WorldWideScience

Sample records for schwarzschild solution

  1. Schwarzschild Solution: A Historical Perspective

    Science.gov (United States)

    Bartusiak, Marcia

    2016-03-01

    While eighteenth-century Newtonians had imagined a precursor to the black hole, the modern version has its roots in the first full solution to Einstein's equations of general relativity, derived by the German astronomer Karl Schwarzschild on a World War I battlefront just weeks after Einstein introduced his completed theory in November 1915. This talk will demonstrate how Schwarzschild's solution is linked to the black hole and how it took more than half a century for the physics community to accept that such a bizarre celestial object could exist in the universe.

  2. On quantum deformation of the Schwarzschild solution

    International Nuclear Information System (INIS)

    Kazakov, D.I.; Solodukhin, S.N.

    1993-01-01

    We consider the deformation of the Schwarzschild solution in general relativity due to spherically symmetric quantum fluctuations of the metric and the matter fields. In this case, the 4 D theory of gravity with Einstein action reduces to the effective two-dimensional dilaton gravity. We have found that the Schwarzschild singularity at r=0 is shifted to the finite radius r min ∼ r PL , where the scalar curvature is finite, so that the space-time looks regular and consists of two asymptotically flat sheets glued at the hypersurface of constant radius. (author). 17 refs.; 4 figs

  3. Uniqueness of the electrostatic solution in Schwarzschild space

    International Nuclear Information System (INIS)

    Molnar, Pal G.; Elsaesser, Klaus

    2003-01-01

    In this Brief Report we give the proof that the solution of any static test charge distribution in Schwarzschild space is unique. In order to give the proof we derive the first Green's identity written with p-forms on (pseudo) Riemannian manifolds. Moreover, the proof of uniqueness can be shown for either any purely electric or purely magnetic field configuration. The spacetime geometry is not crucial for the proof

  4. Centennial of General Relativity (1915-2015); The Schwarzschild Solution and Black Holes

    OpenAIRE

    Blinder, S. M.

    2015-01-01

    This year marks the 100th anniversary of Einstein's General Theory of Relativity (1915-2015). The first nontrivial solution of the Einstein field equations was derived by Karl Schwarzschild in 1916. This Note will focus mainly on the Schwarzschild solution and the remarkable developments which it inspired, the most dramatic being the prediction of black holes. Later extensions of Schwarzschild's spacetime structure has led to even wilder conjectures, such as white holes and passages to other ...

  5. Algebraically special perturbations of the Schwarzschild solution in higher dimensions

    International Nuclear Information System (INIS)

    Dias, Óscar J C; Reall, Harvey S

    2013-01-01

    We study algebraically special perturbations of a generalized Schwarzschild solution in any number of dimensions. There are two motivations. First, to learn whether there exist interesting higher-dimensional algebraically special solutions beyond the known ones. Second, algebraically special perturbations present an obstruction to the unique reconstruction of general metric perturbations from gauge-invariant variables analogous to the Teukolsky scalars and it is desirable to know the extent of this non-uniqueness. In four dimensions, our results generalize those of Couch and Newman, who found infinite families of time-dependent algebraically special perturbations. In higher dimensions, we find that the only regular algebraically special perturbations are those corresponding to deformations within the Myers–Perry family. Our results are relevant for several inequivalent definitions of ‘algebraically special’. (paper)

  6. The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge

    OpenAIRE

    Johnson, Thomas

    2018-01-01

    In a recent seminal paper \\cite{D--H--R} of Dafermos, Holzegel and Rodnianski the linear stability of the Schwarzschild family of black hole solutions to the Einstein vacuum equations was established by imposing a double null gauge. In this paper we shall prove that the Schwarzschild family is linearly stable as solutions to the Einstein vacuum equations by imposing instead a generalised wave gauge: all sufficiently regular solutions to the system of equations that result from linearising the...

  7. Cancellation of the central singularity of the Schwarzschild solution with natural mass inversion process

    Science.gov (United States)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-03-01

    We reconsider the classical Schwarzschild solution in the context of a Janus cosmological model. We show that the central singularity can be eliminated through a simple coordinate change and that the subsequent transit from one fold to the other is accompanied by mass inversion. In such scenario matter swallowed by black holes could be ejected as invisible negative mass and dispersed in space.

  8. A Classical Based Derivation of Time Dilation Providing First Order Accuracy to Schwarzschild's Solution of Einstein's Field Equations

    Science.gov (United States)

    Austin, Rickey W.

    provides a minimum first order accuracy to Schwarzschild's solution to Einstein's field equations.

  9. Schwarzschild black hole encircled by a rotating thin disc: Properties of perturbative solution

    Science.gov (United States)

    Kotlařík, P.; Semerák, O.; Čížek, P.

    2018-04-01

    Will [Astrophys. J. 191, 521 (1974), 10.1086/152992] solved the perturbation of a Schwarzschild black hole due to a slowly rotating light concentric thin ring, using Green's functions expressed as infinite-sum expansions in multipoles and in the small mass and rotational parameters. In a previous paper [P. Čížek and O. Semerák, Astrophys. J. Suppl. Ser. 232, 14 (2017), 10.3847/1538-4365/aa876b], we expressed the Green functions in closed form containing elliptic integrals, leaving just summation over the mass expansion. Such a form is more practical for numerical evaluation, but mainly for generalizing the problem to extended sources where the Green functions have to be integrated over the source. We exemplified the method by computing explicitly the first-order perturbation due to a slowly rotating thin disc lying between two finite radii. After finding basic parameters of the system—mass and angular momentum of the black hole and of the disc—we now add further properties, namely those which reveal how the disc gravity influences geometry of the black-hole horizon and those of circular equatorial geodesics (specifically, radii of the photon, marginally bound and marginally stable orbits). We also realize that, in the linear order, no ergosphere occurs and the central singularity remains pointlike, and check the implications of natural physical requirements (energy conditions and subluminal restriction on orbital speed) for the single-stream as well as counter-rotating double-stream interpretations of the disc.

  10. Martin Schwarzschild (1912 - 1997)

    Science.gov (United States)

    Pfau, Werner

    The Chairman of the Astronomische Gesellschaft honored Martin Schwarzschild, who was the first to be presented with the Karl Schwarzschild Medal of the Astronomische Gesellschaft in 1957. An account of his life and work is given.

  11. Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes

    OpenAIRE

    Schlue, Volker

    2012-01-01

    I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...

  12. Quantum corrections to Schwarzschild black hole

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)

    2017-04-15

    Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)

  13. Heuristic extension of the Schwarzschild metric

    International Nuclear Information System (INIS)

    Espinosa, J.M.

    1982-01-01

    The Schwarzschild solution of Einstein's equations of gravitation has several singularities. It is known that the singularity at r = 2Gm/c 2 is only apparent, a result of the coordinates in which the solution was found. Paradoxical results occuring near the singularity show the system of coordinates is incomplete. We introduce a simple, two-dimensional metric with an apparent singularity that makes it incomplete. By a straightforward, heuristic procedure we extend and complete this simple metric. We then use the same procedure to give a heuristic derivation of the Kruskal system of coordinates, which is known to extend the Schwarzschild manifold past its apparent singularity and produce a complete manifold

  14. Analytic extension of the Schwarzschild-de Sitter metric

    International Nuclear Information System (INIS)

    Bazanski, S.L.; Ferrari, V.

    1986-01-01

    In this paper, co-ordinates are derived that are regular, respectively, in the neighbourhood of the two horizons which exist in the so-called Schwarzschild-de Sitter solution known in general relativity, and it is constructed a manifold that is the analytic extension of the manifold being the domain of classical Schwarzschild-de Sitter co-ordinates

  15. The Schwarzschild metric: It's the coordinates, stupid!

    Science.gov (United States)

    Fromholz, Pierre; Poisson, Eric; Will, Clifford M.

    2014-04-01

    Every general relativity textbook emphasizes that coordinates have no physical meaning. Nevertheless, a coordinate choice must be made in order to carry out real calculations, and that choice can make the difference between a calculation that is simple and one that is a mess. We give a concrete illustration of the maxim that "coordinates matter" using the exact Schwarzschild solution for a vacuum, static spherical spacetime. We review the standard textbook derivation, Schwarzschild's original 1916 derivation, and a derivation using the Landau-Lifshitz formulation of the Einstein field equations. The last derivation is much more complicated, has one aspect for which we have been unable to find a solution, and gives an explicit illustration of the fact that the Schwarzschild geometry can be described in infinitely many coordinate systems.

  16. Schwarzschild, Martin (1912-97)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Astrophysicist, born in Potsdam, Germany, the son of KARL SCHWARZSCHILD, left Germany, became professor at Princeton University. Working with John von Neumann, Schwarzschild used the powers of the newly developed electronic digital computers to work on the theory of stellar structure and evolution. He uncovered phenomena in red giant stars, including how they evolve off the main sequence in the H...

  17. Traversable Schwarzschild-like wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile); Liempi, Luis [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile); Universidad San Sebastian, Facultad de Ingenieria y Tecnologia, Concepcion (Chile); Rodriguez, Pablo [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile)

    2017-11-15

    In this paper we study relativistic static traversable wormhole solutions which are a slight generalization of Schwarzschild wormholes. In order to do this we assume a shape function with a linear dependence on the radial coordinate r. This linear shape function generates wormholes whose asymptotic spacetime is not flat: they are asymptotically locally flat, since in the asymptotic limit r → ∞ spacetimes exhibiting a solid angle deficit (or excess) are obtained. In particular, there exist wormholes which connect two asymptotically non-flat regions with a solid angle deficit. For these wormholes the size of their embeddings in a three-dimensional Euclidean space extends from the throat to infinity. A new phantom zero-tidal-force wormhole exhibiting such asymptotic is obtained. On the other hand, if a solid angle excess is present, the size of the wormhole embeddings depends on the amount of this angle excess, and the energy density is negative everywhere. We discuss the traversability conditions and study the impact of the β-parameter on the motion of a traveler when the wormhole throat is crossed. A description of the geodesic behavior for the wormholes obtained is also presented. (orig.)

  18. Traversable Schwarzschild-like wormholes

    International Nuclear Information System (INIS)

    Cataldo, Mauricio; Liempi, Luis; Rodriguez, Pablo

    2017-01-01

    In this paper we study relativistic static traversable wormhole solutions which are a slight generalization of Schwarzschild wormholes. In order to do this we assume a shape function with a linear dependence on the radial coordinate r. This linear shape function generates wormholes whose asymptotic spacetime is not flat: they are asymptotically locally flat, since in the asymptotic limit r → ∞ spacetimes exhibiting a solid angle deficit (or excess) are obtained. In particular, there exist wormholes which connect two asymptotically non-flat regions with a solid angle deficit. For these wormholes the size of their embeddings in a three-dimensional Euclidean space extends from the throat to infinity. A new phantom zero-tidal-force wormhole exhibiting such asymptotic is obtained. On the other hand, if a solid angle excess is present, the size of the wormhole embeddings depends on the amount of this angle excess, and the energy density is negative everywhere. We discuss the traversability conditions and study the impact of the β-parameter on the motion of a traveler when the wormhole throat is crossed. A description of the geodesic behavior for the wormholes obtained is also presented. (orig.)

  19. The scalar wave equation in a Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Stewart, J.M.; Schmidt, B.G.

    1978-09-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild spacetime in a neighbourhood of spatial infinity, which includes parts of future and past null infinity. The behaviour of such fields is essentially different from that which accurs in a flat spacetime. (orig.) [de

  20. A comment on the null geodesic equations in Schwarzschild geometry

    International Nuclear Information System (INIS)

    Rosa, M.A.F.; Rodrigues Junior, W.A.

    1986-01-01

    An integration of the null geodesic equations in the Schwarzschild geometry, which is valid to first order in GM/Rc 2 is presented. The solution is compared with others published in the literature and their range of validity is analysed. Some misunderstandings are also clarified. (Author) [pt

  1. Einstein, Schwarzschild, the Perihelion Motion of Mercury and the Rotating Disk Story

    OpenAIRE

    Weinstein, Galina

    2014-01-01

    On November 18, 1915 Einstein reported to the Prussian Academy that the perihelion motion of Mercury is explained by his new General Theory of Relativity: Einstein found approximate solutions to his November 11, 1915 field equations. Einstein's field equations cannot be solved in the general case, but can be solved in particular situations. The first to offer such an exact solution was Karl Schwarzschild. Schwarzschild found one line element, which satisfied the conditions imposed by Einstein...

  2. Two-mirror Schwarzschild aplanats. Basic relations

    OpenAIRE

    Terebizh, V. Yu.

    2005-01-01

    It is shown that the theory of aplanatic two-mirror telescopes developed by Karl Schwarzschild in 1905 leads to the unified description both the prefocal and the postfocal systems. The class of surfaces in the ZEMAX optical program has been properly extended to ascertain the image quality in exact Schwarzschild aplanats. A comparison of Schwarzschild aplanats with approximate Ritchey-Chretien and Gregory-Maksutov aplanatic telescopes reveals a noticeable advantage of the former at fast focal ...

  3. Two-Mirror Schwarzschild Aplanats: Basic Relations

    Science.gov (United States)

    Terebizh, V. Yu.

    2005-02-01

    The theory of aplanatic two-mirror telescopes developed by Karl Schwarzschild in 1905 is shown to lead to a unified description of both prefocal and postfocal systems. The class of surfaces in the ZEMAX optical program has been properly extended to ascertain the image quality in exact Schwarzschild aplanats. A comparison of Schwarzschild aplanats with approximate Ritchey-Chrétien and Gregory-Maksutov aplanatic telescopes reveals a noticeable advantage of the former at the system’s fast focal ratio.

  4. Alternatives to Schwarzschild in the weak field limit of General Relativity

    Energy Technology Data Exchange (ETDEWEB)

    Bozza, V. [Dipartimento di Fisica ' E.R. Caianiello' , Università di Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano (Italy); Postiglione, A., E-mail: valboz@sa.infn.it, E-mail: postiglione@fis.uniroma3.it [Dipartimento di Fisica ' E. Amaldi' , Università di Roma Tre, Via della Vasca Navale 84, 00149 Roma (Italy)

    2015-06-01

    The metric outside an isolated object made up of ordinary matter is bound to be the classical Schwarzschild vacuum solution of General Relativity. Nevertheless, some solutions are known (e.g. Morris-Thorne wormholes) that do not match Schwarzschild asymptotically. On a phenomenological point of view, gravitational lensing in metrics falling as 1/r{sup q} has recently attracted great interest. In this work, we explore the conditions on the source matter for constructing static spherically symmetric metrics exhibiting an arbitrary power-law as Newtonian limit. For such space-times we also derive the expressions of gravitational redshift and force on probe masses, which, together with light deflection, can be used in astrophysical searches of non-Schwarzschild objects made up of exotic matter. Interestingly, we prove that even a minimally coupled scalar field with a power-law potential can support non-Schwarzschild metrics with arbitrary asymptotic behaviour.

  5. Covariant perturbations of Schwarzschild black holes

    International Nuclear Information System (INIS)

    Clarkson, Chris A; Barrett, Richard K

    2003-01-01

    We present a new covariant and gauge-invariant perturbation formalism for dealing with spacetimes having spherical symmetry (or some preferred spatial direction) in the background, and apply it to the case of gravitational wave propagation in a Schwarzschild black-hole spacetime. The 1 + 3 covariant approach is extended to a '1 + 1 + 2 covariant sheet' formalism by introducing a radial unit vector in addition to the timelike congruence, and decomposing all covariant quantities with respect to this. The background Schwarzschild solution is discussed and a covariant characterization is given. We give the full first-order system of linearized 1 + 1 + 2 covariant equations, and we show how, by introducing (time and spherical) harmonic functions, these may be reduced to a system of first-order ordinary differential equations and algebraic constraints for the 1 + 1 + 2 variables which may be solved straightforwardly. We show how both odd- and even-parity perturbations may be unified by the discovery of a covariant, frame- and gauge-invariant, transverse-traceless tensor describing gravitational waves, which satisfies a covariant wave equation equivalent to the Regge-Wheeler equation for both even- and odd-parity perturbations. We show how the Zerilli equation may be derived from this tensor, and derive a similar transverse-traceless tensor equation equivalent to this equation. The so-called special quasinormal modes with purely imaginary frequency emerge naturally. The significance of the degrees of freedom in the choice of the two frame vectors is discussed, and we demonstrate that, for a certain frame choice, the underlying dynamics is governed purely by the Regge-Wheeler tensor. The two transverse-traceless Weyl tensors which carry the curvature of gravitational waves are discussed, and we give the closed system of four first-order ordinary differential equations describing their propagation. Finally, we consider the extension of this work to the study of

  6. The effect of spherical shells of matter on the Schwarzschild black hole

    International Nuclear Information System (INIS)

    Dray, T.; Rijksuniversiteit Utrecht; Hooft, G. 't

    1985-01-01

    Based on previous work we show how to join two Schwarzschild solutions, possibly with different masses along null cylinders each representing a spherical shell of infalling or outgoing massless matter. One of the Schwarzschild masses can be zero, i.e. one region can be flat. The above procedure can be repeated to produce spacetimes with a C 0 metric describing several different (possibly flat) Schwarzschild regions separated by shells of matter. An exhaustive treatment of the ways of combining four such regions is given; the extension to many regions is then straightforward. Cases of special interest are: (1) the scattering of two spherical gravitational ''shock waves'' at the horizon of a Schwarzschild black hole, and (2) a configuration involving only one external universe, which may be relevant to quantization problems in general relativity. In the latter example, only an infinitesimal amount of matter is sufficient to remove the ''Wheeler wormhole'' to another universe. (orig.)

  7. Initial data sets for the Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Gomez-Lobo, Alfonso Garcia-Parrado; Kroon, Juan A. Valiente

    2007-01-01

    A characterization of initial data sets for the Schwarzschild spacetime is provided. This characterization is obtained by performing a 3+1 decomposition of a certain invariant characterization of the Schwarzschild spacetime given in terms of concomitants of the Weyl tensor. This procedure renders a set of necessary conditions--which can be written in terms of the electric and magnetic parts of the Weyl tensor and their concomitants--for an initial data set to be a Schwarzschild initial data set. Our approach also provides a formula for a static Killing initial data set candidate--a KID candidate. Sufficient conditions for an initial data set to be a Schwarzschild initial data set are obtained by supplementing the necessary conditions with the requirement that the initial data set possesses a stationary Killing initial data set of the form given by our KID candidate. Thus, we obtain an algorithmic procedure of checking whether a given initial data set is Schwarzschildean or not

  8. The scalar wave equation in a Schwarzschild space-time

    International Nuclear Information System (INIS)

    Schmidt, B.G.; Stewart, J.M.

    1979-01-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)

  9. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  10. First integrals of geodesics in the Einstein-Schwarzschild space

    International Nuclear Information System (INIS)

    Meshkov, A.G.; Dordzhiev, P.B.

    1984-01-01

    Linear and quadratic velocity integrals of geodesics in the Einstein-Schwarzschild space are calculated. The Schwarzschild geodesics equations have only four independent linear integrals. Quadratic integrals are polynomials from linear ones with constant coefficients. Total separation of variables in the Hamilton-Jacobi equation with Schwarzschild metric is possible only in two coordinate systems: ''spherical'' and ''conic'' systems

  11. Features and stability analysis of non-Schwarzschild black hole in quadratic gravity

    International Nuclear Information System (INIS)

    Cai, Yi-Fu; Zhang, Hezi; Liu, Junyu; Cheng, Gong; Wang, Min

    2016-01-01

    Black holes are found to exist in gravitational theories with the presence of quadratic curvature terms and behave differently from the Schwarzschild solution. We present an exhaustive analysis for determining the quasinormal modes of a test scalar field propagating in a new class of black hole backgrounds in the case of pure Einstein-Weyl gravity. Our result shows that the field decay of quasinormal modes in such a non-Schwarzschild black hole behaves similarly to the Schwarzschild one, but the decay slope becomes much smoother due to the appearance of the Weyl tensor square in the background theory. We also analyze the frequencies of the quasinormal modes in order to characterize the properties of new back holes, and thus, if these modes can be the source of gravitational waves, the underlying theories may be testable in future gravitational wave experiments. We briefly comment on the issue of quantum (in)stability in this theory at linear order.

  12. Quantitative properties of the Schwarzschild metric

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal; Křížek, Filip

    2018-01-01

    Roč. 2018, č. 1 (2018), s. 1-10 Institutional support: RVO:67985840 Keywords : exterior and interior Schwarzschild metric * proper radius * coordinate radius Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics http://astro.shu-bg.net/pasb/index_files/Papers/2018/SCHWARZ8.pdf

  13. Relativistic positioning in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Puchades, Neus; Sáez, Diego

    2015-01-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)

  14. Interactive Visualization of a Thin Disc around a Schwarzschild Black Hole

    Science.gov (United States)

    Muller, Thomas; Frauendiener, Jorg

    2012-01-01

    In a first course in general relativity, the Schwarzschild spacetime is the most discussed analytic solution to Einstein's field equations. Unfortunately, there is rarely enough time to study the optical consequences of the bending of light for some advanced examples. In this paper, we present how the visual appearance of a thin disc around a…

  15. Nonexistence theorems for Yang-Mills fields and harmonic maps in the Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Hu Hesheng

    1987-01-01

    The nonexistence of static solutions to pure Yang-Mills equations and nonconstant harmonic maps defined on the Schwarzschild spacetime outside the black hole (r>2M) is considered. Nonexistence theorems for pure Yang-Mills equations and harmonic maps in the region r≥5M and r≥3M are obtained, respectively. (orig.)

  16. Statistical Entropy of Schwarzschild Black Holes

    CERN Document Server

    Englert, F

    1998-01-01

    The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Beckenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes.

  17. Classroom reconstruction of the Schwarzschild metric

    OpenAIRE

    Kassner, Klaus

    2015-01-01

    A promising way to introduce general relativity in the classroom is to study the physical implications of certain given metrics, such as the Schwarzschild one. This involves lower mathematical expenditure than an approach focusing on differential geometry in its full glory and permits to emphasize physical aspects before attacking the field equations. Even so, in terms of motivation, lacking justification of the metric employed may pose an obstacle. The paper discusses how to establish the we...

  18. Quantum correlator outside a Schwarzschild black hole

    Directory of Open Access Journals (Sweden)

    Claudia Buss

    2018-01-01

    Full Text Available We calculate the quantum correlator in Schwarzschild black hole space–time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle–Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.

  19. Effective Stringy Description of Schwarzschild Black Holes

    OpenAIRE

    Krasnov , Kirill; Solodukhin , Sergey N.

    2004-01-01

    We start by pointing out that certain Riemann surfaces appear rather naturally in the context of wave equations in the black hole background. For a given black hole there are two closely related surfaces. One is the Riemann surface of complexified ``tortoise'' coordinate. The other Riemann surface appears when the radial wave equation is interpreted as the Fuchsian differential equation. We study these surfaces in detail for the BTZ and Schwarzschild black holes in four and higher dimensions....

  20. A Statistical Mechanical Problem in Schwarzschild Spacetime

    OpenAIRE

    Collas, Peter; Klein, David

    2006-01-01

    We use Fermi coordinates to calculate the canonical partition function for an ideal gas in a circular geodesic orbit in Schwarzschild spacetime. To test the validity of the results we prove theorems for limiting cases. We recover the Newtonian gas law subject only to tidal forces in the Newtonian limit. Additionally we recover the special relativistic gas law as the radius of the orbit increases to infinity. We also discuss how the method can be extended to the non ideal gas case.

  1. The Planck Vacuum and the Schwarzschild Metrics

    Directory of Open Access Journals (Sweden)

    Daywitt W. C.

    2009-07-01

    Full Text Available The Planck vacuum (PV is assumed to be the source of the visible universe. So under conditions of sufficient stress, there must exist a pathway through which energy from the PV can travel into this universe. Conversely, the passage of energy from the visible universe to the PV must also exist under the same stressful conditions. The following examines two versions of the Schwarzschild metric equation for compatability with this open-pathway idea.

  2. Quantization of the Schwarzschild geometry

    International Nuclear Information System (INIS)

    Melas, Evangelos

    2013-01-01

    The conditional symmetries of the reduced Einstein-Hilbert action emerging from a static, spherically symmetric geometry are used as supplementary conditions on the wave function. Based on their integrability conditions, only one of the three existing symmetries can be consistently imposed, while the unique Casimir invariant, being the product of the remaining two symmetries, is calculated as the only possible second condition on the wave function. This quadratic integral of motion is identified with the reparametrization generator, as an implication of the uniqueness of the dynamical evolution, by fixing a suitable parametrization of the r-lapse function. In this parametrization, the determinant of the supermetric plays the role of the mesure. The combined Wheeler – DeWitt and linear conditional symmetry equations are analytically solved. The solutions obtained depend on the product of the two ''scale factors''.

  3. Embeddings for the Schwarzschild metric: classification and new results

    International Nuclear Information System (INIS)

    Paston, S A; Sheykin, A A

    2012-01-01

    We suggest a method to search the embeddings of Riemannian spaces with a high enough symmetry in a flat ambient space. It is based on a procedure of construction surfaces with a given symmetry. The method is used to classify the embeddings of the Schwarzschild metric which have the symmetry of this solution, and all such embeddings in a six-dimensional ambient space (i.e. a space with a minimal possible dimension) are constructed. Four of the six possible embeddings are already known, while the two others are new. One of the new embeddings is asymptotically flat, while the other embeddings in a six-dimensional ambient space do not have this property. The asymptotically flat embedding can be of use in the analysis of the many-body problem, as well as for the development of gravity description as a theory of a surface in a flat ambient space. (paper)

  4. Some investigations of null and time like geodesics in Schwarzschild and Schwarzschild de sitter black hole with a straight string passing through it

    International Nuclear Information System (INIS)

    Paudel, Eak Raj

    2007-01-01

    Gravitational field of Schwarzschild and Schwarzschild de-sitter Black hole with a straight string passing through it. In such space analytical and numerical solutions of null and time like geodesics are investigated. The string parameter a + is found to affect both the angle of deflection in null geodesics and the precession of perihelion on time like geodesics .It is seen that the deflection of null and time like geodesics near the gravitating mass of de-sitter space time increases with t he gravitational field of a straight string in flat space time has the property that the Newtonian potential vanishes yet there are non trivial gravitational effects. A test particle is neither attracted nor repelled by a string, yet the conical nature of space outside of string produces observable effects such as light deflection . Schwarzschild Black hole is a mathematical solution to the Einstein's field equations and corresponds to the gravitational field of massive compact spherically symmetric ob normal. References 1. Aryal, M.M, A. Vilenkin and L.H Ford, 1986, Phys.Rev. D32 ,2262 2. Moriyasu ,K ., 1980 , An introduction to gauge Invariance 3. Vilenkin A., 1985 , Physical reports , cosmic strings and Domain walls 4. Berry, M. , 1976 , Principle of cosmology and Gravitation 5. Mishner , C.W ., K.S .Throne , J.A wheeler , 1973. (Author)

  5. Entanglement redistribution in the Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Wang, Jieci; Pan, Qiyuan; Jing, Jiliang

    2010-01-01

    The effect of Hawking radiation on the redistribution of the entanglement and mutual information in the Schwarzschild spacetime is investigated. Our analysis shows that the physically accessible correlations degrade while the unaccessible correlations increase as the Hawking temperature increases because the initial correlations described by inertial observers are redistributed between all the bipartite modes. It is interesting to note that, in the limit case that the temperature tends to infinity, the accessible mutual information equals to just half of its initial value, and the unaccessible mutual information between mode A and II also equals to the same value.

  6. Schwarzschild black holes can wear scalar wigs.

    Science.gov (United States)

    Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier

    2012-08-24

    We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.

  7. Interactive visualization of a thin disc around a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Müller, Thomas; Frauendiener, Jörg

    2012-01-01

    In a first course in general relativity, the Schwarzschild spacetime is the most discussed analytic solution to Einstein's field equations. Unfortunately, there is rarely enough time to study the optical consequences of the bending of light for some advanced examples. In this paper, we present how the visual appearance of a thin disc around a Schwarzschild black hole can be determined interactively by means of an analytic solution to the geodesic equation processed on current high-performance graphical processing units. This approach can, in principle, be customized for any other thin disc in a spacetime with geodesics given in closed form. The interactive visualization discussed here can be used either in a first course in general relativity for demonstration purposes only or as a thesis for an enthusiastic student in an advanced course with some basic knowledge of OpenGL and a programming language. (paper)

  8. Aplanatic telescopes based on Schwarzschild optical configuration: from grazing incidence Wolter-like x-ray optics to Cherenkov two-mirror normal incidence telescopes

    Science.gov (United States)

    Sironi, Giorgia

    2017-09-01

    At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements

  9. Karl Schwarzschild and the professionalization of astrophysics. (German Title: Karl Schwarzschild und die Professionalisierung der Astrophysik)

    Science.gov (United States)

    Schmidt-Kaler, Theodor

    Professionalization is characteristic for physics and astronomy since 1830, and forms the basis for their rapid evolution in the 20th century. Karl Schwarzschild's contributions to professionalization of astronomy are presented: the introduction of course lectures in a repeating cycle, a permanent astrophysical laboratory, a tight connection between teaching and research, simulations and suggestions for astronomy at high schools and for the training of high school teachers, an interest in international organisation, and the initiative and planning of a southern observatory.

  10. Geometric extension through Schwarzschild r = 0

    International Nuclear Information System (INIS)

    Lynden-Bell, D.; Katz, J.; Hebrew Univ., Jerusalem

    1990-01-01

    Singularities in space-time are not necessarily cancers in the manifold but can herald interesting topological change in the space-time at places where there are several different tangent Minkowski spaces. Most discussions of gravitational collapse cease when space-time becomes singular. In the 'hour-glass' universe we have an example where the singularity develops in empty space; here we give a geometrical extension through the singularity in which geodesics that enter it emerge into a new space. The result extends Schwarzschild space and is periodic in 'extended' Penrose coordinates. There is a topological singularity but no mass at r = 0. The extension is mildly nonanalytic but unique. It is based on the concept that time does not stop and that empty space-times which develop singularities must still have zero Ricci tensors even where the Riemann tensor becomes infinite. (author)

  11. Canonical quantization inside the Schwarzschild black hole

    Science.gov (United States)

    Yajnik, U. A.; Narayan, K.

    1998-05-01

    We propose a scheme for quantizing a scalar field over the Schwarzschild manifold including the interior of the horizon. On the exterior, the timelike Killing vector and on the horizon the isometry corresponding to restricted Lorentz boosts can be used to enforce the spectral condition. For the interior we appeal to CPT invariance to construct an explicitly positive-definite operator which allows identification of positive and negative frequencies. This operator is the translation operator corresponding to the inexorable propagation to smaller radii as expected from the classical metric. We also propose an expression for the propagator in the interior and express it as a mode sum. The field theory thus obtained is meaningful for small curvatures far from the classical singularity.

  12. Hawking radiation inside a Schwarzschild black hole

    Science.gov (United States)

    Hamilton, Andrew J. S.

    2018-05-01

    The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law character of the Hawking radiation, coupled with conservation of energy-momentum, the trace anomaly, and the familiar behavior of Hawking radiation far from the black hole, leads to a complete description of the quantum energy-momentum inside a Schwarzschild black hole. The quantum energy-momentum near the singularity diverges as r^{-6}, and consists of relativistic Hawking radiation and negative energy vacuum in the ratio 3 : - 2. The classical back reaction of the quantum energy-momentum on the geometry, calculated using the Einstein equations, serves merely to exacerbate the singularity. All the results are consistent with traditional calculations of the quantum energy-momentum in 1 + 1 spacetime dimensions.

  13. Distortion of Schwarzschild-anti-de Sitter black holes to black strings

    International Nuclear Information System (INIS)

    Tomimatsu, Akira

    2005-01-01

    Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass m. Under the approximation such that m is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference

  14. Resolving the Schwarzschild singularity in both classic and quantum gravity

    Directory of Open Access Journals (Sweden)

    Ding-fang Zeng

    2017-04-01

    Full Text Available The Schwarzschild singularity's resolution has key values in cracking the key mysteries related with black holes, the origin of their horizon entropy and the information missing puzzle involved in their evaporations. We provide in this work the general dynamic inner metric of collapsing stars with horizons and with non-trivial radial mass distributions. We find that static central singularities are not the final state of the system. Instead, the final state of the system is a periodically zero-cross breathing ball. Through 3+1 decomposed general relativity and its quantum formulation, we establish a functional Schrödinger equation controlling the micro-state of this breathing ball and show that, the system configuration with all the matter concentrating on the central point is not the unique eigen-energy-density solution. Using a Bohr–Sommerfield like “orbital” quantisation assumption, we show that for each black hole of horizon radius rh, there are about erh2/ℓpl2 allowable eigen-energy-density profiles. This naturally leads to physic interpretations for the micro-origin of horizon entropy, as well as solutions to the information missing puzzle involved in Hawking radiations.

  15. Constant scalar curvature hypersurfaces in extended Schwarzschild space-time

    International Nuclear Information System (INIS)

    Pareja, M. J.; Frauendiener, J.

    2006-01-01

    We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat

  16. K. Schwarzschild's problem in radiation transfer theory

    International Nuclear Information System (INIS)

    Rutily, B.; Chevallier, L.; Pelkowski, J.

    2006-01-01

    We solve exactly the problem of a finite slab receiving an isotropic radiation on one side and no radiation on the other side. This problem-to be more precise the calculation of the source function within the slab-was first formulated by K. Schwarzschild in 1914. We first solve it for unspecified albedos and optical thicknesses of the atmosphere, in particular for an albedo very close to 1 and a very large optical thickness in view of some astrophysical applications. Then we focus on the conservative case (albedo=1), which is of great interest for the modeling of grey atmospheres in radiative equilibrium. Ten-figure tables of the conservative source function are given. From the analytical expression of this function, we deduce (1) a simple relation between the effective temperature of a grey atmosphere in radiative equilibrium and the temperature of the black body that irradiates it (2) the temperature at any point of the atmosphere when it is in local thermodynamical equilibrium. This temperature distribution is the counterpart, for a finite slab, of Hopf's distribution in a half-space. Its graphical representation is given for various optical thicknesses of the atmosphere

  17. Mode coupling of Schwarzschild perturbations: Ringdown frequencies

    International Nuclear Information System (INIS)

    Pazos, Enrique; Brizuela, David; Martin-Garcia, Jose M.; Tiglio, Manuel

    2010-01-01

    Within linearized perturbation theory, black holes decay to their final stationary state through the well-known spectrum of quasinormal modes. Here we numerically study whether nonlinearities change this picture. For that purpose we study the ringdown frequencies of gauge-invariant second-order gravitational perturbations induced by self-coupling of linearized perturbations of Schwarzschild black holes. We do so through high-accuracy simulations in the time domain of first and second-order Regge-Wheeler-Zerilli type equations, for a variety of initial data sets. We consider first-order even-parity (l=2, m=±2) perturbations and odd-parity (l=2, m=0) ones, and all the multipoles that they generate through self-coupling. For all of them and all the initial data sets considered we find that--in contrast to previous predictions in the literature--the numerical decay frequencies of second-order perturbations are the same ones of linearized theory, and we explain the observed behavior. This would indicate, in particular, that when modeling or searching for ringdown gravitational waves, appropriately including the standard quasinormal modes already takes into account nonlinear effects.

  18. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  19. 3rd Karl Schwarzschild Meeting - Gravity and the Gauge/Gravity Correspondence

    Science.gov (United States)

    Nicolini, Piero; Kaminski, Matthias; Mureika, Jonas; Bleicher, Marcus

    2018-01-01

    The Karl Schwarzschild Meeting 2017 (KSM2017) has been the third instalment of the conference dedicated to the great Frankfurter scientist, who derived the first black hole solution of Einstein's equations about 100 years ago. The event has been a 5 day meeting in the field of black holes, AdS/CFT correspondence and gravitational physics. Like the two previous instalments, the conference continued to attract a stellar ensemble of participants from the world's most renowned institutions. The core of the meeting has been a series of invited talks from eminent experts (keynote speakers) as well as the presence of plenary research talks by students and junior speakers.

  20. 1st Karl Schwarzschild Meeting on Gravitational Physics

    CERN Document Server

    Kaminski, Matthias; Mureika, Jonas; Bleicher, Marcus

    2016-01-01

    These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future",  the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.

  1. The Schwarzschild effect of the dosimetry film Kodak EDR 2.

    Science.gov (United States)

    Djouguela, A; Kollhoff, R; Rubach, A; Harder, D; Poppe, B

    2005-11-07

    The magnitude of the Schwarzschild effect or failure of the reciprocity law has been experimentally investigated for the dosimetry film EDR 2 from Kodak. When the dose rate applied to achieve a given dose was reduced by a factor of 12, the net optical density was reduced by up to 5%. The clinical importance of this effect is negligible as long as the films are calibrated at a value of the dose rate approximately representative of the dose rates occurring in the target volume, but in target regions of strongly reduced dose rate the Schwarzschild effect should be allowed for by a correction of the net optical density.

  2. Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole

    Directory of Open Access Journals (Sweden)

    G. Abbas

    2014-01-01

    Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.

  3. Quantum field theory in Schwarzschild and Rindler spaces

    International Nuclear Information System (INIS)

    Boulware, D.G.

    1975-01-01

    The problem of defining a scalar quantum field in the space-times described by the Schwarzschild and Rindler metrics is discussed. The matrix elements of the field operators are found by calculating the Green's functions for the fields. The requirement of positive frequencies for asymptotic timelike separations combined with a careful analysis of the continuity conditions at the event horizons yields a unique prescription for the Green's function. This in turn defines the vacuum state. In the Schwarzschild space the vacuum is shown to be stable and the lowest-energy state. In the Rindler space the quantization procedure yields the same results as quantization in Minkowski coordinates

  4. Kerr generalized solution

    International Nuclear Information System (INIS)

    Papoyan, V.V.

    1989-01-01

    A Kerr generalized solution for a stationary axially-symmetric gravitational field of rotating self-gravitational objects is given. For solving the problem Einstein equations and their combinations are used. The particular cases: internal and external Schwarzschild solutions are considered. The external solution of the stationary problem is a Kerr solution generalization. 3 refs

  5. The golden ratio in Schwarzschild-Kottler black holes

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Facultad de Ciencia, Santiago 2 (Chile); Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)

    2017-02-15

    In this paper we show that the golden ratio is present in the Schwarzschild-Kottler metric. For null geodesics with maximal radial acceleration, the turning points of the orbits are in the golden ratio Φ = (√(5)-1)/2. This is a general result which is independent of the value and sign of the cosmological constant Λ. (orig.)

  6. FRW cosmological model inside an isolated Schwarzschild black hole

    OpenAIRE

    Ortiz, C.; Rosales, J. J.; Socorro, J.; Tkach, V. I.

    2004-01-01

    Using the canonical quantum theory of spherically symmetric pure gravitational systems, we present a direct correspondence between the Friedmann-Robertson-Walker (FRW) cosmological model in the interior of a Schwarzschild black hole and the nth energy eigenstate of a linear harmonic oscillator. Such type of universe has a quantized mass of the order of the Planck mass and harmonic oscillator wave functions

  7. Taub-NUT spinless particles and Schwarzschild spinning particles

    International Nuclear Information System (INIS)

    Bini, D.; La Sapienza Univ., Rome

    2005-01-01

    The effect of a small gravitomagnetic monopole on (accelerated) circular orbits in the equatorial plane of the Taub-NUT space-time is compared to the corresponding (accelerated) orbits pushed slightly off the equatorial plane in the absence of the monopole (Schwarzschild space-time)

  8. Quasinormal Modes of a Quantum-Corrected Schwarzschild Black ...

    Indian Academy of Sciences (India)

    Chunyan Wang

    2017-11-27

    Nov 27, 2017 ... Abstract. In this work, we investigate the electromagnetic perturbation around a quantum-corrected. Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third- order WKB approximation. The numerical results obtained showed that the complex frequencies ...

  9. Astronomy from Olbers to Schwarzschild. (German Title: Astronomie von Olbers bis Schwarzschild)

    Science.gov (United States)

    Dick, Wolfgang R.; Hamel, Jürgen

    This issue comprises talks presented 2000 September 18 at the colloquium ``International relations in astronomy'' it is supplemented by additional articles about this topic. The foundation of the international ``Vereinigte Astronomische Gesellschaft'', which took place in 1800 in Bremen, prompted us to investigate the development of astronomy in German-speaking regions, and its international relations during the 19th century. We investigate the activities of famous astronomers like W. Olbers, J.E. Bode, F.X. von Zach, J.H. Schroeter, H.C. Schumacher and K. Schwarzschild, as well as those of their less famous professional colleagues like J.G. Schrader and L. de Ball. The geographical spectrum extends from Bremen and Lilienthal over Kiel, Gotha and Dresden to Copenhagen, Vienna and Chile. Among the topics are: telescope construction, including telescopes made by Herschel, the rediscovery of the minor planet Ceres 1801/02, the Berlin ``Astronomisches Jahrbuch'', the foundation of the ``Astronomische Nachrichten'', the evolution from the ``Vereinigte Astronomische Gesellschaft'' to the present-day ``Astronomische Gesellschaft'', the research at the Kuffner Observatory in Vienna, the professionalization in astronomy, and the attempts of many countries to establish a southern observatory in Chile. A listing of astronomical monuments in Lilienthal and Bremen concludes the book. All papers are written in German with English abstracts.

  10. Classical solutions in supergravity

    International Nuclear Information System (INIS)

    Baaklini, N.S.; Ferrara, S.; Nieuwenhuizen Van, P.

    1977-06-01

    Classical solutions of supergravity are obtained by making finite global supersymmetry rotation on known solutions of the field equations of the bosonic sector. The Schwarzschild and the Reissner-Nordstoem solutions of general relativity are extended to various supergravity systems and the modification to the perihelion precession of planets is discussed

  11. Un-graviton corrections to the Schwarzschild black hole

    International Nuclear Information System (INIS)

    Gaete, Patricio; Helayel-Neto, Jose A.; Spallucci, Euro

    2010-01-01

    We introduce an effective action smoothly extending the standard Einstein-Hilbert action to include un-gravity effects. The improved field equations are solved for the un-graviton corrected Schwarzschild geometry reproducing the Mureika result. This is an important test to confirm the original 'guess' of the form of the un-Schwarzschild metric. Instead of working in the weak field approximation and 'dressing' the Newtonian potential with un-gravitons, we solve the 'effective Einstein equations' including all order un-gravity effects. An unexpected 'bonus' of accounting un-gravity effects is the fractalisation of the event horizon. In the un-gravity dominated regime the event horizon thermodynamically behaves as fractal surface of dimensionality twice the scale dimension d U .

  12. Thermodynamic phase transition in the rainbow Schwarzschild black hole

    International Nuclear Information System (INIS)

    Gim, Yongwan; Kim, Wontae

    2014-01-01

    We study the thermodynamic phase transition in the rainbow Schwarzschild black hole where the metric depends on the energy of the test particle. Identifying the black hole temperature with the energy from the modified dispersion relation, we obtain the modified entropy and thermodynamic energy along with the modified local temperature in the cavity to provide well defined black hole states. It is found that apart from the conventional critical temperature related to Hawking-Page phase transition there appears an additional critical temperature which is of relevance to the existence of a locally stable tiny black hole; however, the off-shell free energy tells us that this black hole should eventually tunnel into the stable large black hole. Finally, we discuss the reason why the temperature near the horizon is finite in the rainbow black hole by employing the running gravitational coupling constant, whereas it is divergent near the horizon in the ordinary Schwarzschild black hole

  13. Space–time and spatial geodesic orbits in Schwarzschild geometry

    Science.gov (United States)

    Resca, Lorenzo

    2018-05-01

    Geodesic orbit equations in the Schwarzschild geometry of general relativity reduce to ordinary conic sections of Newtonian mechanics and gravity for material particles in the non-relativistic limit. On the contrary, geodesic orbit equations for a proper spatial submanifold of Schwarzschild metric at any given coordinate-time correspond to an unphysical gravitational repulsion in the non-relativistic limit. This demonstrates at a basic level the centrality and critical role of relativistic time and its intimate pseudo-Riemannian connection with space. Correspondingly, a commonly popularised depiction of geodesic orbits of planets as resulting from the curvature of space produced by the Sun, represented as a rubber sheet dipped in the middle by the weighing of that massive body, is mistaken and misleading for the essence of relativity, even in the non-relativistic limit.

  14. Quadratic curvature terms and deformed Schwarzschild–de Sitter black hole analogues in the laboratory

    Directory of Open Access Journals (Sweden)

    R. da Rocha

    2017-12-01

    Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild–de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle

  15. Regular coordinate systems for Schwarzschild and other spherical spacetimes

    OpenAIRE

    Martel, Karl; Poisson, Eric

    2000-01-01

    The continuation of the Schwarzschild metric across the event horizon is almost always (in textbooks) carried out using the Kruskal-Szekeres coordinates, in terms of which the areal radius r is defined only implicitly. We argue that from a pedagogical point of view, using these coordinates comes with several drawbacks, and we advocate the use of simpler, but equally effective, coordinate systems. One such system, introduced by Painleve and Gullstrand in the 1920's, is especially simple and pe...

  16. Can one increase the luminosity of a Schwarzschild black hole?

    OpenAIRE

    Mayo, Avraham E.

    2000-01-01

    We illustrate how Hawking's radiance from a Schwarzschild black hole is modified by the electrostatic self-interaction of the emitted charged particles. A W.K.B approximation shows that the probability for a self-interacting charged particle to propagate from the interior to the exterior of the horizon is increased relative to the corresponding probability for neutral particles. We also demonstrate how the electric potential of a charged test object in the black hole's vicinity gives rise to ...

  17. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...

  18. Ricci solitons, Ricci flow and strongly coupled CFT in the Schwarzschild Unruh or Boulware vacua

    International Nuclear Information System (INIS)

    Figueras, Pau; Lucietti, James; Wiseman, Toby

    2011-01-01

    The elliptic Einstein-DeTurck equation may be used to numerically find Einstein metrics on Riemannian manifolds. Static Lorentzian Einstein metrics are considered by analytically continuing to Euclidean time. The Ricci-DeTurck flow is a constructive algorithm to solve this equation, and is simple to implement when the solution is a stable fixed point, the only complication being that Ricci solitons may exist which are not Einstein. Here we extend previous work to consider the Einstein-DeTurck equation for Riemannian manifolds with boundaries, and those that continue to static Lorentzian spacetimes which are asymptotically flat, Kaluza-Klein, locally AdS or have extremal horizons. Using a maximum principle, we prove that Ricci solitons do not exist in these cases and so any solution is Einstein. We also argue that the Ricci-DeTurck flow preserves these classes of manifolds. As an example, we simulate the Ricci-DeTurck flow for a manifold with asymptotics relevant for AdS 5 /CFT 4 . Our maximum principle dictates that there are no soliton solutions, and we give strong numerical evidence that there exists a stable fixed point of the flow which continues to a smooth static Lorentzian Einstein metric. Our asymptotics are such that this describes the classical gravity dual relevant for the CFT on a Schwarzschild background in either the Unruh or Boulware vacua. It determines the leading O(N 2 c ) part of the CFT stress tensor, which interestingly is regular on both the future and past Schwarzschild horizons. (paper)

  19. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    Science.gov (United States)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  20. Drude-Schwarzschild Metric and the Electrical Conductivity of Metals

    Directory of Open Access Journals (Sweden)

    Silva P. R.

    2014-07-01

    Full Text Available Starting from a string with a length equal to the electron mean free path and having a unit cell equal to the Compton length of the electron, we construct a Schwarzschild-like metric. We found that this metric has a surface horizon with radius equal to the electron mean free path and its Bekenstein-like entropy is proportional to the number of squared unit cells contained in this spherical surface. The Hawking temperature is inversely proportional to the perimeter of the maximum circle of this sphere. Also, interesting analogies on some features of the particle physics are examined.

  1. QFT holography near the horizon of Schwarzschild-like spacetimes

    OpenAIRE

    Moretti, Valter; Pinamonti, Nicola

    2003-01-01

    It is argued that free QFT can be defined on the event horizon of a Schwarzschild-like spacetime and that this theory is unitarily and algebraically equivalent to QFT in the bulk (near the horizon). Under that unitary equivalence the bulk hidden SL(2,R) symmetry found in a previous work becomes manifest on the event horizon, it being induced by a group of horizon diffeomorphisms. The class of generators of that group can be enlarged to include a full Virasoro algebra of fields which are defin...

  2. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Pinamonti, Nicola

    2009-07-01

    The discovery of the radiation properties of black holes prompted the search for a natural candidate quantum ground state for a massless scalar field theory on Schwarzschild spacetime, here considered in the Eddington-Finkelstein representation. Among the several available proposals in the literature, an important physical role is played by the so-called Unruh state which is supposed to be appropriate to capture the physics of a black hole formed by spherically symmetric collapsing matter. Within this respect, we shall consider a massless Klein-Gordon field and we shall rigorously and globally construct such state, that is on the algebra of Weyl observables localised in the union of the static external region, the future event horizon and the non-static black hole region. Eventually, out of a careful use of microlocal techniques, we prove that the built state fulfils, where defined, the so-called Hadamard condition; hence, it is perturbatively stable, in other words realizing the natural candidate with which one could study purely quantum phenomena such as the role of the back reaction of Hawking's radiation. From a geometrical point of view, we shall make a profitable use of a bulk-to-boundary reconstruction technique which carefully exploits the Killing horizon structure as well as the conformal asymptotic behaviour of the underlying background. From an analytical point of view, our tools will range from Hoermander's theorem on propagation of singularities, results on the role of passive states, and a detailed use of the recently discovered peeling behaviour of the solutions of the wave equation in Schwarzschild spacetime. (orig.)

  3. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Moretti, Valter [Trento Univ., Povo (Italy). Dipt. di Matematica; Istituto Nazionale di Fisica Nucleare, Povo (Italy); Istituto Nazionale di Alta Matematica ' ' F. Severi' ' , GNFM, Sesto Fiorentino (Italy)

    2009-07-15

    The discovery of the radiation properties of black holes prompted the search for a natural candidate quantum ground state for a massless scalar field theory on Schwarzschild spacetime, here considered in the Eddington-Finkelstein representation. Among the several available proposals in the literature, an important physical role is played by the so-called Unruh state which is supposed to be appropriate to capture the physics of a black hole formed by spherically symmetric collapsing matter. Within this respect, we shall consider a massless Klein-Gordon field and we shall rigorously and globally construct such state, that is on the algebra of Weyl observables localised in the union of the static external region, the future event horizon and the non-static black hole region. Eventually, out of a careful use of microlocal techniques, we prove that the built state fulfils, where defined, the so-called Hadamard condition; hence, it is perturbatively stable, in other words realizing the natural candidate with which one could study purely quantum phenomena such as the role of the back reaction of Hawking's radiation. From a geometrical point of view, we shall make a profitable use of a bulk-to-boundary reconstruction technique which carefully exploits the Killing horizon structure as well as the conformal asymptotic behaviour of the underlying background. From an analytical point of view, our tools will range from Hoermander's theorem on propagation of singularities, results on the role of passive states, and a detailed use of the recently discovered peeling behaviour of the solutions of the wave equation in Schwarzschild spacetime. (orig.)

  4. Quasinormal modes of Schwarzschild black holes: Defined and calculated via Laplace transformation

    International Nuclear Information System (INIS)

    Nollert, H.; Schmidt, B.G.

    1992-01-01

    Quasinormal modes play a prominent role in the literature when dealing with the propagation of linearized perturbations of the Schwarzschild geometry. We show that space-time properties of the solutions of the perturbation equation imply the existence of a unique Green's function of the Laplace-transformed wave equation. This Green's function may be constructed from solutions of the homogeneous time-independent equation, which are uniquely characterized by the boundary conditions they satisfy. These boundary conditions are identified as the boundary conditions usually imposed for quasinormal-mode solutions. It turns out that solutions of the homogeneous equation exist which satisfy these boundary conditions at the horizon and at spatial infinity simultaneously, leading to poles of the Green's function. We therefore propose to define quasinormal-mode frequencies as the poles of the Green's function for the Laplace-transformed equation. On the basis of this definition a new technique for the numerical calculation of quasinormal frequencies is developed. The results agree with computations of Leaver, but not with more recent results obtained by Guinn, Will, Kojima, and Schutz

  5. Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring

    Science.gov (United States)

    Basovník, M.; Semerák, O.

    2016-08-01

    We continue to study the response of black-hole space-times on the presence of additional strong sources of gravity. Restricting ourselves to static and axially symmetric (electro)vacuum exact solutions of Einstein's equations, we first considered the Majumdar-Papapetrou solution for a binary of extreme black holes in a previous paper, while here we deal with a Schwarzschild black hole surrounded by a concentric thin ring described by the Bach-Weyl solution. The geometry is again revealed on the simplest invariants determined by the metric (lapse function) and its gradient (gravitational acceleration), and by curvature (Kretschmann scalar). Extending the metric inside the black hole along null geodesics tangent to the horizon, we mainly focus on the black-hole interior (specifically, on its sections at constant Killing time) where the quantities behave in a way indicating a surprisingly strong influence of the external source. Being already distinct on the level of potential and acceleration, this is still more pronounced on the level of curvature: for a sufficiently massive and/or nearby (small) ring, the Kretschmann scalar even becomes negative in certain toroidal regions mostly touching the horizon from inside. Such regions have been interpreted as those where magnetic-type curvature dominates, but here we deal with space-times which do not involve rotation and the negative value is achieved due to the electric-type components of the Riemann/Weyl tensor. The Kretschmann scalar also shapes rather nontrivial landscapes outside the horizon.

  6. Accretion onto a noncommutative-inspired Schwarzschild black hole

    Science.gov (United States)

    Gangopadhyay, Sunandan; Paik, Biplab; Mandal, Rituparna

    2018-05-01

    In this paper, we investigate the problem of ordinary baryonic matter accretion onto the noncommutative (NC) geometry-inspired Schwarzschild black hole. The fundamental equations governing the spherically symmetric steady state matter accretion are deduced. These equations are seen to be modified due to the presence of noncommutativity. The matter accretion rate is computed and is found to increase rapidly with the increase in strength of the NC parameter. The sonic radius reduces while the sound speed at the sonic point increases with the increase in the strength of noncommutativity. The profile of the thermal environment is finally investigated below the sonic radius and at the event horizon and is found to be affected by noncommutativity.

  7. On the world function of the Schwarzschild field

    International Nuclear Information System (INIS)

    Buchdahl, H.A.; Warner, N.P.

    1979-01-01

    The representation of the world function Ω of the Schwarzschild field as a power series is investigated. The initial concern is with a neighbourhood of the event horizon. The symmetries of the metric are invoked effectively to reduce the number of independent variables upon which Ω depends from eight to four, and to show that when these are sufficiently small in magnitude Ω is an analytic function of them. A fairly large number of the early terms of the power series for Ω is found explicitly. The condition that one is to remain sufficiently close to the event horizon is then relaxed, it being merely stipulated that the endpoints shall be sufficiently close to each other. Finally, using other variables, the early terms of a series for Ω are obtained for the case in which the endpoints are restricted to lie outside the event horizon and sufficiently close to each other. (author)

  8. The Compton-Schwarzschild correspondence from extended de Broglie relations

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [The Institute for Fundamental Study, “The Tah Poe Academia Institute' ,Naresuan University, Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand); Carr, Bernard [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)

    2015-11-17

    The Compton wavelength gives the minimum radius within which the mass of a particle may be localized due to quantum effects, while the Schwarzschild radius gives the maximum radius within which the mass of a black hole may be localized due to classial gravity. In a mass-radius diagram, the two lines intersect near the Planck point (l{sub P},m{sub P}), where quantum gravity effects become significant. Since canonical (non-gravitational) quantum mechanics is based on the concept of wave-particle duality, encapsulated in the de Broglie relations, these relations should break down near (l{sub P},m{sub P}). It is unclear what physical interpretation can be given to quantum particles with energy E≫m{sub P}c{sup 2}, since they correspond to wavelengths λ≪l{sub P} or time periods τ≪t{sub P} in the standard theory. We therefore propose a correction to the standard de Broglie relations, which gives rise to a modified Schrödinger equation and a modified expression for the Compton wavelength, which may be extended into the region E≫m{sub P}c{sup 2}. For the proposed modification, we recover the expression for the Schwarzschild radius for E≫m{sub P}c{sup 2} and the usual Compton formula for E≪m{sub P}c{sup 2}. The sign of the inequality obtained from the uncertainty principle reverses at m≈m{sub P}, so that the Compton wavelength and event horizon size may be interpreted as minimum and maximum radii, respectively. We interpret the additional terms in the modified de Broglie relations as representing the self-gravitation of the wave packet.

  9. The stable problem of the black-hole connected region in the Schwarzschild black hole

    OpenAIRE

    Tian, Guihua

    2005-01-01

    The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...

  10. Accretion-induced quasinormal mode excitation of a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Zanotti, Olindo; Font, Jose A.; Rezzolla, Luciano

    2007-01-01

    By combining the numerical solution of the nonlinear hydrodynamics equations with the solution of the linear inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations, we investigate the properties of the gravitational radiation emitted during the axisymmetric accretion of matter onto a Schwarzschild black hole. The matter models considered include quadrupolar dust shells and thick accretion disks, permitting us to simulate situations which may be encountered at the end stages of stellar gravitational collapse or binary neutron star merger. We focus on the interference pattern appearing in the energy spectra of the emitted gravitational waves and on the amount of excitation of the quasinormal modes of the accreting black hole. We show that, quite generically in the presence of accretion, the black-hole ringdown is not a simple superposition of quasinormal modes, although the fundamental mode is usually present and often dominates the gravitational-wave signal. We interpret this as due to backscattering of waves off the nonexponentially decaying part of the black-hole potential and to the finite spatial extension of the accreting matter. Our results suggest that the black-hole QNM contributions to the full gravitational-wave signal should be extremely small and possibly not detectable in generic astrophysical scenarios involving the accretion of extended distributions of matter

  11. Circular orbits in cosmic string and Schwarzschild-AdS spacetime with Fermi-Walker transport

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.; Carvalho, A.M. de

    2009-01-01

    In this paper we discuss the Fermi-Walker transport of vectors along orbits in cosmic string and Schwarzschild-AdS spacetimes. We analyze the influence of acceleration on these holonomies. An effect similar to Thomas precession is observed within the process of Fermi-Walker transport along these circular orbits which are studied in the limit of vanishing cosmological constant in Schwarzschild-AdS case; also we obtain Fermi-Walker transport in a Schwarzschild background. In the case of a Schwarzschild spacetime, we analyze the quantized band holonomy invariance. In the limit of zero acceleration we recover the well-known results for holonomy matrix obtained by parallel transport in all these spacetimes. (orig.)

  12. Hawking radiation from four-dimensional Schwarzschild black holes in M theory

    International Nuclear Information System (INIS)

    Das, S.R.; Mathur, S.D.; Ramadevi, P.

    1999-01-01

    Recently a method has been developed for relating four dimensional Schwarzschild black holes in M theory to near-extremal black holes in string theory with four charges, using suitably defined open-quotes boostsclose quotes and T dualities. We show that this method can be extended to obtain the emission rate of low energy massless scalars for the four dimensional Schwarzschild hole from the microscopic picture of radiation from the near extremal hole. copyright 1999 The American Physical Society

  13. Spectroscopy of the Schwarzschild black hole at arbitrary frequencies.

    Science.gov (United States)

    Casals, Marc; Ottewill, Adrian

    2012-09-14

    Linear field perturbations of a black hole are described by the Green function of the wave equation that they obey. After Fourier decomposing the Green function, its two natural contributions are given by poles (quasinormal modes) and a largely unexplored branch cut in the complex frequency plane. We present new analytic methods for calculating the branch cut on a Schwarzschild black hole for arbitrary values of the frequency. The branch cut yields a power-law tail decay for late times in the response of a black hole to an initial perturbation. We determine explicitly the first three orders in the power-law and show that the branch cut also yields a new logarithmic behavior T(-2ℓ-5)lnT for late times. Before the tail sets in, the quasinormal modes dominate the black hole response. For electromagnetic perturbations, the quasinormal mode frequencies approach the branch cut at large overtone index n. We determine these frequencies up to n(-5/2) and, formally, to arbitrary order. Highly damped quasinormal modes are of particular interest in that they have been linked to quantum properties of black holes.

  14. Do static atoms outside a Schwarzschild black hole spontaneously excite?

    International Nuclear Information System (INIS)

    Yu Hongwei; Zhou Wenting

    2007-01-01

    The spontaneous excitation of a two-level atom held static outside a four dimensional Schwarzschild black hole and in interaction with a massless scalar field in the Boulware, Unruh, and Hartle-Hawking vacuums is investigated, and the contributions of the vacuum fluctuations and radiation reaction to the rate of change of the mean atomic energy are calculated separately. We find that, for the Boulware vacuum, the spontaneous excitation does not occur and the ground-state atoms are stable, while the spontaneous emission rate for excited atoms in the Boulware vacuum, which is well behaved at the event horizon, is not the same as that in the usual Minkowski vacuum. However, for both the Unruh vacuum and the Hartle-Hawking vacuum, our results show that the atom would spontaneously excite, as if there were an outgoing thermal flux of radiation or as if it were in a thermal bath of radiation at a proper temperature which reduces to the Hawking temperature in the spatial asymptotic region, depending on whether the scalar field is in the Unruh or Hartle-Hawking vacuum

  15. High overtones of Schwarzschild-de-Sitter quasinormal spectrum

    International Nuclear Information System (INIS)

    Konoplya, R.A.; Zhidenko, A.

    2004-01-01

    We find the high overtones of gravitational and electromagnetic quasinormal spectrum of the Schwarzschild-de Sitter black hole. The calculations show that the real parts of the electromagnetic modes asymptotically approach zero. The gravitational modes show more peculiar behavior at large n: the real part oscillates as a function of imaginary even for very high overtones and these oscillations settles to some 'profile' which just repeats itself with further increasing of the overtone number n. This lets us judge that Reω is not a constant as n →∞ but rather some oscillating function. The spacing for imaginary part Imω n+1 -Imω n for electromagnetic perturbations at high n slowly approach k e as n→∞, where k e is the surface gravity. In addition we find the lower QN modes for which the values obtained with numerical methods are in a very good agreement with those obtained through the 6th order WKB technique. (author)

  16. Multilayer roughness and image formation in the Schwarzschild objective

    International Nuclear Information System (INIS)

    Singh, S.; Solak, H.; Cerrina, F.

    1996-01-01

    We present a study of the effect of multilayer-surface-roughness-induced scattering in the image formation of the Schwarzschild objective (SO) used in the spectromicroscope MAXIMUM. The two mirrors comprising the SO are coated with Ru/B 4 C multilayers that have a peak reflectivity at 130 eV. We had long observed that a diffuse x-ray background surrounds the focused x-ray spot. The spatial resolution remains at 0.1 μm in spite of this. However, since a significant fraction of the flux is lost to the background, since too large an area of the sample is illuminated, and since the S/N ratio is degraded, the origins of this effect merit investigation. This diffuse background resulting from x-ray scattering at the surface of the mirrors was mapped out using bidirectional knife edge scans. Complementary surface roughness simulations were carried out with the ray-tracing program SHADOW. AFM experiments were also done to directly measure the surface roughness and power spectrum of representative multilayers. Following curve fitting, it was possible to classify Gaussian components in both the measured and simulated profiles as arising from scattering occurring at either the convex primary mirror or the concave secondary mirror. Together with geometrical analysis, these techniques permitted us to track the image formation process of an actual optical system in the presence of surface roughness. copyright 1996 American Institute of Physics

  17. Bi-conformal symmetry and static Green functions in the Schwarzschild-Tangherlini spacetimes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2015-01-01

    We study a static massless minimally coupled scalar field created by a source in a static D-dimensional spacetime. We demonstrate that the corresponding equation for this field is invariant under a special transformation of the background metric. This transformation consists of the static conformal transformation of the spatial part of the metric accompanied by a properly chosen transformation of the red-shift factor. Both transformations are determined by one function Ω of the spatial coordinates. We show that in a case of higher dimensional spherically symmetric black holes one can find such a bi-conformal transformation that the symmetry of the D-dimensional metric is enhanced after its application. Namely, the metric becomes a direct sum of the metric on a unit sphere and the metric of 2D anti-de Sitter space. The method of the heat kernels is used to find the Green function in this new space, which allows one, after dimensional reduction, to obtain a static Green function in the original space of the static black hole. The general useful representation of static Green functions is obtained in the Schwarzschild-Tangherlini spacetimes of arbitrary dimension. The exact explicit expressions for the static Green functions are obtained in such metrics for D<6. It is shown that in the four dimensional case the corresponding Green function coincides with the Copson solution.

  18. Karl Schwarzschild's investigations of `out-of-focus photometry' between 1897 and 1899 at Kuffner Observatory in Vienna

    Science.gov (United States)

    Habison, Peter

    From 1897 to 1899 Karl Schwarzschild worked at the Kuffner Observatory in Vienna. During these years he developed new measuring techniques in the field of photographic photometry, where he studied particularly the quantitative determination of the departure from the reciprocity law during photographic exposure. This paper concentrates on Schwarzschild's early work in this field and gives an overview of his important Viennese years.

  19. The 100th birthday of the conic constant and Schwarzschild's revolutionary papers in optics

    Science.gov (United States)

    Rakich, Andrew

    2005-08-01

    In 1905 Karl Schwarzschild published three papers on optics, two of which revolutionized the field of reflecting telescope optics. In his first paper he developed a full theory of the aberrations of reflecting telescopes, generalizing the Eikonal of Bruns to take into account systems with an infinite long conjugate. In the second paper Schwarzschild applied his formulation to a masterful analysis of 2 mirror anastigmatic systems, along the way discovering the so called Ritchey-Chretien aplanat, 18 years Ritchey and Chretien's announcement. Numerous other innovations are given in what must be seen as being among the most important papers on the aberrations of optical systems ever written.

  20. Thermodynamics of the Schwarzschild and the Reissner–Nordström black holes with quintessence

    Directory of Open Access Journals (Sweden)

    K. Ghaderi

    2016-02-01

    Full Text Available In this paper, we study the thermodynamics of the Schwarzschild and the Reissner–Nordström black holes surrounded by quintessence. By using the thermodynamical laws of the black holes, we derive the thermodynamic properties of these black holes and we compare the results with each other. We investigate the mass, temperature and heat capacity as functions of entropy for these black holes. We also discuss the equation of state of the Schwarzschild and the Reissner–Nordström black holes surrounded by quintessence.

  1. Scattering and absorption of electromagnetic waves by a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Fabbri, R.

    1975-01-01

    The scattering and absorption of electromagnetic waves by a spherically symmetric nonrotating black hole is studied in the Schwarzschild background, by means of the known expansion of the modified Debye potentials in partial waves. The power reflection coefficients and the phase shifts of the partial waves are evaluated at both high and low frequencies. Then the scattering and absorption cross sections of the black hole are determined. It is shown that the black hole is almost unable to absorb electromagnetic waves when the wave length of the radiation is greater than the Schwarzschild radius

  2. Three Göttingen lectures by Karl Schwarzschild, 1904-1905. (German Title: Drei Göttinger Vorlesungen Karl Schwarzschilds 1904-1905)

    Science.gov (United States)

    Schmidt-Kaler, Theodor

    Karl Schwarzschild (1873-1916), perhaps the most eminent astronomer of his time, was professor at Göttingen University from 1901 to 1909. Three of his lectures from the years 1904 to 1906 are available in the form of copy-books written by his students Arnold Kohlschütter (1883-1969) and Max Born (1882-1970). Here, an overview of these lectures is given.

  3. An absence theorem for static wave maps in the Schwarzschild-AdS spacetime

    International Nuclear Information System (INIS)

    Xie Naqing

    2005-01-01

    In this Letter, we obtain an absence theorem for static wave maps defined from the Schwarzschild-anti de Sitter spacetime into any Riemannian manifold. This work extends the results in [Chinese Ann. Math. B 5 (1984) 737, Lett. Math. Phys. 14 (1987) 343

  4. Touching Ghosts: Observing Free Fall from an Infalling Frame of Reference into a Schwarzschild Black Hole

    Science.gov (United States)

    Augousti, A. T.; Gawelczyk, M.; Siwek, A.; Radosz, A.

    2012-01-01

    The problem of communication between observers in the vicinity of a black hole in a Schwarzschild metric is considered. The classic example of an infalling observer Alice and a static distant mother station (MS) is extended to include a second infalling observer Bob, who follows Alice in falling towards the event horizon. Kruskal coordinates are…

  5. Statistical metastability of a classical ideal gas in the Schwarzschild gravitational field

    International Nuclear Information System (INIS)

    Gaina, A.B.; Zaslavskii, O.B.

    1990-01-01

    A classical ideal gas in the Schwarzschild gravitational field is considered. The lifetime of a gas influenced by thermal fluctuations has been calculated. It is shown that thermal effects can lead to the electric charging of a black hole in a plasma containing particles with different masses. (author)

  6. On scattering of scalar waves in static space-times, particularly Schwarzschild

    International Nuclear Information System (INIS)

    Beig, R.

    1982-01-01

    This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)

  7. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  8. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    Science.gov (United States)

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  9. Explanation of Rotation Curves in Galaxies and Clusters of them, by Generalization of Schwarzschild Metric and Combination with MOND, eliminating Dark Matter

    Science.gov (United States)

    Vossos, Spyridon; Vossos, Elias

    2017-12-01

    Schwarzschild Metric is the first and the most important solution of Einstein vacuum field equations. This is associated with Lorentz metric of flat spacetime and produces the relativistic potential (Φ) and the field strength (g) outside a spherically symmetric mass or a non-rotating black hole. It has many applications such as gravitational red shift, the precession of Mercury’s orbit, Shapiro time delay etc. However, it is inefficient to explain the rotation curves in large galaxies and clusters of them, causing the necessity for dark matter. On the other hand, Modified Newtonian Dynamics (MOND) has already explained these rotation curves in many cases, using suitable interpolating function (μ) in Milgrom’s Law. In this presentation, we initially produce a Generalized Schwarzschild potential and the corresponding Metric of spacetime, in order to be in accordance with any isotropic metric of flat spacetime (including Galilean Metric of spacetime which is associated with Galilean Transformation of spacetime). From this Generalized Schwarzschild potential (Φ), we calculate the corresponding field strength (g), which is associated with the interpolating function (μ). In this way, a new relativistic potential is obtained (let us call 2nd Generalized Schwarzschild potential) which describes the gravitational interaction at any distance and for any metric of flat spacetime. Thus, not only the necessity for Dark Matter is eliminated, but also MOND becomes a pure Relativistic Theory of Gravitational Interaction. Then, we pass to the case of flat spacetime with Lorentz metric (Minkowski space), because the experimental data have been extracted using the Relativistic Doppler Shift and the gravitational red shift of Classic Relativity (CR). Thus, we Explain the Rotation Curves in Galaxies (e.g. NGC 3198) and Clusters of them as well as the Solar system, eliminating Dark Matter. This relativistic potential and the corresponding metric of spacetime have been obtained

  10. Curved spaces before Einstein: Karl Schwarzschild's cosmological speculations and the beginnings of relativistic cosmology (German Title: Gekrümmte Universen vor Einstein: Karl Schwarzschilds kosmologische Spekulationen und die Anfänge der relativistischen Kosmologie)

    Science.gov (United States)

    Schemmel, Matthias

    In contrast to most of his collegues in astronomy and physics, the German astronomer Karl Schwarzschild immediately recognized the significance of general relativity for physics and astronomy, and played a pioneering role in its early development. In this contribution, it is argued that the clue for understanding Schwarzschild's exceptional reaction to general relativity lies in the study of his prerelativistic work. Long before the rise of general relativity, Schwarzschild occupied himself with foundational problems on the borderline of physics, astronomy, and mathematics that, from today's perspective, belong to the field of problems of that theory. In this contribution, the example of Schwarzschild's early speculations about the non-Euclidean nature of physical space on cosmological scales is presented and their reflection in his reception of general relativity is discussed.

  11. Scattering of Ricci scalar perturbations from Schwarzschild black holes in modified gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sibandze, Dan B.; Goswami, Rituparno; Maharaj, Sunil D.; Nzioki, Anne Marie [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics Statistics and Computer Science, Private Bag X54001, Durban (South Africa); Dunsby, Peter K.S. [University of Cape Town, Department of Mathematics and Applied Mathematics and ACGC, Cape Town (South Africa)

    2017-06-15

    It has already been shown that the gravitational waves emitted from a Schwarzschild black hole in f(R) gravity have no signatures of the modification of gravity from General Relativity, as the Regge-Wheeler equation remains invariant. In this paper we consider the perturbations of Ricci scalar in a vacuum Schwarzschild spacetime, which is unique to higher order theories of gravity and is absent in General Relativity. We show that the equation that governs these perturbations can be reduced to a Volterra integral equation. We explicitly calculate the reflection coefficients for the Ricci scalar perturbations, when they are scattered by the black hole potential barrier. Our analysis shows that a larger fraction of these Ricci scalar waves are reflected compared to the gravitational waves. This may provide a novel observational signature for fourth order gravity. (orig.)

  12. Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Wan [Chonbuk National University, Research Institute of Physics and Chemistry, Jeonju (Korea, Republic of); Kim, Seung Kook [Seonam University, Department of Physical Therapy, Namwon (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole. (orig.)

  13. Quantum corrections to the thermodynamics of Schwarzschild-Tangherlini black hole and the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)

    2016-04-15

    We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)

  14. Schwarzschild black hole in the background of the Einstein universe: some physical effects

    International Nuclear Information System (INIS)

    Ramachandra, B S; Vishveshwara, C V

    2002-01-01

    A prototype of an asymptotically non-flat black hole spacetime is that of a Schwarzschild black hole in the background of the Einstein universe, which is a special case of the representation of a black hole in a cosmological background given by Vaidya. Recently, this spacetime has been studied in detail by Nayak et al. They constructed a composite spacetime called the Vaidya-Einstein-Schwarzschild (VES) spacetime. We investigate some of the physical effects inherent to this spacetime. We carry out a background-black hole decomposition of the spacetime in order to separate out the effects due to the background spacetime and the black hole. The physical effects we study include the classical tests - the gravitational redshift, perihelion precession and light bending - and circular geodesics. A detailed classification of geodesics, in general, is also given

  15. Quantum tunneling effect of Dirac particles in a Schwarzschild-Godel space-time

    Energy Technology Data Exchange (ETDEWEB)

    Qi, D.-J.; Li, S.-M., E-mail: qidejiang0504@126.com [Shenyang Inst. of Engineering, Shenyang (China); Ru, H.-Q. [Northeastern Univ., Shenyang (China)

    2010-11-15

    In this paper, motivated by the Kerner and Man fermion tunneling method of 4-dimensional black holes, we further improve the analysis to investigate the quantum tunneling effect of Dirac particles from the five-dimensional Schwarzschild-Godel black hole. We successfully construct a set of appropriate matrices γ{sup μ} for the general covariant Dirac equation and derive the tunneling probability and Hawking temperature, which is exactly the same as that obtained by other methods. (author)

  16. Two fluid plasmas in the vicinity of a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Buzzi, V.; Hines, K.C.

    1992-01-01

    The 3+1 split of general relativity has been used to investigate the dispersion relation for certain plasma waves, together with the two stream instability, in the vicinity of a Schwarzschild black hole horizon. In contrast to the special relativistic results, the dispersion relations discussed here contain additional terms involving the gravitational acceleration, a, and the lapse function α. Some of these terms are imaginary and should correspond to gravitational damping effects. 5 refs

  17. Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.

    2003-01-01

    We present an exact expression for the quasinormal modes of scalar, electromagnetic, and gravitational perturbations of a near extremal Schwarzschild-de Sitter black hole and we show that is why a previous approximation holds exactly in this near extremal regime. In particular, our results give the asymptotic behavior of the quasinormal frequencies for highly damped modes, which has recently attracted much attention due to the proposed identification of its real part with the Barbero-Immirzi parameter

  18. Perturbative calculation of quasinormal modes of AdS Schwarzschild black holes

    International Nuclear Information System (INIS)

    Musiri, Suphot; Ness, Scott; Siopsis, George

    2006-01-01

    We calculate analytically quasinormal modes of AdS Schwarzschild black holes including first-order corrections. We consider massive scalar, gravitational and electromagnetic perturbations. Our results are in good agreement with numerical calculations. In the case of electromagnetic perturbations, ours is the first calculation to provide an analytic expression for quasinormal frequencies, because the effective potential vanishes at zeroth order. We show that the first-order correction is logarithmic

  19. Exact Mathisson-Papapetrou equations in the Schwarzschild metric with integrals of motion

    International Nuclear Information System (INIS)

    Plyatsko, R.M.; Stefanishin, O.B.

    2011-01-01

    A new representation for exact Mathisson-Papapetrou equations under the Mathisson-Pirani condition in the Schwarzschild gravitational field, which does not contain third-order derivatives with respect to spinning particle coordinates, has been obtained. For this purpose, the integrals of energy and angular momentum of a spinning particle, as well as a differential relation following from the Mathisson-Papapetrou equations for an arbitrary metric, are used.

  20. The Event Horizon of The Schwarzschild Black Hole in Noncommutative Spaces

    OpenAIRE

    Nasseri, Forough

    2005-01-01

    The event horizon of Schwarzschild black hole is obtained in noncommutative spaces up to the second order of perturbative calculations. Because this type of black hole is non-rotating, to the first order there is no any effect on the event horizon due to the noncommutativity of space. A lower limit for the noncommutativity parameter is also obtained. As a result, the event horizon in noncommutative spaces is less than the event horizon in commutative spaces.

  1. Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization and does not favor the Bousso-Hawking normalization

  2. Thermal properties of Green's functions in Rindler, de Sitter, and Schwarzschild spaces

    International Nuclear Information System (INIS)

    Dowker, J.S.

    1978-01-01

    The conventional massless scalar Green's functions in the Minkowski, de Sitter, and two-dimensional Schwarzschild spaces are reinterpreted as finite-temperature Green's functions and the corresponding averages of the stress-energy operator are calculated. The renormalization adopted consists of subtracting the zero-temperature quantities. In all cases the averages give the stress tensor of a purely Planck-type perfect gas

  3. Stability of Schwarzschild-like solutions in f(R,G) gravity models

    International Nuclear Information System (INIS)

    De Felice, Antonio; Suyama, Teruaki; Tanaka, Takahiro

    2011-01-01

    We study linear metric perturbations around a spherically symmetric static spacetime for general f(R,G) theories, where R is the Ricci scalar and G is the Gauss-Bonnet term. We find that, unless the determinant of the Hessian of f(R,G) is zero, even-type perturbations have a ghost for any multipole mode. In order for these theories to be plausible alternatives to general relativity, the theory should satisfy the condition that the ghost is massive enough to effectively decouple from the other fields. We study the requirement on the form of f(R,G) which satisfies this condition. We also classify the number of propagating modes both for the odd-type and the even-type perturbations and derive the propagation speeds for each mode.

  4. Gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes

    International Nuclear Information System (INIS)

    Nagar, Alessandro; Rezzolla, Luciano

    2005-01-01

    The theory of gauge-invariant non-spherical metric perturbations of Schwarzschild black-hole spacetimes is now well established. Yet, as different notations and conventions have been used throughout the years, the literature on the subject is often confusing and sometimes confused. The purpose of this review is to review and collect the relevant expressions related to the Regge-Wheeler and Zerilli equations for the odd and even-parity perturbations of a Schwarzschild spacetime. Special attention is paid to the form they assume in the presence of matter-sources and, for the two most popular conventions in the literature, to the asymptotic expressions and gravitational-wave amplitudes. Besides pointing out some inconsistencies in the literature, the expressions collected here could serve as a quick reference for the calculation of the perturbations of a Schwarzschild black-hole spacetime driven by generic sources and for those approaches in which gravitational waves are extracted from numerically generated spacetimes. (topical review)

  5. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes

    Science.gov (United States)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang

    2017-11-01

    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  6. Initial value formulation for the spherically symmetric dust solution

    International Nuclear Information System (INIS)

    Liu, H.

    1990-01-01

    An initial value formulation for the dust solution with spherical symmetry is given explicitly in which the initial distributions of dust and its velocity on an initial surface are chosen to be the initial data. As special cases, the Friedmann universe, the Schwarzschild solution in comoving coordinates, and a spherically symmetric and radially inhomogeneous cosmological model are derived

  7. Comment on ;Acceleration of particles to high energy via gravitational repulsion in the Schwarzschild field; [Astropart. Phys. 86 (2017) 18-20

    Science.gov (United States)

    Spallicci, Alessandro D. A. M.

    2017-09-01

    Comments are due on a recent paper by McGruder III (2017) in which the author deals with the concept of gravitational repulsion in the context of the Schwarzschild-Droste solution. Repulsion (deceleration) for ingoing particles into a black hole is a concept proposed several times starting from Droste himself in 1916. It is a coordinate effect appearing to an observer at a remote distance from the black hole and when coordinate time is employed. Repulsion has no bearing and relation to the local physics of the black hole, and moreover it cannot be held responsible for accelerating outgoing particles. Thereby, the energy boost of cosmic rays cannot be produced by repulsion.

  8. Anomalies, effective action and Hawking temperatures of a Schwarzschild black hole in the isotropic coordinates

    International Nuclear Information System (INIS)

    Wu Shuangqing; Peng Junjin; Zhao Zhanyue

    2008-01-01

    Motivated by the universality of Hawking radiation and that of the anomaly cancellation technique as well as the effective action method, we investigate the Hawking radiation of a Schwarzschild black hole in the isotropic coordinates via the cancellation of gravitational anomaly. After performing a dimensional reduction from the four-dimensional isotropic Schwarzschild metric, we show that this reduction procedure will, in general, result in two classes of two-dimensional effective metrics: the conformal equivalent and the inequivalent ones. For the physically equivalent class, the two-dimensional effective metric displays such a distinct feature that the determinant is not equal to the unity √(-g)≠1, but also vanishes at the horizon, the latter of which possibly invalidates the anomaly analysis there. Nevertheless, in this paper we adopt the effective action method to prove that the consistent energy-momentum tensor T r t is divergent on the horizon but √(-g)T t r remains finite there. Meanwhile, through an explicit calculation we show that the covariant energy-momentum tensor T-tilde t r equals zero at the horizon. Therefore the validity of the covariant regularity condition that demands that T-tilde t r = 0 at the horizon has been justified, indicating that the gravitational anomaly analysis can be safely extrapolated to the case where the metric determinant vanishes at the horizon. It is then demonstrated that for the physically equivalent reduced metric, both methods can give the correct Hawking temperature of the isotropic Schwarzschild black hole, while for the inequivalent one with the determinant √(-g) = 1 it can only give half of the correct temperature. We further exclude the latter undesired result by taking into account the general covariance of the energy-momentum tensor under the isotropic coordinate transformation

  9. Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole

    Directory of Open Access Journals (Sweden)

    Alexis Larrañaga

    2013-01-01

    Full Text Available The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD. Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.

  10. The Cardy-Verlinde formula and topological AdS-Schwarzschild black holes

    International Nuclear Information System (INIS)

    Youm, Donam

    2001-05-01

    We consider the brane universe in the background of the topological AdS-Schwarzschild black holes. The induced geometry of the brane is that of a flat or an open radiation dominated FRW-universe. Just like the case of a closed radiation dominated FRW-universe, the temperature and entropy are simply expressed in terms of the Hubble parameter and its time derivative when the brane crosses the black hole horizon. We propose the modified Cardy-Verlinde formula which is valid for any values of the curvature parameter k in the Friedmann equations. (author)

  11. Large N phase transitions and the fate of small Schwarzschild-AdS black holes

    Science.gov (United States)

    Yaffe, Laurence G.

    2018-01-01

    Sufficiently small Schwarzschild-AdS black holes in asymptotically global AdS5×S5 spacetime are known to become dynamically unstable toward deformation of the internal S5 geometry. The resulting evolution of such an unstable black hole is related, via holography, to the dynamics of supercooled plasma which has reached the limit of metastability in maximally supersymmetric large-N Yang-Mills theory on R ×S3. Puzzles related to the resulting dynamical evolution are discussed, with a key issue involving differences between the large-N limit in the dual field theory and typical large volume thermodynamic limits.

  12. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  13. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  14. The stability of vacuum solutions in generalised gravity

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, M.S. (Sussex Univ., Brighton (UK). Astronomy Centre); Low, R.J. (Coventry (Lanchester) Polytechnic (UK). Dept. of Mathematics)

    1990-05-10

    The stability of the Ricci-flat solutions of a large class of generalised gravity theories is examined. It is shown by use of complementary methods that all such solutions are stable in a given theory if that theory admits a truncation to a quadratic theory in which the solution is stable. In particular, this means that the exterior Schwarzschild solution is stable in any gravity theory constructed purely from the Ricci scalar, provided that it exists in that theory. (orig.).

  15. The stability of vacuum solutions in generalised gravity

    International Nuclear Information System (INIS)

    Madsen, M.S.; Low, R.J.

    1990-01-01

    The stability of the Ricci-flat solutions of a large class of generalised gravity theories is examined. It is shown by use of complementary methods that all such solutions are stable in a given theory if that theory admits a truncation to a quadratic theory in which the solution is stable. In particular, this means that the exterior Schwarzschild solution is stable in any gravity theory constructed purely from the Ricci scalar, provided that it exists in that theory. (orig.)

  16. Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk

    Energy Technology Data Exchange (ETDEWEB)

    Čížek, P.; Semerák, O., E-mail: oldrich.semerak@mff.cuni.cz [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, Prague (Czech Republic)

    2017-09-01

    Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.

  17. Magnetized particle motion and acceleration around a Schwarzschild black hole in a magnetic field

    International Nuclear Information System (INIS)

    Abdujabbarov, Ahmadjon; Bobomurat Ahmedov; Rahimov, Ozodbek; Salikhbaev, Umar

    2014-01-01

    The capture cross section of magnetized particles with nonvanishing magnetic moment by a Schwarzschild black hole immersed in an asymptotically uniform magnetic field has been studied as an extension of the approach developed in Zakharov (1994 Class. Quantum Grav. 11 1027) for neutral unmagnetized particles in the Reissner–Nordström spacetime. The magnetic moment of the particle is chosen as in de Felice and Sorge (2003 Class. Quantum Grav. 20 469). It is shown that the spin of the particle sustains the stability of particles circularly orbiting around the black hole immersed in a magnetic field, i.e., a spinning particle's motion near the Schwarzschild black hole horizon is more stable than that of a particle with zero spin. It is shown that the magnetic parameter essentially changes the value of the critical angular momentum and affects the process of capture of the particles by the central black hole. Furthermore, the interaction between the magnetic moment of the particle and the magnetic field forces stable circular orbits to shift to the central object, and this effect should be taken into account in astrophysical scenarios related to the accretion discs and in measuring the spin of the black holes. The magnetized particle's acceleration mechanism near the black hole in an external magnetic field is studied. It is shown that due to the presence of a magnetic field, magnetized particles can accelerate to unlimited high energies. (paper)

  18. Gravitational perturbations of the Schwarzschild spacetime: A practical covariant and gauge-invariant formalism

    International Nuclear Information System (INIS)

    Martel, Karl; Poisson, Eric

    2005-01-01

    We present a formalism to study the metric perturbations of the Schwarzschild spacetime. The formalism is gauge invariant, and it is also covariant under two-dimensional coordinate transformations that leave the angular coordinates unchanged. The formalism is applied to the typical problem of calculating the gravitational waves produced by material sources moving in the Schwarzschild spacetime. We examine the radiation escaping to future null infinity as well as the radiation crossing the event horizon. The waveforms, the energy radiated, and the angular-momentum radiated can all be expressed in terms of two gauge-invariant scalar functions that satisfy one-dimensional wave equations. The first is the Zerilli-Moncrief function, which satisfies the Zerilli equation, and which represents the even-parity sector of the perturbation. The second is the Cunningham-Price-Moncrief function, which satisfies the Regge-Wheeler equation, and which represents the odd-parity sector of the perturbation. The covariant forms of these wave equations are presented here, complete with covariant source terms that are derived from the stress-energy tensor of the matter responsible for the perturbation

  19. Null geodesics and embedding diagrams of the interior Schwarzschild--de Sitter spacetimes with uniform density

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Hledik, Stanislav; Soltes, Jiri; Ostgaard, Erlend

    2001-01-01

    Null geodesics and embedding diagrams of central planes in the ordinary space geometry and the optical reference geometry of the interior Schwarzschild--de Sitter spacetimes with uniform density are studied. For completeness, both positive and negative values of the cosmological constant are considered. The null geodesics are restricted to the central planes of these spacetimes, and their properties can be reflected by an 'effective potential.' If the interior spacetime is extremely compact, the effective potential has a local maximum corresponding to a stable circular null geodesic around which bound null geodesics are concentrated. The upper limit on the size of the interior spacetimes containing bound null geodesics is R=3M, independently of the value of the cosmological constant. The embedding diagrams of the central planes of the ordinary geometry into three-dimensional Euclidean space are well defined for the complete interior of all spacetimes with a repulsive cosmological constant, but the planes cannot be embedded into the Euclidean space in the case of spacetimes with subcritical values of an attractive cosmological constant. On the other hand, the embedding diagrams of the optical geometry are well defined for all of the spacetimes, and the turning points of these diagrams correspond to the radii of the circular null geodesics. All the embedding diagrams, for both the ordinary and optical geometry, are smoothly matched to the corresponding embedding diagrams of the external vacuum Schwarzschild--de Sitter spacetimes

  20. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  1. A class of solutions for the strong gravity equations

    International Nuclear Information System (INIS)

    Salam, A.; Strathdee, J.

    1976-12-01

    We solve the Einstein equation for strong gravity in the limit that weak gravity is neglected. The class of solutions we find reduces to the Schwarzschild solution (with the weak gravity Newtonian constant replaced by a strong coupling parameter) in the limit M 2 →0 where M is the mass of the strong gravity spin-2 meson. These solutions may be of relevance for the problem of defining temperature in hadronic physics

  2. Solution of the stationary vacuum equations of relativity for conformally flat 3-spaces

    International Nuclear Information System (INIS)

    Perjes, Z.; Lukacs, B.; Sebestyen, A.; Valentini, A.; Sparling, G.A.J.

    1983-08-01

    The solution of Einstein's vacuum gravitational equations for stationary space-times with a conformally flat 3-space is presented. There is no other solution of this problem than the Ehlers-rotation generalizations of the three conformastat space-times including the Schwarzschild metric. (author)

  3. Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole.

    Science.gov (United States)

    Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V

    2018-03-06

    We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'. © 2018 The Author(s).

  4. Gravitational waveforms from a point particle orbiting a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Martel, Karl

    2004-01-01

    We numerically solve the inhomogeneous Zerilli-Moncrief and Regge-Wheeler equations in the time domain. We obtain the gravitational waveforms produced by a point particle of mass μ traveling around a Schwarzschild black hole of mass M on arbitrary bound and unbound orbits. Fluxes of energy and angular momentum at infinity and the event horizon are also calculated. Results for circular orbits, selected cases of eccentric orbits, and parabolic orbits are presented. The numerical results from the time-domain code indicate that, for all three types of orbital motion, black hole absorption contributes less than 1% of the total flux, so long as the orbital radius r p (t) satisfies r p (t)>5M at all times

  5. Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy

    Energy Technology Data Exchange (ETDEWEB)

    El-Menoufi, Basem Kamal [Department of Physics, University of Massachusetts,Amherst, MA 01003 (United States)

    2016-05-05

    In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.

  6. Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    Science.gov (United States)

    Pappas, Thomas; Kanti, Panagiota

    2017-12-01

    We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  7. Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation

    Science.gov (United States)

    He, Juan; Ding, Zhi-Yong; Ye, Liu

    2018-05-01

    In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.

  8. Tripartite nonlocality for an open Dirac system in the background of Schwarzschild space-time

    Science.gov (United States)

    Ding, Zhi-Yong; Shi, Jia-Dong; Wu, Tao; He, Juan

    2017-12-01

    In this paper, the behavior of the tripartite nonlocality for a Dirac system in the background of Schwarzschild space-time is studied. It is shown that the nonlocality of the ultimate physical accessible state always decreases as the Hawking effect increases monotonically, which is independent of the number of particles located near the event horizon. Besides, the more particles there are located near the event horizon, the more difficult the violation of the Svetlichny inequality becomes. Furthermore, we investigate the property of these particles suffering from a non-Markovian environment, and derive that the nonlocality decreases quickly with the increasing decoherence time accompanied by damping revivals. To preserve tripartite nonlocality in the non-Markovian environment, we propose a scheme by means of prior weak measurement and post measurement reversal. It is worth noticing that the effect is better for larger measurement strengths, while it induces smaller success probability.

  9. Singular Minkowski and Euclidean solutions for SU(2) Yang-Mills theory

    International Nuclear Information System (INIS)

    Singleton, D.

    1996-01-01

    In this paper it is examined a solution to the SU(2) Yang-Mills-Higgs system, which is a trivial mathematical extension of recently discovered Schwarzschild- like solutions (Singleton D., Phys. Rev. D, 51 (1955) 5911). Physically, however, this new solution has drastically different properties from the Schwarzschild-like solutions. It is also studied a new classical solution for Euclidean SU(2) Yang-Mills theory. Again this new solution is a mathematically trivial extension of the Belavin-Polyakov-Schwartz-Tyupkin (BPST) (Belavin A. A. et al., Phys. Lett. B, 59 (1975) 85) instanton, but is physically very different. Unlike the usual instanton solution, the present solution is singular on a sphere of arbitrary radius in Euclidean space. Both of these solutions are infinite-energy solutions, so their practical value is somewhat unclear. However, they may be useful in exploring some of the mathematical aspects of classical Yang-Mills theory

  10. Exact vacuum solution to conformal Weyl gravity and galactic rotation curves

    International Nuclear Information System (INIS)

    Mannheim, P.D.; Kazanas, D.

    1989-01-01

    The complete, exact exterior solution for a static, spherically symmetric source in locally conformal invariant Weyl gravity is presented. The solution includes the familiar exterior Schwarzschild solution as a special case and contains an extra gravitational potential term which grows linearly with distance. The obtained solution provides a potential explanation for observed galactic rotation curves without the need for dark matter. The solution also has some interesting implications for cosmology. 9 refs

  11. Accretion of new variable modified Chaplygin gas and generalized cosmic Chaplygin gas onto Schwarzschild and Kerr-Newman black holes

    International Nuclear Information System (INIS)

    Bhadra, Jhumpa; Debnath, Ujjal

    2012-01-01

    In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr-Newman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr-Newman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr-Newman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr-Newman black hole. (orig.)

  12. Schwarzschild black holes as unipolar inductors: Expected electromagnetic power of a merger

    International Nuclear Information System (INIS)

    Lyutikov, Maxim

    2011-01-01

    The motion of a Schwarzschild black hole with velocity v 0 =β 0 c through a constant magnetic field B 0 in vacuum induces a component of the electric field along the magnetic field, generating a nonzero second Poincare electromagnetic invariant * F·F≠0. This will produce (e.g., via radiative effects and vacuum breakdown) an electric charge density of the order of ρ ind =B 0 β 0 /(2πeR G ), where R G =2GM/c 2 is the Schwarzschild radius and M is the mass of the black hole; the charge density ρ ind is similar to the Goldreich-Julian density. The magnetospheres of moving black holes resemble in many respects the magnetospheres of rotationally-powered pulsars, with pair formation fronts and outer gaps, where the sign of the induced charge changes. As a result, the black hole will generate bipolar electromagnetic jets each consisting of two counter-aligned current flows (four current flows total), each carrying an electric current of the order I≅eB 0 R G β 0 . The electromagnetic power of the jets is L≅(GM) 2 B 0 2 β 0 2 /c 3 ; for a particular case of merging black holes the resulting Poynting power is L≅(GM) 3 B 0 2 /(c 5 R), where R is the radius of the orbit. In addition, in limited regions near the horizon the first electromagnetic invariant changes sign, so that the induced electric field becomes larger than the magnetic field, E>B. As a result, there will be local dissipation of the magnetic field close to the horizon, within a region with the radial extent ΔR≅R G β 0 . The total energy loss from a system of merging black holes is a sum of two components with similar powers, one due to the rotation of space-time within the orbit, driven by the nonzero angular momentum in the system, and the other due to the linear motion of the black holes through the magnetic field. Since the resulting electrodynamics is in many respects similar to pulsars, merging black holes may generate coherent radio and high energy emission beamed approximately along the

  13. The initial value problem for linearized gravitational perturbations of the Schwarzschild naked singularity

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, Gustavo; Gleiser, Reinaldo J [Facultad de Matematica, AstronomIa y Fisica (FaMAF), Universidad Nacional de Cordoba, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2009-11-07

    The coupled equations for the scalar modes of the linearized Einstein equations around Schwarzschild's spacetime were reduced by Zerilli to a (1+1) wave equation partial deriv{sup 2}PSI{sub z} /partial derivt{sup 2} +HPSI{sub z} =0, where H= -partial deriv{sup 2} /partial derivx{sup 2} + V(x) is the Zerilli 'Hamiltonian' and x is the tortoise radial coordinate. From its definition, for smooth metric perturbations the field PSI{sub z} is singular at r{sub s} = -6M/(l - 1)(l +2), with l being the mode harmonic number. The equation PSI{sub z} obeys is also singular, since V has a second-order pole at r{sub s}. This is irrelevant to the black hole exterior stability problem, where r > 2M > 0, and r{sub s} < 0, but it introduces a non-trivial problem in the naked singular case where M < 0, then r{sub s} > 0, and the singularity appears in the relevant range of r (0 < r < infinity). We solve this problem by developing a new approach to the evolution of the even mode, based on a new gauge invariant function, PSI-circumflex, that is a regular function of the metric perturbation for any value of M. The relation of PSI-circumflex to PSI{sub z} is provided by an intertwiner operator. The spatial pieces of the (1 + 1) wave equations that PSI-circumflex and PSI{sub z} obey are related as a supersymmetric pair of quantum Hamiltonians H and H-circumflex. For M < 0,H-circumflex has a regular potential and a unique self-adjoint extension in a domain D defined by a physically motivated boundary condition at r = 0. This allows us to address the issue of evolution of gravitational perturbations in this non-globally hyperbolic background. This formulation is used to complete the proof of the linear instability of the Schwarzschild naked singularity, by showing that a previously found unstable mode belongs to a complete basis of H-circumflex in D, and thus is excitable by generic initial data. This is further illustrated by numerically solving the linearized equations for

  14. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  15. Spherically symmetric solution and a satisfactory energy-momentum complex

    International Nuclear Information System (INIS)

    Nashed, G.G.L.

    2005-01-01

    Mikhail et al. obtained two spherically symmetric solution in Moeller tetrad theory of gravitation. They calculated their energy content and obtained a strange value for the second solution, in spite that the associated metric of these solutions is the same (the Schwarzschild metric). We use another method given bu Gibbons and Hawking to calculate the energy content of these solutions. We also obtained a strange value of energy for the second solution. Studying the requirements of the satisfactory energy-momentum complex given by Moeller we find that the second solution which behaves as 1/√r does not transform as a four-vector under Lorentz transformation

  16. Development of a mid-sized Schwarzschild-Couder Telescope for the Cherenkov Telescope Array

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.

    2012-06-28

    The Cherenkov Telescope Array (CTA) is a ground-based observatory for very high-energy (10 GeV to 100 TeV) gamma rays, planned for operation starting in 2018. It will be an array of dozens of optical telescopes, known as Atmospheric Cherenkov Telescopes (ACTs), of 8 m to 24 m diameter, deployed over an area of more than 1 square km, to detect flashes of Cherenkov light from showers initiated in the Earth's atmosphere by gamma rays. CTA will have improved angular resolution, a wider energy range, larger fields of view and an order of magnitude improvement in sensitivity over current ACT arrays such as H.E.S.S., MAGIC and VERITAS. Several institutions have proposed a research and development program to eventually contribute 36 medium-sized telescopes (9 m to 12 m diameter) to CTA to enhance and optimize its science performance. The program aims to construct a prototype of an innovative, Schwarzschild-Couder telescope (SCT) design that will allow much smaller and less expensive cameras and much larger fields of view than conventional Davies-Cotton designs, and will also include design and testing of camera electronics for the necessary advances in performance, reliability and cost. We report on the progress of the mid-sized SCT development program.

  17. Scalar-gravitational perturbations and quasi normal modes in the five dimensional Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We calculate the quasi normal modes (QNMs) for gravitational perturbations of the Schwarzschild black hole in the five dimensional (5D) spacetime with a continued fraction method. For all the types of perturbations (scalar-gravitational, vector-gravitational, and tensor-gravitational perturbations), the QNMs associated with l = 2, l 3, and l = 4 are calculated. Our numerical results are summarized as follows: (i) The three types of gravitational perturbations associated with the same angular quantum number l have a different set of the quasi normal (QN) frequencies; (ii) There is no purely imaginary frequency mode; (iii) The three types of gravitational perturbations have the same asymptotic behavior of the QNMs in the limit of the large imaginary frequencies, which are given by ωT H -1 → log 3+ 2πi(n+1/2) as n → ∞, where ω, T H , and n are the oscillation frequency, the Hawking temperature of the black hole, and the mode number, respectively. (author)

  18. Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length

    Directory of Open Access Journals (Sweden)

    Yan-Gang Miao

    2017-01-01

    Full Text Available Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ-function and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ-function.

  19. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    Science.gov (United States)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  20. Schwarzschild tests of the Wahlquist-Estabrook-Buchman-Bardeen tetrad formulation for numerical relativity

    International Nuclear Information System (INIS)

    Buchman, L.T.; Bardeen, J.M.

    2005-01-01

    A first order symmetric hyperbolic tetrad formulation of the Einstein equations developed by Estabrook and Wahlquist and put into a form suitable for numerical relativity by Buchman and Bardeen (the WEBB formulation) is adapted to explicit spherical symmetry and tested for accuracy and stability in the evolution of spherically symmetric black holes (the Schwarzschild geometry). The lapse and shift, which specify the evolution of the coordinates relative to the tetrad congruence, are reset at frequent time intervals to keep the constant-time hypersurfaces nearly orthogonal to the tetrad congruence and the spatial coordinate satisfying a kind of minimal rate of strain condition. By arranging through initial conditions that the constant-time hypersurfaces are asymptotically hyperbolic, we simplify the boundary value problem and improve stability of the evolution. Results are obtained for both tetrad gauges ('Nester' and 'Lorentz') of the WEBB formalism using finite difference numerical methods. We are able to obtain stable unconstrained evolution with the Nester gauge for certain initial conditions, but not with the Lorentz gauge

  1. One-parameter family of time-symmetric initial data for the radial infall of a particle into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Martel, Karl; Poisson, Eric

    2002-01-01

    A one-parameter family of time-symmetric initial data for the radial infall of a particle into a Schwarzschild black hole is constructed within the framework of black-hole perturbation theory. The parameter measures the amount of gravitational radiation present on the initial spacelike surface. These initial data sets are then evolved by integrating the Zerilli-Moncrief wave equation in the presence of the particle. Numerical results for the gravitational waveforms and their power spectra are presented; we show that the choice of initial data strongly influences the waveforms, both in their shapes and their frequency content. We also calculate the total energy radiated by the particle-black-hole system, as a function of the initial separation between the particle and the black hole, and as a function of the choice of initial data. Our results confirm that for large initial separations, a conformally flat initial three-geometry minimizes the initial gravitational-wave content, so that the total energy radiated is also minimized. For small initial separations, however, we show that the conformally flat solution no longer minimizes the energy radiated

  2. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  3. THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII

    Energy Technology Data Exchange (ETDEWEB)

    Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Kino, Motoki; Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Nagai, Hiroshi; Honma, Mareki; Hagiwara, Yoshiaki; Kawaguchi, Noriyuki [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-09-20

    We investigated the detailed inner jet structure of M87 using Very Long Baseline Array data at 2, 5, 8.4, 15, 23.8, 43, and 86 GHz, especially focusing on the multi-frequency properties of the radio core at the jet base. First, we measured the size of the core region transverse to the jet axis, defined as W{sub c}, at each frequency ν, and found a relation between W{sub c} and ν: W{sub c}(ν)∝ν{sup –0.71±0.05}. Then, by combining W{sub c}(ν) and the frequency dependence of the core position r{sub c}(ν), which was obtained in our previous study, we constructed a collimation profile of the innermost jet W{sub c}(r) down to ∼10 Schwarzschild radii (R{sub s}) from the central black hole. We found that W{sub c}(r) smoothly connects with the width profile of the outer edge-brightened, parabolic jet and then follows a similar radial dependence down to several tens of R{sub s}. Closer to the black hole, the measured radial profile suggests a possible change in the jet collimation shape from the outer parabolic one, where the jet shape tends to become more radially oriented. This result could be related to a magnetic collimation process or/and interactions with surrounding materials at the jet base. The present results shed light on the importance of higher-sensitivity/resolution imaging studies of M87 at 86, 43, and 22 GHz; these studies should be examined more rigorously.

  4. An exact solution in Einstein-Cartan

    International Nuclear Information System (INIS)

    Roque, W.L.

    1982-01-01

    The exact solution of the field equations of the Einstein-Cartan theory is obtained for an artificial dust of radially polarized spins, with spherical symmetry and static. For a best estimation of the effect due the spin, the energy-momentum metric tensor is considered null. The gravitational field dynamics is studied for several torsion strengths, through the massive and spinless test-particle moviment, in particular for null torsion Schwarzschild solutions is again obtained. It is observed that the gravitational effects related to the torsin (spin) sometimes are attractives sometimes are repulsives, depending of the torsion values and of the test-particle position and velocity. (L.C.) [pt

  5. Dirac equation for massive neutrinos in a Schwarzschild-de Sitter spacetime from a 5D vacuum

    International Nuclear Information System (INIS)

    Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio

    2011-01-01

    Starting from a Dirac equation for massless neutrino in a 5D Ricci-flat background metric, we obtain the effective 4D equation for massive neutrino in a Schwarzschild-de Sitter (SdS) background metric from an extended SdS 5D Ricci-flat metric. We use the fact that the spin connection is defined to an accuracy of a vector, so that the covariant derivative of the spinor field is strongly dependent of the background geometry. We show that the mass of the neutrino can be induced from the extra space-like dimension.

  6. A generalized sine condition and performance comparison of Wolter type II and Wolter-Schwarzschild extreme ultraviolet telescopes

    Science.gov (United States)

    Saha, T. T.

    1984-01-01

    An equation similar to the Abbe sine condition is derived for a Wolter type II telescope. This equation and the sine condition are then combined to produce a so called generalized sine condition. Using the law of reflection, Fermat's principle, the generalized sine condition, and simple geometry the surface equations for a Wolter type II telescope and an equivalent Wolter-Schwarzschild telescope are calculated. The performances of the telescopes are compared in terms of rms blur circle radius at the Gaussian focal plane and at best focus.

  7. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    OpenAIRE

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...

  8. A detailed analytic study of the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes

    International Nuclear Information System (INIS)

    Daghigh, Ramin G; Green, Michael D

    2009-01-01

    We analyze analytically the asymptotic regions of the quasinormal mode frequency spectra with infinitely large overtone numbers for D-dimensional Schwarzschild black holes in anti de Sitter spacetimes. In this limit, we confirm the analytic results obtained previously in the literature using different methods. In addition, we show that in certain spacetime dimensions these techniques imply the existence of other regions of the asymptotic quasinormal mode frequency spectrum which have not previously appeared in the literature. For large black holes, some of these modes have a damping rate of 1.2T H , where T H is the Hawking temperature. This is less than the damping rate of the lowest overtone quasinormal mode calculated by other authors. It is not completely clear whether these modes actually exist or are an artifact of an unknown flaw in the analytic techniques being used. We discuss the possibility of the existence of these modes and explore some of the consequences. We also examine the possible connection between the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes and the quantum level spacing of their horizon area spectrum.

  9. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  10. Exact solutions, numerical relativity and gravitational radiation

    International Nuclear Information System (INIS)

    Winicour, J.

    1986-01-01

    In recent years, there has emerged a new use for exact solutions to Einstein's equation as checks on the accuracy of numerical relativity codes. Much has already been written about codes based upon the space-like Cauchy problem. In the case of two Killing vectors, a numerical characteristic initial value formulation based upon two intersecting families of null hypersurfaces has successfully evolved the Schwarzschild and the colliding plane wave vacuum solutions. Here the author discusses, in the context of exact solutions, numerical studies of gravitational radiation based upon the null cone initial value problem. Every stage of progress in the null cone approach has been associated with exact solutions in some sense. He begins by briefly recapping this history. Then he presents two new examples illustrating how exact solutions can be useful

  11. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    Science.gov (United States)

    Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.

  12. Schwarzschild–de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    Directory of Open Access Journals (Sweden)

    Thomas Pappas

    2017-12-01

    Full Text Available We consider a Schwarzschild–de Sitter (SdS black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  13. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)

    2009-10-12

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  14. The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cho, Demian H J; Tsokaros, Antonios A; Wiseman, Alan G

    2007-01-01

    The finite part of the self-force on a static, non-minimally coupled scalar test charge outside a Schwarzschild black hole is zero. This result is determined from the work required to slowly raise or lower the charge through an infinitesimal distance. Unlike similar force calculations for minimally-coupled scalar charges or electric charges, we find that we must account for a flux of field energy that passes through the horizon and changes the mass and area of the black hole when the charge is displaced. This occurs even for an arbitrarily slow displacement of the non-minimally coupled scalar charge. For a positive coupling constant, the area of the hole increases when the charge is lowered and decreases when the charge is raised. The fact that the self-force vanishes for a static, non-minimally coupled scalar charge in Schwarzschild spacetime agrees with a simple prediction of the Quinn-Wald axioms. However, Zel'nikov and Frolov computed a non-vanishing self-force for a non-minimally coupled charge. Our method of calculation closely parallels the derivation of Zel'nikov and Frolov, and we show that their omission of this unusual flux is responsible for their (incorrect) result. When the flux is accounted for, the self-force vanishes. This correction eliminates a potential counter example to the Quinn-Wald axioms. The fact that the area of the black hole changes when the charge is displaced brings up two interesting questions that did not arise in similar calculations for static electric charges and minimally coupled scalar charges. (1) How can we reconcile a decrease in the area of the black hole horizon with the area theorem which concludes that δArea horizon ≥ 0? The key hypothesis of the area theorem is that the stress-energy tensor must satisfy a null-energy condition T αβ l α l β ≥ 0 for any null vector l α . We explicitly show that the stress-energy associated with a non-minimally coupled field does not satisfy this condition, and this violation of

  15. Conical Stream of the Two-Sided Jets in NGC 4261 over the Range of 103–109 Schwarzschild Radii

    Directory of Open Access Journals (Sweden)

    Satomi Nakahara

    2016-12-01

    Full Text Available We report the jet width profile of of the nearby ( ∼ 30 Mpc AGN NGC 4261 for both the approaching jet and the counter jet at radial distances ranging from ∼ 10 3 – 10 9 Schwarzschild radius ( R S from the central engine. Our Very Large Array (VLA and Very Long Baseline Array (VLBA observations reveal that the jets maintain a conical structure on both sides over the range 10 3 – 10 9 R S without any structural transition (i.e., parabolic to conical like in the approaching jet in M87. Thus, NGC 4261 will provide a unique opportunity to examine the conical jet hypothesis in blazars, while it may require some additional consideration on the acceleration and collimation process in AGN jets.

  16. All the Four-Dimensional Static, Spherically Symmetric Solutions of Abelian Kaluza-Klein Theory

    International Nuclear Information System (INIS)

    Cvetic, M.; Youm, D.

    1995-01-01

    We present the explicit form for all the four-dimensional, static, spherically symmetric solutions in (4+n)-d Abelian Kaluza-Klein theory by performing a subset of SO(2,n) transformations corresponding to four SO(1,1) boosts on the Schwarzschild solution, supplemented by SO(n)/SO(n-2) transformations. The solutions are parametrized by the mass M, Taub-NUT charge a, and n electric rvec Q and n magnetic rvec P charges. Nonextreme black holes (with zero Taub-NUT charge) have either the Reissner-Nordstroem or Schwarzschild global space-time. Supersymmetric extreme black holes have a null or naked singularity, while nonsupersymmetric extreme ones have a global space-time of extreme Reissner-Nordstroem black holes. copyright 1995 The American Physical Society

  17. Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*

    Science.gov (United States)

    Lu, Ru-Sen; Krichbaum, Thomas P.; Roy, Alan L.; Fish, Vincent L.; Doeleman, Sheperd S.; Johnson, Michael D.; Akiyama, Kazunori; Psaltis, Dimitrios; Alef, Walter; Asada, Keiichi; Beaudoin, Christopher; Bertarini, Alessandra; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C.; Brinkerink, Christiaan; Broderick, Avery E.; Cappallo, Roger; Crew, Geoffrey B.; Dexter, Jason; Dexter, Matt; Falcke, Heino; Freund, Robert; Friberg, Per; Greer, Christopher H.; Gurwell, Mark A.; Ho, Paul T. P.; Honma, Mareki; Inoue, Makoto; Kim, Junhan; Lamb, James; Lindqvist, Michael; Macmahon, David; Marrone, Daniel P.; Martí-Vidal, Ivan; Menten, Karl M.; Moran, James M.; Nagar, Neil M.; Plambeck, Richard L.; Primiani, Rurik A.; Rogers, Alan E. E.; Ros, Eduardo; Rottmann, Helge; SooHoo, Jason; Spilker, Justin; Stone, Jordan; Strittmatter, Peter; Tilanus, Remo P. J.; Titus, Michael; Vertatschitsch, Laura; Wagner, Jan; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H.; Zensus, J. Anton; Ziurys, Lucy M.

    2018-05-01

    We report results from very long baseline interferometric (VLBI) observations of the supermassive black hole in the Galactic center, Sgr A*, at 1.3 mm (230 GHz). The observations were performed in 2013 March using six VLBI stations in Hawaii, California, Arizona, and Chile. Compared to earlier observations, the addition of the APEX telescope in Chile almost doubles the longest baseline length in the array, provides additional uv coverage in the N–S direction, and leads to a spatial resolution of ∼30 μas (∼3 Schwarzschild radii) for Sgr A*. The source is detected even at the longest baselines with visibility amplitudes of ∼4%–13% of the total flux density. We argue that such flux densities cannot result from interstellar refractive scattering alone, but indicate the presence of compact intrinsic source structure on scales of ∼3 Schwarzschild radii. The measured nonzero closure phases rule out point-symmetric emission. We discuss our results in the context of simple geometric models that capture the basic characteristics and brightness distributions of disk- and jet-dominated models and show that both can reproduce the observed data. Common to these models are the brightness asymmetry, the orientation, and characteristic sizes, which are comparable to the expected size of the black hole shadow. Future 1.3 mm VLBI observations with an expanded array and better sensitivity will allow more detailed imaging of the horizon-scale structure and bear the potential for a deep insight into the physical processes at the black hole boundary.

  18. Spherically symmetric solutions in abelian Kaluza-Klein theories

    International Nuclear Information System (INIS)

    Angus, I.G.

    1986-01-01

    We present the most general spherically symmetric solution to the field equations of the truncated five-dimensional Kaluza-Klein theory. We also detail some of the special forms of this solution. With the exception of the Gross-Perry-Sorkin monopole and the Schwarzschild solutions we find that most, and we conjecture all, of the solutions have naked curvature singularities. We then proceed to consider higher-dimensional theories with toroidal compactification and we exhibit a class of nonsingular monopole solutions which are the natural generalization of the Gross-Perry-Sorkin monopole to more than five dimensions. We also present some selected solutions including a solution pertaining to a model with a Ricci-flat, but not curvature-flat, internal manifold. All of these other solutions have naked curvature singularities. (orig.)

  19. Comment on "Comments on `The Euclidean gravitational action as black hole entropy, singularities and space-time voids'" [J. Math. Phys. 50, 042502 (2009)]-Schwarzschild black hole lives to fight another day

    Science.gov (United States)

    Kundu, Prasun K.

    2017-11-01

    In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.

  20. Reversed sense of the ''outward'' direction for dynamical effects of rotation close to a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Prasanna, A.R.

    1988-10-01

    Anderson and Lemos (1988) noticed that the direction in which viscous torque transports angular momentum changes, close to a black hole, from outwards to inwards. We find here that close to a black hole the centrifugal force attracts particles towards the hole. We argue that these are particular examples of a general reversal in sense of the inward and outward directions for all dynamical effects of rotation close to the hole. Using results from the recent paper by Abramowicz, Carter and Lasota (1988) we explain that the reversal is not connected with dragging of inertial frames or with the difference between the angular velocities of the hole and of the surrounding matter but rather, it is an effect of curvature. For a Schwarzschild black hole the reversal takes place at the circular photon orbit (r=3M-tilde) because the geodesic curvature, R-tilde=r(1-3M-tilde/r), of the circles r = const. changes its sign there. (author). 13 refs, 7 figs, 1 tab

  1. Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter spacetimes: A complete study of the overtone asymptotic behavior

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Konoplya, Roman; Lemos, Jose P. S.

    2003-01-01

    We present a thorough analysis of the quasinormal (QN) behavior associated with the decay of scalar, electromagnetic, and gravitational perturbations of Schwarzschild black holes in anti-de Sitter (AdS) spacetimes. As is known, the AdS QN spectrum crucially depends on the relative size of the black hole to the AdS radius. There are three different types of behavior depending on whether the black hole is large, intermediate, or small. The results of previous works, concerning lower overtones for large black holes, are completed here by obtaining higher overtones for all three black hole regimes. There are two major conclusions that one can draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds for all three types of regime, large, intermediate, and small black holes, independently of l, where l is the quantum number characterizing the angular distribution; second, the spacing between modes is apparently universal in that it does not depend on the field; i.e., scalar, electromagnetic, and gravitational QN modes all have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials

  2. Bulk and brane decay of a (4+n)-dimensional Schwarzschild-de Sitter black hole: Scalar radiation

    International Nuclear Information System (INIS)

    Kanti, P.; Grain, J.; Barrau, A.

    2005-01-01

    In this paper, we extend the idea that the spectrum of Hawking radiation can reveal valuable information on a number of parameters that characterize a particular black hole background--such as the dimensionality of spacetime and the value of coupling constants--to gain information on another important aspect: the curvature of spacetime. We investigate the emission of Hawking radiation from a D-dimensional Schwarzschild-de Sitter black hole emitted in the form of scalar fields, and employ both analytical and numerical techniques to calculate greybody factors and differential energy emission rates on the brane and in the bulk. The energy emission rate of the black hole is significantly enhanced in the high-energy regime with the number of spacelike dimensions. On the other hand, in the low-energy part of the spectrum, it is the cosmological constant that leaves a clear footprint, through a characteristic, constant emission rate of ultrasoft quanta determined by the values of black hole and cosmological horizons. Our results are applicable to 'small' black holes arising in theories with an arbitrary number and size of extra dimensions, as well as to pure 4-dimensional primordial black holes, embedded in a de Sitter spacetime

  3. Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space–time

    International Nuclear Information System (INIS)

    He, Juan; Xu, Shuai; Yu, Yang; Ye, Liu

    2015-01-01

    We explore the performance of various correlation measures for open Dirac system with Hawking effect in Schwarzschild space–time. Our results indicate that the impact of Hawking effect on physical accessible entanglement is weaker than that of decoherence. For generalized amplitude damping (GAD) channel, the entanglement sudden death (ESD) is analyzed in detail, and the inequivalence of quantization for Dirac particles in the black hole and Kruskal space–time is verified via quantum discord measure. In addition, as an example for interpreting Bell non-locality, we study the GAD channel with Hawking effect. It can be noticed that there is a boundary line of Bell violation for physically accessible states. That is, quantum non-locality would disappear when Hawking temperature exceeds a certain value. This critical temperature increases as a decoherence parameter decreases. In the case of phase damping (PD) channel, the interaction between the particle and noise environment does not produce bipartite system–environment entanglement. Then we discuss entanglement distributions, and find that the reduced physically accessible entanglement can be redistributed to physical inaccessible region. At last, we extend our investigation to an N-qubit system, and obtain a universal expression of the physical accessible entanglement

  4. Scalar radiation from a radially infalling source into a Schwarzschild black hole in the framework of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Leandro A. [Campus Salinopolis, Universidade Federal do Para, Salinopolis, Para (Brazil); Universidade Federal do Para, Faculdade de Fisica, Belem, Para (Brazil); Crispino, Luis C.B. [Universidade Federal do Para, Faculdade de Fisica, Belem, Para (Brazil); Higuchi, Atsushi [University of York, Department of Mathematics, Heslington, York (United Kingdom)

    2018-02-15

    We investigate the radiation to infinity of a massless scalar field from a source falling radially towards a Schwarzschild black hole using the framework of the quantum field theory at tree level. When the source falls from infinity, the monopole radiation is dominant for low initial velocities. Higher multipoles become dominant at high initial velocities. It is found that, as in the electromagnetic and gravitational cases, at high initial velocities the energy spectrum for each multipole with l ≥ 1 approximately is constant up to the fundamental quasinormal frequency and then drops to zero. We also investigate the case where the source falls from rest at a finite distance from the black hole. It is found that the monopole and dipole contributions in this case are dominant. This case needs to be carefully distinguished from the unphysical process where the source abruptly appears at rest and starts falling, which would result in radiation of an infinite amount of energy. We also investigate the radiation of a massless scalar field to the horizon of the black hole, finding some features similar to the gravitational case. (orig.)

  5. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  6. Karl Schwarzschild Lecture: The Ups and Downs of the Hubble Constant (With 12 Figures)

    Science.gov (United States)

    Tammann, G. Andreas

    2006-01-01

    A brief history of the determination of the Hubble constant H_0 is given. Early attempts following Lemaitre (1927) gave much too high values due to errors of the magnitude scale, Malmquist bias and calibration problems. By 1962 most authors agreed that 75< H_0 <130. After 1975 a dichotomy arose with values near 100 and others around 55. The former came from apparent-magnitude-limited samples and were affected by Malmquist bias. New distance indicators were introduced; they were sometimes claimed to yield high values of H_0, but the most recent data lead to H_0 in the 60's, yet with remaining difficulties as to the zero-point of the respective distance indicators. SNe Ia with their large range and very small luminosity dispersion (avoiding Malmquist bias) offer a unique opportunity to determine the large-scale value of H_0. Their maximum luminosity can be well calibrated from 10 SNe Ia in local parent galaxies whose Cepheids have been observed with HST. An unforeseen difficulty - affecting all Cepheid distances - is that their P-L relation varies from galaxy to galaxy, presumably in function of metallicity. A proposed solution is summarized here. The conclusion is that H_0 = 63.2 +/- 1.3 (random) +/- 5.3 (systematic) on all scales. The expansion age becomes then (with Omega_m=0.3, Omega_Lambda=0.7) 15.1 Gyr.

  7. BOOK REVIEW: Astronomie von Olbers bis Schwarzschild. Nationale Entwicklungen und internationale Beziehungen im 19. Jahrhundert (Acta Historica Astronomiae Vol. 16)

    Science.gov (United States)

    Sterken, C.; Dick, W. R.; Hamel, J.

    2002-12-01

    astronomers in his days, when his working place at Altona still belonged to the kingdom of Denmark. This paper is followed by a second one by the same author and deals with the correspondence of H. C. Schumacher and H C. Oersted (1777-1851) and shows how intense and diverse their cooperation was. In a subsequent paper, Wolfgang Kokott describes the role of the Astronomisches Jahrbuch (published from 1776 by the Royal Academy of Sciences at Berlin), a ranking international publication, with Bode's modest Berlin Observatory serving as a clearinghouse of information originating from virtually all European countries. "Karl Schwarzschild and the professionalisation of Astrophysics" is the title of Theodor Schmidt-Kaler's contribution and presents Schwarzschild's contributions to professionalization of astronomy: establishment of course lectures and a permanent astrophysical laboratory, a tight connection between teaching and research, stimulations and suggestions for astronomy at high school and for the formation of high school teachers, international organisation, and the planning of a southern observatory. Peter Habison describes the contribution of Leo de Ball (1853-1916, Director of the Kuffner Observatory in Vienna) to international astronomy. Internationalization in astronomy is also discussed in a following paper by Gudrun Wolfschmidt on the establishment of the Vereinigte Astronomische Gesellschaft, the international Astronomische Gesellschaft in 1863 and finally the International Astronomical Union in 1919. In the second but last paper of the book, Hilmar Duerbeck describes the history of the Chilean National Observatory, beginning with its origins out of Gilliss' US Naval Expedition to the Southern Hemisphere in 1849, over its directors Moesta, Vergara, Obrecht and Ristenpart, to the middle of the 20th century. The paper also includes the astronomical development at the Universidad Catolica and various international expeditions, which aimed at the observations of solar

  8. From geodesics of the multipole solutions to the perturbed Kepler problem

    International Nuclear Information System (INIS)

    Hernandez-Pastora, J. L.; Ospino, J.

    2010-01-01

    A static and axisymmetric solution of the Einstein vacuum equations with a finite number of relativistic multipole moments (RMM) is written in multipole symmetry adapted (MSA) coordinates up to certain order of approximation, and the structure of its metric components is explicitly shown. From the equation of equatorial geodesics, we obtain the Binet equation for the orbits and it allows us to determine the gravitational potential that leads to the equivalent classical orbital equations of the perturbed Kepler problem. The relativistic corrections to Keplerian motion are provided by the different contributions of the RMM of the source starting from the monopole (Schwarzschild correction). In particular, the perihelion precession of the orbit is calculated in terms of the quadrupole and 2 4 -pole moments. Since the MSA coordinates generalize the Schwarzschild coordinates, the result obtained allows measurement of the relevance of the quadrupole moment in the first order correction to the perihelion frequency-shift.

  9. Beyond the geodesic approximation: Conservative effects of the gravitational self-force in eccentric orbits around a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Barack, Leor; Sago, Norichika

    2011-01-01

    We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass μ is much smaller than the black hole mass M, and explore post-geodesic corrections of O(μ/M). Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the O(μ/M) conservative correction to the periastron advance of the orbit, as a function of the (gauge-dependent) semilatus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully eccentric orbits, we introduce a suitable generalization of Detweiler's circular-orbit ''redshift'' invariant. We compute the O(μ/M) conservative correction to this invariant, expressed as a function of the two invariant frequencies that parametrize the orbit. Our results are in good agreement with results from post-Newtonian calculations in the weak-field regime, as we shall report elsewhere. The results of our study can inform the development of analytical models for the dynamics of strongly gravitating binaries. They also provide an accurate benchmark for future numerical-relativistic simulations.

  10. The effect of non-sphericity on mass and anisotropy measurements in dSph galaxies with Schwarzschild method

    Science.gov (United States)

    Kowalczyk, Klaudia; Łokas, Ewa L.; Valluri, Monica

    2018-05-01

    In our previous work we confirmed the reliability of the spherically symmetric Schwarzschild orbit-superposition method to recover the mass and velocity anisotropy profiles of spherical dwarf galaxies. Here, we investigate the effect of its application to intrinsically non-spherical objects. For this purpose we use a model of a dwarf spheroidal galaxy formed in a numerical simulation of a major merger of two discy dwarfs. The shape of the stellar component of the merger remnant is axisymmetric and prolate which allows us to identify and measure the bias caused by observing the spheroidal galaxy along different directions, especially the longest and shortest principal axis. The modelling is based on mock data generated from the remnant that are observationally available for dwarfs: projected positions and line-of-sight velocities of the stars. In order to obtain a reliable tool while keeping the number of parameters low we parametrize the total mass distribution as a radius-dependent mass-to-light ratio with just two free parameters we aim to constrain. Our study shows that if the total density profile is known, the true, radially increasing anisotropy profile can be well recovered for the observations along the longest axis whereas the data along the shortest axis lead to the inference of an incorrect, isotropic model. On the other hand, if the density profile is derived from the method as well, the anisotropy is always underestimated but the total mass profile is well recovered for the data along the shortest axis whereas for the longest axis the mass content is overestimated.

  11. Fabrication of nanoscale patterns in lithium fluoride crystal using a 13.5 nm Schwarzschild objective and a laser produced plasma source

    International Nuclear Information System (INIS)

    Wang Xin; Mu Baozhong; Jiang Li; Zhu Jingtao; Yi Shengzhen; Wang Zhanshan; He Pengfei

    2011-01-01

    Lithium fluoride (LiF) crystal is a radiation sensitive material widely used as EUV and soft x-ray detector. The LiF-based detector has high resolution, in principle limited by the point defect size, large field of view, and wide dynamic range. Using LiF crystal as an imaging detector, a resolution of 900 nm was achieved by a projection imaging of test meshes with a Schwarzschild objective operating at 13.5 nm. In addition, by imaging of a pinhole illuminated by the plasma, an EUV spot of 1.5 μm diameter in the image plane of the objective was generated, which accomplished direct writing of color centers with resolution of 800 nm. In order to avoid sample damage and contamination due to the influence of huge debris flux produced by the plasma source, a spherical normal-incidence condenser was used to collect EUV radiation. Together with a description of experimental results, the development of the Schwarzschild objective, the influence of condenser on energy density and the alignment of the imaging system are also reported.

  12. A proposal of the gauge theory description of the small Schwarzschild black hole in AdS5×S5

    International Nuclear Information System (INIS)

    Hanada, Masanori; Maltz, Jonathan

    2017-01-01

    Based on 4d N=4 SYM on ℝ 1 ×S 3 , a gauge theory description of a small black hole in AdS 5 ×S 5 is proposed. The change of the number of dynamical degrees of freedom associated with the emission of the scalar fields’ eigenvalues plays a crucial role in this description. By analyzing the microcanonical ensemble, the Hagedorn behavior of long strings at low energy is obtained. Modulo an assumption based on the AdS/CFT duality for a large black hole, the energy of the small ten-dimensional Schwarzschild black hole E∼1/(G 10,N T 7 ) is derived. A heuristic gauge theory argument supporting this assumption is also given. The same argument applied to the ABJM theory correctly reproduces the relation for the eleven-dimensional Schwarzschild black hole. One of the consequences of our proposal is that the small and large black holes are very similar when seen from the gauge theory point of view.

  13. Thermodynamics phase transition and Hawking radiation of the Schwarzschild black hole with quintessence-like matter and a deficit solid angle

    Science.gov (United States)

    Rodrigue, Kamiko Kouemeni Jean; Saleh, Mahamat; Thomas, Bouetou Bouetou; Kofane, Timoleon Crepin

    2018-05-01

    In this paper, we investigate the thermodynamics and Hawking radiation of Schwarzschild black hole with quintessence-like matter and deficit solid angle. From the metric of the black hole, we derive the expressions of temperature and specific heat using the laws of black hole thermodynamics. Using the null geodesics method and Parikh-Wilczeck tunneling method, we derive the expressions of Boltzmann factor and the change of Bekenstein-Hawking entropy for the black hole. The behaviors of the temperature, specific heat, Boltzmann factor and the change of Bekenstein entropy versus the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter (ρ 0) were explicitly plotted. The results show that, when the deficit solid angle (ɛ 2) and the density of static spherically symmetric quintessence-like matter at r=1 (ρ 0) vanish (ρ 0=ɛ =0), these four thermodynamics quantities are reduced to those obtained for the simple case of Schwarzschild black hole. For low entropies, the presence of quintessence-like matter induces a first order phase transition of the black hole and for the higher values of the entropies, we observe the second order phase transition. When increasing ρ 0, the transition points are shifted to lower entropies. The same thing is observed when increasing ɛ 2. In the absence of quintessence-like matter (ρ 0=0), these transition phenomena disappear. Moreover the rate of radiation decreases when increasing ρ 0 or (ɛ ^2).

  14. Lemaître-Tolman-Bondi dust solutions in f (R) gravity

    Science.gov (United States)

    Sussman, Roberto A.; Jaime, Luisa G.

    2017-12-01

    We derive a class of non-static inhomogeneous dust solutions in f(R) gravity described by the Lemaître-Tolman-Bondi (LTB) metric. The field equations are fully integrated for all parameter subcases and compared with analogous subcases of LTB dust solutions of GR. Since the solutions do not admit regular symmetry centres, we have two possibilities: (i) a spherical dust cloud with angle deficit acting as the source of a vacuum Schwarzschild-like solution associated with a global monopole, or (ii) fully regular dust wormholes without angle deficit, whose rest frames are homeomorphic to the Schwarzschild-Kruskal manifold or to a 3d torus. The compatibility between the LTB metric and generic f(R) ansatzes furnishes an ‘inverse procedure’ to generate LTB solutions whose sources are found from the f(R) geometry. While the resulting fluids may have an elusive physical interpretation, they can be used as exact non-perturbative toy models in theoretical and cosmological applications of f(R) theories.

  15. 'Two-color' reflection multilayers for He-I and He-II resonance lines for micro-UPS using Schwarzschild objective

    International Nuclear Information System (INIS)

    Ejima, Takeo; Kondo, Yuzi; Watanabe, Makoto

    2000-01-01

    'Two-color' multilayers reflecting both He-I (58.4 nm) and He-II (30.4 nm) resonance lines have been designed and fabricated for reflection coatings of Schwarzschild objectives of micro-UPS instruments. They are designed so that their reflectances for both He-I and He-II resonance lines are more than 20%. The 'two-color' multilayers are piled double layers coated with top single layers. Fabricated are multilayers of SiC(top layer)-Mg/SiC(double layers) and SiC(top layer)-Mg/Y 2 O 3 (double layers), and their reflectances for the He-I and the He-II are 23% and 17%, and 20% and 23%, respectively

  16. Chaos in the motion of a test scalar particle coupling to the Einstein tensor in Schwarzschild-Melvin black hole spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Chen, Songbai; Jing, Jiliang [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)

    2017-04-15

    We present firstly the equation of motion for a test scalar particle coupling to the Einstein tensor in the Schwarzschild-Melvin black hole spacetime through the short-wave approximation. Through analyzing Poincare sections, the power spectrum, the fast Lyapunov exponent indicator and the bifurcation diagram, we investigate the effects of the coupling parameter on the chaotic behavior of the particles. With the increase of the coupling strength, we find that the motion of the coupled particle for the chosen parameters becomes more regular and order for the negative couple constant. While, for the positive one, the motion of the coupled particles first undergoes a series of transitions betweens chaotic motion and regular motion and then falls into horizon or escapes to spatial infinity. Our results show that the coupling brings about richer effects for the motion of the particles. (orig.)

  17. Black hole solutions in mimetic Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Yu [National Taiwan University, Department of Physics and Center for Theoretical Sciences, Taipei (China); LeCosPA, National Taiwan University, Taipei (China); Bouhmadi-Lopez, Mariam [University of the Basque Country UPV/EHU, Department of Theoretical Physics, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Chen, Pisin [National Taiwan University, Department of Physics and Center for Theoretical Sciences, Taipei (China); LeCosPA, National Taiwan University, Taipei (China); Stanford University, Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford, CA (United States)

    2018-01-15

    The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite. (orig.)

  18. Black hole solutions in mimetic Born-Infeld gravity.

    Science.gov (United States)

    Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin

    2018-01-01

    The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.

  19. Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is suppressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case that charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four dimensional, it does not directly apply to TeV-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions

  20. Probing the quantum correlation and Bell non-locality for Dirac particles with Hawking effect in the background of Schwarzschild black hole

    International Nuclear Information System (INIS)

    Xu, Shuai; Song, Xue-ke; Shi, Jia-dong; Ye, Liu

    2014-01-01

    In this Letter, we analytically explore the effect of the Hawking radiation on the quantum correlation and Bell non-locality for Dirac particles in the background of Schwarzschild black hole. It is shown that when the Hawking effect is almost nonexistent, corresponding to the case of an almost extreme black hole, the quantum properties of physically accessible state are the same for the initial situation. For finite Hawking temperature T, the accessible quantum correlation monotonously decreases along with increasing T owing to the thermal fields generated by the Hawking effect, and the accessible quantum non-locality will be disappeared when the Hawking temperature is more than a fixed value which increases with the parameter r of Werner state growing. Then we analyze the redistribution of quantum correlation, and find that for the case of the Hawking temperature being infinite, corresponding to the case of the black hole evaporating completely, the quantum correlation of physically accessible state is equal to the one of the inaccessible states. Moreover, due to the Pauli exclusion principle and the differences between Fermi–Dirac and Bose–Einstein statistics, for the Dirac fields the accessible classical correlation decreases with increase of the Hawking temperature, which is different for the scalar fields. For Bell non-locality, we also find that the quantum non-locality is always extinct for physically inaccessible states, and the strength of the non-locality decreases with enlarging intensity of Hawking effect when the non-locality is existent in physically accessible state.

  1. Phase transition and thermodynamical geometry for Schwarzschild AdS black hole in AdS_5×S"5 spacetime

    International Nuclear Information System (INIS)

    Zhang, Jia-Lin; Cai, Rong-Gen; Yu, Hongwei

    2015-01-01

    We study the thermodynamics and thermodynamic geometry of a five-dimensional Schwarzschild AdS black hole in AdS_5×S"5 spacetime by treating the cosmological constant as the number of colors in the boundary gauge theory and its conjugate quantity as the associated chemical potential. It is found that the chemical potential is always negative in the stable branch of black hole thermodynamics and it has a chance to be positive, but appears in the unstable branch. We calculate the scalar curvatures of the thermodynamical Weinhold metric, Ruppeiner metric and Quevedo metric, respectively and we find that the scalar curvature in the Weinhold metric is always vanishing, while in the Ruppeiner metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed chemical potential, and in the Quevedo metric the divergence of the scalar curvature is related to the divergence of the heat capacity with fixed number of colors and to the vanishing of the heat capacity with fixed chemical potential.

  2. Fluid/gravity correspondence and the CFM black brane solutions

    Energy Technology Data Exchange (ETDEWEB)

    Casadio, R. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, Bologna (Italy); Cavalcanti, R.T. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Universidade Federal do ABC-UFABC, Centro de Ciencias Naturais e Humanas, Santo Andre (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)

    2016-10-15

    We consider the lower bound for the shear viscosity-to-entropy density ratio, obtained from the fluid/gravity correspondence, in order to constrain the post-Newtonian parameter of brane-world metrics. In particular, we analyse the Casadio-Fabbri-Mazzacurati (CFM) effective solutions for the gravity side of the correspondence and argue that including higher-order terms in the hydrodynamic expansion can lead to a full agreement with the experimental bounds, for the Eddington-Robertson-Schiff post-Newtonian parameter in the CFM metrics. This lends further support to the physical relevance of the viscosity-to-entropy ratio lower bound and fluid/gravity correspondence. Hence we show that CFM black branes are, effectively, Schwarzschild black branes. (orig.)

  3. From thermodynamics to the solutions in gravity theory

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Xin-Zhou

    2014-01-01

    In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity

  4. From thermodynamics to the solutions in gravity theory

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2014-10-01

    Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.

  5. Solutions of the linearized Bach-Einstein equation in the static spherically symmetric case

    International Nuclear Information System (INIS)

    Schmidt, H.J.

    1985-01-01

    The Bach-Einstein equation linearized around Minkowski space-time is completely solved. The set of solutions depends on three parameters; a two-parameter subset of it becomes asymptotically flat. In that region the gravitational potential is of the type phi = -m/r + epsilon exp (-r/l). Because of the different asymptotic behaviour of both terms, it became necessary to linearize also around the Schwarzschild solution phi = -m/r. The linearized equation resulting in this case is discussed using qualitative methods. The result is that for m = 2l phi = -m/r + epsilon r -2 exp (-r/l) u, where u is some bounded function; m is arbitrary and epsilon again small. Further, the relation between the solution of the linearized and the full equation is discussed. (author)

  6. Black holes in the Universe: Generalized Lemaitre-Tolman-Bondi solutions

    International Nuclear Information System (INIS)

    Gao Changjun; Chen Xuelei; Shen Yougen; Faraoni, Valerio

    2011-01-01

    We present new exact solutions which presumably describe black holes in the background of a spatially flat, pressureless dark-matter- or dark matter plus dark energy (DM+DE)- or quintom-dominated Universe. These solutions generalize Lemaitre-Tolman-Bondi metrics. For a dark-matter- or (DM+DE)-dominated universe, the area of the black hole apparent horizon (AH) decreases with the expansion of the Universe while that of the cosmic AH increases. However, for a quintom-dominated universe, the black hole AH first shrinks and then expands, while the cosmic AH first expands and then shrinks. A (DM+DE)-dominated universe containing a black hole will evolve to the Schwarzschild-de Sitter solution with both AHs approaching constant size. In a quintom-dominated universe, the black hole and cosmic AHs will coincide at a certain time, after which the singularity becomes naked, violating cosmic censorship.

  7. The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime

    International Nuclear Information System (INIS)

    Urano, Miho; Tomimatsu, Akira; Saida, Hiromi

    2009-01-01

    The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.

  8. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  9. Static spherically symmetric solutions in mimetic gravity: rotation curves and wormholes

    International Nuclear Information System (INIS)

    Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-01-01

    In this work, we analyse static spherically symmetric solutions in the framework of mimetic gravity, an extension of general relativity where the conformal degree of freedom of gravity is isolated in a covariant fashion. Here we extend previous works by considering, in addition, a potential for the mimetic field. An appropriate choice of such a potential allows for the reconstruction of a number of interesting cosmological and astrophysical scenarios. We explicitly show how to reconstruct such a potential for a general static spherically symmetric space-time. A number of applications and scenarios are then explored, among which are traversable wormholes. Finally, we analytically reconstruct potentials, which leads to solutions to the equations of motion featuring polynomial corrections to the Schwarzschild space-time. Accurate choices for such corrections could provide an explanation for the inferred flat rotation curves of spiral galaxies within the mimetic gravity framework, without the need for particle dark matter. (paper)

  10. Schwarzschild, Karl (1873-1916)

    Science.gov (United States)

    Murdin, P.

    2000-11-01

    Mathematical physicist, born in Frankfurt am Main, Germany, at first worked on celestial mechanics, including POINCARÉ's theory of rotating bodies, the tidal deformation of moons and LAPLACE's origin of the solar system. He became professor at Göttingen and Potsdam. He wrote on relativity and quantum theory. He early on proposed that space was non-Euclidean, giving a lower limit for the radius of...

  11. A complete solution for GP-B's gyroscopic precession by retarded gravitational theory

    Science.gov (United States)

    Tang, Keyun

    Mainstream physicists generally believe that Mercury’s Perihelion precession and GP-B’ gyroscopic precession are two of the strongest evidences supporting Einstein’ curved spacetime and general relativity. However, most classical literatures and textbooks (e.g. Ohanain: Gravitation and Spacetime) paint an incorrect picture of Mercury’s orbit anomaly, namely Mercury’s perihelion precessed 43 arc-seconds per century; a correct picture should be that Mercury rotated 43 arc-seconds per century more than along Newtonian theoretical orbit. The essence of Le Verrier’s and Newcomb’s observation and analysis is that the angular speed of Mercury is slightly faster than the Newtonian theoretical value. The complete explanation to Mercury’s orbit anomaly should include two factors, perihelion precession is one of two factors, in addition, the change of orbital radius will also cause a change of angular speed, which is another component of Mercury's orbital anomaly. If Schwarzschild metric is correct, then the solution of the Schwarzschild orbit equation must contain three non-ignorable items. The first corresponds to Newtonian ellipse; the second is a nonlinear perturbation with increasing amplitude, which causes the precession of orbit perihelion; this is just one part of the angular speed anomaly of Mercury; the third part is a linear perturbation, corresponding to a similar figure of the Newton's ellipse, but with a minimal radius; this makes no contribution to the perihelion precession of the Schwarzschild orbit, but makes the Schwarzschild orbital radius slightly smaller, leading to a slight increase in Mercury’s angular speed. All classical literatures of general relativity ignored this last factor, which is a gross oversight. If you correctly take all three factors into consideration, the final result is that the difference between the angles rotated along Schwarzschild’s orbit and the angle rotated along Newton’s orbit for one hundred years should

  12. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  13. Relativistic static thin dust disks with an inner edge: An infinite family of new exact solutions

    International Nuclear Information System (INIS)

    Gonzalez, Guillermo A.; Gutierrez-Pineres, Antonio C.; Vina-Cervantes, Viviana M.

    2009-01-01

    An infinite family of new exact solutions of the vacuum Einstein equations is presented. The solutions are static and axially symmetric and correspond to an infinite family of thin dust disks with a central inner edge. The metric functions of all the solutions can be explicitly computed, and can be expressed in a simple manner in terms of oblate spheroidal coordinates. The energy density of all the disks of the family is positive everywhere and well behaved, so that the corresponding energy-momentum tensor is in full agreement with all the energy conditions. Moreover, although the total mass of the disks is infinite, the solutions are asymptotically flat and the Riemann tensor is regular everywhere, as it is shown by computing the curvature scalars. Now, besides its importance as a new family of exact solutions of the vacuum Einstein equations, the main importance of this family of solutions is that it can be easily superposed with the Schwarzschild solution in order to describe thin disks surrounding a central black hole. Accordingly, a detailed analysis of this superposition will be presented in a subsequent paper.

  14. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  15. Seeding Solutions

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Crucible Group operates on the basis of good faith –– producing best effort non-consensus texts. ..... science and technology-based solutions to agricultural production constraints, it is ...... In 1997 researchers at Case Western Reserve Medical School in Ohio (US) ...... Is there a need to update the system-wide IP audit?

  16. Circular Solutions

    NARCIS (Netherlands)

    Annevelink, E.; Bos, H.L.; Meesters, K.P.H.; Oever, van den M.J.A.; Haas, de W.; Kuikman, P.J.; Rietra, R.P.J.J.; Sikirica, N.

    2016-01-01

    The fifth part of this report on Circular Solutions is about the circular principle From Waste to Resource. The purpose of this study is to select promising options for the implementation of this circular principle and to elaborate these options further.

  17. Podcast solutions

    CERN Document Server

    Geoghegan, Michael W

    2005-01-01

    Podcasting is the art of recording radio show style audio tracks, then distributing them to listeners on the Web via podcasting software such as iPodder. From downloading podcasts to producing a track for fun or profit, ""Podcast Solutions"" covers the entire world of podcasting with insight, humor, and the unmatched wisdom of experience.

  18. The Kerr/fluid duality and the singularity of solutions to the fluid equation

    International Nuclear Information System (INIS)

    Fujisawa, Ippei; Nakayama, Ryuichi

    2016-01-01

    An equation for a viscous incompressible fluid on a spheroidal surface that is dual to the perturbation around the near-near-horizon extreme Kerr (near-NHEK) black hole is derived. It is also shown that an expansion scalar θ of a congruence of null geodesics on the perturbed horizon of the perturbed near-NHEK spacetime, which is dual to a viscous incompressible fluid, is not in general positive semidefinite, even if initial conditions on the velocity are smooth. Unless the initial conditions are appropriately adjusted, caustics of null congruence will occur on the perturbed horizon in the future. A similar result is obtained for a perturbed Schwarzschild black hole spacetime, which is dual to a viscous incompressible fluid on S 2 . An initial condition that θ be positive semidefinite at any point on S 2 is a necessary condition for the existence of smooth solutions to the incompressible Navier-Stokes equation on S 2

  19. Solution Prototype

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2013-01-01

    This paper outlines an artifact building and evaluation proposal. Design Science Research (DSR) studies usually consider encapsulated artifact that have relationships with other artifacts. The solution prototype as a composed artifact demands for a more comprehensive consideration in its systematic...... environment. The solution prototype that is composed from blending product and service prototype has particular impacts on the dualism of DSR’s “Build” and “Evaluate”. Since the mix between product and service prototyping can be varied, there is a demand for a more agile and iterative framework. Van de Ven......’s research framework seems to fit this purpose. Van de Ven allows for an iterative research approach to problem solving with flexible starting point. The research activity is the result between the iteration of two dimensions. This framework focuses on the natural evaluation, particularly on ex...

  20. Six-dimensional localized black holes: Numerical solutions

    International Nuclear Information System (INIS)

    Kudoh, Hideaki

    2004-01-01

    To test the strong-gravity regime in Randall-Sundrum braneworlds, we consider black holes bound to a brane. In a previous paper, we studied numerical solutions of localized black holes whose horizon radii are smaller than the AdS curvature radius. In this paper, we improve the numerical method and discuss properties of the six-dimensional (6D) localized black holes whose horizon radii are larger than the AdS curvature radius. At a horizon temperature T≅1/2πl, the thermodynamics of the localized black hole undergo a transition with its character changing from a 6D Schwarzschild black hole type to a 6D black string type. The specific heat of the localized black holes is negative, and the entropy is greater than or nearly equal to that of the 6D black strings with the same thermodynamic mass. The large localized black holes show flattened horizon geometries, and the intrinsic curvature of the horizon four-geometry becomes negative near the brane. Our results indicate that the recovery mechanism of lower-dimensional Einstein gravity on the brane works even in the presence of the black holes

  1. Quasistationary solutions of scalar fields around accreting black holes

    Science.gov (United States)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.

    2016-08-01

    Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.

  2. A Non-anthropic Solution to the Cosmological Constant Problem

    Directory of Open Access Journals (Sweden)

    Spivey R. J.

    2016-01-01

    Full Text Available Accelerating cosmological expansion is driven by a minuscule vacuum energy density possibly seeking opportunities to decay to a true ground state. Quasar characteristics imply their central engines possess an intrinsic magnetic field compatible with the pres- ence of an electrically charged toroidal dark hole, an eternally collapsing structure lack- ing an event horizon. The possibility is consistent with the inability of black holes to capture particles in a universe of finite age, Einstein’s dismissal of the Schwarzschild metric as unphysical and the implausibility of the various paradoxes invoked by black hole existence. The uncloaked innards of these dark holes would expose immense vac- uum accelerations at their cores, inevitably tempered by Planck scale physics. The Unruh effect predicts that intense yet highly localised heating should occur there. As thermal energy gradually amasses and dissipates, radiation would eventually start to escape into the surrounding environment. Virtual from the d ark hole perspective, the emissions could not decrease the dark hole’s mass: the energy source must instead be the universal vacuum, the likely repository of dark energy. In analogy with core- collapse supernovae, neutrinos should dominate the cooling flows. Red-shifting to low energies upon escape, quantum degenerate haloes should for m predominantly around the largest galaxies. This mechanism is promising from the perspective of enabling the future universe to efficiently sustain aquatic life before stars become scarce, offering a biological yet decidedly non-anthropic solution to the cosmological constant problem.

  3. Global solutions to the electrodynamic two-body problem on a straight line

    Science.gov (United States)

    Bauer, G.; Deckert, D.-A.; Dürr, D.; Hinrichs, G.

    2017-06-01

    The classical electrodynamic two-body problem has been a long standing open problem in mathematics. For motion constrained to the straight line, the interaction is similar to that of the two-body problem of classical gravitation. The additional complication is the presence of unbounded state-dependent delays in the Coulomb forces due to the finiteness of the speed of light. This circumstance renders the notion of local solutions meaningless, and therefore, straightforward ODE techniques cannot be applied. Here, we study the time-symmetric case, i.e., the Fokker-Schwarzschild-Tetrode (FST) equations, comprising both advanced and retarded delays. We extend the technique developed in Deckert and Hinrichs (J Differ Equ 260:6900-6929, 2016), where existence of FST solutions was proven on the half line, to ensure global existence—a result that had been obtained by Bauer (Ein Existenzsatz für die Wheeler-Feynman-Elektrodynamik, Herbert Utz Verlag, München, 1997). Due to the novel technique, the presented proof is shorter and more transparent but also relies on the idea to employ asymptotic data to characterize solutions.

  4. A Dual Egalitarian Solution

    NARCIS (Netherlands)

    Klijn, F.; Slikker, M.; Tijs, S.H.

    2000-01-01

    In this note we introduce an egalitarian solution, called the dual egalitarian solution, that is the natural counterpart of the egalitarian solution of Dutta and Ray (1989).We prove, among others, that for a convex game the egalitarian solution coincides with the dual egalitarian solution for its

  5. Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory

    Directory of Open Access Journals (Sweden)

    Matthew T. Aadne

    2017-02-01

    Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.

  6. Radiochromic liquid solution

    International Nuclear Information System (INIS)

    Noakes, J.E.; Culp, R.A.

    1983-01-01

    A radiochromic solution which is sensitive to small dosages of ionizing and ultraviolet radiation is described. It consists of a solution of a leucocyanide dye in a clear polar solvent with enough organic acid added to make the solution at least slightly acidic and responds to radiation by permanently changing color. Up to one half of the solution by weight can be replaced by a second solution of an aromatic solvent and an organic fluor. Another modification of the invention is a solution of a leucocyanide dye in a clear polar solvent having an aromatic group, an organic fluor, and enough organic acid to make the solution at least slightly acidic. (author)

  7. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  8. Exact solution for the interior of a black hole

    NARCIS (Netherlands)

    Nieuwenhuizen, T.M.

    2008-01-01

    Within the Relativistic Theory of Gravitation it is shown that the equation of state p = rho holds near the center of a black hole. For the stiff equation of state p = rho - rho(c) the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range

  9. Colliding black hole solution

    International Nuclear Information System (INIS)

    Ahmed, Mainuddin

    2005-01-01

    A new solution of Einstein equation in general relativity is found. This solution solves an outstanding problem of thermodynamics and black hole physics. Also this work appears to conclude the interpretation of NUT spacetime. (author)

  10. PFP solution stabilization

    International Nuclear Information System (INIS)

    Aftanas, B.L.

    1996-01-01

    This Functional Design Criteria (FDC) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  11. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  12. Gravitational nonminimally coupled electromagnetic fields: a possible solution to some idiosincrasies of Einstein-Maxwell theory

    International Nuclear Information System (INIS)

    Accioly, A.J.

    1988-01-01

    A theory of nonminimal coupling of electromagnetism and gravitation in the framework of Riomannian geometry is constructed. As a consequence the main difficulties concerning the Einstein-Maxwell theory are cleared away. The theory works as a kind of correction to the Einstein-Maxwell one for regions with strong curvature and for times much greater than the Planck time. A Reissner-Nordstroem-type solution is exhibited and comments are made on a parameter which somewhat resembles the ''Schwarzschild radius''. A mechanism of charge creation via nonminimal coupling is also discussed. We calculate the propagation of photons in a Robertson-Walker background and find that the effect of the nonminimal coupling in this case may be to deviate the photon from the null geodesics, increasing its velocity beyond the flat-space value. Taking into account this results, the observed isotropy of the background radiation can be explained in a simple way, regardless of any assumption about the state of the Universe prior to the Planck time. (author) [pt

  13. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  14. Proteins in solution: Fractal surfaces in solutions

    Directory of Open Access Journals (Sweden)

    R. Tscheliessnig

    2016-02-01

    Full Text Available The concept of the surface of a protein in solution, as well of the interface between protein and 'bulk solution', is introduced. The experimental technique of small angle X-ray and neutron scattering is introduced and described briefly. Molecular dynamics simulation, as an appropriate computational tool for studying the hydration shell of proteins, is also discussed. The concept of protein surfaces with fractal dimensions is elaborated. We finish by exposing an experimental (using small angle X-ray scattering and a computer simulation case study, which are meant as demonstrations of the possibilities we have at hand for investigating the delicate interfaces that connect (and divide protein molecules and the neighboring electrolyte solution.

  15. Solution mining process

    International Nuclear Information System (INIS)

    Showalter, W.E.

    1984-01-01

    A solution mining process which may be used for uranium, thorium, vanadium, copper, nickel, molybdenum, rhenium, and selenium is claimed. During a first injection-and-production phase of between 6 months and 5 years, a leaching solution is injected through at least one well into the formation to solubilize the mineral values and form a pregnant liquor. This liquor is recovered through another well. The leaching solution contains sulfuric acid, nitric acid, hydrochloric acid, carbonic acid, an alkali metal carbonate, an alkali metal bicarbonate, ammonium carbonate or ammonium bicarbonate. Subsequently during a first production-only phase of between about 2 weeks and one year, injection of the leaching solution is suspended but pregnant liquor is still recovered. This stage is followed by a second injection-and-production phase of between 6 months and 5 years and a second production-only phase. The mineral values are separated from the pregnant liquor to form a barren liquor. The leaching agent is introduced into this liquor, and the solution is recycled. In a second claim for the solution mining of uranium, dilute carbonic acid is used as the leaching solution. The solution has a pH less than 7 and a bicarbonate ion concentration between about 380 ppm and 1000 ppm. The injection-and-production phase lasts between one and two years and the production only phase takes between one and four months. Carbon dioxide is introduced into the barren liquor to form a dilute carbonic acid solution and the solution is recycled

  16. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  17. PERVASIVE BUSINESS INTELLIGENCE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Rocsana Tonis (Bucea-Manea

    2011-03-01

    Full Text Available The utility of BI solutions is accepted all over the world in the modern organizations. However, the BI solutions do not offer a constant feedback in line with the organizational activities. In this context, there have been developed pervasive BI solutions which are present at different levels of the organization, so that employees can observe only what is most relevant to their day-to-day tasks. They are organized in vertical silos, with clearly identified performance and expectations. The paper emphasizes the role of pervasive BI solutions in reaching the key performance indicators of the modern organizations, more important in the context of crisis.

  18. Solute-solute interactions in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debashis; Murray, Ryan; Collins, Gary S., E-mail: collins@wsu.edu [Washington State University, Department of Physics and Astronomy (United States); Zacate, Matthew O. [Northern Kentucky University, Department of Physics and Geology (United States)

    2017-11-15

    Experiments were carried out on highly ordered GdAl{sub 2} samples containing extremely dilute mole fractions of{sup 111}In/Cd probe-atom solutes (about 10{sup −11}), intrinsic antisite atoms Al{sub Gd} having mole fractions of order 0-10{sup −2}, and doped with Ag solutes at mole fractions of order 10{sup −2}. Three types of defect interactions were investigated. (1) Quadrupole interactions caused by Ag-solute atoms neighboring{sup 111}In/Cd solute probe atoms were detected using the method of perturbed angular correlation of gamma rays (PAC). Three complexes of pairs of In-probes and Ag-solutes occupying neighboring positions on Gd- and Al-sublattices were identified by comparing site fractions in Gd-poor and Gd-rich GdAl{sub 2}(Ag) samples and from the symmetry of the quadrupole interactions. Interaction enthalpies between solute-atom pairs were determined from temperature dependences of observed site fractions. Repulsive interactions were observed for close-neighbor complexes In{sub Gd}+Ag{sub Gd} and In{sub Gd}+Ag{sub Al} pairs, whereas a slightly attractive interaction was observed for In{sub Al}+Ag{sub Al}. Interaction enthalpies were all small, in the range ±0.15 eV. (2) Quadrupole interactions caused by intrinsic antisite atoms Al{sub Gd} neighboring In{sub Gd} probes were also detected and site fractions measured as a function of temperature, as in previous work on samples not doped with Ag-solutes [Temperature- and composition-driven changes in site occupation of solutes in Gd{sub 1+3x}Al{sub 2−3x}, Zacate and Collins (Phys. Rev. B69, 174202 (1))]. However, the effective binding enthalpy between In{sub Gd} probe and Al{sub Gd} antisite was found to change sign from -0.12 eV (attractive interaction) in undoped samples to + 0.24 eV (repulsive) in Ag-doped samples. This may be attributed to an attractive interaction between Al{sub Gd} antisite atoms and Ag-dopants that competes with the attractive interaction between In{sub Gd} and Al{sub Gd

  19. Solutions of nuclear pairing

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Pehlivan, Y.

    2007-01-01

    We give the exact solution of orbit dependent nuclear pairing problem between two nondegenerate energy levels using the Bethe ansatz technique. Our solution reduces to previously solved cases in the appropriate limits including Richardson's treatment of reduced pairing in terms of rational Gaudin algebra operators

  20. On Lovelock vacuum solution

    OpenAIRE

    Dadhich, Naresh

    2010-01-01

    We show that the asymptotic large $r$ limit of all Lovelock vacuum and electrovac solutions with $\\Lambda$ is always the Einstein solution in $d \\geq 2n+1$ dimensions. It is completely free of the order $n$ of the Lovelock polynomial indicating universal asymptotic behaviour.

  1. Rational Solutions and Lump Solutions of the Potential YTSF Equation

    Science.gov (United States)

    Sun, Hong-Qian; Chen, Ai-Hua

    2017-07-01

    By using of the bilinear form, rational solutions and lump solutions of the potential Yu-Toda-Sasa-Fukuyama (YTSF) equation are derived. Dynamics of the fundamental lump solution, n1-order lump solutions, and N-lump solutions are studied for some special cases. We also find some interaction behaviours of solitary waves and one lump of rational solutions.

  2. Bolting multicenter solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bena, Iosif [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette Cedex (France); Bossard, Guillaume [Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau Cedex (France); Katmadas, Stefanos; Turton, David [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette Cedex (France)

    2017-01-30

    We introduce a solvable system of equations that describes non-extremal multicenter solutions to six-dimensional ungauged supergravity coupled to tensor multiplets. The system involves a set of functions on a three-dimensional base metric. We obtain a family of non-extremal axisymmetric solutions that generalize the known multicenter extremal solutions, using a particular base metric that introduces a bolt. We analyze the conditions for regularity, and in doing so we show that this family does not include solutions that contain an extremal black hole and a smooth bolt. We determine the constraints that are necessary to obtain smooth horizonless solutions involving a bolt and an arbitrary number of Gibbons-Hawking centers.

  3. Thick brane solutions

    International Nuclear Information System (INIS)

    Dzhunushaliev, Vladimir; Minamitsuji, Masato; Folomeev, Vladimir

    2010-01-01

    This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.

  4. Professional Hadoop solutions

    CERN Document Server

    Lublinsky, Boris; Yakubovich, Alexey

    2013-01-01

    The go-to guidebook for deploying Big Data solutions with Hadoop Today's enterprise architects need to understand how the Hadoop frameworks and APIs fit together, and how they can be integrated to deliver real-world solutions. This book is a practical, detailed guide to building and implementing those solutions, with code-level instruction in the popular Wrox tradition. It covers storing data with HDFS and Hbase, processing data with MapReduce, and automating data processing with Oozie. Hadoop security, running Hadoop with Amazon Web Services, best practices, and automating Hadoop processes i

  5. ERP SOLUTIONS FOR SMEs

    Directory of Open Access Journals (Sweden)

    TUTUNEA MIHAELA FILOFTEIA

    2012-09-01

    Full Text Available The integration of activities, the business processes as well as their optimization, bring the perspective of profitable growth and create significant and competitive advantages in any company. The adoption of some ERP integrated software solutions, from SMEs’ perspective, must be considered as a very important management decision in medium and long term. ERP solutions, along with the transparent and optimized management of all internal processes, also offer an intra and inter companies collaborative platform, which allows a rapid expansion of activities towards e- business and mobile-business environments. This material introduces ERP solutions for SMEs from commercial offer and open source perspective; the results of comparative analysis of the solutions on the specific market, can be an useful aid to the management of the companies, in making the decision to integrate business processes, using ERP as a support.

  6. OIL SOLUTIONS POWDER

    Science.gov (United States)

    Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.

  7. Conductometry of electrolyte solutions

    Science.gov (United States)

    Safonova, Lyubov P.; Kolker, Arkadii M.

    1992-09-01

    A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.

  8. Solutions to horava gravity.

    Science.gov (United States)

    Lü, H; Mei, Jianwei; Pope, C N

    2009-08-28

    Recently Horava proposed a nonrelativistic renormalizable theory of gravitation, which reduces to Einstein's general relativity at large distances, and that may provide a candidate for a UV completion of Einstein's theory. In this Letter, we derive the full set of equations of motion, and then we obtain spherically symmetric solutions and discuss their properties. We also obtain solutions for the Friedmann-Lemaître-Robertson-Walker cosmological metric.

  9. Piezoelectric Energy Harvesting Solutions

    Science.gov (United States)

    Caliò, Renato; Rongala, Udaya Bhaskar; Camboni, Domenico; Milazzo, Mario; Stefanini, Cesare; de Petris, Gianluca; Oddo, Calogero Maria

    2014-01-01

    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions. PMID:24618725

  10. Radiolysis of spray solutions

    International Nuclear Information System (INIS)

    Habersbergerova, A.; Janovsky, I.

    1985-01-01

    The factors were studied affecting thiosulfate radiolysis in the so-called spray solution for nuclear power plant containments. The reaction mechanism of primary radiolytic reactions leading to thiosulfate decomposition was studied using pulse radiolysis. Also measured was hydrazine loss in the irradiation of the bubbling solution intended for the capture of volatile chemical forms of radioiodine. Pulse radiolysis was used to study the kinetics of hydrazine reaction with elemental iodine. (author)

  11. A boring solution

    Energy Technology Data Exchange (ETDEWEB)

    Radiuk, M I; Iushkova, N E; Kozubovskii, A I

    1979-10-25

    A boring solution is being patented for boring for oil and gas, which can be used in wells, where the temperature of the circulating liquid reaches 100/sup 0/. Polyvinyl acetate emulsion (PVE) is added for the purpose of decreasing viscosity of the solution at a temperature of agression into the boring solution containing clay, water, carboxymethylcellulose (CBC), a chloride from the number of sodium, potassium, or magnesium chlorides. The solution has the following composition in %: clay, 10 to 20; CBC, 1.5 to 2.0; chloride, 5 to 20; PVE, 0.5 to 2; water, up to 100. In accordance to GOST 1000-62 for the accepted PVE, the compound has the following composition, in %: monomer, 0.8; dry residue, greater than or equal to 50; plasticizer (tributyl phthalate), 5 to 15. The boring solution is processed according to the following method. The original solution, containing clay, water, salts, receives 1.5 to 2% CBC and afterwards it is processed with 0.5 to 2% PVE.

  12. Social information solution; Shakai joho solution

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-01-10

    An information system for government offices is developed, a system that integrally supports operations inside government offices and the staff service operations by combining Intra Net as the basis of an information system with Internet. The objective of the system is as follows: (1) Information sharing in the place of work and utilization of information resources. (2) Improvement in administrative services and vitalization of an interchange of residents through the preparation of Internet environment. (3) Rationalization of staff operations through groupeware. In addition, by building a network system for the entire region, information communication service is to be provided as a solution between the residents and the administration in the occurrence of a disaster as well as for home care, medical and nursing assistance in the health, medical and welfare fields. (translated by NEDO)

  13. Passive House Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strom, I.; Joosten, L.; Boonstra, C. [DHV Sustainability Consultants, Eindhoiven (Netherlands)

    2006-05-15

    PEP stands for 'Promotion of European Passive Houses' and is a consortium of European partners, supported by the European Commission, Directorate General for Energy and Transport. In this working paper an overview is given of Passive House solutions. An inventory has been made of Passive House solutions for new build residences applied in each country. Based on this, the most common basic solutions have been identified and described in further detail, including the extent to which solutions are applied in common and best practice and expected barriers for the implementation in each country. An inventory per country is included in the appendix. The analysis of Passive House solutions in partner countries shows high priority with regard to the performance of the thermal envelope, such as high insulation of walls, roofs, floors and windows/ doors, thermal bridge-free construction and air tightness. Due to the required air tightness, special attention must be paid to indoor air quality through proper ventilation. Finally, efficient ((semi-)solar) heating systems for combined space and DHW heating still require a significant amount of attention in most partner countries. Other basic Passive House solutions show a smaller discrepancy with common practice and fewer barriers have been encountered in partner countries. In the next section, the general barriers in partner countries have been inventoried. For each type of barrier a suggested approach has been given. Most frequently encountered barriers in partner countries are: limited know-how; limited contractor skills; and acceptation of Passive Houses in the market. Based on the suggested approaches to overcoming barriers, this means that a great deal of attention must be paid to providing practical information and solutions to building professionals, providing practical training to installers and contractors and communication about the Passive House concept to the market.

  14. Siemens IT solutions for power sector. PROFIT solutions

    International Nuclear Information System (INIS)

    Lunter, P.

    2004-01-01

    The cost reduction, flexibility and revenue increase, potential exploitation, productivity increase, and business opportunities exploitation - that is all what can be required in the races for the promonent positioning on the electricity power market. These requirements can be realized by the sophisticated IT solutions hand-tailored to the special requirements of the electric power producers and tradesmen. This approach makes it possible to achieve greater profit. Our solutions 'PROFIT Solutions', that are symbiosis of the most progressive information technologies and the power plant techniques of the company Siemens, satisfy submitted specifications in substantial measure. The system solutions 'PROFIT Solutions' comprise three solution groups: process, operation a business. The solutions of the group 'IT Process Solutions' increase flexibility and manoeuvrability of equipment, improve the efficiency and contribute to more economical operation of the power generation. Solutions 'IT Process Solutions' simplify and shorten the period of power cycles and conduce to higher labour productivity. Solutions group 'IT Process Solutions' approaches equipment to the market - supports the profit strategies, helps quickly and expertly to determine and predict hazards. The extension PROFIT Cockpit means the nuance to the solutions world 'PROFIT Solutions'. The survey about the whole installation is within reach at the simple touch of a button. It is possible to compile the total system part by part from single solutions 'PROFIT Solutions'. As a matter of fact all single parts can be interconnected with already existing solutions. Routines 'PROFIT Solutions' cooperate with all modern control systems. (author)

  15. Solute segregation during irradiation

    International Nuclear Information System (INIS)

    Wiedersich, H.; Okamoto, P.R.; Lam, N.Q.

    1977-01-01

    Irradiation at elevated temperature induces redistribution of the elements in alloys on a microstructural level. This phenomenon is caused by differences in the coupling of the various alloy constituents to the radiation-induced defect fluxes. A simple model of the segregation process based on coupled reaction-rate and diffusion equations is discussed. The model gives a good description of the experimentally observed consequences of radiation-induced segregation, including enrichment or depletion of solute elements near defect sinks such as surfaces, voids and dislocations; precipitation of second phases in solid solutions; precipitate redistribution in two-phase alloys; and effects of defect-production rates on void-swelling rates in alloys with minor solute additions

  16. Superstrings fermionic solutions

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    1990-06-01

    The solutions proposed by the superstring theory are classified and compared. In order to obtain some of the equivalences, the demonstration is based on the coincidence of the excitation spectrum and the quantum numbers from different states. The fermionic representation of the heterotical strings is discussed. The conformal invariance and the supersymmetric results extended to two dimensions are investigated. Concerning the fermionic strings, the formalism and a phenomenological solution involving three families of quarks, chiral leptons and leptons from the E 6 gauge group are presented. The equivalence between real and complex fermions is discussed. The similarity between some of the solutions of the Wess-Zumino-Witten model and the orbifolds is considered. The formal calculation program developed for reproducing the theory's low energy spectra, in the fermionic string formalism is given [fr

  17. Decontamination solution development studies

    International Nuclear Information System (INIS)

    Allen, R.P.; Fetrow, L.K.; Kjarmo, H.E.; Pool, K.H.

    1993-09-01

    This study was conducted for the Westinghouse Hanford Company (WHC) by Pacific Northwest Laboratory (PNL) as part of the Hanford Grout Technology Program (HGTP). The objective of this study was to identify decontamination solutions capable of removing radioactive contaminants and grout from the Grout Treatment Facility (GTF) process equipment and to determine the impact of these solutions on equipment components and disposal options. The reference grout used in this study was prepared with simulated double-shell slurry feed (DSSF) and a dry blend consisting of 40 wt % limestone flour, 28 wt % blast furnace slag, 28 wt % fly ash, and 4 wt % type I/II Portland cement

  18. Calculus problems and solutions

    CERN Document Server

    Ginzburg, Abraham

    2011-01-01

    Ideal for self-instruction as well as for classroom use, this text helps students improve their understanding and problem-solving skills in analysis, analytic geometry, and higher algebra. More than 1,200 problems appear in the text, with concise explanations of the basic notions and theorems to be used in their solution. Many are followed by complete answers; solutions for the others appear at the end of the book. Topics include sequences, functions of a single variable, limit of a function, differential calculus for functions of a single variable, fundamental theorems and applications of dif

  19. In Search of Solutions

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    when pursuing minor performance improvements in existing technologies. However, reliance on internal knowledge sources carries a risk of organizational inertia related to problem understanding and solution development in the shape of path-dependencies and preferences for exploitation and reapplication...... of existing knowledge. Such inertia may imbue innovation processes related to the development of new technologies with reduced novelty and an inability to recognize alternative and potentially more attractive solutions. As a result, over-reliance on internal knowledge sources is likely to inhibit the ability...

  20. Business Intelligence Integrated Solutions

    Directory of Open Access Journals (Sweden)

    Cristescu Marian Pompiliu

    2017-12-01

    Full Text Available A Business Intelligence solution concerns the simple, real-time access to complete information about the business shown in a relevant format of the report, graphic or dashboard type in order help the taking of strategic decisions regarding the direction in which the company goes. Business Intelligence does not produce data, but uses the data produced by the company’s applications. BI solutions extract their data from ERP (Enterprise Resource Planning, CRM (Customer Relationship Management, HCM (Human Capital Management, and Retail, eCommerce or other databases used in the company.

  1. Microsoft big data solutions

    CERN Document Server

    Jorgensen, Adam; Welch, John; Clark, Dan; Price, Christopher; Mitchell, Brian

    2014-01-01

    Tap the power of Big Data with Microsoft technologies Big Data is here, and Microsoft's new Big Data platform is a valuable tool to help your company get the very most out of it. This timely book shows you how to use HDInsight along with HortonWorks Data Platform for Windows to store, manage, analyze, and share Big Data throughout the enterprise. Focusing primarily on Microsoft and HortonWorks technologies but also covering open source tools, Microsoft Big Data Solutions explains best practices, covers on-premises and cloud-based solutions, and features valuable case studies. Best of all,

  2. Phenomenology of polymer solution dynamics

    National Research Council Canada - National Science Library

    Phillies, George D. J

    2011-01-01

    ... solutions, not dilute solutions or polymer melts. From centrifugation and solvent dynamics to viscosity and diffusion, experimental measurements and their quantitative representations are the core of the discussion...

  3. Aliteracy : causes and solutions

    NARCIS (Netherlands)

    Nielen, Thijs Martinus Johannes

    2016-01-01

    The reading motivation of the majority of students declines in the upper half of primary school, which implies a risk for aliteracy: Students can read but, due to lack of practice, their skills remain underdeveloped (Chapter 2). In this thesis we have explored causes and solutions for this important

  4. Solute transport in soil

    NARCIS (Netherlands)

    Zee, van der S.E.A.T.M.; Leijnse, A.

    2013-01-01

    Solute transport is of importance in view of the movement of nutrient elements, e.g. towards the plant root system, and because of a broad range of pollutants. Pollution is not necessarily man induced, but may be due to geological or geohydrological causes, e.g. in the cases of pollution with

  5. An Inexpensive Solution Calorimeter

    Science.gov (United States)

    Kavanagh, Emma; Mindel, Sam; Robertson, Giles; Hughes, D. E. Peter

    2008-01-01

    We describe the construction of a simple solution calorimeter, using a miniature bead thermistor as a temperature-sensing element. This has a response time of a few seconds and made it possible to carry out a thermometric reaction in under a minute, which led to minimal heat losses. Small temperature changes of 1 K associated with enthalpies of…

  6. Aqueous polyethylene oxide solutions

    International Nuclear Information System (INIS)

    Breen, J.

    1987-01-01

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1 H-PEO and 13 C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  7. Weak solutions of magma equations

    International Nuclear Information System (INIS)

    Krishnan, E.V.

    1999-01-01

    Periodic solutions in terms of Jacobian cosine elliptic functions have been obtained for a set of values of two physical parameters for the magma equation which do not reduce to solitary-wave solutions. It was also obtained solitary-wave solutions for another set of these parameters as an infinite period limit of periodic solutions in terms of Weierstrass and Jacobian elliptic functions

  8. Earnest Rutherford, the solution

    CERN Multimedia

    2003-01-01

    If you did not make it to the Science & Society talk by John Campbell last week and are still wondering about the spelling of "Earnest", here is the solution: Two months after the birth of his fourth child on 30 August 1871 in Spring Grove, New Zealand, James Rutherford registered his son, who was recorded as "Earnest" in the Birth Register. Presumably the Registrar wrote the name down as it sounded and the father failed to notice the mistake when signing the Register.

  9. Molybdenum from uranium solutions

    International Nuclear Information System (INIS)

    Gardner, H.E.

    1981-01-01

    A method of removing molybdenum from a uranium bearing solution is claimed. It comprises adding sufficient reactive lead compound to supply at least 90 percent of the stoichiometric quantity of lead ion required to fully react with the molybdenum present to form insoluble lead molybdate and continuing the reaction with agitation until the desired percentage of the molybdenum present has reacted with the lead ion

  10. Severe service sealing solutions

    International Nuclear Information System (INIS)

    Metcalfe, R.; Wensel, R.

    1994-09-01

    Successful sealing usually requires much more than initial leak-tightness. Friction and wear must also be acceptable, requiring a good understanding of tribology at the sealing interface. This paper describes various sealing solutions for severe service conditions. The CAN2A and CAN8 rotary face seals use tungsten carbide against carbon-graphite to achieve low leakage and long lifetime in nuclear main coolant pumps. The smaller CAN6 seal successfully uses tungsten carbide against silicon carbide in reactor water cleanup pump service. Where friction in CANDU fuelling machine rams must be essentially zero, a hydrostatic seal using two silicon carbide faces is the solution. In the NRU reactor moderator pumps, where pressure is much lower, eccentric seals that prevent boiling at the seal faces are giving excellent service. All these rotary face seals rely on supplementary elastomer seals between their parts. An integrated engineering approach to high performance sealing with O-rings is described. This is epitomized in critical Space Shuttle applications, but is increasingly being applied in CANDU plants. It includes gland design, selection and qualification of material, quality assurance, detection of defects and the effects of lubrication, surface finish, squeeze, stretch and volume constraints. In conclusion, for the severe service applications described, customized solutions have more than paid for themselves by higher reliability, lower maintenance requirements and reduced outage time. (author)

  11. Solution mining economics

    International Nuclear Information System (INIS)

    Hunkin, G.G.

    1980-01-01

    The field of application of in-situ solution mining of uranium is described and areas of competition with open pit and underground mining identified. The influence of high interest rates and dollar inflation on present values and rate of return is shown to be minimized by low capitalization and short construction lead times typical of in-situ leaching ventures. A scheme of three major project account divisions is presented and basic parameters necessary for mine planning are listed. 1979 cost ranges and useful methods of estimation of capital and operating costs are given for the in-situ uranium mining method

  12. Total Logistic Plant Solutions

    Directory of Open Access Journals (Sweden)

    Dusan Dorcak

    2016-02-01

    Full Text Available The Total Logistics Plant Solutions, plant logistics system - TLPS, based on the philosophy of advanced control processes enables complex coordination of business processes and flows and the management and scheduling of production in the appropriate production plans and planning periods. Main attributes of TLPS is to create a comprehensive, multi-level, enterprise logistics information system, with a certain degree of intelligence, which accepts the latest science and research results in the field of production technology and logistics. Logistic model of company understands as a system of mutually transforming flows of materials, energy, information, finance, which is realized by chain activities and operations

  13. From Goods to Solutions

    DEFF Research Database (Denmark)

    Chakkol, Mehmet; Johnson, Mark; Raja, Jawwad

    2014-01-01

    Purpose – This paper aims to adopt service-dominant logic (SDL) to empirically explore network configurations resulting from the provision of goods, goods and services, and solutions. Design/methodology/approach – This paper uses a single, in-depth, exploratory case study in a truck manufacturer......: dyadic, triadic and tetradic. The extent to which different network actors contribute to value co-creation varies across the offerings. Research limitations/implications – This paper is based on a single, in-depth case study developed in one industrial context. Whilst this represents an appropriate...

  14. A plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Gen, O P; Azhigaliyev, G K; Dodonova, S Ye; Dyaltlova, N M; Novokhatskaya, I D; Ryabova, L I

    1984-01-01

    The purpose of the invention is to increase the durability of cement stone at 150 to 200C. The patent covers a plugging solution which consists of Portlandcement, sand and water. It additionally contains metal organic complexes of nitrylotrimethylphosphonic acid and organosiliconates of alkali or alkaline earth metals with the following component relationship in percent by mass: Portland cement, 42 to 43; sand, 27 to 28; metal organic complexes of nitrylotrimethylphosphonic acid, 0.01 to 1.5; organosiliconates of alkaline or alkaline earthmetals, 0.0025 to 0.375 and water, the remainder.

  15. Classical solutions and extended supergravity

    International Nuclear Information System (INIS)

    de Alfaro, V.; Fubini, S.; Furlan, G.

    1980-03-01

    The existence and properties of classical solutions for gravity coupled to matter fields have been investigated previously with the limitation to conformally flat solutions. In the search for a guiding criterion to determine the form of the coupling among the fields, one is led to consider supersymmetric theories, and the question arises whether classical solutions persist in these models. It is found that a discrepancy persists between supergravity and standard meron solutions. Owing to the appearance of the scalar field, a new set of meron solutions exists for particular Lagrangian models. In conclusion, the form of solutions in Minkowski space is discussed

  16. Radioactive waste management solutions

    International Nuclear Information System (INIS)

    Siemann, Michael

    2015-01-01

    One of the more frequent questions that arise when discussing nuclear energy's potential contribution to mitigating climate change concerns that of how to manage radioactive waste. Radioactive waste is produced through nuclear power generation, but also - although to a significantly lesser extent - in a variety of other sectors including medicine, agriculture, research, industry and education. The amount, type and physical form of radioactive waste varies considerably. Some forms of radioactive waste, for example, need only be stored for a relatively short period while their radioactivity naturally decays to safe levels. Others remain radioactive for hundreds or even hundreds of thousands of years. Public concerns surrounding radioactive waste are largely related to long-lived high-level radioactive waste. Countries around the world with existing nuclear programmes are developing longer-term plans for final disposal of such waste, with an international consensus developing that the geological disposal of high-level waste (HLW) is the most technically feasible and safe solution. This article provides a brief overview of the different forms of radioactive waste, examines storage and disposal solutions, and briefly explores fuel recycling and stakeholder involvement in radioactive waste management decision making

  17. The Paperless Solution

    Science.gov (United States)

    2001-01-01

    REI Systems, Inc. developed a software solution that uses the Internet to eliminate the paperwork typically required to document and manage complex business processes. The data management solution, called Electronic Handbooks (EHBs), is presently used for the entire SBIR program processes at NASA. The EHB-based system is ideal for programs and projects whose users are geographically distributed and are involved in complex management processes and procedures. EHBs provide flexible access control and increased communications while maintaining security for systems of all sizes. Through Internet Protocol- based access, user authentication and user-based access restrictions, role-based access control, and encryption/decryption, EHBs provide the level of security required for confidential data transfer. EHBs contain electronic forms and menus, which can be used in real time to execute the described processes. EHBs use standard word processors that generate ASCII HTML code to set up electronic forms that are viewed within a web browser. EHBs require no end-user software distribution, significantly reducing operating costs. Each interactive handbook simulates a hard-copy version containing chapters with descriptions of participants' roles in the online process.

  18. Middle Eastern solutions

    International Nuclear Information System (INIS)

    Boersma, M.

    2001-01-01

    The need to consider the Middle East as a group of distinct countries and not as one single market and to tailor the services offered by companies is stressed. The cultures, political and social conditions, forms of the oil and gas industry in the countries making up the Middle East and their technology requirements are different and vary widely. The approach taken by Shell Global Solutions to these differences is described and illustrated with Shell's experiences in Oman and Saudi Arabia. Shell has found that Omanis are keen to work in their oil and gas industry, and to protect their country's natural environment. Saudi also have intense pride in their oil industry and here Shell supports refinery operators reduce costs while maintaining strict quality control. Shell has been selected to help Saudi Arabia develop its natural gas reserves; as part of the Core Venture 3 project, Shell will build a power desalination plant

  19. Solvent - solute interaction

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Kalinowski, M.K.

    1983-01-01

    The electronic absorption spectrum of vanadyl acetylacetonate has been studied in 15 organic solvents. It has been found that wavenumbers and molar absorptivities of the long-wavelength bands (d-d transitions) can be well described by a complementary Lewis acid-base model including Gutmann's donor number [Gutmann V., Wychera E., Inorg. Nucl. Chem. Letters 2, 257 (1966)] and acceptor number [Mayer U., Gutmann V., Gerger W., Monatsh. Chem. 106, 1235 (1975)] of a solvent. This model describes also the solvent effect of the hyperfine splitting constant, Asub(iso)( 51 V), from e.s.r. spectra of VOacac 2 . These observations are discussed in terms of the donor-acceptor concept for solvent-solute interactions. (Author)

  20. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  1. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    Science.gov (United States)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  2. Natural climate solutions

    Science.gov (United States)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  3. Location Intelligence Solutions

    International Nuclear Information System (INIS)

    Schmidt, D.

    2015-01-01

    Location Intelligence (LI) means using the spatial dimension of information as a key to support business processes. This spatial dimension has to be defined by geographic coordinates. Storing these spatial objects in a database allows for attaching a 'meaning' to them, like 'current position', 'border', 'building' or 'room'. Now the coordinates represent real-world objects, which can be relevant for the measurement, documentation, control or optimization of (parameters of) business processes aiming at different business objectives. But LI can only be applied, if the locations can be determined with an accuracy (in space and time) appropriate for the business process in consideration. Therefore the first step in any development of a LI solution is the analysis of the business process itself regarding its requirements for spatial and time resolution and accuracy. The next step is the detailed analysis of the surrounding conditions of the process: Does the process happen indoor and/or outdoor? Are there moving objects? If yes, how fast are they? How does the relevant environment look like? Is technical infrastructure available? Is the process restricted by regulations? As a result, a proper Location Detection Technology (LDT) has to be chosen in order to get reliable and accurate positions of the relevant objects. At the highly challenging conditions of the business processes IAEA inspectors are working with, the chosen LDTs have to deliver reliable positioning on ''room-level'' accuracy, even if there is no location enabling infrastructure in place, the objects (people) mostly are indoors and have to work under strong regulations. The presentation will give insights into innovative LI solutions based on technologies of different LDT providers. Pros and cons of combinations of different LDT (like multi- GNSS, IMU, camera, and human interaction based positioning) will be discussed from the

  4. Solute diffusivity in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2012-01-01

    Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...

  5. Future climate. Engineering solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ferdinand, J.F.; Hagedorn-Rasmussen, P.; Fonnesbech, B.

    2009-09-15

    Future Climate Engineering Solutions - Joint Report is the common output and a documentation of more than 1 year's effort by 13 engineering associations - in 12 countries - to demonstrate how technologies can combat climate change. The report consists of three parts: Summaries of 10 national climate plans and technology prospects, 5 Key Common Findings, and a Climate Call from Engineers to create a new global climate treaty. The basic assumption of the project is recognition that GHG emissions, and their concentration in the atmosphere, must be reduced to a sustainable level. The project definition of a sustainable level is equivalent to the best-case stabilisation scenario which was presented in the 4th Assessment Report (AR4) by the UN Intergovernmental Panel on Climate Change (IPCC), whereby the global mean temperature is most likely to stabilise at 2.0-2.4 deg. C. The Future Climate website www.futureclimate.info holds more information about the project, including possibility to download project material, including the full national climate plans.

  6. Plutonium solution analyzer

    International Nuclear Information System (INIS)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded)

  7. Simple de Sitter solutions

    International Nuclear Information System (INIS)

    Silverstein, Eva

    2008-01-01

    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential

  8. Plutonium solution analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.A.

    1994-09-01

    A fully automated analyzer has been developed for plutonium solutions. It was assembled from several commercially available modules, is based upon segmented flow analysis, and exhibits precision about an order of magnitude better than commercial units (0.5%-O.05% RSD). The system was designed to accept unmeasured, untreated liquid samples in the concentration range 40-240 g/L and produce a report with sample identification, sample concentrations, and an abundance of statistics. Optional hydraulics can accommodate samples in the concentration range 0.4-4.0 g/L. Operating at a typical rate of 30 to 40 samples per hour, it consumes only 0.074 mL of each sample and standard, and generates waste at the rate of about 1.5 mL per minute. No radioactive material passes through its multichannel peristaltic pump (which remains outside the glovebox, uncontaminated) but rather is handled by a 6-port, 2-position chromatography-type loop valve. An accompanying computer is programmed in QuickBASIC 4.5 to provide both instrument control and data reduction. The program is truly user-friendly and communication between operator and instrument is via computer screen displays and keyboard. Two important issues which have been addressed are waste minimization and operator safety (the analyzer can run in the absence of an operator, once its autosampler has been loaded).

  9. Insight solutions are correct more often than analytic solutions

    Science.gov (United States)

    Salvi, Carola; Bricolo, Emanuela; Kounios, John; Bowden, Edward; Beeman, Mark

    2016-01-01

    How accurate are insights compared to analytical solutions? In four experiments, we investigated how participants’ solving strategies influenced their solution accuracies across different types of problems, including one that was linguistic, one that was visual and two that were mixed visual-linguistic. In each experiment, participants’ self-judged insight solutions were, on average, more accurate than their analytic ones. We hypothesised that insight solutions have superior accuracy because they emerge into consciousness in an all-or-nothing fashion when the unconscious solving process is complete, whereas analytic solutions can be guesses based on conscious, prematurely terminated, processing. This hypothesis is supported by the finding that participants’ analytic solutions included relatively more incorrect responses (i.e., errors of commission) than timeouts (i.e., errors of omission) compared to their insight responses. PMID:27667960

  10. Properties of scintillator solutes

    International Nuclear Information System (INIS)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, λ avg , at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, λ max , and emission λ avg values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs

  11. CEFR information management system solution

    International Nuclear Information System (INIS)

    Lu Fei; Zhao Jia'ning

    2011-01-01

    Based on finished information resources planning scheme for China sodium cooled experimental fast breeder reactor and the advanced information resources management solution concepts were applied, we got the building solution of CEFR information management systems. At the same time, the technical solutions of systems structures, logic structures, physical structures, development platforms and operation platforms for information resources management system in fast breeder reactors were developed, which provided programmatic introductions for development works in future. (authors)

  12. Indium flotation from hydrometallurgical solutions

    International Nuclear Information System (INIS)

    Sviridov, V.V.; Mal'tsev, G.I.; Petryakova, N.K.; Gomzikov, A.I.

    1980-01-01

    The principal possibility of flotation of indium small quantities (10 -4 gxion/l) is established from sulphuric-acid solutions of leaching converter dusts of the copper melting production in the form of complex compounds with sodium hexametaphosphate and cation-active nitrogen-containing surfactants. It is shown that the flotation process effectiveness is determined by the molar ratio of hexametaphosphate and collector introduced into the solution, solution oxidity and surfactant nature

  13. HGMF of 10-L solutions

    International Nuclear Information System (INIS)

    Larkin, K.A.

    1994-01-01

    This test plan describes the activities associated with the High Gradient Magnetic Filtration (HGMF) of plutonium-bearing solutions (10-L). The 10-L solutions were received from Argonne National Laboratories in 1972, are highly acidic, and are considered unstable. The purpose of the testing is to show that HGMF is an applicable method of removing plutonium precipitates from solution. The plutonium then can be stored safely in a solid form

  14. Structure and dynamics of solutions

    CERN Document Server

    Ohtaki, H

    2013-01-01

    Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos

  15. Enhanced safeguards via solution monitoring

    International Nuclear Information System (INIS)

    Burr, T.; Wangen, L.

    1996-09-01

    Solution monitoring is defined as the essentially continuous monitoring of solution level, density, and temperature in all tanks in the process that contain, or could contain, safeguards-significant quantities of nuclear material. This report describes some of the enhancements that solution monitoring could make to international safeguards. The focus is on the quantifiable benefits of solution monitoring, but qualitatively, solution monitoring can be viewed as a form of surveillance. Quantitatively, solution monitoring can in some cases improve diversion detection probability. For example, the authors show that under certain assumptions, solution monitoring can be used to reduce the standard deviation of the annual material balance, σ MB , from approximately 17 kg to approximately 4 kg. Such reduction in σ MB will not always be possible, as they discuss. However, in all cases, solution monitoring would provide assurance that the measurement error models are adequate so that one has confidence in his estimate of σ MB . Some of the results in this report were generated using data that were simulated with prototype solution monitoring software that they are developing. An accompanying document describes that software

  16. A saving solution.

    Science.gov (United States)

    Mckee, N

    1983-10-01

    Dr. Mujibur Rahaman, senior scientist at the International Center for Diarrheal Disease Research in Bangladesh, was interviewed recently in regard to oral rehydration therapy (ORT), a simple and inexpensive way of treating the loss of essential fluids and minerals that accompanies diarrhea. According to Rahaman, ORT, developed quite a while ago, is recently gaining more publicity and wider acceptance as a menas of replacing the water and electrolytes lost during acute diarrhea attack. The standard ingredients of the ORT mixture, as it is used in Bangladesh, are 3.5 gm of sodium chloride, or common salt, 2.5 gm sodium bicarbonate, and 1 gm of potassium chloride. To this one should add either 20 gm of glucose or 40 gm of sugar. This mixture should be dissolved in 1 liter of plain drinking water. Plain sugar is good enough. How much is needed depends on the severity and the duration of diarrhea. Calculations have shown that, as a rule of thumb, a child of 10-12 kg may require little more than a liter in about 24 hours. If the child has diarrhea of sufficient severity, it may require more than a liter. If the diarrhea is prolonged, it may require 2 liters. For children who are in danger of dying from dehydration, parents are warned to be watchful because further treatment and follow-up may be required. In Bangladesh a national program is currently providing the ORT in remote rural areas. At present about 1/3 of Bangladesh is covered. The national health service is distributing the solution free of cost in the villages where they have health volunteers. Although ORT is simple to make and simple to administer, one has to exercise some degree of caution with it in order to prevent infants getting dangerous symptoms like hypernatremia. ORT makes it possible for health educators to enter into the family. It is not totally correct to say water is the main problem or causative factor in producing diarrhea. In infantile diarrhea, the cause is most often a virus. Viral

  17. Calibration of 232U solution

    International Nuclear Information System (INIS)

    Galan Valera, M. P.; Acena Berrenechea, M. L.

    1988-01-01

    A method for as certain the activity by alpha spectroscopy with semiconductor detectors, of a solution of 232U is presented. It consists of the comparison with a 233U solution activity previously measured in a gridded ionization chamber of 2π geometry. The total measurement uncertainty is about + - 0,02. (Author) 9 refs

  18. Calibration of uranium 232 solution

    International Nuclear Information System (INIS)

    Galan, M.P.; Acena, M.L.

    1988-01-01

    A method for acertainning the activity by alpha spectroscopy with semiconductor detectors, of a solution of Uranium-232 is presented. It consists of the comparison with a Uranium-233 solution activity previously measured in a gridded ionization chamber of 2 π geometry. The total measurement uncertainty is about +- 0,02. (Author)

  19. Requirements Engineering: Solutions and Trends

    NARCIS (Netherlands)

    Ebert, C.; Wieringa, Roelf J.; Aurum, A.; Wohlin, C.

    2005-01-01

    This last chapter of the book describes solutions and trends in the discipline of RE. Starting from a wrap-up of what was presented throughout this book, it suggests a framework of requirements engineering and indicates what current solutions are available in this framework. Beyond providing a short

  20. A Wronskian of Jost solutions

    International Nuclear Information System (INIS)

    Corona-Corona, Gulmaro

    2004-01-01

    Based on the standard fact that any matrix potential u=u(x) determines a family of Jost solutions whose parameter runs analytically (continuously) on the (closed) half planes, respectively, the zeros of a suitable matrix valued Wronskian of a Jost solution pair are explored

  1. Some exact Bradlow vortex solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)

    2017-05-08

    We consider the Bradlow equation for vortices which was recently found by Manton and find a two-parameter class of analytic solutions in closed form on nontrivial geometries with non-constant curvature. The general solution to our class of metrics is given by a hypergeometric function and the area of the vortex domain by the Gaussian hypergeometric function.

  2. Exploring manufacturing solutions for SMEs

    DEFF Research Database (Denmark)

    Radziwon, Agnieszka; Blichfeldt, Henrik; Bilberg, Arne

    This exploratory study provides an overview over current state of manufacturing solutions in small and medium sized enterprises (SMEs) in region of Southern Denmark. Building on manufacturing paradigms, this paper reveals relevant aspects for the development and implementation of improving SMEs...... of manufacturing solutions, which are required to increase their competitiveness and assure sustainable growth....

  3. Thermotransport in interstitial solid solutions

    International Nuclear Information System (INIS)

    Fogel'son, R.L.

    1982-01-01

    On the basis of literature data the problem of thermotransport of impurities (H, N, O, C) in interstitial solid solutions is considered. It is shown that from experimental data on the thermotransport an important parameter of dissolved atoms can be found which characterizes atom state in these solutions-enthalpy of transport

  4. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  5. Whole analogy between Daniel Bernoulli solution and direct kinematics solution

    Directory of Open Access Journals (Sweden)

    Filipović Mirjana

    2010-01-01

    Full Text Available In this paper, the relationship between the original Euler-Bernoulli's rod equation and contemporary knowledge is established. The solution which Daniel Bernoulli defined for the simplest conditions is essentially the solution of 'direct kinematics'. For this reason, special attention is devoted to dynamics and kinematics of elastic mechanisms configuration. The Euler-Bernoulli equation and its solution (used in literature for a long time should be expanded according to the requirements of the mechanisms motion complexity. The elastic deformation is a dynamic value that depends on the total mechanism movements dynamics. Mathematical model of the actuators comprises also elasticity forces.

  6. Solutions for the food processing industry; Shokuhin seizogyo solution

    Energy Technology Data Exchange (ETDEWEB)

    Toda, T; Iwami, N [Fuji Electric Co. Ltd., Tokyo (Japan)

    1999-09-10

    To improve quality control and maintain stable operation, the food processing industry requires problem solutions in total, including not only processing and operation control divisions but also quality control, design and production technology, and maintenance divisions. This paper describes solutions for HACCP (hazard analysis critical control point) support, quality control, and maintenance, in order to improve the quality level, ensure traceability and realize stable processing operations. (author)

  7. Solution of the Baxter equation

    International Nuclear Information System (INIS)

    Janik, R.A.

    1996-01-01

    We present a method of construction of a family of solutions of the Baxter equation arising in the Generalized Leading Logarithmic Approximation (GLLA) of the QCD pomeron. The details are given for the exchange of N = 2 reggeons but everything can be generalized in a straightforward way to arbitrary N. A specific choice of solutions is shown to reproduce the correct energy levels for half integral conformal weights. It is shown that the Baxter's equation must be supplemented by an additional condition on the solution. (author)

  8. Analytic Solutions and Resonant Solutions of Hyperbolic Partial Differential Equations

    Science.gov (United States)

    Wagenmaker, Timothy Roger

    This dissertation contains two main subject areas. The first deals with solutions to the wave equation Du/Dt + a Du/Dx = 0, where D/Dt and D/Dx represent partial derivatives and a(t,x) is real valued. The question I studied, which arises in control theory, is whether solutions which are real analytic with respect to the time variable are dense in the space of all solutions. If a is real analytic in t and x, the Cauchy-Kovalevsky Theorem implies that the solutions real analytic in t and x are dense, since it suffices to approximate the initial data by polynomials. The same positive result is valid when a is continuously differentiable and independent of t. This is proved by regularization in time. The hypothesis that a is independent of t cannot be replaced by the weaker assumption that a is real analytic in t, even when it is infinitely smooth. I construct a(t,x) for which the solutions which are analytic in time are automatically periodic in time. In particular these solutions are not dense in the space of all solutions. The second area concerns the resonant interaction of oscillatory waves propagating in a compressible inviscid fluid. An asymptotic description given by Andrew Majda, Rodolfo Rosales, and Maria Schonbek (MRS) involves the genuinely nonlinear quasilinear hyperbolic system Du/Dt + D(uu/2)/Dt + v = 0, Dv/Dt - D(vv/2)/Dt - u = 0. They performed many numerical simulations which indicated that small amplitude solutions of this system tend to evade shock formation, and conjectured that "smooth initial data with a sufficiently small amplitude never develop shocks throughout a long time interval of integration.". I proved that for smooth periodic U(x), V(x) and initial data u(0,x) = epsilonU(x), v(0,x) = epsilonV(x), the solution is smooth for time at least constant times | ln epsilon| /epsilon. This is longer than the lifetime order 1/ epsilon of the solution to the decoupled Burgers equations. The decoupled equation describes nonresonant interaction of

  9. Simple Solutions for Dry Eye

    Science.gov (United States)

    Patient Education Sheet Simple Solutions for Dry Eye The SSF thanks J. Daniel Nelson, MD, Associate Medical Director, Specialty Care HealthPartners Medical Group & Clinics, and Professor of Ophthalmology, University of ...

  10. Soliton solutions for Q3

    International Nuclear Information System (INIS)

    Atkinson, James; Nijhoff, Frank; Hietarinta, Jarmo

    2008-01-01

    We construct N-soliton solutions to the equation called Q3 in the recent Adler-Bobenko-Suris classification. An essential ingredient in the construction is the relationship of (Q3) δ=0 to the equation proposed by Nijhoff, Quispel and Capel in 1983 (the NQC equation). This latter equation has two extra parameters, and depending on their sign choices we get a 4-to-1 relationship from NQC to (Q3) δ=0 . This leads to a four-term background solution, and then to a 1-soliton solution using a Baecklund transformation. Using the 1SS as a guide allows us to get the N-soliton solution in terms of the τ-function of the Hirota-Miwa equation. (fast track communication)

  11. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  12. Exact cosmological solutions for MOG

    International Nuclear Information System (INIS)

    Roshan, Mahmood

    2015-01-01

    We find some new exact cosmological solutions for the covariant scalar-tensor-vector gravity theory, the so-called modified gravity (MOG). The exact solution of the vacuum field equations has been derived. Also, for non-vacuum cases we have found some exact solutions with the aid of the Noether symmetry approach. More specifically, the symmetry vector and also the Noether conserved quantity associated to the point-like Lagrangian of the theory have been found. Also we find the exact form of the generic vector field potential of this theory by considering the behavior of the relevant point-like Lagrangian under the infinitesimal generator of the Noether symmetry. Finally, we discuss the cosmological implications of the solutions. (orig.)

  13. Solute carrier transporters: Pharmacogenomics research ...

    African Journals Online (AJOL)

    Aghogho

    2010-12-27

    Dec 27, 2010 ... This paper reviews the solute carrier transporters and highlights the fact that there is much to be learnt from .... transporters, drug targets, effect or proteins and meta- ... basolateral or apical plasma membrane of polarized cells,.

  14. Transnistria: Prospects for a Solution

    National Research Council Canada - National Science Library

    Urse, Cristian

    2007-01-01

    .... After the conclusion of the agreement that ended the armed conflict, Chisinau and Tiraspol made efforts to find a political solution, under the supervision of a negotiation mechanism that included...

  15. Anthology of dry storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Allimann, Nathalie; Otton, Camille [AREVA, Paris (France)

    2012-03-15

    Around 35,000 PWR, BWR or Veer used fuel elements with various enrichment value up to 5%, various cooling time down to 2 years and various burn-ups up to 60,000 Mwd/tU are currently stored in AREVA dry storage solutions. These solutions are delivered in the United States, in Japan and in many European countries like Belgium, Switzerland, Italy, Armenia and Germany. With more than 1000 dry storage solutions delivered all over the world AREVA is the leader on this market. Dealing with dry storage is not an easy task. Products have to be flexible, to be adapted to customer needs and to the national regulations which may stipulate very strict tests such as airplane crash or simulation of earthquake. To develop a dry storage solution for a foreign country means to deal with its national competent authorities. All the national competent authorities do not have the same requirements. Storage conditions may also be different.

  16. Anthology of dry storage solutions

    International Nuclear Information System (INIS)

    Allimann, Nathalie; Otton, Camille

    2012-01-01

    Around 35,000 PWR, BWR or Veer used fuel elements with various enrichment value up to 5%, various cooling time down to 2 years and various burn-ups up to 60,000 Mwd/tU are currently stored in AREVA dry storage solutions. These solutions are delivered in the United States, in Japan and in many European countries like Belgium, Switzerland, Italy, Armenia and Germany. With more than 1000 dry storage solutions delivered all over the world AREVA is the leader on this market. Dealing with dry storage is not an easy task. Products have to be flexible, to be adapted to customer needs and to the national regulations which may stipulate very strict tests such as airplane crash or simulation of earthquake. To develop a dry storage solution for a foreign country means to deal with its national competent authorities. All the national competent authorities do not have the same requirements. Storage conditions may also be different

  17. Rapidly Deployable Mobile Security Solution

    Science.gov (United States)

    2016-03-01

    Chapter V, but Android provides default onboard encryption and it is an optional feature for removable media. Wipe the device (to scrub its stored...Mobile Data Solution Since Android has removed the ability to control mobile data, and it is unknown if a creative solution to shut this feature...down exists, then some exploration on this topic is warranted. Android removed the access to this feature under the auspices of preventing

  18. Reuse of hydroponic waste solution.

    Science.gov (United States)

    Kumar, Ramasamy Rajesh; Cho, Jae Young

    2014-01-01

    Attaining sustainable agriculture is a key goal in many parts of the world. The increased environmental awareness and the ongoing attempts to execute agricultural practices that are economically feasible and environmentally safe promote the use of hydroponic cultivation. Hydroponics is a technology for growing plants in nutrient solutions with or without the use of artificial medium to provide mechanical support. Major problems for hydroponic cultivation are higher operational cost and the causing of pollution due to discharge of waste nutrient solution. The nutrient effluent released into the environment can have negative impacts on the surrounding ecosystems as well as the potential to contaminate the groundwater utilized by humans for drinking purposes. The reuse of non-recycled, nutrient-rich hydroponic waste solution for growing plants in greenhouses is the possible way to control environmental pollution. Many researchers have successfully grown several plant species in hydroponic waste solution with high yield. Hence, this review addresses the problems associated with the release of hydroponic waste solution into the environment and possible reuse of hydroponic waste solution as an alternative resource for agriculture development and to control environmental pollution.

  19. Radiolysis of Aqueous Toluene Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Gustafson, R

    1971-04-15

    Aqueous toluene solutions have been irradiated with Co gamma-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N{sub 2}O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G = 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N{sub 2}O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H{sub 2}). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  20. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Christensen, H.C.; Gustafson, R.

    1971-04-01

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N 2 O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N 2 O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H 2 ). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  1. Technetium recovery from high alkaline solution

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  2. Uber das Gravitationsfeld eines Massenpunktes nach der Einstenschen Theorie

    OpenAIRE

    Bel, Ll.

    2007-01-01

    Schwarzschild's solution of Einstein's field equations in vacuum can be written in many different forms. Unfortunately Schwarzschild's own original form is less nice looking and simple than that latter derived by Droste and Hilbert. We prove here that we can have both: a nice looking simple form and the meaning that Schwarzschild wanted to give to his solution, i.e., that of describing the gravitational field of a massive point particle.

  3. Torsion induces gravity

    International Nuclear Information System (INIS)

    Aros, Rodrigo; Contreras, Mauricio

    2006-01-01

    In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively

  4. Radiolysis of Aqueous Benzene Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H

    1964-05-15

    Aerated and deaerated aqueous solutions of benzene have been irradiated with {sup 60}Co {gamma}-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H{sub 2}) = 0.44 (0. 43) and G(H{sub 2}O{sub 2}) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e{sup -}{sub aq} + H{sub 2}O{sub 2}) >> k(H + H{sub 2}O{sub 2}). Furthermore, the results indicate that a competition takes place between the reactions: 2 C{sub 6}H{sub 6}OH {center_dot} -> dimer -> biphenyl. C{sub 6}H{sub 7} {center_dot} + C{sub 6}H{sub 6}OH {center_dot} -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H{sub 2}O{sub 2}) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C{sub 6}H{sub 6})/k(H + O{sub 2}) was 1.4x10{sup -2}. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe{sup 2+} or Fe{sup 3+} to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed.

  5. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena

    2012-01-01

    Roč. 42, SI (2012), s. 1682-1691 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * sea buckthom leaves * solute-solute interaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  6. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  7. HectoMAPping the Universe. Karl Schwarzschild Award Lecture 2014

    Science.gov (United States)

    Geller, Margaret J.; Hwang, Ho Seong

    2015-06-01

    During the last three decades progress in mapping the Universe from an age of 400 000 years to the present has been stunning. Instrument/telescope combinations have naturally determined the sampling of various redshift ranges. Here we outline the impact of the Hectospec on the MMT on exploration of the Universe in the redshift range 0.2 ⪉ z ⪉ 0.8. We focus on dense redshift surveys, SHELS and HectoMAP. SHELS is a complete magnitude limited survey covering 8 square degrees. The HectoMAP survey combines a red-selected dense redshift survey and a weak lensing map covering 50 square degrees. Combining the dense redshift survey with a Subaru HyperSuprimeCam (HSC) weak lensing map will provide a powerful probe of the way galaxies trace the distribution of dark matter on a wide range of physical scales.

  8. Entropy corresponding to the interior of a Schwarzschild black hole

    Directory of Open Access Journals (Sweden)

    Bibhas Ranjan Majhi

    2017-07-01

    Full Text Available Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein–Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.

  9. Entropy corresponding to the interior of a Schwarzschild black hole

    Science.gov (United States)

    Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-07-01

    Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein-Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.

  10. Quantum stress tensor in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Howard, K.W.; Candelas, P.

    1984-01-01

    The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking state in Schwartzschild space-time has been calculated for the conformal scalar field. separates naturally into the sum of two terms. The first coincides with an approximate expression suggested by Page. The second term is a ''remainder'' that may be evaluated numerically. The total expression is in good qualitative agreement with Page's approximation. These results are at variance with earlier results given by Fawcett whose error is explained

  11. Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...

  12. Solidification of radioactive aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Aikawa, Hideaki; Kato, Kiyoshi; Wadachi, Yoshiki

    1970-09-07

    A process for solidifying a radioactive waste solution is provided, using as a solidifying agent a mixture of calcined gypsum and burnt vermiculite. The quantity ratio of the mixture is preferred to be 1:1 by volume. The quantity of impregnation is 1/2 of the volume of the total quantity of the solidifying agent. In embodiments, 10 liters of plutonium waste solution was mixed with a mixture of 1:1 calcined gypsum and burnt vermiculite contained in a 20-liter cylindrical steel container lined with asphalt. The plutonium waste solution from the laboratory was neutralized with a caustic soda aqueous solution to prevent explosion due to the nitration of organic compounds. The neutralization is not always necessary. A market available dental gypsum was calcined at 400 to 500/sup 0/C and a vermiculite from Illinois was burnt at 1,100/sup 0/C to prepare the agents. The time required for the impregnation with 10 liters of plutonium solution was four minutes. After impregnation, the temperature rose to 40/sup 0/C within 30 minutes to one hour. Next, it was cooled to room temperature by standing for 3-4 hours. Solidification time was about 1 hour. The Japan Atomic Energy Research Insitute had treated and disposed about 1,000 tons of plutonium waste by this process as of August 19, 1970.

  13. Project Management Plan Solution Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    SATO, P.K.

    1999-08-31

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  14. Project Management Plan Solution Stabilization

    International Nuclear Information System (INIS)

    SATO, P.K.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process

  15. Plagiarism Detection by Online Solutions.

    Science.gov (United States)

    Masic, Izet; Begic, Edin; Dobraca, Amra

    2017-01-01

    The problem of plagiarism represents one of the burning issues of the modern scientific world. Detection of plagiarism is a problem that the Editorial Board encounters in their daily work. Software solutions represent a good solution for the detection of plagiarism. The problem of plagiarism will become most discussed topic of the modern scientific world, especially due to the development of standard measures, which rank the work of one author. Investment in education, education of young research personnel about the importance of scientific research, with paying particular attention on ethical behavior, becomes an imperative of academic staff. Editors have to invest additional effort in the development of the base of reviewers team as well as in their proper guidance, because after all, despite the software solutions, they are the best weapon to fight plagiarism. Peer review process should be a key of successful operation of each journal.

  16. Device for analyzing a solution

    International Nuclear Information System (INIS)

    Marchand, Joseph.

    1978-01-01

    The device enables a solution containing an antigen to be analyzed by the radio-immunology technique without coming up against the problems of antigen-antibody complex and free antigen separation. This device, for analyzing a solution containing a biological compound capable of reacting with an antagonistic compound specific of the biological compound, features a tube closed at its bottom end and a component set and immobilized in the bottom of the tube so as to leave a capacity between the bottom of the tube and its lower end. The component has a large developed surface and is so shaped that it allows the solution to be analyzed to have access to the bottom of the tube; it is made of a material having some elastic deformation and able to take up a given quantity of the biological compound or of the antagonistic compound specific of the biological compound [fr

  17. Analytical Solution of Multicompartment Solute Kinetics for Hemodialysis

    Directory of Open Access Journals (Sweden)

    Przemysław Korohoda

    2013-01-01

    Full Text Available Objective. To provide an exact solution for variable-volume multicompartment kinetic models with linear volume change, and to apply this solution to a 4-compartment diffusion-adjusted regional blood flow model for both urea and creatinine kinetics in hemodialysis. Methods. A matrix-based approach applicable to linear models encompassing any number of compartments is presented. The procedure requires the inversion of a square matrix and the computation of its eigenvalues λ, assuming they are all distinct. This novel approach bypasses the evaluation of the definite integral to solve the inhomogeneous ordinary differential equation. Results. For urea two out of four eigenvalues describing the changes of concentrations in time are about 105 times larger than the other eigenvalues indicating that the 4-compartment model essentially reduces to the 2-compartment regional blood flow model. In case of creatinine, however, the distribution of eigenvalues is more balanced (a factor of 102 between the largest and the smallest eigenvalue indicating that all four compartments contribute to creatinine kinetics in hemodialysis. Interpretation. Apart from providing an exact analytic solution for practical applications such as the identification of relevant model and treatment parameters, the matrix-based approach reveals characteristic details on model symmetry and complexity for different solutes.

  18. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  19. Fundamental solutions of singular SPDEs

    International Nuclear Information System (INIS)

    Selesi, Dora

    2011-01-01

    Highlights: → Fundamental solutions of linear SPDEs are constructed. → Wick-convolution product is introduced for the first time. → Fourier transformation maps Wick-convolution into Wick product. → Solutions of linear SPDEs are expressed via Wick-convolution with fundamental solutions. → Stochastic Helmholtz equation is solved. - Abstract: This paper deals with some models of mathematical physics, where random fluctuations are modeled by white noise or other singular Gaussian generalized processes. White noise, as the distributional derivative od Brownian motion, which is the most important case of a Levy process, is defined in the framework of Hida distribution spaces. The Fourier transformation in the framework of singular generalized stochastic processes is introduced and its applications to solving stochastic differential equations involving Wick products and singularities such as the Dirac delta distribution are presented. Explicit solutions are obtained in form of a chaos expansion in the Kondratiev white noise space, while the coefficients of the expansion are tempered distributions. Stochastic differential equations of the form P(ω, D) ◊ u(x, ω) = A(x, ω) are considered, where A is a singular generalized stochastic process and P(ω, D) is a partial differential operator with random coefficients. We introduce the Wick-convolution operator * which enables us to express the solution as u = s*A ◊ I ◊(-1) , where s denotes the fundamental solution and I is the unit random variable. In particular, the stochastic Helmholtz equation is solved, which in physical interpretation describes waves propagating with a random speed from randomly appearing point sources.

  20. Study of liquids and solutions

    International Nuclear Information System (INIS)

    Bellissent-Funel, M.C.

    1994-01-01

    A critical review of what has been achieved on the structure of liquids and solutions and the capabilities and developments of neutron scattering in this domain, are presented. A great variety of simple to complex systems has been investigated with the aim of obtaining a full microscopic description of the structure. Selected examples demonstrate the neutron scattering determination of interaction potentials, intermolecular structures and partial structure factors of complex systems. The isotopic substitution method is illustrated by the application to the study of the solvation of ions in aqueous and non aqueous solutions. (author). 9 figs., 32 refs

  1. Electrodialysis operation with buffer solution

    Science.gov (United States)

    Hryn, John N [Naperville, IL; Daniels, Edward J [Orland Park, IL; Krumdick, Greg K [Crete, IL

    2009-12-15

    A new method for improving the efficiency of electrodialysis (ED) cells and stacks, in particular those used in chemical synthesis. The process entails adding a buffer solution to the stack for subsequent depletion in the stack during electrolysis. The buffer solution is regenerated continuously after depletion. This buffer process serves to control the hydrogen ion or hydroxide ion concentration so as to protect the active sites of electrodialysis membranes. The process enables electrodialysis processing options for products that are sensitive to pH changes.

  2. Magnetic Half-Monopole Solutions

    International Nuclear Information System (INIS)

    Teh, Rosy; Lim, Kok-Geng; Koh, Pin-Wai

    2009-01-01

    We present exact SU(2) Yang-Mills-Higgs monopole solutions of one half topological charge. These non-Abelian solutions possess gauge potentials which are singular along either the positive or the negative z-axis and common magnetic fields that are singular only at the origin where the half-monopole is located. These half-monopoles are actually a half Wu-Yang monopole and they can possess a finite point electric charge and become half-dyons. They do not necessarily satisfy the first order Bogomol'nyi equations and they possess infinite energy density at r = 0.

  3. Teaching sustainable solutions in engineering

    DEFF Research Database (Denmark)

    Olsen, Stig Irving; Nielsen, Susanne Balslev; Ejlertsen, Marina

    2015-01-01

    's study lines. The objectives of the course 'Sustainability in engineering solutions', is for the participants to understand the basic concept of sustainability and its three dimensions (people, profit, planet), as well as to analyse problems and synthesise solutions that are sustainable throughout...... their life cycle. The course runs over a full time 3-week period and employs project-based learning with several sub-projects/-problems. This paper takes an in-depth discussion of the considerations concerning how to teach such a complicated subject to students of widely differing backgrounds, and reflects...

  4. Fluid mechanics problems and solutions

    CERN Document Server

    Spurk, Joseph H

    1997-01-01

    his collection of over 200 detailed worked exercises adds to and complements the textbook Fluid Mechanics by the same author, and illustrates the teaching material through examples. In the exercises the fundamental concepts of Fluid Mechanics are applied to obtaining the solution of diverse concrete problems, and in doing this the student's skill in the mathematical modeling of practical problems is developed. In addition, 30 challenging questions without detailed solutions have been included, and while lecturers will find these questions suitable for examinations and tests, the student himself can use them to check his understanding of the subject.

  5. Crystal Nucleation of Tolbutamide in Solution: Relationship to Solvent, Solute Conformation, and Solution Structure.

    Science.gov (United States)

    Zeglinski, Jacek; Kuhs, Manuel; Khamar, Dikshitkumar; Hegarty, Avril C; Devi, Renuka K; Rasmuson, Åke C

    2018-04-03

    The influence of the solvent in nucleation of tolbutamide, a medium-sized, flexible and polymorphic organic molecule, has been explored by measuring nucleation induction times, estimating solvent-solute interaction enthalpies using molecular modelling and calorimetric data, probing interactions and clustering with spectroscopy, and modelling solvent-dependence of molecular conformation in solution. The nucleation driving force required to reach the same induction time is strongly solvent-dependent, increasing in the order: acetonitrilenucleation difficulty is a function of the strength of solvent-solute interaction, with emphasis on the interaction with specific H-bonding polar sites of importance in the crystal structure. A clear exception from this rule is the most difficult nucleation in toluene despite the weakest solvent-solute interactions. However molecular dynamics modelling predicts that tolbutamide assumes an intramolecularly H-bonded conformation in toluene, substantially different from and more stable than the conformation in the crystal structure, and thus presenting an additional barrier to nucleation. This explains why nucleation in toluene is the most difficult and why the relatively higher propensity for aggregation of tolbutamide molecules in toluene solution, as observed with FTIR spectroscopy, does not translate into easier nucleation. Thus, our combined experimental and molecular modelling study suggests that the solvent can influence on the nucleation not only via differences in the desolvation but also through the influence on molecular conformation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Numerical Asymptotic Solutions Of Differential Equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1992-01-01

    Numerical algorithms derived and compared with classical analytical methods. In method, expansions replaced with integrals evaluated numerically. Resulting numerical solutions retain linear independence, main advantage of asymptotic solutions.

  7. Siemens IT solutions for power sector

    International Nuclear Information System (INIS)

    Lunter, P.

    2004-01-01

    The cost reduction, flexibility and revenue increase, potential exploitation, productivity increase, and business opportunities exploitation - that is all what can be required in the races for the promonent positioning on the electricity power market. These requirements can be realized by the sophisticated IT solutions hand-tailored to the special requirements of the electric power producers and tradesmen. This approach makes it possible to achieve greater profit. Our solutions 'PROFIT Solutions', that are symbiosis of the most progressive information technologies and the power plant techniques of the company Siemens, satisfy submitted specifications in substantial measure. The system solutions 'PROFIT Solutions' comprise three solution groups: process, operation a business. The solutions of the group 'IT Process Solutions' increase flexibility and manoeuvrability of equipment, improve the efficiency and contribute to more economical operation of the power generation. Solutions 'IT Process Solutions' simplify and shorten the period of power cycles and conduce to higher labour productivity. Solutions group 'IT Process Solutions' approaches equipment to the market - supports the profit strategies, helps quickly and expertly to determine and predict hazards. The extension PROFIT Cockpit means the nuance to the solutions world 'PROFIT Solutions'. The survey about the whole installation is within reach at the simple touch of a button. It is possible to compile the total system part by part from single solutions 'PROFIT Solutions'. As a matter of fact all single parts can be interconnected with already existing solutions. Routines 'PROFIT Solutions' cooperate with all modern control systems. (author)

  8. Some new radiating Kerr-Newman solutions

    International Nuclear Information System (INIS)

    Patel, L.K.; Singh, Tajinder; Koppar, S.S.

    1991-01-01

    Three exact non-static solutions of Einstein-Maxwell equations corresponding to a field of flowing null radiation plus an electromagnetic field are presented. These solutions are non-static generalizations of the well known Kerr-Newman solution. The current vector is null in all the three solutions. These solutions are the electromagnetic generalizations of the three generalized radiating Kerr solutions discussed by Vaidya and Patel. The solutions discussed here describe the exterior gravitational fields of rotating radiating charged bodies. Many known solutions are derived as particular cases. (author). 12 refs

  9. Business value of solution architecture

    NARCIS (Netherlands)

    Slot, R.; Dedene, G.; Maes, R.; Proper, E.; Harmsen, F.; Dietz, J.L.G.

    2009-01-01

    The theory and especially the practice of IT architecture have been developed quite vigorously the last years. However, hardly any quantitative data about the value of IT architecture is available. This paper presents the results of a study, which measures the value of IT solution architecture for

  10. COMPOSITE SOLUTIONS IN RAILROAD ENGINEERING

    Directory of Open Access Journals (Sweden)

    Panfilova Marina Ivanovna

    2012-10-01

    Full Text Available Present-day methods of recovery of used wooden railway ties, including burial, chemical neutralization, gasification and subsequent burning, utilization in the capacity of composite materials, are expensive and unsafe for the environment. The authors propose a new method of their utilization. Ash generated in the course of their burning may replace a portion of cement in composite solutions and act as an additive to grouting mortars designated for the filling of the annulus space of manifold tunnels. The chemical composition of the ash was identified by the x-ray method applied to three samples taken during various periods of time from out of a dry-type dust collector. The level of human health/environmental hazard of the ash is based on its chemical composition. Changes in the rheological properties of composite solutions that contained concrete fractions, various ratios of ash, and 5% of liquid glass were studied in the course of the research. The experiments have proven that in the event of replacement of 20% of cement by ash, the strength of the composite solution is approximately the same as the one of the benchmark sample; therefore, this ash content ratio is deemed acceptable. The finding demonstrate that the ash has no toxic effect, and the ecological safety of this solution is thus confirmed. The authors have proven that 20% of cement may be replaced by the ash generated in the course of burning of waste railway ties.

  11. Aqueous Solution Chemistry of Plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Clark, David L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-28

    Things I have learned working with plutonium: Chemistry of plutonium is complex; Redox equilibria make Pu solution chemistry particularly challenging in the absence of complexing ligands; Understanding this behavior is key to successful Pu chemistry experiments; There is no suitable chemical analog for plutonium.

  12. Negative energy solutions and symmetries

    International Nuclear Information System (INIS)

    Sidharth, B.G.

    2011-01-01

    We revisit the negative energy solutions of the Dirac (and Klein–Gordon) equation, which become relevant at very high energies in the context of the Feshbach–Villars formulation, and study several symmetries which follow therefrom. Significant consequences are briefly examined. (author)

  13. Scorpion toxins prefer salt solutions

    Czech Academy of Sciences Publication Activity Database

    Nikouee, A.; Khabiri, Morteza; Cwiklik, Lukasz

    2015-01-01

    Roč. 21, č. 11 (2015), 287/1-287/14 ISSN 1610-2940 R&D Projects: GA ČR GA13-06181S Institutional support: RVO:61388963 ; RVO:61388955 Keywords : ionic solutions * molecular dynamics * nonaqueous media * secondary structure Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.438, year: 2015

  14. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  15. A pyramid solution at Chernobyl

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the Kiev '92 competition to find a solution to the problem of containing the stricken Chernobyl unit 4, the PPROTECTOR proposal, put forward by a British-led international consortium, ranked fifth after the first round of judging. It made extensive use of advanced CAD techniques. (Author)

  16. Solution chemistry of lanthanide complexes

    International Nuclear Information System (INIS)

    Brittain, H.G.

    1979-01-01

    Intermolecular energy transfer from Tb 3+ to Eu 3+ , luminescence intensity measurements, potentiometric titrations, differential absorption spectroscopy, and spectroscopic titrations were all used to study the binding of lanthanide ions by serine and threonine. At low pH (3.0 to 6.0) the complexes are mononuclear and ligand is only weakly bound. In the pH interval of 6.0 to 8.5 stronger interaction takes place between the ligand and the metal (with possible coordination of the undissociated hydroxyl group), and self-association of complexes becomes important. Above pH 8.5, base hydrolysis of the complexes leads to highly associated species in solution and shortly above this pH an insoluble precipitate is formed. It was found that energy could be transferred from Tb 3+ to Eu 3+ more efficiently among complexes prepared from racemic ligands than in complexes made from resolved ligand, but this stereoselectivity was only observed at pH values greater than 6.5 and in solutions having a 1:10 ratio of metal-to-ligand. No stereoselectivity was found in solutions having 1:5 ratios, and this observation was explained by the existence of 1:2 metal-ligand complexes existing in solutions having the higher ratio of metal-to-ligand (only 1:1 complexes are then found at lower ratios of metal-to-ligand). (author)

  17. Hospitality lighting solutions communication framework

    NARCIS (Netherlands)

    Blanch, Anna

    2014-01-01

    Hospitality customers are looking for systems that involve more than just turning the light on and off. They want lighting solutions that are energy-efficient, flexible and that will help enhance the guest experience. Based on on-going research about the impact that light can have in different

  18. Looking to nature for solutions

    Science.gov (United States)

    Turner, Will R.

    2018-01-01

    Completely stopping fossil fuel use may not be enough to avoid dangerous climate change. Recent research on the mitigation potential of conservation, restoration, and improved land management demonstrates that natural solutions can reduce emissions and remove atmospheric CO2 while safeguarding food security and biodiversity.

  19. Decomposition of metal nitrate solutions

    International Nuclear Information System (INIS)

    Haas, P.A.; Stines, W.B.

    1982-01-01

    Oxides in powder form are obtained from aqueous solutions of one or more heavy metal nitrates (e.g. U, Pu, Th, Ce) by thermal decomposition at 300 to 800 deg C in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal. (author)

  20. Statistical mechanics of protein solutions

    NARCIS (Netherlands)

    Prinsen, P.

    2007-01-01

    We study theoretically thermodynamic properties of spherical globular proteins in aqueous solution with added monovalent salt. We show how one can determine an effective interaction potential between the proteins from experimental data as a function of salt concentration and we apply this to the

  1. CERN single sign on solution

    International Nuclear Information System (INIS)

    Ormancey, E

    2008-01-01

    The need for Single Sign On has always been restricted by the absence of cross platform solutions: a single sign on working only on one platform or technology is nearly useless. The recent improvements in Web Services Federation (WS-Federation) standard enabling federation of identity, attribute, authentication and authorization information can now provide real extended Single Sign On solutions. Various solutions have been investigated at CERN and now, a Web SSO solution using some parts of WS-Federation technology is available. Using the Shibboleth Service Provider module for Apache hosted web sites and Microsoft ADFS as the identity provider linked to Active Directory user, users can now authenticate on any web application using a single authentication platform, providing identity, user information (building, phone...) as well as group membership enabling authorization possibilities. A typical scenario: a CERN user can now authenticate on a Linux/Apache website using Windows Integrated credentials, and his Active Directory group membership can be checked before allowing access to a specific web page

  2. Designing Hyper-V solutions

    CERN Document Server

    Grover, Saurabh

    2015-01-01

    This book is aimed at IT admins, consultants, and architects alike who wish to deploy, manage, and maintain Hyper-V solutions in organizations of various sizes. You are expected to have a working knowledge of managing Windows Server and a fair understanding of networking and storage concepts.

  3. Climate Change. Solutions for Australia

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, T.; Hoegh-Guldberg, O.; Karoly, D.; Lowe, I.; McMichael, T.; Mitchell, C.; Pearman, G.; Scaife, P.; Reynolds, A. (eds.)

    2004-06-01

    The Australian Climate Group was convened in late 2003 by WWF Australia and the Insurance Australia Group (IAG) in response to the increasing need for action on climate change in Australia. This group proposes a set of solutions to lower the risk that climate change will reach a dangerous level.

  4. Archival storage solutions for PACS

    Science.gov (United States)

    Chunn, Timothy

    1997-05-01

    While they are many, one of the inhibitors to the wide spread diffusion of PACS systems has been robust, cost effective digital archive storage solutions. Moreover, an automated Nearline solution is key to a central, sharable data repository, enabling many applications such as PACS, telemedicine and teleradiology, and information warehousing and data mining for research such as patient outcome analysis. Selecting the right solution depends on a number of factors: capacity requirements, write and retrieval performance requirements, scaleability in capacity and performance, configuration architecture and flexibility, subsystem availability and reliability, security requirements, system cost, achievable benefits and cost savings, investment protection, strategic fit and more.This paper addresses many of these issues. It compares and positions optical disk and magnetic tape technologies, which are the predominant archive mediums today. Price and performance comparisons will be made at different archive capacities, plus the effect of file size on storage system throughput will be analyzed. The concept of automated migration of images from high performance, high cost storage devices to high capacity, low cost storage devices will be introduced as a viable way to minimize overall storage costs for an archive. The concept of access density will also be introduced and applied to the selection of the most cost effective archive solution.

  5. Solution properties of hydrophobically modified

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2016-12-01

    Full Text Available We tested nine hydrophobically modified polyacrylamides with molecular weights situated between 1.58 and 0.89 × 106 g/mol for enhanced oil recovery applications. Their solution properties were investigated in the distilled water, brine solution, formation water and sea water. Their critical association concentrations were determined from the relationship between their concentrations and the corresponding apparent viscosities (ηapp at 30 °C at shear rate 6 s−1. They were between 0.4 and 0.5 g/dl. The brine solutions of 0.5 g/dl of HM-PAMs were investigated at different conditions regarding their apparent viscosities. Such conditions were mono and divalent cations, temperature ranging from 30 to 90 °C, the shear rate ranging from 6 to 30 s−1 and the aging time for 45 days. The surface and interfacial tensions for the HM-PAMs were measured for concentration range from 0.01 to 1 g/dl brine solutions at 30 °C and their emulsification efficiencies were investigated for 7 days. The discrepancy in the properties and efficiencies of the tested copolymers was discussed in the light of their chemical structure.

  6. Solutions of Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Utsunomiya Univ. (Japan). Faculty of Education

    1978-12-01

    In this paper the author investigates the Einstein's field equations of the non-vacuum case and generalizes the solution of Robertson-Walker by the three dimensional Einstein spaces. In Section 2 the author shortly generalizes the dynamic space-time of G. Lemetre and A. Friedmann by a simple transformation.

  7. Fundamental solutions in piezoelectricity. Penny-shaped crack solution

    International Nuclear Information System (INIS)

    Dyka, Ewa; Rogowski, Bogdan

    2006-01-01

    The problem of electroelasticity for piezoelectric materials is considered. For axially symmetric states three potentials are introduced, which determine the displacements, the electric potentials, the stresses, the components of the electric field vector and the electric displacements in a piezoelectric body. These fundamental solutions are utilized to solve the penny-shaped crack problem. Two cases of boundary-value problems are considered, namely the permeable and impermeable crack boundary conditions. Exact solutions are obtained for elastic and electric fields. The main results are the stress intensity factor for singular stress and the electric displacement intensity factor. The numerical results are presented graphically to show the influence of applied mechanical and electrical loading on the analyzed quantities and to clarify the effect of anisotropy of piezoelectric materials. It is show that the influence of anisotropy of the materials on these fields is significant

  8. Compacton solutions and multiple compacton solutions for a continuum Toda lattice model

    International Nuclear Information System (INIS)

    Fan Xinghua; Tian Lixin

    2006-01-01

    Some special solutions of the Toda lattice model with a transversal degree of freedom are obtained. With the aid of Mathematica and Wu elimination method, more explicit solitary wave solutions, including compacton solutions, multiple compacton solutions, peakon solutions, as well as periodic solutions are found in this paper

  9. Fissile solution dynamics: Student research

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, D.L.

    1994-09-01

    There are two research projects in criticality safety at the University of Arizona: one in dynamic simulation of hypothetical criticality accidents in fissile solutions, and one in criticality benchmarks using transport theory. We have used the data from nuclear excursions in KEWB, CRAC, and SILENE to help in building models for solution excursions. An equation of state for liquids containing gas bubbles has been developed and coupled to point-reactor dynamics in an attempt to predict fission rate, yield, pressure, and kinetic energy. It appears that radiolytic gas is unimportant until after the first peak, but that it does strongly affect the shape of the subsequent power decrease and also the dynamic pressure.

  10. Automatic validation of numerical solutions

    DEFF Research Database (Denmark)

    Stauning, Ole

    1997-01-01

    This thesis is concerned with ``Automatic Validation of Numerical Solutions''. The basic theory of interval analysis and self-validating methods is introduced. The mean value enclosure is applied to discrete mappings for obtaining narrow enclosures of the iterates when applying these mappings...... differential equations, but in this thesis, we describe how to use the methods for enclosing iterates of discrete mappings, and then later use them for discretizing solutions of ordinary differential equations. The theory of automatic differentiation is introduced, and three methods for obtaining derivatives...... are described: The forward, the backward, and the Taylor expansion methods. The three methods have been implemented in the C++ program packages FADBAD/TADIFF. Some examples showing how to use the three metho ds are presented. A feature of FADBAD/TADIFF not present in other automatic differentiation packages...

  11. Dynamic viscosity of polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterlin, A

    1982-03-01

    The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.

  12. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  13. Restoration of uranium solution mining deposits

    International Nuclear Information System (INIS)

    Devries, F.W.; Lawes, B.C.

    1982-01-01

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal

  14. Gold and Silver Extraction from Leach Solutions

    OpenAIRE

    Bagdaulet K. Kenzhaliyev; Renata R. Iskhakova; Zamzagul D. Dosymbaeva; Esen N. Sulejmenov

    2014-01-01

    There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  15. Restoration of uranium solution mining deposits

    Energy Technology Data Exchange (ETDEWEB)

    Devries, F.W.; Lawes, B.C.

    1982-01-19

    A process is provided for restoring an ore deposit after uranium solution mining using ammonium carbonate leaching solutions has ceased. The process involves flushing the deposit with an aqueous solution of a potassium salt during which potassium ions exchange with ammonium ions remaining in the deposit. The ammonium containing flushing solution is withdrawn from the deposit for disposal.

  16. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.084025

  17. Providing solutions to engineering problems

    International Nuclear Information System (INIS)

    Connop, R.P.P.

    1991-01-01

    BNFL has acquired unique experience over a period of 40 years in specifying, designing and constructing spent fuel reprocessing and associated waste management plant. This experience is currently used to support a pound 5.5 billion capital investment programme. This paper reviews a number of engineering problems and their solutions to highlight BNFL experience in providing comprehensive specification, design and engineering and project management services. (author)

  18. New regular black hole solutions

    International Nuclear Information System (INIS)

    Lemos, Jose P. S.; Zanchin, Vilson T.

    2011-01-01

    In the present work we consider general relativity coupled to Maxwell's electromagnetism and charged matter. Under the assumption of spherical symmetry, there is a particular class of solutions that correspond to regular charged black holes whose interior region is de Sitter, the exterior region is Reissner-Nordstroem and there is a charged thin-layer in-between the two. The main physical and geometrical properties of such charged regular black holes are analyzed.

  19. ATM security via "Stargate" solution

    OpenAIRE

    Hensley, Katrina; Ludden, Fredrick

    1999-01-01

    Approved for public release, distribution unlimited. In today's world of integrating voice, video and data into a single network, Asynchronous Transfer Mode (ATM) networks have become prevalent in the Department of Defense. The Department of Defense's critical data will have to pass through public networks, which causes concern for security. This study presents an efficient solution aimed at authenticating communications over public ATM networks. The authenticating device, Stargate, utiliz...

  20. Clean Energy Solutions Center (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  1. Combinatorial solutions to integrable hierarchies

    Science.gov (United States)

    Kazarian, M. E.; Lando, S. K.

    2015-06-01

    This paper reviews modern approaches to the construction of formal solutions to integrable hierarchies of mathematical physics whose coefficients are answers to various enumerative problems. The relationship between these approaches and the combinatorics of symmetric groups and their representations is explained. Applications of the results to the construction of efficient computations in problems related to models of quantum field theories are described. Bibliography: 34 titles.

  2. Exact solutions to quadratic gravity

    Czech Academy of Sciences Publication Activity Database

    Pravda, Vojtěch; Pravdová, Alena; Podolský, J.; Švarc, J.

    2017-01-01

    Roč. 95, č. 8 (2017), č. článku 084025. ISSN 2470-0010 R&D Projects: GA ČR GB14-37086G Institutional support: RVO:67985840 Keywords : quadratic gravity * exact solutions * Kundt spacetimes Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 4.568, year: 2016 https://journals. aps .org/prd/abstract/10.1103/PhysRevD.95.084025

  3. Solution Prototyping with Design Thinking

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    2014-01-01

    are tried to be broken and Design Thinking advantages are increasingly preferred by man- agement. This case study based paper provides key insights into how DT phases and behavior can be changed for creating synergy across employees, manage- ment and products from which the end-consumer benefits. The Social...... Media for SAP store case study combines a conceptual and product oriented solution deri- vation with Design Thinking....

  4. Solution Prototyping with Design Thinking

    DEFF Research Database (Denmark)

    Efeoglu, Arkin; Møller, Charles; Serie, Michel

    are tried to be broken and Design Thinking advantages are increasingly preferred by man- agement. This case study based paper provides key insights into how DT phases and behavior can be changed for creating synergy across employees, manage- ment and products from which the end-consumer benefits. The Social...... Media for SAP store case study combines a conceptual and product oriented solution deri- vation with Design Thinking....

  5. Renormgroup symmetry for solution functionals

    International Nuclear Information System (INIS)

    Shirkov, D.V.; Kovalev, V.F.

    2004-01-01

    The paper contains generalization of the renormgroup algorithm for boundary value problems of mathematical physics and related concept of the renormgroup symmetry, formulated earlier by the authors with reference to models based on differential equations. These algorithm and symmetry are formulated now for models with nonlocal (integral) equations. We discuss in detail and illustrate by examples the applications of the generalized algorithm to models with nonlocal terms which appear as linear functionals of the solution. (author)

  6. Experimental Designs Exercises and Solutions

    CERN Document Server

    Kabe, DG

    2007-01-01

    This volume provides a collection of exercises together with their solutions in design and analysis of experiments. The theoretical results, essential for understanding, are given first. These exercises have been collected during the authors teaching courses over a long period of time. These are particularly helpful to the students studying the design of experiments and instructors and researchers engaged in the teaching and research of design by experiment.

  7. One Monopole-Antimonopole Pair Solutions

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, K.-M.

    2009-01-01

    We present new classical generalized one monopole-antimonopole pair solutions of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that in general the one monopole-antimonopole solution need not be solved by imposing mθ-winding number to be integer greater than one. We also show that this solution can be solved when m = 1 by transforming the large distance asymptotic solutions to general solutions that depend on a parameter p. Secondly we show that these large distance asymptotic solutions can be further generalized to the Jacobi elliptic functions. We focus our numerical calculation on the Jacobi elliptic functions solution when the nφ-winding number is one and show that this generalized Jacobi elliptic 1-MAP solution possesses lower energy. All these solutions are numerical finite energy non-BPS solutions of the Yang-Mills-Higgs field theory.

  8. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  9. Exact Solutions for Two Equation Hierarchies

    International Nuclear Information System (INIS)

    Song-Lin, Zhao; Da-Jun, Zhang; Jie, Ji

    2010-01-01

    Bilinear forms and double-Wronskian solutions are given for two hierarchies, the (2+1)-dimensional breaking Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy and the negative order AKNS hierarchy. According to some choices of the coefficient matrix in the Wronskian condition equation set, we obtain some kinds of solutions for these two hierarchies, such as solitons, Jordan block solutions, rational solutions, complexitons and mixed solutions. (general)

  10. New compacton solutions and solitary wave solutions of fully nonlinear generalized Camassa-Holm equations

    International Nuclear Information System (INIS)

    Tian Lixin; Yin Jiuli

    2004-01-01

    In this paper, we introduce the fully nonlinear generalized Camassa-Holm equation C(m,n,p) and by using four direct ansatzs, we obtain abundant solutions: compactons (solutions with the absence of infinite wings), solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions and obtain kink compacton solutions and nonsymmetry compacton solutions. We also study other forms of fully nonlinear generalized Camassa-Holm equation, and their compacton solutions are governed by linear equations

  11. Commercial Lighting Solutions Webtool Peer Review Report, Office Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Beeson, Tracy A.; Jones, Carol C.

    2010-02-01

    The Commercial Lighting Solutions (CLS) project directly supports the U.S. Department of Energy’s Commercial Building Energy Alliance efforts to design high performance buildings. CLS creates energy efficient best practice lighting designs for widespread use, and they are made available to users via an interactive webtool that both educates and guides the end user through the application of the Lighting Solutions. This report summarizes the peer review of the CLS webtool for offices. The methodology for the peer review process included data collection (stakeholder input), analysis of the comments, and organization of the input into categories for prioritization of the comments against a set of criteria. Based on this process, recommendations were developed for the release of version 2.0 of the webtool at the Lightfair conference in Las Vegas in May 2010. The report provides a list of the top ten most significant and relevant improvements that will be made within the webtool for version 2.0 as well as appendices containing the comments and short-term priorities in additional detail. Peer review comments that are considered high priority by the reviewers and the CLS team but cannot be completed for Version 2.0 are listed as long-term recommendations.

  12. Approximate solutions to Mathieu's equation

    Science.gov (United States)

    Wilkinson, Samuel A.; Vogt, Nicolas; Golubev, Dmitry S.; Cole, Jared H.

    2018-06-01

    Mathieu's equation has many applications throughout theoretical physics. It is especially important to the theory of Josephson junctions, where it is equivalent to Schrödinger's equation. Mathieu's equation can be easily solved numerically, however there exists no closed-form analytic solution. Here we collect various approximations which appear throughout the physics and mathematics literature and examine their accuracy and regimes of applicability. Particular attention is paid to quantities relevant to the physics of Josephson junctions, but the arguments and notation are kept general so as to be of use to the broader physics community.

  13. Fuel cell vehicles: technological solution

    International Nuclear Information System (INIS)

    Lopez Martinez, J. M.

    2004-01-01

    Recently it takes a serious look at fuel cell vehicles, a leading candidate for next-generation vehicle propulsion systems. The green house effect and air quality are pressing to the designers of internal combustion engine vehicles, owing to the manufacturers to find out technological solutions in order to increase the efficiency and reduce emissions from the vehicles. On the other hand, energy source used by currently propulsion systems is not renewable, the well are limited and produce CO 2 as a product from the combustion process. In that situation, why fuel cell is an alternative of internal combustion engine?

  14. Greenhouse effect: there are solutions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A review of solutions that may be undertaken in order to reduce the greenhouse effect gas emissions is presented: clean energy generation through municipal, agricultural and industrial waste processing, reducing energy consumption through public transportation promotion, clean fuel buses and vehicles, or using energy efficient boilers, reduction of carbon dioxide emission from industry through process optimization, waste recycling, energy substitution and conservation, diminution of CO 2 emissions in commercial and residential sectors through space heating and air conditioning retrofitting, lighting substitution. Pollution abatement potentials are evaluated in each case, notably in France

  15. Integrated solution for field operations

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Renaud; Dionis, Francois [EDF, Chatou (France)

    2014-08-15

    This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted.

  16. Integrated solution for field operations

    International Nuclear Information System (INIS)

    Aubin, Renaud; Dionis, Francois

    2014-01-01

    This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted

  17. Silverlight 4 Problem - Design - Solution

    CERN Document Server

    Lecrenski, Nick

    2010-01-01

    A hands-on guide to Microsoft's latest rich application development technology: Silverlight 4. Silverlight 4 is the newest version of the rich Internet application toolkit that provides support for .NET capabilities over the Internet. With this latest release of Silverlight, Microsoft has revolutionized the way that Web applications can be created. This book uses the popular Problem – Design – Solution strategy to demonstrate how to harness the power and abilities of Silverlight 4 to add value to the overall user experience of a Web site. Using a Web site created by the author as a reference p

  18. Symmetries and Dirac equation solutions

    International Nuclear Information System (INIS)

    Souza, Marcio Lima de.

    1991-06-01

    The purpose of this thesis is the extension to be relativistic case of a method that has proved useful for the solution of various potential problems in non relativistic situation. This method, the method of dynamical symmetries, is based on the Baker-Campbell-Hausdorf formulae and developed first for the particular example of the relativistic Coulomb problem. Here we generalize the method for a Hamiltonian that can be written as a linear combination of generators of the SO(2,1) group. As illustrative examples, we solve the problem of a charged particle in a constant magnetic field and the exponential magnetic field. (author). 21 refs

  19. Integrated solution for field operations

    International Nuclear Information System (INIS)

    Aubin, Renaud; Dionis, Francois

    2014-01-01

    This paper presents the authors' approach to design and to implement mobile applications for field operations. Internal on-field studies can yield the fact that the value-added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted. (author)

  20. MIGRATION – EFFECTS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Raluca Cruceru

    2012-12-01

    Full Text Available There are three main flows that influence workforce performance—worker migration, the dissemination of knowledge, and overseas development assistance. For the present paper we decided to deal with the analyses of these three, yet mainly migration. We considered it to be one of the most important phenomenon existent on the market at this hour and with the highest negative impact on the economic and social situation. We presented a case study regarding the situation of migration in Romania and the main candidates to Romanian intelligence imports, the main issues and possible solutions to the problems encountered.

  1. Transition state structures in solution

    International Nuclear Information System (INIS)

    Bertran, J.; Lluch, J. M.; Gonzalez-Lafont, A.; Dillet, V.; Perez, V.

    1995-01-01

    In the present paper the location of transition state structures for reactions in solution has been studied. Continuum model calculations have been carried out on the Friedel-Crafts alkylation reaction and a proton transfer through a water molecule between two oxygen atoms in formic acid. In this model the separation between the chemical system and the solvent has been introduced. On the other hand, the discrete Monte Carlo methodology has also been used to simulate the solvent effect on dissociative electron transfer processes. In this model, the hypothesis of separability is not assumed. Finally, the validity of both approaches is discussed

  2. Lanthanide complexation in aqueous solutions

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1984-01-01

    The lanthanide elements form an extended series of cations with the same charge, slightly varying radii and useful magnetic and spectroscopic properties. Their use in technology is growing rapidly as their properties are more fully explored. The lanthanides also offer scientists valuable and often unique probes for investigating a variety of chemical and physical phenomena. This review has attempted to call attention to these latter uses without trying to provide a thorough discussion of all the relevant literature. Hopefully, awareness of the more interesting facets of present studies of lanthanide complexes in aqueous solution will spur even more advances in the use of these elements. (Auth.)

  3. Research on cloud computing solutions

    Directory of Open Access Journals (Sweden)

    Liudvikas Kaklauskas

    2015-07-01

    Full Text Available Cloud computing can be defined as a new style of computing in which dynamically scala-ble and often virtualized resources are provided as a services over the Internet. Advantages of the cloud computing technology include cost savings, high availability, and easy scalability. Voas and Zhang adapted six phases of computing paradigms, from dummy termi-nals/mainframes, to PCs, networking computing, to grid and cloud computing. There are four types of cloud computing: public cloud, private cloud, hybrid cloud and community. The most common and well-known deployment model is Public Cloud. A Private Cloud is suited for sensitive data, where the customer is dependent on a certain degree of security.According to the different types of services offered, cloud computing can be considered to consist of three layers (services models: IaaS (infrastructure as a service, PaaS (platform as a service, SaaS (software as a service. Main cloud computing solutions: web applications, data hosting, virtualization, database clusters and terminal services. The advantage of cloud com-puting is the ability to virtualize and share resources among different applications with the objective for better server utilization and without a clustering solution, a service may fail at the moment the server crashes.DOI: 10.15181/csat.v2i2.914

  4. Peritoneal solute transport and inflammation.

    Science.gov (United States)

    Davies, Simon J

    2014-12-01

    The speed with which small solutes cross the peritoneal membrane, termed peritoneal solute transport rate (PSTR), is a key measure of individual membrane performance. PSTR can be quantified easily by using the 4-hour dialysate to plasma creatinine ratio, which, although only an approximation to the diffusive characteristics of the membrane, has been well validated clinically in terms of its relationship to patient survival and changes in longitudinal membrane function. This has led to changes in peritoneal dialysis modality use and dialysis prescription. An important determinant of PSTR is intraperitoneal inflammation, as exemplified by local interleukin 6 production, which is largely independent of systemic inflammation and its relationship to comorbid conditions and increased mortality. There is no strong evidence to support the contention that the peritoneal membrane in some individuals with high PSTR is qualitatively different at the start of treatment; rather, it represents a spectrum that is determined in part by genetic factors. Both clinical and experimental evidence support the view that persistent intraperitoneal inflammation, detected as a continuously high or increasing PSTR, may predispose the membrane to progressive fibrosis. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. INTERCULTURAL MISUNDERSTANDINGS: CAUSES AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Майкл Б Хиннер

    2017-12-01

    Full Text Available Intercultural misunderstandings involve a number of complex causes which can easily escalate into conflicts. Since conflicts are also complex, it is not easy to find solutions because there is no one solution for all problems. Systems Theory, transdisciplinarity, and the social ecological model take a holistic approach in investigating complex phenomena. They permit the creation of a theoretical framework based on previous empirical research and theories across scientific disciplines to identify the relevant elements of complex phenomena and to understand the interrelationship of these elements. Intercultural misunderstandings and conflicts are very complex phenomena because they include culture, perception, identity, ethnocentrism, relationships, trust building and conflict management as well as intercultural commu-nication competence which entails cognition, metacognition, and social metacognition. Since most em-pirical studies focus on isolated, individual elements in specific contexts, this article describes the theoretical framework of how the various findings and theories developed in different scientific disciplines can be used to form a cohesive framework to help circumvent intercultural misunderstandings and conflicts. In so doing, it follows the general principles of Systems Theory, transdisciplinarity, and the social ecological model.

  6. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  7. A competitive solution for cooperative truckload delivery

    NARCIS (Netherlands)

    Hezarkhani, B.; Slikker, M.; Woensel, van T.

    2016-01-01

    This paper introduces a solution for gain sharing in consortia of logistic providers where joint planning of truckload deliveries enables the reduction of empty kilometers. The highly competitive nature of freight transport markets necessitates solutions that distinguish among the logistics

  8. Mean-field learning for satisfactory solutions

    KAUST Repository

    Tembine, Hamidou; Tempone, Raul; Vilanova, Pedro

    2013-01-01

    One of the fundamental challenges in distributed interactive systems is to design efficient, accurate, and fair solutions. In such systems, a satisfactory solution is an innovative approach that aims to provide all players with a satisfactory payoff

  9. Perturbation of an exact strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  10. Gold and Silver Extraction from Leach Solutions

    Directory of Open Access Journals (Sweden)

    Bagdaulet K. Kenzhaliyev

    2014-03-01

    Full Text Available There has been carried out an investigation on the extraction of gold and silver from thiosulfate solutions: standard test and technological solutions of chemical and electrochemical leaching. The influence of related metals on the process of extracting gold from solution was studied. There has been conducted a comparative study of the IR spectra of solutions after the sorption of gold, silver and related metals.

  11. Engineering report (conceptual design) PFP solution stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  12. Engineering report (conceptual design) PFP solution stabilization

    International Nuclear Information System (INIS)

    Witt, J.B.

    1997-01-01

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage

  13. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  14. On polynomial solutions of the Heun equation

    International Nuclear Information System (INIS)

    Gurappa, N; Panigrahi, Prasanta K

    2004-01-01

    By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)

  15. Mobility needs and wireless solutions

    DEFF Research Database (Denmark)

    Saugstrup, Dan; Henten, Anders

    The main purpose of this report is to spell out a methodological approach to the analysis of user needs with respect to mobility. Furthermore, this methodological approach is used in an exemplary analysis of the relationship between user needs and technology solutions offered by different wireless...... technologies. The report is based on a research approach, emphasizing important aspects in relation to developing more user oriented mobile services and applications in a heterogeneous network environment. As a staring point, Scandinavian research within the field of social science concerning mobility...... is described and discussed. Furthermore different wireless technologies are briefly described and discussed in relation to possible transmission capacities and coverage areas. In addition to this, a preliminary framework regarding the implications of mobility on the use and development of mobile services...

  16. Multivariate statistics exercises and solutions

    CERN Document Server

    Härdle, Wolfgang Karl

    2015-01-01

    The authors present tools and concepts of multivariate data analysis by means of exercises and their solutions. The first part is devoted to graphical techniques. The second part deals with multivariate random variables and presents the derivation of estimators and tests for various practical situations. The last part introduces a wide variety of exercises in applied multivariate data analysis. The book demonstrates the application of simple calculus and basic multivariate methods in real life situations. It contains altogether more than 250 solved exercises which can assist a university teacher in setting up a modern multivariate analysis course. All computer-based exercises are available in the R language. All R codes and data sets may be downloaded via the quantlet download center  www.quantlet.org or via the Springer webpage. For interactive display of low-dimensional projections of a multivariate data set, we recommend GGobi.

  17. Solution synthesis of germanium nanocrystals

    Science.gov (United States)

    Gerung, Henry [Albuquerque, NM; Boyle, Timothy J [Kensington, MD; Bunge, Scott D [Cuyahoga Falls, OH

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  18. A solution to nonlinearity problems

    International Nuclear Information System (INIS)

    Neuffer, D.V.

    1989-01-01

    New methods of correcting dynamic nonlinearities resulting from the multipole content of a synchrotron or transport line are presented. In a simplest form, correction elements are places at the center (C) of the accelerator half-cells as well as near the focusing (F) and defocusing (D) quadrupoles. In a first approximation, the corrector strengths follow Simpson's Rule, forming an accurate quasi-local canceling approximation to the nonlinearity. The F, C, and D correctors may also be used to obtain precise control of the horizontal, coupled, and vertical motion. Correction by three or more orders of magnitude can be obtained, and simple solutions to a fundamental problem in beam transport have been obtained. 13 refs., 1 fig., 1 tab

  19. Pure energy solutions - pure tomorrows

    International Nuclear Information System (INIS)

    Allison, J.

    2006-01-01

    HTC is an energy technology company whose mandate is to deliver 'Carbon Clear Solutions' to address the pending challenges the energy sector is facing in meeting the environmental impact of Greenhouse Gas emissions, and energy security. HTC will speak on its comprehensive suite of technologies including hydrogen production, CO 2 capture and CO 2 sequestration. HTC has patented technologies that produce H 2 from a broad variety of feedstocks such as Natural gas, Diesel, Gasoline, Bio-fuels i.e. ethanol, methanol and Coal Gasification. HTC Hydrogen reformation systems are unique in their method of delivering pure Hydrogen. Dry Reformation Reactor - New catalyst system designed to eliminate contamination problems (i.e. coking) while at the same time operate at a low temperature. Water Gas Shift Reactor - Plus - improved and redesigned catalyst that improves operating temperature and hydrogen production efficiency. Two stage catalyst reactor that provides near balance of the endothermic and exothermic reaction temperatures for efficient energy balance

  20. Regional Transmission Projects: Finding Solutions

    Energy Technology Data Exchange (ETDEWEB)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association

  1. New interior solution describing relativistic fluid sphere

    Indian Academy of Sciences (India)

    Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...

  2. Extremal black holes as exact string solutions

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We show that the leading order solution describing an extremal electrically charged black hole in string theory is, in fact, an exact solution to all orders in α' when interpreted in a Kaluza-Klein fashion. This follows from the observation that it can be obtained via dimensional reduction from a five-dimensional background which is proved to be an exact string solution

  3. Homoclinic solutions for Davey-Stewartson equation

    International Nuclear Information System (INIS)

    Huang Jian; Dai Zhengde

    2008-01-01

    In this paper, we firstly prove the existence of homoclinic solutions for Davey-Stewartson I equation (DSI) with the periodic boundary condition. Then we obtain a set of exact homoclinic solutions by the novel method-Hirota's method. Moreover, the structure of homoclinic solutions has been investigated. At the same time, we give some numerical simulations which validate these theoretical results

  4. Special solutions of neutral functional differential equations

    Directory of Open Access Journals (Sweden)

    Győri István

    2001-01-01

    Full Text Available For a system of nonlinear neutral functional differential equations we prove the existence of an -parameter family of "special solutions" which characterize the asymptotic behavior of all solutions at infinity. For retarded functional differential equations the special solutions used in this paper were introduced by Ryabov.

  5. Requirements elicitation for geo-information solutions

    NARCIS (Netherlands)

    Robbi Sluter, Claudia; van Elzakker, Corné P.J.M.; Ivanova, Ivana

    2017-01-01

    Geo-information solutions can achieve a higher level of quality if they are developed in accordance with a user-centred design that requires definition of the user requirements in the first step of solution construction. We treat a geo-information solution as a system designed to support human-based

  6. Exact solution of super Liouville model

    International Nuclear Information System (INIS)

    Yang Zhanying; Zhao Liu; Zhen Yi

    2000-01-01

    Using Leznov-Saveliev algebraic analysis and Drinfeld-Sokolov construction, the authors obtained the explicit solutions to the super Liouville system in super covariant form and component form. The explicit solution in component form reduces naturally into the Egnchi-Hanson instanton solution of the usual Liouville equation if all the Grassmann odd components are set equal to zero

  7. The stability of the strong gravity solution

    International Nuclear Information System (INIS)

    Baran, S.A.

    1978-01-01

    The perturbation of the classical solution to a strong gravity model given by Salam and Strathdee is investigated. Using the Hamiltonian formalism it is shown that this static and spherically symmetric solution is stable under the odd parity perturbations provided some parameters in the solution are suitably restricted

  8. 21 CFR 522.900 - Euthanasia solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Euthanasia solution. 522.900 Section 522.900 Food... Euthanasia solution. (a) Specifications. Each milliliter (mL) of solution contains: (1) 390 milligrams (mg.... For humane, painless, and rapid euthanasia. (2) Amount. One mL per 10 pounds of body weight. (3...

  9. Unique specification of Yang-Mills solutions

    International Nuclear Information System (INIS)

    Campbell, W.B.; Joseph, D.W.; Morgan, T.A.

    1980-01-01

    Screened time-independent cylindrically-symmetric solutions of Yang-Mills equations are given which show that the source does not uniquely determine the field. However, these particular solutions suggest a natural way of uniquely specifying solutions in terms of a physical realization of a symmetry group. (orig.)

  10. Electrochemical regeneration of chrome etching solution

    NARCIS (Netherlands)

    Andel, van Y.; Janssen, L.J.J.

    2002-01-01

    A metal surface is chromatized with a chromic acid solution to obtain a good adherence of polymer coatings. In this process Cr(VI) is reduced to Cr(III). The oxidation strength of the solution decreases during use. The chrome solution needs to be regenerated and purified. A new anode material,

  11. Classical solutions in lattice gauge theories

    International Nuclear Information System (INIS)

    Mitrjushkin, V.K.

    1996-08-01

    The solutions of the classical equations of motion on a periodic lattice are found which correspond to abelian single and double Dirac sheets. These solutions exist also in non-abelian theories. Possible applications of these solutions to the calculation of gauge dependent and gauge invariant observables are discussed. (orig.)

  12. Axisymmetric solution with charge in general relativity

    International Nuclear Information System (INIS)

    Arutyunyan, G.G.; Papoyan, V.V.

    1989-01-01

    The possibility of generating solutions to the equations of general relativity from known solutions of the generalized theory of gravitation and vice versa is proved. An electrovac solution to Einstein's equations that describes a static axisymmetric gravitational field is found. 14 refs

  13. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  14. Hyperscaling violating solutions in generalised EMD theory

    Directory of Open Access Journals (Sweden)

    Li Li

    2017-04-01

    Full Text Available This short note is devoted to deriving scaling but hyperscaling violating solutions in a generalised Einstein–Maxwell-Dilaton theory with an arbitrary number of scalars and vectors. We obtain analytic solutions in some special case and discuss the physical constraints on the allowed parameter range in order to have a well-defined holographic ground-state solution.

  15. Hyperscaling violating solutions in generalised EMD theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: lil416@lehigh.edu [Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece); Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, 71003 Heraklion (Greece); Department of Physics, Lehigh University, Bethlehem, PA, 18018 (United States)

    2017-04-10

    This short note is devoted to deriving scaling but hyperscaling violating solutions in a generalised Einstein–Maxwell-Dilaton theory with an arbitrary number of scalars and vectors. We obtain analytic solutions in some special case and discuss the physical constraints on the allowed parameter range in order to have a well-defined holographic ground-state solution.

  16. Thermodynamic stability of radioactivity standard solutions

    International Nuclear Information System (INIS)

    Iroulard, M.G.

    2007-04-01

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  17. Thermodynamic stability of radioactivity standard solutions

    Energy Technology Data Exchange (ETDEWEB)

    Iroulard, M.G

    2007-04-15

    The basic requirement when preparing radioactivity standard solutions is to guarantee the concentration of a radionuclide or a radioelement, expressed in the form of activity concentration (Ac = A/m (Bq/g), with A: activity and m: mass of solution). Knowledge of the law of radioactive decay and the half-life of a radionuclide or radioelement makes it possible to determine the activity concentration at any time, and this must be confirmed subsequently by measurement. Furthermore, when radioactivity standard solutions are prepared, it is necessary to establish optimal conditions of thermodynamic stability of the standard solutions. Radioactivity standard solutions are prepared by metrology laboratories from original solutions obtained from a range of suppliers. These radioactivity standard solutions must enable preparation of liquid and/or solid radioactivity standard sources of which measurement by different methods can determine, at a given instant, the activity concentration of the radionuclide or radioelement present in the solution. There are a number of constraints associated with the preparation of such sources. Here only those that relate to the physical and chemical properties of the standard solution are considered, and therefore need to be taken into account when preparing a radioactivity standard solution. These issues are considered in this document in accordance with the following plan: - A first part devoted to the chemical properties of the solutions: - the solubilization media: ultra-pure water and acid media, - the carriers: concentration, oxidation state of the radioactive element and the carrier element. - A second part describing the methodology of the preparation, packaging and storage of standard solutions: - glass ampoules: the structure of glasses, the mechanisms of their dissolution, the sorption phenomenon at the solid-solution interface, - quartz ampoules, - cleaning and packaging: cleaning solutions, internal surface coatings and

  18. Stability studies of oxytetracycline in methanol solution

    Science.gov (United States)

    Wang, Wei; Wu, Nan; Yang, Jinghui; Zeng, Ming; Xu, Chenshan; Li, Lun; Zhang, Meng; Li, Liting

    2018-02-01

    As one kind of typical tetracycline antibiotics, antibiotic residues of oxytetracycline have been frequently detected in many environmental media. In this study, the stability of oxytetracycline in methanol solution was investigated by high-performance liquid chromatography combined with UV-vis (HPLC-UV). The results show that the stability of oxytetracycline in methanol solution is highly related to its initial concentration and the preserved temperature. Under low temperature condition, the solution was more stable than under room temperature preservation. Under the same temperature preservation condition, high concentrations of stock solutions are more stable than low concentrations. The study provides a foundation for preserving the oxytetracycline-methanol solution.

  19. Solution Focused Approach and Usage of Nursing

    Directory of Open Access Journals (Sweden)

    Nurcan AKGUL GUNDOGDU

    2016-12-01

    Full Text Available "Problem talk creates problems; solution talk creates solutions " Steve de Shazer In recent years, concern for solution-oriented approach has increased in nursing practice. In this review it is aimed to give information about nursing application of solution-oriented approach whose efficacy has been proved with many studies. In addition, solution-oriented approach is what how it turned out, the answer to the question of principle, and that is what the management strategy and what the nursing relationship will be sought. [JCBPR 2016; 5(3.000: 145-152

  20. Pollution! Find a STEM solution!

    Science.gov (United States)

    Takač, Danijela; Moćan, Marina

    2016-04-01

    Primary and secondary school Pantovčak is an innovative school in downtown Zagreb, Croatia. The school is involved in many projects concerning STEM education. Pollution! Find a STEM solution! is a two year long cross-curricular project that grew out of identified need to develop STEM and ICT skills more. Pisa results make evident that students' knowledge is poor and motivation for math and similar subjects is low. Implying priorities of European Commission, like e-learning, raises motivation and also develops basic skills and improves knowledge in science, math, physic, ICT. Main objectives are to increase students' interest in STEM education and careers and introduce them to all available new trends in technology, engineering and science in their region by visiting clean technology industries and strengthening links with them, to introduce some future digital jobs and prepare students for rapid technological changes by integrating ICT into classroom practice more, to highlight the importance of global environmental issues and improve the knowledge in the areas of sustainable development and renewable energy, to develop collaborative partnership between schools and the wider community in formal, non-formal and informal learning, to support multilingualism by publishing Open Educational Resources in 8 different languages and to strengthen the professional profile of the teaching profession. The project brings together 231 teachers and 2729 students from five different European countries in learning to think globally and work on activities that contribute to the community's well-being. There are altogether 33 activities, divided in 4 categories. STEM activities are focused on students building the devices for measuring air, light and noise pollution in their school and homes. They use the scientific method to analyze the data and compare the results with their peers to find a solution. Eskills, digital literacy and digital jobs are focused on introducing career

  1. Exact solutions in three-dimensional gravity

    CERN Document Server

    Garcia-Diaz, Alberto A

    2017-01-01

    A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...

  2. Innovative Solution to Video Enhancement

    Science.gov (United States)

    2001-01-01

    Through a licensing agreement, Intergraph Government Solutions adapted a technology originally developed at NASA's Marshall Space Flight Center for enhanced video imaging by developing its Video Analyst(TM) System. Marshall's scientists developed the Video Image Stabilization and Registration (VISAR) technology to help FBI agents analyze video footage of the deadly 1996 Olympic Summer Games bombing in Atlanta, Georgia. VISAR technology enhanced nighttime videotapes made with hand-held camcorders, revealing important details about the explosion. Intergraph's Video Analyst System is a simple, effective, and affordable tool for video enhancement and analysis. The benefits associated with the Video Analyst System include support of full-resolution digital video, frame-by-frame analysis, and the ability to store analog video in digital format. Up to 12 hours of digital video can be stored and maintained for reliable footage analysis. The system also includes state-of-the-art features such as stabilization, image enhancement, and convolution to help improve the visibility of subjects in the video without altering underlying footage. Adaptable to many uses, Intergraph#s Video Analyst System meets the stringent demands of the law enforcement industry in the areas of surveillance, crime scene footage, sting operations, and dash-mounted video cameras.

  3. Software Solutions for Agile Business

    Directory of Open Access Journals (Sweden)

    Viorel LUPU

    2006-01-01

    Full Text Available Businesses, like people, are continuously evolving and as such face rapid and continual change. As markets and customer needs evolve, enterprises must respond with new ways to attract and retain customers and partners, increase operational efficiency, and achieve greater visibility into their business processes. IT staff see business processes through the lens of the low-level parts of the flow, rather than at the business level. As a result, they aren't capable of implementing the processes so that they will meet continuously changing business requirements, thus impeding business agility. Business users are increasingly demanding that they have control over their own business processes - and so, are requiring systems that put control of the flow and logic into their hands, not those of IT. An Enterprise Service Bus based on a Service Oriented Architecture could be a solution and tie together the notions of service oriented process, service oriented integration and event-driven, message based interaction into a single environment that enables users to combine their assets and information from multiple points of view.

  4. Numerical solution of Boltzmann's equation

    International Nuclear Information System (INIS)

    Sod, G.A.

    1976-04-01

    The numerical solution of Boltzmann's equation is considered for a gas model consisting of rigid spheres by means of Hilbert's expansion. If only the first two terms of the expansion are retained, Boltzmann's equation reduces to the Boltzmann-Hilbert integral equation. Successive terms in the Hilbert expansion are obtained by solving the same integral equation with a different source term. The Boltzmann-Hilbert integral equation is solved by a new very fast numerical method. The success of the method rests upon the simultaneous use of four judiciously chosen expansions; Hilbert's expansion for the distribution function, another expansion of the distribution function in terms of Hermite polynomials, the expansion of the kernel in terms of the eigenvalues and eigenfunctions of the Hilbert operator, and an expansion involved in solving a system of linear equations through a singular value decomposition. The numerical method is applied to the study of the shock structure in one space dimension. Numerical results are presented for Mach numbers of 1.1 and 1.6. 94 refs, 7 tables, 1 fig

  5. Energy solutions for sports facilities

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, Paola; Santiangeli, Adriano [CIRPS: Inter-University Research Centre for Sustainable Development, Sapienza University of Rome, Via Eudossiana, 18, Rome (Italy)

    2008-06-15

    The sports facilities are characterized by special energy needs different from any other user and they are characterized by high heat and electricity loads. For this reason, the aim of this work has been to propose a tool to provide a preliminary estimation of the power and energy required by the sports centres. In addition, the possibility to make the building self-energy sufficient has been considered, thanks to the exploitation of renewable energy sources (RES). The overall work has been performed following three steps: energy needs analysis; local RES availability analysis; energy balance of Sport Centres. Considering that each sport facility is characterized by different energy needs depending on the sport typology itself, the analysis started from the features established by the CONI (National Italian Olympic Committee) standardization. For calculations a program in LabVIEW has been developed to evaluate the energy requirements of the sports centre considering as inputs the sport halls, the playgrounds and the supporting rooms, the level of the sport activity (e.g. agonistic) and the climatic conditions of the area where the facilities are located. The locally available RES are evaluated in order to decide which one can be exploited to feed the Sport Centre. The proposed solution for the energy production refers to a combination of different and innovative technologies which involve, in particular, hydrogen technologies. The energy and costs analysis has been finally carried out for an application case in Dubai. (author)

  6. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  7. Electrovacuum solutions in nonlocal gravity

    Science.gov (United States)

    Fernandes, Karan; Mitra, Arpita

    2018-05-01

    We consider the coupling of the electromagnetic field to a nonlocal gravity theory comprising of the Einstein-Hilbert action in addition to a nonlocal R □-2R term associated with a mass scale m . We demonstrate that in the case of the minimally coupled electromagnetic field, real corrections about the Reissner-Nordström background only exist between the inner Cauchy horizon and the event horizon of the black hole. This motivates us to consider the modified coupling of electromagnetism to this theory via the Kaluza ansatz. The Kaluza reduction introduces nonlocal terms involving the electromagnetic field to the pure gravitational nonlocal theory. An iterative approach is provided to perturbatively solve the equations of motion to arbitrary order in m2 about any known solution of general relativity. We derive the first-order corrections and demonstrate that the higher order corrections are real and perturbative about the external background of a Reissner-Nordström black hole. We also discuss how the Kaluza reduced action, through the inclusion of nonlocal electromagnetic fields, could also be relevant in quantum effects on curved backgrounds with horizons.

  8. Counterterms for static Lovelock solutions

    International Nuclear Information System (INIS)

    Mehdizadeh, M.R.; Dehghani, M.H.; Zangeneh, M.K.

    2015-01-01

    In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)

  9. Counterterms for static Lovelock solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mehdizadeh, M.R. [Shahid Bahonar University, Department of Physics, PO Box 76175, Kerman (Iran, Islamic Republic of); Dehghani, M.H. [Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Zangeneh, M.K. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2015-06-15

    In this paper, we introduce the counterterms that remove the non-logarithmic divergences of the action in third order Lovelock gravity for static spacetimes. We do this by defining the cosmological constant in such a way that the asymptotic form of the metric have the same form in Lovelock and Einstein gravities. Thus, we employ the counterterms of Einstein gravity and show that the power law divergences of the action of Lovelock gravity for static spacetimes can be removed by suitable choice of coefficients. We find that the dependence of these coefficients on the dimension in Lovelock gravity is the same as in Einstein gravity. We also introduce the finite energy-momentum tensor and employ these counterterms to calculate the finite action and mass of static black hole solutions of third order Lovelock gravity. Next, we calculate the thermodynamic quantities and show that the entropy calculated through the use of Gibbs-Duhem relation is consistent with the obtained entropy by Wald's formula. Furthermore, we find that in contrast to Einstein gravity in which there exists no uncharged extreme black hole, third order Lovelock gravity can have these kind of black holes. Finally, we investigate the stability of static charged black holes of Lovelock gravity in canonical ensemble and find that small black holes show a phase transition between very small and small black holes, while the large ones are stable. (orig.)

  10. Dynamics of dilute polymer solutions

    International Nuclear Information System (INIS)

    Nicholson, L.K.; Higgins, J.S.

    1980-01-01

    Neutrons scattered by nuclei undergoing slow motion e.g. the internal motion within polymer chains, lose or gain very small amounts of energy. It is therefore the quasi-elastic region of the neutron scattering spectrum which is of interest and in particular the time correlation function (or intermediate scattering law S(Q,t)) which is ideally required to define the motion. The neutron spin echo spectrometer (IN11) at the ILL facilitates the measurement of very small energy changes (down to 10 neV) on scattering from a sample, by changing and keeping track of neutron beam polarization non-parallel to the magnetic guide-field (1). The resultant neutron beam polarization, when normalized against a standard (totally elastic) scatterer is directly proportional to the cosine Fourier Transform of the scattering law S(Q,ω), which is to say the time correlation function is measured directly. Dilute solutions of deuterated polystyrene (PSD) and deuterated polytetrahydrofuran (PTDF) in carbon disulphide, and of their hydrogeneous counterparts (PSH and PTHF respectively) in deuterated benzene were investigated in the range 0.027 A -1 -1 , at 30 0 C. (orig./FKS)

  11. Uranium recovery from phosphonitric solutions

    International Nuclear Information System (INIS)

    Bunus, F.T.; Miu, I.

    1997-01-01

    A new technology for uranium and rare earth recovery applied in a semi-industrial plant processing 5 m 3 /h phosphoric acid has been extended to phosphonitric solution, resulting in the process of nitric acid attack of phosphate rock for complex fertilizer production. In this process uranium and rare earths are obtained at larger quantities due to the complete dissolution of elements involved. The method is based on a one cycle extraction-stripping process using as extractants: di(2-ethylhexyl) phosphate (DEPA) in mixture either with tri-n-butylphosphate (TBP) or tri-n-octylphosphine oxide (TOPO) in view of obtaining a synergic effect for U (VI). A mixer-settler extractor in four steps was used. Two stripping steps are involved for the elements mentioned. Before uranium stripping a scrubbing with urea was introduced to eliminate nitric acid extracted. Uranium was obtained as green cake (hydrated uranium tetrafluoride) which can be easily transformed in hexfluoride or converted to a diuranate. At the same time the radium is also eliminated leading to a non-radioactive fertilizer product. (author),. 8 refs, 4 figs

  12. Aeromedical solutions for aerospace safety.

    Science.gov (United States)

    Kapoor, Pawan; Gaur, Deepak

    2017-10-01

    All facets of activity in the speciality of Aviation Medicine are essentially aimed at enhancing aerospace safety. This paper highlights some innovative changes brought about by Aerospace Medicine in the three major fields of the speciality namely, medical evaluation, aeromedical training and research. Based on lab and field studies, military aircrew are now permitted flying with Modifinil as 'Go' Pill and Zolpidem as 'No-Go' Pill during sustained operations. Several other drugs for disabilities like Hypertension and CAD are now permitted for aviators. Comprehensive revision of policy permitting early return to flying is an on-going process. OPRAM courses for all three streams of aircrew in IAF have contributed to reduce aircraft accident rates. Human Engineering Consultancy and expert advice is provided by specialists at IAM as well as those in the field. In future, the country needs to provide better post-service opportunities to aerospace medicine specialists. This, in turn, will attract bright young minds to the specialty. The ISRO Humanin-Space programme will be an exciting challenge for all in this unique field. Aerospace Medicine continues to provide aerospace safety solutions to the IAF and the aviation industry. The nation needs to continue to utilize and support this specialty.

  13. The center-cut solution.

    Science.gov (United States)

    Firnstahl, T W

    1993-01-01

    Timothy Firnstahl owns five successful restaurants in Seattle, but he recently came very close to owning none. In the early 1990s, he found himself, like so many restauranteurs, facing rising costs, inefficient management, and a recession. Confronting financial annihilation, Firnstahl had to act quickly: since he had no peripherals to trim, he cut off the head of his company. Remarkably, it worked. Firnstahl's problem was his new and innovative restaurant, Sharps Fresh Roasting. The heart of the Sharps concept was a unique long-roasting technique that made lean, inexpensive meats taste as juicy and delicious as fattier, expensive cuts. The process also lent itself to faster service and lower labor costs. But it wasn't working. Sharps wasn't breaking even, and his other restaurants couldn't make up the difference. He needed a solution fast. Firnstahl got his answer from Mikhail Gorbachev: slash the centralized command and liberate the company. In doing so, he would also transfer virtually all power and responsibility to his line managers. And after five months of intensive study and planning, he accomplished what he set out to do. He fired most of his corporate staff, empowered his restaurant managers with "100% Power and Responsibility," and, finally, undertook a massive promotion campaign. A year later, Sharps Fresh Roasting is the gold mine Firnstahl always believed it could be. He's done away with bureaucracy and turned business around in a down market. All this because his managers are managing themselves.

  14. Analytical solutions of accreting black holes immersed in a {Lambda}CDM model

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S., E-mail: limajas@astro.iag.usp.b [Universidade de Sao Paulo - Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Rua do Matao, 1226, 05508-090 Cidade Universitaria, Sao Paulo - SP (Brazil); Guariento, Daniel C., E-mail: carrasco@fma.if.usp.b [Universidade de Sao Paulo - Instituto de Fisica, Rua do Matao, Travessa R, 187, 05508-090 Cidade Universitaria, Sao Paulo - SP (Brazil); Horvath, J.E., E-mail: foton@astro.iag.usp.b [Universidade de Sao Paulo - Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Rua do Matao, 1226, 05508-090 Cidade Universitaria, Sao Paulo - SP (Brazil)

    2010-10-04

    The evolution of the mass of a black hole embedded in a universe filled with dark energy and cold dark matter is calculated in a closed form within a test fluid model in a Schwarzschild metric, taking into account the cosmological evolution of both fluids. The result describes exactly how accretion asymptotically switches from the matter-dominated to the {Lambda}-dominated regime. For early epochs, the black hole mass increases due to dark matter accretion, and on later epochs the increase in mass stops as dark energy accretion takes over. Thus, the unphysical behaviour of previous analyses is improved in this simple exact model.

  15. Business-to-business electronic commerce systems and services. Smart EC solution; Kigyoka nrenkei system solution system. Smart EC solution

    Energy Technology Data Exchange (ETDEWEB)

    Setoguchi, T.; Manchu, Y.; Katsumata, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Toshiba provides a range of information technology (IT) solutions called SmartEC Solution, which includes business-to-business electronic commerce systems and services based on international standards and industrial know-how, especially our electronic data interchange (EDI) know-how as a manufacturer. These IT solutions are supplied as services covering strategy planning, system integration, and application service provider based on five types of business-to-business electronic commerce. (author)

  16. Technical solutions to nonproliferation challenges

    Energy Technology Data Exchange (ETDEWEB)

    Satkowiak, Lawrence [Director, Nonproliferation, Safeguards and Security Programs, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    2014-05-09

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  17. Technical solutions to nonproliferation challenges

    Science.gov (United States)

    Satkowiak, Lawrence

    2014-05-01

    The threat of nuclear terrorism is real and poses a significant challenge to both U.S. and global security. For terrorists, the challenge is not so much the actual design of an improvised nuclear device (IND) but more the acquisition of the special nuclear material (SNM), either highly enriched uranium (HEU) or plutonium, to make the fission weapon. This paper provides two examples of technical solutions that were developed in support of the nonproliferation objective of reducing the opportunity for acquisition of HEU. The first example reviews technologies used to monitor centrifuge enrichment plants to determine if there is any diversion of uranium materials or misuse of facilities to produce undeclared product. The discussion begins with a brief overview of the basics of uranium processing and enrichment. The role of the International Atomic Energy Agency (IAEA), its safeguard objectives and how the technology evolved to meet those objectives will be described. The second example focuses on technologies developed and deployed to monitor the blend down of 500 metric tons of HEU from Russia's dismantled nuclear weapons to reactor fuel or low enriched uranium (LEU) under the U.S.-Russia HEU Purchase Agreement. This reactor fuel was then purchased by U.S. fuel fabricators and provided about half the fuel for the domestic power reactors. The Department of Energy established the HEU Transparency Program to provide confidence that weapons usable HEU was being blended down and thus removed from any potential theft scenario. Two measurement technologies, an enrichment meter and a flow monitor, were combined into an automated blend down monitoring system (BDMS) and were deployed to four sites in Russia to provide 24/7 monitoring of the blend down. Data was downloaded and analyzed periodically by inspectors to provide the assurances required.

  18. Mass transport in polyelectrolyte solutions

    Science.gov (United States)

    Schipper, F. J. M.; Leyte, J. C.

    1999-02-01

    The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.

  19. Modified Bateman solution for identical eigenvalues

    International Nuclear Information System (INIS)

    Dreher, Raymond

    2013-01-01

    Highlights: ► Solving indeterminacies due to identical eigenvalues in Bateman’s solution. ► Exact analytical solution of Bateman’s equations for identical eigenvalues. ► Algorithm calculating higher order derivatives appearing in this solution. ► Alternative evaluation of the derivatives through the Taylor polynomial. ► Implementation of an example program demonstrating the developed solution. - Abstract: In this paper we develop a general solution to the Bateman equations taking into account the special case of identical eigenvalues. A characteristic of this new solution is the presence of higher order derivatives. It is shown that the derivatives can be obtained analytically and also computed in an efficient manner

  20. Osmosis and thermodynamics explained by solute blocking.

    Science.gov (United States)

    Nelson, Peter Hugo

    2017-01-01

    A solute-blocking model is presented that provides a kinetic explanation of osmosis and ideal solution thermodynamics. It validates a diffusive model of osmosis that is distinct from the traditional convective flow model of osmosis. Osmotic equilibrium occurs when the fraction of water molecules in solution matches the fraction of pure water molecules that have enough energy to overcome the pressure difference. Solute-blocking also provides a kinetic explanation for why Raoult's law and the other colligative properties depend on the mole fraction (but not the size) of the solute particles, resulting in a novel kinetic explanation for the entropy of mixing and chemical potential of ideal solutions. Some of its novel predictions have been confirmed; others can be tested experimentally or by simulation.

  1. On rotational solutions for elliptically excited pendulum

    International Nuclear Information System (INIS)

    Belyakov, Anton O.

    2011-01-01

    The author considers the planar rotational motion of the mathematical pendulum with its pivot oscillating both vertically and horizontally, so the trajectory of the pivot is an ellipse close to a circle. The analysis is based on the exact rotational solutions in the case of circular pivot trajectory and zero gravity. The conditions for existence and stability of such solutions are derived. Assuming that the amplitudes of excitations are not small while the pivot trajectory has small ellipticity the approximate solutions are found both for high and small linear dampings. Comparison between approximate and numerical solutions is made for different values of the damping parameter. -- Highlights: → We study rotations of the mathematical pendulum when its pivot moves along an ellipse. → There are stable exact solutions for a circular pivot trajectory and zero gravity. → Asymptotic solutions are found for an elliptical pivot trajectory

  2. Exact solution of the hidden Markov processes

    Science.gov (United States)

    Saakian, David B.

    2017-11-01

    We write a master equation for the distributions related to hidden Markov processes (HMPs) and solve it using a functional equation. Thus the solution of HMPs is mapped exactly to the solution of the functional equation. For a general case the latter can be solved only numerically. We derive an exact expression for the entropy of HMPs. Our expression for the entropy is an alternative to the ones given before by the solution of integral equations. The exact solution is possible because actually the model can be considered as a generalized random walk on a one-dimensional strip. While we give the solution for the two second-order matrices, our solution can be easily generalized for the L values of the Markov process and M values of observables: We should be able to solve a system of L functional equations in the space of dimension M -1 .

  3. Osmosis and thermodynamics explained by solute blocking

    Science.gov (United States)

    Nelson, Peter Hugo

    2016-01-01

    A solute-blocking model is presented that provides a kinetic explanation of osmosis and ideal solution thermodynamics. It validates a diffusive model of osmosis that is distinct from the traditional convective flow model of osmosis. Osmotic equilibrium occurs when the fraction of water molecules in solution matches the fraction of pure water molecules that have enough energy to overcome the pressure difference. Solute-blocking also provides a kinetic explanation for why Raoult’s law and the other colligative properties depend on the mole fraction (but not the size) of the solute particles, resulting in a novel kinetic explanation for the entropy of mixing and chemical potential of ideal solutions. Some of its novel predictions have been confirmed, others can be tested experimentally or by simulation. PMID:27225298

  4. Cosmological string solutions by dimensional reduction

    International Nuclear Information System (INIS)

    Behrndt, K.; Foerste, S.

    1993-12-01

    We obtain cosmological four dimensional solutions of the low energy effective string theory by reducing a five dimensional black hole, and black hole-de Sitter solution of the Einstein gravity down to four dimensions. The appearance of a cosmological constant in the five dimensional Einstein-Hilbert produces a special dilaton potential in the four dimensional effective string action. Cosmological scenarios implement by our solutions are discussed

  5. New exact solutions of the Dirac equation

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.

    1980-01-01

    Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely

  6. New solutions of Heun's general equation

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2003-01-01

    We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)

  7. Anodizing And Sealing Aluminum In Nonchromated Solutions

    Science.gov (United States)

    Emmons, John R.; Kallenborn, Kelli J.

    1995-01-01

    Improved process for anodizing and sealing aluminum involves use of 5 volume percent sulfuric acid in water as anodizing solution, and 1.5 to 2.0 volume percent nickel acetate in water as sealing solution. Replaces process in which sulfuric acid used at concentrations of 10 to 20 percent. Improved process yields thinner coats offering resistance to corrosion, fatigue life, and alloy-to-alloy consistency equal to or superior to those of anodized coats produced with chromated solutions.

  8. Spurious Numerical Solutions Of Differential Equations

    Science.gov (United States)

    Lafon, A.; Yee, H. C.

    1995-01-01

    Paper presents detailed study of spurious steady-state numerical solutions of differential equations that contain nonlinear source terms. Main objectives of this study are (1) to investigate how well numerical steady-state solutions of model nonlinear reaction/convection boundary-value problem mimic true steady-state solutions and (2) to relate findings of this investigation to implications for interpretation of numerical results from computational-fluid-dynamics algorithms and computer codes used to simulate reacting flows.

  9. The supply solutions for isolated rural consumers

    International Nuclear Information System (INIS)

    Hazi, Gheorghe; Solomon, Petre; Hazi, Aneta

    2004-01-01

    This paper establishes the supply optimal solutions for isolated rural consumers. A complex technical-economical calculation method is developed for selection of the best solutions. This analysis is based on the minimization of the net present value, NPV, criterion. Using the results of this calculation, one can select easily the supply solution for a given active power and for a given distance separating the power source and the isolated consumer. (authors)

  10. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  11. Supersymmetric solutions for non-relativistic holography

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2009-01-01

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  12. Processing Solutions for Big Data in Astronomy

    Science.gov (United States)

    Fillatre, L.; Lepiller, D.

    2016-09-01

    This paper gives a simple introduction to processing solutions applied to massive amounts of data. It proposes a general presentation of the Big Data paradigm. The Hadoop framework, which is considered as the pioneering processing solution for Big Data, is described together with YARN, the integrated Hadoop tool for resource allocation. This paper also presents the main tools for the management of both the storage (NoSQL solutions) and computing capacities (MapReduce parallel processing schema) of a cluster of machines. Finally, more recent processing solutions like Spark are discussed. Big Data frameworks are now able to run complex applications while keeping the programming simple and greatly improving the computing speed.

  13. Risk transfer solutions for the insurance industry

    Directory of Open Access Journals (Sweden)

    Njegomir Vladimir

    2009-01-01

    Full Text Available The paper focuses on the traditional and alternative mechanisms for insurance risk transfer that are available to global as well as to domestic insurance companies. The findings suggest that traditional insurance risk transfer solutions available to insurance industry nowadays will be predominant in the foreseeable future but the increasing role of alternative solutions is to be expected as the complementary rather than supplementary solution to traditional transfer. Additionally, findings suggest that it is reasonable to expect that future development of risk transfer solutions in Serbia will follow the path that has been passed by global insurance industry.

  14. Scaling solutions for dilaton quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Henz, T.; Pawlowski, J.M., E-mail: j.pawlowski@thphys.uni-heidelberg.de; Wetterich, C.

    2017-06-10

    Scaling solutions for the effective action in dilaton quantum gravity are investigated within the functional renormalization group approach. We find numerical solutions that connect ultraviolet and infrared fixed points as the ratio between scalar field and renormalization scale k is varied. In the Einstein frame the quantum effective action corresponding to the scaling solutions becomes independent of k. The field equations derived from this effective action can be used directly for cosmology. Scale symmetry is spontaneously broken by a non-vanishing cosmological value of the scalar field. For the cosmology corresponding to our scaling solutions, inflation arises naturally. The effective cosmological constant becomes dynamical and vanishes asymptotically as time goes to infinity.

  15. Monopole Solutions in Topologically Massive Gauge Theory

    International Nuclear Information System (INIS)

    Teh, Rosy; Wong, Khai-Ming; Koh, Pin-Wai

    2010-01-01

    Monopoles in topologically massive SU(2) Yang-Mils-Higgs gauge theory in 2+1 dimensions with a Chern-Simon mass term have been studied by Pisarski some years ago. He argued that there is a monopole solution that is regular everywhere, but found that it does not possess finite action. There were no exact or numerical solutions being presented by him. Hence it is our purpose to further investigate this solution in more detail. We obtained numerical regular solutions that smoothly interpolates between the behavior at small and large distances for different values of Chern-Simon term strength and for several fixed values of Higgs field strength.

  16. Geometrical and Graphical Solutions of Quadratic Equations.

    Science.gov (United States)

    Hornsby, E. John, Jr.

    1990-01-01

    Presented are several geometrical and graphical methods of solving quadratic equations. Discussed are Greek origins, Carlyle's method, von Staudt's method, fixed graph methods and imaginary solutions. (CW)

  17. Generalized transformations and coordinates for static spherically symmetric general relativity

    Science.gov (United States)

    Hill, James M.; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  18. Generalized transformations and coordinates for static spherically symmetric general relativity.

    Science.gov (United States)

    Hill, James M; O'Leary, Joseph

    2018-04-01

    We examine a static, spherically symmetric solution of the empty space field equations of general relativity with a non-orthogonal line element which gives rise to an opportunity that does not occur in the standard derivations of the Schwarzschild solution. In these derivations, convenient coordinate transformations and dynamical assumptions inevitably lead to the Schwarzschild solution. By relaxing these conditions, a new solution possibility arises and the resulting formalism embraces the Schwarzschild solution as a special case. The new solution avoids the coordinate singularity associated with the Schwarzschild solution and is achieved by obtaining a more suitable coordinate chart. The solution embodies two arbitrary constants, one of which can be identified as the Newtonian gravitational potential using the weak field limit. The additional arbitrary constant gives rise to a situation that allows for generalizations of the Eddington-Finkelstein transformation and the Kruskal-Szekeres coordinates.

  19. Existence of Periodic Solutions and Stability of Zero Solution of a Mathematical Model of Schistosomiasis

    Directory of Open Access Journals (Sweden)

    Lin Li

    2014-01-01

    Full Text Available A mathematical model on schistosomiasis governed by periodic differential equations with a time delay was studied. By discussing boundedness of the solutions of this model and construction of a monotonic sequence, the existence of positive periodic solution was shown. The conditions under which the model admits a periodic solution and the conditions under which the zero solution is globally stable are given, respectively. Some numerical analyses show the conditional coexistence of locally stable zero solution and periodic solutions and that it is an effective treatment by simply reducing the population of snails and enlarging the death ratio of snails for the control of schistosomiasis.

  20. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  1. Mixed Solutions of Electrical Energy Storage

    Directory of Open Access Journals (Sweden)

    Chioncel Cristian Paul

    2012-01-01

    Full Text Available The paper presents electrical energy storage solutions using electricbatteries and supercapacitors powered from photovoltaic solarmodules, with possibilities of application in electric and hybrid vehicles.The future development of electric cars depends largely on electricalenergy storage solutions that should provide a higher range of roadand operating parameters comparable to those equipped with internalcombustion engines, that eliminate pollution.

  2. Properties of general relativistic kink solution

    International Nuclear Information System (INIS)

    Kodama, T.; Oliveira, L.C.S. de; Santos, F.C.

    1978-12-01

    Properties of the general relativistic kink solution of a nonlinear scalar field recently obtained, are discussed. It has been shown that the kink solution is stable against radical perturbations. Possible applications to Hadron physics from the geometrodynamic point of view are suggested [pt

  3. AdS solutions through transgression

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.; Kim, Nakwoo

    2008-01-01

    We present new classes of explicit supersymmetric AdS 3 solutions of type IIB supergravity with non-vanishing five-form flux and AdS 2 solutions of D = 11 supergravity with electric four-form flux. The former are dual to two-dimensional SCFTs with (0,2) supersymmetry and the latter to supersymmetric quantum mechanics with two supercharges. We also investigate more general classes of AdS 3 solutions of type IIB supergravity and AdS 2 solutions of D = 11 supergravity which in addition have non-vanishing three-form flux and magnetic four-form flux, respectively. The construction of these more general solutions makes essential use of the Chern-Simons or 'transgression' terms in the Bianchi identity or the equation of motion of the field strengths in the supergravity theories. We construct infinite new classes of explicit examples and for some of the type IIB solutions determine the central charge of the dual SCFTs. The type IIB solutions with non-vanishing three-form flux that we construct include a two-torus, and after two T-dualities and an S-duality, we obtain new AdS 3 solutions with only the NS fields being non-trivial.

  4. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  5. Neutron scattering study of dilute supercritical solutions

    International Nuclear Information System (INIS)

    Cochran, H.D.; Wignall, G.D.; Shah, V.M.; Londono, J.D.; Bienkowski, P.R.

    1994-01-01

    Dilute solutions in supercritical solvents exhibit interesting microstructures that are related to their dramatic macroscopic behavior. In typical attractive solutions, solutes are believed to be surrounded by clusters of solvent molecules, and solute molecules are believed to congregate in the vicinity of one another. Repulsive solutions, on the other hand, exhibit a local region of reduced solvent density around the solute with solute-solute congregation. Such microstructures influence solubility, partial molar volume, reaction kinetics, and many other properties. We have undertaken to observe these interesting microstructures directly by neutron scattering experiments on dilute noble gas systems including Ar. The three partial structure factors for such systems and the corresponding pair correlation functions can be determined by using the isotope substitution technique. The systems studied are uniquely suited for our objectives because of the large coherent neutron scattering length of the isotope 36 Ar and because of the accurate potential energy functions that are available for use in molecular simulations and theoretical calculations to be compared with the scattering results. We will describe our experiment, the unique apparatus we have built for it, and the neutron scattering results from our initial allocations of beam time. We will also describe planned scattering experiments to follow those with noble gases, including study of long-chain molecules in supercritical solvents. Such studies will involve hydrocarbon mixtures with and without deuteration to provide contrast

  6. Numerically satisfactory solutions of Kummer recurrence relations

    NARCIS (Netherlands)

    J. Segura (Javier); N.M. Temme (Nico)

    2008-01-01

    textabstractPairs of numerically satisfactory solutions as $n\\rightarrow \\infty$ for the three-term recurrence relations satisfied by the families of functions $_1\\mbox{F}_1(a+\\epsilon_1 n; b +\\epsilon_2 n;z)$, $\\epsilon_i \\in {\\mathbb Z}$, are given. It is proved that minimal solutions always

  7. Clean Energy Solutions Center Services (Arabic Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  8. 21 CFR 178.1010 - Sanitizing solutions.

    Science.gov (United States)

    2010-04-01

    ... aqueous solution containing potassium iodide, sodium p-toluenesulfonchloroamide, and sodium lauryl sulfate...), trisodium phosphate (CAS Reg. No. 7601-54-9), sodium lauryl sulfate (CAS Reg. No. 151-21-3), and potassium...) An aqueous solution of citric acid, disodium ethylenediaminetetraacetate, sodium lauryl sulfate, and...

  9. Development of standardized radioactive 46Sc solution

    International Nuclear Information System (INIS)

    Du Hongshan; Jia Zhang; Yu Yiguang; Sun Naiyao

    1988-01-01

    A method of preparation of standardized radioactive 46 Sc solution is developed. The separation of 46 Sc, the composition of 46 Sc solution and its stability, and radioactivity measurement of 46 Sc are systematically studied. The results obtained in the study and in the applications in many laboratories have shown that our method is effective and reliable

  10. Discrete Riccati equation solutions: Distributed algorithms

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available In this paper new distributed algorithms for the solution of the discrete Riccati equation are introduced. The algorithms are used to provide robust and computational efficient solutions to the discrete Riccati equation. The proposed distributed algorithms are theoretically interesting and computationally attractive.

  11. Thermodynamic properties of potassium chloride aqueous solutions

    Science.gov (United States)

    Zezin, Denis; Driesner, Thomas

    2017-04-01

    Potassium chloride is a ubiquitous salt in natural fluids, being the second most abundant dissolved salt in many geological aqueous solutions after sodium chloride. It is a simple solute and strong electrolyte easily dissociating in water, however the thermodynamic properties of KCl aqueous solutions were never correlated with sufficient accuracy for a wide range of physicochemical conditions. In this communication we propose a set of parameters for a Pitzer-type model which allows calculation of all necessary thermodynamic properties of KCl solution, namely excess Gibbs free energy and derived activity coefficient, apparent molar enthalpy, heat capacity and volume, as well as osmotic coefficient and activity of water in solutions. The system KCl-water is one of the best studied aqueous systems containing electrolytes. Although extensive experimental data were collected for thermodynamic properties of these solutions over the years, the accurate volumetric data became available only recently, thus making possible a complete thermodynamic formulation including a pressure dependence of excess Gibbs free energy and derived properties of the KCl-water liquids. Our proposed model is intended for calculation of major thermodynamic properties of KCl aqueous solutions at temperatures ranging from freezing point of a solution to 623 K, pressures ranging from saturated water vapor up to 150 MPa, and concentrations up to the salt saturation. This parameterized model will be further implemented in geochemical software packages and can facilitate the calculation of aqueous equilibrium for reactive transport codes.

  12. Chemical stability of oseltamivir in oral solutions.

    Science.gov (United States)

    Albert, K; Bockshorn, J

    2007-09-01

    The stability of oseltamivir in oral aqueous solutions containing the preservative sodium benzoate was studied by a stability indicating HPLC-method. The separation was achieved on a RP-18 ec column using a gradient of mobile phase A (aqueous solution of 50 mM ammonium acetate) and mobile phase B (60% (v/v) acetonitrile/40% (v/v) mobile phase A). The assay was subsequently validated according to the ICH guideline Q2(R1). The extemporaneously prepared "Oseltamivir Oral Solution 15 mg/ml for Adults or for Children" (NRF 31.2.) according to the German National Formulary ("Neues Rezeptur-Formularium") was stable for 84 days if stored under refrigeration. After storage at 25 degrees C the content of oseltamivir decreased to 98.4%. Considering the toxicological limit of 0.5% of the 5-acetylamino derivative (the so-called isomer I) the solution is stable for 46 days. Oseltamivir was less stable in a solution prepared with potable water instead of purified water. Due to an increasing pH the stability of this solution decreased to 14 days. Furthermore a white precipitate of mainly calcium phosphate was observed. The addition of 0.1% anhydrous citric acid avoided these problems and improved the stability of the solution prepared with potable water to 63 days. Sodium benzoate was stable in all oral solutions tested.

  13. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  14. DIUx Commercial Solutions Opening: How to Guide

    Science.gov (United States)

    2016-11-30

    technology development; today, that trend has shifted: commercial investment now propels the preponderance of ground -breaking technology development...contracts. This is normally accomplished through a job order cost accounting system, whereby the books and records segregate direct costs by agreement...or figure (s) to depict the essence of the proposed solution is strongly encouraged. 5) Multiple solution briefs addressing different topic areas

  15. Power Series Solution to the Pendulum Equation

    Science.gov (United States)

    Benacka, Jan

    2009-01-01

    This note gives a power series solution to the pendulum equation that enables to investigate the system in an analytical way only, i.e. to avoid numeric methods. A method of determining the number of the terms for getting a required relative error is presented that uses bigger and lesser geometric series. The solution is suitable for modelling the…

  16. Clean Energy Solutions Center Services (Vietnamese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  17. Solution space assessment for mass customization

    DEFF Research Database (Denmark)

    Brunø, Thomas Ditlev; Nielsen, Kjeld; Jørgensen, Kaj Asbjørn

    2012-01-01

    literature study and analysis of solution space characteristics a number of metrics are described which can be used for solution space assessment. They are divided into five caterories: Profitability, Utilization, Variety Demand satisfaction, Architecture and Responsiveness. The metrics and be applied as KPI’s...

  18. Clean Energy Solutions Center Services (Portuguese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  19. A solution for the narrow rectangular punch

    NARCIS (Netherlands)

    Panek, C.F.; Kalker, J.J.

    1977-01-01

    This paper considers the problem of a rectangular flat ended punch acting on an elastic half-space. An approximate solution is generated through application of the elastic line integral equations. The results produced by this method are then compared with another approximate solution already

  20. Extremal solutions of measure differential equations

    Czech Academy of Sciences Publication Activity Database

    Monteiro, Giselle Antunes; Slavík, A.

    2016-01-01

    Roč. 444, č. 1 (2016), s. 568-597 ISSN 0022-247X Institutional support: RVO:67985840 Keywords : measure differential equations * extremal solution * lower solution Subject RIV: BA - General Mathematics Impact factor: 1.064, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022247X16302724