entropy in lattice Monte-Carlo simulations. On the simplest example of Z2 lattice gauge theory in (2 + 1) dimensions we demonstrate the relation between entanglement entropy and the classical entropy of the field flux. For SU (2) lattice gauge theory in four dimensions, we find a signature of non-analytic dependence of the entanglement entropy on the size of the region. We also comment on the holographic interpretation of the entanglement entropy.

  17. Family gauge boson production at the LHC

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    2015-11-01

    Full Text Available Family gauge boson production at the LHC is investigated according to a U(3 family gauge model with twisted family number assignment. In the model we study, a family gauge boson with the lowest mass, A11, interacts only with the first generation leptons and the third generation quarks. (The family numbers are assigned, for example, as (e1,e2,e3=(e−,μ−,τ− and (d1,d2,d3=(b,d,s [or (d1,d2,d3=(b,s,d]. In the model, the family gauge coupling constant is fixed by relating to the electroweak gauge coupling constant. Thus measurements of production cross sections and branching ratios of A11 clearly confirm or rule out the model. We calculate the cross sections of inclusive A11 production and bb¯(tt¯ associated A11 production at s=14 TeV and 100 TeV. With the dielectron production cross section, we discuss the determination of diagonalizing matrix of quark mass matrix, Uu and Ud, respectively.

  18. Gauge theories in anti-selfdual variables

    Science.gov (United States)

    Bochicchio, Marco; Pilloni, Alessandro

    2013-09-01

    Some years ago the Nicolai map, viewed as a change of variables from the gauge connection in a fixed gauge to the anti-selfdual part of the curvature, has been extended by the first named author to pure Yang-Mills from its original definition in = 1 supersymmetric Yang-Mills. We study here the perturbative one-particle irreducible effective action in the anti-selfdual variables of any gauge theory, in particular pure Yang-Mills, QCD and = 1 supersymmetric Yang-Mills. We prove that the one-loop one-particle irreducible effective action of a gauge theory mapped to the anti-selfdual variables in any gauge is identical to the one of the original theory. This is due to the conspiracy between the Jacobian of the change to the anti-selfdual variables and an extra functional determinant that arises from the non-linearity of the coupling of the anti-selfdual curvature to an external source in the Legendre transform that defines the one-particle irreducible effective action. Hence we establish the one-loop perturbative equivalence of the mapped and original theories on the basis of the identity of the one-loop one-particle irreducible effective actions. Besides, we argue that the identity of the perturbative one-particle irreducible effective actions extends order by order in perturbation theory.

  19. SU(3) gauge theory of nuclear rotations

    Science.gov (United States)

    Rosensteel, G.; Sparks, N.

    2017-09-01

    The legacy Bohr-Mottelson model of collective rotational modes has a hidden differential geometric structure that enables its natural generalization to a nuclear model that has the mathematical structure of Yang-Mills theory. The essential differential geometry ingredients for Yang-Mills are a base manifold, a gauge group, and a connection or covariant derivative. In this letter, the base manifold is the space of nuclear orientations and quadrupole-monopole deformations, the gauge group is either SO(3) or SU(3), and the covariant derivative determines a new gauge-invariant “magnetic-type” interaction. The high-lying energy states of the legacy irrotational flow model enter, as a direct result of gauge coupling, the domain of low-energy yrast rotational bands, as observed by experiment. Although the relevant SU(3) representation for a deformed nucleus is the same as the Elliott model, the non-Abelian SU(3) gauge group's physical interpretation is very different and concerns the Kelvin circulation.

  20. MHD Gauge Fields: Helicities and Casimirs

    Science.gov (United States)

    Hu, Q.; Webb, G. M.; Zank, G. P.; Anco, S.

    2016-12-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963). It is shown how the polarization vector P in Calkin's approach, naturally arises from the Lagrange multiplier constraint equation for Faraday's equation for the magnetic induction B, or alternatively from the magnetic vector potential form of Faraday's equation. Gauss's equation, (divergence of Bis zero), is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether's theorem, and gauge symmetries are used to derive the conservation laws for (a) magnetic helicity (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations, which applies to Faraday's equation and Gauss's equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for a non-barotropic gas. The cross helicity and fluid helicity conservation are nonlocal conservation laws, that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982) satisfy the Casimir equations.

  1. Gauge Freedom in Orbital Mechanics

    OpenAIRE

    Efroimsky, Michael

    2006-01-01

    In orbital and attitude dynamics the coordinates and the Euler angles are expressed as functions of the time and six constants called elements. Under disturbance, the constants are endowed with time dependence. The Lagrange constraint is then imposed to guarantee that the functional dependence of the perturbed velocity on the time and constants stays the same as in the undisturbed case. Constants obeying this condition are called osculating elements. The constants chosen to be canonical are c...

  2. Resurgent analysis of localizable observables in supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Aniceto, Inês [CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Russo, Jorge G. [Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys, 23, 08010 Barcelona (Spain); ECM Department and Institute for Sciences of the Cosmos, Facultat de Física,Universitat de Barcelona,Martí Franquès 1, E08028 Barcelona (Spain); Schiappa, Ricardo [CAMGSD, Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Theory Division, Department of Physics, CERN,CH-1211 Genève 23 (Switzerland)

    2015-03-31

    Localization methods have recently led to a plethora of new exact results in supersymmetric gauge theories, as certain observables may be computed in terms of matrix integrals. These can then be evaluated by making use of standard large N techniques, or else via perturbative expansions in the gauge coupling. Either approximation often leads to observables given in terms of asymptotic series, which need to be properly defined in order to obtain nonperturbative results. At the same time, resurgent analysis has recently been successfully applied to several problems, e.g., in quantum, field and string theories, precisely to overcome this issue and construct nonperturbative answers out of asymptotic perturbative expansions. The present work uses exact results from supersymmetric localization to address the resurgent structure of the free energy and partition function of Chern-Simons and ABJM gauge theories in three dimensions, and of N=2 supersymmetric Yang-Mills theories in four dimensions. For each case, the complete structure of Borel singularities is exactly determined, and the relation of these singularities with the large-order behavior of (multi-instanton) perturbative expansions is made fully precise.

  3. Effective kinetic theory for high temperature gauge theories

    Science.gov (United States)

    Arnold, Peter B.; Moore, Guy D.; Yaffe, Laurence G.

    2003-01-01

    Quasiparticle dynamics in relativistic plasmas associated with hot, weakly-coupled gauge theories (such as QCD at asymptotically high temperature T) can be described by an effective kinetic theory, valid on sufficiently large time and distance scales. The appropriate Boltzmann equations depend on effective scattering rates for various types of collisions that can occur in the plasma. The resulting effective kinetic theory may be used to evaluate observables which are dominantly sensitive to the dynamics of typical ultrarelativistic excitations. This includes transport coefficients (viscosities and diffusion constants) and energy loss rates. In this paper, we show how to formulate effective Boltzmann equations which will be adequate to compute such observables to leading order in the running coupling g(T) of high-temperature gauge theories [and all orders in 1/log g(T)-1]. As previously proposed in the literature, a leading-order treatment requires including both 2leftrightarrow2 particle scattering processes as well as effective ``1leftrightarrow2'' collinear splitting processes in the Boltzmann equations. The latter account for nearly collinear bremsstrahlung and pair production/annihilation processes which take place in the presence of fluctuations in the background gauge field. Our effective kinetic theory is applicable not only to near-equilibrium systems (relevant for the calculation of transport coefficients), but also to highly non-equilibrium situations, provided some simple conditions on distribution functions are satisfied.

  4. Motion-to-Motion Gauge Entails the Flavor Families

    Directory of Open Access Journals (Sweden)

    Tselnik F.

    2015-01-01

    Full Text Available Charge and mass gauging procedure is carried out by means of counting the oscillation numbers of an auxiliary top-speed signal (“photons” between the appropriately ordered electrons and positrons, moving under their interaction along the diagonals of the cube toward its center (the “cube star”. Regular lattices composed of such stars transport the values of charge and mass over space-time regions. The gauge consists in detection of the cube symmetry in each star. However, the detected symmetry can also be observed, even if some particles of the basic electron / positron star are replaced with heavy mesons. These become an unavoidable byproduct of the gauge procedure. Two possible sub- symmetries of the cube realizing such replacement correspond to two mesons, but the regularity of the whole lattice holds only for some particular values of their masses. Numerical solutions to the non-linear ODE systems describing this situation yield these masses in terms of electron mass, which are close to those of the μ - and τ -mesons.

  5. Two-dimensional lattice gauge theories with superconducting quantum circuits.

    Science.gov (United States)

    Marcos, D; Widmer, P; Rico, E; Hafezi, M; Rabl, P; Wiese, U-J; Zoller, P

    2014-12-01

    A quantum simulator of [Formula: see text] lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  6. Ultrasonic depth gauge for liquids under high pressure

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Mazel, David S. (Inventor)

    1988-01-01

    The invention relates to an ultrasonic depth gauge for liquids under high pressure and is particularly useful in the space industry where it is necessary to use a pressurized gas to transfer a liquid from one location to another. Conventional liquid depth gauges do not have the capability to operate under extreme high pressure (i.e., exceeding 300 psi). An ultrasonic depth gauge capable of withstanding high pressure according to the present invention is comprised of a transducer assembly and a supporting electronics unit. The former is mounted in to the bottom wall of a storage vessel with its resonating surface directly exposed to the highly pressurized liquid in the vessel. In operation, the ultrasonic pulse propagates upward through the liquid to the liquid-gas interface in the storage vessel. When the ultrasonic echo returns from the liquid-gas interface, it re-excites the composite resonator into vibration. The supporting electronics unit measures the round-trip transmit time for the ultrasonic pulse and its return echo to traverse the depth of the highly pressurized liquid. The novelty of the invention resides in the use of a conventional transducer rigidly bonded to the inside wall of a bored out conventional high-pressure plug to form a composite resonator capable of withstanding extremely high pressure.

  7. Lattice Gauge Theories Have Gravitational Duals

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon

    2002-09-05

    In this paper we examine a certain threebrane solution of type IIB string theory whose long-wavelength dynamics are those of a supersymmetric gauge theory in 2+1 continuous and 1 discrete dimension, all of infinite extent. Low-energy processes in this background are described by dimensional deconstruction, a strict limit in which gravity decouples but the lattice spacing stays finite. Relating this limit to the near-horizon limit of our solution we obtain an exact, continuum gravitational dual of a lattice gauge theory with nonzero lattice spacing. H-flux in this translationally invariant background encodes the spatial discreteness of the gauge theory, and we relate the cutoff on allowed momenta to a giant graviton effect in the bulk.

  8. Renormalization of gauge theories without cohomology

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy); INFN, Sezione di Pisa (Italy)

    2013-07-15

    We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem. (orig.)

  9. Gauge field theories an introduction with applications

    CERN Document Server

    Guidry, Mike

    1991-01-01

    Acquaints readers with the main concepts and literature of elementary particle physics and quantum field theory. In particular, the book is concerned with the elaboration of gauge field theories in nuclear physics; the possibility of creating fundamental new states of matter such as an extended quark-gluon plasma in ultra-relativistic heavy ion collisions; and the relation of gauge theories to the creation and evolution of the universe. Divided into three parts, it opens with an introduction to the general principles of relativistic quantum field theory followed by the essential ingredients of gauge fields for weak and electromagnetic interactions, quantum chromodynamics and strong interactions. The third part is concerned with the interface between modern elementary particle physics and "applied disciplines" such as nuclear physics, astrophysics and cosmology. Includes references and numerous exercises

  10. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  11. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  12. ``Gauging'' Non-on-site Symmetries and Symmetry Protected Topological Phases

    Science.gov (United States)

    Hsieh, Chang-Tse; Cho, Gil Young; Ryu, Shinsei

    2015-03-01

    We gauge non-on-site symmetries, such as parity symmetries, for a general (1+1)D conformal field theory (CFT) which is the boundary of (2+1)D symmetry protected topological (SPT) phases. This provides an efficient method to diagnose stability of SPT phases with the discrete non-on-site symmetries. To gauge the non-on- site symmetries, we are naturally led to consider field theories defined on a non-orientied manifold, such as Klein bottle. The partner states of the ``vortices'' (or twist operators) of the gauged non-on-site symmetries, the so-called crosscap states, provide information about the classification of the corresponding SPT phases. Our method also provide a way to gauging time-reversal symmetry, which is ``topologically'' related to parity symmetry by CPT theorem. NSF Grants DMR-1064319.

  13. Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates

    Science.gov (United States)

    Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah

    2017-08-01

    Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.

  14. Gauge symmetries and structure of proteins

    Directory of Open Access Journals (Sweden)

    Molochkov Alexander

    2017-01-01

    Full Text Available We discuss the gauge field theory approach to protein structure study, which allows a natural way to introduce collective degrees of freedom and nonlinear topological structures. Local symmetry of proteins and its breaking in the medium is considered, what allows to derive Abelian Higgs model of protein backbone, correct folding of which is defined by gauge symmetry breaking due hydrophobic forces. Within this model structure of protein backbone is defined by superposition of one-dimensional topological solitons (kinks, what allows to reproduce the three-dimensional structure of the protein backbone with precision up to 1A and to predict its dynamics.

  15. Uplifting non-compact gauged supergravities

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Walter H.; Dall’Agata, Gianguido [Dipartimento di Fisica e Astronomia “Galileo Galilei”,Università di Padova, Via Marzolo 8, 35131 Padova (Italy); INFN - Sezione di Padova Via Marzolo 8, 35131 Padova (Italy)

    2015-02-02

    We provide the M-theory uplift of de Sitter vacua of SO(5,3) and SO(4,4) gaugings of maximal supergravity in 4 dimensions. We find new non-compact backgrounds that are squashed hyperboloids with non-trivial flux for the 3-form potential. The uplift requires a new non-linear ansatz for the 11-dimensional metric and for the 3-form potential that reduces to the known one leading to the 7-sphere solution in the case of the SO(8) gauging.

  16. Dirac Gauginos, Gauge Mediation and Unification

    CERN Document Server

    Benakli, K

    2010-01-01

    We investigate the building of models with Dirac gauginos and perturbative gauge coupling unification. Here, in contrast to the MSSM, additional fields are required for unification, and these can naturally play the role of the messengers of supersymmetry breaking. We present a framework within which such models can be constructed, including the constraints that the messenger sector must satisfy; and the renormalisation group equations for the soft parameters, which differ from those of the MSSM. For illustration, we provide the spectrum at the electroweak scale for explicit models whose gauge couplings unify at the scale predicted by heterotic strings.

  17. Jarzynski's theorem for lattice gauge theory

    CERN Document Server

    Caselle, Michele; Nada, Alessandro; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a non-equilibrium transformation of a system, to the free-energy difference between two equilibrium states. In this article, we extend Jarzynski's theorem to lattice gauge theory, and present examples of applications for two challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schroedinger functional and for simulations at finite density using reweighting techniques.

  18. Vertical ground motion from tide gauges and satellite altimetry

    Science.gov (United States)

    Ostanciaux, Emilie; Husson, Laurent; Pedoja, Kevin

    2010-05-01

    GPS are presented. We also compare the resulting estimates of instantaneous ground motion to our recently released compilation of ground motion from MIS5e (Pleistocene) and Holocene marine terraces. Such comparison suggests constantly increasing rates of ground motion with time, unless it reveals a correlation between the timescale of observation and the apparent ground motion. Bouin,M.N. & Wöppelmann, G., 2010. Land motion estimates from GPS at tide gauges: a geophysical evaluation, Geophys. J. Int., 180, 193-209. Cazenave, A., Dominh, K., Ponchaut, F., Soudarin, L., Cretaux, J. F., & Provost, C. L., 1999. Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS, Geophys.Res.Let., 26, 2077-2080. Kuo, C.-Y., Shum, C., Braun, A., Cheng, K.-C., & Yi, Y., 2008. Vertical motion determined using satellite altimetry and tide gauges, Terr. Atmos. Ocean. Sci., 19, 21-35. Nerem, R. S. & Mitchum, G. T., 2002. Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements, Geophys.Res. Let., 29(19), 190000-1 Peltier, W. R., 2004. Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G (VM2) Model and GRACE, Annual Review of Earth and Planetary Sciences, 32, 111-149.

  19. A vacuum gauge based on an ultracold gas

    Science.gov (United States)

    Makhalov, V. B.; Turlapov, A. V.

    2017-06-01

    We report the design and application of a primary vacuum gauge based on an ultracold gas of atoms in an optical dipole trap. The pressure is calculated from the confinement time for atoms in the trap. The relationship between pressure and confinement time is established from the first principles owing to elimination of all channels introducing losses, except for knocking out an atom from the trap due to collisions with a residual gas particle. The method requires the knowledge of the gas chemical composition in the vacuum chamber, and, in the absence of this information, the systematic error is less than that of the ionisation sensor.

  20. Maximal Abelian gauge and a generalized BRST transformation

    Directory of Open Access Journals (Sweden)

    Shinichi Deguchi

    2016-05-01

    Full Text Available We apply a generalized Becchi–Rouet–Stora–Tyutin (BRST formulation to establish a connection between the gauge-fixed SU(2 Yang–Mills (YM theories formulated in the Lorenz gauge and in the Maximal Abelian (MA gauge. It is shown that the generating functional corresponding to the Faddeev–Popov (FP effective action in the MA gauge can be obtained from that in the Lorenz gauge by carrying out an appropriate finite and field-dependent BRST (FFBRST transformation. In this procedure, the FP effective action in the MA gauge is found from that in the Lorenz gauge by incorporating the contribution of non-trivial Jacobian due to the FFBRST transformation of the path integral measure. The present FFBRST formulation might be useful to see how Abelian dominance in the MA gauge is realized in the Lorenz gauge.

  1. Performance of stem flow gauges in greenhouse and desert environments

    Energy Technology Data Exchange (ETDEWEB)

    Levitt, D.G. [Reynolds Electrical and Engineering Co., Inc., Las Vegas, NV (United States); Simpson, J.R. [California Univ., Davis, CA (United States). Dept. of Environmental Horticulture; Tipton, J.L. [Arizona Univ., Tucson, AZ (United States). Dept. of Plant Sciences

    1995-06-01

    This study was conducted to evaluate the accuracy and general performance of a heat balance method for estimating transpirational sap flow through plant stems on two tree species in greenhouse and field experiments in Tucson, Arizona. Sap flow through 20-mm diameter stems of oak (Quercus virginiana `Heritage`) and mesquite (Prosopis alba `Colorado`.) trees in containers was measured using stem flow gauges and a precision balance, from January to October, 1991. Overall gauge accuracy, and the effects of gauge location on the tree stem, gauge ventilation, gauge insulation, sheath conductance factor (Ksh) selection method, and increased numbers of vertical thermocouple pairs on gauge performance were evaluated.

  2. Loop calculus for lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Gambini, R.; Leal, L.; Trias, A.

    1989-05-15

    Hamiltonian calculations are performed using a loop-labeled basis where the full set of identities for the SU(/ital N/) gauge models has been incorporated. The loops are classified as clusterlike structures and the eigenvalue problem leads to a linear set of finite-difference equations easily amenable to numerical treatment. Encouraging results are reported for SU(2) at spatial dimension 2.

  3. Lattice Gauge Field Theory and Prismatic Sets

    DEFF Research Database (Denmark)

    Akyar, Bedia; Dupont, Johan Louis

    as and in particular the latter we use to study lattice gauge theory in the sense of Phillips and Stone. Thus for a Lie group and a set of parallel transport functions defining the transition over faces of the simplices, we define a classifying map from the prismatic star to a prismatic version of the classifying...

  4. Cellular-based sea level gauge

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Joseph, A.

    , is mounted within a cylindrical protective housing, which in turn is rigidly held within a mechanical structure. This structure is secured to a jetty. The gauge is powered by a battery, which is charged by solar panels. Battery, electronics, solar panels...

  5. Н(1) Gauge theory as quantum hydrodynamics

    Indian Academy of Sciences (India)

    January 2004 physics pp. 101-114. Н(1) Gauge theory as quantum hydrodynamics. GIRIsH s sETLUR ... there is work by Ceperley [4] using quantum Monte Carlo. The main point of this article is to highlight the ..... Fermi liquid theory break down in two or three dimensions?' In two dimensions, for the interaction νХ = const.

  6. National Computational Infrastructure for Lattice Gauge Theory

    Energy Technology Data Exchange (ETDEWEB)

    Brower, Richard C.

    2014-04-15

    SciDAC-2 Project The Secret Life of Quarks: National Computational Infrastructure for Lattice Gauge Theory, from March 15, 2011 through March 14, 2012. The objective of this project is to construct the software needed to study quantum chromodynamics (QCD), the theory of the strong interactions of sub-atomic physics, and other strongly coupled gauge field theories anticipated to be of importance in the energy regime made accessible by the Large Hadron Collider (LHC). It builds upon the successful efforts of the SciDAC-1 project National Computational Infrastructure for Lattice Gauge Theory, in which a QCD Applications Programming Interface (QCD API) was developed that enables lattice gauge theorists to make effective use of a wide variety of massively parallel computers. This project serves the entire USQCD Collaboration, which consists of nearly all the high energy and nuclear physicists in the United States engaged in the numerical study of QCD and related strongly interacting quantum field theories. All software developed in it is publicly available, and can be downloaded from a link on the USQCD Collaboration web site, or directly from the github repositories with entrance linke http://usqcd-software.github.io

  7. Hydrodynamic Gradient Expansion in Gauge Theory Plasmas,

    NARCIS (Netherlands)

    Heller, M.P.; Janik, R.A.; Witaszczyk, P

    2013-01-01

    We utilize the fluid-gravity duality to investigate the large order behavior of hydrodynamic gradient expansion of the dynamics of a gauge theory plasma system. This corresponds to the inclusion of dissipative terms and transport coefficients of very high order. Using the dual gravity description,

  8. Recent advances in lattice gauge theories

    Indian Academy of Sciences (India)

    Recent progress in the field of lattice gauge theories is briefly reviewed for a nonspecialist audience. While the emphasis is on the latest and more definitive results that have emerged prior to this symposium, an effort has been made to provide them with minimal technicalities.

  9. Geometrical origin of supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, S.; Gambini, R.

    1989-01-15

    We show that the kinematical properties of any supersymmetric gauge theory may be obtained by mapping a geometric group structure of loops in superspace into some particular Lie group. The underlying group structure of the usual constrained supergauge theories turns out to be the group of even (bosonic) loops.

  10. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    Abstract. We propose a novel method for the search of supersymmetry, especially for the elec- troweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ...

  11. Gauge concepts in theoretical applied physics

    Science.gov (United States)

    Tan, Seng Ghee; Jalil, Mansoor B. A.

    2016-01-01

    Gauge concept evolves in the course of nearly one century from Faraday’s rather obscure electrotonic state of matter to the physically significant Yang-Mills that underpin today’s standard model. As gauge theories improve, links are established with modern observations, e.g. in the Aharonov-Bohm effect, the Pancharatnam-Berry’s phase, superconductivity, and quantum Hall effects. In this century, emergent gauge theory is formulated in numerous fields of applied physics like topological insulators, spintronics, and graphene. We will show in this paper the application of gauge theory in two particularly useful spin-based phenomena, namely the spin orbit spin torque and the spin Hall effect. These are important fields of study in the engineering community due to great commercial interest in the technology of magnetic memory (MRAM), and magnetic field sensors. Both spin orbit torque and spin Hall perform magnetic switching at low power and high speed. Furthermore, spin Hall is also a promising source of pure spin current, as well as a reliable form of detection mechanism for the magnetic state of a material.

  12. Gauge coupling renormalization in Ads5

    Indian Academy of Sciences (India)

    diverges depending linearly on cut-off A and 1 g20a and 1 g2πa diverges logarithmically. One-loop correction to the low energy gauge coupling also contains conventional logarithmic running in 4D effective theory and calculable threshold corrections from matching 5D theory to 4D effective theory. We parametrize them by.

  13. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to find the ...

  14. Gauge Physics of Finance: simple introduction

    OpenAIRE

    Ilinski, Kirill N

    1998-01-01

    In this paper we state the fundamental principles of the gauge approach to financial economics and demonstrate the ways of its application. In particular, modelling of realistic price processes is considered for an example of S&P500 market index. Derivative pricing and portfolio theory are also briefly discussed.

  15. Nanocomposite Strain Gauges Having Small TCRs

    Science.gov (United States)

    Gregory, Otto; Chen, Ximing

    2009-01-01

    Ceramic strain gauges in which the strain-sensitive electrically conductive strips made from nanocomposites of noble metal and indium tin oxide (ITO) are being developed for use in gas turbine engines and other power-generation systems in which gas temperatures can exceed 1,500 F (about 816 C). In general, strain gauges exhibit spurious thermally induced components of response denoted apparent strain. When temperature varies, a strain-gauge material that has a nonzero temperature coefficient of resistance (TCR) exhibits an undesired change in electrical resistance that can be mistaken for the change in resistance caused by a change in strain. It would be desirable to formulate straingauge materials having TCRs as small as possible so as to minimize apparent strain. Most metals exhibit positive TCRs, while most semiconductors, including ITO, exhibit negative TCRs. The present development is based on the idea of using the negative TCR of ITO to counter the positive TCRs of noble metals and of obtaining the benefit of the ability of both ITO and noble metals to endure high temperatures. The noble metal used in this development thus far has been platinum. Combinatorial libraries of many ceramic strain gauges containing nanocomposites of various proportions of ITO and platinum were fabricated by reactive co-sputtering from ITO and platinum targets onto alumina- and zirconia-based substrates mounted at various positions between the targets.

  16. Gauge theory and renormalization (Erice, August 1994)

    OpenAIRE

    Hooft, G. 't

    1994-01-01

    Early developments leading to renormalizable non-Abelian gauge theories for the weak, electromagnetic and strong interactions, are discussed from a personal viewpoint. They drastically improved our view of the role of field theory, symmetry and topology, as well as other branches of mathematics, in the world of elementary particles.

  17. 27 CFR 19.768 - Gauge record.

    Science.gov (United States)

    2010-04-01

    ... storage or processing account at the plant where produced; (2) Packaging of spirits or wine filled from a... formula number of denatured spirits; (f) Proof of distillation (not required for denatured spirits... gauge details, proof, and wine gallons; (2) Cooperage identification (“C” for charred, “REC” for...

  18. Flavor Gauge Models Below the Fermi Scale

    Energy Technology Data Exchange (ETDEWEB)

    Babu, K. S. [Oklahoma State U.; Friedland, A. [SLAC; Machado, P. A.N. [Madrid, IFT; Mocioiu, I. [Penn State U.

    2017-05-04

    The mass and weak interaction eigenstates for the quarks of the third generation are very well aligned, an empirical fact for which the Standard Model offers no explanation. We explore the possibility that this alignment is due to an additional gauge symmetry in the third generation. Specifically, we construct and analyze an explicit, renormalizable model with a gauge boson, $X$, corresponding to the $B-L$ symmetry of the third family. Having a relatively light (in the MeV to multi-GeV range), flavor-nonuniversal gauge boson results in a variety of constraints from different sources. By systematically analyzing 20 different constraints, we identify the most sensitive probes: kaon, $D^+$ and Upsilon decays, $D-\\bar{D}^0$ mixing, atomic parity violation, and neutrino scattering and oscillations. For the new gauge coupling $g_X$ in the range $(10^{-2} - 10^{-4})$ the model is shown to be consistent with the data. Possible ways of testing the model in $b$ physics, top and $Z$ decays, direct collider production and neutrino oscillation experiments, where one can observe nonstandard matter effects, are outlined. The choice of leptons to carry the new force is ambiguous, resulting in additional phenomenological implications, such as non-universality in semileptonic bottom decays. The proposed framework provides interesting connections between neutrino oscillations, flavor and collider physics.

  19. Interacting relativistic quantum dynamics for multi-time wave functions

    Directory of Open Access Journals (Sweden)

    Lienert Matthias

    2016-01-01

    Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.

  20. Topological gauge theory, Cartan geometry, and gravity

    Science.gov (United States)

    Wise, Derek Keith

    2007-12-01

    We investigate the geometry of general relativity, and of related topological gauge theories, using Cartan geometry. Cartan geometry---an 'infinitesimal' version of Klein's Erlanger Programm---allows us to view physical spacetime as tangentially approximated by a homogeneous 'model spacetime', such as de Sitter or anti de Sitter spacetime. This idea leads to a common geometric foundation for 3d Chern-Simons gravity, as studied by Witten, and 4d MacDowell-Mansouri gravity. We describe certain topological gauge theories, including BF theory---a natural generalization of 3d gravity to higher dimensions---as 'Cartan gauge theories' in which the gauge field is replaced by a 'Cartan connection' modeled on some Klein geometry G/H. Cartan-type BF theory has solutions that say spacetime is locally isometric to G/H itself; in this case Cartan geometry reduces to the theory of 'geometric structures'. This leads to generalizations of 3d gravity based on other 3d Klein geometries, including those in Thurston's classification of 3d Riemannian model geometries. In 4d gravity, we generalize MacDowell-Mansouri gravity to other Cartan geometries. For BF theory in n-dimensional spacetime, we also describe codimension-2 'branes' as topological defects. These branes---particles in 3d spacetime, strings in 4d, and so on---are shown to be classified by conjugacy classes in the gauge group G of the theory. They also obey 'exotic statistics' which are neither Bose-Einstein nor Fermi-Dirac, but are governed by representations of generalizations of the braid group known as 'motion groups'. These representations come from a natural action of the motion group on the moduli space of flat G-bundles on space. We study this in particular detail in the case of strings in 4d BF theory, where Lin has called the motion group the 'loop braid group', LBn. This makes 4d BF theory with strings into a 'loop braided quantum field theory'. We also use ideas from 'higher gauge theory' to study particles as

  1. Gauge Freedom in Orbital Mechanics

    Science.gov (United States)

    Efroimsky, Michael

    2005-12-01

    In orbital and attitude dynamics the coordinates and the Euler angles are expressed as functions of the time and six constants called elements. Under disturbance, the constants are endowed with time dependence. The Lagrange constraint is then imposed to guarantee that the functional dependence of the perturbed velocity on the time and constants stays the same as in the undisturbed case. Constants obeying this condition are called osculating elements. The constants chosen to be canonical are called Delaunay elements, in the orbital case, or Andoyer elements, in the spin case. (As some Andoyer elements are time dependent even in the free-spin case, the role of constants is played by their initial values.) The Andoyer and Delaunay sets of elements share a feature not readily apparent: in certain cases the standard equations render them non-osculating. In orbital mechanics, elements furnished by the standard planetary equations are non-osculating when perturbations depend on velocities. To preserve osculation, the equations must be amended with extra terms that are not parts of the disturbing function. In the case of Delaunay parameterisation, these terms destroy canonicity. So under velocity-dependent disturbances, osculation and canonicity are incompatible. (Efroimsky and Goldreich 2003, 2004) Similarly, the Andoyer elements turn out to be non-osculating under angular-velocity-dependent perturbation. Amendment of only the Hamiltonian makes the equations render nonosculating elements. To make them osculating, more terms must enter the equations (and the equations will no longer be canonical). In practical calculations, is often convenient to deliberately deviate from osculation by substituting the Lagrange constraint with a condition that gives birth to a family of nonosculating elements.

  2. Axion inflation with an SU(2) gauge field: detectable chiral gravity waves

    Energy Technology Data Exchange (ETDEWEB)

    Maleknejad, Azadeh [School of Physics, Institute for Research in Fundamental Sciences (IPM), P. Code. 19538-33511, Tehran (Iran, Islamic Republic of)

    2016-07-20

    We study a single field axion inflation model in the presence of an SU(2) gauge field with a small vev. In order to make the analysis as model-independent as possible, we consider an arbitrary potential for the axion that is able to support the slow-roll inflation. The gauge field is coupled to the axion with a Chern-Simons interaction (λ/f)F{sub μν}{sup a}F̃{sub a}{sup μν} where (λ/f)∼((O(10))/(M{sub pl})). It has a negligible effect on the background evolution, ((ρ{sub YM})/(M{sub pl}{sup 2}H{sup 2}))≲ϵ{sup 2}. However, its quantum fluctuations make a significant contribution to the cosmic perturbation. In particular, the gauge field has a spin-2 fluctuation which explicitly breaks the parity between the left- and right-handed polarization states. The chiral tensor modes are linearly coupled to the gravitational waves and lead to a circularly polarized tensor power spectrum comparable to the unpolarized vacuum power spectrum. Moreover, the scalar sector is modified by the linear scalar fluctuations of the gauge field. Since the spin-0 and spin-2 fluctuations of the SU(2) gauge field are independent, the gauge field can, at the same time, generate a detectable chiral gravitational wave signal and have a negligible contribution to the scalar fluctuations, in agreement with the current CMB observations.

  3. Atomic quantum simulation of a three-dimensional U(1) gauge-Higgs model

    CERN Document Server

    Kuno, Yoshihito; Kasamatsu, Kenichi; Ichinose, Ikuo; Matsui, Tetsuo

    2016-01-01

    In this paper, we study atomic quantum simulations of a U(1) gauge-Higgs model on a three-dimensional (3D) spatial lattice. We start from an extended 3D Bose-Hubbard model with nearest-neighbor repulsions and show that it can simulate a U(1) gauge-Higgs model with next nearest-neighbor Higgs couplings. Here the phase of the boson variable on each site of the optical lattice describes the vector potential on each link of the gauge-model lattice. To determine the phase diagram of the gauge-Higgs model at a zero temperature, we perform Monte-Carlo simulations of the corresponding 3+1-dimensional U(1) gauge-Higgs model, and obtain the three phases, i.e., the confinement, Coulomb and Higgs phases. To investigate the dynamical properties of the gauge-Higgs model, we apply the Gross-Pitaevskii equations to the extended Bose-Hubbard model. We simulate the time-evolution of an electric flux initially put on a straight line connecting two external point charges. We also calculate the potential energy between this pair ...

  4. Pressure-Volume-Temperature (PVT) Gauging of an Isothermal Cryogenic Propellant Tank Pressurized with Gaseous Helium

    Science.gov (United States)

    VanDresar, Neil T.; Zimmerli, Gregory A.

    2014-01-01

    Results are presented for pressure-volume-temperature (PVT) gauging of a liquid oxygen/liquid nitrogen tank pressurized with gaseous helium that was supplied by a high-pressure cryogenic tank simulating a cold helium supply bottle on a spacecraft. The fluid inside the test tank was kept isothermal by frequent operation of a liquid circulation pump and spray system, and the propellant tank was suspended from load cells to obtain a high-accuracy reference standard for the gauging measurements. Liquid quantity gauging errors of less than 2 percent of the tank volume were obtained when quasi-steady-state conditions existed in the propellant and helium supply tanks. Accurate gauging required careful attention to, and corrections for, second-order effects of helium solubility in the liquid propellant plus differences in the propellant/helium composition and temperature in the various plumbing lines attached to the tanks. On the basis of results from a helium solubility test, a model was developed to predict the amount of helium dissolved in the liquid as a function of cumulative pump operation time. Use of this model allowed correction of the basic PVT gauging calculations and attainment of the reported gauging accuracy. This helium solubility model is system specific, but it may be adaptable to other hardware systems.

  5. CogGauge (A Cognitive Assessment Tool) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Cognitive Gauge (CogGauge) tool aims to develop a portable gaming application that assesses cognitive state of astronaut crew members with the goal of...

  6. Spherically symmetric classical solutions in SU(2) gauge theory with a Higgs field

    Energy Technology Data Exchange (ETDEWEB)

    Ratra, B.; Yaffe, L.G.

    1988-04-21

    A consistent ansatz for time dependent classical solutions in an SU(2) gauge theory with a doublet Higgs field is presented. The (3+1)-dimensional field equations are reduced to those of an effective (1+1)-dimensional theory. This ansatz describes solutions which travel between topologically distinct classical vacua of the non-abelian gauge theory. The real time version of these solutions describes the creation and decay of the unstable static 'sphaleron', the imaginary time version describes a euclidean instanton. (orig.)

  7. Gauge Fixing on the Lattice and the Gibbs Phenomenon

    OpenAIRE

    Mandula, Jeffrey E.

    1999-01-01

    We discuss global gauge fixing on the lattice, specifically to the lattice Landau gauge, with the goal of understanding the question of why the process becomes extremely slow for large lattices. We construct an artificial "gauge-fixing" problem which has the essential features encountered in actuality. In the limit in which the size of the system to be gauge fixed becomes infinite, the problem becomes equivalent to finding a series expansion in functions which are related to the Jacobi polyno...

  8. New Methods in Supersymmetric Theories and Emergent Gauge Symmetry

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    It is remarkable that light or even massless spin 1 particles can be composite. Consequently, gauge invariance is not fundamental but emergent. This idea can be realized in detail in supersymmetric gauge theories. We will describe the recent development of non-perturbative methods that allow to test this idea. One finds that the emergence of gauge symmetry is linked to some results in contemporary mathematics. We speculate on the possible applications of the idea of emergent gauge symmetry to realistic models.

  9. A gauge field theory of fermionic continuous-spin particles

    Directory of Open Access Journals (Sweden)

    X. Bekaert

    2016-09-01

    Full Text Available In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs. The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  10. Low-temperature strain gauges based on silicon whiskers

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2008-08-01

    Full Text Available To create low-temperature strain gauges based on p-type silicon whiskers tensoresistive characteristics of these crystals in 4,2—300 K temperature range were studied. On the basis of p-type Si whiskers with different resistivity the strain gauges for different materials operating at cryogenic temperatures with extremely high gauge factor at 4,2 K were developed, as well as strain gauges operating at liquid helium temperatures in high magnetic fields.

  11. Search for new heavy charged gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Magass, Carsten Martin

    2007-11-02

    The TEVATRON proton-antiproton collider at FERMILAB (near Chicago/USA) is operating at a center-of-mass energy of {radical}(s)=1.96 TeV since March 2001. This analysis uses data taken with the DOe detector until February 2006 corresponding to an integrated luminosity of about {integral}Ldt=1 fb{sup -1}. Using this dataset, a search for a new heavy charged gauge boson W{sup '} and its subsequent decay into an electron and a neutrino is performed: p anti p{yields}W{sup '}+X{yields}e{nu}+X. Additional gauge bosons (including the equivalent to the Z, the Z{sup '}) are introduced in many extensions to the Standard Model of particle physics. Assuming the most general case, the new gauge group can comprise a new mixing angle and new couplings. Here, the Altarelli Reference Model is considered which represents a generalization of the Manifest Left-Right Symmetric Model with light right-handed neutrinos. This model makes the assumptions that the new gauge boson W{sup '} has the same couplings as the Standard Model W boson and that there is no mixing. Hence, the W{sup '} is a heavy copy of the Standard Model W boson. The clear decay signature (in analogy to the decay of the W) contains an isolated electron with extreme high energy which is important for triggering. The neutrino can not be detected, but it gives rise to missing energy in the detector. The Jacobian peak in the transverse mass distribution stemming from the W decay is used for calibration, whereas the tail of the transverse mass distribution is searched for a possible W{sup '} signal. The data agrees with the expectation from background processes. For instance, in the data 37 events are reconstructed with transverse masses above 300 GeV compared to a prediction of 37.1{+-}2.1(stat){sup +6.0}{sub -3.7}(sys) background events. Since no significant excess is found in the data, an upper limit is set on the production cross section for heavy charged gauge bosons decaying into electron

  12. Results of Dynamic Calibration of Tipping-Bucket Rain Gauges

    Science.gov (United States)

    Kvicera, V.; Grabner, M.

    2009-04-01

    Experimental research in the Department of Frequency Engineering in the Czech Metrology Institute (CMI) in Prague, the Czech Republic, is focused on stability of received signal on terrestrial radio and optical paths. Rain can cause serious attenuation of electromagnetic waves in the frequency bands over 10 GHz. Therefore, our experimental research is also focused on our own meteorological measurement in the vicinity of experimental radio and optical paths. The heated tipping-bucket raingauge MR3H manufactured by Meteoservis, the Czech Republic, with the collector area of 500 cm2 and the rain amount per tip of 0.1 mm is used at CMI for the measurement of rainfall intensities. The time of tips is recorded with uncertainty of 0.1 second. The obtained time of tips are stored by PC and recorded on CD-ROM. It is generally known higher rainfall intensities measured by tipping-bucket rain gauges are underestimated. Therefore, after static calibration the tipping-bucket rain gauge was dynamically calibrated by water flowmeters. The Brooks FLOMEGA Flow Meters models 5882 and 3750 were used for the rain gauge calibration in the range from 2.6 mm/h to 530 mm/h. The used method of dynamic calibration of raingauges and our experience obtained will be described. The dependence of the measured rain intensity on the reference rain intensity (calibration curve) will be presented. Both the results obtained and the influence of dynamic calibration on our results concerning attenuation of electromagnetic waves due to rain will be discussed. Ministry of Education, Youth and Sports of the Czech Republic under the Project No. OC09076 supported the described work.

  13. 46 CFR 153.979 - Gauging with a sounding tube.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Gauging with a sounding tube. 153.979 Section 153.979... Procedures § 153.979 Gauging with a sounding tube. (a) No person may remove the cover of a sounding tube... cargo transfer may not authorize removal of the cover from a sounding tube gauge unless all tank...

  14. 46 CFR 151.15-10 - Cargo gauging devices.

    Science.gov (United States)

    2010-10-01

    ..., sonic depth gauge (without penetration of tank shell), pipe flow meter. (e) All gauging devices and... devices. (h) For pressure-vessel type tanks, each automatic float, continuous reading tape or similar type... tank, is used, a fixed tube gauge set in the range of 85 percent to 90 percent of the water capacity of...

  15. 21 CFR 870.4310 - Cardiopulmonary bypass coronary pressure gauge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cardiopulmonary bypass coronary pressure gauge... Cardiopulmonary bypass coronary pressure gauge. (a) Identification. A cardiopulmonary bypass coronary pressure gauge is a device used in cardiopulmonary bypass surgery to measure the pressure of the blood perfusing...

  16. Approximate Noether gauge symmetries of the Bardeen model

    Energy Technology Data Exchange (ETDEWEB)

    Camci, U. [Akdeniz University, Department of Physics, Faculty of Science, Antalya (Turkey)

    2014-12-01

    We investigate the approximate Noether gauge symmetries of the geodesic Lagrangian for the Bardeen spacetime model. This is accommodated by a set of new approximate Noether gauge symmetry relations for the perturbed geodesic Lagrangian in the spacetime. A detailed analysis of the spacetime of the Bardeen model up to third-order approximate Noether gauge symmetries is presented. (orig.)

  17. Conserved currents and gauge invariance in Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Barnich, G. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences; Brandt, F. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H; Henneaux, M. [Universite Libre de Bruxelles (Belgium). Faculte des Sciences

    1994-12-31

    It is shown that in the absence of free abelian gauge fields, the conserved currents of (classical) Yang-Mills gauge models coupled to matter fields can be always redefined so as to be gauge invariant. This is a direct consequence of the general analysis of the Wess-Zumino consistency condition for Yang-Mills theory that we have provided recently. (orig.).

  18. Regionalization of patterns of flow intermittence from gauging station records

    Directory of Open Access Journals (Sweden)

    T. H. Snelder

    2013-07-01

    Full Text Available Understanding large-scale patterns in flow intermittence is important for effective river management. The duration and frequency of zero-flow periods are associated with the ecological characteristics of rivers and have important implications for water resources management. We used daily flow records from 628 gauging stations on rivers with minimally modified flows distributed throughout France to predict regional patterns of flow intermittence. For each station we calculated two annual times series describing flow intermittence; the frequency of zero-flow periods (consecutive days of zero flow in each year of record (FREQ; yr−1, and the total number of zero-flow days in each year of record (DUR; days. These time series were used to calculate two indices for each station, the mean annual frequency of zero-flow periods (mFREQ; yr−1, and the mean duration of zero-flow periods (mDUR; days. Approximately 20% of stations had recorded at least one zero-flow period in their record. Dissimilarities between pairs of gauges calculated from the annual times series (FREQ and DUR and geographic distances were weakly correlated, indicating that there was little spatial synchronization of zero flow. A flow-regime classification for the gauging stations discriminated intermittent and perennial stations, and an intermittence classification grouped intermittent stations into three classes based on the values of mFREQ and mDUR. We used random forest (RF models to relate the flow-regime and intermittence classifications to several environmental characteristics of the gauging station catchments. The RF model of the flow-regime classification had a cross-validated Cohen's kappa of 0.47, indicating fair performance and the intermittence classification had poor performance (cross-validated Cohen's kappa of 0.35. Both classification models identified significant environment-intermittence associations, in particular with regional-scale climate patterns and also

  19. Vertical Crustal Motion Derived from Satellite Altimetry and Tide Gauges, and Comparisons with DORIS Measurements

    Science.gov (United States)

    Ray, R. D.; Beckley, B. D.; Lemoine, F. G.

    2010-01-01

    A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR.

  20. A Survey to Determine the Reliability of Dynamometer and Pinch Gauge Dial Readings Among Certified Hand Therapists

    Directory of Open Access Journals (Sweden)

    Theodore I. King II, Ph.D, L.Ac.

    2013-02-01

    Full Text Available Using a cross-sectional descriptive study design, surveys were mailed to 200 randomly selected certified hand therapists of the American Society of Hand Therapists (ASHT to determine how they document analog dynamometer and pinch gauge dial readings. Three different needle settings for the dynamometer and pinch gauge were presented in picture format. For each instrument, one needle setting was just above a gauge marker, one was just below a gauge marker, and one was set exactly between two gauge markers. A total of 126out of 200 surveys were returned for a participation rate of 63%. For the dynamometer readings, therapists estimated the exact strength reading between the two gauge markers 78.3% of the time. For the pinch gauge readings, therapists rounded to the nearest dial marker 76.5% of the time when the needle was just above or just below a dial marker and 61.9% of the time they estimated the reading when the needle was placed exactly between two dial markers.

  1. Monitoring of Sea Level Rise around Taiwan using Satellite Altimetry and Tide Gauges

    Science.gov (United States)

    Sun, Wei-Che; Kuo, Chung-Yen; Shum, C. K.

    2010-05-01

    Taiwan is an island, where most of mountains are located at the central area, so the cities where are highly developed are near to the coasts by 30-50 km. Compared with other countries, sea level rise has a relatively large impact on Taiwan, for example, erosion of beaches and increased flooding and storm surge damage. Therefore, sea level research and the impact of sea level rise is important to Taiwan. Traditionally, the instruments used to measure global and regional sea level change are coastal tide gauges and satellite altimetry. However, tide gauge records contain sea level and crustal vertical motion, and altimetry data span is too short to avoid contamination by low-frequency effect on sea level trend determination. In this study we develop a novel technique to determine accurate sea level trend around Taiwan by combining tide gauge and altimeter data. First, because there is only a few long-term gauges in Taiwan, we choose the gauges by extending the region, covering from latitude 110E to 130E and longitude 10N to 30N. Then, the records of tide gauge can be decomposed into few independent monotones cycles, which is called Intrinsic Mode Functions (IMF), by using Hilbert-Huang Transformation (HHT) method. Afterwards, residual time series computed by subtracting sea level time series reconstructed using specific IMFs, which represent low frequencies and cannot be clearly detected in altimeter data, from the corresponding altimetry data is fitted to determine the sea level trend. This method allows one also to calculate crustal vertical motions by combining tide gauge and altimeter data.

  2. Generalized Attractor Points in Gauged Supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Kallosh, Renata; /Stanford U., Phys. Dept.; Shmakova, Marina; /KIPAC, Menlo Park /SLAC /Stanford U., Phys. Dept.

    2011-08-15

    The attractor mechanism governs the near-horizon geometry of extremal black holes in ungauged 4D N=2 supergravity theories and in Calabi-Yau compactifications of string theory. In this paper, we study a natural generalization of this mechanism to solutions of arbitrary 4D N=2 gauged supergravities. We define generalized attractor points as solutions of an ansatz which reduces the Einstein, gauge field, and scalar equations of motion to algebraic equations. The simplest generalized attractor geometries are characterized by non-vanishing constant anholonomy coefficients in an orthonormal frame. Basic examples include Lifshitz and Schroedinger solutions, as well as AdS and dS vacua. There is a generalized attractor potential whose critical points are the attractor points, and its extremization explains the algebraic nature of the equations governing both supersymmetric and non-supersymmetric attractors.

  3. Conceptual Aspects of Gauge/Gravity Duality

    Science.gov (United States)

    De Haro, Sebastian; Mayerson, Daniel R.; Butterfield, Jeremy N.

    2016-11-01

    We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Sect. 5, the central and original example: Maldacena's AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to de Sitter spacetime and to black holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical topics: the equivalence of physical theories, and the idea that spacetime, or some features of it, are emergent.

  4. Renormalizations in softly broken SUSY gauge theories

    Science.gov (United States)

    Avdeev, L. V.; Kazakov, D. I.; Kondrashuk, I. N.

    1998-01-01

    The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a "soft" way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the Minimal Supersymmetric Standard Model up to the three-loop level are calculated.

  5. Renormalizations in softly broken SUSY gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Avdeev, L.V.; Kazakov, D.I.; Kondrashuk, I.N. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Lab. of Theoretical Physics

    1998-01-19

    The supergraph technique for calculations in supersymmetric gauge theories where supersymmetry is broken in a ``soft`` way (without introducing quadratic divergencies) is reviewed. By introducing an external spurion field the set of Feynman rules is formulated and explicit connections between the UV counterterms of a softly broken and rigid SUSY theories are found. It is shown that the renormalization constants of softly broken SUSY gauge theory also become external superfields depending on the spurion field. Their explicit form repeats that of the constants of a rigid theory with the redefinition of the couplings. The method allows us to reproduce all known results on the renormalization of soft couplings and masses in a softly broken theory. As an example the renormalization group functions for soft couplings and masses in the minimal supersymmetric standard model up to the three-loop level are calculated. (orig.). 16 refs.

  6. Integrability in N=2 superconformal gauge theorie

    Energy Technology Data Exchange (ETDEWEB)

    Pomoni, Elli [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; National Technical Univ. of Athens (Greece). Physics Div.

    2013-10-15

    Any N=2 superconformal gauge theory (including N=4 SYM) contains a set of local operators made only out of fields in the N=2 vector multiplet that is closed under renormalization to all loops, namely the SU(2,1 vertical stroke 2) sector. For planar N=4 SYM the spectrum of local operators can be obtained by mapping the problem to an integrable model (a spin chain in perturbation theory), in principle for any value of the coupling constant. We present a diagrammatic argument that for any planar N=2 superconformal gauge theory the SU(2,1 vertical stroke 2) Hamiltonian acting on infinite spin chains is identical to all loops to that of N=4 SYM, up to a redefinition of the coupling constant. Thus, this sector is integrable and anomalous dimensions can be, in principle, read off from the N=4 ones up to this redefinition.

  7. Topological resolution of gauge theory singularities

    Energy Technology Data Exchange (ETDEWEB)

    Saracco, Fabio; Tomasiello, Alessandro; Torroba, Gonzalo

    2013-08-21

    Some gauge theories with Coulomb branches exhibit singularities in perturbation theory, which are usually resolved by nonperturbative physics. In string theory this corresponds to the resolution of timelike singularities near the core of orientifold planes by effects from F or M theory. We propose a new mechanism for resolving Coulomb branch singularities in three-dimensional gauge theories, based on Chern-Simons interactions. This is illustrated in a supersymmetric S U ( 2 ) Yang-Mills-Chern-Simons theory. We calculate the one-loop corrections to the Coulomb branch of this theory and find a result that interpolates smoothly between the high-energy metric (that would exhibit the singularity) and a regular singularity-free low-energy result. We suggest possible applications to singularity resolution in string theory and speculate a relationship to a similar phenomenon for the orientifold six-plane in massive IIA supergravity.

  8. Supersymmetry Breaking, Gauge Mediation, and the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., New Brunswick, NJ (United States)

    2015-04-14

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  9. Constrained Gauge Fields from Spontaneous Lorentz Violation

    CERN Document Server

    Chkareuli, J L; Jejelava, J G; Nielsen, H B

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type $A_{\\mu}^{2}=M^{2}$ ($M$ is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and $CPT$) violating couplings when expressed in terms of the pure Goldstone vector modes. However, they do not lead to physical ...

  10. Approximate gauge symemtry of composite vector bosons

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mahiko

    2010-06-01

    It can be shown in a solvable field theory model that the couplings of the composite vector mesons made of a fermion pair approach the gauge couplings in the limit of strong binding. Although this phenomenon may appear accidental and special to the vector bosons made of a fermion pair, we extend it to the case of bosons being constituents and find that the same phenomenon occurs in more an intriguing way. The functional formalism not only facilitates computation but also provides us with a better insight into the generating mechanism of approximate gauge symmetry, in particular, how the strong binding and global current conservation conspire to generate such an approximate symmetry. Remarks are made on its possible relevance or irrelevance to electroweak and higher symmetries.

  11. Constrained gauge fields from spontaneous Lorentz violation

    DEFF Research Database (Denmark)

    Chkareuli, J. L.; Froggatt, C. D.; Jejelava, J. G.

    2008-01-01

    Spontaneous Lorentz violation realized through a nonlinear vector field constraint of the type AµAµ=M2 (M is the proposed scale for Lorentz violation) is shown to generate massless vector Goldstone bosons, gauging the starting global internal symmetries in arbitrary relativistically invariant...... theories. The gauge invariance appears in essence as a necessary condition for these bosons not to be superfluously restricted in degrees of freedom, apart from the constraint due to which the true vacuum in a theory is chosen by the Lorentz violation. In the Abelian symmetry case the only possible theory...... proves to be QED with a massless vector Goldstone boson naturally associated with the photon, while the non-Abelian symmetry case results in a conventional Yang-Mills theory. These theories, both Abelian and non-Abelian, look essentially nonlinear and contain particular Lorentz (and CPT) violating...

  12. Dark Matter and Gauged Flavor Symmetries

    CERN Document Server

    Bishara, Fady; Kamenik, Jernej F; Stamou, Emmanuel; Zupan, Jure

    2015-01-01

    We investigate the phenomenology of flavored dark matter (DM). DM stability is guaranteed by an accidental ${\\mathcal Z}_3$ symmetry, a subgroup of the standard model (SM) flavor group that is not broken by the SM Yukawa interactions. We consider an explicit realization where the quark part of the SM flavor group is fully gauged. If the dominant interactions between DM and visible sector are through flavor gauge bosons, as we show for Dirac fermion flavored DM, then the DM mass is bounded between roughly $0.5$ TeV and $5$ TeV if the DM multiplet mass is split only radiatively. In general, however, no such relation exists. We demonstrate this using scalar flavored DM where the main interaction with the SM is through the Higgs portal. For both cases we derive constraints from flavor, cosmology, direct and indirect DM detection, and collider searches.

  13. A better gauge of corporate performance.

    Science.gov (United States)

    Weber, D O

    2001-01-01

    Traditional methods of measuring organizational value aren't working very well. Instead, an organization's viability should be gauged from four perspectives, according to Robert S. Kaplan and David P. Norton, co-creators of the Balanced Scorecard. These perspectives--financial strength, customer service and satisfaction, internal operating efficiency, and learning and growth--become the underpinnings of a "balanced" tool with which leaders can assess corporate performance in the knowledge-based marketplace.

  14. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  15. Neutrino and Z gauge boson physics

    Energy Technology Data Exchange (ETDEWEB)

    Larios, F. [Departamento de Fisica Aplicada, CINVESTAV-Merida, A.P. 73, 97310 Merida, Yucatan (Mexico); Perez, M. A. [Departamento de Fisica, CINVESTAV, A.P. 14-740, 07000, Mexico D.F (Mexico)

    2013-06-12

    We present a short review of the physics of neutrino-photon interactions and the rare decays of the Z and Z Prime gauge bosons. In particular, we emphasize on processes induced by the anomalous trilinear and quartic vertices VVV and VVVV, where V=Z,Z Prime or a photon, within the Standard Model (SM), the 331 model and some extensions of the SM. We also include the phenomenological and experimental limits reported for these couplings.

  16. The Dyon Charge in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Cieri

    2008-01-01

    Full Text Available We construct a dyon solution for the noncommutative version of the Yang-Mills-Higgs model with a ϑ-term. Extending the Noether method to the case of a noncommutative gauge theory, we analyze the effect of CP violation induced both by the ϑ-term and by noncommutativity proving that the Witten effect formula for the dyon charge remains the same as in ordinary space.

  17. Lattice Gauge Fields and Noncommutative Geometry

    OpenAIRE

    Balachandran, A. P.; Bimonte, G.; Landi, G.; Lizzi, F.; Teotonio-Sobrinho, P.

    1996-01-01

    Conventional approaches to lattice gauge theories do not properly consider the topology of spacetime or of its fields. In this paper, we develop a formulation which tries to remedy this defect. It starts from a cubical decomposition of the supporting manifold (compactified spacetime or spatial slice) interpreting it as a finite topological approximation in the sense of Sorkin. This finite space is entirely described by the algebra of cochains with the cup product. The methods of Connes and Lo...

  18. Subleading soft photons and large gauge transformations

    OpenAIRE

    Campiglia, Miguel; Laddha, Alok

    2016-01-01

    Lysov, Pasterski and Strominger have shown how Low's subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large $U(1)$ gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles (ii) their Ward identities are equivalent to Low's theorem. Our framework paves the way to analyze the sub-subleading theo...

  19. Noncommutative Geometric Gauge Theory from Superconnections

    OpenAIRE

    Lee, Chang-Yeong

    1996-01-01

    Noncommutative geometric gauge theory is reconstructed based on the superconnection concept. The bosonic action of the Connes-Lott model including the symmetry breaking Higgs sector is obtained by using a new generalized derivative, which consists of the usual 1-form exterior derivative plus an extra element called the matrix derivative, for the curvatures. We first derive the matrix derivative based on superconnections and then show how the matrix derivative can give rise to spontaneous symm...

  20. From physical symmetries to emergent gauge symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Barceló, Carlos [Instituto de Astrofísica de Andalucía (IAA-CSIC),Glorieta de la Astronomía, 18008 Granada (Spain); Carballo-Rubio, Raúl [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Laboratory for Quantum Gravity & Strings,Department of Mathematics & Applied Mathematics, University of Cape Town,Private Bag, Rondebosch 7701 (South Africa); Di Filippo, Francesco [Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, 18008 Granada (Spain); Dipartamento di Scienze Fisiche “E.R. Caianiello”, Università di Salerno,I-84081 Fisciano (Italy); Garay, Luis J. [Departamento de Física Teórica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, 28006 Madrid (Spain)

    2016-10-17

    Gauge symmetries indicate redundancies in the description of the relevant degrees of freedom of a given field theory and restrict the nature of observable quantities. One of the problems faced by emergent theories of relativistic fields is to understand how gauge symmetries can show up in systems that contain no trace of these symmetries at a more fundamental level. In this paper we start a systematic study aimed to establish a satisfactory mathematical and physical picture of this issue, dealing first with abelian field theories. We discuss how the trivialization, due to the decoupling and lack of excitation of some degrees of freedom, of the Noether currents associated with physical symmetries leads to emergent gauge symmetries in specific situations. An example of a relativistic field theory of a vector field is worked out in detail in order to make explicit how this mechanism works and to clarify the physics behind it. The interplay of these ideas with well-known results of importance to the emergent gravity program, such as the Weinberg-Witten theorem, are discussed.

  1. Cosmology from a gauge induced gravity

    Science.gov (United States)

    Falciano, F. T.; Sadovski, G.; Sobreiro, R. F.; Tomaz, A. A.

    2017-09-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with { SO}(m,n) such that m+n=5 and m\\in {0,1,2} as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an Inönü-Wigner contraction in its infrared sector. As a consequence, the { SO}(m,n) algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a Λ CDM model. We argue that { SO}(m,n) induced gravities are promising effective theories to describe the early phase of the universe.

  2. General Aspects of Tree Level Gauge Mediation

    CERN Document Server

    Nardecchia, Marco; Ziegler, Robert

    2009-01-01

    Tree level gauge mediation (TGM) may be considered as the simplest way to communicate supersymmetry breaking: through the tree level renormalizable exchange of heavy gauge messengers. We study its general structure, in particular the general form of tree level sfermion masses and of one loop, but enhanced, gaugino masses. This allows us to set up general guidelines for model building and to identify the hypotheses underlying the phenomenological predictions. In the context of models based on the "minimal" gauge group SO(10), we show that only two "pure" embeddings of the MSSM fields are possible using $d< 120$ representations, each of them leading to specific predictions for the ratios of family universal sfermion masses at the GUT scale, $m^2_{\\bar{5}} = 2 m^2_{10}$ or $m^2_{\\bar{5}} = (3/4) m^2_{10}$ (in SU(5) notation). These ratios are determined by group factors and are peculiar enough to make this scheme testable at the LHC. We also discuss three possible approaches to the $\\mu$-problem, one of them ...

  3. Cosmology from a gauge induced gravity

    CERN Document Server

    Falciano, F T; Sobreiro, R F; Tomaz, A A

    2015-01-01

    The main goal of the present work is to analyze the cosmological scenario of the induced gravity theory developed in previous works. Such a theory consists on a Yang-Mills theory in a four-dimensional Euclidian spacetime with $SO(m,n)$ such that $m+n=5$ and $m\\in\\{0,1,2\\}$ as its gauge group. This theory undergoes a dynamical gauge symmetry breaking via an In\\"on\\"u-Wigner contraction in its infrared sector. As a consequence, the $SO(m,n)$ algebra is deformed into a Lorentz algebra with the emergency of the local Lorentz symmetries and the gauge fields being identified with a vierbein and a spin connection. As a result, gravity is described as an effective Einstein-Cartan-like theory with ultraviolet correction terms and a propagating torsion field. We show that the cosmological model associated with this effective theory has three different regimes. In particular, the high curvature regime presents a de Sitter phase which tends towards a $\\Lambda$CDM model. We argue that $SO(m,n)$ induced gravities are promi...

  4. The electromagnetic potentials without the gauge transformations

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Augusto; Chubykalo, Andrey; Rodriguez, Alejandro Gutierrez; Hernandez, Maria de los Angeles [Universidad Autonoma de Zacatecas (Mexico). Unidad Academica de Fisica

    2011-07-01

    In this note we show that the use of the Helmholtz theorem lead to derivation of uniquely determined electromagnetic potentials without making use of the gauge transformation. These potentials correspond to the potentials obtained by imposing so-called Coulomb condition (gauge) in the traditional approach. We show that the electromagnetic field comprises two components, one of which is characterized by its instantaneous action at a distance, whereas another one propagates in the retarded form with the velocity of light. One of the theoretical consequences of this new definition is that the electromagnetic potentials are real physical quantities as well as the electric and magnetic fields. We show that the reality of the electromagnetic potentials in quantum-mechanics is also a property of these potentials in the classical electrodynamics. Equations for potentials obtained in our approach are already separated with respect to vector and scalar potentials, so there is no necessity in using the gauge transformations and, accordingly, in making use of either Lorentz or Coulomb condition. The vector potential and scalar potential introduced thus are uniquely defined. The scalar potential is a generator of the so called instantaneous action at a distance, whereas the solenoidal vector potential can propagate with the velocity of light and it is responsible for the retarded action of the electromagnetic field. (author)

  5. An Improved Single-Plaquette Gauge Action

    CERN Document Server

    Banerjee, Debasish; Holland, Kieran; Niedermayer, Ferenc; Pepe, Michele; Wenger, Urs; Wiese, Uwe-Jens

    2015-01-01

    We describe and test a nonperturbatively improved single-plaquette lattice action for 4-d SU(2) and SU(3) pure gauge theory, which suppresses large fluctuations of the plaquette, without requiring the naive continuum limit for smooth fields. We tune the action parameters based on torelon masses in moderate cubic physical volumes, and investigate the size of cut-off effects in other physical quantities, including torelon masses in asymmetric spatial volumes, the static quark potential, and gradient flow observables. In 2-d O(N) models similarly constructed nearest-neighbor actions have led to a drastic reduction of cut-off effects, down to the permille level, in a wide variety of physical quantities. In the gauge theories, we find significant reduction of lattice artifacts, and for some observables, the coarsest lattice result is very close to the continuum value. We estimate an improvement factor of 40 compared to using the Wilson gauge action to achieve the same statistical accuracy and suppression of cut-of...

  6. The Light-Cone Gauge without Prescriptions

    Science.gov (United States)

    Suzuki, A. T.; Schmidt, A. G. M.

    2000-05-01

    Feynman integrals in the physical light-cone gauge are more difficult to solve than their covariant counterparts. The difficulty is associated with the presence of unphysical singularities due to the inherent residual gauge freedom in the intermediate boson propagators constrained within this gauge choice. In order to circumvent these non-physical singularities, the headlong approach has always been to call for mathematical devices --- prescriptions --- some successful and others not. A more elegant approach is to consider the propagator from its physical point of view, that is, an object obeying basic principles such as causality. Once this fact is realized and carefully taken into account, the crutch of prescriptions can be avoided altogether. An alternative, third approach, which for practical computations could dispense with prescriptions as well as avoiding the necessity of careful stepwise consideration of causality, would be of great advantage. And this third option is realizable within the context of negative dimensions, or as it has been coined, the negative dimensional integration method (NDIM).

  7. Effects of non-Abelian gauge potentials

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andreas; Santos, Luis [Institut fuer Theoretische Physik, Leibniz Universitaet, Hannover (Germany); Merkl, Michael; Zimmer, Frank; Oehberg, Patrik [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh (United Kingdom)

    2009-07-01

    Artificial electromagnetism may be created for neutral atoms, e.g. by rotating the gas. Other forms of inducing artificial electromagnetism are possible, including ways of generating non-Abelian vector potentials. In this talk, we first discuss simple laser setups that allow the creation of non-Abelian gauge potentials for atoms with a tripod level scheme. We comment on specific experimental implementations in e.g. {sup 4}He{sup *} and {sup 87}Rb. In particular we discuss a simple laser arrangement that generates a non-Abelian vector potential proportional to the Pauli matrices. This gauge potential induces a quasi-relativistic physics for cold gases similar to that in graphene, including the possibility of observation of metamaterial phenomena as Veselago lensing. We shall discuss in particular the effects of this gauge potential in the linear and nonlinear atom optics of condensates, including the possibility of creating regions of negative mass in the dispersion relation which allow for bright solitons in the presence of repulsive interactions.

  8. Efficacy of 23-gauge vitrectomy cutter replaeing scissors in conventional 20-gauge pars plana vitrectomy for severe PDR

    Directory of Open Access Journals (Sweden)

    Ling Gong

    2014-06-01

    Full Text Available AIM: To determine whether the 23-gauge(23Gvitrecomy cutter could replace scissors in conventional 20-gauge(20Gpars plana vitrectomy for treating severe proliferative diabetic retinopathy(PDR.METHODS:Non-comparative interventional case series. Totally 27 eyes of 27 patients with PDR stageⅥ confirmed by funduscopy and B-ultrasound scan were enrolled. They underwent 20G vitrectomy, in which 23G vitrectomy cutter replaced scissors to remove neuvascular membrane. All 27 eyes received complete panretinal photocoagulation, 17 eyes received no tamponade, 6 eyes were 12% C3F8 tamponade, 4 eyes were filled with silicone oil. The follow up time was 3mo. The operation duration time, iatrogenic retinal tear and retinal bleeding need electric coagulation, best corrected visual acuity(BCVA, retinal reattachment were analyzed.RESULTS: The operative time was 35-120(average 79.19±29.82min; intraoperative iatrogenic retinal breaks were detected in 2 eyes(7%. At the end of 3mo follow up, BCVA>0.1 were in 9 eyes, from 0.05-0.1 in 10 eyes, CONCLUSION: The 23G vitrectomy cutter could replace scissors in conventional 20G pars plana vitrectomy for treating severe PDR.

  9. Gauge invariance properties and singularity cancellations in a modified PQCD

    CERN Document Server

    Cabo-Montes de Oca, Alejandro; Cabo, Alejandro; Rigol, Marcos

    2006-01-01

    The gauge-invariance properties and singularity elimination of the modified perturbation theory for QCD introduced in previous works, are investigated. The construction of the modified free propagators is generalized to include the dependence on the gauge parameter $\\alpha $. Further, a functional proof of the independence of the theory under the changes of the quantum and classical gauges is given. The singularities appearing in the perturbative expansion are eliminated by properly combining dimensional regularization with the Nakanishi infrared regularization for the invariant functions in the operator quantization of the $\\alpha$-dependent gauge theory. First-order evaluations of various quantities are presented, illustrating the gauge invariance-properties.

  10. Development of the full range vange vacuum gauge

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; In, S. R.; Jung, K. S.; Jeong, S. H

    2001-01-01

    The pirani, enning end full range gauges developed during this study had made good characteristics compared with the measured results of customized other gauges, and this results show the possibility of developing the gauges by ourselves in Korea. In order to make a competition with the customized gauges of other countries, it is necessary to upgrade several points to have good characteristics over the large range of the pressure. The new effort will be made in developing the full scale gauge in the next year.

  11. Development of the Pirani and penning vacuum gauges

    Energy Technology Data Exchange (ETDEWEB)

    Oh, B. H.; In, S. R.; Yoon, B. J.; Yoon, J. S

    2000-02-01

    The Pirani and penning gauges developed during this study had made good characteristics compared with the measured results of customized other gauges, and this results show the possibility of developing the gauges by ourselves in Korea. In order to make a competition with the customized gauges of other countries, it is necessary to upgrade several points to have good characteristics over the large range of the pressure. The new efforts will be made in developing the full scale gauge in the next year. (author)

  12. Gauge origin of discrete flavor symmetries in heterotic orbifolds

    Directory of Open Access Journals (Sweden)

    Florian Beye

    2014-09-01

    Full Text Available We show that non-Abelian discrete symmetries in orbifold string models have a gauge origin. This can be understood when looking at the vicinity of a symmetry enhanced point in moduli space. At such an enhanced point, orbifold fixed points are characterized by an enhanced gauge symmetry. This gauge symmetry can be broken to a discrete subgroup by a nontrivial vacuum expectation value of the Kähler modulus T. Using this mechanism it is shown that the Δ(54 non-Abelian discrete symmetry group originates from a SU(3 gauge symmetry, whereas the D4 symmetry group is obtained from a SU(2 gauge symmetry.

  13. Spontaneous mass generation and the small dimensions of the Standard Model gauge groups U(1, SU(2 and SU(3

    Directory of Open Access Journals (Sweden)

    Guillermo García Fernández

    2017-02-01

    The result follows from strong antiscreening of the running coupling for those larger groups (with an appropriately small number of flavors together with scaling properties of the Dyson–Schwinger equation for the fermion mass.

  14. Wind tunnel validation of the aerodynamic performance of rain gauges simulated using a CFD approach.

    Science.gov (United States)

    Cauteruccio, Arianna; Colli, Matteo; Stagnaro, Mattia; Freda, Andrea; Lanza, Luca G.

    2017-04-01

    Wind is recognized as the primary cause for the undercatch of solid and liquid precipitation as experienced by catching type gauges. The airflow pattern above the collector, modified by the presence of the gauge body, influences the particle trajectories and reduces the collection of precipitation. Windshields are employed in the field to reduce the impact of wind. As an alternative, measured data are corrected in post-processing using correction functions derived from field data or numerical simulations. Aerodynamic rain gauges have been also developed, with their outer shape designed to reduce the aerodynamic impact of the gauge body on the surrounding airflow. In a previous work, CFD simulations of aerodynamic gauges were performed and the performance of different shapes were compared. The aim of this work is to validate the airflow pattern around the gaugeas predicted by improved CFD simulations by performing wind tunnel tests both in smooth and turbulent conditions. The airflow in the proximity of the gauge was simulated using the Unsteady Reynolds Average Navier-Stokes (URANS) equations approach. Advantages of the URANS method include the possibility of describing accurate time-varying patterns of the turbulent air velocity field while maintaining acceptable computational requirements. The simulations were performed under two different turbulence conditions in order to assess the role of the base-flow turbulence on the calculated flow pattern. In the first case, the free stream velocity profile is assumed steady and uniform. Under these conditions the time varying pattern of the airflow around the rain gauge collector is due to the instrument aero-dynamics alone. The second case includes a free-stream turbulence intensity approximately equal to 13%, generated by introducing a fixed solid fence upstream the gauge. Validation of the CFD results was provided by realizing the same airflow conditions in the DICCA wind tunnel and measuring the air velocity

  15. Measurement of Low Level Explosives Reaction in Gauged Multi-Dimensional Steven Impact Tests

    Energy Technology Data Exchange (ETDEWEB)

    Niles, A M; Garcia, F; Greenwood, D W; Forbes, J W; Tarver, C M; Chidester, S K; Garza, R G; Swizter, L L

    2001-05-31

    The Steven Test was developed to determine relative impact sensitivity of metal encased solid high explosives and also be amenable to two-dimensional modeling. Low level reaction thresholds occur at impact velocities below those required for shock initiation. To assist in understanding this test, multi-dimensional gauge techniques utilizing carbon foil and carbon resistor gauges were used to measure pressure and event times. Carbon resistor gauges indicated late time low level reactions 200-540 {micro}s after projectile impact, creating 0.39-2.00 kb peak shocks centered in PBX 9501 explosives discs and a 0.60 kb peak shock in a LX-04 disk. Steven Test modeling results, based on ignition and growth criteria, are presented for two PBX 9501 scenarios: one with projectile impact velocity just under threshold (51 m/s) and one with projectile impact velocity just over threshold (55 m/s). Modeling results are presented and compared to experimental data.

  16. Three instanton computations in gauge theory and string theory

    Science.gov (United States)

    Beasley, Christopher Edward

    We employ a variety of ideas from geometry and topology to perform three new instanton computations in gauge theory and string theory. First, we consider supersymmetric QCD with gauge group SU( Nc) and with Nf flavors. In this theory, it is well known that instantons generate a superpotential if Nf = Nc - 1 and deform the moduli space of supersymmetric vacua if Nf = Nc. We extend these results to supersymmetric QCD with Nf > Nc flavors, for which we show that instantons generate a hierarchy of new, multi-fermion F-terms in the effective action. Second, we revisit the question of which Calabi-Yau compactifications of the heterotic string are stable under worldsheet instanton corrections to the effective space-time superpotential. For instance, compactifications described by (0, 2) linear sigma models are believed to be stable, suggesting a remarkable cancellation among the instanton effects in these theories. We show that this cancellation follows directly from a residue theorem, whose proof relies only upon the right-moving worldsheet supersymmetries and suitable compactness properties of the (0, 2) linear sigma model. We also extend this residue theorem to a new class of "half-linear" sigma models. Using these half-linear models, we show that heterotic compactifications on the quintic hypersurface in CP4 for which the gauge bundle pulls back from a bundle on CP4 are stable. Third, we study Chern-Simons gauge theory on a Seifert manifold M (the total space of a nontrivial circle bundle over a Riemann surface). When M is a Seifert manifold, Lawrence and Rozansky have shown from the exact solution of Chern-Simons theory that the partition function has a remarkably simple structure and can be rewritten entirely as a sum of local "instanton" contributions from the flat connections on M. We explain how this empirical fact follows from the technique of non-abelian localization as applied to the Chern-Simons path integral. In the process, we show that the partition

  17. Two-parameter nonlinear spacetime perturbations gauge transformations and gauge invariance

    CERN Document Server

    Bruni, M; Sopuerta, C F

    2003-01-01

    An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity OMEGA), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by lambda) are then built on top of the axisymmetric perturbations in OMEGA. Clearly, any interesting physics requires nonlinear perturbations, as at least terms lambda OMEGA need to be considered. In this paper, we analyse the gauge dependence of nonlinear perturbations depending on two parameters, derive explicit higher-order gauge transformation rules and define gauge ...

  18. Gauge-Higgs Unification Models in Six Dimensions with S2/Z2 Extra Space and GUT Gauge Symmetry

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Chiang

    2012-01-01

    Full Text Available We review gauge-Higgs unification models based on gauge theories defined on six-dimensional spacetime with S2/Z2 topology in the extra spatial dimensions. Nontrivial boundary conditions are imposed on the extra S2/Z2 space. This review considers two scenarios for constructing a four-dimensional theory from the six-dimensional model. One scheme utilizes the SO(12 gauge symmetry with a special symmetry condition imposed on the gauge field, whereas the other employs the E6 gauge symmetry without requiring the additional symmetry condition. Both models lead to a standard model-like gauge theory with the SU(3×SU(2L×U(1Y(×U(12 symmetry and SM fermions in four dimensions. The Higgs sector of the model is also analyzed. The electroweak symmetry breaking can be realized, and the weak gauge boson and Higgs boson masses are obtained.

  19. Orbitron-type vacuum gauge with nanocarbon field cathode

    Directory of Open Access Journals (Sweden)

    Alexander V. Arkhipov

    2015-03-01

    Full Text Available A novel electron–optical scheme of ionization-type vacuum gauge is proposed that allows the use of field-emission nanocarbon cathodes. The developed gauge satisfies the requirements imposed by possible utilization in on-board satellite equipment: low mass, size and energy consumption, low turn-on time, etc. High efficiency and sensitivity of the sensor are achieved by the use of an electrostatic trap for accumulation of electrons ionizing the gas molecules. Magnetic field was not used for mass economy reason and to avoid possible influence onto other on-board equipment. The main problem solved in the work originated from the intrinsic contradiction between the aims of achieving long-term confinement of electrons in the trap and focusing of the applied electric field at the cathode, the latter being necessary to utilize the phenomenon of field-induced emission. Experimental tests were performed with two prototype devices realizing different versions the electron-scheme design, viability of both developed schemes has been confirmed.

  20. A CFD study of the influence of turbulence on undercatch of precipitation gauges

    Science.gov (United States)

    Baghapour, Behzad; Sullivan, Pierre E.

    2017-11-01

    The response of precipitation to turbulent fluctuations near gauges is studied using time-averaged (RANS) and unsteady (LES) turbulence modeling. Updrafting effects on catch performance are analyzed for unshielded and shielded gauges. The effective precipitation catchment area of the gauge for both wind-induced effects and snowflake characteristics is found to reduce significantly for small particles in high winds but can be partly recovered by shielding. The variation in the amount of precipitation caught is quantified for different free-stream wind speeds using LES and RANS. The fluctuations, captured with LES are analyzed to determine the local structure of eddies near the orifice plane. Wind-induced drag on precipitates are modeled for a wide range of particle Reynolds numbers from low speed Stokes flow condition to high speed flows with inertial effects. Results show noticeable effect of drag-force model on catch performance calculation of precipitation gauges with uncertainties of up to 40% in high winds and large snowflake sizes. Finally, particle-wall collision on the catch performance is studied for different restitution conditions. These simulations have differences of up to 5% in catch performance for large particle sizes in high winds, dependent on whether the particles undergo elastic or plastic collisions. Comparing RANS and LES results, turbulence fluctuations show a considerable influence on shielding performance degeneration at high winds. Double shielding the gauge can improve efficiency by maintaining a lower fluctuation-to-mean catch ratio as wind speed increases.

  1. Family replicated gauge groups and large mixing angle solar neutrino solution

    Energy Technology Data Exchange (ETDEWEB)

    Froggatt, C.D. E-mail: c.froggatt@physics.gla.ac.uk; Nielsen, H.B. E-mail: hbech@mail.desy.dehbech@nbi.dk; Takanishi, Y. E-mail: yasutaka@mail.desy.deyasutaka@nbi.dk

    2002-06-03

    We present a modification of our previous family replicated gauge group model, which now generates the Large Mixing Angle MSW solution rather than the experimentally disfavoured Small Mixing Angle MSW solution to the solar neutrino oscillation problem. The model is based on each family of quarks and leptons having its own set of gauge fields, each containing a replica of the Standard Model gauge fields plus a (B-L)-coupled gauge field. By a careful choice of the Higgs field gauge quantum numbers, we avoid our previous prediction that the solar neutrino mixing angle is equal order of magnitudewise to the Cabibbo angle, replacing it and the well-known Fritzsch relation with the relation {theta}{sub c}{approx}({theta}{sub [odot]}){sup -1/3} (m{sub d}/m{sub s}){sup 2/3}. At the same time we retain a phenomenologically successful structure for the charged quark and lepton mass matrices. A fit of all the seventeen quark-lepton mass and mixing angle observables, using just six new Higgs field vacuum expectation values, agrees with the experimental data within the theoretically expected uncertainty of about 64%, i.e., it fits perfectly order of magnitudewise.

  2. Non-lattice simulation of supersymmetric gauge theories as a probe to quantum black holes and strings

    CERN Document Server

    Nishimura, Jun

    2009-01-01

    In the past decade we have witnessed remarkable developments in the gauge-gravity duality, which suggested a new approach to superstring theory and quantum space-time. In this context it is important to study supersymmetric large-N gauge theories in the strongly coupled regime. I will summarize the results and insights obtained so far by non-lattice simulations. A simple example of the gauge-gravity duality is the one between 1d U(N) gauge theory with 16 supercharges and the so-called black 0-brane solution in type IIA supergravity. In order for this duality to be valid, one has to take the 't Hooft large-N limit and to take the strong coupling limit on the gauge theory side. The gauge theory can be regularized by fixing the gauge completely thanks to one dimension, and by introducing a Fourier mode cutoff. One can then use the standard RHMC algorithm to simulate the system. The energy calculated as a function of the temperature was compared with the results obtained from the gravity side based on the black h...

  3. Late time phase transition as dark energy

    Indian Academy of Sciences (India)

    Instituto de F isica, UNAM, Apdo. Postal 20-364, 01000 M exico D.F., M exico. Abstract. We show that the dark energy field can naturally be described by the scalar condensates of a non-abelian gauge group. This gauge group is unified with the standard model gauge groups and it has a late time phase transition. The small ...

  4. QCD Coulomb Gauge Approach to Exotic Hadrons

    OpenAIRE

    Cotanch, Stephen R.; General, Ignacio J.; Wang, Ping

    2006-01-01

    The Coulomb gauge Hamiltonian model is used to calculate masses for selected J^{PC} states consisting of exotic combinations of quarks and gluons: ggg glueballs (oddballs), q bar{q} g hybrid mesons and q bar{q} q bar{q} tetraquark systems. An odderon Regge trajectory is computed for the J^{--} glueballs with intercept much smaller than the pomeron, explaining its nonobservation. The lowest 1^{-+} hybrid meson mass is found to be just above 2.2 GeV while the lightest tetraquark state mass with...

  5. On Wilsonian Flows in Gauge Theories

    Science.gov (United States)

    Pawlowski, Jan M.

    An Exact Renormalisation Group (ERG) approach to non-Abelian gauge theories is discussed. We focus on the derivation of universal beta-functions and the choice of the initial effective action, the latter being a key input in the approach. To that end we establish the map between Gell-Mann-Low scaling of the full theory and the scaling in an ERG approach. Then this map is used to derive the 2-loop β-function within a simple straightforward calculation. The implications for the choice of the initial effective action are discussed.

  6. Conformal field theory with gauge symmetry

    CERN Document Server

    Ueno, Kenji

    2008-01-01

    This book presents a systematic approach to conformal field theory with gauge symmetry from the point of view of complex algebraic geometry. After presenting the basic facts of the theory of compact Riemann surfaces and the representation theory of affine Lie algebras in Chapters 1 and 2, conformal blocks for pointed Riemann surfaces with coordinates are constructed in Chapter 3. In Chapter 4 the sheaf of conformal blocks associated to a family of pointed Riemann surfaces with coordinates is constructed, and in Chapter 5 it is shown that this sheaf supports a projective flat connection-one of

  7. Gauge theory and defects in solids

    CERN Document Server

    Edelen, DGB

    2012-01-01

    This new series Mechanics and Physics of Discrete Systems aims to provide a coherent picture of the modern development of discrete physical systems. Each volume will offer an orderly perspective of disciplines such as molecular dynamics, crystal mechanics and/or physics, dislocation, etc. Emphasized in particular are the fundamentals of mechanics and physics that play an essential role in engineering applications.Volume 1, Gauge Theory and Defects in Solids, presents a detailed development of a rational theory of the dynamics of defects and damage in solids. Solutions to field e

  8. On Painlevé/gauge theory correspondence

    Science.gov (United States)

    Bonelli, Giulio; Lisovyy, Oleg; Maruyoshi, Kazunobu; Sciarappa, Antonio; Tanzini, Alessandro

    2017-09-01

    We elucidate the relation between Painlevé equations and four-dimensional rank one N = 2 theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ -functions in terms of magnetic and dyonic Nekrasov partition functions for N = 2 SQCD and Argyres-Douglas theories at self-dual Omega background ɛ _1 + ɛ _2 = 0 or equivalently in terms of c=1 irregular conformal blocks.

  9. Spontaneous symmetry breaking in gauge theories.

    Science.gov (United States)

    Kibble, T W B

    2015-01-13

    The aim of this historical article is to describe the development of the idea of spontaneous symmetry breaking in gauge theories as seen from my perspective as a member of Abdus Salam's group at Imperial College London, UK. Beginning with an account of particle physics in the years after the Second World War, I describe early attempts at constructing a unified theory of weak and electromagnetic interactions, the obstacles encountered and how they were eventually overcome with the mass-generating mechanism incorporating the idea of spontaneous symmetry breaking, one of whose features is the now-famous Higgs boson.

  10. Subleading soft photons and large gauge transformations

    Science.gov (United States)

    Campiglia, Miguel; Laddha, Alok

    2016-11-01

    Lysov, Pasterski and Strominger have shown how Low's subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large U(1) gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles, (ii) their Ward identities are equivalent to Low's theorem. Our framework paves the way to analyze the sub-subleading theorem in gravity in terms of Ward identities associated to large diffeomorphisms.

  11. Subleading soft photons and large gauge transformations

    Energy Technology Data Exchange (ETDEWEB)

    Campiglia, Miguel [Instituto de Física, Facultad de Ciencias,Iguá 4225, Montevideo (Uruguay); Laddha, Alok [Chennai Mathematical Institute,Siruseri 603103 (India)

    2016-11-04

    Lysov, Pasterski and Strominger have shown how Low’s subleading soft photon theorem can be understood as Ward identities of new symmetries of massless QED. In this paper we offer a different perspective and show that there exists a class of large U(1) gauge transformations such that (i) the associated (electric and magnetic) charges can be computed from first principles, (ii) their Ward identities are equivalent to Low’s theorem. Our framework paves the way to analyze the sub-subleading theorem in gravity in terms of Ward identities associated to large diffeomorphisms.

  12. Graphene membrane as a pressure gauge

    Science.gov (United States)

    Milovanović, S. P.; Tadić, M. Ž.; Peeters, F. M.

    2017-07-01

    Straining graphene results in the appearance of a pseudo-magnetic field which alters its local electronic properties. Applying a pressure difference between the two sides of the membrane causes it to bend/bulge resulting in a resistance change. We find that the resistance changes linearly with pressure for bubbles of small radius while the response becomes non-linear for bubbles that stretch almost to the edges of the sample. This is explained as due to the strong interference of propagating electronic modes inside the bubble. Our calculations show that high gauge factors can be obtained in this way which makes graphene a good candidate for pressure sensing.

  13. Parallel supercomputers for lattice gauge theory.

    Science.gov (United States)

    Brown, F R; Christ, N H

    1988-03-18

    During the past 10 years, particle physicists have increasingly employed numerical simulation to answer fundamental theoretical questions about the properties of quarks and gluons. The enormous computer resources required by quantum chromodynamic calculations have inspired the design and construction of very powerful, highly parallel, dedicated computers optimized for this work. This article gives a brief description of the numerical structure and current status of these large-scale lattice gauge theory calculations, with emphasis on the computational demands they make. The architecture, present state, and potential of these special-purpose supercomputers is described. It is argued that a numerical solution of low energy quantum chromodynamics may well be achieved by these machines.

  14. Gauge Field Induced Momentum Transport in an Optical Lattice

    Science.gov (United States)

    Windpassinger, Patrick; Struck, Julian; Weinberg, Malte; Oelschlaeger, Christoph; Simonet, Juliette; Sengstock, Klaus

    2012-06-01

    We present the experimental realization of a widely tuneable artificial gauge field for ultracold atoms in a one-dimensional optical lattice. We can simulate any Peierls phase ranging from zero to 2π in the tunneling matrix elements between nearest neighbours by applying an external periodic force to the atoms which is time-irreversible. This way it is possible to prepare ground state superfluids as well as out-of-equilibrium states at arbitrary, finite quasi momentum. We investigate the different time scales for adiabatic transport and relaxations mechanisms in the momentum space of the lattice. Extending these ideas to two-dimensional non-rectangular optical lattices it is possible to realize staggered magnetic field configurations with very large fluxes per plaquette. These results present a new step towards the emulation of strong field physics in optical lattices which may result in the realization of exotic phases like quantum hall states and other topological ordered phases with ultracold atoms.

  15. Relative entropy, mixed gauge-gravitational anomaly and causality

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Phsyics, Indian Institute of Science,560012 Bangalore (India); Cheng, Long [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Fudan University,220 Handan Road, 200433 Shanghai (China)

    2016-07-25

    In this note we explored the holographic relative entropy in the presence of the 5d Chern-Simons term, which introduces a mixed gauge-gravity anomaly to the dual CFT. The theory trivially satisfies an entanglement first law. However, to quadratic order in perturbations of the stress tensor T and current density J, there is a mixed contribution to the relative entropy bi-linear in T and J, signalling a potential violation of the positivity of the relative entropy. Miraculously, the term vanishes up to linear order in a derivative expansion. This prompted a closer inspection on a different consistency check, that involves time-delay of a graviton propagating in a charged background, scattered via a coupling supplied by the Chern-Simons term. The analysis suggests that the time-delay can take either sign, potentially violating causality for any finite value of the CS coupling.

  16. Singular gauge transformation and the Erler-Maccaferri solution in bosonic open string field theory

    Science.gov (United States)

    Miwa, Akitsugu; Sugita, Kazuhiro

    2017-09-01

    We study candidate multiple-brane solutions of bosonic open string field theory. They are constructed by performing a singular gauge transformation n times for the Erler-Maccaferri solution. We check the equation of motion in the strong sense, and find that it is satisfied only when we perform the gauge transformation once. We calculate the energy for that case and obtain a support that the solution is a multiple-brane solution. We also check the tachyon profile for a specific solution that we interpret as describing a D24-brane placed on a D25-brane.

  17. The photon-neutrino interaction in non-commutative gauge field theory and astrophysical bounds

    OpenAIRE

    Schupp, Peter; Trampetic, Josip; Wess, Julius; Raffelt, Georg

    2004-01-01

    In this letter we propose a possible mechanism of left- and right-handed neutrino couplings to photons, which arises quite naturally in non-commutative gauge field theory. We estimate the predicted additional energy-loss in stars induced by space-time non-commutativity. The usual requirement that any new energy-loss mechanism in globular stellar clusters should not excessively exceed the standard neutrino losses implies a scale of non-commutative gauge theory above the scale of weak interacti...

  18. Quasiclassical propagator of a relativistic particle via the path-dependent gauge potential

    Energy Technology Data Exchange (ETDEWEB)

    Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    The proper time formalism for a particle propagator in an external electromagnetic field is combined with the path-dependent formulation of gauge theory to simplify the quasiclassical propagator of a relativistic particle. The latter is achieved due to a specific choice of gauge corresponding to the use of the classical path in the path-dependent formulation of gauge theory, which leads to cancellation of the interaction part of the classical action in the Feynman path integral. A simple expression for the quasiclassical propagator is obtained in all cases of the external field when the classical equations of motion in this field are integrable. As an example, simple expressions for the propagators are derived for a spinless charged particle interacting with the following fields: an arbitrary constant and uniform electromagnetic field, an arbitrary plane wave, and finally an arbitrary plane wave combined with an arbitrary constant and uniform electromagnetic field. In all these cases the quasiclassical propagator coincides with the exact result.

  19. All-order results for infrared and collinear singularities in massless gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /SLAC; Gardi, Einan; /Edinburgh U.; Magnea, Lorenzo; /CERN

    2010-05-26

    We review recent results concerning the all-order structure of infrared and collinear divergences in massless gauge theory amplitudes. While the exponentiation of these divergences for nonabelian gauge theories has been understood for a long time, in the past couple of years we have begun to unravel the all-order structure of the anomalous dimensions that build up the perturbative exponent. In the large-N{sub c} limit, all infrared and collinear divergences are determined by just three functions; one of them, the cusp anomalous dimension, plays a key role also for non-planar contributions. Indeed, all infrared and collinear divergences of massless gauge theory amplitudes with any number of hard partonsmay be captured by a surprisingly simple expression constructed as a sum over color dipoles. Potential corrections to this expression, correlating four or more hard partons at three loops or beyond, are tightly constrained and are currently under study.

  20. All-order results for infrared and collinear singularities in massless gauge theories

    CERN Document Server

    Dixon, Lance J; Magnea, Lorenzo

    2010-01-01

    We review recent results concerning the all-order structure of infrared and collinear divergences in massless gauge theory amplitudes. While the exponentiation of these divergences for nonabelian gauge theories has been understood for a long time, in the past couple of years we have begun to unravel the all-order structure of the anomalous dimensions that build up the perturbative exponent. In the large-Nc limit, all infrared and collinear divergences are determined by just three functions; one of them, the cusp anomalous dimension, plays a key role also for non-planar contributions. Indeed, all infrared and collinear divergences of massless gauge theory amplitudes with any number of hard partons may be captured by a surprisingly simple expression constructed as a sum over color dipoles. Potential corrections to this expression, correlating four or more hard partons at three loops or beyond, are tightly constrained and are currently under study.

  1. Linear and nonlinear optical response of crystals using length and velocity gauges: Effect of basis truncation

    Science.gov (United States)

    Taghizadeh, Alireza; Hipolito, F.; Pedersen, T. G.

    2017-11-01

    We study the effects of a truncated band structure on the linear and nonlinear optical response of crystals using four methods. These are constructed by (i) choosing either the length or velocity gauge for the perturbation and (ii) computing the current density either directly or via the time derivative of the polarization density. In the infinite-band limit, the results of all four methods are identical, but basis truncation breaks their equivalence. In particular, certain response functions vanish identically and unphysical low-frequency divergences are observed for few-band models in the velocity gauge. Using a hexagonal boron nitride (hBN) monolayer as a case study, we analyze the problems associated with all methods and identify the optimal one. Our results show that the length-gauge calculations provide the fastest convergence rates as well as the most accurate spectra for any basis size and, moreover, that low-frequency divergences are eliminated.

  2. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2016-10-15

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  3. Non-Abelian gauge field localization on walls and geometric Higgs mechanism

    Science.gov (United States)

    Arai, Masato; Blaschke, Filip; Eto, Minoru; Sakai, Norisuke

    2017-05-01

    Combining the semiclassical localization mechanism for gauge fields with N domain wall background in a simple SU(N) gauge theory in 5 space-time dimensions, we investigate the geometric Higgs mechanism, where a spontaneous breakdown of the gauge symmetry comes from splitting of domain walls. The mass spectra are investigated in detail for the phenomenologically interesting case SU(5) \\to SU(3)× SU(2)× U(1), which is realized on a split configuration of coincident triplet and doublet of domain walls. We derive a low-energy effective theory in a generic background using the moduli approximation, where all nonlinear interactions between effective fields are captured up to 2 derivatives. We observe novel similarities between domain walls in our model and D-branes in superstring theories.

  4. Quantum simulation of the Abelian-Higgs lattice gauge theory with ultracold atoms

    Science.gov (United States)

    González-Cuadra, Daniel; Zohar, Erez; Cirac, J. Ignacio

    2017-06-01

    We present a quantum simulation scheme for the Abelian-Higgs lattice gauge theory using ultracold bosonic atoms in optical lattices. The model contains both gauge and Higgs scalar fields, and exhibits interesting phases related to confinement and the Higgs mechanism. The model can be simulated by an atomic Hamiltonian, by first mapping the local gauge symmetry to an internal symmetry of the atomic system, the conservation of hyperfine angular momentum in atomic collisions. By including auxiliary bosons in the simulation, we show how the Abelian-Higgs Hamiltonian emerges effectively. We analyze the accuracy of our method in terms of different experimental parameters, as well as the effect of the finite number of bosons on the quantum simulator. Finally, we propose possible experiments for studying the ground state of the system in different regimes of the theory, and measuring interesting high energy physics phenomena in real time.

  5. Kan Doppler-ultralyd erstatte strain gauge til måling af systolisk ankelblodtryk?

    DEFF Research Database (Denmark)

    Sørensen, T L; Perner, A; Hansen, L

    1992-01-01

    Traditionally, strain gauge technique is used in Denmark to measure ankle blood pressure, a method requiring both time and well-trained personnel. In a study involving 90 limbs in 45 patients, this method was compared with ultrasonic technique using a portable 5 MHz Doppler. The reproducibility...... of Doppler ankle pressure measurement was similar to that found in strain gauge based studies. Two consecutive measurements may differ by 20 mmHg or in terms of ankle-brachial index by 0.15 before this is considered significant. No systematic variation was found between the two methods. Increasing...... difficulties were encountered with the Doppler technique at pressures below 50 mmHg. It is concluded that Doppler is a good alternative to strain gauge for measurement of ankle blood pressure....

  6. RIKEN BNL RESEARCH CENTER WORKSHOP ON GAUGE-INVARIANT VARIABLES IN GAUGE THEORIES, VOLUME 20

    Energy Technology Data Exchange (ETDEWEB)

    VAN BAAL,P.; ORLAND,P.; PISARSKI,R.

    2000-06-01

    This four-day workshop focused on the wide variety of approaches to the non-perturbative physics of QCD. The main topic was the formulation of non-Abelian gauge theory in orbit space, but some other ideas were discussed, in particular the possible extension of the Maldacena conjecture to nonsupersymmetric gauge theories. The idea was to involve most of the participants in general discussions on the problem. Panel discussions were organized to further encourage debate and understanding. Most of the talks roughly fell into three categories: (1) Variational methods in field theory; (2) Anti-de Sitter space ideas; (3) The fundamental domain, gauge fixing, Gribov copies and topological objects (both in the continuum and on a lattice). In particular some remarkable progress in three-dimensional gauge theories was presented, from the analytic side by V.P. Nair and mostly from the numerical side by O. Philipsen. This work may ultimately have important implications for RHIC experiments on the high-temperature quark-gluon plasma.

  7. Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Torsten

    2009-05-13

    The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)

  8. Gauge-invariant Aharonov-Bohm streamlines

    Science.gov (United States)

    Berry, M. V.

    2017-10-01

    The phase gradient of the wave describing the Aharonov-Bohm effect (AB) is proportional to the local canonical momentum. This vector field contains vortices (phase singularities), whose strengths cannot be detected in quantum mechanics because they increase (discontinuously) with the magnetic flux, violating gauge invariance. The analogous quantity which is gauge-invariant is the kinetic momentum field, proportional to the local electron velocity. Investigation of the streamlines (integral curves) of this velocity field reveals that as the flux increases from 0 to 1/2 (in quantum units), a vortex V is generated at the flux line, accompanied by a stagnation point (saddle) S that emerges from V and then collapses back into V. The VS pair is always small: the maximum distance between V and S is approximately 0.0209 de Broglie wavelengths. The VS phenomenon survives generalization to a superposition of AB waves. If the flux is confined within an impenetrable tube of radius R, S persists if R  <  0.004 de Broglie wavelengths, and is swallowed by the tube for larger R. An experiment is envisaged.

  9. Linear sigma model for multiflavor gauge theories

    Science.gov (United States)

    Meurice, Y.

    2017-12-01

    We consider a linear sigma model describing 2 Nf2 bosons (σ , a0 , η' and π ) as an approximate effective theory for a S U (3 ) local gauge theory with Nf Dirac fermions in the fundamental representation. The model has a renormalizable U (Nf)L⊗U (Nf)R invariant part, which has an approximate O (2 Nf2) symmetry, and two additional terms, one describing the effects of a S U (Nf)V invariant mass term and the other the effects of the axial anomaly. We calculate the spectrum for arbitrary Nf. Using preliminary and published lattice results from the LatKMI collaboration, we found combinations of the masses that vary slowly with the explicit chiral symmetry breaking and Nf. This suggests that the anomaly term plays a leading role in the mass spectrum and that simple formulas such as Mσ2≃(2 /Nf-Cσ)Mη' 2 should apply in the chiral limit. Lattice measurements of Mη'2 and of approximate constants such as Cσ could help in locating the boundary of the conformal window. We show that our calculation can be adapted for arbitrary representations of the gauge group and in particular to the minimal model with two sextets, where similar patterns are likely to apply.

  10. From lattice gauge theories to hydrogen atoms

    Directory of Open Access Journals (Sweden)

    Manu Mathur

    2015-10-01

    Full Text Available We construct canonical transformations to obtain a complete and most economical realization of the physical Hilbert space Hp of pure SU(22+1 lattice gauge theory in terms of Wigner coupled Hilbert spaces of hydrogen atoms. One hydrogen atom is assigned to every plaquette of the lattice. A complete orthonormal description of the Wilson loop basis in Hp is obtained by all possible angular momentum Wigner couplings of hydrogen atom energy eigenstates |n l m〉 describing electric fluxes on the loops. The SU(2 gauge invariance implies that the total angular momenta of all hydrogen atoms vanish. The canonical transformations also enable us to rewrite the Kogut–Susskind Hamiltonian in terms of fundamental Wilson loop operators and their conjugate electric fields. The resulting loop Hamiltonian has a global SU(2 invariance and a simple weak coupling (g2→0 continuum limit. The canonical transformations leading to the loop Hamiltonian are valid for any SU(N. The ideas and techniques can also be extended to higher dimension.

  11. Noether gauge symmetry approach in quintom cosmology

    Science.gov (United States)

    Aslam, Adnan; Jamil, Mubasher; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-12-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether gauge symmetries (NGS). Motivated by this mathematical tool, in this paper, we study the generalized Noether symmetry of quintom model of dark energy, which is a two component fluid model with quintessence and phantom scalar fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potential functions are proposed from the symmetry point of view, but in the quintom models they are used as phenomenological models without clear mathematical justification. From integrability point of view, we found two forms of the scale factor: one is power law and second is de-Sitter. Some cosmological implications of the solutions have been investigated.

  12. Primordial Spectrum of Gauge Fields from Inflation

    CERN Document Server

    Davis, A C; Prokopec, Tomislav; Tornkvist, O; Davis, Anne-Christine; Dimopoulos, Konstantinos; Prokopec, Tomislav; Tornkvist, Ola

    2001-01-01

    We show that conformal invariance of gauge fields is naturally broken in inflation, having as a consequence amplification of gauge fields. The resulting spectrum of the field strength is approximately B_L ~ L^(-1), where L is the relevant coherence scale. One realisation of our scenario is scalar electrodynamics with a scalar whose mass is large enough to evade observational constraints - the obvious candidates being supersymmetric partners of the standard-model fermions. Our mechanism also leads naturally to amplification of the standard-model Z-boson field due to its coupling to the electroweak Higgs field. At preheating, the spectrum of the Z field is transferred to the hypercharge field, which remains frozen in the plasma and is converted into a magnetic field at the electroweak phase transition. With a reasonable model of field evolution one obtains a magnetic field strength of the order of $10^{-29}$ Gauss on a scale of 100 pc, the size of the largest turbulent eddy in a virialised galaxy. Resonant ampl...

  13. Frobenius-Chern-Simons gauge theory

    Science.gov (United States)

    Bonezzi, Roberto; Boulanger, Nicolas; Sezgin, Ergin; Sundell, Per

    2017-02-01

    Given a set of differential forms on an odd-dimensional noncommutative manifold valued in an internal associative algebra H , we show that the most general cubic covariant Hamiltonian action, without mass terms, is controlled by an {{{Z}}2} -graded associative algebra F with a graded symmetric nondegenerate bilinear form. The resulting class of models provide a natural generalization of the Frobenius-Chern-Simons model (FCS) that was proposed in (arXiv:1505.04957) as an off-shell formulation of the minimal bosonic four-dimensional higher spin gravity theory. If F is unital and the {{{Z}}2} -grading is induced from a Klein operator that is outer to a proper Frobenius subalgebra, then the action can be written on a form akin to topological open string field theory in terms of a superconnection valued in H\\otimes F . We give a new model of this type based on a twisting of {C}≤ft[{{{Z}}2}× {{{Z}}4}\\right] , which leads to self-dual complexified gauge fields on AdS 4. If F is 3-graded, the FCS model can be truncated consistently as to contain no zero-form constraints on-shell. Two examples thereof are a twisting of {C}[{{({{{Z}}2})}3}] that yields the original model, and the Clifford algebra C{{\\ell}2n} which provides an FCS formulation of the bosonic Konstein-Vasiliev model with gauge algebra hu≤ft({{4}n-1},0\\right) .

  14. Gauge and integrable theories in loop spaces

    Science.gov (United States)

    Ferreira, L. A.; Luchini, G.

    2012-05-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  15. Unitarity in gauge symmetry breaking on an orbifold

    CERN Document Server

    Abe, Y; Higashide, Y; Kobayashi, K; Matsunaga, M

    2003-01-01

    We study the unitarity bounds of scattering amplitudes in extra-dimensional gauge theory, in which the gauge symmetry is broken by the boundary conditions. The evaluation of the amplitude of the diagram including four massive gauge bosons in the external lines shows that the asymptotic power behavior of the amplitude is canceled. The calculation is carried out with the 5-dimensional standard model and the SU(5) grand unified theory, whose 5th dimensional coordinate is compactified on S sup 1 /Z sub 2. The gauge theories broken through the orbifolding preserve unitarity a high energies, similarly to the broken gauge theories in which the gauge bosons acquire masses through the Higgs mechanism. We show that the contributions of the Kaluza-Klein states play a crucial role in conserving the unitarity. (author)

  16. Formulation of lattice gauge theories for quantum simulations

    DEFF Research Database (Denmark)

    Zohar, Erez; Burrello, Michele

    2015-01-01

    . This formulation allows for a natural scheme to achieve a consistent truncation of the Hilbert space for continuous groups, and provides helpful tools to study the connections of gauge theories with topological quantum double and string-net models for discrete groups. Several examples, including the case......We examine the Kogut-Susskind formulation of lattice gauge theories under the light of fermionic and bosonic degrees of freedom that provide a description useful to the development of quantum simulators of gauge-invariant models. We consider both discrete and continuous gauge groups and adopt...... a realistic multicomponent Fock space for the definition of matter degrees of freedom. In particular, we express the Hamiltonian of the gauge theory and the Gauss law in terms of Fock operators. The gauge fields are described in two different bases based on either group elements or group representations...

  17. Gauged BPS baby Skyrmions with quantized magnetic flux

    Science.gov (United States)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  18. GPM Ground Validation Duke Rain Gauges IPHEx V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Duke Rain Gauge data were collected during the GPM Ground Validation Integrated Precipitation and Hydrology Experiment (IPHEx) field...

  19. Graviton as a pair of collinear gauge bosons

    Directory of Open Access Journals (Sweden)

    Stephan Stieberger

    2014-12-01

    Full Text Available We show that the mixed gravitational/gauge superstring amplitudes describing decays of massless closed strings – gravitons or dilatons – into a number of gauge bosons, can be written at the tree (disk level as linear combinations of pure open string amplitudes in which the graviton (or dilaton is replaced by a pair of collinear gauge bosons. Each of the constituent gauge bosons carry exactly one half of the original closed string momentum, while their ±1 helicities add up to ±2 for the graviton or to 0 for the dilaton.

  20. Gribov ambiguities at the Landau-maximal Abelian interpolating gauge

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Antonio D.; Sobreiro, Rodrigo F. [UFF-Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2014-08-15

    In a previous work, we presented a new method to account for the Gribov ambiguities in non-Abelian gauge theories. The method consists on the introduction of an extra constraint which directly eliminates the infinitesimal Gribov copies without the usual geometric approach. Such strategy allows one to treat gauges with non-hermitian Faddeev-Popov operator. In this work, we apply this method to a gauge which interpolates among the Landau and maximal Abelian gauges. The result is a local and power counting renormalizable action, free of infinitesimal Gribov copies. Moreover, the interpolating tree-level gluon propagator is derived. (orig.)

  1. Design and Construction of Strain Gauge Interface Pressure ...

    African Journals Online (AJOL)

    Design and Construction of Strain Gauge Interface Pressure Transducer for Measurement of Static and Dynamic Interface Pressure Applied by Pressure Garments and its Relationship to Deep Vein Thrombosis.

  2. Exact partition functions for gauge theories on Rλ3

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Wallet

    2016-11-01

    Full Text Available The noncommutative space Rλ3, a deformation of R3, supports a 3-parameter family of gauge theory models with gauge-invariant harmonic term, stable vacuum and which are perturbatively finite to all orders. Properties of this family are discussed. The partition function factorizes as an infinite product of reduced partition functions, each one corresponding to the reduced gauge theory on one of the fuzzy spheres entering the decomposition of Rλ3. For a particular sub-family of gauge theories, each reduced partition function is exactly expressible as a ratio of determinants. A relation with integrable 2-D Toda lattice hierarchy is indicated.

  3. A Gas Pressure Scale Based on Primary Standard Piston Gauges

    OpenAIRE

    Olson, Douglas A.; Driver, R. Greg; Bowers, Walter J.

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine th...

  4. GPM Ground Validation Pluvio Precipitation Gauges OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Pluvio Precipitation Gauges OLYMPEX dataset contains one-minute precipitation rate and precipitation accumulation measurements, as well as...

  5. q¯q Pair production in non-Abelian gauge fields

    Indian Academy of Sciences (India)

    When the strength of the field is comparable to the quark masses, the corresponding pair creation probability is maximum, and for the static field w0 → 0, we recovered the well-known. Schwinger result. Keywords. Quark-gluon plasma; pair production; quarks; relative heavy-ion collisions; particles and resonance production.

  6. Combined study of Schwinger-boson mean-field theory and linearized tensor renormalization group on Heisenberg ferromagnetic mixed spin (S, σ chains

    Directory of Open Access Journals (Sweden)

    Xin Yan

    2015-07-01

    Full Text Available The Schwinger-boson mean-field theory (SBMFT and the linearized tensor renormalization group (LTRG methods are complementarily applied to explore the thermodynamics of the quantum ferromagnetic mixed spin (S, σ chains. It is found that the system has double excitations, i.e. a gapless and a gapped excitation; the low-lying spectrum can be approximated by ω k ∼ S σ 2 ( S + σ J k 2 with J the ferromagnetic coupling; and the gap between the two branches is estimated to be △ ∼ J. The Bose-Einstein condensation indicates a ferromagnetic ground state with magnetization m tot z = N ( S + σ . At low temperature, the spin correlation length is inversely proportional to temperature (T, the susceptibility behaviors as χ = a 1 ∗ 1 T 2 + a 2 ∗ 1 T , and the specific heat has the form of C = c 1 ∗ T − c 2 ∗ T + c 3 ∗ T 3 2 , with ai (i = 1, 2 and ci (i = 1, 2, 3 the temperature independent constants. The SBMFT results are shown to be in qualitatively agreement with those by the LTRG numerical calculations for S = 1 and σ = 1/2. A comparison of the LTRG results with the experimental data of the model material MnIINiII(NO24(en2(en = ethylenediamine, is made, in which the coupling parameters of the compound are obtained. This study provides useful information for deeply understanding the physical properties of quantum ferromagnetic mixed spin chain materials.

  7. Comparative study of 25- versus 20-gauge pars plana capsulotomy and vitrectomy in pediatric cataract surgery.

    Science.gov (United States)

    Rastogi, Anju; Mishra, Manisha; Goel, Yashpal; Thacker, Prolima; Kamlesh

    2017-01-06

    To compare 25- and 20-gauge pars plana vitrectomy (PPV) for the management of pediatric cataract. 20 eyes of 15 patients were randomly divided into two groups to undergo pars plana capsulotomy and vitrectomy by either 25-gauge (group A) or 20-gauge (group B) PPV after lens aspiration and IOL implantation. The two groups were compared for total surgical time, time taken in doing pars plana capsulotomy and vitrectomy, and the size of posterior capsulotomy. Post-operative astigmatism was compared at 3 months. The mean total surgical time in group A was 49.2 ± 6.7 min, while mean total surgical time in group B was 62.5 + 5.48 min (p = 0.001). The mean time taken for pars plana capsulotomy and vitrectomy was 4.1 ± 1.19 min in group A and 5.0 ± 0.73 min (p = 0.03) in group B. The mean size of the PCCC in group A was 3.3 ± 0.34 mm, while in group B it was 4.0 ± 0.33 mm (p = 0.001). The mean astigmatism at 3 months in group A was 0.65 ± 0.31 diopters, while in group B it was 1.45 ± 0.92 diopters (p = 0.019). 25-gauge transconjunctival sutureless PPV can be an attractive alternative to 20-gauge system in the management of pediatric cataracts.

  8. Incorporating Satellite Precipitation Estimates into a Radar-Gauge Multi-Sensor Precipitation Estimation Algorithm

    Directory of Open Access Journals (Sweden)

    Yuxiang He

    2018-01-01

    Full Text Available This paper presents a new and enhanced fusion module for the Multi-Sensor Precipitation Estimator (MPE that would objectively blend real-time satellite quantitative precipitation estimates (SQPE with radar and gauge estimates. This module consists of a preprocessor that mitigates systematic bias in SQPE, and a two-way blending routine that statistically fuses adjusted SQPE with radar estimates. The preprocessor not only corrects systematic bias in SQPE, but also improves the spatial distribution of precipitation based on SQPE and makes it closely resemble that of radar-based observations. It uses a more sophisticated radar-satellite merging technique to blend preprocessed datasets, and provides a better overall QPE product. The performance of the new satellite-radar-gauge blending module is assessed using independent rain gauge data over a five-year period between 2003–2007, and the assessment evaluates the accuracy of newly developed satellite-radar-gauge (SRG blended products versus that of radar-gauge products (which represents MPE algorithm currently used in the NWS (National Weather Service operations over two regions: (I Inside radar effective coverage and (II immediately outside radar coverage. The outcomes of the evaluation indicate (a ingest of SQPE over areas within effective radar coverage improve the quality of QPE by mitigating the errors in radar estimates in region I; and (b blending of radar, gauge, and satellite estimates over region II leads to reduction of errors relative to bias-corrected SQPE. In addition, the new module alleviates the discontinuities along the boundaries of radar effective coverage otherwise seen when SQPE is used directly to fill the areas outside of effective radar coverage.

  9. Bias adjustment of satellite-based precipitation estimation using gauge observations: A case study in Chile

    Science.gov (United States)

    Yang, Zhongwen; Hsu, Kuolin; Sorooshian, Soroosh; Xu, Xinyi; Braithwaite, Dan; Verbist, Koen M. J.

    2016-04-01

    Satellite-based precipitation estimates (SPEs) are promising alternative precipitation data for climatic and hydrological applications, especially for regions where ground-based observations are limited. However, existing satellite-based rainfall estimations are subject to systematic biases. This study aims to adjust the biases in the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) rainfall data over Chile, using gauge observations as reference. A novel bias adjustment framework, termed QM-GW, is proposed based on the nonparametric quantile mapping approach and a Gaussian weighting interpolation scheme. The PERSIANN-CCS precipitation estimates (daily, 0.04°×0.04°) over Chile are adjusted for the period of 2009-2014. The historical data (satellite and gauge) for 2009-2013 are used to calibrate the methodology; nonparametric cumulative distribution functions of satellite and gauge observations are estimated at every 1°×1° box region. One year (2014) of gauge data was used for validation. The results show that the biases of the PERSIANN-CCS precipitation data are effectively reduced. The spatial patterns of adjusted satellite rainfall show high consistency to the gauge observations, with reduced root-mean-square errors and mean biases. The systematic biases of the PERSIANN-CCS precipitation time series, at both monthly and daily scales, are removed. The extended validation also verifies that the proposed approach can be applied to adjust SPEs into the future, without further need for ground-based measurements. This study serves as a valuable reference for the bias adjustment of existing SPEs using gauge observations worldwide.

  10. TWENTY-FIVE-GAUGE PARS PLANA VITRECTOMY IN COMPLEX RETINAL DETACHMENTS ASSOCIATED WITH GIANT RETINAL TEAR.

    Science.gov (United States)

    Kumar, Vinod; Kumawat, Devesh; Bhari, Anju; Chandra, Parijat

    2017-03-22

    To study the structural and functional outcomes of 25-gauge pars plana vitrectomy in giant retinal tear-associated retinal detachments. Seventeen eyes of 17 patients with giant retinal tear, who underwent 25-gauge pars plana vitrectomy over a period of 15 months at a tertiary eye care center by a single surgeon, were recruited in this retrospective interventional study. Giant retinal tears were mostly traumatic (35.3%) or associated with myopia (35.3%) and occurred in young (mean age 25.7 years) males (94.1%). Most eyes had best-corrected visual acuity ≤20/1,200 (in 82.3%), foveal detachment (in 88.2%), and proliferative vitreoretinopathy ≤Grade B (in 82.3%). The giant retinal tear extent was more than 180° in 29.4% and the fellow eye was involved in 35.2% of eyes. All eyes underwent 25-gauge pars plana vitrectomy with encircling band in 41.1%, perfluorocarbon liquid use in 82.3%, and endotamponade with sulphur hexafluoride (23.6%) or silicone oil (76.4%). At mean follow-up of 10.2 months, reattachment rate was 88.2%. Only 35.2% of eyes achieved final visual acuity ≥20/80 with a cause of poor vision being cataract, secondary glaucoma, macular pucker, and corneal edema. Twenty-five-gauge pars plana vitrectomy can achieve excellent attachment rates in eyes with giant retinal tear-associated retinal detachment. It can be as efficient as larger-gauge vitrectomy, at the same time retaining all advantages of smaller-gauge surgery.

  11. The value of criticality: Gauging issues in supply nets

    Directory of Open Access Journals (Sweden)

    Jochen Speyerer

    2005-06-01

    Full Text Available Modern day supply chains encompass both geographically disparate activities and planning processes for multiple companies or various interdependent time horizons. To be able to effectively manage these supply chains it is not only necessary to strategically plan the future of the underlying network of participating companies but also to schedule and monitor the ongoing production and logistics activities on a regular basis. Unfortunately, available information systems do not provide an adequate way to handle disruptions. If at all, they employ inter-organizational workflows to keep track of activities and notify a pre-set recipient in case something goes wrong. But in order to be able to focus their attention on urgent problems, managers need a means to gauge the criticality of a symptom. This paper tries to fill this gap by introducing a Value of Criticality (VoC that indicates how serious the faced deviation really is.

  12. Complex energies and beginnings of time suggest a theory of scattering and decay

    Science.gov (United States)

    Bohm, A.; Kielanowski, P.; Wickramasekara, S.

    2006-10-01

    Many useful concepts for a quantum theory of scattering and decay (like Lippmann-Schwinger kets, purely outgoing boundary conditions, exponentially decaying Gamow vectors, causality) are not well defined in the mathematical frame set by the conventional (Hilbert space) axioms of quantum mechanics. Using the Lippmann-Schwinger equations as the takeoff point and aiming for a theory that unites resonances and decay, we conjecture a new axiom for quantum mechanics that distinguishes mathematically between prepared states and detected observables. Suggested by the two signs ±i ɛ of the Lippmann-Schwinger equations, this axiom replaces the one Hilbert space of conventional quantum mechanics by two Hardy spaces. The new Hardy space theory automatically provides Gamow kets with exponential time evolution derived from the complex poles of the S-matrix. It solves the causality problem since it results in a semigroup evolution. But this semigroup brings into quantum physics a new concept of the semigroup time t = 0, a beginning of time. Its interpretation and observations are discussed in the last section.

  13. An evaluation of the Wyoming gauge system for snowfall measurement

    Science.gov (United States)

    Yang, D.; Kane, D.L.; Hinzman, L.D.; Goodison, B.E.; Metcalfe, J.R.; Louie, P.Y.T.; Leavesley, G.H.; Emerson, D.G.; Hanson, C.L.

    2000-01-01

    The Wyoming snow fence (shield) has been widely used with precipitation gauges for snowfall measurement at more than 25 locations in Alaska since the late 1970s. This gauge's measurements have been taken as the reference for correcting wind-induced gauge undercatch of snowfall in Alaska. Recently, this fence (shield) was tested in the World Meteorological Organization Solid Precipitation Measurement Intercomparison Project at four locations in the United States of America and Canada for six winter seasons. At the Intercomparison sites an octagonal vertical Double Fence with a Russian Tretyakov gauge or a Universal Belfort recording gauge was installed and used as the Intercomparison Reference (DFIR) to provide true snowfall amounts for this intercomparison experiment. The intercomparison data collected were compiled at the four sites that represent a variety of climate, terrain, and exposure. On the basis of these data sets the performance of the Wyoming gauge system for snowfall observations was carefully evaluated against the DFIR and snow cover data. The results show that (1) the mean snow catch efficiency of the Wyoming gauge compared with the DFIR is about 80-90%, (2) there exists a close linear relation between the measurements of the two gauge systems and this relation may serve as a transfer function to adjust the Wyoming gauge records to obtain an estimate of the true snowfall amount, (3) catch efficiency of the Wyoming gauge does not change with wind speed and temperature, and (4) Wyoming gauge measurements are generally compatible to the snowpack water equivalent at selected locations in northern Alaska. These results are important to our effort of determining true snowfall amounts in the high latitudes, and they are also useful for regional hydrologic and climatic analyses.

  14. A Gas Pressure Scale Based on Primary Standard Piston Gauges.

    Science.gov (United States)

    Olson, Douglas A; Driver, R Greg; Bowers, Walter J

    2010-01-01

    The National Institute of Standards and Technology (NIST) has redefined its gas pressure scale, up to 17 MPa, based on two primary standard piston gauges. The primary standard piston gauges are 35.8 mm in diameter and operate from 20 kPa to 1 MPa. Ten secondary standard piston gauges, two each of five series of the Ruska 2465 type, with successively smaller diameters form the scale extending up to 17 MPa. Six of the piston gauges were directly compared to the primary standards to determine their effective area and expanded (k = 2) uncertainty. Two piston gauges operating to 7 MPa were compared to the 1.4 MPa gauges, and two piston gauges operating to 17 MPa were compared to the 7 MPa gauges. Distortion in the 7 MPa piston gauges was determined by comparing those gauges to a DH Instruments PG7601 type piston gauge, whose distortion was calculated using elasticity theory. The relative standard uncertainties achieved by the primary standards range from 3.0 × 10(-6) to 3.2 × 10(-6). The relative standard uncertainty of the secondary standards is as low as 4.2 × 10(-6) at 300 kPa. The effective areas and uncertainties were validated by comparison to standards of other National Metrology Institutes (NMIs). Results show agreement in all cases to better than the expanded (k = 2) uncertainty of the difference between NIST and the other NMIs, and in most cases to better than the standard (k = 1) uncertainty of the difference.

  15. A novel measuring device for step gauge

    Science.gov (United States)

    Sun, Shuanghua; Shen, Xueping; Zou, Lingding; Gao, Hongtang; Ye, Xiaoyou

    2014-08-01

    Combining laser interferometric comparator with high precision inductance sensor, a novel measuring device for step gauge was developed. A high precision laser interferometer system was used for a length standard; a zero-crossing trigger signal of inductance sensor output voltage was used for the aiming signal. In order to improve the measuring accuracy, several high precision sensors were installed to measure environmental parameters for compensating the laser wavelength according to the Edlén empirical equation. A rotating mechanism was designed. Two key problems, probe obstacle avoidance and aiming repeatability, were solved. Experimental analysis of the contact force and speed of influence on measuring probe repeatability, and a segmented control method of the movement speed was established. The experiment indicates that the system has a high accuracy of measurement, which can be used for contact measurement of other one dimension length standard.

  16. A Novel Strain Gauge with Damping Capability

    Directory of Open Access Journals (Sweden)

    Xiaohua LI

    2009-10-01

    Full Text Available The goal of this work is to investigate the properties of a new type of multifunctional composite which is based on multi-walled carbon nanotubes (MWCNT. The composite was prepared from a paper like MWCNT film which was sandwiched between two adhesive layers. Two point probe and four point probe methods were used to test its mechanical strain sensing properties. Nanoindentation and direct shear tests were used to acquire the Young’s modulus and shear modulus of MWCNT film composite. Its structural damping properties were investigated via a free vibration test. This new type of carbon nanotube based composite may potentially serve simultaneously as both a strain gauge and a damping treatment for use in structural vibration control.

  17. Isometries, gaugings and {N} = 2 supergravity decoupling

    Science.gov (United States)

    Antoniadis, Ignatios; Derendinger, Jean-Pierre; Petropoulos, P. Marios; Siampos, Konstantinos

    2016-11-01

    We study off-shell rigid limits for the kinetic and scalar-potential terms of a single {N} = 2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid {N} = 2 theory on Minkowski or on AdS4 spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg ⋉ U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.

  18. Isometries, gaugings and N=2 supergravity decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Universités,CNRS UMR 7589, UPMC Paris 6, 4 place Jussieu, 75005 Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Derendinger, Jean-Pierre [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Petropoulos, P. Marios [Centre de Physique Théorique, Ecole Polytechnique, CNRS UMR 7644, Université Paris-Saclay,91128 Palaiseau Cedex (France); Laboratoire de Physique Théorique et Hautes Energies, Sorbonne Universités,CNRS UMR 7589, UPMC Paris 6, 4 place Jussieu, 75005 Paris (France); Siampos, Konstantinos [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2016-11-28

    We study off-shell rigid limits for the kinetic and scalar-potential terms of a single N=2 hypermultiplet. In the kinetic term, these rigid limits establish relations between four-dimensional quaternion-Kähler and hyper-Kähler target spaces with symmetry. The scalar potential is obtained by gauging the graviphoton along an isometry of the quaternion-Kähler space. The rigid limits unveil two distinct cases. A rigid N=2 theory on Minkowski or on AdS{sub 4} spacetime, depending on whether the isometry is translational or rotational respectively. We apply these results to the quaternion-Kähler space with Heisenberg⋉U(1) isometry, which describes the universal hypermultiplet at type-II string one-loop.

  19. Gauge Anomalies and Neutrino Seesaw Models

    CERN Document Server

    Neves Cebola, Luis Manuel

    Despite the success of the Standard Model concerning theoretical predictions, there are several experimental results that cannot be explained and there are reasons to believe that there exists new physics beyond it. Neutrino oscillations, and hence their masses, are examples of this. Experimentally it is known that neutrinos masses are quite small, when compared to all Standard Model particle masses. Among the theoretical possibilities to explain these tiny masses, the seesaw mechanism is a simple and well-motivated framework. In its minimal version, heavy particles are introduced that decouple from the theory in the early universe. To build consistent theories, classical symmetries need to be preserved at quantum level, so that there are no anomalies. The cancellation of these anomalies leads to constraints in the parameters of the theory. One attractive solution is to realize the anomaly cancellation through the modication of the gauge symmetry. In this thesis we present a short review of some features of t...

  20. Numerical simulation of the pulsed Pirani gauges

    Science.gov (United States)

    Gospodinov, P.; Dankov, D.; Roussinov, V.; Mironova, M.

    2017-10-01

    The transient heat transfer process is studied in rarefied gas confined between two stationary concentric cylinders. The inner cylinder (filament) is subjected to a periodically heating-cooling cycle. The energy transfer is modeled with a continuous model based on Navier-Stokes-Fourier (NSF) equations of motion and energy transfer and with a statistical Direct Simulation Monte Carlo Method (DSMC). Numerical results for the temperature, thermodynamic pressure and pressure difference between thermodynamic pressure and radial stress tensor component are obtained for different circular frequencies of heating cooling cycle of filament and for different filament radii. The pressure variation at the end of any local heating stage of heating-cooling cycle is close to the value of equilibrium thermodynamic pressure. The results are applicable in designing the pulsed Pirani gauges.