Gravitational field of Schwarzschild soliton
Directory of Open Access Journals (Sweden)
Musavvir Ali
2015-01-01
Full Text Available The aim of this paper is to study the gravitational field of Schwarzschild soliton. Use of characteristic of λ-tensor is given to determine the kinds of gravitational fields. Through the cases of two and three dimension for Schwarzschild soliton, the Gaussian curvature is expressed in terms of eigen values of the characteristic equation.
How to obtain the Schwarzschild metric before Einstein's field equations
Kassner, Klaus
2016-01-01
As is well-known, there is no way to derive the Schwarzschild metric on the basis of pre-general-relativistic physics alone, which means using only special relativity, the Einstein equivalence principle and the Newtonian limit. It is however possible to encode the additional physics needed in two reasonably plausible postulates allowing to deduce the exact Schwarzschild metric without invoking Einstein's field equations. Since these requirements are designed to apply to the spherically symmmetric case, their union is much less powerful than the postulates from which Einstein obtained his field equations. It is shown that the field equations imply the postulates given here but that the converse is not quite true. The approach provides a fairly fast calculation method for the Schwarzschild metric in arbitrary coordinates exhibiting stationarity.
Doppleraj efikoj \\^ce Schwarzschild
Paiva, F M
2009-01-01
Motion of bodies and light rays are studied in the gravitational field of Schwarzschild. Several Doppler effects are described. ----- Movado de korpoj kaj lumo estas studitaj en gravita kampo de Schwarzschild. Pluraj Doppleraj efikoj estas priskribitaj.
Rayimbaev, J. R.
2016-09-01
The motion of a magnetized particle orbiting around non-Schwarzschild black hole immersed in an external uniform magnetic field is considered. The influence of deformation parameter h to effective potential of the radial motion of the magnetized particle around non-Schwarzschild black hole using Hamilton-Jacobi formalism is studied. We have obtained numerical values of area Δ ρ where magnetized particles can move which is expanding (narrowing) due to the effect of the negative (positive) deformation. Finally, we have studied the collision of two particles (magnetized-neutral, magnetized-magnetized, magnetized-charged) in non-Schwarzschild spacetime and got the center-of-mass energy (E_{c.m}) for the particles. Moreover, we have found the capture radius (r_{cap}) - the distance from the central object to the point where particles collide and fall down to the central compact object. It is shown that non-Schwarzschild black holes could also act as particle accelerators with arbitrarily high center-of-mass energy.
Slowly decaying resonances of massive scalar fields around Schwarzschild-de Sitter black holes
Toshmatov, Bobir; Stuchlík, Zdeněk
2017-07-01
We study in special limiting cases quasinormal modes of massive scalar fields in the Schwarzschild-de Sitter black hole backgrounds. We determine the lower limit on the mass parameter of the scalar field that allows the waves with quasinormal frequencies to propagate to infinity, showing that it depends on the spacetime parameters only. Then we discuss in the large multipole number limit quasinormal modes, whose frequencies can be directly related to the unstable circular photon geodesics. In the large scalar mass approximation, we demonstrate the new interesting phenomenon of slowly decaying resonances, that are strongly related to the maximum of the effective potential of the massive scalar field, which is located at the static radius of the Schwarzschild-de Sitter spacetimes, where the cosmic repulsion is just balanced by the black hole attraction.
Real Scalar Field Scattering with Polynomial Approximation around Schwarzschild-de Sitter Black-hole
Liu, Molin; Liu, Hongya; Zhang, Jingfei; Yu, Fei
2008-01-01
As one of the fitting methods, the polynomial approximation is effective to process sophisticated problem. In this paper, we employ this approach to handle the scattering of scalar field around the Schwarzschild-de Sitter black-hole. The complex relationship between tortoise coordinate and radial coordinate is replaced by the approximate polynomial. The Schr$\\ddot{o}$dinger-like equation, the real boundary conditions and the polynomial approximation construct a full Sturm-Liouville type probl...
Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole.
Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V
2018-03-06
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'. © 2018 The Author(s).
Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole
Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V.
2018-01-01
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory. This article is part of the Theo Murphy meeting issue `Higgs Cosmology'.
Papadopoulos, Demetrios B; Kokkotas, Kostas D; Stergioulas, Nikolaos
2015-01-01
We obtain an approximate solution for the motion of a charged particle around a Schwarzschild black hole immersed in a weak dipolar magnetic field. We focus on eccentric bound orbits in the equatorial plane of the Schwarzschild black hole and derive an analytic expression for the spectral distribution of the electromagnetic emission from a charged particle on such an orbit. Two sets of harmonic contributions appear, with specific frequency spacing. The expression can be written in compact form, if it is truncated up to the lowest order harmonic contributions.
Directory of Open Access Journals (Sweden)
Sergio Mendoza
2009-01-01
Full Text Available We present heuristic arguments suggesting that if EM waves with wavelengths somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it, the second law of thermodynamics would be violated, under the Bekenstein interpretation of the area of a black hole as a measure of its entropy. Thus, entropy considerations make the well known fact that large wavelengths are only marginally absorbed by black holes, a natural consequence of thermodynamics. We also study numerically the ingoing radial propagation of a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads to the eikonal equation, that the wave has zero spatial extent. We find that if these waves have wavelengths larger that the Schwarzschild radius, they are very substantially reflected, fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides with the one derived from entropy considerations of the EM field, and is consistent with well known limit results of scattering in the Schwarzschild metric. The propagation speed is also calculated and seen to differ from the value c, for wavelengths larger than Rs, in the vicinity of Rs. As in all classical wave phenomena, whenever the wavelength is larger or comparable to the physical size of elements in the system, in this case changes in the metric, the zero extent Ã¢Â€Â™particleÃ¢Â€Â™ description fails, and the wave nature becomes apparent.
From the Schwarzschild Anti-de Sitter Black Hole to the Conformal Field Theory
Directory of Open Access Journals (Sweden)
Akram Sadat Sefiedgar
2015-01-01
Full Text Available The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS black holes due to rainbow gravity model. Using the correspondence between a (d+1-dimensional SAdS black hole and a conformal filed theory in d-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.
Relativistic electrons and magnetic fields of the M87 jet on the ∼10 Schwarzschild radii scale
Energy Technology Data Exchange (ETDEWEB)
Kino, M. [Korea Astronomy and Space Science Institute, 776 Daedukdae-ro, Yusong, Daejon 305-348 (Korea, Republic of); Takahara, F. [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Hada, K. [INAF—Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Doi, A. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, 229-8510 Sagamihara (Japan)
2014-05-01
We explore energy densities of the magnetic fields and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self-absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core has a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic fields (U{sub B} ) and relativistic electrons (U{sub e} ) on the basis of the standard SSA formula. Imposing the condition that the Poynting power and kinetic power of relativistic electrons should be smaller than the total power of the jet, we find that (1) the allowed range of the magnetic field strength (B {sub tot}) is 1 G ≤ B {sub tot} ≤ 15 G and that (2) 1 × 10{sup –5} ≤ U{sub e} /U{sub B} ≤ 6 × 10{sup 2} holds. The uncertainty of U{sub e} /U{sub B} comes from the strong dependence on the angular size of the radio core and the minimum Lorentz factor of non-thermal electrons (γ {sub e,min}) in the core. It is still unsettled whether resultant energetics are consistent with either the magnetohydrodynamic jet or the kinetic power dominated jet even on the ∼10 Schwarzschild radii scale.
Reconsidering Schwarzschild's original solution
Antoci, S; Liebscher, D. -E.
2001-01-01
We analyse the Schwarzschild solution in the context of the historical development of its present use, and explain the invariant definition of a singular surface at the Schwarzschild's radius, that can be applied to the Kerr-Newman solution too.
Kanti, P.; Pappas, T.; Pappas, N.
2014-12-01
In this paper, we consider the propagation of scalar particles in a higher-dimensional Schwarzschild-de Sitter black-hole spacetime, both on the brane and in the bulk. Our analysis applies for arbitrary partial modes and for both minimal and nonminimal coupling of the scalar field. A general expression for the greybody factor is analytically derived in each case, and its low-energy behavior is studied in detail. Its profile in terms of scalar properties (angular-momentum number and nonminimal coupling parameter) and spacetime properties (number of extra dimensions and cosmological constant) is thoroughly investigated. In contrast to previous studies, the effect of the cosmological constant is taken into account both close to and far away from the black-hole horizon. The dual role of the cosmological constant, that may act either as a helping agent to the emission of scalar particles or as a deterring effect depending on the value of the nonminimal coupling parameter, is also demonstrated.
Schwarzschild instanton in emergent gravity
Chanda, Sumanto; Guha, Partha; Roychowdhury, Raju
2017-09-01
In the bottom-up approach of emergent gravity, we attempt to find symplectic gauge fields emerging from Euclidean Schwarzschild instanton, which is studied as electromagnetism defined on the symplectic space (M,ω). Geometrical engineering with the emergent metric sets up the Seiberg-Witten map between commutative and non-commutative gauge fields, preparing the ground for the evaluation of topological invariants in terms of the underlying gauge theory quantities.
Quantum corrections to Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-04-15
Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)
On Quantum Deformation of the Schwarzschild Solution
Kazakov, D.I.; Solodukhin, S. N.
1993-01-01
We consider the deformation of the Schwarzschild solution in general relativity due to spherically symmetric quantum fluctuations of the metric and the matter fields. In this case, the 4D theory of gravity with Einstein action reduces to the effective two-dimensional dilaton gravity. We have found that the Schwarzschild singularity at $r=0$ is shifted to the finite radius $r_{min} \\sim r_{Pl}$, where the scalar curvature is finite, so that the space-time looks regular and consists of two asym...
Linet, Bernard
2015-01-01
We present a complete analysis of the light rays within the linearized, weak-field approximation of a Schwarzschild-like metric describing the gravitational field of an isolated, spherically symmetric body. We prove in this context the existence of two time transfer functions and we obtain these functions in an exact closed-form. We are led to distinguish two regimes. In the first regime, the two time transfer functions correspond to rays which are confined in regions of spacetime where the weak-field approximation is valid. Such a regime occurs in gravitational lensing configurations with double images of a given source. We find the general expressions of the angular separation and the difference in light travel time between the two images. In the second regime, there exists only one time transfer function corresponding to a light ray remaining in a region of weak field. Performing a Taylor expansion of this function with respect to the gravitational constant, we obtain the Shapiro time delay completed by a ...
Averaging Schwarzschild spacetime
Tegai, S. Ph.; Drobov, I. V.
2017-07-01
We tried to average the Schwarzschild solution for the gravitational point source by analogy with the same problem in Newtonian gravity or electrostatics. We expected to get a similar result, consisting of two parts: the smoothed interior part being a sphere filled with some matter content and an empty exterior part described by the original solution. We considered several variants of generally covariant averaging schemes. The averaging of the connection in the spirit of Zalaletdinov's macroscopic gravity gave unsatisfactory results. With the transport operators proposed in the literature it did not give the expected Schwarzschild solution in the exterior part of the averaged spacetime. We were able to construct a transport operator that preserves the Newtonian analogy for the outward region but such an operator does not have a clear geometrical meaning. In contrast, using the curvature as the primary averaged object instead of the connection does give the desired result for the exterior part of the problem in a fine way. However for the interior part, this curvature averaging does not work because the Schwarzschild curvature components diverge as 1 /r3 near the center and therefore are not integrable.
Analytical Solution Of Complete Schwarzschild\\'s Planetary Equation
African Journals Online (AJOL)
It is well known how to solve the Einstein\\'s planetary equation of motion by the method of successive approximation for the corresponding orbit solution. In this paper, we solve the complete schwarzschild\\'s planetary equation of motion by an exact analytical method. The result reveals that there are actually eight exact ...
Classroom reconstruction of the Schwarzschild metric
Kassner, Klaus
2015-01-01
A promising way to introduce general relativity in the classroom is to study the physical predictions that follow from certain given metrics, such as the Schwarzschild one. This involves lower mathematical expenditure than an approach focusing on differential geometry in its full glory and permits to emphasize physical aspects before attacking the field equations. Even so, in terms of motivation, lacking justification of the metric employed may pose an obstacle. The paper discusses how to establish the weak-field limit of the Schwarzschild metric with a minimum of relatively simple physical assumptions. Since this does not appear sufficient to arrive at a form of the metric useful for more than the most basic predictions (gravitational redshift), the determination of a single additional parameter from experiment is admitted. An attractive experimental candidate is the measurement of the perihelion precession of Mercury, because the result was already known before the completion of general relativity. It is sh...
Quantum correlator outside a Schwarzschild black hole
Directory of Open Access Journals (Sweden)
Claudia Buss
2018-01-01
Full Text Available We calculate the quantum correlator in Schwarzschild black hole space–time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle–Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.
Quantum correlator outside a Schwarzschild black hole
Buss, Claudia; Casals, Marc
2018-01-01
We calculate the quantum correlator in Schwarzschild black hole space-time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle-Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.
Gravitino perturbations in Schwarzschild black holes
Piedra, Owen Pavel Fernández
2010-01-01
We consider the time evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages, after an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondenc...
Dirac Quasinormal modes of Schwarzschild black hole
Jing, Jiliang
2005-01-01
The quasinormal modes (QNMs) associated with the decay of Dirac field perturbation around a Schwarzschild black hole is investigated by using continued fraction and Hill-determinant approaches. It is shown that the fundamental quasinormal frequencies become evenly spaced for large angular quantum number and the spacing is given by $\\omega_{\\lambda+1}- \\omega_{\\lambda}=0.38490-0.00000i$. The angular quantum number has the surprising effect of increasing real part of the quasinormal frequencies...
Dynamics of particles around time conformal Schwarzschild black hole
Jawad, Abdul; Ali, Farhad; Shahzad, M. Umair; Abbas, G.
2016-11-01
In this work, we present the new technique for discussing the dynamical motion of neutral as well as charged particles in the absence/presence of a magnetic field around the time conformal Schwarzschild black hole. Initially, we find the numerical solutions of geodesics of the Schwarzschild black hole and the time conformal Schwarzschild black hole. We observe that the Schwarzschild spacetime admits the time conformal factor e^{ɛ f(t)}, where f( t) is an arbitrary function and ɛ is very small, which causes a perturbation in the spacetimes. This technique also re-scales the energy content of spacetime. We also investigate the thermal stability, horizons and energy conditions corresponding to time conformal Schwarzschild spacetime. Also, we examine the dynamics of a neutral and charged particle around a time conformal Schwarzschild black hole. We investigate the circumstances under which the particle can escape from the vicinity of a black hole after collision with another particle. We analyze the effective potential and effective force of a particle in the presence of a magnetic field with angular momentum graphically.
Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Slowly rotating supercompact Schwarzschild stars
Posada, Camilo
2017-06-01
The Schwarzschild interior solution, or 'Schwarzschild star', which describes a spherically symmetric homogeneous mass with a constant energy density, shows a divergence in pressure when the radius of the star reaches the Schwarzschild-Buchdahl bound. Recently, Mazur and Mottola showed that this divergence is integrable through the Komar formula, inducing non-isotropic transverse stresses on a surface of some radius R0. When this radius approaches the Schwarzschild radius Rs = 2 M, the interior solution becomes one of negative pressure evoking a de Sitter space-time. This gravitational condensate star, or gravastar, is an alternative solution to the idea of a black hole as the ultimate state of gravitational collapse. Using Hartle's model to calculate equilibrium configurations of slowly rotating masses, we report results of surface and integral properties for a Schwarzschild star in the very little studied region Rs < R < (9/8)Rs. We found that in the gravastar limit, the angular velocity of the fluid relative to the local inertial frame tends to zero, indicating rigid rotation. Remarkably, the normalized moment of inertia I/MR2 and the mass quadrupole moment Q approach the corresponding values for the Kerr metric to second order in Ω. These results provide a solution to the problem of the source of a slowly rotating Kerr black hole.
Martin Schwarzschild (1912-1997)
Trimble, V.
1997-12-01
Martin Schwarzschild, the ASP Bruce Medalist for 1965, died on 10 April 1997. A refugee from Hitler's Germany who firmly embraced his adopted country, Schwarzschild not only solved a number of fundamental problems in stellar structure and evolution but also taught the rest of the astronomical community how to do so with his 1958 text, Structure and Evolution of the Stars. At about the time of his 1979 retirement, he turned to a completely different question of how to model spheroidal galaxies self-consistently and sent another generation of students and collaborators forward toward the still somewhat distant solution. It is impossible for anyone who ever interacted with Schwarzschild to remain entirely solemn when remembering him. (SECTION: Obituary)
Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole
Directory of Open Access Journals (Sweden)
G. Abbas
2014-01-01
Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.
Complete Schwarzschild\\'s planetary equation | Howusu | Journal of ...
African Journals Online (AJOL)
In this paper we derive the complete planetary equation from the Schwarzschild's equations of motion and compare it with the corresponding well-known planetary equation from the Schwarzchild's line element. Journal of the Nigerian Association of Mathematical Physics Vol. 8 2004: pp. 265-268 ...
TRANSFER PANAS LUBANG HITAM SCHWARZSCHILD
Directory of Open Access Journals (Sweden)
Y Tiandho
2015-07-01
Full Text Available Mekanika kuantum menunjukkan bahwa lubang hitam memiliki temperatur sebagai indikasi dapat mengemisikan partikel. Persamaan transfer panas secara general mengandung operator Laplacian yang sifatnya dipengaruhi oleh ruang. Kelengkungan ruang-waktu di daerah sekitar lubang hitam sangat besar sehingga operator Laplacian untuk menghitung distribusi temperaturnya merupakan Laplacian ruang lengkung. Persamaan Fourier untuk lubang hitam Schwarzschild bergantung pada jarak dan radius Schwarzschild. Pada keadaan tunak solusi dari komponen radius mengandung polinomial Legendre dan solusi dari komponen sudut ruang mengadung fungsi spherical harmonics. Untuk kasus dengan persamaan diferensial terhadap waktu bernilai konstan solusi menyimpulkan bahwa temperatur bertambah seiring waktu. Hasil yang telah didapatkan secara umum dapat digunakan untuk menentukan distribusi temperatur pada ruang lengkung akibat suatu objek bermassa M. Koreksi ini sekaligus menggambarkan peristiwa transfer panas dalam konteks relativitas umum.Quantum mechanics show that black hole has temperature that indicated that black hole can emit particles.<0} {0>Persamaan transfer panas secara general mengandung operator Laplacian yang sifatnya dipengaruhi oleh ruang.<}0{>Generally the heat transfer equation contains Laplacian operators that is influenced by space.<0} {0>Kelengkungan ruang-waktu di daerah sekitar lubang hitam sangat besar sehingga operator Laplacian untuk menghitung distribusi temperaturnya merupakan Laplacian ruang lengkung.<}0{>The space-time arch in the surrounding of black hole is very big so that Laplacian operators to calculate the temperature distribution is the arch space Laplacian.<0} {0>Persamaan Fourier untuk lubang hitam Schwarzschild bergantung pada jarak dan radius Schwarzschild.<}0{>Fourier equation for Schwarzschild black hole is depended on the distance and radius of Schwarzschild.<0} {0>Pada keadaan tunak solusi dari komponen radius mengandung polinomial
Quantum corrected Schwarzschild thin-shell wormhole
Jusufi, Kimet
2016-01-01
Recently, Ali and Khalil (Nucl Phys B, 909, 173–185, 2016 ), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois–Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to kee...
The Lemaitre-Schwarzschild problem revisited
Fuzfa, A.; Gérard, Jean-Marc; Lambert, Didier
2001-01-01
The Lemaitre and Schwarzschild analytical solutions for a relativistic spherical body of constant density are linked together through the use of the Weyl quadratic invariant. The critical radius for gravitational collapse of an incompressible fluid is shown to vary continuously from 9/8 of the Schwarzschild radius to the Schwarzschild radius itself while the internal pressures become locally anisotropic. Comment: Final version as accepted by GR&G (to appear in vol. 34, sept...
Gravitino perturbations in Schwarzschild black holes
Piedra, Owen Pavel Fernández
2010-01-01
We consider the time evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages, after an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondence between the results obtained by the above two methods, and we obtain a considerable improvement with respect to the previously obtained third order WKB results. We also show that the response of a black hole depends crucially on the spin class of the perturbing field: the quality factor becomes a decreasing function of the spin for boson perturbations , whereas the opposite situation appears for fermion ones.
The stable problem of the black-hole connected region in the Schwarzschild black hole
Tian, Guihua
2005-01-01
The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...
Dynamical scalar hair formation around a Schwarzschild black hole
Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi
2016-12-01
Scalar fields coupled to the Gauss-Bonnet invariant evade the known no-hair theorems and have nontrivial configurations around black holes. We focus on a scalar field that couples linearly to the Gauss-Bonnet invariant and hence exhibits shift symmetry. We study its dynamical evolution and the formation of scalar hair in a Schwarzschild background. We show that the evolution eventually settles to the known static hairy solutions in the appropriate limit.
The Schwarzschild solution in the DGP model
Middleton, Chad; Siopsis, George
2003-01-01
We discuss the Schwarzschild solution in the Dvali-Gabadadze-Porrati (DGP) model. We obtain a perturbative expansion and find the explicit form of the lowest-order contribution. By keeping off-diagonal terms in the metric, we arrive at a perturbative expansion which is valid both far from and near the Schwarzschild radius. We calculate the lowest-order contribution explicitly and obtain the form of the metric both on the brane and in the bulk. As we approach the Schwarzschild radius, the pert...
Gravitino Perturbations in Schwarzschild Black Holes
Fernandez Piedra, Owen Pavel
We consider the time-evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages. After an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth-order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondence between the results obtained by the above two methods, and we obtain a considerable improvement with respect to the previously obtained third-order WKB results. We also show that the response of a black hole depends crucially on the spin class of the perturbing field: the quality factor becomes a decreasing function of the spin for boson perturbations, whereas the opposite situation appears for fermion ones. With respect to the late-time behavior, we found numerical evidence of a faster decay of gravitino perturbations, a result in constrast with what is known for other neutral fields.
Traversable Schwarzschild-like wormholes
Cataldo, Mauricio; Liempi, Luis; Rodríguez, Pablo
2017-11-01
In this paper we study relativistic static traversable wormhole solutions which are a slight generalization of Schwarzschild wormholes. In order to do this we assume a shape function with a linear dependence on the radial coordinate r. This linear shape function generates wormholes whose asymptotic spacetime is not flat: they are asymptotically locally flat, since in the asymptotic limit r → ∞ spacetimes exhibiting a solid angle deficit (or excess) are obtained. In particular, there exist wormholes which connect two asymptotically non-flat regions with a solid angle deficit. For these wormholes the size of their embeddings in a three-dimensional Euclidean space extends from the throat to infinity. A new phantom zero-tidal-force wormhole exhibiting such asymptotic is obtained. On the other hand, if a solid angle excess is present, the size of the wormhole embeddings depends on the amount of this angle excess, and the energy density is negative everywhere. We discuss the traversability conditions and study the impact of the β -parameter on the motion of a traveler when the wormhole throat is crossed. A description of the geodesic behavior for the wormholes obtained is also presented.
Radiation memory, boosted Schwarzschild spacetimes and supertranslations
Mädler, Thomas; Winicour, Jeffrey
2017-06-01
We investigate gravitational radiation memory and its corresponding effect on the asymptotic symmetries of a body whose exterior is a boosted Schwarzschild spacetime. First, in the context of linearized theory, we consider such a Schwarzschild body which is initially at rest, then goes through a radiative stage and finally emerges as a boosted Schwarzschild body. We show that the proper retarded solution of the exterior Schwarzschild spacetime for this process can be described in terms of the ingoing Kerr-Schild form of the Schwarzschild metric for both the initial and final states. An outgoing Kerr-Schild or time symmetric metric does not give the proper solution. The special property of Kerr-Schild metrics that their linearized and nonlinear forms are identical allows us to extend this result to processes in the nonlinear regime. We then discuss how the nonlinear memory effect, and its associated supertranslation, affect angular momentum conservation. Our approach provides a new framework for studying nonlinear aspects of the memory effect.
Dolan, Sam R
2010-01-01
To model the radiative evolution of extreme mass-ratio binary inspirals (a key target of the LISA mission), the community needs efficient methods for computation of the gravitational self-force (SF) on the Kerr spacetime. Here we further develop a practical `$m$-mode regularization' scheme for SF calculations, and give details of a first implementation. The key steps in the method are (i) removal of a singular part of the perturbation field with a suitable `puncture' to leave a sufficiently regular residual within a finite worldtube surrounding the particle's worldline, (ii) decomposition in azimuthal ($m$-)modes, (iii) numerical evolution of the $m$-modes in 2+1D with a finite difference scheme, and (iv) reconstruction of the SF from the mode sum. The method relies on a judicious choice of puncture, based on the Detweiler--Whiting decomposition. We give a working definition for the `order' of the puncture, and show how it determines the convergence rate of the $m$-mode sum. The dissipative piece of the SF di...
Quantum Corrected Schwarzschild Thin Shell Wormhole
Jusufi, Kimet
2016-01-01
Recently, Ali and Khalil \\cite{ahmed}, based on the Bohmian quantum mechanics derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that, quantum corrections can affect the stability domain of the wormhole.
Quantum corrected Schwarzschild thin-shell wormhole
Energy Technology Data Exchange (ETDEWEB)
Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of)
2016-11-15
Recently, Ali and Khalil (Nucl Phys B, 909, 173-185, 2016), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois-Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to keep the wormhole stable. We then study the stability analysis of the wormhole by considering phantom-energy for the exotic matter, generalized Chaplygin gas (GCG), and the linearized stability analysis. It is argued that quantum corrections can affect the stability domain of the wormhole. (orig.)
Properties of gravity near the Schwarzschild radius
Verozub, Leonid
2014-01-01
The radius of the observable region of the Universe is of the order of its Schwarzschild radius. Due to the spherical symmetry, this allows to check the properties of the gravitational force in the vicinity of the Schwarzschild radius by comparing the theoretical and observed Hubble diagram at high redshifts. This can be done in a simple model that fellows from projective-invariant equations of gravitation.This paper shows that the Hubble diagram up to $z=8$ testifies in favor of the specific...
Features and stability analysis of non-Schwarzschild black hole in quadratic gravity
Energy Technology Data Exchange (ETDEWEB)
Cai, Yi-Fu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); Department of Physics, McGill University,Montréal, Quebec, H3A 2T8 (Canada); School of Physical Sciences, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Zhang, Hezi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); School of Physical Sciences, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Liu, Junyu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); School of the Gifted Young, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Cheng, Gong [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); School of Physical Sciences, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Wang, Min [Faculty of Materials and Energy, Southwest University,Chongqing, 400715 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China)
2016-01-19
Black holes are found to exist in gravitational theories with the presence of quadratic curvature terms and behave differently from the Schwarzschild solution. We present an exhaustive analysis for determining the quasinormal modes of a test scalar field propagating in a new class of black hole backgrounds in the case of pure Einstein-Weyl gravity. Our result shows that the field decay of quasinormal modes in such a non-Schwarzschild black hole behaves similarly to the Schwarzschild one, but the decay slope becomes much smoother due to the appearance of the Weyl tensor square in the background theory. We also analyze the frequencies of the quasinormal modes in order to characterize the properties of new back holes, and thus, if these modes can be the source of gravitational waves, the underlying theories may be testable in future gravitational wave experiments. We briefly comment on the issue of quantum (in)stability in this theory at linear order.
Accretion processes in magnetically and tidally perturbed Schwarzschild black holes
Kovács, Zoltán; Vasúth, Mátyás
2011-01-01
We study the accretion process in the region of the Preston-Poisson space-time describing a Schwarzschild black hole perturbed by asymptotically uniform magnetic field and axisymmetric tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts towards the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the conversion efficiency of accreting mass into radiation is decreased by both the magnetic and the tidal perturbations.
On the Ramifications of the Schwarzschild Space-Time Metric
Directory of Open Access Journals (Sweden)
Crothers S. J.
2005-04-01
Full Text Available In a previous paper I derived the general solution for the simple point-mass in a true Schwarzschild space. I extend that solution to the point-charge, the rotating point-mass, and the rotating point-charge, culminating in a single expression for the general solution for the point-mass in all its configurations when Λ = 0. The general exact solution is proved regular everywhere except at the arbitrary location of the source of the gravitational field. In no case does the black hole manifest. The conventional solutions giving rise to various black holes are shown to be inconsistent with General Relativity.
Interactive Visualization of a Thin Disc around a Schwarzschild Black Hole
Muller, Thomas; Frauendiener, Jorg
2012-01-01
In a first course in general relativity, the Schwarzschild spacetime is the most discussed analytic solution to Einstein's field equations. Unfortunately, there is rarely enough time to study the optical consequences of the bending of light for some advanced examples. In this paper, we present how the visual appearance of a thin disc around a…
Statistical Entropy of Schwarzschild Black Holes
Englert, F
1998-01-01
The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Beckenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes.
The Planck Vacuum and the Schwarzschild Metrics
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-07-01
Full Text Available The Planck vacuum (PV is assumed to be the source of the visible universe. So under conditions of sufficient stress, there must exist a pathway through which energy from the PV can travel into this universe. Conversely, the passage of energy from the visible universe to the PV must also exist under the same stressful conditions. The following examines two versions of the Schwarzschild metric equation for compatability with this open-pathway idea.
On the twin paradox in static spacetimes: I. Schwarzschild metric
Sokołowski, Leszek M.
2012-05-01
Motivated by a conjecture put forward by Abramowicz and Bajtlik we reconsider the twin paradox in static spacetimes. According to a well known theorem in Lorentzian geometry the longest timelike worldline between two given points is the unique geodesic line without points conjugate to the initial point on the segment joining the two points. We calculate the proper times for static twins, for twins moving on a circular orbit (if it is a geodesic) around a centre of symmetry and for twins travelling on outgoing and ingoing radial timelike geodesics. We show that the twins on the radial geodesic worldlines are always the oldest ones and we explicitly find the the conjugate points (if they exist) outside the relevant segments. As it is of its own mathematical interest, we find general Jacobi vector fields on the geodesic lines under consideration. In the first part of the work we investigate Schwarzschild geometry.
On the twin paradox in static spacetimes: I. Schwarzschild metric
Sokolowski, Leszek M
2012-01-01
Motivated by a conjecture put forward by Abramowicz and Bajtlik we reconsider the twin paradox in static spacetimes. According to a well known theorem in Lorentzian geometry the longest timelike worldline between two given points is the unique geodesic line without points conjugate to the initial point on the segment joining the two points. We calculate the proper times for static twins, for twins moving on a circular orbit (if it is a geodesic) around a centre of symmetry and for twins travelling on outgoing and ingoing radial timelike geodesics. We show that the twins on the radial geodesic worldlines are always the oldest ones and we explicitly find the conjugate points (if they exist) outside the relevant segments. As it is of its own mathematical interest, we find general Jacobi vector fields on the geodesic lines under consideration. In the first part of the work we investigate Schwarzschild geometry.
The solution of complete Schwarzschild's planetary equation with ...
African Journals Online (AJOL)
The Einstein's solution of the planetary equation of motion from Schwarzschild's line element is well known. In this paper, we solve the complete Schwarzschild's planetary equation with the method of successive approximation for the corresponding precession and compare the result with that from the line element.
Eigentensors of the Lichnerowicz operator in Euclidean Schwarzschild metrics
Energy Technology Data Exchange (ETDEWEB)
Martinez-Morales, J.L. [Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, A. P. 273, Admon. de correos 3, C. P. 62251 Cuernavaca, Morelos (Mexico)
2006-09-01
Properties of the eigentensors of the Lichnerowicz Laplacian for the Euclidean Schwarzschild metric are discussed together with possible applications to the linear stability of higher-dimensional instantons. The main statement of the article is that any eigentensor of the Lichnerowicz operator in a Euclidean (possibly higher-dimensional) Schwarzschild metric is essentially singular at infinity. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Turning points of massive particles in Schwarzschild geometry
Polonyi, J.; Radosz, A.; Siwek, A.; Ostasiewicz, K.
2009-01-01
The stable geodesics in Schwarzschild geometry can not approach the center closer than the radius of the photon sphere, 3/2 times the Schwarzschild radius. In other words, massive particles moving along geodesics that cross the photon sphere do not escape, they fall into the black hole.
Landau problem in the static schwarzschild universe
Directory of Open Access Journals (Sweden)
A Jafari
2013-09-01
Full Text Available This paper considers the Landau problem in an elected static space time and the are erased levels shifts which are erased as a metric deviation from the Minkowski space time. This research is based on the Weber’s method. We try to rewrite the equation of motion of particles in the presence of the gravitational effects and consider the regions limited with the tangent spaces conditions. I t would be reasonable to assume the nonrelativistic particles with low speed. We show that due to the Weber’s method, the tangent space is always available. Another assumption of this article is time independent tangent space of Schwarzschild universe and use of Riemann’s normal coordinates.
Dust ball physics and the Schwarzschild metric
Kassner, Klaus
2016-01-01
A physics-first derivation of the Schwarzschild metric is given. Gravitation is described in terms of the effects of tidal forces (or of spacetime curvature) on the volume of a small ball of test particles (a dust ball), freely falling after all particles were at rest with respect to each other initially. The possibility to express Einstein's equation this way and some of its ramifications have been enjoyably discussed by Baez and Bunn [Am. J. Phys. 73, 644 (2005)]. Since the formulation avoids the use of tensors, neither advanced tensor calculus nor sophisticated differential geometry are needed in the calculation. The derivation is not lengthy and it has visual appeal, so it may be useful in teaching.
Counting Schwarzschild and Charged Black Holes
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind
2003-05-23
We review the arguments that fundamental string states are in one to one correspondence with black hole states. We demonstrate the power of the assumption by showing that it implies that the statistical entropy of a wide class of nonextreme black holes occurring in string theory is proportional to the horizon area. However, the numerical coefficient relating the area and entropy only agrees with the Bekenstein-Hawking formula if the central charge of the string is six which does not correspond to any known string theory. Unlike the current D-brane methods the method used in this paper is applicable for the case of Schwarzschild and highly non-extreme charged black holes.
Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang
2017-11-01
We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black ...
Indian Academy of Sciences (India)
corrected Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third-order WKB approximation. The numerical results obtained showed that the complex frequencies depend on the quantum ...
Sironi, Giorgia
2017-09-01
At the beginning of XX century Karl Schwarzschild defined a method to design large-field aplanatic telescopes based on the use of two aspheric mirrors. The approach was then refined by Couder (1926) who, in order to correct for the astigmatic aberration, introduced a curvature of the focal plane. By the way, the realization of normal-incidence telescopes implementing the Schwarzschild aplanatic configuration has been historically limited by the lack of technological solutions to manufacture and test aspheric mirrors. On the other hand, the Schwarzschild solution was recovered for the realization of coma-free X-ray grazing incidence optics. Wolter-like grazing incidence systems are indeed free of spherical aberration, but still suffer from coma and higher order aberrations degrading the imaging capability for off-axis sources. The application of the Schwarzschild's solution to X-ray optics allowed Wolter to define an optical system that exactly obeys the Abbe sine condition, eliminating coma completely. Therefore these systems are named Wolter-Schwarzschild telescopes and have been used to implement wide-field X-ray telescopes like the ROSAT WFC and the SOHO X-ray telescope. Starting from this approach, a new class of X-ray optical system was proposed by Burrows, Burg and Giacconi assuming polynomials numerically optimized to get a flat field of view response and applied by Conconi to the wide field x-ray telescope (WFXT) design. The Schwarzschild-Couder solution has been recently re-discovered for the application to normal-incidence Cherenkov telescopes, thanks to the suggestion by Vassiliev and collaborators. The Italian Institute for Astrophysics (INAF) realized the first Cherenkov telescope based on the polynomial variation of the Schwarzschild configuration (the so-called ASTRI telescope). Its optical qualification was successfully completed in 2016, demonstrating the suitability of the Schwarzschild-like configuration for the Cherenkov astronomy requirements
Stability of Schwarzschild singularity in non-local gravity
Calcagni, Gianluca; Modesto, Leonardo
2017-10-01
In a previous work, it was shown that all Ricci-flat spacetimes are exact solutions for a large class of non-local gravitational theories. Here we prove that, for a subclass of non-local theories, the Schwarzschild singularity is stable under linear perturbations. Thus, non-locality may be not enough to cure all the singularities of general relativity. Finally, we show that the Schwarzschild solution can be generated by the gravitational collapse of a thin shell of radiation.
Bose–Einstein graviton condensate in a Schwarzschild black hole
Alfaro, Jorge; Espriu, Domènec; Gabbanelli, Luciano
2018-01-01
We analyze in detail a previous proposal by Dvali and Gómez that black holes could be treated as consisting of a Bose–Einstein condensate of gravitons. In order to do so we extend the Einstein–Hilbert action with a chemical potential-like term, thus placing ourselves in a grand-canonical ensemble. The form and characteristics of this chemical potential-like piece are discussed in some detail. We argue that the resulting equations of motion derived from the action could be interpreted as the Gross–Pitaevskii equation describing a graviton Bose–Einstein condensate trapped by the black hole gravitational field. After this, we proceed to expand the ensuring equations of motion up to second order around the classical Schwarzschild metric so that some non-linear terms in the metric fluctuation are kept. Next we search for solutions and, modulo some very plausible assumptions, we find out that the condensate vanishes outside the horizon but is non-zero in its interior. Inspired by a linearized approximation around the horizon we are able to find an exact solution for the mean-field wave function describing the graviton Bose–Einstein condensate in the black hole interior. After this, we can rederive some of the relations involving the number of gravitons N and the black hole characteristics along the lines suggested by Dvali and Gómez.
Caustic echoes from a Schwarzschild black hole
Zenginoğlu, Anıl
2012-01-01
We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sphere and confirm its exponential decay. The trapped wavefront propagates through caustics resulting in echoes that propagate to infinity. The arrival times and the decay rate of these caustic echoes are consistent with propagation along null geodesics and the large l-limit of quasinormal modes. We show that the four-fold singularity structure of the retarded Green function is due to the well-known action of a Hilbert transform on the trapped wavefront at caustics. A two-fold cycle is obtained for degenerate source-observer configurations along the caustic line, where the energy amplification increases with an inverse power of the scale of the source. Finally, we discuss the tail piece of the solution due to propagation within the light cone, up to and including nu...
Hawking radiation inside a Schwarzschild black hole
Hamilton, Andrew J S
2016-01-01
The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law char...
1st Karl Schwarzschild Meeting on Gravitational Physics
Kaminski, Matthias; Mureika, Jonas; Bleicher, Marcus
2016-01-01
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.
Stability of Schwarzschild singularity in non-local gravity
Directory of Open Access Journals (Sweden)
Gianluca Calcagni
2017-10-01
Full Text Available In a previous work, it was shown that all Ricci-flat spacetimes are exact solutions for a large class of non-local gravitational theories. Here we prove that, for a subclass of non-local theories, the Schwarzschild singularity is stable under linear perturbations. Thus, non-locality may be not enough to cure all the singularities of general relativity. Finally, we show that the Schwarzschild solution can be generated by the gravitational collapse of a thin shell of radiation.
Self-consistent orbital evolution of a particle around a Schwarzschild black hole.
Diener, Peter; Vega, Ian; Wardell, Barry; Detweiler, Steven
2012-05-11
The motion of a charged particle is influenced by the self-force arising from the particle's interaction with its own field. In a curved spacetime, this self-force depends on the entire past history of the particle and is difficult to evaluate. As a result, all existing self-force evaluations in curved spacetime are for particles moving along a fixed trajectory. Here, for the first time, we overcome this long-standing limitation and present fully self-consistent orbits and waveforms of a scalar charged particle around a Schwarzschild black hole.
Al-Badawi, A.
2018-02-01
The Dirac equation is considered in a spacetime that represents a Schwarzschild metric coupled to a uniform external electromagnetic field. Due to the presence of electromagnetic field from the surroundings, the interaction with the spin-1/2 massive charged particle is considered. The equations of the spin-1/2 massive charged particle are separated into radial and angular equations by adopting the Newman-Penrose formalism. The angular equations obtained are similar to the Schwarzschild geometry. For the radial equations we manage to obtain the one dimensional Schrödinger-type wave equations with effective potentials. Finally, we study the behavior of the potentials by plotting them as a function of radial distance and expose the effect of the external parameter, charge and the frequency of the particle on them.
Scalar wave scattering from Schwarzschild black holes in modified gravity
Sibandze, Dan B; Maharaj, Sunil D; Nzioki, Anne Marie; Dunsby, Peter K S
2016-01-01
We consider the scattering of gravitational waves off a Schwarzschild Black Hole in $f(R)$ gravity. We find that, while the reflection and transmission coefficients for tensor waves are the same as in General Relativity, a larger fraction of scalar waves are reflected compared to what one obtains for tensors. This may provide a novel observational signature for fourth order gravity.
The golden ratio in Schwarzschild-Kottler black holes
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Facultad de Ciencia, Santiago 2 (Chile); Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)
2017-02-15
In this paper we show that the golden ratio is present in the Schwarzschild-Kottler metric. For null geodesics with maximal radial acceleration, the turning points of the orbits are in the golden ratio Φ = (√(5)-1)/2. This is a general result which is independent of the value and sign of the cosmological constant Λ. (orig.)
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black ...
Indian Academy of Sciences (India)
Chunyan Wang
2017-11-27
Nov 27, 2017 ... Abstract. In this work, we investigate the electromagnetic perturbation around a quantum-corrected. Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third- order WKB approximation. The numerical results obtained showed that the complex frequencies ...
Entropy Spectrum of Modified Schwarzschild Black Hole via an ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Abstract. The entropy spectrum of a modified Schwarzschild black hole in the gravity's rainbow are investigated. By utilizing an action invariance of the black hole with the help of Bohr–Sommerfield quantization rule, the entropy spectrum for the modified black hole are calculated. The result of the equally ...
Schwarzschild models of the Sculptor dSph galaxy
Breddels, M. A.; Helmi, A.; van den Bosch, R. C. E.; van de Ven, G.; Battaglia, G.; Reyle, C; Robin, A; Schultheis, M
We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius) as well as on the orbital structure of the system modelled (e.g.
Entropy Spectrum of Modified Schwarzschild Black Hole via an ...
Indian Academy of Sciences (India)
526. Cheng-Zhou Liu where f1 and f2 are two energy functions and by this the present modified. Schwarzschild spacetime is endowed with Planck scale modifications. For the non-charged spherically static symmetric spacetime, the only dynamic degree freedom can be written as qr, the Hamilton's equation ˙r = dr dτ. = dHτ.
(Non-adiabatic) string creation on nice slices in Schwarzschild black holes
Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori
2017-04-01
Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Our purpose is two-fold. First, we use nice slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.
Gravitational redshifts in electromagnetic bursts occurring near Schwarzschild horizon
Karkowski, J
2003-01-01
It was suggested earlier that the gravitational redshift formula can be invalid when the effect of the backscattering is strong. It is demonstrated here numerically, for an exemplary electromagnetic pulse that is (i) initially located very close to the horizon of a Schwarzschild black hole and (ii) strongly backscattered, that a mean frequency does not obey the standard redshift formula. Redshifts appear to depend on the frequency and there manifests a backscatter-induced blueshift in the outgoing radiation.
Resolving the Schwarzschild singularity in both classic and quantum gravity
Zeng, Ding-fang
2017-01-01
The Schwarzschild singularity's resolution has key values in cracking the key mysteries related with black holes, the origin of their horizon entropy and the information missing puzzle involved in their evaporations. We provide in this work the general dynamic inner metric of collapsing stars with horizons and with non-trivial radial mass distributions. We find that static central singularities are not the final state of the system. Instead, the final state of the system is a periodically zer...
Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation
Pappas, Thomas; Kanti, Panagiota
2017-12-01
We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.
Drude-Schwarzschild Metric and the Electrical Conductivity of Metals
Directory of Open Access Journals (Sweden)
Silva P. R.
2014-07-01
Full Text Available Starting from a string with a length equal to the electron mean free path and having a unit cell equal to the Compton length of the electron, we construct a Schwarzschild-like metric. We found that this metric has a surface horizon with radius equal to the electron mean free path and its Bekenstein-like entropy is proportional to the number of squared unit cells contained in this spherical surface. The Hawking temperature is inversely proportional to the perimeter of the maximum circle of this sphere. Also, interesting analogies on some features of the particle physics are examined.
Toward the construction of a medium size prototype Schwarzschild-Couder telescope for CTA
Rousselle, J.; Byrum, K.; Cameron, R.; Connaughton, V.; Errando, M.; Griffiths, S.; Guarino, V.; Humensky, T. B.; Jenke, P.; Kaaret, P.; Kieda, D.; Limon, M.; Mognet, I.; Mukherjee, R.; Nieto, D.; Okumura, A.; Peck, A.; Petrashyk, A.; Ribeiro, D.; Stevenson, B.; Vassiliev, V.; Yu, P.
2015-09-01
The construction of a prototype Schwarzschild-Couder telescope (pSCT) started in early June 2015 at the Fred Lawrence Whipple Observatory in Southern Arizona, as a candidate medium-sized telescope for the Cherenkov Telescope Array (CTA). Compared to current Davies-Cotton telescopes, this novel instrument with an aplanatic two-mirror optical system will offer a wider field-of-view and improved angular resolution. In addition, the reduced plate scale of the camera allows the use of highly-integrated photon detectors such as silicon photo multipliers. As part of CTA, this design has the potential to greatly improve the performance of the next generation ground-based observatory for very high-energy (E>60 GeV) gamma-ray astronomy. In this contribution we present the design and performance of both optical and alignment systems of the pSCT.
Energy Technology Data Exchange (ETDEWEB)
El-Menoufi, Basem Kamal [Department of Physics, University of Massachusetts,Amherst, MA 01003 (United States)
2016-05-05
In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.
Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Moretti, Valter [Trento Univ., Povo (Italy). Dipt. di Matematica; Istituto Nazionale di Fisica Nucleare, Povo (Italy); Istituto Nazionale di Alta Matematica ' ' F. Severi' ' , GNFM, Sesto Fiorentino (Italy)
2009-07-15
The discovery of the radiation properties of black holes prompted the search for a natural candidate quantum ground state for a massless scalar field theory on Schwarzschild spacetime, here considered in the Eddington-Finkelstein representation. Among the several available proposals in the literature, an important physical role is played by the so-called Unruh state which is supposed to be appropriate to capture the physics of a black hole formed by spherically symmetric collapsing matter. Within this respect, we shall consider a massless Klein-Gordon field and we shall rigorously and globally construct such state, that is on the algebra of Weyl observables localised in the union of the static external region, the future event horizon and the non-static black hole region. Eventually, out of a careful use of microlocal techniques, we prove that the built state fulfils, where defined, the so-called Hadamard condition; hence, it is perturbatively stable, in other words realizing the natural candidate with which one could study purely quantum phenomena such as the role of the back reaction of Hawking's radiation. From a geometrical point of view, we shall make a profitable use of a bulk-to-boundary reconstruction technique which carefully exploits the Killing horizon structure as well as the conformal asymptotic behaviour of the underlying background. From an analytical point of view, our tools will range from Hoermander's theorem on propagation of singularities, results on the role of passive states, and a detailed use of the recently discovered peeling behaviour of the solutions of the wave equation in Schwarzschild spacetime. (orig.)
Thermodynamics of Schwarzschild-Beltrami-de Sitter black hole
Liu, Hang; Meng, Xin-He
2017-09-01
In this paper, we investigate the thermodynamical properties of Schwarzschild-Beltrami-de Sitter (S-BdS) black hole introduced by Yan et al. in 2013 by introducing inertial Beltrami coordinates to traditional non-inertial Schwarzschild-de Sitter (S-dS) metric which is the exact static spherical symmetry solution of Einstein equation with a positive cosmological constant Λ. Based on this new metric, we compute entropy on all horizons and we give the entropy bound of the black hole. Hawking temperatures are calculated by considering a perturbation to entropy relations due to that the spacetime described by these inertial coordinates is no longer a stationary spacetime in which surface gravity related to Hawking temperature is defined well on killing horizon. We also get the Smarr relations and the first law of thermodynamics. We find that the S-BdS black hole seems to have similar thermodynamical properties to S-dS black hole in the comparison between their corresponding thermodynamical quantities, although the new black hole metric is described by inertial coordinates which exclude the effects of inertial force.
Gravitating discs around a Schwarzschild black hole: III
Semerak, O
2003-01-01
The properties of exact relativistic spacetimes of a Schwarzschild black hole surrounded by annular thin discs obtained by inversion of the first ten members of the counter-rotating Morgan-Morgan class are studied. Effects of the discs' own gravity are compared, in particular the induced deformation of the horizon and changes in the features of free circular motion in the disc plane. Within the plane of the two relevant parameters of the composite solution (relative disc mass and its inner radius), regions are specified where the discs satisfy basic physical requirements (energetic conditions and possibility, subluminality and stability of circular geodesics in terms of which they are interpreted). In contrast to the first inverted Morgan-Morgan disc, treated in previous papers, the 'higher' members of the family have to be placed farther and farther from the hole in order to remain stable when their mass is increased from zero.
Schwarzschild models of the Sculptor dSph galaxy
Directory of Open Access Journals (Sweden)
van de Ven G.
2012-02-01
Full Text Available We have developed a spherically symmetric dynamical model of a dwarf spheroidal galaxy using the Schwarzschild method. This type of modelling yields constraints both on the total mass distribution (e.g. enclosed mass and scale radius as well as on the orbital structure of the system modelled (e.g. velocity anisotropy. Therefore not only can we derive the dark matter content of these systems, but also explore possible formation scenarios. Here we present preliminary results for the Sculptor dSph. We find that the mass of Sculptor within 1 kpc is 8.5 × 107±0.05 M๏, its anisotropy profile is tangentially biased and slightly more isotropic near the center. For an NFW profile, the preferred concentration (~15 is compatible with cosmological models. Very cuspy density profiles (steeper than NFW are strongly disfavoured for Sculptor.
The Compton-Schwarzschild correspondence from extended de Broglie relations
Energy Technology Data Exchange (ETDEWEB)
Lake, Matthew J. [The Institute for Fundamental Study, “The Tah Poe Academia Institute' ,Naresuan University, Phitsanulok 65000 (Thailand); Thailand Center of Excellence in Physics, Ministry of Education,Bangkok 10400 (Thailand); Carr, Bernard [School of Physics and Astronomy, Queen Mary University of London,Mile End Road, London E1 4NS (United Kingdom)
2015-11-17
The Compton wavelength gives the minimum radius within which the mass of a particle may be localized due to quantum effects, while the Schwarzschild radius gives the maximum radius within which the mass of a black hole may be localized due to classial gravity. In a mass-radius diagram, the two lines intersect near the Planck point (l{sub P},m{sub P}), where quantum gravity effects become significant. Since canonical (non-gravitational) quantum mechanics is based on the concept of wave-particle duality, encapsulated in the de Broglie relations, these relations should break down near (l{sub P},m{sub P}). It is unclear what physical interpretation can be given to quantum particles with energy E≫m{sub P}c{sup 2}, since they correspond to wavelengths λ≪l{sub P} or time periods τ≪t{sub P} in the standard theory. We therefore propose a correction to the standard de Broglie relations, which gives rise to a modified Schrödinger equation and a modified expression for the Compton wavelength, which may be extended into the region E≫m{sub P}c{sup 2}. For the proposed modification, we recover the expression for the Schwarzschild radius for E≫m{sub P}c{sup 2} and the usual Compton formula for E≪m{sub P}c{sup 2}. The sign of the inequality obtained from the uncertainty principle reverses at m≈m{sub P}, so that the Compton wavelength and event horizon size may be interpreted as minimum and maximum radii, respectively. We interpret the additional terms in the modified de Broglie relations as representing the self-gravitation of the wave packet.
Null and timelike geodesics of the Schwarzschild black hole with string cloud background
Batool, Mahwish; Hussain, Ibrar
The trajectories of the time-like and null geodesics for radial and circular motion of the Schwarzschild black hole with string cloud background are investigated and compared with the Schwarzschild case without string clouds. It is found that in the presence of the string cloud parameter, the radius of the orbits is larger than the radius of the orbits in the case of the Schwarzschild black hole without string cloud parameter. Effective potential is calculated and it is observed that as the value of string cloud parameter increases the particle can more easily escape to infinity. Stability of the circular orbits is also discussed.
Transformation optics that mimics the system outside a Schwarzschild black hole
Chen, Huanyang; Miao, Rong-Xin; Li, Miao
2009-01-01
We applied the transformation optics to mimic a black hole of Schwarzschild form. Similar properties of photon sphere were also found numerically for the metamaterial black hole. Several reduced versions of the black hole systems were proposed for easier implementations.
The Compton-Schwarzschild correspondence from extended de Broglie relations
Lake, Matthew J
2015-01-01
The Compton wavelength gives the minimum radius within which the mass of a particle may be localized due to quantum effects, while the Schwarzschild radius gives the maximum radius within which the mass of a black hole may be localized due to classial gravity. In a mass-radius diagram, the two lines intersect near the Planck point $(l_P,m_P)$, where quantum gravity effects become significant. Since canonical (non-gravitational) quantum mechanics is based on the concept of wave-particle duality, encapsulated in the de Broglie relations, these relations should break down near $(l_P,m_P)$. It is unclear what physical interpretation can be given to quantum particles with energy $E \\gg m_Pc^2 $, since they correspond to wavelengths $\\lambda \\ll l_P$ or time periods $T \\ll t_P$ in the standard theory. We therefore propose a correction to the standard de Broglie relations, which gives rise to a modified Schr{\\" o}dinger equation and a modified expression for the Compton wavelength, which may be extended into the reg...
Resolving the Schwarzschild singularity in both classic and quantum gravity
Zeng, Ding-fang
2017-04-01
The Schwarzschild singularity's resolution has key values in cracking the key mysteries related with black holes, the origin of their horizon entropy and the information missing puzzle involved in their evaporations. We provide in this work the general dynamic inner metric of collapsing stars with horizons and with non-trivial radial mass distributions. We find that static central singularities are not the final state of the system. Instead, the final state of the system is a periodically zero-cross breathing ball. Through 3+1 decomposed general relativity and its quantum formulation, we establish a functional Schrödinger equation controlling the micro-state of this breathing ball and show that, the system configuration with all the matter concentrating on the central point is not the unique eigen-energy-density solution. Using a Bohr-Sommerfield like ;orbital; quantisation assumption, we show that for each black hole of horizon radius rh, there are about e rh2/#x2113;pl 2 allowable eigen-energy-density profiles. This naturally leads to physic interpretations for the micro-origin of horizon entropy, as well as solutions to the information missing puzzle involved in Hawking radiations.
Resolving the Schwarzschild singularity in both classic and quantum gravity
Directory of Open Access Journals (Sweden)
Ding-fang Zeng
2017-04-01
Full Text Available The Schwarzschild singularity's resolution has key values in cracking the key mysteries related with black holes, the origin of their horizon entropy and the information missing puzzle involved in their evaporations. We provide in this work the general dynamic inner metric of collapsing stars with horizons and with non-trivial radial mass distributions. We find that static central singularities are not the final state of the system. Instead, the final state of the system is a periodically zero-cross breathing ball. Through 3+1 decomposed general relativity and its quantum formulation, we establish a functional Schrödinger equation controlling the micro-state of this breathing ball and show that, the system configuration with all the matter concentrating on the central point is not the unique eigen-energy-density solution. Using a Bohr–Sommerfield like “orbital” quantisation assumption, we show that for each black hole of horizon radius rh, there are about erh2/ℓpl2 allowable eigen-energy-density profiles. This naturally leads to physic interpretations for the micro-origin of horizon entropy, as well as solutions to the information missing puzzle involved in Hawking radiations.
Schwarzschildâde Sitter spacetime: The role of temperature in the emission of Hawking radiation
Directory of Open Access Journals (Sweden)
Thomas Pappas
2017-12-01
Full Text Available We consider a Schwarzschildâde Sitter (SdS black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.
First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope
Giro, E.; Canestrari, R.; Sironi, G.; Antolini, E.; Conconi, P.; Fermino, C. E.; Gargano, C.; Rodeghiero, G.; Russo, F.; Scuderi, S.; Tosti, G.; Vassiliev, V.; Pareschi, G.
2017-12-01
Context. The Cherenkov Telescope Array (CTA) represents the most advanced facility designed for Cherenkov Astronomy. ASTRI SST-2M has been developed as a demonstrator for the Small Size Telescope in the context of the upcoming CTA. Its main innovation consists in the optical layout which implements the Schwarzschild-Couder configuration and is fully validated for the first time. The ASTRI SST-2M optical system represents the first qualified example of a two-mirror telescope for Cherenkov Astronomy. This configuration permits us to (i) maintain high optical quality across a large field of view; (ii) demagnify the plate scale; and (iii) exploit new technological solutions for focal plane sensors. Aims: The goal of the paper is to present the optical qualification of the ASTRI SST-2M telescope. The qualification has been obtained measuring the point spread function (PSF) sizes generated in the focal plane at various distances from the optical axis. These values have been compared with the performances expected by design. Methods: After an introduction on Gamma-ray Astronomy from the ground, the optical design of ASTRI SST-2M and how it has been implemented is discussed. Moreover, the description of the set-up used to qualify the telescope over the full field of view is shown. Results: We report the results of the first-light optical qualification. The required specification of a flat PSF of 10 arcmin in a large field of view ( 10°) has been demonstrated. These results validate the design specifications, opening a new scenario for Cherenkov Gamma-ray Astronomy and, in particular, for the detection of high-energy (5-300 TeV) gamma rays and wide-field observations with CTA.
The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Cho, Demian H J; Tsokaros, Antonios A; Wiseman, Alan G [Department of Physics, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201 (United States)
2007-03-07
The finite part of the self-force on a static, non-minimally coupled scalar test charge outside a Schwarzschild black hole is zero. This result is determined from the work required to slowly raise or lower the charge through an infinitesimal distance. Unlike similar force calculations for minimally-coupled scalar charges or electric charges, we find that we must account for a flux of field energy that passes through the horizon and changes the mass and area of the black hole when the charge is displaced. This occurs even for an arbitrarily slow displacement of the non-minimally coupled scalar charge. For a positive coupling constant, the area of the hole increases when the charge is lowered and decreases when the charge is raised. The fact that the self-force vanishes for a static, non-minimally coupled scalar charge in Schwarzschild spacetime agrees with a simple prediction of the Quinn-Wald axioms. However, Zel'nikov and Frolov computed a non-vanishing self-force for a non-minimally coupled charge. Our method of calculation closely parallels the derivation of Zel'nikov and Frolov, and we show that their omission of this unusual flux is responsible for their (incorrect) result. When the flux is accounted for, the self-force vanishes. This correction eliminates a potential counter example to the Quinn-Wald axioms. The fact that the area of the black hole changes when the charge is displaced brings up two interesting questions that did not arise in similar calculations for static electric charges and minimally coupled scalar charges. (1) How can we reconcile a decrease in the area of the black hole horizon with the area theorem which concludes that {delta}Area{sub horizon} {>=} 0? The key hypothesis of the area theorem is that the stress-energy tensor must satisfy a null-energy condition T{sup {alpha}}{sup {beta}}l{sub {alpha}}l{sub {beta}} {>=} 0 for any null vector l{sub {alpha}}. We explicitly show that the stress-energy associated with a non
Khayrul, Hasan, M.; Sultana, Kausari; Shahjalal, Md.
2017-10-01
We probe the plausibility of weak equivalence principle for a circular motion at the radial distance of photon sphere of the Schwarzschild?(Anti-)de Sitter black hole. We switch the static Schwarzschild?(Anti-)de Sitter space-time to rotational by means of the transformation with constant angular velocity. The fiducial observers revolving along the trajectory of photon orbit of the Schwarzschild?(Anti-)de Sitter black hole are supposed to agree on the result of any physical experiment when their angular velocities are uniform, which give rise to the constancy in their accelerations, meaning the observers are equivalent. Our study, in contrast, finds that the observers do not measure similar results, claiming the invalidity of the principle of weak equivalence. However, the aim of our work is not to defy the principle absolutely, rather we focus our attention on the very cause for which the dispute arises, namely the rotational motion.
Quantum-mechanical corrections to the Schwarzschild black-hole metric
Bargueño, P.; Bravo Medina, S.; Nowakowski, M.; Batic, D.
2017-03-01
Motivated by quantum-mechanical corrections to the Newtonian potential, which can be translated into a {\\hbar} -correction to the g 00 component of the Schwarzschild metric, we construct a quantum-mechanically corrected metric assuming -g00=grr . We show how the Bekenstein black-hole entropy S receives its logarithmic contribution provided the quantum-mechanical corrections to the metric are negative. In this case the standard horizon at the Schwarzschild radius r S increases by small terms proportional to {\\hbar} and a remnant of the order of Planck mass emerges.
Vossos, Spyridon; Vossos, Elias
2017-12-01
Schwarzschild Metric is the first and the most important solution of Einstein vacuum field equations. This is associated with Lorentz metric of flat spacetime and produces the relativistic potential (Φ) and the field strength (g) outside a spherically symmetric mass or a non-rotating black hole. It has many applications such as gravitational red shift, the precession of Mercury’s orbit, Shapiro time delay etc. However, it is inefficient to explain the rotation curves in large galaxies and clusters of them, causing the necessity for dark matter. On the other hand, Modified Newtonian Dynamics (MOND) has already explained these rotation curves in many cases, using suitable interpolating function (μ) in Milgrom’s Law. In this presentation, we initially produce a Generalized Schwarzschild potential and the corresponding Metric of spacetime, in order to be in accordance with any isotropic metric of flat spacetime (including Galilean Metric of spacetime which is associated with Galilean Transformation of spacetime). From this Generalized Schwarzschild potential (Φ), we calculate the corresponding field strength (g), which is associated with the interpolating function (μ). In this way, a new relativistic potential is obtained (let us call 2nd Generalized Schwarzschild potential) which describes the gravitational interaction at any distance and for any metric of flat spacetime. Thus, not only the necessity for Dark Matter is eliminated, but also MOND becomes a pure Relativistic Theory of Gravitational Interaction. Then, we pass to the case of flat spacetime with Lorentz metric (Minkowski space), because the experimental data have been extracted using the Relativistic Doppler Shift and the gravitational red shift of Classic Relativity (CR). Thus, we Explain the Rotation Curves in Galaxies (e.g. NGC 3198) and Clusters of them as well as the Solar system, eliminating Dark Matter. This relativistic potential and the corresponding metric of spacetime have been obtained
Asymptotic description of a test particle around a Schwarzschild black hole
Rosales-Vera, Marco
2018-03-01
In this paper, the movement of a test particle around a Schwarzschild black hole is revisited. Using matched asymptotic expansions, approximate analytical expressions for the orbit of the test particle in the case of large eccentricity are found. The asymptotic solutions are compared with numerical and analytical results.
Augousti, A. T.; Gawelczyk, M.; Siwek, A.; Radosz, A.
2012-01-01
The problem of communication between observers in the vicinity of a black hole in a Schwarzschild metric is considered. The classic example of an infalling observer Alice and a static distant mother station (MS) is extended to include a second infalling observer Bob, who follows Alice in falling towards the event horizon. Kruskal coordinates are…
Exact Schwarzschild-de Sitter black holes in a family of massive gravity models
Nieuwenhuizen, T.M.
2011-01-01
The Schwarzschild-de Sitter and Reissner-Nordström-de Sitter black hole metrics appear as exact solutions in the recently formulated massive gravity of de Rham, Gabadadze and Tolley, where the mass term sets the curvature scale. They occur within a two-parameter family of de Rham, Gabadadze and
Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong-Wan [Chonbuk National University, Research Institute of Physics and Chemistry, Jeonju (Korea, Republic of); Kim, Seung Kook [Seonam University, Department of Physical Therapy, Namwon (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)
2016-10-15
In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole. (orig.)
da Rocha, R.; Sobreiro, R. F.; Tomaz, A. A.
2017-12-01
Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild-de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes.
Scattering of Ricci scalar perturbations from Schwarzschild black holes in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Sibandze, Dan B.; Goswami, Rituparno; Maharaj, Sunil D.; Nzioki, Anne Marie [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics Statistics and Computer Science, Private Bag X54001, Durban (South Africa); Dunsby, Peter K.S. [University of Cape Town, Department of Mathematics and Applied Mathematics and ACGC, Cape Town (South Africa)
2017-06-15
It has already been shown that the gravitational waves emitted from a Schwarzschild black hole in f(R) gravity have no signatures of the modification of gravity from General Relativity, as the Regge-Wheeler equation remains invariant. In this paper we consider the perturbations of Ricci scalar in a vacuum Schwarzschild spacetime, which is unique to higher order theories of gravity and is absent in General Relativity. We show that the equation that governs these perturbations can be reduced to a Volterra integral equation. We explicitly calculate the reflection coefficients for the Ricci scalar perturbations, when they are scattered by the black hole potential barrier. Our analysis shows that a larger fraction of these Ricci scalar waves are reflected compared to the gravitational waves. This may provide a novel observational signature for fourth order gravity. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)
2016-04-15
We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)
Ridho, Almizan
2017-01-01
130801028 Jika suatu bintang masif dengan massa M berbentuk bola, maka kita dapat menghitung radius bola yang mengungkung massa M tersebut. Kemudian untuk mengubah bintang masif tersebut menjadi lubang hitam kita harus mengubah radius ini menjadi sedemikian rupa. Radius yang menjadikan suatu bintang masif menjadi lubang hitam inilah yang kemudian dinamakan Radius Schwarzschild. Dengan demikian, kita juga dapat mendefinisikan lubang hitam sebagai suatu bintang masif bermassa M yang seluruh ...
Formation of the remnant close to Planck scale and the Schwarzschild black hole with global monopole
Li, Hui-Ling; Chen, Shuai-Ru
2017-10-01
In this paper, we use the generalized uncertainty principle (GUP) and quantum tunneling method to research the formation of the remnant from a Schwarzschild black hole with global monopole. Based on the corrected Hamilton-Jacobi equation, the corrections to the Hawking temperature, heat capacity and entropy are calculated. We not only find the remnant close to Planck scale by employing GUP, but also research the thermodynamic stability of the black hole remnant according to the phase transition and heat capacity.
Gravitational Self Force in a Schwarzschild Background and the Effective One Body Formalism
Damour, Thibault
2009-01-01
We discuss various ways in which the computation of conservative Gravitational Self Force (GSF) effects on a point mass moving in a Schwarzschild background can inform us about the basic building blocks of the Effective One-Body (EOB) Hamiltonian. We display the information which can be extracted from the recently published GSF calculation of the first-GSF-order shift of the orbital frequency of the last stable circular orbit, and we combine this information with the one recently obtained by ...
Schwarzschild-de Sitter spacetimes, McVittie coordinates, and trumpet geometries
Dennison, Kenneth A.; Baumgarte, Thomas W.
2017-12-01
Trumpet geometries play an important role in numerical simulations of black hole spacetimes, which are usually performed under the assumption of asymptotic flatness. Our Universe is not asymptotically flat, however, which has motivated numerical studies of black holes in asymptotically de Sitter spacetimes. We derive analytical expressions for trumpet geometries in Schwarzschild-de Sitter spacetimes by first generalizing the static maximal trumpet slicing of the Schwarzschild spacetime to static constant mean curvature trumpet slicings of Schwarzschild-de Sitter spacetimes. We then switch to a comoving isotropic radial coordinate which results in a coordinate system analogous to McVittie coordinates. At large distances from the black hole the resulting metric asymptotes to a Friedmann-Lemaître-Robertson-Walker metric with an exponentially-expanding scale factor. While McVittie coordinates have another asymptotically de Sitter end as the radial coordinate goes to zero, so that they generalize the notion of a "wormhole" geometry, our new coordinates approach a horizon-penetrating trumpet geometry in the same limit. Our analytical expressions clarify the role of time-dependence, boundary conditions and coordinate conditions for trumpet slices in a cosmological context, and provide a useful test for black hole simulations in asymptotically de Sitter spacetimes.
Barack, Leor
2011-01-01
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass $\\mu$ is much smaller than the black hole mass $M$, and explore post-geodesic corrections of $O(\\mu/M)$. Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the $O(\\mu/M)$ conservative correction to the periastron advance of the orbit, as a function of the (gauge dependent) semi-latus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully ecc...
Barack, Leor; Sago, Norichika
2010-01-01
Using a recently presented numerical code for calculating the Lorenz-gauge gravitational self-force (GSF), we compute the $O(m)$ conservative correction to the precession rate of the small-eccentricity orbits of a particle of mass $m$ moving around a Schwarzschild black hole of mass ${\\mathsf M}\\gg m$. Specifically, we study the gauge-invariant function $\\rho(x)$, where $\\rho$ is defined as the $O(m)$ part of the dimensionless ratio $(\\hat\\Omega_r/\\hat\\Omega_{\\varphi})^2$ between the squares of the radial and azimuthal frequencies of the orbit, and where $x=[Gc^{-3}({\\mathsf M}+m)\\hat\\Omega_{\\varphi}]^{2/3}$ is a gauge-invariant measure of the dimensionless gravitational potential (mass over radius) associated with the mean circular orbit. Our GSF computation of the function $\\rho(x)$ in the interval $0
Exact gravitational lensing in conformal gravity and Schwarzschild-de Sitter spacetime
Lim, Yen-Kheng
2016-01-01
An exact solution is obtained for the gravitational bending of light in static, spherically symmetric metrics which includes the Schwarzschild-de Sitter (SdS) spacetime and also the Mannheim-Kazanas (MK) metric of conformal Weyl gravity. From the exact solution, we obtain a small bending-angle approximation for a lens system where the source, lens and observer are co-aligned. This expansion improves previous calculations where we systematically avoid parameter ranges which correspond to non-existent null trajectories. The linear coefficient $\\gamma$ characteristic to conformal gravity is shown to contribute enhanced deflection compared to the angle predicted by General Relativity for small $\\gamma$.
Exact gravitational lensing in conformal gravity and Schwarzschild-de Sitter spacetime
Lim, Yen-Kheng; Wang, Qing-hai
2017-01-01
An exact solution is obtained for the gravitational bending of light in static, spherically symmetric metrics which includes the Schwarzschild-de Sitter spacetime and also the Mannheim-Kazanas metric of conformal Weyl gravity. From the exact solution, we obtain a small-bending-angle approximation for a lens system where the source, lens, and observer are coaligned. This expansion improves previous calculations where we systematically avoid parameter ranges that correspond to nonexistent null trajectories. The linear coefficient γ characteristic to conformal gravity is shown to contribute enhanced deflection compared to the angle predicted by general relativity for small γ .
Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole
Directory of Open Access Journals (Sweden)
Alexis Larrañaga
2013-01-01
Full Text Available The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD. Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black Hole for Electromagnetic Perturbation
Wang, Chunyan; Gao, Yajun; Ding, Wenbo; Yu, Qingxu
2017-12-01
In this work, we investigate the electromagnetic perturbation around a quantum-corrected Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third-order WKB approximation. The numerical results obtained showed that the complex frequencies depend on the quantum correction parameter a of a black hole, which the real parts and the magnitudes of the imaginary parts of quasinormal modes decrease with the increase in factor a. These conclusions show that the electromagnetic perturbation around the black hole oscillate and damp more slowly owing to the presence of the quantum correction parameter.
Barack, Leor; Sago, Norichika
2009-05-15
The innermost stable circular orbit (ISCO) of a test particle around a Schwarzschild black hole of mass M has (areal) radius r_{isco}=6MG/c;{2}. If the particle is endowed with mass micro(radius and frequency, at leading order in the mass ratio micro/M. We obtain, in the Lorenz gauge, Deltar_{isco}=-3.269(+/-0.003)microG/c;{2} and DeltaOmega_{isco}/Omega_{isco}=0.4870(+/-0.0006)micro/M. We discuss the implications of our result within the context of the extreme-mass-ratio binary inspiral problem.
Schwarzschild Black Branes and Strings in higher-dimensional Brane Worlds
Kanti, Panagiota; Tamvakis, Kyriakos
2002-01-01
We consider branes embedded in spacetimes of codimension 1 and 2, with a warped metric tensor for the subspace parallel to the brane. We study a variety of brane-world solutions arising by introducing a Schwarzschild-like black hole metric on the brane and we investigate the properties of the corresponding higher-dimensional spacetime. We demonstrate that normalizable bulk modes lead to a vanishing flow of energy through the naked singularities. From this point of view, these singularities are harmless. (28 refs).
Mishra, Subodha
2007-01-01
Using a single particle density distribution for a system of self-gravitating particles which ultimately forms a black hole, we from a condensed matter point of view derive the Schwarzschild radius and by including the quantum mechanical exchange energy we find a small correction to the Schwarzschild radius, which we designate as the skin of the black hole.
Rousselle, J.; Byrum, K.; Cameron, R.; Connaughton, V.; Errando, M.; Guarino, V.; Humensky, T.; Jenke, P.; Kieda, D.; Mukherjee, R.; Nieto, D.; Okumura, A.; Petrashyk, A; Vassiliev, V.
2015-01-01
We present the design and the status of procurement of the optical system of the prototype Schwarzschild-Couder telescope (pSCT), for which construction is scheduled to begin in fall at the Fred Lawrence Whipple Observatory in southern Arizona, USA. The Schwarzschild-Couder telescope is a candidate for the medium-sized telescopes of the Cherenkov Telescope Array, which utilizes imaging atmospheric Cherenkov techniques to observe gamma rays in the energy range of 60Gev-60TeV. The pSCT novel ap...
On analytic solutions of wave equations in regular coordinate systems on Schwarzschild background
Philipp, Dennis
2015-01-01
The propagation of (massless) scalar, electromagnetic and gravitational waves on fixed Schwarzschild background spacetime is described by the general time-dependent Regge-Wheeler equation. We transform this wave equation to usual Schwarzschild, Eddington-Finkelstein, Painleve-Gullstrand and Kruskal-Szekeres coordinates. In the first three cases, but not in the last one, it is possible to separate a harmonic time-dependence. Then the resulting radial equations belong to the class of confluent Heun equations, i.e., we can identify one irregular and two regular singularities. Using the generalized Riemann scheme we collect properties of all the singular points and construct analytic (local) solutions in terms of the standard confluent Heun function HeunC, Frobenius and asymptotic Thome series. We study the Eddington-Finkelstein case in detail and obtain a solution that is regular at the black hole horizon. This solution satisfies causal boundary conditions, i.e., it describes purely ingoing radiation at $r=2M$. ...
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Čížek, P.; Semerák, O.
2017-09-01
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.
Proper temperature of the Schwarzschild AdS black hole revisited
Eune, Myungseok; Kim, Wontae
2017-10-01
The Unruh temperature calculated by using the global embedding of the Schwarzschild AdS spacetime into the Minkowski spacetime was identified with the local proper temperature; however, it became imaginary in a certain region outside the event horizon. So, the temperature was assumed to be zero of non-thermal radiation for that region. In this work, we revisit this issue in an exactly soluble two-dimensional Schwarzschild AdS black hole and present an alternative resolution to this problem in terms of the Tolman's procedure. However, the process appears to be non-trivial in the sense that the original procedure assuming the traceless energy-momentum tensor should be extended in such a way that it should cover the non-vanishing case of the energy-momentum tensor in the presence of the trace anomaly. Consequently, we show that the proper temperature turns out to be real everywhere outside the event horizon without any imaginary value, in particular, it vanishes at both the horizon and the asymptotic infinity.
Kanti, P.; Pappas, T.
2017-07-01
The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.
Recovering the mass profile and orbit anisotropy of mock dwarf galaxies with Schwarzschild modelling
Kowalczyk, Klaudia; Łokas, Ewa L.; Valluri, Monica
2017-10-01
We present a new study concerning the application of the Schwarzschild orbit superposition method to model spherical galaxies. The method aims to recover the mass and the orbit anisotropy parameter profiles of the objects using measurements of positions and line-of-sight velocities usually available for resolved stellar populations of dwarf galaxies in the Local Group. To test the reliability of the method, we used different sets of mock data extracted from four numerical realizations of dark matter haloes. The models shared the same density profile but differed in anisotropy profiles, covering a wide range of possibilities, from constant to increasing and decreasing with radius. The tests were done in two steps, first assuming that the mass profile of the dwarf is known and employing the method to retrieve the anisotropy only, and then varying also the mass distribution. We used two kinds of data samples: unrealistically large ones based on over 270 000 particles from the numerical realizations and small ones matching the amount of data available for the Fornax dwarf. For the large data samples, we recover both the mass and the anisotropy profiles with very high accuracy. For the realistically small ones, we also find a reasonably good agreement between the fitted and the input anisotropies, however the total density profiles can be significantly biased as a result of their oversensitivity to the available data. Our results therefore provide convincing evidence in favour of the applicability of the Schwarzschild method to break the mass-anisotropy degeneracy in dwarf galaxies.
Motion of a thin spherically symmetric Shell of Dust in the Schwarzschild field
Schmidt, H -J
2014-01-01
The equation of motion announced in the title was already deduced for the cases the inner metric being flat and the shell being negligibly small (test matter), using surface layers and geodesic trajectories resp. Here we derive the general equation of motion and solve it in closed form for the case of parabolic motion. Especially the motion near the horizon and near the singularity are examined.
Ribeiro, Deivid; Humensky, Brian; Nieto, Daniel; V Vassiliev Group in UCLA division of Astronomy and Astrophysics, P Kaaret Group at Iowa University Department of Physics and Astronomy, CTA Consortium
2016-01-01
The Cherenkov Telescope Array (CTA) is an international project for a next-generation ground-based gamma-ray observatory. CTA, conceived as an array of tens of imaging atmospheric Cherenkov telescopes, comprising small, medium and large-size telescopes, is aiming to improve on the sensitivity of current-generation experiments by an order of magnitude and provide energy coverage from 20 GeV to more than 300 TeV. The Schwarzschild-Couder design is a candidate 9-m diameter medium-sized telescope featuring a novel aplanatic two-mirror optical design capable of a wide field of view with significantly improved imaging resolution as compared to the traditional Davies-Cotton optical design. Achieving this imaging resolution imposes strict mirror alignment requirements that necessitate a sophisticated alignment system. This system uses a collection of position sensors between panels to determine the relative position of adjacent panels; each panel is mounted on a Stewart platform to allow motion control with six degrees of freedom, facilitating the alignment of the optical surface for the segmented primary and secondary mirrors. Alignments of the primary and secondary mirrors and the camera focal plane with respect to each other are performed utilizing a set of CCD cameras which image LEDs placed on the mirror panels to measure relative translation, and custom-built auto-collimators to measure relative tilt between the primary and secondary mirrors along the optical axis of the telescope. In this contribution we present the status of the development of the SC optical alignment system, soon to be materialized in a full-scale prototype SC medium-size telescope (pSCT) at the Fred Lawrence Whipple Observatory in southern Arizona.
Hawking radiation as tunneling in Schwarzschild anti-de Sitter black hole
Sefiedgar, A. S.; Ashrafinejad, A.
2017-08-01
The Hawking radiation from a (d+1) -dimensional Schwarzschild Anti-de Sitter (SAdS) black hole is investigated within rainbow gravity. Based on the method proposed by Kraus, Parikh and Wilczek, the Hawking radiation is considered as a tunneling process across the horizon. The emission rate of massless particles which are tunneling across the quantum-corrected horizon is calculated. Enforcing the energy conservation law leads to a dynamical geometry. Both the dynamical geometry and the quantum effects of space-time yield some corrections to the emission rate. The corrected radiation spectrum is not purely thermal. The emission rate is related to the changes of modified entropy in rainbow gravity and the corrected thermal spectrum may be consistent with an underlying unitary quantum theory. The correlations between emitted particles are also investigated in order to address the recovery of information.
General theories of linear gravitational perturbations to a Schwarzschild black hole
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-02-01
We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.
Gravitational self-force effects on a point mass moving around a Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Sago, Norichika [School of Mathematics, University of Southampton, University Road, Southampton, SO17 1BJ (United Kingdom)
2009-05-07
We consider the effects of the gravitational self-force on a point mass moving in a generic (eccentric) orbit around a Schwarzschild black hole. We developed a numerical code to solve the metric perturbation equations in the time domain, under the Lorenz gauge condition, and to implement the so-called 'mode sum' scheme to obtain the self-force. We use our numerical results to investigate both dissipative and conservative self-force effects on the particle's orbits. To check the consistency of our calculation, we (1) compare our results with independent calculations based on a different gauge, in the special case of a circular orbit (by considering gauge-invariant quantities); (2) derive the energy and angular momentum fluxes of emitted gravitational waves and compare with results from standard Teukolsky-based calculations.
Marginally Stable Circular Orbits in Schwarzschild Black Hole Surrounded by Quintessence Matter
Hussain, Ibrar
2016-01-01
Marginally stable circular orbits (MSCOs) of a massive test particle are investigated in the spacetime geometry of Schwarzschild black hole surrounded by quintessence. For that matter we consider three important scenarios where the equation of state parameter $\\omega_{q}$, has one of the following forms (i) $\\omega_q=-1$ (ii) $\\omega_q=-2/3$ and (iii) $\\omega_q= -1/3$. The existence of such marginally stable circular orbits in these scenarios depend on the range of normalization factor $\\alpha$. Briefly, we show that in the first case such orbits exist only if $0<\\alpha<4/16875$. Moreover in the second case which is a special Kiselev black hole it is found that MSCOs exist when the value of the normalization factor satisfy $0<\\alpha\\leq 0.00536165238$. In the last case the MSCOs are also shown to exist.
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.
Tripartite nonlocality for an open Dirac system in the background of Schwarzschild space–time
Ding, Zhi-Yong; Shi, Jia-Dong; Wu, Tao; He, Juan
2017-12-01
In this paper, the behavior of the tripartite nonlocality for a Dirac system in the background of Schwarzschild space–time is studied. It is shown that the nonlocality of the ultimate physical accessible state always decreases as the Hawking effect increases monotonically, which is independent of the number of particles located near the event horizon. Besides, the more particles there are located near the event horizon, the more difficult the violation of the Svetlichny inequality becomes. Furthermore, we investigate the property of these particles suffering from a non-Markovian environment, and derive that the nonlocality decreases quickly with the increasing decoherence time accompanied by damping revivals. To preserve tripartite nonlocality in the non-Markovian environment, we propose a scheme by means of prior weak measurement and post measurement reversal. It is worth noticing that the effect is better for larger measurement strengths, while it induces smaller success probability.
A comparative study of background flow geometries in Schwarzschild metric with shock
Tarafdar, Pratik
2016-01-01
We study the effects of discontinuity in general relativistic axially symmetric background fluid flow in the Schwarzschild metric. The discontinuities, or 'shocks', are incorporated using general relativistic Rankine-Hugoniot conditions. A general shock-invariant quantity is thus derived analytically for three distinct geometric configurations of the background fluid flow, viz., constant height discs, quasi-spherical discs and discs in hydrostatic equilibrium in the vertical direction. As already pointed out in our previous works, even identical initial conditions may lead to completely different phase-space behaviour of the stationary solutions for separate flow geometries. Hence it is then useful to investigate and compare the influence of geometric configuration of the flow described by various thermodynamic equations of state, on different important properties and manifestations of such physical discontinuities.
Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole
Rioseco, Paola
2016-01-01
We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite ex...
von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole
Yonika, Alec; Khanna, Gaurav; Singh, Parampreet
2018-02-01
Though loop quantization of several spacetimes has exhibited existence of a bounce via an explicit evolution of states using numerical simulations, the question about the way central singularity is resolved in the black hole interior has remained open. The quantum Hamiltonian constraint in loop quantization turns out to be a finite difference equation whose stability is important to understand to gain insights on the viability of the underlying quantization and resulting physical implications. We take first steps towards addressing these issues for a loop quantization of the Schwarzschild interior recently given by Corichi and Singh. Von-Neumann stability analysis is performed using separability of solutions as well as a full two dimensional quantum difference equation. This results in a stability condition for black holes which have a very large mass compared to the Planck mass. For black holes of smaller masses evidence of numerical instability is found. In addition, stability analysis for macroscopic black holes leads to a constraint on the choice of the allowed states in numerical evolution. States which are not sharply peaked in accordance with this constraint result in instabilities. With the caveat of using kinematical norm, sharply peaked Gaussian states are evolved using the quantum difference equation and singularity resolution is obtained. A bounce is found for one of the triad variables, but for the other triad variable singularity resolution amounts to a non-singular passage through the zero volume. States are found to be peaked at the classical trajectory for a long time before and after the singularity resolution, and retain their semi-classical character across the zero volume. Our main result is that quantum bounce occurs in loop quantized Schwarzschild interior at least for macroscopic black holes. Instability of small black holes which can be a result of using kinematical norm nevertheless signifies the need of further understanding of the
Energy Technology Data Exchange (ETDEWEB)
Xu, Shuai; Song, Xue-ke; Shi, Jia-dong; Ye, Liu, E-mail: yeliu@ahu.edu.cn
2014-06-02
In this Letter, we analytically explore the effect of the Hawking radiation on the quantum correlation and Bell non-locality for Dirac particles in the background of Schwarzschild black hole. It is shown that when the Hawking effect is almost nonexistent, corresponding to the case of an almost extreme black hole, the quantum properties of physically accessible state are the same for the initial situation. For finite Hawking temperature T, the accessible quantum correlation monotonously decreases along with increasing T owing to the thermal fields generated by the Hawking effect, and the accessible quantum non-locality will be disappeared when the Hawking temperature is more than a fixed value which increases with the parameter r of Werner state growing. Then we analyze the redistribution of quantum correlation, and find that for the case of the Hawking temperature being infinite, corresponding to the case of the black hole evaporating completely, the quantum correlation of physically accessible state is equal to the one of the inaccessible states. Moreover, due to the Pauli exclusion principle and the differences between Fermi–Dirac and Bose–Einstein statistics, for the Dirac fields the accessible classical correlation decreases with increase of the Hawking temperature, which is different for the scalar fields. For Bell non-locality, we also find that the quantum non-locality is always extinct for physically inaccessible states, and the strength of the non-locality decreases with enlarging intensity of Hawking effect when the non-locality is existent in physically accessible state.
Numerical solutions of Einstein field equations with radial dark matter
Klimenko, Stanislav; Nikitin, Igor; Nikitina, Lialia
We study a static spherically symmetric problem with a black hole and radially directed geodesic flows of dark matter. The obtained solutions have the following properties. At large distances, the gravitational field produces constant velocities of circular motion, i.e. flat rotation curves. At smaller distances, the field switches to Newtonian regime, then to Schwarzschild regime. Deviations from Schwarzschild regime start below the gravitational radius. The dark matter prevents the creation of event horizon, instead, a spherical region possessing extremely large redshift is created. The structure of space-time for the obtained solutions is investigated and the implications for the models of the galaxies are discussed.
Ng, Keith K.; Mann, Robert B.; Martín-Martínez, Eduardo
2017-10-01
The RP3 geon and the Schwarzschild black hole are two black hole spacetimes which differ only behind the event horizon. We show that the thermal Hawking radiation emanating from the two black holes contains nontrivial correlations, that these correlations contain information about their interiors, and demonstrate that a particle detector can recover these correlations. In this manner, a simple particle detector can determine the structure behind the event horizon of an eternal black hole.
Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole
Barack, Leor
2010-01-01
We present a numerical code for calculating the local gravitational self-force acting on a pointlike particle in a generic (bound) geodesic orbit around a Schwarzschild black hole. The calculation is carried out in the Lorenz gauge: For a given geodesic orbit, we decompose the Lorenz-gauge metric perturbation equations (sourced by the delta-function particle) into tensorial harmonics, and solve for each harmonic using numerical evolution in the time domain (in 1+1 dimensions). The physical self-force along the orbit is then obtained via mode-sum regularization. The total self-force contains a dissipative piece as well as a conservative piece, and we describe a simple method for disentangling these two pieces in a time-domain framework. The dissipative component is responsible for the loss of orbital energy and angular momentum through gravitational radiation; as a test of our code we demonstrate that the work done by the dissipative component of the computed force is precisely balanced by the asymptotic fluxe...
Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length
Directory of Open Access Journals (Sweden)
Yan-Gang Miao
2017-01-01
Full Text Available Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ-function and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ-function.
Transformation Groups for a Schwarzschild-Type Geometry in f(R Gravity
Directory of Open Access Journals (Sweden)
Emre Dil
2016-01-01
Full Text Available We know that the Lorentz transformations are special relativistic coordinate transformations between inertial frames. What happens if we would like to find the coordinate transformations between noninertial reference frames? Noninertial frames are known to be accelerated frames with respect to an inertial frame. Therefore these should be considered in the framework of general relativity or its modified versions. We assume that the inertial frames are flat space-times and noninertial frames are curved space-times; then we investigate the deformation and coordinate transformation groups between a flat space-time and a curved space-time which is curved by a Schwarzschild-type black hole, in the framework of f(R gravity. We firstly study the deformation transformation groups by relating the metrics of the flat and curved space-times in spherical coordinates; after the deformation transformations we concentrate on the coordinate transformations. Later on, we investigate the same deformation and coordinate transformations in Cartesian coordinates. Finally we obtain two different sets of transformation groups for the spherical and Cartesian coordinates.
Hanada, Masanori; Miwa, Akitsugu; Nishimura, Jun; Takeuchi, Shingo
2009-05-08
In the string-gauge duality it is important to understand how the space-time geometry is encoded in gauge theory observables. We address this issue in the case of the D0-brane system at finite temperature T. Based on the duality, the temporal Wilson loop W in gauge theory is expected to contain the information of the Schwarzschild radius RSch of the dual black hole geometry as log(W)=RSch/(2pialpha'T). This translates to the power-law behavior log(W)=1.89(T/lambda 1/3)-3/5, where lambda is the 't Hooft coupling constant. We calculate the Wilson loop on the gauge theory side in the strongly coupled regime by performing Monte Carlo simulations of supersymmetric matrix quantum mechanics with 16 supercharges. The results reproduce the expected power-law behavior up to a constant shift, which is explainable as alpha' corrections on the gravity side. Our conclusion also demonstrates manifestly the fuzzball picture of black holes.
Holographic entanglement entropies for Schwarzschild and Reisner-Nordstr\\"om spacetimes
Sun, Yuan
2016-01-01
The holographic entanglement entropies (HEE) associated with four dimensional Schwarzschild and Reisner-Nordstr\\"om spacetimes are investigated. Unlike the cases of asymptotically AdS spacetimes for which the boundaries are always taken at (timelike) conformal infinities, we take the boundaries at either large but finite radial coordinate (far boundary) or very close to the black hole event horizons (near horizon boundary). The reason for such choices is that such boundaries are similar to the conformal infinity of AdS spacetime in that they are all timelike, so that there may be some hope to define dual systems with ordinary time evolution on such boundaries. Our results indicate that, in the case of far boundaries, the leading order contribution to the HEEs come from the background Minkowski spacetime, however, the next to leading order contribution which arises from the presence of the black holes is always proportional to the black hole mass, which constitutes a version of the first law of the HEE for asy...
Gravitational self-force in a Schwarzschild background and the effective one-body formalism
Damour, Thibault
2010-01-01
We discuss various ways in which the computation of conservative gravitational self-force (GSF) effects on a point mass moving in a Schwarzschild background can inform us about the basic building blocks of the effective one-body (EOB) Hamiltonian. We display the information which can be extracted from the recently published GSF calculation of the first-GSF-order shift of the orbital frequency of the last stable circular orbit, and we combine this information with the one recently obtained by comparing the EOB formalism to high-accuracy numerical relativity data on coalescing binary black holes. The information coming from GSF data helps to break the degeneracy (among some EOB parameters) which was left after using comparable-mass numerical relativity data to constrain the EOB formalism. We suggest various ways of obtaining more information from GSF computations: either by studying eccentric orbits, or by focusing on a special zero-binding zoom-whirl orbit. We show that logarithmic terms start entering the post-Newtonian expansions of various (EOB and GSF) functions at the fourth post-Newtonian level, and we analytically compute the first logarithm entering a certain, gauge-invariant “redshift” GSF function (defined along the sequence of circular orbits).
Gravitational Self Force in a Schwarzschild Background and the Effective One Body Formalism
Damour, Thibault
2009-01-01
We discuss various ways in which the computation of conservative Gravitational Self Force (GSF) effects on a point mass moving in a Schwarzschild background can inform us about the basic building blocks of the Effective One-Body (EOB) Hamiltonian. We display the information which can be extracted from the recently published GSF calculation of the first-GSF-order shift of the orbital frequency of the last stable circular orbit, and we combine this information with the one recently obtained by comparing the EOB formalism to high-accuracy numerical relativity (NR) data on coalescing binary black holes. The information coming from GSF data helps to break the degeneracy (among some EOB parameters) which was left after using comparable-mass NR data to constrain the EOB formalism. We suggest various ways of obtaining more information from GSF computations: either by studying eccentric orbits, or by focussing on a special zero-binding zoom-whirl orbit. We show that logarithmic terms start entering the post-Newtonian ...
Merlin, Cesar
2014-01-01
We present a first numerical implementation of a new scheme by Pound et al. that enables the calculation of the gravitational self-force in Kerr spacetime from a reconstructed metric-perturbation in a radiation gauge. The numerical task of the metric reconstruction essentially reduces to solving the fully separable Teukolsky equation, rather than having to tackle the linearized Einstein's equations themselves. The method offers significant computational saving compared to existing methods in the Lorenz gauge, and we expect it to become a main workhorse for precision self-force calculations in the future. Here we implement the method for circular orbits on a Schwarzschild background, in order to illustrate its efficacy and accuracy. We use two independent methods for solving the Teukolsky equation, one based on a direct numerical integration, and the other on the analytical approach of Mano, Suzuki, and Takasugi. The relative accuracy of the output self-force is at least $10^{-7}$ using the first method, and a...
Gauge field back reaction on a black hole
Energy Technology Data Exchange (ETDEWEB)
Hochberg, D.; Kephart, T.W. (Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States))
1993-02-15
The order-[h bar] fluctuations of gauge fields in the vicinity of a black hole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back reaction are included, the formation of a wormholelike object could occur.
Zou, Li; Li, Fang-Yu; Li, Tao
2014-11-01
In this paper, we first deduce the Tolman-Oppenheimer-Volkoff (TOV) equations and Schwarzschild-de Sitter (SdS) constant-density interior solutions of perfect fluid spheres in hydrostatic equilibrium by the Einstein equations with a nonzero cosmological constant. The TOV equations and the spacetime properties of exact solutions inside uniform perfect fluid spheres with different spatial curvature and cosmological constants will be respectively analyzed in detail. Moreover, a brief comparison between the internal static solutions of the SdS type and the dynamical Einstein-Strauss-de Sitter (ESdS) vacuole spacetime is obtained.
Kim, Jinho; Garain, Sudip K.; Balsara, Dinshaw S.; Chakrabarti, Sandip K.
2017-11-01
We study time evolution of sub-Keplerian transonic accretion flows on to black holes using a general relativistic numerical simulation code. We perform simulations in Schwarzschild space-time. We first compare one-dimensional simulation results with theoretical results and validate the performance of our code. Next, we present results of axisymmetric, two-dimensional simulation of advective flows. We find that even in this case, for which no complete theoretical analysis is present in the literature, steady-state shock formation is possible.
Saha, T. T.
1984-01-01
An equation similar to the Abbe sine condition is derived for a Wolter type II telescope. This equation and the sine condition are then combined to produce a so called generalized sine condition. Using the law of reflection, Fermat's principle, the generalized sine condition, and simple geometry the surface equations for a Wolter type II telescope and an equivalent Wolter-Schwarzschild telescope are calculated. The performances of the telescopes are compared in terms of rms blur circle radius at the Gaussian focal plane and at best focus.
Directory of Open Access Journals (Sweden)
R. da Rocha
2017-12-01
Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschildâde Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle
Akcay, Sarp
2010-01-01
Fast, reliable orbital evolutions of compact objects around massive black holes will be needed as input for gravitational wave search algorithms in the data stream generated by the planned Laser Interferometer Space Antenna (LISA). Currently, the state of the art is a time-domain code by [Phys. Rev. D{\\bf 81}, 084021, (2010)] that computes the gravitational self-force on a point-particle in an eccentric orbit around a Schwarzschild black hole. Currently, time-domain codes take up to a few days to compute just one point in parameter space. In a series of articles, we advocate the use of a frequency-domain approach to the problem of gravitational self-force (GSF) with the ultimate goal of orbital evolution in mind. Here, we compute the GSF for a particle in a circular orbit in Schwarzschild spacetime. We solve the linearized Einstein equations for the metric perturbation in Lorenz gauge. Our frequency-domain code reproduces the time-domain results for the GSF up to $\\sim 1000$ times faster for small orbital rad...
Black holes from generalized gauge field theories
Diaz-Alonso, J.; Rubiera-Garcia, D.
2011-02-01
We summarize the main results of a broad analysis on electrostatic, spherically symmetric (ESS) solutions of a class of non-linear electrodynamics models minimally coupled to gravitation. Such models are defined as arbitrary functions of the two quadratic field invariants, constrained by several physical admissibility requirements, and split into different families according to the behaviour of these lagrangian density functions in vacuum and on the boundary of their domains of definition. Depending on these behaviours the flat-space energy of the ESS field can be finite or divergent. For each model we qualitatively study the structure of its associated gravitational configurations, which can be asymptotically Schwarzschild-like or with an anomalous non Schwarzschild-like behaviour at r → ∞ (but being asymptotically flat and well behaved anyhow). The extension of these results to the non-abelian case is also briefly considered.
Conical Stream of the Two-Sided Jets in NGC 4261 over the Range of 103–109 Schwarzschild Radii
Directory of Open Access Journals (Sweden)
Satomi Nakahara
2016-12-01
Full Text Available We report the jet width profile of of the nearby ( ∼ 30 Mpc AGN NGC 4261 for both the approaching jet and the counter jet at radial distances ranging from ∼ 10 3 – 10 9 Schwarzschild radius ( R S from the central engine. Our Very Large Array (VLA and Very Long Baseline Array (VLBA observations reveal that the jets maintain a conical structure on both sides over the range 10 3 – 10 9 R S without any structural transition (i.e., parabolic to conical like in the approaching jet in M87. Thus, NGC 4261 will provide a unique opportunity to examine the conical jet hypothesis in blazars, while it may require some additional consideration on the acceleration and collimation process in AGN jets.
Tarafdar, Pratik; Majumdar, Archan S
2013-01-01
In black hole evaporation process, the mass of the hole anti-correlates with the Hawking temperature enabling us to infer that the smaller mass holes will have higher surface gravity. For analogue Hawking effects, however, the acoustic surface gravity is determined by the local value of the dynamical velocity of the stationary background fluid flow and the speed of propagation of the characteristic perturbation embedded in the background fluid, as well as their space derivatives evaluated along the direction normal to the acoustic horizon, respectively. The mass of the analogue system - whether classical or quantum - does not directly contribute to extremise the value of the associated acoustic surface gravity. For general relativistic axisymmetric background fluid flow in the Schwarzschild metric, we show that the initial boundary conditions describing such axisymmetrically accreting matter flow influence the maximization scheme of the acoustic surface gravity as well as the corresponding characteristic temp...
Gravitational field of a charged mass point.
Pekeris, C L
1982-10-01
Adopting, with Schwarzschild, the Einstein gauge ((munu) = -1), a solution of Einstein's field equations for a charged mass point of mass M and charge Q is derived, which differs from the Reissner-Nordstrøm solution only in that the variable r is replaced by R = (r(3) + a(3))((1/3)), where a is a constant. The Newtonian gravitational potential psi identical with (2/c(2))(1 - g(00)) obeys exactly the Poisson equation (in the R variable), with the mass density equal to (E(2)/4pic(2)), E denoting the electric field. psi also obeys a second linear equation in which the operator on psi is the square root of the Laplacian operator. The electrostatic potential Phi (= Q/R), psi, and all the components of the curvature tensor remain finite at the origin of coordinates. The electromagnetic energy of the point charge is finite and equal to (Q(2)/a). The charge Q defines a pivotal mass M(*) = (Q/G((1/2))). If M M(*), the electromagnetic part of the mass M(em) equals [M - (M(2) - M(*2))((1/2))], whereas the material part of the mass M(mat) equals (M(2) - M(*2))((1/2)). When M > M(*), the constant a is determined, following Schwarzschild, by shrinking the "Schwarzschild radius" to zero. When M < M(*), a is determined so as to make the gravitational acceleration vanish at the origin.
Kundu, Prasun K.
2017-11-01
In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.
Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.
2015-01-01
We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...
Zakharov, Alexander F.
2018-01-01
Recently, Liu et al published a paper (2016 Class. Quantum Grav. 33 175014). In the abstract, the authors claimed as a key result of the paper that a particle sphere is found for the Schwarzschild black hole (BH), with its radius as a simple function of the particle velocity and proportional to the BH mass. Usually, if there are no references for the result it is assumed that the result was obtained originally in the paper; but this is not the case for the quoted paper. The concept of a particle sphere was introduced by Mielnik and Plebański (1962 Acta Phys. Pol. 21 239) and a simple derivation of the critical impact parameter was given in Zakharov A F (1988 Sov. Astron. 32 456 and Zakharov A F 1994 Class. Quantum Grav. 11 1027). We show that in slightly different notations, equation (17) for the critical impact parameter in Liu X et al (2016 Class. Quantum Grav. 33 175014) coincides with equation (12) in Zakharov (1994 Class. Quantum Grav. 11 1027) and with the corresponding equation (10.10) in Mielnik and Plebański (1962 Acta Phys. Pol. 21 239).
Energy Technology Data Exchange (ETDEWEB)
He, Juan [School of Physics and Material Science, Anhui University, Hefei 230039 (China); School of Physics and Electronics Science, Fuyang Normal College, Fuyang 236037 (China); Xu, Shuai; Yu, Yang [School of Physics and Material Science, Anhui University, Hefei 230039 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230039 (China)
2015-01-05
We explore the performance of various correlation measures for open Dirac system with Hawking effect in Schwarzschild space–time. Our results indicate that the impact of Hawking effect on physical accessible entanglement is weaker than that of decoherence. For generalized amplitude damping (GAD) channel, the entanglement sudden death (ESD) is analyzed in detail, and the inequivalence of quantization for Dirac particles in the black hole and Kruskal space–time is verified via quantum discord measure. In addition, as an example for interpreting Bell non-locality, we study the GAD channel with Hawking effect. It can be noticed that there is a boundary line of Bell violation for physically accessible states. That is, quantum non-locality would disappear when Hawking temperature exceeds a certain value. This critical temperature increases as a decoherence parameter decreases. In the case of phase damping (PD) channel, the interaction between the particle and noise environment does not produce bipartite system–environment entanglement. Then we discuss entanglement distributions, and find that the reduced physically accessible entanglement can be redistributed to physical inaccessible region. At last, we extend our investigation to an N-qubit system, and obtain a universal expression of the physical accessible entanglement.
Black Hole Entropy Calculated via Wavefunction Approximations on a Schwarzschild Spacetime
2015-05-18
field is interpreted through quantum mechan- ics. Richard Feynman’s theory of quantum electrodynamics has been the most successful theory in terms of the...gravity itself was treated classically. References [1] R. P. Feynman “Mathematical Formulation of the Quantum Theory of Electromagnetic Inter- action
QED loop effects in the spacetime background of a Schwarzschild black hole
Emelyanov, Viacheslav A.
2017-12-01
The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.
Sterken, C.; Dick, W. R.; Hamel, J.
2002-12-01
astronomers in his days, when his working place at Altona still belonged to the kingdom of Denmark. This paper is followed by a second one by the same author and deals with the correspondence of H. C. Schumacher and H C. Oersted (1777-1851) and shows how intense and diverse their cooperation was. In a subsequent paper, Wolfgang Kokott describes the role of the Astronomisches Jahrbuch (published from 1776 by the Royal Academy of Sciences at Berlin), a ranking international publication, with Bode's modest Berlin Observatory serving as a clearinghouse of information originating from virtually all European countries. "Karl Schwarzschild and the professionalisation of Astrophysics" is the title of Theodor Schmidt-Kaler's contribution and presents Schwarzschild's contributions to professionalization of astronomy: establishment of course lectures and a permanent astrophysical laboratory, a tight connection between teaching and research, stimulations and suggestions for astronomy at high school and for the formation of high school teachers, international organisation, and the planning of a southern observatory. Peter Habison describes the contribution of Leo de Ball (1853-1916, Director of the Kuffner Observatory in Vienna) to international astronomy. Internationalization in astronomy is also discussed in a following paper by Gudrun Wolfschmidt on the establishment of the Vereinigte Astronomische Gesellschaft, the international Astronomische Gesellschaft in 1863 and finally the International Astronomical Union in 1919. In the second but last paper of the book, Hilmar Duerbeck describes the history of the Chilean National Observatory, beginning with its origins out of Gilliss' US Naval Expedition to the Southern Hemisphere in 1849, over its directors Moesta, Vergara, Obrecht and Ristenpart, to the middle of the 20th century. The paper also includes the astronomical development at the Universidad Catolica and various international expeditions, which aimed at the observations of solar
Huang, ChunYu; Ma, Wen-chao; Wang, Dong; Ye, Liu
2018-01-01
In this work, the effect of Hawking radiation on the quantum Fisher information (QFI) of Dirac particles is investigated in the background of a Schwarzschild black hole. Interestingly, it has been verified that the QFI with respect to the weight parameter θ of a target state is always independent of the Hawking temperature T. This implies that if we encode the information on the weight parameter, then we can affirm that the corresponding accuracy of the parameter estimation will be immune to the Hawking effect. Besides, it reveals that the QFI with respect to the phase parameter φ exhibits a decay behavior with the increase in the Hawking temperature T and converges to a nonzero value in the limit of infinite Hawking temperature T. Remarkably, it turns out that the function F_φ on θ =π \\big /4 symmetry was broken by the influence of the Hawking radiation. Finally, we generalize the case of a three-qubit system to a case of a N-qubit system, i.e., |ψ > _{1,2,3,\\ldots ,N} =(cos θ | 0 > ^{⊗ N}+sin θ e^{iφ }| 1 > ^{⊗ N}) and obtain an interesting result: the number of particles in the initial state does not affect the QFI F_θ , nor the QFI F_φ . However, with the increasing number of particles located near the event horizon, F_φ will be affected by Hawking radiation to a large extent, while F_θ is still free from disturbance resulting from the Hawking effects.
Kowalczyk, Klaudia; Łokas, Ewa L.; Valluri, Monica
2018-02-01
In our previous work we confirmed the reliability of the spherically symmetric Schwarzschild orbit-superposition method to recover the mass and velocity anisotropy profiles of spherical dwarf galaxies. Here we investigate the effect of its application to intrinsically non-spherical objects. For this purpose we use a model of a dwarf spheroidal galaxy formed in a numerical simulation of a major merger of two disky dwarfs. The shape of the stellar component of the merger remnant is axisymmetric and prolate which allows us to identify and measure the bias caused by observing the spheroidal galaxy along different directions, especially the longest and shortest principal axis. The modelling is based on mock data generated from the remnant that are observationally available for dwarfs: projected positions and line-of-sight velocities of the stars. In order to obtain a reliable tool while keeping the number of parameters low we parametrize the total mass distribution as a radius-dependent mass-to-light ratio with just two free parameters we aim to constrain. Our study shows that if the total density profile is known, the true, radially increasing anisotropy profile can be well recovered for the observations along the longest axis whereas the data along the shortest axis lead to the inference an incorrect, isotropic model. On the other hand, if the density profile is derived from the method as well, the anisotropy is always underestimated but the total mass profile is well recovered for the data along the shortest axis whereas for the longest axis the mass content is overestimated.
FRIDA integral field unit manufacturing
Cuevas, Salvador; Eikenberry, Stephen S.; Sánchez, Beatriz
2014-07-01
FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system (GTCAO). FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on the University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. The FRIDA IFU is of the slicer type; conformed mainly by 3 mirror blocks with 30 spherical mirrors each. It also has a Schwarzschild relay based on two off axis spherical mirrors and an afocal system of two parabolic off axis mirrors. Including two insertion mirrors the IFU holds 96 metal mirrors. All the mirrors have been manufactured by diamond turning techniques on monolithic blocks of aluminum 6061-T6 coated by a Nickel alloy. Except for the Schwarzschild relay and the insertion mirrors, 92 mirrors were manufactured by Corning in Keene NH, USA. The different blocks and mirrors are mounted on an opto-mechanical support that ensures the image quality and integrity of the complete IFU. In this work advances on the manufacturing of the FRIDA IFU components are described. Furthermore, the mirror blocks individual verification tests and are also described.
Hawking Radiation from a (4+n)-dimensional Black Hole Exact Results for the Schwarzschild Phase
Harris, C M; Harris, Chris M.; Kanti, Panagiota
2003-01-01
We start our analysis by deriving a master equation that describes the motion of a field with arbitrary spin $s$ on a 3-brane embedded in a non-rotating, uncharged (4+n)-dimensional black hole background. By numerical analysis, we derive exact results for the greybody factors and emission rates for scalars, fermions and gauge bosons emitted directly on the brane, for all energy regimes and for an arbitrary number $n$ of extra dimensions. The relative emissivities on the brane for different types of particles are computed and their dependence on the dimensionality of spacetime is demonstrated -- we therefore conclude that both the amount and the type of radiation emitted can be used for the determination of $n$ if the Hawking radiation from these black holes is observed. The emission of scalar modes in the bulk from the same black holes is also studied and the relative bulk-to-brane energy emissivity is accurately computed. We demonstrate that this quantity varies considerably with $n$ but always remains small...
Addazi, Andrea; Nojiri, Shin'ichi; Odintsov, Sergei
2017-06-01
We study the problem of a four-dimensional brane lying in the five-dimensional degenerate Schwarzschild-de Sitter (Nariai) black hole in five-dimensional F (R ) gravity. We show that there cannot exist the brane in the Nariai bulk space except for the case where the brane tension vanishes. We demonstrate that the five-dimensional Nariai bulk is unstable in a large region of the parameter space. In particular, the Nariai bulk can have classical (anti)evaporation instabilities. The bulk instability backreacts on the four-dimensional brane, in that case, the brane tension vanishes, and the unstable modes propagate in their world volume.
Entropy of a box of gas in an external gravitational field revisited
Bhattacharya, Sourav; Chakraborty, Sumanta; Padmanabhan, T.
2017-10-01
Earlier it was shown that the entropy of an ideal gas, contained in a box and moving in a gravitational field, develops an area dependence when it approaches the horizon of a static, spherically symmetric spacetime. Here we extend the above result in two directions; viz., to (a) the stationary axisymmteric spacetimes and (b) time-dependent cosmological spacetimes evolving asymptotically to the de Sitter or the Schwarzschild-de Sitter spacetimes. While our calculations are exact for the stationary axisymmetric spacetimes, for the cosmological case we present an analytical expression of the entropy when the spacetime is close to the de Sitter or the Schwarzschild-de Sitter spacetime. Unlike the static spacetimes, there is no hypersurface orthogonal timelike Killing vector field in these cases. Nevertheless, the results hold, and the entropy develops an area dependence in the appropriate limit.
A new line element derived from the variable rest mass in gravitational field
Ben-Amots, N.
2008-01-01
This paper presents a new line element based on the assumption of the variable rest mass in gravitational field, and explores some its implications. This line element is not a vacuum solution of Einstein's equations, yet it is sufficiently close to Schwarzschild's line element to be compatible with all of the experimental and observational measurements made so far to confirm the three Einstein's predictions. The theory allows radiation and fast particles to escape from all massive bodies, eve...
Energy Technology Data Exchange (ETDEWEB)
Wang, Mingzhi [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Chen, Songbai; Jing, Jiliang [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)
2017-04-15
We present firstly the equation of motion for a test scalar particle coupling to the Einstein tensor in the Schwarzschild-Melvin black hole spacetime through the short-wave approximation. Through analyzing Poincare sections, the power spectrum, the fast Lyapunov exponent indicator and the bifurcation diagram, we investigate the effects of the coupling parameter on the chaotic behavior of the particles. With the increase of the coupling strength, we find that the motion of the coupled particle for the chosen parameters becomes more regular and order for the negative couple constant. While, for the positive one, the motion of the coupled particles first undergoes a series of transitions betweens chaotic motion and regular motion and then falls into horizon or escapes to spatial infinity. Our results show that the coupling brings about richer effects for the motion of the particles. (orig.)
A Field Theory with Curvature and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2014-01-01
Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.
Scalar fields in black hole spacetimes
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
Goon, Garrett
2017-01-01
We study the effects of heavy fields on 4D spacetimes with flat, de Sitter and anti-de Sitter asymptotics. At low energies, matter generates specific, calculable higher derivative corrections to the GR action which perturbatively alter the Schwarzschild-( A) dS family of solutions. The effects of massive scalars, Dirac spinors and gauge fields are each considered. The six-derivative operators they produce, such as ˜ R 3 terms, generate the leading corrections. The induced changes to horizon radii, Hawking temperatures and entropies are found. Modifications to the energy of large AdS black holes are derived by imposing the first law. An explicit demonstration of the replica trick is provided, as it is used to derive black hole and cosmological horizon entropies. Considering entropy bounds, it's found that scalars and fermions increase the entropy one can store inside a region bounded by a sphere of fixed size, but vectors lead to a decrease, oddly. We also demonstrate, however, that many of the corrections fall below the resolving power of the effective field theory and are therefore untrustworthy. Defining properties of black holes, such as the horizon area and Hawking temperature, prove to be remarkably robust against higher derivative gravitational corrections.
Scalar field self-force effects on a particle orbiting a Reissner-Nordstrom black hole
Bini, Donato; Geralico, Andrea
2016-01-01
Scalar field self-force effects on a scalar charge orbiting a Reissner-Nordstr\\"om black hole are investigated. The scalar wave equation is solved analytically in a post-Newtonian framework, and the solution is used to compute the self-field as well as the components of the self-force at the particle's location up to 7.5 post-Newtonian order. The energy fluxes radiated to infinity and down the hole are also evaluated. Comparison with previous numerical results in the Schwarzschild case shows a good agreement in both strong-field and weak-field regimes.
Particles and fields near black holes
Frolov, Valeri
Taking now the existence of black holes for granted, the motion of particles is studied in black hole spacetimes, first in the Schwarzschild and then in the Kerr background. Subsequently, the propagation of fields in the same backgrounds is reviewed, taking a massless scalar field as a "guinea pig". Thereafter, more complicated spin-carrying fields are shortly discussed. Some physical effects, such as superradiance, are briefly mentioned. Finally, black hole electrodynamics is dealt with. A 3+1 decomposition of Maxwell's equations is carried out. The so-called membrane paradigm is introduced which treats the black hole as a black box with classical electrodynamic behavior. In this way, a black hole can serve as a kind of a dynamo. This mechanism may explain the activity of the nuclei of galaxies and quasars.
Electrically charged black hole solutions in generalized gauge field theories
Diaz-Alonso, J.; Rubiera-Garcia, D.
2011-09-01
We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.
Stationary bound states of Dirac particles in collapsar's fields
Gorbatenko, M. V.; Neznamov, V. P.
2012-03-01
For a Schwarzschild gravitational field by use of a self-conjugate Hamiltonian with a flat scalar product in a wide interval of gravitational constant stationary non-decaiing in time bound states for spin 1/2 elementary particles have been obtained for a first time. To obtain a discrete energies spectrum a boundary condition was introduced, corresponding to null current density of Dirac partciles near the events horizon. The results obtained could lead to reevaluation of some existing representations of the standart cosmological model, related with the Universe's evolution and with collapsars interactions with encountering media.
Electrically charged black hole solutions in generalized gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Diaz-Alonso, J; Rubiera-Garcia, D, E-mail: joaquin.diaz@obspm.fr, E-mail: diego.rubiera-garcia@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot. 5 Place Jules Janssen, 92190 Meudon (France); Departamento de Fisica, Universidad de Oviedo. Avda. Calvo Sotelo 18, 33007 Oviedo, Asturias (Spain)
2011-09-22
We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.
Baranski, Maciej; Passilly, Nicolas; Bargiel, Sylwester; Froehly, Luc; Gorecki, Christophe
2016-04-01
This paper presents the conception of a new micro-optical component fabricated within the wafer-level approach: a micromachined reflective objective, the so-called micro-Schwarzschild objective, characterized by superior optical performances than widespread microlenses. The system, made of two vertically integrated mirrors, works in transmission similarly as microlenses. While the specific geometric configuration of the two-mirrors allows elimination of most common optical aberrations, the reflective architecture provides inherent achromaticity. This paper presents in detail the optical design and analyzes fabrication tolerances. It also describes a fabrication flow chart based on silicon micromachining done at the wafer level that could allow production of thousands of such micro-optical devices within a single fabrication run. The realized prototype employs the two-step KOH etching process to generate the micromirror pairs followed by glass reflow for the secondary mirror generation and selective metallic deposition. Despite an insufficient mirror quality attributed to this specific silicon etching technique and highlighted by the reflective configuration, the objective fabrication in terms of alignment, bonding, and coating is shown as feasible.
Alvarez-Gaumé, Luís; Marino, M; Wadia, S R; Alvarez-Gaume, Luis; Basu, Pallab; Marino, Marcos; Wadia, Spenta R.
2006-01-01
In this paper we discuss the blackhole-string transition of the small Schwarzschild blackhole of $AdS_5 \\times S^5$ using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak {\\it and} strong coupling, can be expressed entirely in terms of constant Polyakov lines which are $SU (N)$ matrices. In showing this we have taken into account that there are no Nambu-Goto modes associated with the fact that the 10 dimensional blackhole solution sits at a point in $S^5$. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order $N = \\infty$ phase transition with the blackhole-string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of $N^{-2/3}$. The $N = \\infty$ transition now becomes a smooth crossover in terms of a renormalized string c...
Field Theory on Curved Noncommutative Spacetimes
Directory of Open Access Journals (Sweden)
Alexander Schenkel
2010-08-01
Full Text Available We study classical scalar field theories on noncommutative curved spacetimes. Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005, 3511 and Classical Quantum Gravity 23 (2006, 1883], we describe noncommutative spacetimes by using (Abelian Drinfel'd twists and the associated *-products and *-differential geometry. In particular, we allow for position dependent noncommutativity and do not restrict ourselves to the Moyal-Weyl deformation. We construct action functionals for real scalar fields on noncommutative curved spacetimes, and derive the corresponding deformed wave equations. We provide explicit examples of deformed Klein-Gordon operators for noncommutative Minkowski, de Sitter, Schwarzschild and Randall-Sundrum spacetimes, which solve the noncommutative Einstein equations. We study the construction of deformed Green's functions and provide a diagrammatic approach for their perturbative calculation. The leading noncommutative corrections to the Green's functions for our examples are derived.
Hawking radiation and interacting fields
Frasca, Marco
2017-11-01
Hawking radiation is generally derived using a non-interacting field theory. Some time ago, Leahy and Unruh showed that, in two dimensions with a Schwarzschild geometry, a scalar field theory with a quartic interaction gets the coupling switched off near the horizon of the black hole. This would imply that interaction has no effect on Hawking radiation and free theory for particles can be used. Recently, a set of exact classical solutions for the quartic scalar field theory has been obtained. These solutions display a massive dispersion relation even if the starting theory is massless. When one considers the corresponding quantum field theory, this mass gap becomes a tower of massive excitations and, at the leading order, the theory is trivial. We apply these results to Hawking radiation for a Kerr geometry and prove that the Leahy-Unruh effect is at work. Approaching the horizon the scalar field theory has the mass gap going to zero. We devise a technique to study the interacting scalar theory very near the horizon increasing the coupling. As these solutions are represented by a Fourier series of plane waves, Hawking radiation can be immediately obtained with well-known techniques. These results open a question about the behavior of the Standard Model of particles very near the horizon of a black hole where the interactions turn out to be switched off and the electroweak symmetry could be restored.
Energy Technology Data Exchange (ETDEWEB)
Hada, Kazuhiro; Giroletti, Marcello; Giovannini, Gabriele [INAF Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Doi, Akihiro [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo, Sagamihara 252-5210 (Japan); Nagai, Hiroshi; Honma, Mareki [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Inoue, Makoto [Academia Sinica Institute for Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, National Taiwan University, No. 1, Roosevelt Road, Sec. 4, Taipei 10617, Taiwan R.O.C. (China)
2013-12-10
The Sombrero galaxy (M 104, NGC 4594) is associated with one of the nearest low-luminosity active galactic nuclei (AGNs). We investigated the detailed radio structure of the Sombrero nucleus using high-resolution, quasi-simultaneous, multi-frequency, phase-referencing Very Long Baseline Array observations. We obtained high-quality images of this nucleus at seven frequencies, where those at 15, 24, and 43 GHz are the first clear very long baseline interferometry detections. At 43 GHz, the nuclear structure was imaged on a linear scale under 0.01 pc or 100 Schwarzschild radii, revealing a compact, high-brightness-temperature (≳ 3 × 10{sup 9} K) radio core. We discovered the presence of the extended structure emanating from the core on two sides in the northwest and southeast directions. The nuclear radio spectra show a clear spatial gradient, which is similar to that seen in more luminous AGNs with powerful relativistic jets. Moreover, the size and position of the core tend to be frequency dependent. These findings provide evidence that the central engine of the Sombrero is powering radio jets and the jets are overwhelming the emission from the underlying radiatively inefficient accretion flow over the observed frequencies. Based on these radio characteristics, we constrained the following physical parameters for the M 104 jets: (1) the northern side is approaching, whereas the southern one is receding; (2) the jet viewing angle is relatively close to our line-of-sight (≲ 25°); and (3) the intrinsic jet velocity is highly sub-relativistic (≲ 0.2c). The derived pole-on nature of the M 104 jets is consistent with the previous argument that this nucleus contains a true type II AGN, i.e., the broad line region is actually absent or intrinsically weak if the plane of the circumnuclear torus is perpendicular to the jet axis.
The Fourth Gravity Test and Quintessence Matter Field
Liu, Molin; Yu, Fei; Gui, Yuanxing
2010-01-01
After the previous work on gravitational frequency shift, light deflection (arXiv:1003.5296) and perihelion advance (arXiv:0812.2332), we calculate carefully the fourth gravity test, i.e. radar echo delay in a central gravity field surrounded by static free quintessence matter, in this paper. Through the Lagrangian method, we find the influence of the quintessence matter on the time delay of null particle is presence by means of an additional integral term. When the quintessence field vanishes, it reduces to the usual Schwarzschild case naturally. Meanwhile, we also use the data of the Viking lander from the Mars and Cassini spacecraft to Saturn to constrain the quintessence field. For the Viking case, the field parameter $\\alpha$ is under the order of $10^{-9}$. However, $\\alpha$ is under $10^{-18}$ for the Cassini case.
Geodesics of simultaneity in Schwarzschild
Paiva, F M
2010-01-01
Geodesic of simultaneity is a spacelike geodesic in which every pair of neighbour events are simultaneous ($g_{0\\mu}\\dd x^\\mu=0$). These geodesics are studied in the exterior region of \\Sch's metric.
Resolved magnetic-field structure and variability near the event horizon of Sagittarius A.
Johnson, Michael D; Fish, Vincent L; Doeleman, Sheperd S; Marrone, Daniel P; Plambeck, Richard L; Wardle, John F C; Akiyama, Kazunori; Asada, Keiichi; Beaudoin, Christopher; Blackburn, Lindy; Blundell, Ray; Bower, Geoffrey C; Brinkerink, Christiaan; Broderick, Avery E; Cappallo, Roger; Chael, Andrew A; Crew, Geoffrey B; Dexter, Jason; Dexter, Matt; Freund, Robert; Friberg, Per; Gold, Roman; Gurwell, Mark A; Ho, Paul T P; Honma, Mareki; Inoue, Makoto; Kosowsky, Michael; Krichbaum, Thomas P; Lamb, James; Loeb, Abraham; Lu, Ru-Sen; MacMahon, David; McKinney, Jonathan C; Moran, James M; Narayan, Ramesh; Primiani, Rurik A; Psaltis, Dimitrios; Rogers, Alan E E; Rosenfeld, Katherine; SooHoo, Jason; Tilanus, Remo P J; Titus, Michael; Vertatschitsch, Laura; Weintroub, Jonathan; Wright, Melvyn; Young, Ken H; Zensus, J Anton; Ziurys, Lucy M
2015-12-04
Near a black hole, differential rotation of a magnetized accretion disk is thought to produce an instability that amplifies weak magnetic fields, driving accretion and outflow. These magnetic fields would naturally give rise to the observed synchrotron emission in galaxy cores and to the formation of relativistic jets, but no observations to date have been able to resolve the expected horizon-scale magnetic-field structure. We report interferometric observations at 1.3-millimeter wavelength that spatially resolve the linearly polarized emission from the Galactic Center supermassive black hole, Sagittarius A*. We have found evidence for partially ordered magnetic fields near the event horizon, on scales of ~6 Schwarzschild radii, and we have detected and localized the intrahour variability associated with these fields. Copyright © 2015, American Association for the Advancement of Science.
Effects of electromagnetic field on the motion of particles in dyonic Reissner-Nordström black hole
Sharif, M.; Iftikhar, Sehrish
This paper explores dynamics of particles in the combined gravitational and electromagnetic fields of the dyonic Reissner-Nordström background. We discuss possibilities for the particle escape to infinity at inner most stable circular orbit. We study the stability of orbit through Lyapunov exponent and the effective force on particle. The collision of particles is investigated through the center of mass energy near the horizon of black hole. Finally, we compare our results with the motion of particles around Schwarzschild and Reissner-Nordström black hole. We conclude that charge of the black hole has a strong effect on the motion of particles.
Tachyon motion in a black hole gravitational field
Lipunov, V M
2013-01-01
The motion of superluminal particles in the gravitational field of a non-rotating black hole is analyzed. The relativistic Hamilton-Jacobi equation is solved for particles with imaginary rest mass. It is shown that there are no stable circular orbits and generally no finite motions for tachyons in the Schwarzschild metric and that all unstable circular tachyon orbits lie in a region extending from the gravitational radius to 1.5 times that radius. The particles with speeds exceeding the speed of light are noticed to be able to escape from the space limited by the gravitational radius. The results also indicate that low-energy tachyons near a black hole may acquire higher energies and that this in turn may lead to observable effects.
Directory of Open Access Journals (Sweden)
Teguh Budi Prayitno
2011-04-01
Full Text Available This paper studies the effect of higher order derivative tensor in the Einstein field equations for vacuum condition on the planet perihelion precession. This tensor was initially proposed as the space-time curvature tensor by Deser and Tekin on discussions about the energy effects caused by this tensor. However, they include this tensor to Einstein field equations as a new model in general relativity theory. This is very interesting since there are some questions in cosmology and astrophysics that have no answers. Thus, they hoped this model could solve those problems by finding analytical or perturbative solution and interpreting it. In this case, the perturbative solution was used to find the Schwarzschild solution and it was also applied to consider the planetary motion in the solar gravitational field. Furthermore, it was proven that the tensor is divergence-free in order to keep the Einstein field equations remain valid.
The gravitational field equations in Rastall gravity and the first law of thermodynamics
Moradpour, Hooman
2016-01-01
The restrictions on the Rastall theory due to apply the Newtonian limit to the theory are derived. In addition, we use the Rastall field equations in a spherically symmetric static spacetime as well as the Misner-Sharp mass to investigate the relationship between the Rastall theory and the thermodynamics first law leading to an expression for the horizon entropy in this theory. Moreover, we show that the energy and work changes due to apply a hypothetical displacement to the horizon in the Rastall frame work differ from their counterparts in the theories in which the geometry and matter fields coupled to each other in a minimal way, such as the Einstein theory. The latter shows that the Misner-Sharp mass is probably not a comprehensive definition for the gravitational energy, confined to the horizon, in the Rastall theory. The Schwarzschild and de-Sitter back holes entropy in the Rastall frame work are also addressed.
Dai, De-Chang; Stojkovic, Dejan
2012-10-01
We study a retarded potential solution of a massless scalar field in curved space-time. In a special ansatz for a particle at rest whose magnitude of the (scalar) charge is changing with time, we found an exact analytic solution. The solution indicates that the phase velocity of the retarded potential of a nonmoving scalar charge is position-dependent and may easily be greater than the speed of light at a given point. In the case of the Schwarzschild space-time, at the horizon, the phase velocity becomes infinitely faster than the coordinate speed of light at that point. Superluminal phase velocity is a relatively common phenomenon, with the phase velocity of the massive Klein-Gordon field as the best known example. We discuss why it is possible to have modes with superluminal phase velocity even for a massless field.
Metric Independence of Vacuum and Force-Free Electromagnetic Fields.
Harte, Abraham I
2017-04-07
Electromagnetic fields which solve the vacuum Maxwell equations in one spacetime are well known to also be solutions in all spacetimes with conformally related metrics. This provides a sense in which electromagnetism alone cannot be used to measure certain aspects of geometry. We show that there is actually much more which cannot be so measured; relatively little of a spacetime's geometry is in fact imprinted in any particular electromagnetic field. This is demonstrated by finding a much larger class of metric transformations-involving five free functions-which preserve Maxwell solutions both in vacuum, without local currents, and also for the force-free electrodynamics associated with a tenuous plasma. One consequence of this is that many of the exact force-free fields which have previously been found around Schwarzschild and Kerr black holes are also solutions in appropriately identified flat backgrounds. As a more direct application, we use our metric transformations to write down a large class of electromagnetic waves which remain unchanged by a large class of gravitational waves propagating "in the same direction."
Metric Independence of Vacuum and Force-Free Electromagnetic Fields
Harte, Abraham I.
2017-04-01
Electromagnetic fields which solve the vacuum Maxwell equations in one spacetime are well known to also be solutions in all spacetimes with conformally related metrics. This provides a sense in which electromagnetism alone cannot be used to measure certain aspects of geometry. We show that there is actually much more which cannot be so measured; relatively little of a spacetime's geometry is in fact imprinted in any particular electromagnetic field. This is demonstrated by finding a much larger class of metric transformations—involving five free functions—which preserve Maxwell solutions both in vacuum, without local currents, and also for the force-free electrodynamics associated with a tenuous plasma. One consequence of this is that many of the exact force-free fields which have previously been found around Schwarzschild and Kerr black holes are also solutions in appropriately identified flat backgrounds. As a more direct application, we use our metric transformations to write down a large class of electromagnetic waves which remain unchanged by a large class of gravitational waves propagating "in the same direction."
Perimetry; Tangent screen exam; Automated perimetry exam; Goldmann visual field exam; Humphrey visual field exam ... Confrontation visual field exam. This is a quick and basic check of the visual field. The health care provider ...
FRIDA integral field spectroscopy PSF quality simulations
Cuevas, Salvador
2014-07-01
FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system (GTCAO). FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. FRIDA IFU is conformed mainly by 2 mirror blocks with 30 spherical mirrors each. The image slicing is performed by a block of 30 cylindrical mirrors each of 400 μm width. It also has a Schwarzschild relay based on two off axis spherical mirrors that adapts the GTCAO corrected PSF to the slicer mirrors dimensions. To readapt the sliced PSF to the spectrograph input numerical aperture the IFU has an afocal system of two parabolic off axis mirrors. The AO PSF is bigger than the slice mirror dimensions and this produces diffraction effects. These diffraction effects combined with the intrinsic IFU and spectrograph aberrations produce the final instrumental PSF of the IFS mode. In order to evaluate the instrumental PSF quality of the FRIDA IFS, modeling simulations were performed by the ZEMAX Physical Optics Propagation (POP) module. In this work the simulations are described and the PSF quality and uniformity on a reconstructed IFS image is evaluated. It is shown the PSF quality of the IFS mode including the instrument manufacturing tolerances fulfills the specifications.
Obstruction of black hole singularity by quantum field theory effects
Energy Technology Data Exchange (ETDEWEB)
Abedi, Jahed; Arfaei, Hessamaddin [Department of Physics, Sharif University of Technology,P.O. Box 11155-9161, Tehran, Irany (Iran, Islamic Republic of); School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)
2016-03-21
We consider the back reaction of the energy due to quantum fluctuation of the background fields considering the trace anomaly for Schwarzschild black hole. It is shown that it will result in modification of the horizon and also formation of an inner horizon. We show that the process of collapse of a thin shell stops before formation of the singularity at a radius slightly smaller than the inner horizon at the order of (c{sub A}(M/(M{sub p}))){sup 1/3}l{sub p}. After the collapse stops the reverse process takes place. Thus we demonstrate that without turning on quantum gravity and just through the effects the coupling of field to gravity as trace anomaly of quantum fluctuations the formation of the singularity through collapse is obstructed. An important consequence of our work is existence of an extremal solution with zero temperature and a mass which is lower bound for the Schwazschild solution. This solution is also the asymptotic final stable state after Hawking radiation.
Frida integral field unit opto-mechanical design
Cuevas, Salvador; Eikenberry, Stephen S.; Bringas, Vicente; Corrales, Adi; Espejo, Carlos; Lucero, Diana; Rodriguez, Alberto; Sánchez, Beatriz; Uribe, Jorge
2012-09-01
FRIDA (inFRared Imager and Dissector for the Adaptive optics system of the Gran Telescopio Canarias) has been designed as a cryogenic and diffraction limited instrument that will offer broad and narrow band imaging and integral field spectroscopy (IFS). Both, the imaging mode and IFS observing modes will use the same Teledyne 2Kx2K detector. This instrument will be installed at Nasmyth B station, behind the GTC Adaptive Optics system. FRIDA will provide the IFS mode using a 30 slices Integral Field Unit (IFU). This IFU design is based on University of Florida FISICA where the mirror block arrays are diamond turned on monolithic metal blocks. FRIDA IFU is conformed mainly by 3 mirror blocks with 30 spherical mirrors each. It also has a Schwarzschild relay based on two off axis spherical mirrors and an afocal system of two parabolic off axis mirrors. Including two insertion mirrors the IFU holds 96 metal mirrors. Each block or individual mirror is attached on its own mechanical mounting. In order to study beam interferences with mechanical parts, ghosts and scattered light, an iterative optical-mechanical modeling was developed. In this work this iterative modeling is described including pictures showing actual ray tracing on the opto-mechanical components.
Loop quantization of the Schwarzschild black hole.
Gambini, Rodolfo; Pullin, Jorge
2013-05-24
We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes.
Koyama, Toshiyuki
The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.
On the usefulness of relativistic space-times for the description of the Earth's gravitational field
Soffel, Michael; Frutos, Francisco
2016-12-01
The usefulness of relativistic space-times for the description of the Earth's gravitational field is investigated. A variety of exact vacuum solutions of Einstein's field equations (Schwarzschild, Erez and Rosen, Gutsunayev and Manko, Hernández-Pastora and Martín, Kerr, Quevedo, and Mashhoon) are investigated in that respect. It is argued that because of their multipole structure and influences from external bodies, all these exact solutions are not really useful for the central problem. Then, approximate space-times resulting from an MPM or post-Newtonian approximation are considered. Only in the DSX formalism that is of the first post-Newtonian order, all aspects of the problem can be tackled: a relativistic description (a) of the Earth's gravity field in a well-defined geocentric reference system (GCRS), (b) of the motion of solar system bodies in a barycentric reference system (BCRS), and (c) of inertial and tidal terms in the geocentric metric describing the external gravitational field. A relativistic SLR theory is also discussed with respect to our central problem. Orders of magnitude of many effects related to the Earth's gravitational field and SLR are given. It is argued that a formalism with accuracies better than of the first post-Newtonian order is not yet available.
AdS Black Hole with Phantom Scalar Field
Directory of Open Access Journals (Sweden)
Limei Zhang
2017-01-01
Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.
Noncommutative gravity and quantum field theory on noncummutative curved spacetimes
Energy Technology Data Exchange (ETDEWEB)
Schenkel, Alexander
2011-10-24
The purpose of the first part of this thesis is to understand symmetry reduction in noncommutative gravity, which then allows us to find exact solutions of the noncommutative Einstein equations. We propose an extension of the usual symmetry reduction procedure, which is frequently applied to the construction of exact solutions of Einstein's field equations, to noncommutative gravity and show that this leads to preferred choices of noncommutative deformations of a given symmetric system. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models, for which the noncommutative metric field coincides with the classical one. In the second part we focus on quantum field theory on noncommutative curved spacetimes. We develop a new formalism by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. The result is an algebra of observables for scalar quantum field theories on a large class of noncommutative curved spacetimes. A precise relation to the algebra of observables of the corresponding undeformed quantum field theory is established. We focus on explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories, which is not the case in the simplest example of the Moyal-Weyl deformed Minkowski spacetime. The convergent deformation of simple toy-models is investigated and it is shown that these quantum field theories have many new features compared to formal deformation quantization. In addition to the expected nonlocality, we obtain that the relation between the deformed and the undeformed quantum field theory is affected in a nontrivial way, leading to an improved behavior of the
Energy Technology Data Exchange (ETDEWEB)
Zaslavskii, O.B. [Kharkov V.N. Karazin National University, Department of Physics and Technology, Kharkov (Ukraine); Kazan Federal University, Institute of Mathematics and Mechanics, Kazan (Russian Federation)
2015-09-15
We consider the behavior of the innermost stable circular orbit (ISCO) in the magnetic field near ''dirty'' (surrounded by matter) axially symmetric black holes. The cases of near-extremal, extremal, and nonextremal black holes are analyzed. For nonrotating black holes, in the strong magnetic field ISCO approaches the horizon (when backreaction of the field on the geometry is neglected). Rotation destroys this phenomenon. The angular momentum and radius of ISCO look model-independent in the main approximation. We also study the collisions between two particles that results in the ultra-high energy E{sub c.m.} in the center-of-mass frame. Two scenarios are considered - when one particle moves on the near-horizon ISCO or when collision occurs on the horizon, one particle having the energy and angular momentum typical of ISCO. If the magnetic field is strong enough and a black hole is slowly rotating, E{sub c.m.} can become arbitrarily large. The kinematics of the high-energy collision is discussed. As an example, we consider the magnetized Schwarzschild black hole for an arbitrary strength of the field (the Ernst solution). It is shown that backreaction of the magnetic field on the geometry can bound the growth of E{sub c.m.} (orig.)
Dautcourt, G
2008-01-01
Roy P. Kerr has discovered his celebrated metric 45 years ago, yet the problem to find a generalization of the Schwarzschild metric for a rotating mass was faced much earlier. Lense and Thirring, Bach, Andress, Akeley, Lewis, van Stockum and others have tried to solve it or to find an approximative solution at least. In particular Achilles Papapetrou, from 1952 to 1961 in Berlin, was interested in an exact solution. He directed the author in the late autumn of 1959 to work on the problem. Why did these pre-Kerr attempts fail? Comments based on personal reminiscences and old notes.
DEFF Research Database (Denmark)
Olsen, Nils
2015-01-01
of the fluid flow at the top of the core. However, what is measured at or near the surface of the Earth is the superposition of the core field and fields caused by magnetized rocks in the Earth’s crust, by electric currents flowing in the ionosphere, magnetosphere, and oceans, and by currents induced......he Earth has a large and complicated magnetic field, the major part of which is produced by a self-sustaining dynamo operating in the fluid outer core. Magnetic field observations provide one of the few tools for remote sensing the Earth’s deep interior, especially regarding the dynamics...... in the Earth by time-varying external fields. These sources have their specific characteristics in terms of spatial and temporal variations, and their proper separation, based on magnetic measurements, is a major challenge. Such a separation is a prerequisite for remote sensing by means of magnetic field...
A highly magnetized twin-jet base pinpoints a supermassive black hole
National Research Council Canada - National Science Library
Baczko, A.-K; Schulz, R; Kadler, M; Ros, E; Perucho, M; Krichbaum, T. P; Böck, M; Bremer, M; Grossberger, C; Lindqvist, M; Lobanov, A. P; Mannheim, K; Martí-Vidal, I; Müller, C; Wilms, J; Zensus, J. A
2016-01-01
... (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and similar to 8.3 x 10(4...
Wiggly tails: a gravitational wave signature of massive fields around black holes
Degollado, Juan Carlos
2014-01-01
Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such `dirtiness' within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasi-bound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasi-normal ringing followed by a late time tail. In contrast to `clean' black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasi-bound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in ful...
Itzykson, C
1978-01-01
Some background on the theory of gauge fields, a subject of increasing popularity among particle physicists, is provided. The aim will be to stress those aspects which suggest that gauge fields may play some role in a future theory of strong interactions. (8 refs).
DEFF Research Database (Denmark)
Gorm Hansen, Louise Lyngfeldt
2012-01-01
This field report expresses perfectly the kind of confusion almost all of us experience when entering the field. How do we know whether what we’re doing is “right” or not? What in particular should we record when we don’t have time to write down everything among all the myriad impressions thrusting...
US Agency for International Development — This is a mobile application for capturing images , data, and geolocation for USAID projects in the field. The data is then stored on a server in AllNet. The...
Tachyonic field interacting with scalar (phantom) field
Chattopadhyay, Surajit; Debnath, Ujjal
2009-01-01
In this letter, we have considered the universe is filled with the mixture of tachyonic field and scalar or phantom field. If the tachyonic field interacts with scalar or phantom field, the interaction term decays with time and the energy for scalar field is transferred to tachyonic field or the energy for phantom field is transferred to tachyonic field. The tachyonic field and scalar field potentials always decrease, but phantom field potential always increases.
Warner, S
1989-01-01
Aimed at those acquainted with basic point-set topology and algebra, this text goes up to the frontiers of current research in topological fields (more precisely, topological rings that algebraically are fields).The reader is given enough background to tackle the current literature without undue additional preparation. Many results not in the text (and many illustrations by example of theorems in the text) are included among the exercises. Sufficient hints for the solution of the exercises are offered so that solving them does not become a major research effort for the reader. A comprehensive bibliography completes the volume.
Roman, Steven
2006-01-01
Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students. The exercises have also been im
African Journals Online (AJOL)
Field Note. First Observation of the Slow Dragonet Callionymus aagilis Fricke,. 1999 in Its Natural Environment. M. Pinault1,2, A. Daydé3, R. Fricke4. 1USR 3278 CNRS-EPHE, CRIOBE & CBETM, University of Perpignan. 66860 Perpignan, France; 2Laboratory of Marine Ecology (ECOMAR), University of Reunion Island, ...
Parrone, Edward G.; Montalto, Michael P.
2008-01-01
The importance of athletic fields has increased in today's society because of the popularity of sporting events. As a result, education administrators face challenges when dealing with their athletic facilities. Decisionmakers constantly are being second-guessed in regard to outdated, overused facilities and lack of budget. In this article, the…
1999-11-08
In these lectures I will build up the concept of field theory using the language of Feynman diagrams. As a starting point, field theory in zero spacetime dimensions is used as a vehicle to develop all the necessary techniques: path integral, Feynman diagrams, Schwinger-Dyson equations, asymptotic series, effective action, renormalization etc. The theory is then extended to more dimensions, with emphasis on the combinatorial aspects of the diagrams rather than their particular mathematical structure. The concept of unitarity is used to, finally, arrive at the various Feynman rules in an actual, four-dimensional theory. The concept of gauge-invariance is developed, and the structure of a non-abelian gauge theory is discussed, again on the level of Feynman diagrams and Feynman rules.
Ignacio Palacios-Huerta; Oscar Volij
2009-01-01
In the centipede game, all standard equilibrium concepts dictate that the player who decides first must stop the game immediately. There is vast experimental evidence, however, that this rarely occurs. We first conduct a field experiment in which highly ranked chess players play this game. Contrary to previous evidence, our results show that69 percent of chess players stop immediately. When we restrict attention to Grandmasters, this percentage escalates to 100 percent. We then conduct a labo...
Quantum field theory and the antipodal identification of black-holes
Sanchez, N.; Whiting, B. F.
The antipodal points (U, V, θ, ϕ) and (-U, -V, π - θ, ϕ + π) of the Schwarzchild-Kruskal manifold, usually interpreted as two different events (in two different worlds) are considered here as physically identified (to give one single world). This has fundamental consequences for the QFT formulated on this manifold. The antipodal symmetric fields have (globally) zero norm. The usual particle-antiparticle Fock space definition breaks down. There is no quantum operator (unitary, antiunitary or projection) giving antipodal symmetric states from the usual Kruskal ones. The antipodal symmetric Green functions have the same periodicity β = 8 π M in imaginary (Schwarzschild) time as the usual (non-symmetric) ones. (Identification with ``conical singularity'' would give a period 1/2β). In any case, no usual thermal interpretation is possible for T = β-1 (nor for T0 = 2/β or any other value) in the theory. In the light of these results we discuss ``old'' ideas and more recent ones on identification. Present address: Department of Physics and Astronomy, University of North Carolina-Chapel Hill, NC 27514, USA.
Jacobi Fields and Conjugate Points on Timelike Geodesics in Special Spacetimes
Sokołowski, Leszek M.; Golda, Zdzisław A.
2015-05-01
Several physical problems such as the "twin paradox" in curved spacetimes have a purely geometrical nature and are reduced to studying properties of bundles of timelike geodesics. The paper is a general introduction to systematic investigations of the geodesic structure of physically relevant spacetimes. These are focussed on the search of locally maximal timelike geodesics. The method is based on determining conjugate points on chosen geodesic curves. The method presented here is effective at least in the case of radial and circular geodesics in static spherically symmetric spacetimes. Our approach shows that even in Schwarzschild spacetime (as well as in other static spherically symmetric ones), one can find a new unexpected geometrical feature: each stable circular orbit contains besides the obvious set of conjugate points two other sequences of conjugate points. The obvious limitations of the approach arise from one's inability to solve involved ordinary differential equations and the recent progress in the field allows one to increase the range of metrics and types of geodesic curves tractable by this method.
Morpho-kinematic properties of field S0 bulges in the CALIFA survey
Méndez-Abreu, J.; Aguerri, J. A. L.; Falcón-Barroso, J.; Ruiz-Lara, T.; Sánchez-Menguiano, L.; de Lorenzo-Cáceres, A.; Costantin, L.; Catalán-Torrecilla, C.; Zhu, L.; Sánchez-Blazquez, P.; Florido, E.; Corsini, E. M.; Wild, V.; Lyubenova, M.; van de Ven, G.; Sánchez, S. F.; Bland-Hawthorn, J.; Galbany, L.; García-Benito, R.; García-Lorenzo, B.; González Delgado, R. M.; López-Sánchez, A. R.; Marino, R. A.; Márquez, I.; Ziegler, B.; Califa Collaboration
2018-02-01
We study a sample of 28 S0 galaxies extracted from the integral field spectroscopic (IFS) survey Calar Alto Legacy Integral Field Area. We combine an accurate two-dimensional (2D) multicomponent photometric decomposition with the IFS kinematic properties of their bulges to understand their formation scenario. Our final sample is representative of S0s with high stellar masses (M⋆/M⊙ > 1010). They lay mainly on the red sequence and live in relatively isolated environments similar to that of the field and loose groups. We use our 2D photometric decomposition to define the size and photometric properties of the bulges, as well as their location within the galaxies. We perform mock spectroscopic simulations mimicking our observed galaxies to quantify the impact of the underlying disc on our bulge kinematic measurements (λ and v/σ). We compare our bulge corrected kinematic measurements with the results from Schwarzschild dynamical modelling. The good agreement confirms the robustness of our results and allows us to use bulge deprojected values of λ and v/σ. We find that the photometric (n and B/T) and kinematic (v/σ and λ) properties of our field S0 bulges are not correlated. We demonstrate that this morpho-kinematic decoupling is intrinsic to the bulges and it is not due to projection effects. We conclude that photometric diagnostics to separate different types of bulges (disc-like versus classical) might not be useful for S0 galaxies. The morpho-kinematics properties of S0 bulges derived in this paper suggest that they are mainly formed by dissipational processes happening at high redshift, but dedicated high-resolution simulations are necessary to better identify their origin.
Energy densities of magnetic field and relativistic electrons at the innermost region of the M87 jet
Directory of Open Access Journals (Sweden)
Kino M.
2013-12-01
Full Text Available We explore energy densities of magnetic fields and relativistic electrons in M87 jet. Since the radio core at the base of the M87 jet is the optically thick surface against synchrotron self absorption (SSA, observations directly give the size and turnover frequency for SSA. Using the observed angular diameter 0.11 mas, which corresponds to 16 Schwarzschild radii of the central black hole with 6 × 109 solar mass, and the flux density of the radio core at 43 GHz, we estimate the energy densities of magnetic field (UB and relativistic electrons (Ue by comparing the standard SSA formula to the observed radio core. Together with the allowed total kinetic power of the M87 jet, we find that (i the allowed B is limited in the range 2 G ≤ B ≤ 13 G, and that (ii 0:18 ≤ Ue/UB ≤ 66 holds. Our results significantly constrain formation mechanism of relativistic jets in active galactic nuclei.
Entropy corresponding to the interior of a Schwarzschild black hole
Majhi, Bibhas Ranjan; Samanta, Saurav
2017-07-01
Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein-Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.
Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...
Indian Academy of Sciences (India)
In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is used to ...
Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...
Indian Academy of Sciences (India)
Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...
Post-Newtonian Circular Restricted 3-Body Problem: Schwarzschild primaries
Dubeibe, F. L.; Lora-Clavijo, F. D.; González, G. A.
2017-07-01
The restricted three-body problem (RTBP) has been extensively studied to investigate the stability of the solar system, extra-solar subsystems, asteroid capture, and the dynamics of two massive black holes orbited by a sun. In the present work, we study the stability of the planar circular restricted three-body problem in the context of post-Newtonian approximations. First of all, we review the results obtained from the post-Newtonian equations of motion calculated in the framework of the Einstein-Infeld-Hoffmann formalism (EIH). Therefore, using the Fodor-Hoenselers-Perjes formalism (FHP), we have performed an expansion of the gravitational potential for two primaries, deriving a new system of equations of motion, which unlike the EIH-approach, preserves the Jacobian integral of motion. Additionally, we have obtained approximate expressions for the Lagrange points in terms of a mass parameter μ, where it is found that the deviations from the classical regime are larger for the FHP than for the EIH equations.
Evolution of inspiral orbits around a Schwarzschild black hole
Warburton, Niels; Akcay, Sarp; Barack, Leor; Gair, Jonathan R; Sago, Norichika
2011-01-01
We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravitational self-force (GSF) effect, including conservative corrections. The GSF information is encapsulated in an analytic interpolation formula based on numerical GSF data for over a thousand sample geodesic orbits. We assess the importance of incl...
Evolution of inspiral orbits around a Schwarzschild black hole
Warburton, Niels; Barack, Leor; Gair, Jonathan R; Sago, Norichika
2011-01-01
We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravitational self-force (GSF) effect, including conservative corrections. The GSF information is encapsulated in an analytic interpolation formula based on numerical GSF data for over a thousand sample geodesic orbits. We assess the importance of including conservative GSF corrections in waveform models for gravitational-wave searches.
Electromagnetic fields from two potential fields
Chauca, J.; Doria, R.; Soares, W.
2012-10-01
Maxwell electromagnetism is generalized through a model that includes N-potential fields in a same group. Anew rule for the photon field is defined from a fourth interpretation to the light invariance. It becomes a directive particle while others potential fields appears as circumstance particles. Its most primitive coupling is not more with electric charge but with the Noether systemic charge. Studying the case with two potential fields, one derives the corresponding granular and collective electromagnetic fields with antisymmetric and symmetric nature. As a first feature, differently from Maxwell equation such systemic photon field does not follow the expression inversely proportional to the distance. This work calculates the subsequent branch of elecromagnetic fields {→EI-→BI,→e-→b;ɛI,→ɛI,βIij,s,→s,sij}.
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
Krause, Monika
2017-04-06
Field theorists have long insisted that research needs to pay attention to the particular properties of each field studied. But while much field-theoretical research is comparative, either explicitly or implicitly, scholars have only begun to develop the language for describing the dimensions along which fields can be similar to and different from each other. In this context, this paper articulates an agenda for the analysis of variable properties of fields. It discusses variation in the degree but also in the kind of field autonomy. It discusses different dimensions of variation in field structure: fields can be more or less contested, and more or less hierarchical. The structure of symbolic oppositions in a field may take different forms. Lastly, it analyses the dimensions of variation highlighted by research on fields on the sub- and transnational scale. Post-national analysis allows us to ask how fields relate to fields of the same kind on different scales, and how fields relate to fields on the same scale in other national contexts. It allows us to ask about the role resources from other scales play in structuring symbolic oppositions within fields. A more fine-tuned vocabulary for field variation can help us better describe particular fields and it is a precondition for generating hypotheses about the conditions under which we can expect to observe fields with specified characteristics. © London School of Economics and Political Science 2017.
Koyama, Toshiyuki
The term phase field has recently become known across many fields of materials science. The meaning of phase field is the spatial and temporal order parameter field defined in a continuum-diffused interface model. By using the phase field order parameters, many types of complex microstructure changes observed in materials science are described effectively. This methodology has been referred to as the phase field method, phase field simulation, phase field modeling, phase field approach, etc. In this chapter, the basic concept and theoretical background for the phase field approach is explained in Sects. 21.1 and 21.2. The overview of recent applications of the phase field method is demonstrated in Sects. 21.3 to 21.6.
Energy Technology Data Exchange (ETDEWEB)
Voyles, J. W. [DOE ARM Climate Research Facility, Washington, DC (United States); Chapman, L. A. [DOE ARM Climate Research Facility, Washington, DC (United States)
2015-12-01
This document establishes a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking System and are specifically tailored to meet the scope of each field campaign.
Baden Fuller, A J
2014-01-01
Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation
González, P. A.; Konoplya, R. A.; Vásquez, Yerko
2017-06-01
It has recently been found that quasinormal modes of asymptotically anti-de Sitter (AdS) black holes in theories with higher curvature corrections may help to describe the regime of intermediate 't Hooft coupling in the dual field theory. Here, we consider quasinormal modes of a scalar field in the background of spherical Gauss-Bonnet-anti-de Sitter (AdS) black holes. In general, the eigenvalues of wave equations are found here numerically, but at a fixed Gauss-Bonnet constant α =R2/2 (where R is the AdS radius), an exact solution of the scalar field equation has been obtained. Remarkably, the purely imaginary modes, which are usually appropriate only to some gravitational perturbations, were found here even for a test scalar field. These purely imaginary modes of the Einstein-Gauss-Bonnet theory do not have the Einsteinian limits, because their damping rates grow, when α is decreasing. Thus, these modes are nonperturbative in α . The real oscillation frequencies of the perturbative branch are linearly related to their Schwarzschild-AdS limits Re (ωG B)=Re (ωSAdS)(1 +K (D )(α /R2)) , where D is the number of spacetime dimensions. Comparison of the analytical formula with the frequencies found by the shooting method allows us to test the latter. In addition, we found exact solutions to the master equations for gravitational perturbations at α =R2/2 and observed that for the scalar type of gravitational perturbations an eikonal instability develops.
Kunze, Kerstin E.
2013-12-01
Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.
Terahertz field induced electromigration
DEFF Research Database (Denmark)
Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof
We report the first observation of THz-field-induced electromigration in sub-wavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Electric Field Imaging Project
Wilcutt, Terrence; Hughitt, Brian; Burke, Eric; Generazio, Edward
2016-01-01
NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields. This work is intended to bring electrostatic imaging to the forefront of new inspection technologies, and new technologies in general. The specific goals are to specify the electric potential and electric field including the electric field spatial components emanating from, to, and throughout volumes containing objects or in free space.
DEFF Research Database (Denmark)
Lilleør, Helene Bie; Larsen, Anna Folke
In this paper, we estimate the impact of a farmer field school intervention among small scale farmers in Northers Tanzania. Unlike previous farmer field school evaluations, we go beyond the immediate agricultural impact and estimate the impact of farmer field school participation in the pre-speci...
Apple, Michael W.
2017-01-01
"The Journal of Educational Administration and History" has played an important role as a site for analyses that seek to expand both the academic and the ethical/political concerns of the field. A key word here is field. What counts as the field? What are its boundaries? Who is inside and who is outside? How has that changed over time?…
Vivent, Jacques
1922-01-01
In short, the "politics of aviation" lies in a few propositions: the need of having as large a number of fields as possible and of sufficient area; the utilization of the larger part of the existing military fields; the selection of uncultivated or unproductive fields, whenever technical conditions permit; ability to disregard (save in exceptional cases) objections of an agricultural nature.
Egorov, Nikolay
2017-01-01
This book is dedicated to field emission electronics, a promising field at the interface between “classic” vacuum electronics and nanotechnology. In addition to theoretical models, it includes detailed descriptions of experimental and research techniques and production technologies for different types of field emitters based on various construction principles. It particularly focuses on research into and production of field cathodes and electron guns using recently developed nanomaterials and carbon nanotubes. Further, it discusses the applications of field emission cathodes in new technologies such as light sources, flat screens, microwave and X-ray devices.
Franklin, Joel
2017-01-01
Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...
Forces in electromagnetic field and gravitational field
Weng, Zihua
2008-01-01
The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...
Cosmological evolution of a complex scalar field with repulsive or attractive self-interaction
Suárez, Abril; Chavanis, Pierre-Henri
2017-03-01
field. Throughout the paper, we analytically characterize the transition scales of the scalar field and establish the domain of validity of the fast oscillation regime. We analytically confirm and complement the important results of Li, Rindler-Daller, and Shapiro [Phys. Rev. D 89, 083536 (2014), 10.1103/PhysRevD.89.083536]. We determine the phase diagram of a scalar field with repulsive or attractive self-interaction. We show that the transition between the weakly self-interacting regime and the strongly self-interacting regime depends on how the scattering length of the bosons compares with their effective Schwarzschild radius. We also constrain the parameters of the scalar field from astrophysical and cosmological observations. Numerical applications are made for ultralight bosons without self-interaction (fuzzy dark matter), for bosons with repulsive self-interaction, and for bosons with attractive self-interaction (QCD axions and ultralight axions).
Accelerated orbits in black hole fields: the static case
Bini, Donato; de Felice, Fernando; Geralico, Andrea
2011-11-01
We study non-geodesic orbits of test particles endowed with a structure, assuming the Schwarzschild spacetime as background. We develop a formalism which allows one to recognize the geometrical characterization of those orbits in terms of their Frenet-Serret parameters and apply it to explicit cases as those of spatially circular orbits which witness the equilibrium under conflicting types of interactions. In our general analysis, we solve the equations of motion offering a detailed picture of the dynamics having in mind a check with a possible astronomical setup. We focus on certain ambiguities which plague the interpretation of the measurements preventing one from identifying the particular structure carried by the particle.
Nonlocal continuum field theories
2002-01-01
Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...
Facility Measures Magnetic Fields
Honess, Shawn B.; Narvaez, Pablo; Mcauley, James M.
1991-01-01
Partly automated facility measures and computes steady near magnetic field produced by object. Designed to determine magnetic fields of equipment to be installed on spacecraft including sensitive magnetometers, with view toward application of compensating fields to reduce interfernece with spacecraft-magnetometer readings. Because of its convenient operating features and sensitivity of its measurements, facility serves as prototype for similar facilities devoted to magnetic characterization of medical equipment, magnets for high-energy particle accelerators, and magnetic materials.
McCamey, Dane; Boehme, Christoph
2017-01-24
An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).
Algebraic extensions of fields
McCarthy, Paul J
1991-01-01
""...clear, unsophisticated and direct..."" - MathThis textbook is intended to prepare graduate students for the further study of fields, especially algebraic number theory and class field theory. It presumes some familiarity with topology and a solid background in abstract algebra. Chapter 1 contains the basic results concerning algebraic extensions. In addition to separable and inseparable extensions and normal extensions, there are sections on finite fields, algebraically closed fields, primitive elements, and norms and traces. Chapter 2 is devoted to Galois theory. Besides the fundamenta
Dielectrics in electric fields
Raju, Gorur G
2003-01-01
Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.
Energy Technology Data Exchange (ETDEWEB)
1980-12-01
Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.
Electromagnetic fields in biological systems
National Research Council Canada - National Science Library
Lin, James C
2012-01-01
"Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...
Covariant lattice glueball fields
Mandula, Jeffrey E.; Zweig, George; Govaerts, Jan
1983-11-01
Fields for the creation and annihilation of gluons and glueballs, which transform irreducibly under the four-dimensional lattice rotation reflection and charge conjugation symmetry groups, are defined and discussed. The fields reduce in the zero lattice spacing limit to conventional continuum operators of definite spin, parity, and charge comjugation.
Covariant lattice glueball fields
Energy Technology Data Exchange (ETDEWEB)
Mandula, J.E.; Zweig, G.; Govaerts, J.
1983-11-15
Fields for the creation and annihilation of gluons and glueballs, which transform irreducibly under the four-dimensional lattice rotation reflection and charge conjugation symmetry groups, are defined and discussed. The fields reduce in the zero lattice spacing limit to conventional continuum operators of definite spin, parity, and charge conjugation.
Cosmological magnetic fields - V
Indian Academy of Sciences (India)
The field tensor is observer-independent, while the electric and magnetic ... Thus the electric field in the particle frame vanishes: Щ = 0. In the observer's frame, with four velocity. Щ = Щ + Ъ , where Ъ is the relative velocity (Ъ Щ = 0) and we neglect ... The key equation is (8), which is the induction equation in covariant form.
Progress in field spectroscopy
Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.; Fox, N.
2009-01-01
This paper reviews developments in the science of field spectroscopy, focusing on the last twenty years in particular. During this period field spectroscopy has become established as an important technique for characterising the reflectance of natural surfaces in situ, for supporting the vicarious
Keilty, Bonnie
2013-01-01
Early intervention takes its form from a variety of fields. It has its obvious roots in the fields that primarily provide early intervention services--special education, allied health, and early childhood education. Early intervention also draws from public health as a coordinated approach to addressing the biological, psychological, and social…
Gomes, Diogo A.
2014-01-06
In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.
Directory of Open Access Journals (Sweden)
A. G. Sergeev
1986-01-01
Full Text Available We describe briefly the basic ideas and results of the twistor theory. The main points: twistor representation of Minkowsky space, Penrose correspondence and its geometrical properties, twistor interpretation of linear massless fields, Yang-Mills fields (including instantons and monopoles and Einstein-Hilbert equations.
The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...
Chakravorti, Sivaji
2015-01-01
This book prepares newcomers to dive into the realm of electric field analysis. The book details why one should perform electric field analysis and what are its practical implications. It emphasizes both the fundamentals and modern computational methods of electric machines. The book covers practical applications of the numerical methods in high voltage equipment, including transmission lines, power transformers, cables, and gas insulated systems.
Diagnostics and field experiments
Voors, Maarten
2018-01-01
Field experiments have been embraced in development economics and political science as a core method to learn what development interventions work and why. Scientists across the globe actively engage with development practitioners to evaluate projects and programmes. However, even though field
Wilczek, Frank
1998-01-01
I discuss the general principles underlying quantum field theory, and attempt to identify its most profound consequences. The deepest of these consequences result from the infinite number of degrees of freedom invoked to implement locality. I mention a few of its most striking successes, both achieved and prospective. Possible limitations of quantum field theory are viewed in the light of its history.
DEFF Research Database (Denmark)
Møller, Per Grau
2016-01-01
Ridge and furrow is a specific way of ploughing which makes fields of systematic ridges and furrows like a rubbing washboard. They are part of an overall openfield system, but the focus in this paper is on the functionality of the fields. There are many indications that agro-technological reasons...
Electromagnetic Fields and Cancer
... to magnetic fields and acute lymphoblastic leukemia in children. New England Journal of Medicine 1997; 337(1):1-7. [PubMed ... Magnetic field exposure and long-term survival among children with leukaemia. British Journal of Cancer 2006; 94(1):161-164. [PubMed ...
Cassie Meador; Mark Twery; Meagan. Leatherbury
2011-01-01
The Moving Field Guides (MFG) project is a creative take on site interpretation. Moving Field Guides provide an example of how scientific and artistic endeavors work in parallel. Both begin with keen observations that produce information that must be analyzed, understood, and interpreted. That interpretation then needs to be communicated to others to complete the...
Compressive light field displays.
Wetzstein, Gordon; Lanman, Douglas; Hirsch, Matthew; Heidrich, Wolfgang; Raskar, Ramesh
2012-01-01
Light fields are the multiview extension of stereo image pairs: a collection of images showing a 3D scene from slightly different perspectives. Depicting high-resolution light fields usually requires an excessively large display bandwidth; compressive light field displays are enabled by the codesign of optical elements and computational-processing algorithms. Rather than pursuing a direct "optical" solution (for example, adding one more pixel to support the emission of one additional light ray), compressive displays aim to create flexible optical systems that can synthesize a compressed target light field. In effect, each pixel emits a superposition of light rays. Through compression and tailored optical designs, fewer display pixels are necessary to emit a given light field than a direct optical solution would require.
Energy Technology Data Exchange (ETDEWEB)
Bergshoeff, Eric A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Hohm, Olaf [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook, NY 11794-3636 (United States); Penas, Victor A. [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Riccioni, Fabio [INFN - Sezione di Roma, Dipartimento di Fisica, Università di Roma “La Sapienza”,Piazzale Aldo Moro 2, 00185 Roma (Italy)
2016-06-06
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for “exotic' dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
Costa, L Filipe
2015-01-01
We present a pedagogical discussion of the Coriolis field, emphasizing its not-so-well-understood aspects. We show that this field satisfies the field equations of the so-called Newton-Cartan theory, a generalization of Newtonian gravity that is covariant under changes of arbitrarily rotating and accelerated frames. Examples of solutions of this theory are given, including the Newtonian analogue of the G\\"odel universe. We discuss how to detect the Coriolis field by its effect on gyroscopes, of which the gyrocompass is an example. Finally, using a similar framework, we discuss the Coriolis field generated by mass currents in general relativity, and its measurement by the Gravity Probe B and LAGEOS/LARES experiments.
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...... or meromorphic (allowing poles as singularities) functions. There already exists a well-developed theory for iterative holomorphic dynamical systems, and successful relations found between iteration theory and flows of vector fields have been one of the main motivations for the recent interest in holomorphic...... vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...
Wentzel, Gregor
2003-01-01
A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular
Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert
1996-01-01
The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.
Newman, D. J.; Ng, Betty
2007-09-01
List of contributors; Preface; Introduction; 1. Crystal field splitting mechanisms D. J. Newman and Betty Ng; 2. Empirical crystal fields D. J. Newman and Betty Ng; 3. Fitting crystal field parameters D. J. Newman and Betty Ng; 4. Lanthanide and actinide optical spectra G. K. Liu; 5. Superposition model D. J. Newman and Betty Ng; 6. Effects of electron correlation on crystal field splitting M. F. Reid and D. J. Newman; 7. Ground state splittings in S-state ions D. J. Newman and Betty Ng; 8. Invariants and moments Y. Y. Yeung; 9. Semiclassical model K. S. Chan; 10. Transition intensities M. F. Reid; Appendix 1. Point symmetry D. J. Newman and Betty Ng; Appendix 2. QBASIC programs D. J. Newman and Betty Ng; Appendix 3. Accessible program packages Y. Y. Yeung, M. F. Reid and D. J. Newman; Appendix 4. Computer package CST Cz. Rudowicz; Bibliography; Index.
... Reading Introduction Electric and magnetic fields (EMFs) are invisible areas of energy, often referred to as radiation , ... Abstract ] Staff Directory Freedom of Information Act OIG Web Policies Request Translation Services Employment Verification Contact Us ...
Federal Laboratory Consortium — The Field Research Facility (FRF) located in Duck, N.C. was established in 1977 to support the U.S. Army Corps of Engineers' coastal engineering mission. The FRF is...
Federal Laboratory Consortium — In 2000 NOAA's National Marine Fisheries Service established the Maine Field Station in Orono, ME to have more direct involvement in the conservation of the living...
National Research Council Canada - National Science Library
Vozmediano, M.A.H; Katsnelson, M.I; Guinea, F
2010-01-01
The physics of graphene is acting as a bridge between quantum field theory and condensed matter physics due to the special quality of the graphene quasiparticles behaving as massless two dimensional Dirac fermions...
Microreactors with electrical fields
Agiral, A.; Gardeniers, Johannes G.E.
2010-01-01
The use of electric fields in chemistry is considered an important concept of process intensification. The combination of electricity with chemistry becomes particularly valuable at smaller scales, as they are exploited in microreaction technology. Microreactor systems with integrated electrodes
Sánchez Almeida, Jorge
2018-01-01
Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...
Introduction to Geomagnetic Fields
Hinze, William J.
Coincidentally, as I sat down in late October 2003 to read and review the second edition of Wallace H. Campbell's text, Introduction to Geomagnetic Fields, we received warnings from the news media of a massive solar flare and its possible effect on power supply systems and satellite communications. News programs briefly explained the source of Sun-Earth interactions. If you are interested in learning more about the physics of the connection between sun spots and power supply systems and their impact on orbiting satellites, I urge you to become acquainted with Campbell's book. It presents an interesting and informative explanation of the geomagnetic field and its applications to a wide variety of topics, including oil exploration, climate change, and fraudulent claims of the utility of magnetic fields for alleviating human pain. Geomagnetism, the study of the nature and processes of the Earth's magnetic fields and its application to the investigation of the Earth, its processes, and history, is a mature science with a well-developed theoretical foundation and a vast array of observations. It is discussed in varied detail in Earth physics books and most entry-level geoscience texts. The latter treatments largely are driven by the need to discuss paleomagnetism as an essential tool in studying plate tectonics. A more thorough explanation of geomagnetism is needed by many interested scientists in related fields and by laypersons. This is the objective of Campbell's book. It is particularly germane in view of a broad range of geomagnetic topics that are at the forefront of today's science, including environmental magnetism, so-called ``jerks'' observed in the Earth's magnetic field, the perplexing magnetic field of Mars, improved satellite magnetic field observations, and the increasing availability of high-quality continental magnetic anomaly maps, to name only a few.
DEFF Research Database (Denmark)
Lochner, Christine; Grant, Jon E; Odlaug, Brian Lawrence
2012-01-01
The aim of this multisite field survey was to examine the DSM-IV-TR criteria, proposed DSM-5 diagnostic criteria, as well as a number of possible additional diagnostic criteria, in patients with hair-pulling disorder (HPD, or trichotillomania).......The aim of this multisite field survey was to examine the DSM-IV-TR criteria, proposed DSM-5 diagnostic criteria, as well as a number of possible additional diagnostic criteria, in patients with hair-pulling disorder (HPD, or trichotillomania)....
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2017-03-01
Full Text Available We introduce ordered rings and fields following Artin-Schreier’s approach using positive cones. We show that such orderings coincide with total order relations and give examples of ordered (and non ordered rings and fields. In particular we show that polynomial rings can be ordered in (at least two different ways [8, 5, 4, 9]. This is the continuation of the development of algebraic hierarchy in Mizar [2, 3].
Köster, Gudrun
2010-01-01
Factors influencing udder health and prevalence of mastitis pathogens and their resistance to antimicrobials in large dairy herds in Brandenburg, Germany- a field study The objective of the field study was to 1) investigate factors influencing udder health in dairy herds in Brandenburg, Germany and 2) to describe prevalence and spreading of mastitis pathogens and their resistance patterns to antimicrobials. Eighty dairy farms were visited between July 2001 and October 2002. Data were evalu...
Altland, Alexander; Simons, Ben
2006-06-01
Over the past few decades, in concert with ground-breaking experimental advances, condensed matter theory has drawn increasingly from the language of low-energy quantum field theory. This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. It emphasizes the development of modern methods of classical and quantum field theory with applications oriented around condensed matter physics. Topics covered include second quantization, path and functional field integration, mean-field theory and collective phenomena, the renormalization group, and topology. Conceptual aspects and formal methodology are emphasized, but the discussion is rooted firmly in practical experimental application. As well as routine exercises, the text includes extended and challenging problems, with fully worked solutions, designed to provide a bridge between formal manipulations and research-oriented thinking. This book will complement graduate level courses on theoretical quantum condensed matter physics. Spans the field of modern condensed matter theory focusing on field theory techniques Written to facilitate learning, with numerous challenging exercises, with fully worked solutions, aimed at physicists starting graduate-level courses The theoretical methods are firmly set in concrete experimental applications
Nonlinear field space cosmology
Mielczarek, Jakub; Trześniewski, Tomasz
2017-08-01
We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.
Wiegelmann, Thomas; Petrie, Gordon J. D.; Riley, Pete
2017-09-01
Coronal magnetic field models use photospheric field measurements as boundary condition to model the solar corona. We review in this paper the most common model assumptions, starting from MHD-models, magnetohydrostatics, force-free and finally potential field models. Each model in this list is somewhat less complex than the previous one and makes more restrictive assumptions by neglecting physical effects. The magnetohydrostatic approach neglects time-dependent phenomena and plasma flows, the force-free approach neglects additionally the gradient of the plasma pressure and the gravity force. This leads to the assumption of a vanishing Lorentz force and electric currents are parallel (or anti-parallel) to the magnetic field lines. Finally, the potential field approach neglects also these currents. We outline the main assumptions, benefits and limitations of these models both from a theoretical (how realistic are the models?) and a practical viewpoint (which computer resources to we need?). Finally we address the important problem of noisy and inconsistent photospheric boundary conditions and the possibility of using chromospheric and coronal observations to improve the models.
Ershov, Yuri L
2001-01-01
For more than 30 years, the author has studied the model-theoretic aspects of the theory of valued fields and multi-valued fields. Many of the key results included in this book were obtained by the author whilst preparing the manuscript. Thus the unique overview of the theory, as developed in the book, has been previously unavailable. The book deals with the theory of valued fields and mutli-valued fields. The theory of Prüfer rings is discussed from the `geometric' point of view. The author shows that by introducing the Zariski topology on families of valuation rings, it is possible to distinguish two important subfamilies of Prüfer rings that correspond to Boolean and near Boolean families of valuation rings. Also, algebraic and model-theoretic properties of multi-valued fields with near Boolean families of valuation rings satisfying the local-global principle are studied. It is important that this principle is elementary, i.e., it can be expressed in the language of predicate calculus. The most important...
James Elliott, C.; McVey, Brian D.; Quimby, David C.
1991-07-01
The level of field errors in a free electron laser (FEL) is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is use of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond convenient mechanical tolerances of ± 25 μm, and amelioration of these may occur by a procedure using direct measurement of the magnetic fields at assembly time.
Electromagnetic fields and life
Presman, A S
1970-01-01
A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also all most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...
Kronberg, Philipp P
2016-01-01
Magnetic fields are important in the Universe and their effects contain the key to many astrophysical phenomena that are otherwise impossible to understand. This book presents an up-to-date overview of this fast-growing topic and its interconnections to plasma processes, astroparticle physics, high energy astrophysics, and cosmic evolution. The phenomenology and impact of magnetic fields are described in diverse astrophysical contexts within the Universe, from galaxies to the filaments and voids of the intergalactic medium, and out to the largest redshifts. The presentation of mathematical formulae is accessible and is designed to add insight into the broad range of topics discussed. Written for graduate students and researchers in astrophysics and related disciplines, this volume will inspire readers to devise new ways of thinking about magnetic fields in space on galaxy scales and beyond.
Field Independent Cosmic Evolution
Directory of Open Access Journals (Sweden)
Nayem Sk
2013-01-01
Full Text Available It has been shown earlier that Noether symmetry does not admit a form of corresponding to an action in which is coupled to scalar-tensor theory of gravity or even for pure theory of gravity taking anisotropic model into account. Here, we prove that theory of gravity does not admit Noether symmetry even if it is coupled to tachyonic field and considering a gauge in addition. To handle such a theory, a general conserved current has been constructed under a condition which decouples higher-order curvature part from the field part. This condition, in principle, solves for the scale-factor independently. Thus, cosmological evolution remains independent of the form of the chosen field, whether it is a scalar or a tachyon.
DEFF Research Database (Denmark)
Knudsen, Bo Nissen
The printed place-name series Danmarks Stednavne (Place-names of Denmark) has been published since 1922, and in 2013 volume 26 was released. Still only about 2/3 of the area of Denmark is covered by the series. Since 2009 a parallel effort has been made to digitalise the series through scanning...... and human-assisted character recognition – and place-name data from the rest of the country, derived from cadastral databases and a database of medieval settlement names, has been added while doing it. The resulting database, currently holding about 200,000 entries, is published at www....... As of now, no less than 45 different database fields have been found necessary to structure the information found in a single place-name entry – some fields mandatory, some nonmandatory. And using a relational database structure, some fields have multiple occurrences within one entry (i.e. multiple source...
Strong Field Spherical Dynamos
Dormy, Emmanuel
2014-01-01
Numerical models of the geodynamo are usually classified in two categories: those denominated dipolar modes, observed when the inertial term is small enough, and multipolar fluctuating dynamos, for stronger forcing. I show that a third dynamo branch corresponding to a dominant force balance between the Coriolis force and the Lorentz force can be produced numerically. This force balance is usually referred to as the strong field limit. This solution co-exists with the often described viscous branch. Direct numerical simulations exhibit a transition from a weak-field dynamo branch, in which viscous effects set the dominant length scale, and the strong field branch in which viscous and inertial effects are largely negligible. These results indicate that a distinguished limit needs to be sought to produce numerical models relevant to the geodynamo and that the usual approach of minimizing the magnetic Prandtl number (ratio of the fluid kinematic viscosity to its magnetic diffusivity) at a given Ekman number is mi...
Electromagnetic fields and waves
Iskander, Magdy F
2013-01-01
The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...
Energy Technology Data Exchange (ETDEWEB)
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Coates, J.D.; Chisholm, J.L.
1993-05-01
A multi-well microbially enhanced oil recovery field pilot has been performed in the Southeast Vassar Vertz Sand Unit in Payne County, Oklahoma. The primary emphasis of the experiment was preferential plugging of high permeability zones for the purpose of improving waterflood sweep efficiency. Studies were performed to determine reservoir chemistry, ecology, and indigenous bacteria populations. Growth experiments were used to select a nutrient system compatible with the reservoir that encouraged growth of a group of indigenous nitrate-using bacteria and inhibit growth of sulfate-reducing bacteria. A specific field pilot area behind an active line drive waterflood was selected. Surface facilities were designed and installed. Injection protocols of bulk nutrient materials were prepared to facilitate uniform distribution of nutrients within the pilot area. By the end of December, 1991, 82.5 tons (75.0 tonnes) of nutrients had been injected in the field. A tracer test identified significant heterogeneity in the SEVVSU and made it necessary to monitor additional production wells in the field. The tracer tests and changes in production behavior indicate the additional production wells monitored during the field trial were also affected. Eighty two and one half barrels (13.1 m[sup 3]) of tertiary oil have been recovered. Microbial activity has increased CO[sub 2] content as indicated by increased alkalinity. A temporary rise in sulfide concentration was experienced. These indicate an active microbial community was generated in the field by the nutrient injection. Pilot area interwell pressure interference test results showed that significant permeability reduction occurred. The interwell permeabilities in the pilot area between the injector and the three pilot production wells were made more uniform which indicates a successful preferential plugging enhanced oil recovery project.
Electromagnetic fields and their impacts
Prša, M. A.; Kasaš-Lažetić, K. K.
2018-01-01
The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.
Electromagnetic fields and interactions
Becker, Richard L
1964-01-01
For more than a century, ""Becker"" and its forerunner, ""Abraham-Becker,"" have served as the bible of electromagnetic theory for countless students. This definitive translation of the physics classic features both volumes of the original text.Volume I, on electromagnetic theory, includes an introduction to vector and tensor calculus, the electrostatic field, electric current and the field, and the theory of relativity. The second volume comprises a self-contained introduction to quantum theory that covers the classical principles of electron theory and quantum mechanics, problems involving
DEFF Research Database (Denmark)
Goerres, Achim; Vanhuysse, Pieter
2012-01-01
Whereas the call for a political science based study of older people and ageing is not new (Cutler 1977; Heclo 1988), relatively little unified progress has been made so far. This chapter maps the field of generational politics and introduces our edited volume "Ageing Populations in Post-Industri......Whereas the call for a political science based study of older people and ageing is not new (Cutler 1977; Heclo 1988), relatively little unified progress has been made so far. This chapter maps the field of generational politics and introduces our edited volume "Ageing Populations in Post...
DEFF Research Database (Denmark)
Petersen, Kaare Brandt
2006-01-01
This thesis describes investigations and improvements of a technique for Independent Component Analysis (ICA), called "Mean Field ICA". The main focus of the thesis is the optimization part of the algorithm, the so-called "EM algorithm". Using different approaches it is demonstrated that the EM...... Gradient Recipe is applicable to a wide selection of models. Furthermore, the Mean Field ICA model is extended to incorporate ltering over time in a so-called "convolutive ICA" model. Finally, by using mixture of Gaussians as source priors, the generative and ltering approach to ICA is compared...
DEFF Research Database (Denmark)
Lochner, Christine; Grant, Jon E; Odlaug, Brian Lawrence
2012-01-01
Pathologic skin picking (skin picking disorder [SPD]) is a prevalent and disabling condition, which has received increasing study. It is timely to consider including SPD in DSM-5. The aim of this field survey was to investigate possible diagnostic criteria for SPD.......Pathologic skin picking (skin picking disorder [SPD]) is a prevalent and disabling condition, which has received increasing study. It is timely to consider including SPD in DSM-5. The aim of this field survey was to investigate possible diagnostic criteria for SPD....
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
2017-05-11
observer to the ground for a 95th percentile male and a 5th percentile female . The dimensions of the vehicle should also be taken. 4. TEST...field of vision Gd ground distance MIL-STD Military Standard SAE Society of Automotive Engineers Sd stadia rod distance from the center of the...
Superspace conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-07-15
Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.
What Are Electromagnetic Fields?
... them to quickly heat food. At radio frequencies, electric and magnetic fields are closely interrelated and we typically measure their levels as power densities in watts per square metre (W/m 2 ). Key points: The electromagnetic spectrum encompasses both natural and ...
Indian Academy of Sciences (India)
requirements. For a viable model we require fine tuning of parameters comparable to that in ACDM or in quintessence models. For the exponential potential, the accelerated phase is followed by a phase with a(t) o t2/3 thus eliminating a future horizon. Keywords. Cosmology; tachyon field; dark energy; structure formation.
Nolde Forest Environmental Education Center, Reading, PA.
Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…
Russ, Rosemary S.; Wangen, Steve; Nye, D. Leith; Shapiro, R. Benjamin; Strinz, Will; Ferris, Michael
2015-01-01
To help teachers engage students in discussions about sustainability, the authors designed Fields of Fuel, a multiplayer, web-based simulation game that allows players to explore the environmental and economic trade-offs of a realistic sustainable system. Computer-based simulations of real-world phenomena engage students and have been shown to…
Grant, Barbara
2011-01-01
Written from a systems engineering perspective, this SPIE Field Guide covers topics in optical radiation propagation, material properties, sources, detectors, system components, measurement, calibration, and photometry. The book's organization and extensive collection of diagrams, tables, and graphs will enable the reader to efficiently identify and apply relevant information to radiometric problems arising amid the demands of today's fast-paced technical environment.
White, Harold
2011-01-01
This paper will begin with a short review of the Alcubierre warp drive metric and describes how the phenomenon might work based on the original paper. The canonical form of the metric was developed and published in [6] which provided key insight into the field potential and boost for the field which remedied a critical paradox in the original Alcubierre concept of operations. A modified concept of operations based on the canonical form of the metric that remedies the paradox is presented and discussed. The idea of a warp drive in higher dimensional space-time (manifold) will then be briefly considered by comparing the null-like geodesics of the Alcubierre metric to the Chung-Freese metric to illustrate the mathematical role of hyperspace coordinates. The net effect of using a warp drive technology coupled with conventional propulsion systems on an exploration mission will be discussed using the nomenclature of early mission planning. Finally, an overview of the warp field interferometer test bed being implemented in the Advanced Propulsion Physics Laboratory: Eagleworks (APPL:E) at the Johnson Space Center will be detailed. While warp field mechanics has not had a Chicago Pile moment, the tools necessary to detect a modest instance of the phenomenon are near at hand.
Point massive particle in General Relativity
Katanaev, M. O.
2013-10-01
It is well known that the Schwarzschild solution describes the gravitational field outside compact spherically symmetric mass distribution in General Relativity. In particular, it describes the gravitational field outside a point particle. Nevertheless, what is the exact solution of Einstein's equations with -type source corresponding to a point particle is not known. In the present paper, we prove that the Schwarzschild solution in isotropic coordinates is the asymptotically flat static spherically symmetric solution of Einstein's equations with -type energy-momentum tensor corresponding to a point particle. Solution of Einstein's equations is understood in the generalized sense after integration with a test function. Metric components are locally integrable functions for which nonlinear Einstein's equations are mathematically defined. The Schwarzschild solution in isotropic coordinates is locally isometric to the Schwarzschild solution in Schwarzschild coordinates but differs essentially globally. It is topologically trivial neglecting the world line of a point particle. Gravity attraction at large distances is replaced by repulsion at the particle neighborhood.
Device for measuring electric fields
Levine, S. H.; Harrison, S. R.
1972-01-01
Measurement of low-intensity electric fields in space and in presence of weak magnetic fields is accomplished by utilizing a device which permits determination of the extent a beam of cesium ions is deflected by an electric field.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
DEFF Research Database (Denmark)
Kadish, David
2017-01-01
is being undertaken with the adoption of interventionist strategies in urban agricultural practices like seed bombing and guerrilla gardening. At the same time, there is a proliferation of media-connected and miniature autonomous drones and robotics. Might this combination be the foundation for a novel......This paper explores thematic parallels between artistic and agricultural practices in the postwar period to establish a link to media art and cultural practices that are currently emerging in urban agriculture. Industrial agriculture has roots in the post-WWII abundance of mechanical and chemical......-scale agricultural systems that range from spreading pests and diseases to poor global distribution of concentrated regional food wealth. That the conversion of vegetatively diverse farmland into monochromatic fields was popularized at the same time as the arrival of colour field paintings like Barnett Newman...
Kleinert, Hagen
2016-01-01
This is an introductory book on elementary particles and their interactions. It starts out with many-body Schrödinger theory and second quantization and leads, via its generalization, to relativistic fields of various spins and to gravity. The text begins with the best known quantum field theory so far, the quantum electrodynamics of photon and electrons (QED). It continues by developing the theory of strong interactions between the elementary constituents of matter (quarks). This is possible due to the property called asymptotic freedom. On the way one has to tackle the problem of removing various infinities by renormalization. The divergent sums of infinitely many diagrams are performed with the renormalization group or by variational perturbation theory (VPT). The latter is an outcome of the Feynman-Kleinert variational approach to path integrals discussed in two earlier books of the author, one representing a comprehensive treatise on path integrals, the other dealing with critial phenomena. Unlike ordin...
Eringen, A Cemal
1999-01-01
Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...
Zeidler, Eberhard
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...
1983-01-01
There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water
2016-04-29
RGB colors to the standard sRGB to allow spectrally consistent colors on monitors for viewing . Finally, the images from each sensor are corrected based ...on the exposure time used and the calibrated sensitivity of each image sensor, again based on the flat field calibration, to allow viewing of imagery...prediction is scaled based on available bandwidth and the computational resources of the cluster. In addition to the interface described in the
Phase Field Fracture Mechanics.
Energy Technology Data Exchange (ETDEWEB)
Robertson, Brett Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-11-01
For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.
Energy Technology Data Exchange (ETDEWEB)
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.
1992-03-01
The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.
Energy Technology Data Exchange (ETDEWEB)
Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.
1992-03-01
The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.
Securing Near Field Communication
Kortvedt, Henning Siitonen
2009-01-01
Near Field Communication (NFC) specifies a standard for a wireless communication protocol enabling data transfer by keeping two devices close together, about 10 cm maximum. NFC is designed for integration with mobile phones, which can communicate with other NFC phones (peer-to-peer) or read information on tags and cards (reader). An NFC device can also be put in card emulation mode, to offer compatibility with other contactless smart card standards. This enables NFC devices to replace traditi...
David, Jiří; Heger, Milan; Vrožina, Milan; Válek, Ladislav
2010-01-01
Visualization of production data and information based on on-line data acquisition from production process represents at present an integral part of visualization management in many industrial lines. In this paper we described principles and possibilities of software application for visualization of data fields created on department of automation and computer technology in metallurgy, VˇSB-TU Ostrava. The application is demonstrated on a visualization of abrasion of crystallizer o...
Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.
2017-04-01
Selective field ionization is an important experimental technique used to study the state distribution of Rydberg atoms. This is achieved by applying a steadily increasing electric field, which successively ionizes more tightly bound states. An atom prepared in an energy eigenstate encounters many avoided Stark level crossings on the way to ionization. As it traverses these avoided crossings, its amplitude is split among multiple different states, spreading out the time resolved electron ionization signal. By perturbing the electric field ramp, we can change how the atoms traverse the avoided crossings, and thus alter the shape of the ionization signal. We have used a genetic algorithm to evolve these perturbations in real time in order to arrive at a target ionization signal shape. This process is robust to large fluctuations in experimental conditions. This work was supported by the National Science Foundation under Grants No. 1607335 and No. 1607377 and used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number OCI-1053575.
Unbalanced field RF electron gun
Hofler, Alicia
2013-11-12
A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.
ac transmission line field measurements
Energy Technology Data Exchange (ETDEWEB)
Kotter, F.R.; Misakian, M.
1977-11-01
The concern in recent years over the environmental effects of electric and magnetic fields from high voltage transmission lines has also focused attention on the accuracy of measurements of these fields. Electric field meters are discussed in terms of theory of operation, parameters affecting performance, meter performance under field and laboratory conditions, and calibration procedures. The performance and calibration of magnetic field meters is described. (LCL)
Holographic effective field theories
Energy Technology Data Exchange (ETDEWEB)
Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)
2016-06-28
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
Higgs Effective Field Theories
2016-01-01
The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.
Near field communications handbook
Ahson, Syed A; Furht, Borko
2011-01-01
Near Field Communication, or NFC, is a short-range high frequency wireless communication technology that enables the exchange of data between devices over about a decimeter. The technology is a simple extension of the ISO 14443 proximity-card standard (contact less card, RFID) that combines the interface of a smart card and a reader into a single device with practical implications. A complete reference for NFC, this handbook provides technical information about all aspects of NFC, as well as applications. It covers basic concepts as well as research grade material and includes a discussion of
DEFF Research Database (Denmark)
Larsen, Anna Folke; Lilleør, Helene Bie
2014-01-01
We estimate the impact of a Farmer Field School intervention among small-scale farmers in northern Tanzania on two main development objectives: food security and poverty. We employ a series of evaluation methodologies, including a Quasi-Difference-in-Difference setup, to account for potential...... selection into the project, despite lack of baseline data. We find strong positive effects on food security, but no effect on poverty. Investigating possible mechanisms for this result shows that reallocation of labor resources toward own agricultural production and improved production smoothing may have...... led to improved food security while poverty remained unaffected....
Artin, Emil
2009-01-01
This classic book, originally published in 1968, is based on notes of a year-long seminar the authors ran at Princeton University. The primary goal of the book was to give a rather complete presentation of algebraic aspects of global class field theory, and the authors accomplished this goal spectacularly: for more than 40 years since its first publication, the book has served as an ultimate source for many generations of mathematicians. In this revised edition, two mathematical additions complementing the exposition in the original text are made. The new edition also contains several new foot
Damgaard, P H; Sollacher, R
1993-01-01
A gauge-symmetric approach to effective Lagrangians is described with special emphasis on derivations of effective low-energy Lagrangians from QCD. The examples we discuss are based on exact rewritings of cut-off QCD in terms of new collective degrees of freedom. These cut-off Lagrangians are thus ``effective'' in the sense that they explicitly contain some of the physical long-distance degrees of freedom from the outset.(Talk presented by P.H. Damgaard at the workshop on ``Quantum Field Theoretical Methods in High Energy Physics'', Kyffhauser, Germany, Sept. 1993. To appear in those proceedings).
A new length scale for quantum gravity: A resolution of the black hole information loss paradox
Singh, Tejinder P.
We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.
Accelerated orbits in black hole fields: the static case
Bini, Donato; Geralico, Andrea
2014-01-01
We study non-geodesic orbits of test particles endowed with a structure, assuming the Schwarzschild spacetime as background. We develop a formalism which allows one to recognize the geometrical characterization of those orbits in terms of their Frenet-Serret parameters and apply it to explicit cases as those of spatially circular orbits which witness the equilibrium under conflicting types of interactions. In our general analysis we solve the equations of motion offering a detailed picture of the dynamics having in mind a check with a possible astronomical set up. We focus on certain ambiguities which plague the interpretation of the measurements preventing one from identifying the particular structure carried by the particle.
Russell, C. T.
1979-01-01
The paper presents an overview of the Martian magnetic field measurements and the criticisms made of them. The measurements of the Mars 2, 3, and 5 spacecraft were interpreted by Dolginov et al. (1976, 1978) to be consistent with an intrinsic planetary magnetic moment of 2.5 times 10 to the 22nd power gauss cu cm, basing this result on the apparent size of the obstacle responsible for deflecting the solar wind and an apparent encounter of the spacecraft with the planetary field. It is shown that if the dependence of the Martian magnetic moment on the rotation rate was linear, the estimate of the moment would be far larger than reported by Dolginov et al. An upper limit of 250 km is calculated for the dynamo radius using the similarity law, compared with 500 km obtained by Dolginov et al. It is concluded that the possible strength of a Martian dynamo is below expectations, and it is likely that the Mars dynamo is not presently operative.
Karma, Alain
The phase-field method is a powerful simulation tool to describe xxx the complex evolution of interfaces in a wide range of contexts without explicitly tracking these interfaces. Its main application to date has been to problems in materials science where the evolution of interfaces and defects in the interior or on the surface of a material has a profound impact on its behavior [8]. A partial list of applications to date in this general area includes alloy solidification [5], where models combine elements of the first phase-field models of the solidification of pure materials [9, 32] and the Cahn-Hilliard equation (7), solid-state precipitation [66], stress-driven interfacial instabilities [29, 41, 58], microstructural evolution in polycrystalline materials [17, 31, 36, 60], crystal nucleation [16], surface growth [13, 25, 44], thin film patterning [34], ferroelectric materials [57], dislocation dynamics [22, 49, 52, 55], and fracture [3, 11, 27, 56]. Interface tracking is avoided by making interfaces spatially diffuse with the help of order parameters that vary smoothly in space. Evolution equations for these order parameters are derived variationally from a Lyapounov functional that represents the total free-energy of the system. This theoretical construct provides great flexibility to model simultaneously various physical processes on different length and time scales within a single self-consistent set of coupled partial differential equations.
Koukal, J.; Srba, J.; Gorková, S.
2015-01-01
We have been introducing a low-cost CCTV video system for faint meteor monitoring and here we describe the first results from 5 months of two-station operations. Our system called NFC (Narrow Field Camera) with a meteor limiting magnitude around +6.5mag allows research on trajectories of less massive meteoroids within individual parent meteor showers and the sporadic background. At present 4 stations (2 pairs with coordinated fields of view) of NFC system are operated in the frame of CEMeNt (Central European Meteor Network). The heart of each NFC station is a sensitive CCTV camera Watec 902 H2 and a fast cinematographic lens Meopta Meostigmat 1/50 - 52.5 mm (50 mm focal length and fixed aperture f/1.0). In this paper we present the first results based on 1595 individual meteors, 368 of which were recorded from two stations simultaneously. This data set allows the first empirical verification of theoretical assumptions for NFC system capabilities (stellar and meteor magnitude limit, meteor apparent brightness distribution and accuracy of single station measurements) and the first low mass meteoroid trajectory calculations. Our experimental data clearly showed the capabilities of the proposed system for low mass meteor registration and for calculations based on NFC data to lead to a significant refinement in the orbital elements for low mass meteoroids.
The Heliospheric Magnetic Field
Directory of Open Access Journals (Sweden)
Mathew J. Owens
2013-11-01
Full Text Available The heliospheric magnetic field (HMF is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.
DEFF Research Database (Denmark)
Barinaga, Ester
of 2012, the organisation had successfully carried eight community murals in the Swedish capital alone. Expansion to Sweden’s southern city of Malmö proved more difficult though. Initially hopeful by the adamant support from the City of Malmö’s Administration, FiC did not realise that it had been co...... of the non-profit. The analysis shows that the structure of the collaborating fields is particular to each context (the city of Malmö in this case) and thus, FiC:s expansion to Malmö is a reminder of the importance of understanding contextual forces and interests for expanding social initiatives to new urban......-opted by the field of City Management into addressing a social problem for which it did not have the resources nor the knowledge and which was beyond its original mission. Taking FiC’s efforts as the starting point, the essay paper the potential risky life of social initiativesexpanding to different cities. It uses...
Energy Technology Data Exchange (ETDEWEB)
Weisskopf, Martin C.; /NASA, Marshall; Aldcroft, Thomas L.; /Harvard-Smithsonian Ctr. Astrophys.; Cameron, Robert A.; /Harvard-Smithsonian Ctr. Astrophys. /SLAC; Gandhi,; Foellmi, Cedric; /European Southern Obs., Chile; Elsner, Ronald F.; /NASA, Marshall; Patel, Sandeep K.; /USRA, Huntsville; Wu, Kinwah; /Mullard Space Sci. Lab.; O' Dell, Stephen; /NASA, Marshall
2005-09-09
Before the official first-light images, the Chandra X-ray Observatory obtained an X-ray image of the field to which its focal plane was first exposed. We describe this historic observation and report our study of the first Chandra field. Chandra's Advanced CCD Imaging Spectrometer (ACIS) detected 15 X-ray sources, the brightest being dubbed ''Leon X-1'' to honor the Chandra Telescope Scientist, Leon Van Speybroeck. Based upon our analysis of the X-ray data and spectroscopy at the European Southern Observatory (ESO; La Silla, Chile), we find that Leon X-1 is a Type-1 (unobscured) active galactic nucleus (AGN) at a redshift z = 0.3207. Leon X-1 exhibits strong Fe II emission and a broad-line Balmer decrement that is unusually flat for an AGN. Within the context of the Eigenvector-1 correlation space, these properties suggest that Leon X-1 may be a massive ({ge} 10{sup 9} M{sub {circle_dot}}) black hole, accreting at a rate approaching its Eddington limit.
Measurement of radiofrequency fields
Energy Technology Data Exchange (ETDEWEB)
Leonowich, J.A.
1992-05-01
We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs.
Electromagnetic fields in biological systems
Lin, James C
2016-01-01
As wireless technology becomes more sophisticated and accessible to more users, the interactions of electromagnetic fields with biological systems have captured the interest not only of the scientific community but also the general public. Unintended or deleterious biological effects of electromagnetic fields and radiation may indicate grounds for health and safety precautions in their use. Spanning static fields to terahertz waves, Electromagnetic Fields in Biological Systems explores the range of consequences these fields have on the human body. With contributions by an array of experts, topics discussed include: Essential interactions and field coupling phenomena, highlighting their importance in research on biological effects and in scientific, industrial, and medical applications Electric field interactions in cells, focusing on ultrashort, pulsed high-intensity fields The effect of exposure to naturally occurring and human-made static, low-frequency, and pulsed magnetic fields in biological systems Dosi...
Magnetic fields in diffuse media
Pino, Elisabete; Melioli, Claudio
2015-01-01
This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
The Emerging Strategic Entrepreneurship Field
DEFF Research Database (Denmark)
Foss, Nicolai Juul; Lyngsie, Jacob
The field of strategic entrepreneurship is a fairly recent one. Its central idea is that opportunity-seeking and advantage-seeking — the former the central subject of the entrepreneurship field, the latter the central subject of the strategic management field — are processes that need to be consi......The field of strategic entrepreneurship is a fairly recent one. Its central idea is that opportunity-seeking and advantage-seeking — the former the central subject of the entrepreneurship field, the latter the central subject of the strategic management field — are processes that need...
Magnetic Fields And Star Formation
Zhang, Qizhou
2017-10-01
Magnetic fields can have a significant effect on the formation and evolution of molecular clouds and the formation of stars. The presence of strong magnetic fields restricts the motion of gas along the magnetic field lines. Therefore, it resists gravitational collapse, hinders mass accretion and suppresses fragmentation. While magnetic fields are an integral part of modern theory of interstellar medium and star formation, their direct measurements have been challenging. In this talk, I'll review recent progress on the observational front of magnetic fields. The emphasis will be on linear polarization of interstellar dust to probe the plane of sky component of magnetic fields.
A general field-covariant formulation of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy)
2013-03-15
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
CERN. Geneva; CERN. Geneva
2001-01-01
Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.
Fleming, J.G.; Smith, B.K.
1995-10-10
A method is disclosed for providing a field emitter with an asymmetrical emitter structure having a very sharp tip in close proximity to its gate. One preferred embodiment of the present invention includes an asymmetrical emitter and a gate. The emitter having a tip and a side is coupled to a substrate. The gate is connected to a step in the substrate. The step has a top surface and a side wall that is substantially parallel to the side of the emitter. The tip of the emitter is in close proximity to the gate. The emitter is at an emitter potential, and the gate is at a gate potential such that with the two potentials at appropriate values, electrons are emitted from the emitter. In one embodiment, the gate is separated from the emitter by an oxide layer, and the emitter is etched anisotropically to form its tip and its asymmetrical structure. 17 figs.
2008-01-01
Since the invention of the laser in the 1960s, people have strived to reach higher intensities and shorter pulse durations. High intensities and ultrashort pulse durations are intimately related. Recent developments have shown that high intensity lasers also open the way to realize pulses with the shortest durations to date, giving birth to the field of attosecond science (1 asec = 10-18s). This book is about high-intensity lasers and their applications. The goal is to give an up to date introduction to the technology behind these laser systems and to the broad range of intense laser applications. These applications include AMO (atomic molecular and optical) physics, x-ray science, attosecond science, plasma physics and particle acceleration, condensed matter science and laser micromachining, and finally even high-energy physics.
Towards high efficiency heliostat fields
Arbes, Florian; Wöhrbach, Markus; Gebreiter, Daniel; Weinrebe, Gerhard
2017-06-01
CSP power plants have great potential to substantially contribute to world energy supply. To set this free, cost reductions are required for future projects. Heliostat field layout optimization offers a great opportunity to improve field efficiency. Field efficiency primarily depends on the positions of the heliostats around the tower, commonly known as the heliostat field layout. Heliostat shape also influences efficiency. Improvements to optical efficiency results in electricity cost reduction without adding any extra technical complexity. Due to computational challenges heliostat fields are often arranged in patterns. The mathematical models of the radial staggered or spiral patterns are based on two parameters and thus lead to uniform patterns. Optical efficiencies of a heliostat field do not change uniformly with the distance to the tower, they even differ in the northern and southern field. A fixed pattern is not optimal in many parts of the heliostat field, especially when used as large scaled heliostat field. In this paper, two methods are described which allow to modify field density suitable to inconsistent field efficiencies. A new software for large scale heliostat field evaluation is presented, it allows for fast optimizations of several parameters for pattern modification routines. It was used to design a heliostat field with 23,000 heliostats, which is currently planned for a site in South Africa.
Field Theory for Multiple Integrals
Zelikin, M.
2009-01-01
New constructions in the theory of fields for multiple integrals are designed. Generalizations of the Legendre - Weyl - Caratheodory transforms and corresponding invariant integrals are introduced and explored. Connection and curvature of bundles induced by a field of extremals are calculated.
Geomagnetic Field During a Reversal
Heirtzler, J. R.
2003-01-01
It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.
Alados-Arboledas, L.; Veleta2002 Team
2003-04-01
Depletion of the Earth's ozone layer is considered responsible of an increase in the solar ultraviolet irradiance incoming at surface level (WMO, 1998). For this reason, it is important to know the amount of ultraviolet radiation received by plants and animal organisms to evaluate the potential impact of increased UV radiation on biological systems. During recent years several studies has investigated the differences in UV radiation between places located at different altitude. Depending on the choice of the experimental area altitudinal gradients in erythemal UV have been reported ranging from 0.08 to 0.40 at different regions. Rather high altitudinal gradients were obtained when the studies have been undertaken at sites with important tropospheric pollution or when snow cover was present in the high-level sites. In this sense, it seems of interest to study these altitudinal gradients including comprehensive observations of the environmental conditions relevant to the incoming UV irradiance in order to separate the different contributions to this altitudinal effect. This paper presents the field campaign VELETA2002 (eValuation of the Effects of eLevation and aErosols on the ultravioleT rAdiation), developed during the month of July 2002 in the area of Sierra Nevada (Spain). This field campaign was designed to obtain experimental data on elevation and atmospheric aerosol effects on the solar ultraviolet irradiance. For this purpose a set of radiometers and spectroradiometers has been installed at both slopes of Sierra Nevada Massif, from coastal to inland locations. The field stations include Motril, a coastal location at sea level, Pitres (1200 m a.s.l.) located in the South slope of Sierra Nevada Massif, the Veleta Peak (3398 m a.s.l.), Las Sabinas (2200 m a.s.l.) located on the north slope of the mountain range and Armilla (680 m a.s.l.) located in the valley. The principal feature of the locations is that they provide a strong altitudinal gradient considering
Low field magnetic resonance imaging
Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.
2010-07-13
A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.
Magnetic Field Topology in Jets
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
The field of Participatory Design
DEFF Research Database (Denmark)
Törpel, Bettina
2007-01-01
In this chapter, the field of Participatory Design is introduced, including the description of a number of its specific approaches. After an introduction in some of the issues in Participatory Design, approaches within the field of Participatory Design and relevant for the field of Participatory...... Design are outlined....
Characteristic of Rings. Prime Fields
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2015-12-01
Full Text Available The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.
Digestible quantum field theory
Smilga, Andrei
2017-01-01
This book gives an intermediate level treatment of quantum field theory, appropriate to a reader with a first degree in physics and a working knowledge of special relativity and quantum mechanics. It aims to give the reader some understanding of what QFT is all about, without delving deep into actual calculations of Feynman diagrams or similar. The author serves up a seven‐course menu, which begins with a brief introductory Aperitif. This is followed by the Hors d'oeuvres, which set the scene with a broad survey of the Universe, its theoretical description, and how the ideas of QFT developed during the last century. In the next course, the Art of Cooking, the author recaps on some basic facts of analytical mechanics, relativity, quantum mechanics and also presents some nutritious “extras” in mathematics (group theory at the elementary level) and in physics (theory of scattering). After these preparations, the reader should have a good appetite for the Entrées ‐ the central par t of the book where the...
Energy Technology Data Exchange (ETDEWEB)
Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C
2005-02-09
This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.
Airborne field strength monitoring
Bredemeyer, J.; Kleine-Ostmann, T.; Schrader, T.; Münter, K.; Ritter, J.
2007-06-01
In civil and military aviation, ground based navigation aids (NAVAIDS) are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS) increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR) is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000) by the International Civil Aviation Organization (ICAO). One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz), the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA) accelerated method of moments (MoM) using a complex geometric model of the aircraft. First results will be presented in this paper.
Megagauss Fields During Milliseconds
Energy Technology Data Exchange (ETDEWEB)
Campbell, L.J.; Embury, D.; Han, K.; Parkin, D.M.; Baca, A.; Kihara, K.H.; Sims, J.R.; Boebinger, G.S.; Eyssa, Y.; Lesch, B.; Li, L.; Schillig, J.B.; Schneider-Muntau, H.; Walsh, R.
1998-10-18
A non-destructive, one megagauss magnet is now being designed in cooperation between Los Alamos and the National High Magnetic Field Laboratory (NHMFL) through joint funding by the US Department of Energy and the US NSF. The design combines two types of pulsed magnet now in use at the NHMFL: a capacitor-driven 'insert' magnet with a total pulse width of order 10 ms and a much larger 'outsert' magnet with a total pulse width of order 2 seconds that is driven by a controlled power source. The insert and outsert produce approximately 1/2 megagauss each. Although the design uses CuAg as the principal conductor further design efforts and materials development are exploring CuNb and stainless steel-clad copper as possible future alternatives. A crucial innovation was to employ wound steel strip (sheet) as a reinforcement in both insert and outsert coils. This gives extra strength due to the higher degree of cold-work possible in strip materials. For this leading edge magnet a key role is played by materials development. A major component, the 7 module 560 MVA controlled dc power supply required for the outsert, has been installed and commissioned.
Directory of Open Access Journals (Sweden)
Yuan Lin
2010-01-01
Full Text Available Multihop communication objectives and constraints impose a set of challenging requirements that create difficult conditions for simultaneous optimization of features such as scalability and performance. Routing in wireless multihop networks represents a crucial component of the overall network efficacy because it is a lower layer that enables the actual functionality of networks. We have developed field division routing (FDR, a distributed and nonhierarchical routing protocol that aims to coordinated addressing of scalability, topology alternations, latency, throughput, energy efficiency, and local storage requirements. FDR is based upon two optimization mechanisms: a reactive and focused diffusion that collects only network topology information directly required for making localized routing decisions, and a protocol for sharing routing information among neighboring nodes. Routing table initialization and maintenance are scalable in terms of both storage and overhead traffic necessary for building routing tables. FDR provides guaranteed connectivity while providing near-optimal all-node-pairs message delivery. The protocol is also power-efficient to a wide spectrum of topology changes that induce relatively few messages to update routing tables network-wide. We analyzed the new routing protocol both theoretically and using simulation.
Studies in quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Bender, C.M.; Mandula, J.E.; Shrauner, J.E.
1982-03-05
Washington University is currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large orders; quark condensation in QCD; chiral symmetry breaking; the l/N expansion in quantum field theory; effective potential and action in quantum field theories, including QCD.
Field practice internship final report
Energy Technology Data Exchange (ETDEWEB)
Foster, T.
1994-05-01
This field practice internship final report gives an overview of the field practice, which was completed at the Oak Ridge Y-12 Plant, Martin Marietta Energy Systems, Inc., Environmental Management Department, Oak Ridge, Tennessee. The field practice focused on the completion of the Superfund Amendments and Reauthorization Act (SARA) Title III, Emergency Planning and Community Right-to-Know Act Section 312, Tier II Report. The field practice internship was conducted on a full-time basis between December 13, 1993 through February 18, 1994. Sheila Poligone, Emergency Planning and Community Right-to-Know Act (EPCRA) Coordinator served as the field practice preceptor.
Directory of Open Access Journals (Sweden)
Tiago Barreiro
2017-10-01
Full Text Available Screening mechanisms for a three-form field around a dense source such as the Sun are investigated. Working with the dual vector, we can obtain a thin-shell where field interactions are short range. The field outside the source adopts the configuration of a dipole which is a manifestly distinct behaviour from the one obtained with a scalar field or even a previously proposed vector field model. We identify the region of parameter space where this model satisfies present solar system tests.
Logarithmic conformal field theory
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Neural fields theory and applications
Graben, Peter; Potthast, Roland; Wright, James
2014-01-01
With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...
Chameleons with Field Dependent Couplings
Brax, Philippe; Mota, David F; Nunes, Nelson J; Winther, Hans A
2010-01-01
Certain scalar-tensor theories exhibit the so-called chameleon mechanism, whereby observational signatures of scalar fields are hidden by a combination of self-interactions and interactions with ambient matter. Not all scalar-tensor theories exhibit such a chameleon mechanism, which has been originally found in models with inverse power run-away potentials and field independent couplings to matter. In this paper we investigate field-theories with field-dependent couplings and a power-law potential for the scalar field. We show that the theory indeed is a chameleon field theory. We find the thin-shell solution for a spherical body and investigate the consequences for E\\"ot-Wash experiments, fifth-force searches and Casimir force experiments. Requiring that the scalar-field evades gravitational tests, we find that the coupling is sensitive to a mass-scale which is of order of the Hubble scale today.
On Conformal Vector Fields Parallel to The Observer Field
Dirmeier, Alexander; Plaue, Matthias; Scherfner, Mike
2008-01-01
We review a theorem by Hasse and Perlick establishing a result characterizing parallax-free cosmological models via three equivalent properties -- namely the existence of a redshift potential, the existence of a conformal vector field parallel to the observer field, and the vanishing of the shear of the observer field together with some integrability condition. We are able to provide a simplified proof using Noether's theorem to calculate a conserved quantity along lightlike geodesics that is...
The Swarm Initial Field Model for the 2014 geomagnetic field
DEFF Research Database (Denmark)
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent
2015-01-01
Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites......, explicit advantage is taken of the constellation aspect by including East-West magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the North-South gradient. The SIFM static field shows excellent...
Mercury's Internal Magnetic Field: Modeling Core Fields with Smooth Inversions
Uno, H.; Johnson, C. L.; Anderson, B. J.; Korth, H.; Purucker, M. E.; Solomon, S. C.
2008-12-01
MESSENGER's second flyby (M2) of Mercury on 6 October 2008 will provide significantly improved geographical sampling of the planet's internal magnetic field over previous measurements. Latitudinal coverage and spacecraft altitudes will be similar to those during MESSENGER's first encounter (M1), but the spacecraft trajectory will be displaced by about 180° in longitude, yielding the first magnetic measurements in the western hemisphere. We investigate spatial structure in Mercury's internal magnetic field by applying methods from inverse theory to construct low-degree-and-order spherical harmonic models. External fields predicted by a parameterized magnetospheric model are subtracted from the vector field observations. The approach takes into account noise contributions from long-wavelength uncertainties in the external field models, unexplained short-wavelength features, and spacecraft attitude errors. We investigate the effect of different regularization (smoothness) constraints on our inversions. Analyses of data from M1 and the two Mariner 10 flybys that penetrated the magnetosphere yield a preferred spherical harmonic solution to degree and order eight with the centered, axial dipole term g10 dominating. The model shows structure at low and mid-latitude regions near the flybys. Terms predicted by an analytical model for long- wavelength crustal fields - namely g10, g30 and g32 - are present, but their relative amplitudes are not consistent with such a field. We conclude that structure in our models is dominated by core, rather than by crustal, fields. We also investigate, through simulations, field morphologies that are recoverable while the spacecraft is in orbit about Mercury, under the assumption that the long-wavelength contributions from external sources can be accurately modeled and removed. Although the elliptical orbit of MESSENGER will impede the recovery of southern hemisphere structure, we obtain excellent recovery of the dipole field and of
DEFF Research Database (Denmark)
Forsberg, René; Sideris, M.G.; Shum, C.K.
2005-01-01
The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...
Acoustic field modulation in regenerators
Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.
2016-12-01
The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.
Defining the Polar Field Reversal
Upton, Lisa; Hathaway, David H.
2013-01-01
The polar fields on the Sun are directly related to solar cycle variability. Recently there has been interest in studying an important characteristic of the polar fields: the timing of the polar field reversals. However this characteristic has been poorly defined, mostly due to the limitations of early observations. In the past, the reversals have been calculated by averaging the flux above some latitude (i.e. 55deg or 75deg). Alternatively, the reversal could be defined by the time in which the previous polarity is completely canceled and replaced by the new polarity at 90de, precisely at the pole. We will use a surface flux transport model to illustrate the differences in the timing of the polar field reversal based on each of these definitions and propose standardization in the definition of the polar field reversal. The ability to predict the timing of the polar field reversal using a surface flux transport model will also be discussed.
Field Effect Transistor in Nanoscale
2017-04-26
AFRL-AFOSR-JP-TR-2017-0034 Field Effect Transistor in Nanoscale Swapan Pati JAWAHARLAL NEHRU CENTRE FOR ADVANCED SCIENTIFIC RESEARCH Final Report 04...Final 3. DATES COVERED (From - To) 28 Sep 2015 to 27 Sep 2016 4. TITLE AND SUBTITLE Field Effect Transistor in Nanoscale 5a. CONTRACT NUMBER 5b...significant alteration in transport behaviour of these molecular junctions. 15. SUBJECT TERMS Theory, Nanoscale, Field Effect Transistor (FET), Devices
Galilean equations for massless fields
Niederle, J.; Nikitin, A. G.
2008-01-01
Galilei-invariant equations for massless fields are obtained via contractions of relativistic wave equations. It is shown that the collection of non-equivalent Galilei-invariant wave equations for massless fields with spin equal 1 and 0 is very reach and corresponds to various contractions of the representations of the Lorentz group to those of the Galilei one. It describes many physically consistent systems, e.g., those of electromagnetic fields in various media or Galilean Chern-Simon model...
Directory of Open Access Journals (Sweden)
A. A. Savchenkov
2014-12-01
Full Text Available We report on both theoretical and experimental studies of a photonic implementation of the electric (E- field sensor using a probe made with all-dielectric RF-transparent elements. The geometrical dimensions of the electric field probe can be smaller than the wavelength of the measured electromagnetic field in the material. Our theoretical calculations show that the sensor allows detecting electric fields in a broad frequency range (100 Hz-20 GHz with sensitivity better than 1 μV/[Hz1/2 m]. We demonstrate the sensor operating at X-band and validate the theoretical predictions.
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
The arrangement field theory (AFT)
Marin, Diego
2012-01-01
We introduce the concept of "non-ordered space-time" and formulate a quaternionic field theory over such generalized non-ordered space. The imposition of an order over a non-ordered space appears to spontaneously generate gravity, which is revealed as a fictitious force. The same process gives rise to gauge fields that are compatible with those of Standard Model. We suggest a common origin for gravity and gauge fields from a unique entity called "arrangement matrix" (M) and propose to quantize all fields by quantizing $M$. Finally we give a proposal for the explanation of black hole entropy and area law inside this paradigm.
Quantum Field of Nonstationary Polaron
Khrustalev, O. A.; Tchitchikina, M. V.; Spirina, E. Yu.
2001-04-01
Polaron problem is considered. Bogoliubov group variables for the space-time translations group are defined. The scheme of secondary quantization for the scalar field interacting with charged quantum field is proposed. Scalar field is assumes to have nonzero classical component. Polaron is treated as a result of interaction of charged particle and neutral field classical component. The system state space is constructed. Expressions for integrals of motion in zero-point order with respect to inverted powers of coupling constant are given as a derivatives with respect to symmetry group generators.
Galilean equations for massless fields
Energy Technology Data Exchange (ETDEWEB)
Niederle, J [Institute of Physics of the Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Nikitin, A G [Institute of Mathematics, National Academy of Sciences of Ukraine, 3 Tereshchenkivs' ka Street, Kyiv-4, Ukraine, 01601 (Ukraine)], E-mail: niederle@fzu.cz, E-mail: nikitin@imath.kiev.ua
2009-03-13
Galilei-invariant equations for massless fields are obtained via contractions of relativistic wave equations. It is shown that the collection of non-equivalent Galilei-invariant wave equations for massless fields with spin equal to 1 and 0 is very rich and corresponds to various contractions of the representations of the Lorentz group to those of the Galilei ones. It describes many physically consistent systems, e.g., those of electromagnetic fields in various media or Galilean Chern-Simons models. Finally, classification of all linear and a big group of nonlinear Galilei-invariant equations for massless fields is presented.
Multiple fields in stochastic inflation
Energy Technology Data Exchange (ETDEWEB)
Assadullahi, Hooshyar [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Firouzjahi, Hassan [School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Noorbala, Mahdiyar [Department of Physics, University of Tehran,P.O. Box 14395-547, Tehran (Iran, Islamic Republic of); School of Astronomy, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Vennin, Vincent; Wands, David [Institute of Cosmology & Gravitation, University of Portsmouth,Dennis Sciama Building, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom)
2016-06-24
Stochastic effects in multi-field inflationary scenarios are investigated. A hierarchy of diffusion equations is derived, the solutions of which yield moments of the numbers of inflationary e-folds. Solving the resulting partial differential equations in multi-dimensional field space is more challenging than the single-field case. A few tractable examples are discussed, which show that the number of fields is, in general, a critical parameter. When more than two fields are present for instance, the probability to explore arbitrarily large-field regions of the potential, otherwise inaccessible to single-field dynamics, becomes non-zero. In some configurations, this gives rise to an infinite mean number of e-folds, regardless of the initial conditions. Another difference with respect to single-field scenarios is that multi-field stochastic effects can be large even at sub-Planckian energy. This opens interesting new possibilities for probing quantum effects in inflationary dynamics, since the moments of the numbers of e-folds can be used to calculate the distribution of primordial density perturbations in the stochastic-δN formalism.
The Nonlinear Field Space Theory
Energy Technology Data Exchange (ETDEWEB)
Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)
2016-08-10
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
The Nonlinear Field Space Theory
Directory of Open Access Journals (Sweden)
Jakub Mielczarek
2016-08-01
Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.
How to use finite fields for problems concerning infinite fields
Serre, Jean-Pierre
2009-01-01
The first part is expository: it explains how finite fields may be used to prove theorems on infinite fields by a reduction mod p process. The second part gives a variant of P.Smith's fixed point theorem which applies in any characteristic.
Towers of Function Fields over Non-prime Finite Fields
DEFF Research Database (Denmark)
Bassa, Alp; Beelen, Peter; Garcia, Arnaldo
2015-01-01
Over all non-prime finite fields, we construct some recursive towers of function fields with many rational places. Thus we obtain a substantial improvement on all known lower bounds for Ihara’s quantity A(ℓ), for ℓ = pn with p prime and n > 3 odd. We relate the explicit equations to Drinfeld modu...
Magnetic response to applied electrostatic field in external magnetic field
Energy Technology Data Exchange (ETDEWEB)
Adorno, T.C. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); University of Florida, Department of Physics, Gainesville, FL (United States); Gitman, D.M. [Universidade de Sao Paulo, Instituto de Fisica, Caixa Postal 66318, Sao Paulo, SP (Brazil); Tomsk State University, Department of Physics, Tomsk (Russian Federation); Shabad, A.E. [P. N. Lebedev Physics Institute, Moscow (Russian Federation)
2014-04-15
We show, within QED and other possible nonlinear theories, that a static charge localized in a finite domain of space becomes a magnetic dipole, if it is placed in an external (constant and homogeneous) magnetic field in the vacuum. The magnetic moment is quadratic in the charge, depends on its size and is parallel to the external field, provided the charge distribution is at least cylindrically symmetric. This magneto-electric effect is a nonlinear response of the magnetized vacuum to an applied electrostatic field. Referring to the simple example of a spherically symmetric applied field, the nonlinearly induced current and its magnetic field are found explicitly throughout the space; the pattern of the lines of force is depicted, both inside and outside the charge, which resembles that of a standard solenoid of classical magnetostatics. (orig.)
Superconductivity in Strong Magnetic Field (Greater Than Upper Critical Field)
Energy Technology Data Exchange (ETDEWEB)
Tessema, G.X.; Gamble, B.K.; Skove, M.J.; Lacerda, A.H.; Mielke, C.H.
1998-08-22
The National High Magnetic Field Laboratory, funded by the National Science Foundation and other US federal Agencies, has in recent years built a wide range of magnetic fields, DC 25 to 35 Tesla, short pulse 50 - 60 Tesla, and quasi-continuous 60 Tesla. Future plans are to push the frontiers to 45 Tesla DC and 70 to 100 Tesla pulse. This user facility, is open for national and international users, and creates an excellent tool for materials research (metals, semiconductors, superconductors, biological systems ..., etc). Here we present results of a systematic study of the upper critical field of a novel superconducting material which is considered a promising candidate for the search for superconductivity beyond H{sub c2} as proposed by several new theories. These theories predict that superconductors with low carrier density can reenter the superconducting phase beyond the conventional upper critical field H{sub c2}. This negates the conventional thinking that superconductivity and magnetic fields are antagonistic.
The MAVEN Magnetic Field Investigation
Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.
2014-01-01
The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.
Nakamura, Nozomu; Yamasaki, Kazuhito
2016-12-01
We consider the relationship between the magnetic field and the non-elastic displacement field including defects, from the viewpoints of non-commutativity of the positions and non-commutativity of the derivatives. The former non-commutativity is related to the magnetic field by Feynman's proof (1948), and the latter is related to the defect fields by the continuum theory of defects. We introduce the concept of differential geometry to the non-elastic displacement field and derive an extended relation that includes basic equations, such as Gauss's law for magnetism and the conservation law for dislocation density. The relation derived in this paper also extends the first Bianchi identity in linear approximation to include the effect of magnetism. These findings suggest that Feynman's approach with a non-elastic displacement field is useful for understanding the relationship between magnetism and non-elastic mechanics.
Classical and Quantum Two-Body Problem in General Relativity
Maheshwari, Amar; Todorov, Ivan
2016-01-01
The two-body problem in general relativity is reduced to the problem of an effective particle (with an energy-dependent relativistic reduced mass) in an external field. The effective potential is evaluated from the Born diagram of the linearized quantum theory of gravity. It reduces to a Schwarzschild-like potential with two different `Schwarzschild radii'. The results derived in a weak field approximation are expected to be relevant for relativistic velocities.
Field-based transformation optics
DEFF Research Database (Denmark)
Novitsky, Andrey
2011-01-01
Instead of common definition of the transformation-optics devices via the coordinate transformation we offer the approach founded on boundary conditions for the fields. We demonstrate the effectiveness of the approach by two examples: two-shell cloak and concentrator of electric field. We believe...
Weed Identification Field Training Demonstrations.
Murdock, Edward C.; And Others
1986-01-01
Reviews efforts undertaken in weed identification field training sessions for agriprofessionals in South Carolina. Data over a four year period (1980-1983) revealed that participants showed significant improvement in their ability to identify weeds. Reaffirms the value of the field demonstration technique. (ML)
Broken symmetries in field theory
Kok, Mark Okker de
2008-01-01
The thesis discusses the role of symmetries in Quantum Field Theory. Quantum Field Theory is the mathematical framework to describe the physics of elementary particles. A symmetry here means a transformation under which the model at hand is invariant. Three types of symmetry are distinguished: 1.
Abou-Hamad, Edy
2011-09-01
Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.
Field Research and Evaluation Technology
Ianni, Francis A. J.
1977-01-01
Discusses the utility of field research techniques for the evaluation of educational programs in general and the Minneapolis South East Alternatives Program in particular. Examines relationships between theory, field research, and evaluation in education and describes a pattern of relationships that has evaluative utility and provides responsible…
Huang, Ching-Yuan
2003-07-01
The asymptotically flat space-time with scalar fields is studied. It shows that the concepts of Bondi mass, Bondi mass loss, etc., are also applicable to other fields, although they were originally defined by gravity. The generating formulae of Bondi mass loss and angular momentum loss by a dynamics Hamiltonian over a hyperb oloid are given by the linearised theory.
Terahertz near-field microspectroscopy
Knab, J.R.; Adam, A.J.L.; Chakkittakandy, R.; Planken, P.C.M.
2010-01-01
Using near-field, terahertz time-domain spectroscopy (THz-TDS), we investigate how the addition of a dielectric material into a subwavelength-diameter, cylindrical waveguide affects its transmission properties. The THz electric near-field is imaged with deep subwavelength resolution as it emerges
Interdisciplinary in the Information Field
DEFF Research Database (Denmark)
Madsen, Dorte
2012-01-01
Interdisciplinarity and its implications for developing a conceptual framework for the Information Field is discussed, and Zhang & Benjamin’s (2007) paper Understanding Information Related Fields: A Conceptual Framework is examined. It is argued that the fundamental components of a framework must...
Estimation of Motion Vector Fields
DEFF Research Database (Denmark)
Larsen, Rasmus
1993-01-01
This paper presents an approach to the estimation of 2-D motion vector fields from time varying image sequences. We use a piecewise smooth model based on coupled vector/binary Markov random fields. We find the maximum a posteriori solution by simulated annealing. The algorithm generate sample...
Ultrasound fields from triangular apertures
DEFF Research Database (Denmark)
Jensen, Jørgen Arendt
1996-01-01
The pulsed field from a triangular aperture mounted in an infinite, rigidbaffle is calculated. The approach of spatial impulse responses,as developed by Tupholme and Stepanishen, is used. By this both the emitted and received pulsed ultrasound field can be found for any transducerexcitation...
Out-of-equilibrium quantum field dynamics in external fields
Energy Technology Data Exchange (ETDEWEB)
Cao, F.J. [Universidad Complutense de Madrid, Departamento Fisica Atomica, Molecular y Nuclear, Madrid (Spain); LERMA, Observatoire de Paris, Laboratoire Associe au CNRS UMR 8112, Paris (France)
2007-03-15
The quantum dynamics of the symmetry-broken {lambda}({phi} {sup 2}){sup 2} scalar-field theory in the presence of an homogeneous external field is investigated in the large-N limit. We consider an initial thermal state of temperature T for a constant external field J. A subsequent sign flip of the external field, J{yields}-J, gives rise to an out-of-equilibrium nonperturbative quantum field dynamics. We review here the dynamics for the symmetry-broken {lambda}({phi}{sup 2}){sup 2} scalar N component field theory in the large-N limit, with particular stress in the comparison between the results when the initial temperature is zero and when it is finite. The presence of a finite temperature modifies the dynamical effective potential for the expectation value, and also makes that the transition between the two regimes of the early dynamics occurs for lower values of the external field. The two regimes are characterized by the presence or absence of a temporal trapping close to the metastable equilibrium position of the potential. In the cases when the trapping occurs it is shorter for larger initial temperatures. (orig.)
Transducer Field Imaging Using Acoustography
Directory of Open Access Journals (Sweden)
Jaswinder S. Sandhu
2012-01-01
Full Text Available A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically.
Electromagnetic field theories for engineering
Salam, Md Abdus
2014-01-01
A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.
DEFF Research Database (Denmark)
Hovgesen, Henrik Harder; Nielsen, Thomas Alexander Sick
A recent study of transportation and urban structure in a larger Danish city concludes that the location vis-à-vis attractions far beyond the city borders, has a detectable bearing on the inhabitants transport patterns inside the city. This indicates a high degree of functional integration between...... cities and accentuates the concept of the ?urban field? suggested by John Friedmann (1978). The concept of ?urban field? suggest that mobility has been democratizised and increased to a level where several cities can be part of the same functionally integrated urban field. As a consequence...... the significance of the single urban centre and the city as an entity will change markedly. This paper aims to analyse the development towards urban travel- and commuter fields in Denmark. The question asked is to what degree urban fields are emerging? ? And what is the speed of this development....
Cultural Fields, Communication and Ethnicity
DEFF Research Database (Denmark)
Tufte, Thomas
2001-01-01
This article is a cultural analysis conducted in a neighbourhood of Copenhagen, Indre Nørrebro, where approximately 20 percent of the population is of other than Danish ethnic origin. It sheds light on the structural characteristics of two strategic sites, or cultural fields, within which everyda...... these cultural fields play significant roles as social and cultural mediators in the production of locality.......This article is a cultural analysis conducted in a neighbourhood of Copenhagen, Indre Nørrebro, where approximately 20 percent of the population is of other than Danish ethnic origin. It sheds light on the structural characteristics of two strategic sites, or cultural fields, within which everyday...... life and identity formation of ethnic minorities take place. We deliberately explore how ethnicity works or does not work as a marker in the configuration of the two chosen cultural fields: public libraries and ethnic media. We analyse the role of these two cultural fields in the social formation...
Resonant magnetic fields from inflation
Byrnes, Christian T; Jain, Rajeev Kumar; Urban, Federico R
2012-01-01
We propose a novel scenario to generate primordial magnetic fields during inflation induced by an oscillating coupling of the electromagnetic field to the inflaton. This resonant mechanism has two key advantages over previous proposals. First of all, it generates a narrow band of magnetic fields at any required wavelength, thereby allaying the usual problem of a strongly blue spectrum and its associated backreaction. Secondly, it avoids the need for a strong coupling as the coupling is oscillating rather than growing or decaying exponentially. Despite these major advantages, we find that the backreaction is still far too large during inflation if the generated magnetic fields are required to have a strength of ${\\cal O}(10^{-15}\\, \\Gauss)$ today on observationally interesting scales. We provide a more general no-go argument, proving that this problem will apply to any model in which the magnetic fields are generated on subhorizon scales and freeze after horizon crossing.
Plasma production via field ionization
Directory of Open Access Journals (Sweden)
C. L. O’Connell
2006-10-01
Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.
Theory of interacting quantum fields
Rebenko, Alexei L
2012-01-01
This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.
Renormalization and effective field theory
Costello, Kevin
2011-01-01
This book tells mathematicians about an amazing subject invented by physicists and it tells physicists how a master mathematician must proceed in order to understand it. Physicists who know quantum field theory can learn the powerful methodology of mathematical structure, while mathematicians can position themselves to use the magical ideas of quantum field theory in "mathematics" itself. The retelling of the tale mathematically by Kevin Costello is a beautiful tour de force. --Dennis Sullivan This book is quite a remarkable contribution. It should make perturbative quantum field theory accessible to mathematicians. There is a lot of insight in the way the author uses the renormalization group and effective field theory to analyze perturbative renormalization; this may serve as a springboard to a wider use of those topics, hopefully to an eventual nonperturbative understanding. --Edward Witten Quantum field theory has had a profound influence on mathematics, and on geometry in particular. However, the notorio...
Towards a quantum field theory of primitive string fields
Energy Technology Data Exchange (ETDEWEB)
Ruehl, W., E-mail: wue_ruehl@t-online.de [Technical University of Kaiserslautern, Department of Physics (Germany)
2012-10-15
We denote generating functions of massless even higher-spin fields 'primitive string fields' (PSF's). In an introduction we present the necessary definitions and derive propagators and currents of these PDF's on flat space. Their off-shell cubic interaction can be derived after all off-shell cubic interactions of triplets of higher-spin fields have become known. Then we discuss four-point functions of any quartet of PSF's. In subsequent sections we exploit the fact that higher-spin field theories in AdS{sub d+1} are determined by AdS/CFT correspondence from universality classes of critical systems in d-dimensional flat spaces. The O(N) invariant sectors of the O(N) vector models for 1 {<=} N {<=}{infinity} play for us the role of 'standard models', for varying N, they contain, e.g., the Ising model for N = 1 and the spherical model for N = {infinity}. A formula for the masses squared that break gauge symmetry for these O(N) classes is presented for d = 3. For the PSF on AdS space it is shown that it can be derived by lifting the PSF on flat space by a simple kernel which contains the sum over all spins. Finally we use an algorithm to derive all symmetric tensor higher-spin fields. They arise from monomials of scalar fields by derivation and selection of conformal (quasiprimary) fields. Typically one monomial produces a multiplet of spin s conformal higher-spin fields for all s {>=} 4, they are distinguished by their anomalous dimensions (in CFT{sub 3}) or by theirmass (in AdS{sub 4}). We sum over these multiplets and the spins to obtain 'string type fields', one for each such monomial.
Towards a quantum field theory of primitive string fields
Rühl, W.
2012-10-01
We denote generating functions of massless even higher-spin fields "primitive string fields" (PSF's). In an introduction we present the necessary definitions and derive propagators and currents of these PDF's on flat space. Their off-shell cubic interaction can be derived after all off-shell cubic interactions of triplets of higher-spin fields have become known. Then we discuss four-point functions of any quartet of PSF's. In subsequent sections we exploit the fact that higher-spin field theories in AdS d+1 are determined by AdS/CFT correspondence from universality classes of critical systems in d-dimensional flat spaces. The O( N) invariant sectors of the O( N) vector models for 1 ≤ N ≤∞ play for us the role of "standard models", for varying N, they contain, e.g., the Ising model for N = 1 and the spherical model for N = ∞. A formula for the masses squared that break gauge symmetry for these O( N) classes is presented for d = 3. For the PSF on AdS space it is shown that it can be derived by lifting the PSF on flat space by a simple kernel which contains the sum over all spins. Finally we use an algorithm to derive all symmetric tensor higher-spin fields. They arise from monomials of scalar fields by derivation and selection of conformal (quasiprimary) fields. Typically one monomial produces a multiplet of spin s conformal higher-spin fields for all s ≥ 4, they are distinguished by their anomalous dimensions (in CFT 3) or by theirmass (in AdS 4). We sum over these multiplets and the spins to obtain "string type fields", one for each such monomial.
Field Efficiency of Slurry Applications Involving In-field Transports
DEFF Research Database (Denmark)
Bochtis, Dionysis; Sørensen, Claus Aage Grøn; Green, Ole
2009-01-01
event model for the simulation of CTF operations executed by cooperating machines has been introduced. The use of this model makes it possible to estimate the extent of reduction of the field efficiency. In this paper, a field experiment involving slurry application under the conventional unconstrained......Controlled traffic farming can significantly reduce the soil compaction caused from heavy machinery systems. However, using CTF in material handling operations executed by cooperative machines, the significantly increased in-field transports lead to a lower system’s efficiency. Recently, a discrete...
Effective theories of single field inflation when heavy fields matter
Achucarro, Ana; Hardeman, Sjoerd; Palma, Gonzalo A; Patil, Subodh P
2012-01-01
We compute the low energy effective field theory (EFT) expansion for single-field inflationary models that descend from a parent theory containing multiple other scalar fields. By assuming that all other degrees of freedom in the parent theory are sufficiently massive relative to the inflaton, it is possible to derive an EFT valid to arbitrary order in perturbations, provided certain generalized adiabaticity conditions are respected. These conditions permit a consistent low energy EFT description even when the inflaton deviates off its adiabatic minimum along its slowly rolling trajectory. By generalizing the formalism that identifies the adiabatic mode with the Goldstone boson of this spontaneously broken time translational symmetry prior to the integration of the heavy fields, we show that this invariance of the parent theory dictates the entire non-perturbative structure of the descendent EFT. The couplings of this theory can be written entirely in terms of the reduced speed of sound of adiabatic perturbat...
History of the geomagnetic field
Doell, Richard R.
1969-01-01
Direct measurements of the direction and strength of the earth's magnetic field have provided a knowledge of the field's form and behavior during the last few hundreds of years. For older times, however, it has been necessary to measure the magnetism of certain rocks to learn what the geomagnetic field was like. For example, when a lava flow solidifies (at temperatures near 1000??C) and cools through the Curie point of the magnetic minerals contained in it (around 500??C) it acquires a remanent magnetism that is (1) very weak, (2) very stablel, (3) paralle to the direction of the ambient geomagnetic field, and (4) proportional in intensity to the ambient field. Separating, by various analytical means, this magnetization from other 'unwanted' magnetizations has allowed paleomagnetists to study the historical and prehistorical behavior of the earth's field. It has been learned, for example, that the strength of the field was almost twice its present value 2000 years ago and that it has often completely reversed its polarity. Paleo-magnetists have also confirmed that most oceans are, geologically speaking, relatively new features, and that the continents have markedly changed their positions over the surface of the earth. ?? 1969 The American Institute of Physics.
Stable piecewise polynomial vector fields
Directory of Open Access Journals (Sweden)
Claudio Pessoa
2012-09-01
Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
Low Cost Magnetic Field Controller
Malafronte, Alexandre A
2005-01-01
The Physics Institute of the University of São Paulo (IFUSP) is building a continuous wave (cw) racetrack microtron. This machine has several dipole magnets, like the first and second stage recirculators, and a number of smaller ones in the transport line. These magnets must produce very stable magnetic fields to allow the beam to recirculate along very precise orbits and paths. Furthermore, the fields must be reproducible with great accuracy to allow an easier setup of the machine, though the effects of hysteresis tend to jeopardize the reproducibility. If the magnetic field is chosen by setting the current in the coils, temperature effects over the magnet and power supply tend to change the field. This work describes an inexpensive magnetic field controller that allows a direct measure of the magnetic field through an Hall probe. It includes a microcontroller running a feedback algorithm to control the power supply, in order to keep the field stable and reproducible. The controller can also execu...
Authentic Field Ecology Experiences for Teachers.
Dresner, Marion; Moldenke, Andrew
2002-01-01
Presents important information for conducting authentic scientific field work. Interprets one teacher's field experience in the Pacific Northwest. Points out the need for teacher training in authentic field work and makes suggestions for starting a field ecology project. (KHR)
Field emission from crystalline niobium
Directory of Open Access Journals (Sweden)
Arti Dangwal Pandey
2009-02-01
Full Text Available Appreciable suppression of field emission (FE from metallic surfaces has been achieved by the use of improved surface cleaning techniques. In order to understand the effects of surface preparation on field emission, systematic measurements were performed on five single crystal and three large grain samples of high purity (RRR>300 niobium by means of atomic force microscope, x-ray diffraction, scanning electron microscope (SEM, and dc field emission scanning microscope. The samples were treated with buffered chemical polishing (BCP, half of those for 30 μm and others for 100 μm removal of surface layer, followed by a final high pressure water rinsing. These samples provided the emission at minimum surface fields of 150 MV/m and those with longer BCP treatment showed the onset of field emission at slightly higher fields. A low temperature (∼150°C heat treatment in a high vacuum (10^{-6} mbar chamber for 14 hours, on a selected large grain Nb sample, gives the evidence for the grain boundary assisted FE at very high fields of 250 and 300 MV/m. Intrinsic field emission measurements on the present Nb surfaces revealed anisotropic values of work function for different orientations. Finally, an interesting correlation between sizes of all investigated emitters derived from SEM images with respect to their respective onset fields has been found, which might facilitate the quality control of superconducting radio-frequency cavities for linear accelerators.
Energy Technology Data Exchange (ETDEWEB)
Cahn, Robert N.; de Putter, Roland; Linder, Eric V.
2008-07-08
Scalar field dark energy evolving from a long radiation- or matter-dominated epoch has characteristic dynamics. While slow-roll approximations are invalid, a well defined field expansion captures the key aspects of the dark energy evolution during much of the matter-dominated epoch. Since this behavior is determined, it is not faithfully represented if priors for dynamical quantities are chosen at random. We demonstrate these features for both thawing and freezing fields, and for some modified gravity models, and unify several special cases in the literature.
Collins, R. L.
2006-01-01
Consider the electric field E about an electron. Its source has been thought a substance called charge, enclosed within a small volume that defines the size of the electron. Scattering experiments find no size at all. Charge is useful, but mysterious. This study concludes that charge is not real. Useful, but not real. Absent real charge, the electric field must look to a different source. We know another electric field, vxB, not sourced by charge. A simple model of the electron, using EM fiel...
Approach to Mars Field Geology
Muehlberger, William; Rice, James W.; Parker, Timothy; Lipps, Jere H.; Hoffman, Paul; Burchfiel, Clark; Brasier, Martin
1998-01-01
The goals of field study on Mars are nothing less than to understand the processes and history of the planet at whatever level of detail is necessary. A manned mission gives us an unprecedented opportunity to use the immense power of the human mind to comprehend Mars in extraordinary detail. To take advantage of this opportunity, it is important to examine how we should approach the field study of Mars. In this effort, we are guided by over 200 years of field exploration experience on Earth as well as six manned missions exploring the Moon.
Field guide to nonlinear optics
Powers, Peter E
2013-01-01
Optomechanics is a field of mechanics that addresses the specific design challenges associated with optical systems. This [i]Field Guide [/i]describes how to mount optical components, as well as how to analyze a given design. It is intended for practicing optical and mechanical engineers whose work requires knowledge in both optics and mechanics. This Field Guide is designed for those looking for a condensed and concise source of key concepts, equations, and techniques for nonlinear optics. Topics covered include technologically important effects, recent developments in nonlinear optics
Peterson, Courtney Marie
Cosmic inflation is currently the leading theory for producing the initial density fluctuations that led to the formation of structure in our Universe. This thesis examines multi-field models of inflation and how such models can be constrained using cosmic data. We first explore the power spectra from general two-field inflation. Using a covariant formalism, we derive evolution equations for the unperturbed and perturbed fields. We use these equations to derive semi-analytic formulas for the power spectra. In tandem, we discuss how the features of the inflaton roll path and the geometry of field space translate into distinct features in the spectra. We then apply our formalism to confront four classes of models with WMAP data, showing that the viability of a model depends not only on the inflationary Lagrangian but also on the initial conditions. Ultimately, for a two-field model to be consistent with observations, it must possess the right balance of kinematical and dynamical behaviors, which we reduce to a set of functions that represent the main characteristics of any two-field model of inflation. Next, we tackle non-Gaussianity from general two-field inflation. We derive semi-analytic formulas for the local bispectrum and trispectrum in terms of spectral observables and the transfer functions. We also provide a new consistency relation involving two of the non-Gaussianity parameters. We show that in order to generate observably large non-Gaussianity during inflation, the sourcing of curvature modes by isocurvature modes must be extremely sensitive to a change in the initial conditions orthogonal to the inflaton trajectory. Under some minimal assumptions, this is satisfied only when the inflaton rolls along a ridge in the potential for some time and turns somewhat. Finally, we extend the above results to general multi-field inflation. We examine the series of mode sourcing equations in multi-field models, focusing on the implications for the effective number of
Consistent force fields for saccharides
DEFF Research Database (Denmark)
Rasmussen, Kjeld
1999-01-01
Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...
Magnetic fields and coronal heating
Golub, L.; Maxson, C.; Rosner, R.; Vaiana, G. S.; Serio, S.
1980-01-01
General considerations concerning the scaling properties of magnetic-field-related coronal heating mechanisms are used to build a two-parameter model for the heating of closed coronal regions. The model predicts the way in which coronal temperature and electron density are related to photospheric magnetic field strength and the size of the region, using the additional constraint provided by the scaling law of Rosner, Tucker, and Vaiana. The model duplicates the observed scaling of total thermal energy content with total longitudinal flux; it also predicts a relation between the coronal energy density (or pressure) and the longitudinal field strength modified by the region scale size.
Good Towers of Function Fields
DEFF Research Database (Denmark)
Bassa, Alp; Beelen, Peter; Nguyen, Nhut
2014-01-01
In this paper, we will give an overview of known and new techniques on how one can obtain explicit equations for candidates of good towers of function fields. The techniques are founded in modular theory (both the classical modular theory and the Drinfeld modular theory). In the classical modular...... setup, optimal towers can be obtained, while in the Drinfeld modular setup, good towers over any non-prime field may be found. We illustrate the theory with several examples, thus explaining some known towers as well as giving new examples of good explicitly defined towers of function fields....
Electric fields and electrical insulation
DEFF Research Database (Denmark)
McAllister, Iain Wilson
2002-01-01
The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....
Directory of Open Access Journals (Sweden)
Muhammad Haroon SIDDIQUE
2009-06-01
Full Text Available NGOs came into the society in their present form after World War II and more precisely in 1960s. Before that also different forms of philanthropy existed. Like elsewhere in the world, in Pakistan also state and the market were the two sectors catering for different needs of the people. When foreign funding started coming into the poor countries, the channel of NGOs was considered more appropriate including the fact they had roots in the society and the benefit could reach the far flung areas. NGO field workers are the real actors in the NGOs’ activities but sadly the NGOs those raise the slogans of working for the destitute do not bother to facilitate the NGO field workers. Eventually the NGO field workers are facing problems of job insecurity, poor salary structure, unhealthy working environment and even harassment especially in case of women NGO field workers in Pakistan
Conformal FDTD modeling wake fields
Energy Technology Data Exchange (ETDEWEB)
Jurgens, T.; Harfoush, F.
1991-05-01
Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.
Nuclear Forensic Field Exercise #1
National Research Council Canada - National Science Library
Larsson, Carey L; Hinton, Anthony
2006-01-01
.... As such, a radiological field exercise was held to review current forensic investigator methods and identify problem areas with respect to the collection of evidence from a contaminated crime scene...
Transient field generation and measurement
Parkes, D. M.; Smith, P. D.
The mathematical modeling and numerical computation of the elecromagnetic field radiated by a biconic antenna excited by a transient waveform such as a pulse are outlined. Very good agreement between the model and experiment is achieved for the time history of the radiated pulse. Amplitudes of calculated field strengths are within engineering tolerances. The type of field and its amplitude which result when any variant of biconic antenna is excited by a given input pulse can be predicted, since the time marching method of solving integral equations is shown to be successfully implemented on a computer. Because the system is not limited to single shot events, measurement of induced currents inside target equipments when illuminated by the radiation field is simplified, since sampling technology can be employed. Current waveforms which occur in antennas can also be predicted.
Proceedings Forest & Field Fuels Symposium
Energy Technology Data Exchange (ETDEWEB)
None
1978-07-01
The purpose of the symposium is to examine two specific renewable resources, forest and field fuels, to pinpoint areas where funding of RD&D would be effective in expanding their marketability and use as substitutes for imported oil.
Moving Manifolds in Electromagnetic Fields
Directory of Open Access Journals (Sweden)
David V. Svintradze
2017-08-01
Full Text Available We propose dynamic non-linear equations for moving surfaces in an electromagnetic field. The field is induced by a material body with a boundary of the surface. Correspondingly the potential energy, set by the field at the boundary can be written as an addition of four-potential times four-current to a contraction of the electromagnetic tensor. Proper application of the minimal action principle to the system Lagrangian yields dynamic non-linear equations for moving three dimensional manifolds in electromagnetic fields. The equations in different conditions simplify to Maxwell equations for massless three surfaces, to Euler equations for a dynamic fluid, to magneto-hydrodynamic equations and to the Poisson-Boltzmann equation.
Directory of Open Access Journals (Sweden)
Acosta–Flores J.J.
2010-04-01
Full Text Available In organizational transformation and social change can be very useful to use the theory to solve inventives problems. In this paper TRIZ is presented with more detail, specifically through one of his tools: the substance–field analysis. Substance–Field Analysis is a TRIZ analytical tool for modeling problems related to existing systems. Every system is created to perform some functions. The desired function is the output from an object or substance, caused by another object with the help of some means. The general term, substances are objects of any level of complexity. They can be single items or complex systems. The action or means of accomplishing the action is called a field. Substance–Field Analysis provides a fast, simple model to use for considering different ideas.
Federal Laboratory Consortium — The Table Mountain Field Site, located north of Boulder, Colorado, is designated as an area where the magnitude of strong, external signals is restricted (by State...
Galactic and Intergalactic Magnetic Fields
National Research Council Canada - National Science Library
Klein, Ulrich; Fletcher, Andrew
2015-01-01
This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths...
Liu, Zhaowei; Durant, Stéphane; Lee, Hyesog; Pikus, Yuri; Fang, Nicolas; Xiong, Yi; Sun, Cheng; Zhang, Xiang
2007-02-01
Far-field optical lens resolution is fundamentally limited by diffraction, which typically is about half of the wavelength. This is due to the evanescent waves carrying small scale information from an object that fades away in the far field. A recently proposed superlens theory offers a new approach by surface excitation at the negative index medium. We introduce a far-field optical superlens (FSL) that is capable of imaging beyond the diffraction limit. The FSL significantly enhances the evanescent waves of an object and converts them into propagating waves that are measured in the far field. We show that a FSL can image a subwavelength object consisting of two 50 nm wide lines separated by 70 nm working at 377 nm wavelength. The optical FSL promises new potential for nanoscale imaging and lithography.
CERN PhotoLab
1975-01-01
The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.
The Juno Magnetic Field Investigation
Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.
2017-11-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of
The Juno Magnetic Field Investigation
Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.
2017-02-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of
The Juno Magnetic Field Investigation
Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.;
2017-01-01
The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through
Bosonic colored group field theory
Energy Technology Data Exchange (ETDEWEB)
Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)
2010-12-15
Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)
Self-dual electromagnetic fields
Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.
2010-08-01
We demonstrate the utility of self-dual fields in electrodynamics. Stable configurations of free electromagnetic fields can be represented as superpositions of standing waves, each possessing zero Poynting vector and zero orbital angular momentum. The standing waves are themselves superpositions of self-dual and anti-self-dual solutions. The idea of self-duality provides additional insights into the geometrical and spectral properties of stable electromagnetic configurations, such as those responsible for the formation of ball lightning.
Cryosurgery with Pulsed Electric Fields
Daniels, Charlotte S.; Rubinsky, Boris
2011-01-01
This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to
Cryosurgery with pulsed electric fields.
Directory of Open Access Journals (Sweden)
Charlotte S Daniels
Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused
Geomagnetic field detection in rodents
Energy Technology Data Exchange (ETDEWEB)
Olcese, J.; Reuss, S.; Semm, P.
1988-01-01
In addition to behavioral evidence for the detection of earth-strength magnetic fields (MF) by rodents, recent investigations have revealed that electrophysiological and biochemical responses to MF occur in the pineal organ and retina of rodents. In addition, ferrimagnetic deposits have been identified in the ethmoidal regions of the rodent skull. These findings point to a new sensory phenomenon, which interfaces with many fields of biology, including neuroscience, psychophysics, behavioral ecology, chronobiology and sensory physiology.
Electromagnetic field and cosmic censorship
Düztaş, Koray
2013-01-01
We construct a gedanken experiment in which an extremal Kerr black hole interacts with a test electromagnetic field. Using Teukolsky's solutions for electromagnetic perturbations in Kerr spacetime, and the conservation laws imposed by the energy momentum tensor of the electromagnetic field and the Killing vectors of the spacetime, we prove that this interaction cannot convert the black hole into a naked singularity, thus cosmic censorship conjecture is not violated in this case.
Field enhancement induced laser ablation
DEFF Research Database (Denmark)
Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob
. The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness......Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures...
Field Emission in Vacuum Microelectronics
Fursey, George; Schwoebel, Paul
2005-01-01
Field emission is a phenomenon described by quantum mechanics. Its emission capability is millions times higher than that of any other known types of electron emission. Nowadays this phenomenon is experiencing a new life due to wonderful applications in the atomic resolution microscopy, in electronic holography, and in the vacuum micro- and nanoelectronics in general. The main field emission properties, and some most remarkable experimental facts and applications, are described in this book.
Magnetic Fields of Massive Stars
Lundin, Andreas
2010-01-01
This paper is an introduction to the subject of magnetic fields on stars, with a focus on hotter stars. Basic astrophysical concepts are explained, including: spectroscopy, stellar classification, general structure and evolution of stars. The Zeeman effect and how absorption line splitting is used to detect and measure magnetic fields is explained. The properties of a prominent type of magnetic massive star, Ap-stars, are delved into. These stars have very stable, global, roughly dipolar mag...
DEFF Research Database (Denmark)
Lykke Hindhede, Anette; Parving, Agnete
2009-01-01
The present contribution briefly describes the history of Danish Audiology during the last 50-60 years from the establishment of the National Hearing Health Services (NHHS). The progress within the field is framed according to the theory of Bourdieu challenging the present concept of evidence......, is regarded as a potential reduction for future research and training within audiology. In contrast, the political field considers it as an improvement despite the substantial increase in costs for the state....
Random scalar fields and hyperuniformity
Ma, Zheng; Torquato, Salvatore
2017-06-01
Disordered many-particle hyperuniform systems are exotic amorphous states of matter that lie between crystals and liquids. Hyperuniform systems have attracted recent attention because they are endowed with novel transport and optical properties. Recently, the hyperuniformity concept has been generalized to characterize two-phase media, scalar fields, and random vector fields. In this paper, we devise methods to explicitly construct hyperuniform scalar fields. Specifically, we analyze spatial patterns generated from Gaussian random fields, which have been used to model the microwave background radiation and heterogeneous materials, the Cahn-Hilliard equation for spinodal decomposition, and Swift-Hohenberg equations that have been used to model emergent pattern formation, including Rayleigh-Bénard convection. We show that the Gaussian random scalar fields can be constructed to be hyperuniform. We also numerically study the time evolution of spinodal decomposition patterns and demonstrate that they are hyperuniform in the scaling regime. Moreover, we find that labyrinth-like patterns generated by the Swift-Hohenberg equation are effectively hyperuniform. We show that thresholding (level-cutting) a hyperuniform Gaussian random field to produce a two-phase random medium tends to destroy the hyperuniformity of the progenitor scalar field. We then propose guidelines to achieve effectively hyperuniform two-phase media derived from thresholded non-Gaussian fields. Our investigation paves the way for new research directions to characterize the large-structure spatial patterns that arise in physics, chemistry, biology, and ecology. Moreover, our theoretical results are expected to guide experimentalists to synthesize new classes of hyperuniform materials with novel physical properties via coarsening processes and using state-of-the-art techniques, such as stereolithography and 3D printing.
Field theory, disorder and simulations
Parisi, Giorgio
1992-01-01
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion
Assessing Field Spectroscopy Metadata Quality
Directory of Open Access Journals (Sweden)
Barbara A. Rasaiah
2015-04-01
Full Text Available This paper presents the proposed criteria for measuring the quality and completeness of field spectroscopy metadata in a spectral archive. Definitions for metadata quality and completeness for field spectroscopy datasets are introduced. Unique methods for measuring quality and completeness of metadata to meet the requirements of field spectroscopy datasets are presented. Field spectroscopy metadata quality can be defined in terms of (but is not limited to logical consistency, lineage, semantic and syntactic error rates, compliance with a quality standard, quality assurance by a recognized authority, and reputational authority of the data owners/data creators. Two spectral libraries are examined as case studies of operationalized metadata policies, and the degree to which they are aligned with the needs of field spectroscopy scientists. The case studies reveal that the metadata in publicly available spectral datasets are underperforming on the quality and completeness measures. This paper is part two in a series examining the issues central to a metadata standard for field spectroscopy datasets.
Integrated field modelling[Oil and gas fields
Energy Technology Data Exchange (ETDEWEB)
Nazarian, Bamshad
2002-07-01
This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant
Magnetic Field Observations at Purcell, Oklahoma Field Campaign Report
Energy Technology Data Exchange (ETDEWEB)
Chi, P. J. [Univ. of California, Los Angeles, CA (United States); Gibson, J. P. [Univ. of Oklahoma, Norman, OK (United States)
2017-05-01
The campaign “Magnetic Field Observations at Purcell, Oklahoma” installed a ground-based magnetometer at Purcell’s U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility boundary installation at the Kessler Atmospheric and Ecological Field Station, University of Oklahoma, to measure local magnetic field variations. It is a part of the nine stations of the Mid-continent MAgnetoseismic Chain (McMAC) placed as close to the 330° magnetic longitude as possible. This is the meridian in the world where land covers the greatest continuous range in magnetic latitude. Figure 1 shows the map of the magnetometer stations along the 330th magnetic meridian, including the Purcell (PCEL) station. The main scientific objective of the campaign is to detect the field line resonance (FLR) frequencies of the magnetic field line connected to the Purcell station. This magnetic field line extends from Purcell to the outer space at distances as far as 2 Earth radii (RE). To accurately identify FLR frequencies, however, simultaneous measurements at slightly different latitudes along the same meridian are necessary to allow the use of the cross-phase technique. This consideration explains the arrangement to operate magnetometers at the Americus (AMER) and Richardson (RICH) stations nearby. The measured resonant frequency can infer the plasma mass density along the field line through the method of normal-mode magnetoseismology. The magnetometer at the Purcell station can detect many other types of magnetic field fluctuations associated with the changes in the electric currents in the ionosphere and the magnetosphere, which by large are affected by the solar activity. In other words, the magnetic field data collected by this campaign are also useful for understanding space weather phenomena. The magnetometer was installed at Purcell’s ARM boundary facility in March 27, 2006. The construction of the triaxial fluxgate magnetometer used by the
THOR Electric Field Instrument - EFI
Khotyaintsev, Yuri; Bale, Stuart D.; Rothkaehl, Hanna; Bonnell, John; Åhlen, Lennart; Vaivads, Andris; Lindqvist, Per-Arne; Ivchenko, Nickolay; Soucek, Jan
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Electric Field Instrument (EFI) is to measure the electric field vector in the frequency range 0-200 kHz. EFI consists of two sets of sensors: Spin-plane Double Probes (EFI-SDP) providing high sensitivity DC electric field in the spacecraft spin plane (2D), and the High-Frequency Antenna (EFI-HFA) providing 3D electric field at frequencies above 1 kHz. EFI-SDP consists of 4 biased spherical probes extended on 50 m long wire booms, 90 degrees apart in the spin plane, giving a 100 m baseline for each of the two spin-plane electric field components. EFI-HFA consists of 6 x 1.25 m long monopoles, forming 3 dipolar antennas crossed at 90 degrees to each other. In addition to the sensors, EFI contains HFA and SDP pre-amplifiers, as well as bias electronics boards (BEBs) hosted in the man electronics box of the Field and Wave processor (FWP). As THOR spacecraft has a sun-pointing spin axis, EFI-SDP measures the electric field in the plane approximately orthogonal to the sun using long wire booms. The sun-pointing attitude greatly reduces errors due to wake effects and asymmetric photoelectron clouds, enabling the highly accurate in comparison to earlier missions ±0.1 mV/m near-DC electric field measurements. Interferometry using the electric field probes can be used to infer wavelengths and scale sizes at the smallest scales in the plasma. EFI also measures the floating potential of the satellite, which can be used to estimate the plasma density at very high time resolution (up to a few hundred Hz). The sun-pointing attitude greatly reduces changes in the illuminated area, and hence the associated spin-dependent errors. In combination with densities derived from the observed plasma frequency emission line, EFI monitors the plasma density from DC to a few hundred Hz. EFI measurements characterize electric field and density variations associated with kinetic
Crystal field interactions studied by high-field magnetization
Energy Technology Data Exchange (ETDEWEB)
Radwanski, R.J.; Franse, J.J.M. (Van der Waals-Zeeman Lab., Univ. Amsterdam (Netherlands))
1992-03-01
The effect of crystalline electric field (CEF) interactions of the 4f ions on the magnetization process is reviewed for some intermetallic compounds. Special emphasis is given to metamagnetic transitions. The transitions in Ho{sub 2}Co{sub 17} are exchange-driven transitions associated with the formation of a non-collinear magnetic structure in contrast to the transition found in DyCo{sub 2}Si{sub 2} that is of a level-crossing type. The transition found in Pr{sub 2}Fe{sub 14}B results from a competition between lower and higher order crystal field terms. The formation of the rare earth moment under the action of CEF and exchange interactions as well as of external fields is analyzed. (orig.).
Scalar field dark matter and the Higgs field
Directory of Open Access Journals (Sweden)
O. Bertolami
2016-08-01
Full Text Available We discuss the possibility that dark matter corresponds to an oscillating scalar field coupled to the Higgs boson. We argue that the initial field amplitude should generically be of the order of the Hubble parameter during inflation, as a result of its quasi-de Sitter fluctuations. This implies that such a field may account for the present dark matter abundance for masses in the range 10−6–10−4eV, if the tensor-to-scalar ratio is within the range of planned CMB experiments. We show that such mass values can naturally be obtained through either Planck-suppressed non-renormalizable interactions with the Higgs boson or, alternatively, through renormalizable interactions within the Randall–Sundrum scenario, where the dark matter scalar resides in the bulk of the warped extra-dimension and the Higgs is confined to the infrared brane.
Nonlinear relaxation field in charged systems under high electric fields
Energy Technology Data Exchange (ETDEWEB)
Morawetz, K
2000-07-01
The influence of an external electric field on the current in charged systems is investigated. The results from the classical hierarchy of density matrices are compared with the results from the quantum kinetic theory. The kinetic theory yields a systematic treatment of the nonlinear current beyond linear response. To this end the dynamically screened and field-dependent Lenard-Balescu equation is integrated analytically and the nonlinear relaxation field is calculated. The classical linear response result known as Debye - On-Sager relaxation effect is only obtained if asymmetric screening is assumed. Considering the kinetic equation of one specie the other species have to be screened dynamically while the screening with the same specie itself has to be performed statically. Different other approximations are discussed and compared. (author)
Beyond Quantum Fields: A Classical Fields Approach to QED
Directory of Open Access Journals (Sweden)
Chafin C.
2015-07-01
Full Text Available A classical field theory is introduced that is defined on a tower of dimensionally in- creasing spaces and is argued to be equivalent to QED. The domain of dependence is discussed to show how an equal times picture of the many coordinate space gives QED results as part of a well posed initial value formalism. Identical particle symmetries are not, a priori, required but when introduced are clearly propagated. This construc- tion uses only classical fields to provide some explanation for why quantum fields and canonical commutation results have been successful. Some old and essential questions regarding causality of propagators are resolved. The problem of resummation, gener- ally forbidden for conditionally convergent series, is dis cussed from the standpoint of particular truncations of the infinite tower of functions an d a two step adiabatic turn on for scattering. As a result of this approach it is shown that the photon inherits its quantization ~ ω from the free lagrangian of the Dirac electrons despite the fact that the free electromagnetic lagrangian has no ~ in it. This provides a possible explanation for the canonical commutation relations for quantum operators , [ ˆ P , ˆ Q ] = i ~ , without ever needing to invoke such a quantum postulate. The form of the equal times conservation laws in this many particle field theory suggests a simplification of the radiation reaction process for fields that allows QED to arise from a sum of path integrals in the various particle time coordinates. A novel method of unifying this theory with gravity, but that has no obvious quantum field theoretic computational scheme , is introduced.
High Magnetic Fields in Chemistry
Steiner, U. E.; Gilch, P.
Recent applications of large ( 1 T - 30 T) magnetic fields in modern chemical research are reviewed. Magnetic field effects of chemical relevance appear on the levels of quantum mechanics, thermodynamics, and oscopic forces. Quantum mechanical magnetic field effects are governed by the Zeeman interaction and are borne out as static and dynamic effects in spectroscopy and in chemical kinetics. Magnetic circular dichroism (MCD) spectroscopy and magnetic fluorescence quenching in the gas phase serve to illustrate the former, while radical pair spin chemistry is representative of the latter. The principles of the radical pair mechanism are outlined and high-field applications are illustrated in some detail for photo-induced electron transfer reactions of some transition metal complexes. Thermodynamic effects concern the magnetization of chemical samples, which is the focus of magnetochemistry or — more modern — molecular magnetism, and the equilibrium of chemical reactions. Representative examples of both aspects are described. Finally, the exploitation of orientational forces caused by the magnetic anisotropy of larger particles (from omolecules to micro-crystals) is exemplified. Crystal growth in a magnetic field may hold a potential for achieving better control of the quality of protein crystals for structural analysis.
Gene transcription and electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Henderson, A.S.
1992-01-01
Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.
Inflating with Large Effective Fields
Burgess, C P; Quevedo, F; Williams, M
2014-01-01
We re-examine large scalar fields within effective field theory, in particular focussing on the issues raised by their use in inflationary models (as suggested by BICEP2 to obtain primordial tensor modes). We argue that when the large-field and low-energy regimes coincide the scalar dynamics is most effectively described in terms of an asymptotic large-field expansion whose form can be dictated by approximate symmetries, which also help control the size of quantum corrections. We discuss several possible symmetries that can achieve this, including pseudo-Goldstone inflatons characterized by a coset $G/H$ (based on abelian and non-abelian, compact and non-compact symmetries), as well as symmetries that are intrinsically higher dimensional. Besides the usual trigonometric potentials of Natural Inflation we also find in this way simple {\\em large-field} power laws (like $V \\propto \\phi^2$) and exponential potentials, $V(\\phi) = \\sum_{k} V_k \\; e^{-k \\phi/M}$. Both of these can describe the data well and give slo...
Energy Technology Data Exchange (ETDEWEB)
Kim, Young In; Han, Jung Kuy [Korea Institute of Geology Mining and Materials, Taejon (Korea)
1998-12-01
As agreed by the Second Meeting of the Expert Group of Minerals and Energy Exploration and Development in Seoul, Korea, 'The Construction of Database on the Oil and Gas Fields in the APEC Region' is now under way as a GEMEED database project for 1998. This project is supported by Korean government funds and the cooperation of GEMEED colleagues and experts. During this year, we have constructed the home page menu (topics) and added the data items on the oil and gas field. These items include name of field, discovery year, depth, the number of wells, average production (b/d), cumulative production, and API gravity. The web site shows the total number of oil and gas fields in the APEC region is 47,201. The number of oil and gas fields by member economics are shown in the table. World oil and gas statistics including reserve, production consumption, and trade information were added to the database for the users convenience. (author). 13 refs., tabs., figs.
Small fields: nonequilibrium radiation dosimetry.
Das, Indra J; Ding, George X; Ahnesjö, Anders
2008-01-01
Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields > or =4 x 4 cm2, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams. rican Association of Physicists in Medicine.
Nanometric alternating magnetic field generator.
Espejo, A P; Tejo, F; Vidal-Silva, N; Escrig, J
2017-07-05
In this work we introduce an alternating magnetic field generator in a cylindrical nanostructure. This field appears due to the rotation of a magnetic domain wall located at some position, generating a magnetic region that varies its direction of magnetization alternately, thus inducing an alternating magnetic flux in its vicinity. This phenomenon occurs due to the competition between a spin-polarized current and a magnetic field, which allows to control both the angular velocity and the pinning position of the domain wall. As proof of concept, we study the particular case of a diameter-modulated nanowire with a spin-polarized current along its axis and the demagnetizing field produced by its modulation. This inhomogeneous field allows one to control the angular velocity of the domain wall as a function of its position along the nanowire allowing frequencies in the GHz range to be achieved. This generator could be used in telecommunications for devices in the range of radiofrequencies or, following Faraday's induction law, could also induce an electromotive force and be used as a movable alternate voltage source in future nanodevices.
Les résonances d'un trou noir de Schwarzschild.
Bachelot, A.; Motet-Bachelot, A.
1993-09-01
This paper is devoted to the theoretical and computational investigations of the scattering frequencies of scalar, electromagnetic, gravitational waves around a spherical black hole. The authors adopt a time dependent approach: construction of wave operators for the hyperbolic Regge-Wheeler equation; asymptotic completeness; outgoing and incoming spectral representations; meromorphic continuation of the Heisenberg matrix; approximation by dumping and cut-off of the potentials and interpretation of the semi group Z(t) in the framework of the membrane paradigma. They develop a new procedure for the computation of the resonances by the spectral analysis of the transient scattered wave, based on Prony's algorithm.
Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole
Liang, Jun
2018-01-01
Not Available Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
He, G.; Lin, W.
2017-10-01
The kinematical effect induced by the transversal motion of a gravitational lens on the frequency shift of light has been investigated in detail, while the effect of the radial motion is thought to be much smaller than the transversal one and thus has usually been neglected. In this work, we find that the radial velocity effect on the frequency shift has the same order of magnitude as that of the transversal velocity effect, when the light emitter (or the receiver) is close to the gravitational lens with the distance between them being an impact parameter scale. The significant velocity effect is usually transient due to the motion of the gravitational lens relative to the light emitter or the receiver.
Magnetic field measuring system for remapping the ORIC magnetic field
Energy Technology Data Exchange (ETDEWEB)
Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.
1977-01-01
The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour.
Multivector field formulation of Hamiltonian field theories: equations and symmetries
Energy Technology Data Exchange (ETDEWEB)
Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)
1999-12-03
We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)
Strengthening field epidemiology in Africa: The Zimbabwe Field ...
African Journals Online (AJOL)
In addition the health directorates of the major cities in the country are designated field training sites. Since 1993, the program has had 18 Cohorts trained of which three are part-time. The part-time program was initiated in 2008 with an intake of 10 trainees. Since 2003, the full time program has experienced an increase in ...
Quantum field theory competitive models
Tolksdorf, Jürgen; Zeidler, Eberhard
2009-01-01
For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...
Mobile Collector for Field Trips
Directory of Open Access Journals (Sweden)
Lucia Terrenghi
2004-04-01
Full Text Available Current e-Learning is based on learning management systems that provide certain standard services - course authoring and delivery, tutoring, administration and collaboration facilities. Rapid development of mobile technologies opens a new area of m-Learning to enhance the current educational opportunities. Field trips are a relevant part of the curriculum, but for various reasons it is often difficult to organize them. The aim of the RAFT project is development of a system that would enable virtual field trips. One mobile learning application prototype created in this project, called Mobile Collector, enables data gathering and annotation in the field, together with real time collaboration. The application supports learner-centred education in real world context.
Trade Fairs, Markets and Fields
DEFF Research Database (Denmark)
Moeran, Brian
2011-01-01
This article describes how trade fairs act as a framing mechanism that enables participants to come together for the exchange of goods and services and to perceive themselves as acting in a social field. This way, trade fairs make markets possible. Based on ongoing participant observation at book....../material, social, situational, content/appreciative, and the use value of goods, values which are then equated with a commodity exchange value in the form of price. Trade fairs frame order, but they are also events where the respective field might be reconfigurated. The contingency of personal interaction......, the lightness of "talk" and the carnival-like setting of fairs make them a site where disorder might be created that in turn can lead to change of field and market...
Remote field eddy current testing
Energy Technology Data Exchange (ETDEWEB)
Cheong, Y. M.; Jung, H. K.; Huh, H.; Lee, Y. S.; Shim, C. M
2001-03-01
The state-of-art technology of the remote field eddy current, which is actively developed as an electromagnetic non-destructive testing tool for ferromagnetic tubes, is described. The historical background and recent R and D activities of remote-field eddy current technology are explained including the theoretical development of remote field eddy current, such as analytical and numerical approach, and the results of finite element analysis. The influencing factors for actual applications, such as the effect of frequency, magnetic permeability, receiving sensitivity, and difficulties of detection and classification of defects are also described. Finally, two examples of actual application, 1) the gap measurement between pressure tubes and calandria tube in CANDU reactor and, 2) the detection of defects in the ferromagnetic heat exchanger tubes, are described. The future research efforts are also included.
Lectures on matrix field theory
Ydri, Badis
2017-01-01
These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.
The Plastic Tension Field Method
DEFF Research Database (Denmark)
Hansen, Thomas
2005-01-01
. The emphasis is attached to the presentation of a design method based on the diagonal tension field theory. Also, how to determine the load-carrying capacity of a given steel plate girder with transverse web stiffeners, is briefly presented. The load-carrying capacity may be predicted by applying both......This paper describes a calculation method for steel plate girders with transverse web stiffeners subjected to shear. It may be used for predicting the failure load or, as a design method, to determine the optimal amount of internal web stiffeners. The new method is called the plastic tension field...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed...
Matching of equivalent field regions
DEFF Research Database (Denmark)
Appel-Hansen, Jørgen; Rengarajan, S.B.
2005-01-01
screen, having the same homogeneous medium on both sides and an impressed current on one aide, an alternative procedure is relevant. We make use of the fact that in the aperture the tangential component of the magnetic field due to the induced currents in the screen is zero. The use of such a procedure......In aperture problems, integral equations for equivalent currents are often found by enforcing matching of equivalent fields. The enforcement is made in the aperture surface region adjoining the two volumes on each side of the aperture. In the case of an aperture in a planar perfectly conducting...... shows that equivalent currents can be found by a consideration of only one of the two volumes into which the aperture plane divides the space. Furthermore, from a consideration of an automatic matching at the aperture, additional information about tangential as well as normal field components...
Hydrogeology of the Ptuj field
Directory of Open Access Journals (Sweden)
Ljubo Žlebnik
1991-12-01
Full Text Available Ptuj field is the plain stretching between Drava river, Slovenske gorice hills and the towns of Ptuj and Ormož. The field is filled with Quaternary gravel deposits with thickness varying from 4 to 22 meters. The Tertiary base of the Quaternary gravel deposits consists of conglomerate sand, clay and marl, with very low permeability. The underground water flows through the gravel deposits in the east direction, parallel to the Drava river. It is recharging from theprecipitations and partly from the Drava river and discharging to numeroussprings called Zvirenčine on foot of the high Quaternary gravel terrace. The Ormož town is supplied with drinking water from the wells on the eastern part of Ptuj field Quaternary gravel aquifer. The spillway water channel of the Formin hydroelectric power plant affected the underground water in a very low extent because all necessary interventions were made for the underground water protection.
International Organizations and Organizational Fields
DEFF Research Database (Denmark)
Vetterlein, Antje; Moschella, Manuela
2014-01-01
The purpose of this paper is to account for varieties of organizational change. In particular, we contend that in order to explain change in international organizations (IOs) we cannot simply dichotomize between change and the lack thereof. Rather, change is best conceptualized as made up of two...... in the field helps to account for the speed of change (slow vs. rapid), whereas the openness of the organization to the inputs coming from the field helps to explain the scope of change (incremental vs. radical). We illustrate our argument by comparing the changes in the International Monetary Fund's policies...... dimensions: speed and scope. The combination of the two dimensions leads to a taxonomy with four distinct types of policy change. The paper evaluates the emergence of different types of change by focusing on the relationship between IOs and their fields. Specifically, the position of the organization...
Pulsed electric field increases reproduction.
Panagopoulos, Dimitris J
2016-01-01
Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.
Variational methods for field theories
Energy Technology Data Exchange (ETDEWEB)
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Detection of Bioaerosols Using Single Particle Thermal Emission Spectroscopy (First-year Report)
2012-02-01
Fourier heat-conduction calculations are conducted in which the characteristic cooling period is plotted as a function of particle radius based on...thermal radiance is captured using a highly efficient gold-coated Schwarzschild objective with a numeric aperture (NA) of 0.50. The broadband thermal...focusing nozzle (20). Based on a field of view (FOV) defined by the Schwarzschild objective of 500 µm, we predict a maximum integration period of Δt
Quantum Field Theory, Revised Edition
Mandl, F.; Shaw, G.
1994-01-01
Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical
Optimization of well field management
DEFF Research Database (Denmark)
Hansen, Annette Kirstine
for optimizing well field man- agement using multi-objective optimization is developed. The optimization uses the Strength Pareto Evolutionary Algorithm 2 (SPEA2) to find the Pareto front be- tween the conflicting objectives. The Pareto front is a set of non-inferior optimal points and provides an important tool...... (WELL Field Numerical Engine Shell), is capable of predicting the power consumption at different wells. It captures the water level- and power dynamics in each well when pump speeds are changed. WELLNES is set up and calibrated for the Søndersø area. The WELLNES model shows good correspondence between...
Tunneling field effect transistor technology
Chan, Mansun
2016-01-01
This book provides a single-source reference to the state-of-the art in tunneling field effect transistors (TFETs). Readers will learn the TFETs physics from advanced atomistic simulations, the TFETs fabrication process and the important roles that TFETs will play in enabling integrated circuit designs for power efficiency. · Provides comprehensive reference to tunneling field effect transistors (TFETs); · Covers all aspects of TFETs, from device process to modeling and applications; · Enables design of power-efficient integrated circuits, with low power consumption TFETs.
Thermoluminescent Detectors in Mixed Fields
Mala, P; Biskup, B; Roeed, K
2012-01-01
This note reports on using of thermoluminescent detectors for radiation monitoring in the LHC tunnel and in the shielded areas around the tunnel. The accumulated annual doses in these areas vary a lot so a dosimeter used there should cover a large dose range. TL detectors can measure dose from 0.1 mGy to few kGy (with a recently proposed new technique which needs more studies up to 1 MGy). This report presents studies of these detectors in mixed fields similar to radiation field in the LHC and the possible usage of their results for calculation of high energy hadron and thermal neutron fluence.
The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination......We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino, E-mail: stephon.alexander@dartmouth.edu, E-mail: dhrubo.jyoti@dartmouth.edu, E-mail: kosowsky@pitt.edu, E-mail: marciano@fudan.edu.cn [Center for Field Theory and Particle Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-01
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Dynamics of gauge field inflation
Energy Technology Data Exchange (ETDEWEB)
Alexander, Stephon; Jyoti, Dhrubo [Center for Cosmic Origins and Department of Physics and Astronomy, 6127 Wilder Laboratory, Dartmouth College, Hanover, NH 03755 (United States); Kosowsky, Arthur [Department of Physics and Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (Pitt-PACC), 420 Allen Hall, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Marcianò, Antonino [Center for Field Theory and Particle Physics & Department of Physics, Fudan University, 220 Handan Road, Shanghai (China)
2015-05-05
We analyze the existence and stability of dynamical attractor solutions for cosmological inflation driven by the coupling between fermions and a gauge field. Assuming a spatially homogeneous and isotropic gauge field and fermion current, the interacting fermion equation of motion reduces to that of a free fermion up to a phase shift. Consistency of the model is ensured via the Stückelberg mechanism. We prove the existence of exactly one stable solution, and demonstrate the stability numerically. Inflation arises without fine tuning, and does not require postulating any effective potential or non-standard coupling.
Popov, Aleksey
2013-04-01
The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws
Indoor localization using magnetic fields
Pathapati Subbu, Kalyan Sasidhar
Indoor localization consists of locating oneself inside new buildings. GPS does not work indoors due to multipath reflection and signal blockage. WiFi based systems assume ubiquitous availability and infrastructure based systems require expensive installations, hence making indoor localization an open problem. This dissertation consists of solving the problem of indoor localization by thoroughly exploiting the indoor ambient magnetic fields comprising mainly of disturbances termed as anomalies in the Earth's magnetic field caused by pillars, doors and elevators in hallways which are ferromagnetic in nature. By observing uniqueness in magnetic signatures collected from different campus buildings, the work presents the identification of landmarks and guideposts from these signatures and further develops magnetic maps of buildings - all of which can be used to locate and navigate people indoors. To understand the reason behind these anomalies, first a comparison between the measured and model generated Earth's magnetic field is made, verifying the presence of a constant field without any disturbances. Then by modeling the magnetic field behavior of different pillars such as steel reinforced concrete, solid steel, and other structures like doors and elevators, the interaction of the Earth's field with the ferromagnetic fields is described thereby explaining the causes of the uniqueness in the signatures that comprise these disturbances. Next, by employing the dynamic time warping algorithm to account for time differences in signatures obtained from users walking at different speeds, an indoor localization application capable of classifying locations using the magnetic signatures is developed solely on the smart phone. The application required users to walk short distances of 3-6 m anywhere in hallway to be located with accuracies of 80-99%. The classification framework was further validated with over 90% accuracies using model generated magnetic signatures representing
Solid phase microextraction field kit
Nunes, Peter J.; Andresen, Brian D.
2005-08-16
A field kit for the collection, isolation and concentration of trace amounts of high explosives (HE), biological weapons (BW) and chemical weapons (CW) residues in air, soil, vegetation, swipe, and liquid samples. The field kit includes a number of Solid Phase Microextraction (SPME) fiber and syringe assemblies in a hermetically sealed transportation container or tubes which includes a sampling port, a number of extra SPME fiber and syringe assemblies, the fiber and syringe assemblies including a protective cap for the fiber, and an extractor for the protective cap, along with other items including spare parts, protective glove, and an instruction manual, all located in an airtight container.
Quantum fields on the computer
1992-01-01
This book provides an overview of recent progress in computer simulations of nonperturbative phenomena in quantum field theory, particularly in the context of the lattice approach. It is a collection of extensive self-contained reviews of various subtopics, including algorithms, spectroscopy, finite temperature physics, Yukawa and chiral theories, bounds on the Higgs meson mass, the renormalization group, and weak decays of hadrons.Physicists with some knowledge of lattice gauge ideas will find this book a useful and interesting source of information on the recent developments in the field.