Schwarzschild black holes can wear scalar wigs.
Barranco, Juan; Bernal, Argelia; Degollado, Juan Carlos; Diez-Tejedor, Alberto; Megevand, Miguel; Alcubierre, Miguel; Núñez, Darío; Sarbach, Olivier
2012-08-24
We study the evolution of a massive scalar field surrounding a Schwarzschild black hole and find configurations that can survive for arbitrarily long times, provided the black hole or the scalar field mass is small enough. In particular, both ultralight scalar field dark matter around supermassive black holes and axionlike scalar fields around primordial black holes can survive for cosmological times. Moreover, these results are quite generic in the sense that fairly arbitrary initial data evolve, at late times, as a combination of those long-lived configurations.
Quantum corrections to Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; El-Menoufi, Basem Kamal [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-04-15
Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einstein's gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory. (orig.)
Statistical Entropy of Schwarzschild Black Holes
Englert, F
1998-01-01
The entropy of a seven dimensional Schwarzschild black hole of arbitrary large radius is obtained by a mapping onto a near extremal self-dual three-brane whose partition function can be evaluated. The three-brane arises from duality after submitting a neutral blackbrane, from which the Schwarzschild black hole can be obtained by compactification, to an infinite boost in non compact eleven dimensional space-time and then to a Kaluza-Klein compactification. This limit can be defined in precise terms and yields the Beckenstein-Hawking value up to a factor of order one which can be set to be exactly one with the extra assumption of keeping only transverse brane excitations. The method can be generalized to five and four dimensional black holes.
Quantum correlator outside a Schwarzschild black hole
Directory of Open Access Journals (Sweden)
Claudia Buss
2018-01-01
Full Text Available We calculate the quantum correlator in Schwarzschild black hole space–time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle–Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.
Quantum correlator outside a Schwarzschild black hole
Buss, Claudia; Casals, Marc
2018-01-01
We calculate the quantum correlator in Schwarzschild black hole space-time. We perform the calculation for a scalar field in three different quantum states: Boulware, Unruh and Hartle-Hawking, and for points along a timelike circular geodesic. The results show that the correlator presents a global fourfold singularity structure, which is state-independent. Our results also show the different correlations in the three different quantum states arising in-between the singularities.
Gravitino perturbations in Schwarzschild black holes
Piedra, Owen Pavel Fernández
2010-01-01
We consider the time evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages, after an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondenc...
Dirac Quasinormal modes of Schwarzschild black hole
Jing, Jiliang
2005-01-01
The quasinormal modes (QNMs) associated with the decay of Dirac field perturbation around a Schwarzschild black hole is investigated by using continued fraction and Hill-determinant approaches. It is shown that the fundamental quasinormal frequencies become evenly spaced for large angular quantum number and the spacing is given by $\\omega_{\\lambda+1}- \\omega_{\\lambda}=0.38490-0.00000i$. The angular quantum number has the surprising effect of increasing real part of the quasinormal frequencies...
Counting Schwarzschild and Charged Black Holes
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind
2003-05-23
We review the arguments that fundamental string states are in one to one correspondence with black hole states. We demonstrate the power of the assumption by showing that it implies that the statistical entropy of a wide class of nonextreme black holes occurring in string theory is proportional to the horizon area. However, the numerical coefficient relating the area and entropy only agrees with the Bekenstein-Hawking formula if the central charge of the string is six which does not correspond to any known string theory. Unlike the current D-brane methods the method used in this paper is applicable for the case of Schwarzschild and highly non-extreme charged black holes.
Gravitino perturbations in Schwarzschild black holes
Piedra, Owen Pavel Fernández
2010-01-01
We consider the time evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages, after an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondence between the results obtained by the above two methods, and we obtain a considerable improvement with respect to the previously obtained third order WKB results. We also show that the response of a black hole depends crucially on the spin class of the perturbing field: the quality factor becomes a decreasing function of the spin for boson perturbations , whereas the opposite situation appears for fermion ones.
Hawking radiation inside a Schwarzschild black hole
Hamilton, Andrew J S
2016-01-01
The boundary of any observer's spacetime is the boundary that divides what the observer can see from what they cannot see. The boundary of an observer's spacetime in the presence of a black hole is not the true (future event) horizon of the black hole, but rather the illusory horizon, the dimming, redshifting surface of the star that collapsed to the black hole long ago. The illusory horizon is the source of Hawking radiation seen by observers both outside and inside the true horizon. The perceived acceleration (gravity) on the illusory horizon sets the characteristic frequency scale of Hawking radiation, even if that acceleration varies dynamically, as it must do from the perspective of an infalling observer. The acceleration seen by a non-rotating free-faller both on the illusory horizon below and in the sky above is calculated for a Schwarzschild black hole. Remarkably, as an infaller approaches the singularity, the acceleration becomes isotropic, and diverging as a power law. The isotropic, power-law char...
The stable problem of the black-hole connected region in the Schwarzschild black hole
Tian, Guihua
2005-01-01
The stability of the Schwarzschild black hole is studied. Using the Painlev\\'{e} coordinate, our region can be defined as the black-hole-connected region(r>2m, see text) of the Schwarzschild black hole or the white-hole-connected region(r>2m, see text) of the Schwarzschild black hole. We study the stable problems of the black-hole-connected region. The conclusions are: (1) in the black-hole-connected region, the initially regular perturbation fields must have real frequency or complex frequen...
Entropy Spectrum of Modified Schwarzschild Black Hole via an ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Abstract. The entropy spectrum of a modified Schwarzschild black hole in the gravity's rainbow are investigated. By utilizing an action invariance of the black hole with the help of Bohr–Sommerfield quantization rule, the entropy spectrum for the modified black hole are calculated. The result of the equally ...
Gravitino Perturbations in Schwarzschild Black Holes
Fernandez Piedra, Owen Pavel
We consider the time-evolution of massless gravitino perturbations in Schwarzschild black holes, and show that as in the case of fields of other values of spin, the evolution comes in three stages. After an initial outburst as a first stage, we observe the damped oscillations characteristic of the quasinormal ringing stage, followed by long time tails. Using the sixth-order WKB method and Prony fitting of time domain data we determine the quasinormal frequencies. There is a good correspondence between the results obtained by the above two methods, and we obtain a considerable improvement with respect to the previously obtained third-order WKB results. We also show that the response of a black hole depends crucially on the spin class of the perturbing field: the quality factor becomes a decreasing function of the spin for boson perturbations, whereas the opposite situation appears for fermion ones. With respect to the late-time behavior, we found numerical evidence of a faster decay of gravitino perturbations, a result in constrast with what is known for other neutral fields.
Cardy-Verlinde Formula of Noncommutative Schwarzschild Black Hole
Directory of Open Access Journals (Sweden)
G. Abbas
2014-01-01
Full Text Available Few years ago, Setare (2006 has investigated the Cardy-Verlinde formula of noncommutative black hole obtained by noncommutativity of coordinates. In this paper, we apply the same procedure to a noncommutative black hole obtained by the coordinate coherent approach. The Cardy-Verlinde formula is entropy formula of conformal field theory in an arbitrary dimension. It relates the entropy of conformal field theory to its total energy and Casimir energy. In this paper, we have calculated the total energy and Casimir energy of noncommutative Schwarzschild black hole and have shown that entropy of noncommutative Schwarzschild black hole horizon can be expressed in terms of Cardy-Verlinde formula.
Caustic echoes from a Schwarzschild black hole
Zenginoğlu, Anıl
2012-01-01
We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sphere and confirm its exponential decay. The trapped wavefront propagates through caustics resulting in echoes that propagate to infinity. The arrival times and the decay rate of these caustic echoes are consistent with propagation along null geodesics and the large l-limit of quasinormal modes. We show that the four-fold singularity structure of the retarded Green function is due to the well-known action of a Hilbert transform on the trapped wavefront at caustics. A two-fold cycle is obtained for degenerate source-observer configurations along the caustic line, where the energy amplification increases with an inverse power of the scale of the source. Finally, we discuss the tail piece of the solution due to propagation within the light cone, up to and including nu...
Dynamics of particles around time conformal Schwarzschild black hole
Jawad, Abdul; Ali, Farhad; Shahzad, M. Umair; Abbas, G.
2016-11-01
In this work, we present the new technique for discussing the dynamical motion of neutral as well as charged particles in the absence/presence of a magnetic field around the time conformal Schwarzschild black hole. Initially, we find the numerical solutions of geodesics of the Schwarzschild black hole and the time conformal Schwarzschild black hole. We observe that the Schwarzschild spacetime admits the time conformal factor e^{ɛ f(t)}, where f( t) is an arbitrary function and ɛ is very small, which causes a perturbation in the spacetimes. This technique also re-scales the energy content of spacetime. We also investigate the thermal stability, horizons and energy conditions corresponding to time conformal Schwarzschild spacetime. Also, we examine the dynamics of a neutral and charged particle around a time conformal Schwarzschild black hole. We investigate the circumstances under which the particle can escape from the vicinity of a black hole after collision with another particle. We analyze the effective potential and effective force of a particle in the presence of a magnetic field with angular momentum graphically.
Scalar wave scattering from Schwarzschild black holes in modified gravity
Sibandze, Dan B; Maharaj, Sunil D; Nzioki, Anne Marie; Dunsby, Peter K S
2016-01-01
We consider the scattering of gravitational waves off a Schwarzschild Black Hole in $f(R)$ gravity. We find that, while the reflection and transmission coefficients for tensor waves are the same as in General Relativity, a larger fraction of scalar waves are reflected compared to what one obtains for tensors. This may provide a novel observational signature for fourth order gravity.
Transformation optics that mimics the system outside a Schwarzschild black hole
Chen, Huanyang; Miao, Rong-Xin; Li, Miao
2009-01-01
We applied the transformation optics to mimic a black hole of Schwarzschild form. Similar properties of photon sphere were also found numerically for the metamaterial black hole. Several reduced versions of the black hole systems were proposed for easier implementations.
Loop quantization of the Schwarzschild black hole.
Gambini, Rodolfo; Pullin, Jorge
2013-05-24
We quantize spherically symmetric vacuum gravity without gauge fixing the diffeomorphism constraint. Through a rescaling, we make the algebra of Hamiltonian constraints Abelian, and therefore the constraint algebra is a true Lie algebra. This allows the completion of the Dirac quantization procedure using loop quantum gravity techniques. We can construct explicitly the exact solutions of the physical Hilbert space annihilated by all constraints. New observables living in the bulk appear at the quantum level (analogous to spin in quantum mechanics) that are not present at the classical level and are associated with the discrete nature of the spin network states of loop quantum gravity. The resulting quantum space-times resolve the singularity present in the classical theory inside black holes.
Thermodynamics of Schwarzschild-Beltrami-de Sitter black hole
Liu, Hang; Meng, Xin-He
2017-09-01
In this paper, we investigate the thermodynamical properties of Schwarzschild-Beltrami-de Sitter (S-BdS) black hole introduced by Yan et al. in 2013 by introducing inertial Beltrami coordinates to traditional non-inertial Schwarzschild-de Sitter (S-dS) metric which is the exact static spherical symmetry solution of Einstein equation with a positive cosmological constant Λ. Based on this new metric, we compute entropy on all horizons and we give the entropy bound of the black hole. Hawking temperatures are calculated by considering a perturbation to entropy relations due to that the spacetime described by these inertial coordinates is no longer a stationary spacetime in which surface gravity related to Hawking temperature is defined well on killing horizon. We also get the Smarr relations and the first law of thermodynamics. We find that the S-BdS black hole seems to have similar thermodynamical properties to S-dS black hole in the comparison between their corresponding thermodynamical quantities, although the new black hole metric is described by inertial coordinates which exclude the effects of inertial force.
Accretion processes in magnetically and tidally perturbed Schwarzschild black holes
Kovács, Zoltán; Vasúth, Mátyás
2011-01-01
We study the accretion process in the region of the Preston-Poisson space-time describing a Schwarzschild black hole perturbed by asymptotically uniform magnetic field and axisymmetric tidal structures. We find that the accretion disk shrinks and the marginally stable orbit shifts towards the black hole with the perturbation. The radiation intensity of the accretion disk increases, while the radius where radiation is maximal remains unchanged. The spectrum is blue-shifted. Finally, the conversion efficiency of accreting mass into radiation is decreased by both the magnetic and the tidal perturbations.
Dynamical scalar hair formation around a Schwarzschild black hole
Benkel, Robert; Sotiriou, Thomas P.; Witek, Helvi
2016-12-01
Scalar fields coupled to the Gauss-Bonnet invariant evade the known no-hair theorems and have nontrivial configurations around black holes. We focus on a scalar field that couples linearly to the Gauss-Bonnet invariant and hence exhibits shift symmetry. We study its dynamical evolution and the formation of scalar hair in a Schwarzschild background. We show that the evolution eventually settles to the known static hairy solutions in the appropriate limit.
Bose–Einstein graviton condensate in a Schwarzschild black hole
Alfaro, Jorge; Espriu, Domènec; Gabbanelli, Luciano
2018-01-01
We analyze in detail a previous proposal by Dvali and Gómez that black holes could be treated as consisting of a Bose–Einstein condensate of gravitons. In order to do so we extend the Einstein–Hilbert action with a chemical potential-like term, thus placing ourselves in a grand-canonical ensemble. The form and characteristics of this chemical potential-like piece are discussed in some detail. We argue that the resulting equations of motion derived from the action could be interpreted as the Gross–Pitaevskii equation describing a graviton Bose–Einstein condensate trapped by the black hole gravitational field. After this, we proceed to expand the ensuring equations of motion up to second order around the classical Schwarzschild metric so that some non-linear terms in the metric fluctuation are kept. Next we search for solutions and, modulo some very plausible assumptions, we find out that the condensate vanishes outside the horizon but is non-zero in its interior. Inspired by a linearized approximation around the horizon we are able to find an exact solution for the mean-field wave function describing the graviton Bose–Einstein condensate in the black hole interior. After this, we can rederive some of the relations involving the number of gravitons N and the black hole characteristics along the lines suggested by Dvali and Gómez.
Gravitating discs around a Schwarzschild black hole: III
Semerak, O
2003-01-01
The properties of exact relativistic spacetimes of a Schwarzschild black hole surrounded by annular thin discs obtained by inversion of the first ten members of the counter-rotating Morgan-Morgan class are studied. Effects of the discs' own gravity are compared, in particular the induced deformation of the horizon and changes in the features of free circular motion in the disc plane. Within the plane of the two relevant parameters of the composite solution (relative disc mass and its inner radius), regions are specified where the discs satisfy basic physical requirements (energetic conditions and possibility, subluminality and stability of circular geodesics in terms of which they are interpreted). In contrast to the first inverted Morgan-Morgan disc, treated in previous papers, the 'higher' members of the family have to be placed farther and farther from the hole in order to remain stable when their mass is increased from zero.
Null and timelike geodesics of the Schwarzschild black hole with string cloud background
Batool, Mahwish; Hussain, Ibrar
The trajectories of the time-like and null geodesics for radial and circular motion of the Schwarzschild black hole with string cloud background are investigated and compared with the Schwarzschild case without string clouds. It is found that in the presence of the string cloud parameter, the radius of the orbits is larger than the radius of the orbits in the case of the Schwarzschild black hole without string cloud parameter. Effective potential is calculated and it is observed that as the value of string cloud parameter increases the particle can more easily escape to infinity. Stability of the circular orbits is also discussed.
Thermodynamic stability of modified Schwarzschild-AdS black hole in rainbow gravity
Energy Technology Data Exchange (ETDEWEB)
Kim, Yong-Wan [Chonbuk National University, Research Institute of Physics and Chemistry, Jeonju (Korea, Republic of); Kim, Seung Kook [Seonam University, Department of Physical Therapy, Namwon (Korea, Republic of); Park, Young-Jai [Sogang University, Department of Physics, Seoul (Korea, Republic of)
2016-10-15
In this paper, we have extended the previous study of the thermodynamics and phase transition of the Schwarzschild black hole in the rainbow gravity to the Schwarzschild-AdS black hole where metric depends on the energy of a probe. Making use of the Heisenberg uncertainty principle and the modified dispersion relation, we have obtained the modified local Hawking temperature and thermodynamic quantities in an isothermal cavity. Moreover, we carry out the analysis of constant temperature slices of a black hole. As a result, we have shown that there also exists another Hawking-Page-like phase transition in which case a locally stable small black hole tunnels into a globally stable large black hole as well as the standard Hawking-Page phase transition from a hot flat space to a black hole. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Feng, Z.W.; Zu, X.T. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Li, H.L. [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Yang, S.Z. [China West Normal University, Physics and Space Science College, Nanchong (China)
2016-04-15
We investigate the thermodynamics of Schwarzschild-Tangherlini black hole in the context of the generalized uncertainty principle (GUP). The corrections to the Hawking temperature, entropy and the heat capacity are obtained via the modified Hamilton-Jacobi equation. These modifications show that the GUP changes the evolution of the Schwarzschild-Tangherlini black hole. Specially, the GUP effect becomes susceptible when the radius or mass of the black hole approaches the order of Planck scale, it stops radiating and leads to a black hole remnant. Meanwhile, the Planck scale remnant can be confirmed through the analysis of the heat capacity. Those phenomena imply that the GUP may give a way to solve the information paradox. Besides, we also investigate the possibilities to observe the black hole at the Large Hadron Collider (LHC), and the results demonstrate that the black hole cannot be produced in the recent LHC. (orig.)
Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...
Indian Academy of Sciences (India)
In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is used to ...
Canonical Ensemble Model for Black Hole Horizon of Schwarzschild ...
Indian Academy of Sciences (India)
Abstract. In this paper, we use the canonical ensemble model to discuss the radiation of a Schwarzschild–de Sitter black hole on the black hole horizon. Using this model, we calculate the probability distribution from function of the emission shell. And the statistical meaning which compare with the distribution function is ...
Features and stability analysis of non-Schwarzschild black hole in quadratic gravity
Energy Technology Data Exchange (ETDEWEB)
Cai, Yi-Fu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); Department of Physics, McGill University,Montréal, Quebec, H3A 2T8 (Canada); School of Physical Sciences, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Zhang, Hezi [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); School of Physical Sciences, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Liu, Junyu [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); School of the Gifted Young, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Cheng, Gong [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China); School of Physical Sciences, University of Science and Technology of China,Hefei, Anhui, 230026 (China); Wang, Min [Faculty of Materials and Energy, Southwest University,Chongqing, 400715 (China); CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy,University of Science and Technology of China, Chinese Academy of Sciences,Hefei, Anhui, 230026 (China)
2016-01-19
Black holes are found to exist in gravitational theories with the presence of quadratic curvature terms and behave differently from the Schwarzschild solution. We present an exhaustive analysis for determining the quasinormal modes of a test scalar field propagating in a new class of black hole backgrounds in the case of pure Einstein-Weyl gravity. Our result shows that the field decay of quasinormal modes in such a non-Schwarzschild black hole behaves similarly to the Schwarzschild one, but the decay slope becomes much smoother due to the appearance of the Weyl tensor square in the background theory. We also analyze the frequencies of the quasinormal modes in order to characterize the properties of new back holes, and thus, if these modes can be the source of gravitational waves, the underlying theories may be testable in future gravitational wave experiments. We briefly comment on the issue of quantum (in)stability in this theory at linear order.
Formation of the remnant close to Planck scale and the Schwarzschild black hole with global monopole
Li, Hui-Ling; Chen, Shuai-Ru
2017-10-01
In this paper, we use the generalized uncertainty principle (GUP) and quantum tunneling method to research the formation of the remnant from a Schwarzschild black hole with global monopole. Based on the corrected Hamilton-Jacobi equation, the corrections to the Hawking temperature, heat capacity and entropy are calculated. We not only find the remnant close to Planck scale by employing GUP, but also research the thermodynamic stability of the black hole remnant according to the phase transition and heat capacity.
Asymptotic description of a test particle around a Schwarzschild black hole
Rosales-Vera, Marco
2018-03-01
In this paper, the movement of a test particle around a Schwarzschild black hole is revisited. Using matched asymptotic expansions, approximate analytical expressions for the orbit of the test particle in the case of large eccentricity are found. The asymptotic solutions are compared with numerical and analytical results.
Augousti, A. T.; Gawelczyk, M.; Siwek, A.; Radosz, A.
2012-01-01
The problem of communication between observers in the vicinity of a black hole in a Schwarzschild metric is considered. The classic example of an infalling observer Alice and a static distant mother station (MS) is extended to include a second infalling observer Bob, who follows Alice in falling towards the event horizon. Kruskal coordinates are…
Exact Schwarzschild-de Sitter black holes in a family of massive gravity models
Nieuwenhuizen, T.M.
2011-01-01
The Schwarzschild-de Sitter and Reissner-Nordström-de Sitter black hole metrics appear as exact solutions in the recently formulated massive gravity of de Rham, Gabadadze and Tolley, where the mass term sets the curvature scale. They occur within a two-parameter family of de Rham, Gabadadze and
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black Hole for Electromagnetic Perturbation
Wang, Chunyan; Gao, Yajun; Ding, Wenbo; Yu, Qingxu
2017-12-01
In this work, we investigate the electromagnetic perturbation around a quantum-corrected Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third-order WKB approximation. The numerical results obtained showed that the complex frequencies depend on the quantum correction parameter a of a black hole, which the real parts and the magnitudes of the imaginary parts of quasinormal modes decrease with the increase in factor a. These conclusions show that the electromagnetic perturbation around the black hole oscillate and damp more slowly owing to the presence of the quantum correction parameter.
Entropy corresponding to the interior of a Schwarzschild black hole
Majhi, Bibhas Ranjan; Samanta, Saurav
2017-07-01
Interior volume within the horizon of a black hole is a non-trivial concept which turns out to be very important to explain several issues in the context of quantum nature of black hole. Here we show that the entropy, contained by the maximum interior volume for massless modes, is proportional to the Bekenstein-Hawking expression. The proportionality constant is less than unity implying the horizon bears maximum entropy than that by the interior. The derivation is very systematic and free of any ambiguity. To do so the precise value of the energy of the modes, living in the interior, is derived by constraint analysis. Finally, the implications of the result are discussed.
Evolution of inspiral orbits around a Schwarzschild black hole
Warburton, Niels; Akcay, Sarp; Barack, Leor; Gair, Jonathan R; Sago, Norichika
2011-01-01
We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravitational self-force (GSF) effect, including conservative corrections. The GSF information is encapsulated in an analytic interpolation formula based on numerical GSF data for over a thousand sample geodesic orbits. We assess the importance of incl...
Rayimbaev, J. R.
2016-09-01
The motion of a magnetized particle orbiting around non-Schwarzschild black hole immersed in an external uniform magnetic field is considered. The influence of deformation parameter h to effective potential of the radial motion of the magnetized particle around non-Schwarzschild black hole using Hamilton-Jacobi formalism is studied. We have obtained numerical values of area Δ ρ where magnetized particles can move which is expanding (narrowing) due to the effect of the negative (positive) deformation. Finally, we have studied the collision of two particles (magnetized-neutral, magnetized-magnetized, magnetized-charged) in non-Schwarzschild spacetime and got the center-of-mass energy (E_{c.m}) for the particles. Moreover, we have found the capture radius (r_{cap}) - the distance from the central object to the point where particles collide and fall down to the central compact object. It is shown that non-Schwarzschild black holes could also act as particle accelerators with arbitrarily high center-of-mass energy.
Evolution of inspiral orbits around a Schwarzschild black hole
Warburton, Niels; Barack, Leor; Gair, Jonathan R; Sago, Norichika
2011-01-01
We present results from calculations of the orbital evolution in eccentric binaries of nonrotating black holes with extreme mass-ratios. Our inspiral model is based on the method of osculating geodesics, and is the first to incorporate the full gravitational self-force (GSF) effect, including conservative corrections. The GSF information is encapsulated in an analytic interpolation formula based on numerical GSF data for over a thousand sample geodesic orbits. We assess the importance of including conservative GSF corrections in waveform models for gravitational-wave searches.
Quantum-mechanical corrections to the Schwarzschild black-hole metric
Bargueño, P.; Bravo Medina, S.; Nowakowski, M.; Batic, D.
2017-03-01
Motivated by quantum-mechanical corrections to the Newtonian potential, which can be translated into a {\\hbar} -correction to the g 00 component of the Schwarzschild metric, we construct a quantum-mechanically corrected metric assuming -g00=grr . We show how the Bekenstein black-hole entropy S receives its logarithmic contribution provided the quantum-mechanical corrections to the metric are negative. In this case the standard horizon at the Schwarzschild radius r S increases by small terms proportional to {\\hbar} and a remnant of the order of Planck mass emerges.
The golden ratio in Schwarzschild-Kottler black holes
Energy Technology Data Exchange (ETDEWEB)
Cruz, Norman [Universidad de Santiago de Chile, Departamento de Fisica, Facultad de Ciencia, Santiago 2 (Chile); Olivares, Marco [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)
2017-02-15
In this paper we show that the golden ratio is present in the Schwarzschild-Kottler metric. For null geodesics with maximal radial acceleration, the turning points of the orbits are in the golden ratio Φ = (√(5)-1)/2. This is a general result which is independent of the value and sign of the cosmological constant Λ. (orig.)
Entropy Spectrum of Modified Schwarzschild Black Hole via an ...
Indian Academy of Sciences (India)
526. Cheng-Zhou Liu where f1 and f2 are two energy functions and by this the present modified. Schwarzschild spacetime is endowed with Planck scale modifications. For the non-charged spherically static symmetric spacetime, the only dynamic degree freedom can be written as qr, the Hamilton's equation ˙r = dr dτ. = dHτ.
From the Schwarzschild Anti-de Sitter Black Hole to the Conformal Field Theory
Directory of Open Access Journals (Sweden)
Akram Sadat Sefiedgar
2015-01-01
Full Text Available The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS black holes due to rainbow gravity model. Using the correspondence between a (d+1-dimensional SAdS black hole and a conformal filed theory in d-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.
da Rocha, R.; Sobreiro, R. F.; Tomaz, A. A.
2017-12-01
Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild-de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes.
Slowly decaying resonances of massive scalar fields around Schwarzschild-de Sitter black holes
Toshmatov, Bobir; Stuchlík, Zdeněk
2017-07-01
We study in special limiting cases quasinormal modes of massive scalar fields in the Schwarzschild-de Sitter black hole backgrounds. We determine the lower limit on the mass parameter of the scalar field that allows the waves with quasinormal frequencies to propagate to infinity, showing that it depends on the spacetime parameters only. Then we discuss in the large multipole number limit quasinormal modes, whose frequencies can be directly related to the unstable circular photon geodesics. In the large scalar mass approximation, we demonstrate the new interesting phenomenon of slowly decaying resonances, that are strongly related to the maximum of the effective potential of the massive scalar field, which is located at the static radius of the Schwarzschild-de Sitter spacetimes, where the cosmic repulsion is just balanced by the black hole attraction.
Scattering of Ricci scalar perturbations from Schwarzschild black holes in modified gravity
Energy Technology Data Exchange (ETDEWEB)
Sibandze, Dan B.; Goswami, Rituparno; Maharaj, Sunil D.; Nzioki, Anne Marie [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics Statistics and Computer Science, Private Bag X54001, Durban (South Africa); Dunsby, Peter K.S. [University of Cape Town, Department of Mathematics and Applied Mathematics and ACGC, Cape Town (South Africa)
2017-06-15
It has already been shown that the gravitational waves emitted from a Schwarzschild black hole in f(R) gravity have no signatures of the modification of gravity from General Relativity, as the Regge-Wheeler equation remains invariant. In this paper we consider the perturbations of Ricci scalar in a vacuum Schwarzschild spacetime, which is unique to higher order theories of gravity and is absent in General Relativity. We show that the equation that governs these perturbations can be reduced to a Volterra integral equation. We explicitly calculate the reflection coefficients for the Ricci scalar perturbations, when they are scattered by the black hole potential barrier. Our analysis shows that a larger fraction of these Ricci scalar waves are reflected compared to the gravitational waves. This may provide a novel observational signature for fourth order gravity. (orig.)
Real Scalar Field Scattering with Polynomial Approximation around Schwarzschild-de Sitter Black-hole
Liu, Molin; Liu, Hongya; Zhang, Jingfei; Yu, Fei
2008-01-01
As one of the fitting methods, the polynomial approximation is effective to process sophisticated problem. In this paper, we employ this approach to handle the scattering of scalar field around the Schwarzschild-de Sitter black-hole. The complex relationship between tortoise coordinate and radial coordinate is replaced by the approximate polynomial. The Schr$\\ddot{o}$dinger-like equation, the real boundary conditions and the polynomial approximation construct a full Sturm-Liouville type probl...
Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole.
Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V
2018-03-06
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory.This article is part of the Theo Murphy meeting issue 'Higgs Cosmology'. © 2018 The Author(s).
Kokkotas, K. D.; Konoplya, R. A.; Zhidenko, A.
2017-09-01
Higher derivative extensions of Einstein gravity are important within the string theory approach to gravity and as alternative and effective theories of gravity. H. Lü, A. Perkins, C. Pope, and K. Stelle [Phys. Rev. Lett. 114, 171601 (2015), 10.1103/PhysRevLett.114.171601] found a numerical solution describing a spherically symmetric non-Schwarzschild asymptotically flat black hole in Einstein gravity with added higher derivative terms. Using the general and quickly convergent parametrization in terms of the continued fractions, we represent this numerical solution in the analytical form, which is accurate not only near the event horizon or far from the black hole, but in the whole space. Thereby, the obtained analytical form of the metric allows one to study easily all the further properties of the black hole, such as thermodynamics, Hawking radiation, particle motion, accretion, perturbations, stability, quasinormal spectrum, etc. Thus, the found analytical approximate representation can serve in the same way as an exact solution.
Accretion of a symmetry-breaking scalar field by a Schwarzschild black hole
Traykova, Dina; Braden, Jonathan; Peiris, Hiranya V.
2018-01-01
We simulate the behaviour of a Higgs-like field in the vicinity of a Schwarzschild black hole using a highly accurate numerical framework. We consider both the limit of the zero-temperature Higgs potential and a toy model for the time-dependent evolution of the potential when immersed in a slowly cooling radiation bath. Through these numerical investigations, we aim to improve our understanding of the non-equilibrium dynamics of a symmetry-breaking field (such as the Higgs) in the vicinity of a compact object such as a black hole. Understanding this dynamics may suggest new approaches for studying properties of scalar fields using black holes as a laboratory. This article is part of the Theo Murphy meeting issue `Higgs Cosmology'.
von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole
Yonika, Alec; Khanna, Gaurav; Singh, Parampreet
2018-02-01
Though loop quantization of several spacetimes has exhibited existence of a bounce via an explicit evolution of states using numerical simulations, the question about the way central singularity is resolved in the black hole interior has remained open. The quantum Hamiltonian constraint in loop quantization turns out to be a finite difference equation whose stability is important to understand to gain insights on the viability of the underlying quantization and resulting physical implications. We take first steps towards addressing these issues for a loop quantization of the Schwarzschild interior recently given by Corichi and Singh. Von-Neumann stability analysis is performed using separability of solutions as well as a full two dimensional quantum difference equation. This results in a stability condition for black holes which have a very large mass compared to the Planck mass. For black holes of smaller masses evidence of numerical instability is found. In addition, stability analysis for macroscopic black holes leads to a constraint on the choice of the allowed states in numerical evolution. States which are not sharply peaked in accordance with this constraint result in instabilities. With the caveat of using kinematical norm, sharply peaked Gaussian states are evolved using the quantum difference equation and singularity resolution is obtained. A bounce is found for one of the triad variables, but for the other triad variable singularity resolution amounts to a non-singular passage through the zero volume. States are found to be peaked at the classical trajectory for a long time before and after the singularity resolution, and retain their semi-classical character across the zero volume. Our main result is that quantum bounce occurs in loop quantized Schwarzschild interior at least for macroscopic black holes. Instability of small black holes which can be a result of using kinematical norm nevertheless signifies the need of further understanding of the
Perturbation of a Schwarzschild Black Hole Due to a Rotating Thin Disk
Čížek, P.; Semerák, O.
2017-09-01
Will, in 1974, treated the perturbation of a Schwarzschild black hole due to a slowly rotating, light, concentric thin ring by solving the perturbation equations in terms of a multipole expansion of the mass-and-rotation perturbation series. In the Schwarzschild background, his approach can be generalized to perturbation by a thin disk (which is more relevant astrophysically), but, due to rather bad convergence properties, the resulting expansions are not suitable for specific (numerical) computations. However, we show that Green’s functions, represented by Will’s result, can be expressed in closed form (without multipole expansion), which is more useful. In particular, they can be integrated out over the source (a thin disk in our case) to yield good converging series both for the gravitational potential and for the dragging angular velocity. The procedure is demonstrated, in the first perturbation order, on the simplest case of a constant-density disk, including the physical interpretation of the results in terms of a one-component perfect fluid or a two-component dust in a circular orbit about the central black hole. Free parameters are chosen in such a way that the resulting black hole has zero angular momentum but non-zero angular velocity, as it is just carried along by the dragging effect of the disk.
(Non-adiabatic) string creation on nice slices in Schwarzschild black holes
Puhm, Andrea; Rojas, Francisco; Ugajin, Tomonori
2017-04-01
Nice slices have played a pivotal role in the discussion of the black hole information paradox as they avoid regions of strong spacetime curvature and yet smoothly cut through the infalling matter and the outgoing Hawking radiation, thus, justifying the use of low energy field theory. To avoid information loss it has been argued recently, however, that local effective field theory has to break down at the horizon. To assess the extent of this breakdown in a UV complete framework we study string-theoretic effects on nice slices in Schwarzschild black holes. Our purpose is two-fold. First, we use nice slices to address various open questions and caveats of [1] where it was argued that boost-enhanced non-adiabatic string-theoretic effects at the horizon could provide a dynamical mechanism for the firewall. Second, we identify two non-adiabatic effects on nice slices in Schwarzschild black holes: pair production of open strings near the horizon enhanced by the presence of the infinite tower of highly excited string states and a late-time non-adiabatic effect intrinsic to nice slices.
Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole
Directory of Open Access Journals (Sweden)
Alexis Larrañaga
2013-01-01
Full Text Available The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD. Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.
Self-consistent orbital evolution of a particle around a Schwarzschild black hole.
Diener, Peter; Vega, Ian; Wardell, Barry; Detweiler, Steven
2012-05-11
The motion of a charged particle is influenced by the self-force arising from the particle's interaction with its own field. In a curved spacetime, this self-force depends on the entire past history of the particle and is difficult to evaluate. As a result, all existing self-force evaluations in curved spacetime are for particles moving along a fixed trajectory. Here, for the first time, we overcome this long-standing limitation and present fully self-consistent orbits and waveforms of a scalar charged particle around a Schwarzschild black hole.
Barack, Leor; Sago, Norichika
2009-05-15
The innermost stable circular orbit (ISCO) of a test particle around a Schwarzschild black hole of mass M has (areal) radius r_{isco}=6MG/c;{2}. If the particle is endowed with mass micro(radius and frequency, at leading order in the mass ratio micro/M. We obtain, in the Lorenz gauge, Deltar_{isco}=-3.269(+/-0.003)microG/c;{2} and DeltaOmega_{isco}/Omega_{isco}=0.4870(+/-0.0006)micro/M. We discuss the implications of our result within the context of the extreme-mass-ratio binary inspiral problem.
General theories of linear gravitational perturbations to a Schwarzschild black hole
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-02-01
We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.
Marginally Stable Circular Orbits in Schwarzschild Black Hole Surrounded by Quintessence Matter
Hussain, Ibrar
2016-01-01
Marginally stable circular orbits (MSCOs) of a massive test particle are investigated in the spacetime geometry of Schwarzschild black hole surrounded by quintessence. For that matter we consider three important scenarios where the equation of state parameter $\\omega_{q}$, has one of the following forms (i) $\\omega_q=-1$ (ii) $\\omega_q=-2/3$ and (iii) $\\omega_q= -1/3$. The existence of such marginally stable circular orbits in these scenarios depend on the range of normalization factor $\\alpha$. Briefly, we show that in the first case such orbits exist only if $0<\\alpha<4/16875$. Moreover in the second case which is a special Kiselev black hole it is found that MSCOs exist when the value of the normalization factor satisfy $0<\\alpha\\leq 0.00536165238$. In the last case the MSCOs are also shown to exist.
Thermodynamics of the Schwarzschild-AdS Black Hole with a Minimal Length
Directory of Open Access Journals (Sweden)
Yan-Gang Miao
2017-01-01
Full Text Available Using the mass-smeared scheme of black holes, we study the thermodynamics of black holes. Two interesting models are considered. One is the self-regular Schwarzschild-AdS black hole whose mass density is given by the analogue to probability densities of quantum hydrogen atoms. The other model is the same black hole but whose mass density is chosen to be a rational fractional function of radial coordinates. Both mass densities are in fact analytic expressions of the δ-function. We analyze the phase structures of the two models by investigating the heat capacity at constant pressure and the Gibbs free energy in an isothermal-isobaric ensemble. Both models fail to decay into the pure thermal radiation even with the positive Gibbs free energy due to the existence of a minimal length. Furthermore, we extend our analysis to a general mass-smeared form that is also associated with the δ-function and indicate the similar thermodynamic properties for various possible mass-smeared forms based on the δ-function.
Kanti, P.; Pappas, T.
2017-07-01
The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.
Papadopoulos, Demetrios B; Kokkotas, Kostas D; Stergioulas, Nikolaos
2015-01-01
We obtain an approximate solution for the motion of a charged particle around a Schwarzschild black hole immersed in a weak dipolar magnetic field. We focus on eccentric bound orbits in the equatorial plane of the Schwarzschild black hole and derive an analytic expression for the spectral distribution of the electromagnetic emission from a charged particle on such an orbit. Two sets of harmonic contributions appear, with specific frequency spacing. The expression can be written in compact form, if it is truncated up to the lowest order harmonic contributions.
Mishra, Subodha
2007-01-01
Using a single particle density distribution for a system of self-gravitating particles which ultimately forms a black hole, we from a condensed matter point of view derive the Schwarzschild radius and by including the quantum mechanical exchange energy we find a small correction to the Schwarzschild radius, which we designate as the skin of the black hole.
Hawking radiation as tunneling in Schwarzschild anti-de Sitter black hole
Sefiedgar, A. S.; Ashrafinejad, A.
2017-08-01
The Hawking radiation from a (d+1) -dimensional Schwarzschild Anti-de Sitter (SAdS) black hole is investigated within rainbow gravity. Based on the method proposed by Kraus, Parikh and Wilczek, the Hawking radiation is considered as a tunneling process across the horizon. The emission rate of massless particles which are tunneling across the quantum-corrected horizon is calculated. Enforcing the energy conservation law leads to a dynamical geometry. Both the dynamical geometry and the quantum effects of space-time yield some corrections to the emission rate. The corrected radiation spectrum is not purely thermal. The emission rate is related to the changes of modified entropy in rainbow gravity and the corrected thermal spectrum may be consistent with an underlying unitary quantum theory. The correlations between emitted particles are also investigated in order to address the recovery of information.
Gravitational self-force effects on a point mass moving around a Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Sago, Norichika [School of Mathematics, University of Southampton, University Road, Southampton, SO17 1BJ (United Kingdom)
2009-05-07
We consider the effects of the gravitational self-force on a point mass moving in a generic (eccentric) orbit around a Schwarzschild black hole. We developed a numerical code to solve the metric perturbation equations in the time domain, under the Lorenz gauge condition, and to implement the so-called 'mode sum' scheme to obtain the self-force. We use our numerical results to investigate both dissipative and conservative self-force effects on the particle's orbits. To check the consistency of our calculation, we (1) compare our results with independent calculations based on a different gauge, in the special case of a circular orbit (by considering gauge-invariant quantities); (2) derive the energy and angular momentum fluxes of emitted gravitational waves and compare with results from standard Teukolsky-based calculations.
Energy Technology Data Exchange (ETDEWEB)
El-Menoufi, Basem Kamal [Department of Physics, University of Massachusetts,Amherst, MA 01003 (United States)
2016-05-05
In the context of effective field theory, we consider quantum gravity with minimally coupled massless particles. Fixing the background geometry to be of the Kerr-Schild type, we fully determine the one-loop effective action of the theory whose finite non-local part is induced by the long-distance portion of quantum loops. This is accomplished using the non-local expansion of the heat kernel in addition to a non-linear completion technique through which the effective action is expanded in gravitational curvatures. Via Euclidean methods, we identify a logarithmic correction to the Bekenstein-Hawking entropy of Schwarzschild black hole. Using dimensional transmutation the result is shown to exhibit an interesting interplay between the UV and IR properties of quantum gravity.
Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole
Rioseco, Paola
2016-01-01
We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite ex...
Proper temperature of the Schwarzschild AdS black hole revisited
Eune, Myungseok; Kim, Wontae
2017-10-01
The Unruh temperature calculated by using the global embedding of the Schwarzschild AdS spacetime into the Minkowski spacetime was identified with the local proper temperature; however, it became imaginary in a certain region outside the event horizon. So, the temperature was assumed to be zero of non-thermal radiation for that region. In this work, we revisit this issue in an exactly soluble two-dimensional Schwarzschild AdS black hole and present an alternative resolution to this problem in terms of the Tolman's procedure. However, the process appears to be non-trivial in the sense that the original procedure assuming the traceless energy-momentum tensor should be extended in such a way that it should cover the non-vanishing case of the energy-momentum tensor in the presence of the trace anomaly. Consequently, we show that the proper temperature turns out to be real everywhere outside the event horizon without any imaginary value, in particular, it vanishes at both the horizon and the asymptotic infinity.
Directory of Open Access Journals (Sweden)
Sergio Mendoza
2009-01-01
Full Text Available We present heuristic arguments suggesting that if EM waves with wavelengths somewhat larger than the Schwarzschild radius of a black hole were fully absorbed by it, the second law of thermodynamics would be violated, under the Bekenstein interpretation of the area of a black hole as a measure of its entropy. Thus, entropy considerations make the well known fact that large wavelengths are only marginally absorbed by black holes, a natural consequence of thermodynamics. We also study numerically the ingoing radial propagation of a scalar field wave in a Schwarzschild metric, relaxing the standard assumption which leads to the eikonal equation, that the wave has zero spatial extent. We find that if these waves have wavelengths larger that the Schwarzschild radius, they are very substantially reflected, fully to numerical accuracy. Interestingly, this critical wavelength approximately coincides with the one derived from entropy considerations of the EM field, and is consistent with well known limit results of scattering in the Schwarzschild metric. The propagation speed is also calculated and seen to differ from the value c, for wavelengths larger than Rs, in the vicinity of Rs. As in all classical wave phenomena, whenever the wavelength is larger or comparable to the physical size of elements in the system, in this case changes in the metric, the zero extent Ã¢Â€Â™particleÃ¢Â€Â™ description fails, and the wave nature becomes apparent.
Gravitational self-force on a particle in eccentric orbit around a Schwarzschild black hole
Barack, Leor
2010-01-01
We present a numerical code for calculating the local gravitational self-force acting on a pointlike particle in a generic (bound) geodesic orbit around a Schwarzschild black hole. The calculation is carried out in the Lorenz gauge: For a given geodesic orbit, we decompose the Lorenz-gauge metric perturbation equations (sourced by the delta-function particle) into tensorial harmonics, and solve for each harmonic using numerical evolution in the time domain (in 1+1 dimensions). The physical self-force along the orbit is then obtained via mode-sum regularization. The total self-force contains a dissipative piece as well as a conservative piece, and we describe a simple method for disentangling these two pieces in a time-domain framework. The dissipative component is responsible for the loss of orbital energy and angular momentum through gravitational radiation; as a test of our code we demonstrate that the work done by the dissipative component of the computed force is precisely balanced by the asymptotic fluxe...
Directory of Open Access Journals (Sweden)
R. da Rocha
2017-12-01
Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschildâde Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle
Kim, Jinho; Garain, Sudip K.; Balsara, Dinshaw S.; Chakrabarti, Sandip K.
2017-11-01
We study time evolution of sub-Keplerian transonic accretion flows on to black holes using a general relativistic numerical simulation code. We perform simulations in Schwarzschild space-time. We first compare one-dimensional simulation results with theoretical results and validate the performance of our code. Next, we present results of axisymmetric, two-dimensional simulation of advective flows. We find that even in this case, for which no complete theoretical analysis is present in the literature, steady-state shock formation is possible.
QED loop effects in the spacetime background of a Schwarzschild black hole
Emelyanov, Viacheslav A.
2017-12-01
The black-hole evaporation implies that the quantum-field propagators in a local Minkowski frame acquire a correction, which gives rise to this process. The modification of the propagators causes, in turn, non-trivial local effects due to the radiative/loop diagrams in non-linear QFTs. In particular, there should be imprints of the evaporation in QED, if one goes beyond the tree-level approximation. Of special interest in this respect is the region near the black-hole horizon, which, already at tree level, appears to show highly non-classical features, e.g., negative energy density and energy flux into the black hole.
The self-force on a non-minimally coupled static scalar charge outside a Schwarzschild black hole
Energy Technology Data Exchange (ETDEWEB)
Cho, Demian H J; Tsokaros, Antonios A; Wiseman, Alan G [Department of Physics, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201 (United States)
2007-03-07
The finite part of the self-force on a static, non-minimally coupled scalar test charge outside a Schwarzschild black hole is zero. This result is determined from the work required to slowly raise or lower the charge through an infinitesimal distance. Unlike similar force calculations for minimally-coupled scalar charges or electric charges, we find that we must account for a flux of field energy that passes through the horizon and changes the mass and area of the black hole when the charge is displaced. This occurs even for an arbitrarily slow displacement of the non-minimally coupled scalar charge. For a positive coupling constant, the area of the hole increases when the charge is lowered and decreases when the charge is raised. The fact that the self-force vanishes for a static, non-minimally coupled scalar charge in Schwarzschild spacetime agrees with a simple prediction of the Quinn-Wald axioms. However, Zel'nikov and Frolov computed a non-vanishing self-force for a non-minimally coupled charge. Our method of calculation closely parallels the derivation of Zel'nikov and Frolov, and we show that their omission of this unusual flux is responsible for their (incorrect) result. When the flux is accounted for, the self-force vanishes. This correction eliminates a potential counter example to the Quinn-Wald axioms. The fact that the area of the black hole changes when the charge is displaced brings up two interesting questions that did not arise in similar calculations for static electric charges and minimally coupled scalar charges. (1) How can we reconcile a decrease in the area of the black hole horizon with the area theorem which concludes that {delta}Area{sub horizon} {>=} 0? The key hypothesis of the area theorem is that the stress-energy tensor must satisfy a null-energy condition T{sup {alpha}}{sup {beta}}l{sub {alpha}}l{sub {beta}} {>=} 0 for any null vector l{sub {alpha}}. We explicitly show that the stress-energy associated with a non
Kundu, Prasun K.
2017-11-01
In a comment published several years ago in this journal, Mitra [J. Math. Phys. 50, 042502 (2009)] has claimed to prove that a neutral point particle in general relativity as described by the Schwarzschild metric must have zero gravitational mass, i.e., the mass parameter M0 of a Schwarzschild black hole necessarily vanishes. It is shown that the purported proof is incorrect. The error stems from a basic misunderstanding of the mathematical description of coordinate volume element in a differentiable manifold.
Hawking Radiation from a (4+n)-dimensional Black Hole Exact Results for the Schwarzschild Phase
Harris, C M; Harris, Chris M.; Kanti, Panagiota
2003-01-01
We start our analysis by deriving a master equation that describes the motion of a field with arbitrary spin $s$ on a 3-brane embedded in a non-rotating, uncharged (4+n)-dimensional black hole background. By numerical analysis, we derive exact results for the greybody factors and emission rates for scalars, fermions and gauge bosons emitted directly on the brane, for all energy regimes and for an arbitrary number $n$ of extra dimensions. The relative emissivities on the brane for different types of particles are computed and their dependence on the dimensionality of spacetime is demonstrated -- we therefore conclude that both the amount and the type of radiation emitted can be used for the determination of $n$ if the Hawking radiation from these black holes is observed. The emission of scalar modes in the bulk from the same black holes is also studied and the relative bulk-to-brane energy emissivity is accurately computed. We demonstrate that this quantity varies considerably with $n$ but always remains small...
Kanti, P.; Pappas, T.; Pappas, N.
2014-12-01
In this paper, we consider the propagation of scalar particles in a higher-dimensional Schwarzschild-de Sitter black-hole spacetime, both on the brane and in the bulk. Our analysis applies for arbitrary partial modes and for both minimal and nonminimal coupling of the scalar field. A general expression for the greybody factor is analytically derived in each case, and its low-energy behavior is studied in detail. Its profile in terms of scalar properties (angular-momentum number and nonminimal coupling parameter) and spacetime properties (number of extra dimensions and cosmological constant) is thoroughly investigated. In contrast to previous studies, the effect of the cosmological constant is taken into account both close to and far away from the black-hole horizon. The dual role of the cosmological constant, that may act either as a helping agent to the emission of scalar particles or as a deterring effect depending on the value of the nonminimal coupling parameter, is also demonstrated.
Barack, Leor
2011-01-01
We study conservative finite-mass corrections to the motion of a particle in a bound (eccentric) strong-field orbit around a Schwarzschild black hole. We assume the particle's mass $\\mu$ is much smaller than the black hole mass $M$, and explore post-geodesic corrections of $O(\\mu/M)$. Our analysis uses numerical data from a recently developed code that outputs the Lorenz-gauge gravitational self-force (GSF) acting on the particle along the eccentric geodesic. First, we calculate the $O(\\mu/M)$ conservative correction to the periastron advance of the orbit, as a function of the (gauge dependent) semi-latus rectum and eccentricity. A gauge-invariant description of the GSF precession effect is made possible in the circular-orbit limit, where we express the correction to the periastron advance as a function of the invariant azimuthal frequency. We compare this relation with results from fully nonlinear numerical-relativistic simulations. In order to obtain a gauge-invariant measure of the GSF effect for fully ecc...
Interactive Visualization of a Thin Disc around a Schwarzschild Black Hole
Muller, Thomas; Frauendiener, Jorg
2012-01-01
In a first course in general relativity, the Schwarzschild spacetime is the most discussed analytic solution to Einstein's field equations. Unfortunately, there is rarely enough time to study the optical consequences of the bending of light for some advanced examples. In this paper, we present how the visual appearance of a thin disc around a…
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black ...
Indian Academy of Sciences (India)
corrected Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third-order WKB approximation. The numerical results obtained showed that the complex frequencies depend on the quantum ...
Huang, ChunYu; Ma, Wen-chao; Wang, Dong; Ye, Liu
2018-01-01
In this work, the effect of Hawking radiation on the quantum Fisher information (QFI) of Dirac particles is investigated in the background of a Schwarzschild black hole. Interestingly, it has been verified that the QFI with respect to the weight parameter θ of a target state is always independent of the Hawking temperature T. This implies that if we encode the information on the weight parameter, then we can affirm that the corresponding accuracy of the parameter estimation will be immune to the Hawking effect. Besides, it reveals that the QFI with respect to the phase parameter φ exhibits a decay behavior with the increase in the Hawking temperature T and converges to a nonzero value in the limit of infinite Hawking temperature T. Remarkably, it turns out that the function F_φ on θ =π \\big /4 symmetry was broken by the influence of the Hawking radiation. Finally, we generalize the case of a three-qubit system to a case of a N-qubit system, i.e., |ψ > _{1,2,3,\\ldots ,N} =(cos θ | 0 > ^{⊗ N}+sin θ e^{iφ }| 1 > ^{⊗ N}) and obtain an interesting result: the number of particles in the initial state does not affect the QFI F_θ , nor the QFI F_φ . However, with the increasing number of particles located near the event horizon, F_φ will be affected by Hawking radiation to a large extent, while F_θ is still free from disturbance resulting from the Hawking effects.
String physics and black holes
Energy Technology Data Exchange (ETDEWEB)
Susskind, L. [Stanford Univ., CA (United States). Dept. of Physics; Uglum, J. [Stanford Univ., CA (United States). Dept. of Physics
1996-02-01
In these lectures we review the quantum physics of large Schwarzschild black holes. Hawking`s information paradox, the theory of the stretched horizon and the principle of black hole complementarity are covered. We then discuss how the ideas of black hole complementarity may be realized in string theory. Finally, arguments are given that the world may be a hologram. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Xu, Shuai; Song, Xue-ke; Shi, Jia-dong; Ye, Liu, E-mail: yeliu@ahu.edu.cn
2014-06-02
In this Letter, we analytically explore the effect of the Hawking radiation on the quantum correlation and Bell non-locality for Dirac particles in the background of Schwarzschild black hole. It is shown that when the Hawking effect is almost nonexistent, corresponding to the case of an almost extreme black hole, the quantum properties of physically accessible state are the same for the initial situation. For finite Hawking temperature T, the accessible quantum correlation monotonously decreases along with increasing T owing to the thermal fields generated by the Hawking effect, and the accessible quantum non-locality will be disappeared when the Hawking temperature is more than a fixed value which increases with the parameter r of Werner state growing. Then we analyze the redistribution of quantum correlation, and find that for the case of the Hawking temperature being infinite, corresponding to the case of the black hole evaporating completely, the quantum correlation of physically accessible state is equal to the one of the inaccessible states. Moreover, due to the Pauli exclusion principle and the differences between Fermi–Dirac and Bose–Einstein statistics, for the Dirac fields the accessible classical correlation decreases with increase of the Hawking temperature, which is different for the scalar fields. For Bell non-locality, we also find that the quantum non-locality is always extinct for physically inaccessible states, and the strength of the non-locality decreases with enlarging intensity of Hawking effect when the non-locality is existent in physically accessible state.
Chamseddine, Ali H.; Mukhanov, Viatcheslav
2017-03-01
We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity "inside it" is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius rg, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to rg^{1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to rg^{1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature.
Quasinormal Modes of a Quantum-Corrected Schwarzschild Black ...
Indian Academy of Sciences (India)
Chunyan Wang
2017-11-27
Nov 27, 2017 ... Abstract. In this work, we investigate the electromagnetic perturbation around a quantum-corrected. Schwarzschild black hole. The complex frequencies of the quasinormal modes are evaluated by the third- order WKB approximation. The numerical results obtained showed that the complex frequencies ...
Energy Technology Data Exchange (ETDEWEB)
Wang, Mingzhi [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Chen, Songbai; Jing, Jiliang [Hunan Normal University, Department of Physics, Institute of Physics, Changsha, Hunan (China); Hunan Normal University, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications, Changsha, Hunan (China)
2017-04-15
We present firstly the equation of motion for a test scalar particle coupling to the Einstein tensor in the Schwarzschild-Melvin black hole spacetime through the short-wave approximation. Through analyzing Poincare sections, the power spectrum, the fast Lyapunov exponent indicator and the bifurcation diagram, we investigate the effects of the coupling parameter on the chaotic behavior of the particles. With the increase of the coupling strength, we find that the motion of the coupled particle for the chosen parameters becomes more regular and order for the negative couple constant. While, for the positive one, the motion of the coupled particles first undergoes a series of transitions betweens chaotic motion and regular motion and then falls into horizon or escapes to spatial infinity. Our results show that the coupling brings about richer effects for the motion of the particles. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind
2003-06-02
It is known that the naive version of D-brane theory is inadequate to explain the black hole entropy in the limit in which the Schwarzschild radius becomes larger than all compactification radii. We present evidence that a more consistent description can be given in terms of strings with rescaled tensions. We show that the rescaling can be interpreted as a redshift of the tension of a fundamental string in the gravitational field of the black hole. An interesting connection is found between the string level number and the Rindler energy. Using this connection, we reproduce the entropies of Schwarzschild black holes in arbitrary dimensions in terms of the entropy of a single string at the Hagedorn temperature.
Good, Michael R R
2014-01-01
A $(3+1)$-dimensional asymptotically flat Kerr black hole angular speed $\\Omega_+$ can be used to define an effective spring constant, $k=m\\Omega_+^2$. Its maximum value is the Schwarzschild surface gravity, $k = \\kappa $, which rapidly weakens as the black hole spins down and the temperature increases. The Hawking temperature is expressed in terms of the spring constant: $2\\pi T = \\kappa - k$. Hooke's law, in the extremal limit, provides the force $F = 1/4$, which is consistent with the conjecture of maximum force in general relativity.
Energy Technology Data Exchange (ETDEWEB)
Chamseddine, Ali H. [American University of Beirut, Physics Department, Beirut (Lebanon); I.H.E.S., Bures-sur-Yvette (France); Mukhanov, Viatcheslav [Niels Bohr Institute, Niels Bohr International Academy, Copenhagen (Denmark); Ludwig-Maximilians University, Theoretical Physics, Munich (Germany); MPI for Physics, Munich (Germany)
2017-03-15
We consider the Schwarzschild black hole and show how, in a theory with limiting curvature, the physical singularity ''inside it'' is removed. The resulting spacetime is geodesically complete. The internal structure of this nonsingular black hole is analogous to Russian nesting dolls. Namely, after falling into the black hole of radius r{sub g}, an observer, instead of being destroyed at the singularity, gets for a short time into the region with limiting curvature. After that he re-emerges in the near horizon region of a spacetime described by the Schwarzschild metric of a gravitational radius proportional to r{sub g}{sup 1/3}. In the next cycle, after passing the limiting curvature, the observer finds himself within a black hole of even smaller radius proportional to r{sub g}{sup 1/9}, and so on. Finally after a few cycles he will end up in the spacetime where he remains forever at limiting curvature. (orig.)
Black holes in massive gravity
Babichev, Eugeny
2015-01-01
We review the black hole solutions of the ghost-free massive gravity theory and its bimetric extension and outline the main results on the stability of these solutions against small perturbations. Massive (bi)-gravity accommodates exact black hole solutions, analogous to those of General Relativity. In addition to these solutions, hairy black holes -- solutions with no correspondent in General Relativity -- have been found numerically, whose existence is a natural consequence of the absence of the Birkhoff's theorem in these theories. The existence of extra propagating degrees of freedom, makes the stability properties of these black holes richer and more complex than those of General Relativity. In particular, the bi-Schwarzschild black hole exhibits an unstable spherically symmetric mode, while the bi-Kerr geometry is also generically unstable, both against the spherical mode and against superradiant instabilities. If astrophysical black holes are described by these solutions, the superradiant instability o...
Su, Daiqin; Ho, C. T. Marco; Mann, Robert B.; Ralph, Timothy C.
2017-09-01
We show that the gravitational quasinormal modes (QNMs) of a Schwarzschild black hole play the role of a multimode squeezer that can generate particles. For a minimally coupled scalar field, the QNMs "squeeze" the initial state of the scalar field (even for the vacuum) and produce scalar particles. The maximal squeezing amplitude is inversely proportional to the cube of the imaginary part of the QNM frequency, implying that the particle generation efficiency is higher for lower decaying QNMs. Our results show that the gravitational perturbations can amplify Hawking radiation.
Olmo, Gonzalo J
2011-01-01
We find that if general relativity is modified at the Planck scale by a Ricci-squared term, electrically charged black holes may be nonsingular. These objects concentrate their mass in a microscopic sphere of radius $r_{core}\\approx N_q^{1/2}l_P/3$, where $l_P$ is the Planck length and $N_q$ is the number of electric charges. The singularity is avoided if the mass of the object satisfies the condition $M_0^2\\approx m_P^2 \\alpha_{em}^{3/2} N_q^3/2$, where $m_P$ is the Planck mass and $\\alpha_{em}$ is the fine-structure constant. For astrophysical black holes this amount of charge is so small that their external horizon almost coincides with their Schwarzschild radius. We work within a first-order (Palatini) approach.
A New Model of Black Hole Formation
Directory of Open Access Journals (Sweden)
Thayer G. D.
2013-10-01
Full Text Available The formation of a black hole and its event horizon are described. Conclusions, which are the result of a thought experiment, show that Schwarzschild [1] was correct: A singularity develops at the event horizon of a newly-formed black hole. The intense gravitational field that forms near the event horizon results in the mass-energy of the black hole accumulating in a layer just inside the event horizon, rather than collapsing into a central singularity.
Black-hole creation in quantum cosmology
Energy Technology Data Exchange (ETDEWEB)
Zhong Chao, Wu [Rome, Univ. `La Sapienza` (Italy). International Center for Relativistic Astrophysics]|[Specola Vaticana, Vatican City State (Vatican City State, Holy See)
1997-11-01
It is proven that the probability of a black hole created from the de Sitter space-time background, at the Wkb level, is the exponential of one quarter of the sum of the black hole and cosmological horizon areas, or the total entropy of the universe. This is true not only for the spherically symmetric cases of the Schwarzschild or Reissner-Nordstroem black holes, but also for the rotating cases of the Kerr black hole and the rotating charged case of the Newman black hole. The de Sitter metric is the most probable evolution at the Planckian era of the universe.
Spin One Hawking Radiation from Dirty Black Holes
Petarpa Boonserm; Tritos Ngampitipan; Matt Visser
2013-01-01
A “clean” black hole is a black hole in vacuum such as the Schwarzschild black hole. However in real physical systems, there are matter fields around a black hole. Such a black hole is called a “dirty black hole”. In this paper, the effect of matter fields on the black hole and the greybody factor is investigated. The results show that matter fields make a black hole smaller. They can increase the potential energy to a black hole to obstruct Hawking radiation to propagate. This causes the gre...
Calmet, Xavier; Winstanley, Elizabeth
2014-01-01
Written by foremost experts, this short book gives a clear description of the physics of quantum black holes. The reader will learn about quantum black holes in four and higher dimensions, primordial black holes, the production of black holes in high energy particle collisions, Hawking radiation, black holes in models of low scale quantum gravity and quantum gravitational aspects of black holes.
Noncommutative geometry inspired black holes in Rastall gravity
Ma, Meng-Sen(Department of Physics, Shanxi Datong University, Datong 037009, China); Zhao, Ren
2017-01-01
Under two different metric ansatzes, the noncommutative geometry inspired black holes (NCBH) in the framework of Rastall gravity are derived and analyzed. We consider the fluid-type matter with the Gaussian-distribution smeared mass density. Taking a Schwarzschild-like metric ansatz, it is shown that the noncommutative geometry inspired Schwarzschild black hole (NCSBH) in Rastall gravity, unlike its counterpart in general relativity (GR), is not a regular black hole. It has at most one event ...
Ineffective higher derivative black hole hair
Goldstein, Kevin; Mashiyane, James Junior
2018-01-01
Inspired by the possibility that the Schwarzschild black hole may not be the unique spherically symmetric vacuum solution to generalizations of general relativity, we consider black holes in pure fourth order higher derivative gravity treated as an effective theory. Such solutions may be of interest in addressing the issue of higher derivative hair or during the later stages of black hole evaporation. Non-Schwarzschild solutions have been studied but we have put earlier results on a firmer footing by finding a systematic asymptotic expansion for the black holes and matching them with known numerical solutions obtained by integrating out from the near-horizon region. These asymptotic expansions can be cast in the form of trans-series expansions which we conjecture will be a generic feature of non-Schwarzschild higher derivative black holes. Excitingly we find a new branch of solutions with lower free energy than the Schwarzschild solution, but as found in earlier work, solutions only seem to exist for black holes with large curvatures, meaning that one should not generically neglect even higher derivative corrections. This suggests that one effectively recovers the nonhair theorems in this context.
Introduction to General Relativity and Black Holes (3/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (1/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (5/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (2/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Introduction to General Relativity and Black Holes (4/5)
CERN. Geneva
2001-01-01
Conceptual foundations of General Relativity (GR). Uniqueness of GR. Mathematical framework: tensor calculus, Riemannian geometry, connection, 'spin' connection, curvature, Cartan's form calculus. Hilbert-Einstein action, Einstein equations. Weak gravitational fields. Post Newtonian Approximation. Gravitanional Waves. Exact solutions. Killing vectors. Experimental tests. Black Holes: extensions of the Schwarzschild solution; Kerr-Newman holes; no-hair theorems; energtics of black holes; the membrane approach; quantum mechanics of black holes; Bekenstein entropy; Hawking temperature; black holes and string theory.
Black hole evaporation in conformal gravity
Bambi, Cosimo; Modesto, Leonardo; Porey, Shiladitya; Rachwał, Lesław
2017-09-01
We study the formation and the evaporation of a spherically symmetric black hole in conformal gravity. From the collapse of a spherically symmetric thin shell of radiation, we find a singularity-free non-rotating black hole. This black hole has the same Hawking temperature as a Schwarzschild black hole with the same mass, and it completely evaporates either in a finite or in an infinite time, depending on the ensemble. We consider the analysis both in the canonical and in the micro-canonical statistical ensembles. Last, we discuss the corresponding Penrose diagram of this physical process.
Planar domain walls in black hole spacetimes
Ficek, Filip; Mach, Patryk
2018-02-01
We investigate the behavior of low-mass, planar domain walls in the so-called ϕ4 model of the scalar field on the Schwarzschild and Kerr backgrounds. We focus on a transit of a domain wall through a black hole and solve numerically the equations of motion for a range of parameters of the domain wall and the black hole. We observe a behavior resembling an occurrence of ringing modes. Perturbations of domain walls vanish during latter evolution, suggesting their stability against a passage through the black hole. The results obtained for Kerr and Reissner-Nordström black holes are also compared.
Massive Black Holes and Galaxies
CERN. Geneva
2016-01-01
Evidence has been accumulating for several decades that many galaxies harbor central mass concentrations that may be in the form of black holes with masses between a few million to a few billion time the mass of the Sun. I will discuss measurements over the last two decades, employing adaptive optics imaging and spectroscopy on large ground-based telescopes that prove the existence of such a massive black hole in the Center of our Milky Way, beyond any reasonable doubt. These data also provide key insights into its properties and environment. Most recently, a tidally disrupting cloud of gas has been discovered on an almost radial orbit that reached its peri-distance of ~2000 Schwarzschild radii in 2014, promising to be a valuable tool for exploring the innermost accretion zone. Future interferometric studies of the Galactic Center Black hole promise to be able to test gravity in its strong field limit.
Thermodynamic phase transition of a black hole in rainbow gravity
Feng, Zhong-Wen; Yang, Shu-Zheng
2017-09-01
In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking-Page-type phase transitions in the framework of rainbow gravity theory.
Thermodynamic phase transition of a black hole in rainbow gravity
Directory of Open Access Journals (Sweden)
Zhong-Wen Feng
2017-09-01
Full Text Available In this letter, using the rainbow functions that were proposed by Magueijo and Smolin, we investigate the thermodynamics and the phase transition of rainbow Schwarzschild black hole. First, we calculate the rainbow gravity corrected Hawking temperature. From this modification, we then derive the local temperature, free energy, and other thermodynamic quantities in an isothermal cavity. Finally, we analyze the critical behavior, thermodynamic stability, and phase transition of the rainbow Schwarzschild black hole. The results show that the rainbow gravity can stop the Hawking radiation in the final stages of black holes' evolution and lead to the remnants of black holes. Furthermore, one can observe that the rainbow Schwarzschild black hole has one first-order phase transition, two second-order phase transitions, and three Hawking–Page-type phase transitions in the framework of rainbow gravity theory.
Strong deflection lensing by a Lee-Wick black hole
Zhao, Shan-Shan; Xie, Yi
2017-11-01
We study strong deflection gravitational lensing by a Lee-Wick black hole, which is a non-singular black hole generated by a high derivative modification of Einstein-Hilbert action. The strong deflection lensing is expected to produce a set of relativistic images very closed to the event horizon of the black hole. We estimate its observables for the supermassive black hole in our Galactic center. It is found that the Lee-Wick black hole can be distinguished from the Schwarzschild black hole via such lensing effects when the UV scale is not very large, but the requiring resolution is much higher than current capability.
Upper bound on the radii of black-hole photonspheres
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)
2013-11-25
One of the most remarkable predictions of the general theory of relativity is the existence of black-hole “photonspheres”, compact null hypersurfaces on which massless particles can orbit the central black hole. We prove that every spherically-symmetric asymptotically flat black-hole spacetime is characterized by a photonsphere whose radius is bounded from above by r{sub γ}⩽3M, where M is the total ADM mass of the black-hole spacetime. It is shown that hairy black-hole configurations conform to this upper bound. In particular, the null circular geodesic of the (bald) Schwarzschild black-hole spacetime saturates the bound.
Entropy Inequality Violations from Ultraspinning Black Holes.
Hennigar, Robie A; Mann, Robert B; Kubizňák, David
2015-07-17
We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.
Particles and fields near black holes
Frolov, Valeri
Taking now the existence of black holes for granted, the motion of particles is studied in black hole spacetimes, first in the Schwarzschild and then in the Kerr background. Subsequently, the propagation of fields in the same backgrounds is reviewed, taking a massless scalar field as a "guinea pig". Thereafter, more complicated spin-carrying fields are shortly discussed. Some physical effects, such as superradiance, are briefly mentioned. Finally, black hole electrodynamics is dealt with. A 3+1 decomposition of Maxwell's equations is carried out. The so-called membrane paradigm is introduced which treats the black hole as a black box with classical electrodynamic behavior. In this way, a black hole can serve as a kind of a dynamo. This mechanism may explain the activity of the nuclei of galaxies and quasars.
Directory of Open Access Journals (Sweden)
Roberto Casadio
2015-10-01
Full Text Available We review some features of Bose–Einstein condensate (BEC models of black holes obtained by means of the horizon wave function formalism. We consider the Klein–Gordon equation for a toy graviton field coupled to a static matter current in a spherically-symmetric setup. The classical field reproduces the Newtonian potential generated by the matter source, while the corresponding quantum state is given by a coherent superposition of scalar modes with a continuous occupation number. An attractive self-interaction is needed for bound states to form, the case in which one finds that (approximately one mode is allowed, and the system of N bosons can be self-confined in a volume of the size of the Schwarzschild radius. The horizon wave function formalism is then used to show that the radius of such a system corresponds to a proper horizon. The uncertainty in the size of the horizon is related to the typical energy of Hawking modes: it decreases with the increasing of the black hole mass (larger number of gravitons, resulting in agreement with the semiclassical calculations and which does not hold for a single very massive particle. The spectrum of these systems has two components: a discrete ground state of energy m (the bosons forming the black hole and a continuous spectrum with energy ω > m (representing the Hawking radiation and modeled with a Planckian distribution at the expected Hawking temperature. Assuming the main effect of the internal scatterings is the Hawking radiation, the N-particle state can be collectively described by a single-particle wave-function given by a superposition of a total ground state with energy M = Nm and Entropy 2015, 17 6894 a Planckian distribution for E > M at the same Hawking temperature. This can be used to compute the partition function and to find the usual area law for the entropy, with a logarithmic correction related to the Hawking component. The backreaction of modes with ω > m is also shown to reduce
Dokuchaev, V. I.
2012-01-01
We consider test planet and photon orbits of the third kind inside a black hole, which are stable, periodic and neither come out of the black hole nor terminate at the singularity. Interiors of supermassive black holes may be inhabited by advanced civilizations living on planets with the third-kind orbits. In principle, one can get information from the interiors of black holes by observing their white hole counterparts.
Kerr black holes in horizon-generating form.
Hayward, Sean A
2004-05-14
New coordinates are given which describe nondegenerate Kerr black holes in dual-null foliations based on the outer (or inner) horizons, generalizing the Kruskal form for Schwarzschild black holes. The construction involves an area radius for the transverse surfaces and a generalization of the Regge-Wheeler radial function, both functions of the original radial coordinate only.
Black hole with quantum potential
Directory of Open Access Journals (Sweden)
Ahmed Farag Ali
2016-08-01
Full Text Available In this work, we investigate black hole (BH physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian trajectories and hence form a quantum Raychaudhuri equation (QRE. From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
Black hole with quantum potential
Energy Technology Data Exchange (ETDEWEB)
Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha 13518 (Egypt); Khalil, Mohammed M., E-mail: moh.m.khalil@gmail.com [Department of Electrical Engineering, Alexandria University, Alexandria 12544 (Egypt)
2016-08-15
In this work, we investigate black hole (BH) physics in the context of quantum corrections. These quantum corrections were introduced recently by replacing classical geodesics with quantal (Bohmian) trajectories and hence form a quantum Raychaudhuri equation (QRE). From the QRE, we derive a modified Schwarzschild metric, and use that metric to investigate BH singularity and thermodynamics. We find that these quantum corrections change the picture of Hawking radiation greatly when the size of BH approaches the Planck scale. They prevent the BH from total evaporation, predicting the existence of a quantum BH remnant, which may introduce a possible resolution for the catastrophic behavior of Hawking radiation as the BH mass approaches zero. Those corrections also turn the spacelike singularity of the black hole to be timelike, and hence this may ameliorate the information loss problem.
National Research Council Canada - National Science Library
Gutperle, Michael; Kraus, Per
2011-01-01
.... We find solutions that generalize the BTZ black hole and carry spin-3 charge. The black hole entropy formula yields a result for the asymptotic growth of the partition function at finite spin-3 chemical potential...
Moss, I.G.; Shiiki, N.; Winstanley, E.
2000-01-01
Charged black hole solutions with pion hair are discussed. These can be\\ud used to study monopole black hole catalysis of proton decay.\\ud There also exist\\ud multi-black hole skyrmion solutions with BPS monopole behaviour.
Black hole entropy and the zeroth law of thermodynamics
Czinner, Viktor G.
2015-01-01
By mapping the nonadditive entropy composition law of the Bekenstein–Hawking formula to an additive one via the so-called "formal logarithm" operation, a new approach to the black hole entropy problem is considered. The new temperature function satisfies the zeroth law of thermodynamics, and turns out to be independent of the mass-energy parameter of the black hole in the case of the Schwarzschild solution. It is shown that pure isolated black holes are thermodynamically stable against spheri...
Skyrmion black hole hair: Conservation of baryon number by black holes and observable manifestations
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, 80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Gußmann, Alexander, E-mail: alexander.gussmann@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, 80333 München (Germany)
2016-12-15
We show that the existence of black holes with classical skyrmion hair invalidates standard proofs that global charges, such as the baryon number, cannot be conserved by a black hole. By carefully analyzing the standard arguments based on a Gedankenexperiment in which a black hole is seemingly-unable to return the baryon number that it swallowed, we identify inconsistencies in this reasoning, which does not take into the account neither the existence of skyrmion black holes nor the baryon/skyrmion correspondence. We then perform a refined Gedankenexperiment by incorporating the new knowledge and show that no contradiction with conservation of baryon number takes place at any stage of black hole evolution. Our analysis also indicates no conflict between semi-classical black holes and the existence of baryonic gauge interaction arbitrarily-weaker than gravity. Next, we study classical cross sections of a minimally-coupled massless probe scalar field scattered by a skyrmion black hole. We investigate how the skyrmion hair manifests itself by comparing this cross section with the analogous cross section caused by a Schwarzschild black hole which has the same ADM mass as the skyrmion black hole. Here we find an order-one difference in the positions of the characteristic peaks in the cross sections. The peaks are shifted to smaller scattering angles when the skyrmion hair is present. This comes from the fact that the skyrmion hair changes the near horizon geometry of the black hole when compared to a Schwarzschild black hole with same ADM mass. We keep the study of this second aspect general so that the qualitative results which we obtain can also be applied to black holes with classical hair of different kind.
Geodesics of black holes with dark energy
Ghaderi, K.
2017-12-01
Dark energy is the most popular hypothesis to explain recent observations suggesting that the world will increasingly expand. One of the models of dark energy is quintessence which is highly plausible. In this paper, we investigate the effect of dark energy on the null geodesics of Schwarzschild, Reissner-Nordström, Schwarzschild-de Sitter and Bardeen black holes. Using the definition of effective potential, the radius of the circular orbits, the period, the instability of the circular orbits, the force exerted on the photons and the deviation angle of light in quintessence field are calculated and the results are analyzed and discussed.
Wijers, R.A.M.J.
1996-01-01
Introduction Distinguishing neutron stars and black holes Optical companions and dynamical masses X-ray signatures of the nature of a compact object Structure and evolution of black-hole binaries High-mass black-hole binaries Low-mass black-hole binaries Low-mass black holes Formation of black holes
Charged cosmological black hole
Moradi, Rahim; Stahl, Clément; Firouzjaee, Javad T.; Xue, She-Sheng
2017-11-01
The cosmological black holes are black holes living not in an asymptotically flat universe but in an expanding spacetime. They have a rich dynamics especially for their mass and horizon. In this article, we perform a natural step in investigating this new type of black hole: we consider the possibility of a charged cosmological black hole. We derive the general equations of motion governing its dynamics and report a new analytic solution for the special case of the charged Lematre-Tolman-Bondi equations of motion that describe a charged cosmological black hole. We then study various relevant quantities for the characterization of the black hole, such as the C-function, the effect of the charge on the black hole flux, and the nature of the singularity. We also perform numerical investigations to strengthen our results. Finally, we challenge a model of gamma ray burst within our framework.
Mass of a black hole firewall.
Abramowicz, M A; Kluźniak, W; Lasota, J-P
2014-03-07
Quantum entanglement of Hawking radiation has been supposed to give rise to a Planck density "firewall" near the event horizon of old black holes. We show that Planck density firewalls are excluded by Einstein's equations for black holes of mass exceeding the Planck mass. We find an upper limit of 1/(8πM) to the surface density of a firewall in a Schwarzschild black hole of mass M, translating for astrophysical black holes into a firewall density smaller than the Planck density by more than 30 orders of magnitude. A strict upper limit on the firewall density is given by the Planck density times the ratio M(Pl)/(8πM).
Back-reaction in acoustic black holes
Energy Technology Data Exchange (ETDEWEB)
Fagnocchi, Serena [Centro Enrico Fermi, Compendio Viminale, 00184 Rome (Italy); Dipartimento di Fisica dell' Universita di Bologna and INFN sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy)
2006-03-01
Acoustic black holes are very interesting non-gravitational objects which can be described by the geometrical formalism of General Relativity. These models can be useful to experimentally test effects otherwise undetectable, as for example the Hawking radiation. The back-reaction effects on the background quantities induced by the analogue Hawking radiation could be the key to indirectly observe it. We briefly show how this analogy works and derive the backreaction equations for the linearized quantum fluctuations in the background of an acoustic black hole. A first order in h-bar solution is given in the near the horizon region. It indicates that acoustic black holes, unlike Schwarzschild ones, get cooler as they radiate phonons. They show remarkable analogies with near-extremal Reissner-Nordstroem black holes.
Thermal hair of a quantum black hole
Itoh, Y.; Hotta, M.; Futamase, T.; Morikawa, M.
1998-09-01
We reexamine the possibility which has been argued since just after the discovery of Hawking radiation: the statistical explanation of Bekenstein-Hawking entropy by counting quasibounded modes of thermal fluctuation in two-dimensional black hole spacetime. While string theory has made much progress recently, it may be still interesting to study black hole entropy with field theories. The black hole concerned is quantum in the sense that it is in thermal equilibrium with its Hawking radiation. It is shown that the fluctuation around such a black hole obeys a wave equation with a potential whose peaks are located near the black hole and which is caused by quantum effects. We can construct models in which the potential in the above sense has several positive peaks and there are quasibounded modes confined between these peaks. This suggests that these modes contribute to black hole entropy. However, it is shown that the entropy associated with these modes does not obey the ordinary area law. We can call these modes additional thermal hair of the quantum black hole. Therefore the situation for the possibility is more difficult and we might find other ways to explain the entropy. From recent progress counting the number of states in string theory, it becomes more convincing that we expect Bekenstein-Hawking entropy for the Schwarzschild black hole will be explained exactly from the string theoretical point of view.
Black holes in higher derivative gravity.
Lü, H; Perkins, A; Pope, C N; Stelle, K S
2015-05-01
Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.
Stimulated Black Hole Evaporation
Spaans, Marco
2016-01-01
Black holes are extreme expressions of gravity. Their existence is predicted by Einstein's theory of general relativity and is supported by observations. Black holes obey quantum mechanics and evaporate spontaneously. Here it is shown that a mass rate $R_f\\sim 3\\times 10^{-8} (M_0/M)^{1/2}$ $M_0$ yr$^{-1}$ onto the horizon of a black hole with mass $M$ (in units of solar mass $M_0$) stimulates a black hole into rapid evaporation. Specifically, $\\sim 3 M_0$ black holes can emit a large fraction of their mass, and explode, in $M/R_f \\sim 3\\times 10^7 (M/M_0)^{3/2}$ yr. These stimulated black holes radiate a spectral line power $P \\sim 2\\times 10^{39} (M_0/M)^{1/2}$ erg s$^{-1}$, at a wavelength $\\lambda \\sim 3\\times 10^5 (M/M_0)$ cm. This prediction can be observationally verified.
Gorini, Vittorio; Moschella, Ugo; Treves, Aldo; Colpi, Monica
2016-01-01
Based on graduate school lectures in contemporary relativity and gravitational physics, this book gives a complete and unified picture of the present status of theoretical and observational properties of astrophysical black holes. The chapters are written by internationally recognized specialists. They cover general theoretical aspects of black hole astrophysics, the theory of accretion and ejection of gas and jets, stellar-sized black holes observed in the Milky Way, the formation and evolution of supermassive black holes in galactic centers and quasars as well as their influence on the dynamics in galactic nuclei. The final chapter addresses analytical relativity of black holes supporting theoretical understanding of the coalescence of black holes as well as being of great relevance in identifying gravitational wave signals. With its introductory chapters the book is aimed at advanced graduate and post-graduate students, but it will also be useful for specialists.
Ho, Pei-Ming
2017-04-01
Following earlier works on the KMY model of black-hole formation and evaporation, we construct the metric for a matter sphere in gravitational collapse, with the back-reaction of pre-Hawking radiation taken into consideration. The mass distribution and collapsing velocity of the matter sphere are allowed to have an arbitrary radial dependence. We find that a generic gravitational collapse asymptote to a universal configuration which resembles a black hole but without horizon. This approach clarifies several misunderstandings about black-hole formation and evaporation, and provides a new model for black-hole-like objects in the universe.
Schwarzschild Black Branes and Strings in higher-dimensional Brane Worlds
Kanti, Panagiota; Tamvakis, Kyriakos
2002-01-01
We consider branes embedded in spacetimes of codimension 1 and 2, with a warped metric tensor for the subspace parallel to the brane. We study a variety of brane-world solutions arising by introducing a Schwarzschild-like black hole metric on the brane and we investigate the properties of the corresponding higher-dimensional spacetime. We demonstrate that normalizable bulk modes lead to a vanishing flow of energy through the naked singularities. From this point of view, these singularities are harmless. (28 refs).
2002-10-01
Ageorges, Chris Lidman, Alan F.M. Moorwood, Jason Spyromilio and Norbert Hubin (ESO) and Karl M. Menten (Max-Planck-Institut für Radioastronomie, Bonn, Germany). [3]: The NACO facility has two major components, CONICA and NAOS . The COudé Near-Infrared CAmera (CONICA) was developed by a German Consortium, with an extensive ESO collaboration. The Consortium consists of Max-Planck-Institut für Astronomie (MPIA) (Heidelberg) and the Max-Planck-Institut für Extraterrestrische Physik (MPE) (Garching). The Nasmyth Adaptive Optics System (NAOS) was developed, with the support of INSU-CNRS, by a French Consortium in collaboration with ESO. The French consortium consists of Office National d'Etudes et de Recherches Aérospatiales (ONERA) , Laboratoire d'Astrophysique de Grenoble (LAOG) and Observatoire de Paris (DESPA and DASGAL). [4]: In Albert Einstein's Theory of General Relativity, any mass has a characteristic radius, the "event horizon", or "Schwarzschild radius" named after the German astrophysicist Karl Schwarzschild . Within this radius, even light cannot escape the pull of the gravitational force. The radius for a 2.6 ± 0.2 million solar masses black hole (as the one at the centre of the Milky Way galaxy) is about 7.7 million km (26 light-seconds). [5]: Astronomical distances are often expressed in the time it takes the light, travelling at 300,000 km/sec, to cover them. 1 light-hour = 1.08 10 9 km; 1 light-day = 2.6 10 10 km; 1 light-month = 7.8 10 11 km; 1 light-year = 9.5 10 12 km. [6]: Earlier NACO images have been published in ESO PR 25/01 , ESO PR Photos 04a-c/02 , ESO PR Photos 19a-c/02 and ESO PR Photos 21a-c/02. [7]: S2 is an otherwise "normal" star, but some 15 times more massive and 7 times larger than the Sun. Its orbit around the Black Hole is comparatively stable. Even though it moves relatively close to the Black Hole in the present orbit, S2 would have to be at least 70 times closer (about 16 light-minutes from the Black Hole) before it would risk
Raine, Derek
2005-01-01
This introduction to the fascinating subject of black holes fills a significant gap in the literature which exists between popular, non-mathematical expositions and advanced textbooks at the research level. It is designed for advanced undergraduates and first year postgraduates as a useful stepping-stone to the advanced literature. The book provides an accessible introduction to the exact solutions of Einstein’s vacuum field equations describing spherical and axisymmetric (rotating) black holes. The geometry and physical properties of these spacetimes are explored through the motion of particles and light. The use of different coordinate systems, maximal extensions and Penrose diagrams is explained. The association of the surface area of a black hole with its entropy is discussed and it is shown that with the introduction of quantum mechanics black holes cease to be black and can radiate. This result allows black holes to satisfy the laws of thermodynamics and thus be consistent with the rest of physics.
Gravitational lensing by black holes: The case of Sgr A*
Energy Technology Data Exchange (ETDEWEB)
Bozza, V. [Dipartimento di Fisica E.R. Caianiello, Università di Salerno, Italy. Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy)
2014-01-14
The strong gravitational fields created by black holes dramatically affect the propagation of photons by bending their trajectories. Gravitational lensing thus stands as the main source of information on the space-time structure in such extreme regimes. We will review the theory and phenomenology of gravitational lensing by black holes, with the generation of higher order images and giant caustics by rotating black holes. We will then focus on Sgr A*, the black hole at the center of the Milky Way, for which next-to-come technology will be able to reach resolutions of the order of the Schwarzschild radius and ultimately test the existence of an event horizon.
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynamics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of ...
Arsiwalla, X.D.; Verlinde, E.P.
2010-01-01
We study the problem of spatially stabilizing four dimensional extremal black holes in background electric/magnetic fields. Whilst looking for stationary stable solutions describing black holes placed in external fields we find that taking a continuum limit of Denef et al.’s multicenter
DEFF Research Database (Denmark)
Kragh, Helge Stjernholm
2016-01-01
Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015).......Review essay, Marcia Bartusiak, Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled On by Hawking Became Loved (New Haven: Yale University Press, 2015)....
de Boer, J.; Papadodimas, K.; Verlinde, E.
2009-01-01
Supersymmetric black holes are characterized by a large number of degenerate ground states. We argue that these black holes, like other quantum mechanical systems with such a degeneracy, are subject to a phenomenon which is called the geometric or Berry’s phase: under adiabatic variations of the
The Thermodynamics of Black Holes
National Research Council Canada - National Science Library
Emparan, Roberto; Tinto, Massimo; Barbero G, J Fernando; Heusler, Markus; Rendall, Alan D; Adamo, Timothy M; Liebling, Steven L; Sasaki, Misao; Poisson, Eric; Wald, Robert M; Postnov, Konstantin A; Amendola, Luca; Shibata, Masaru; Tagoshi, Hideyuki; Reall, Harvey S; Kozameh, Carlos; Palenzuela, Carlos; Yungelson, Lev R; Villaseñor, Eduardo J. S; Appleby, Stephen; Taniguchi, Keisuke; Dhurandhar, Sanjeev V; Bacon, David; Newman, Ezra T; Baker, Tessa; Baldi, Marco; Bartolo, Nicola; Blanchard, Alain; Bonvin, Camille; Borgani, Stefano; Branchini, Enzo; Burrage, Clare; Camera, Stefano; Carbone, Carmelita; Casarini, Luciano; Cropper, Mark; de Rham, Claudia; Di Porto, Cinzia; Ealet, Anne; Ferreira, Pedro G; Finelli, Fabio; García-Bellido, Juan; Giannantonio, Tommaso; Guzzo, Luigi; Heavens, Alan; Heisenberg, Lavinia; Heymans, Catherine; Hoekstra, Henk; Hollenstein, Lukas; Holmes, Rory; Horst, Ole; Jahnke, Knud; Kitching, Thomas D; Koivisto, Tomi; Kunz, Martin; La Vacca, Giuseppe; March, Marisa; Majerotto, Elisabetta; Markovic, Katarina; Marsh, David; Marulli, Federico; Massey, Richard; Mellier, Yannick; Mota, David F; Nunes, Nelson J; Percival, Will; Pettorino, Valeria; Porciani, Cristiano; Quercellini, Claudia; Read, Justin; Rinaldi, Massimiliano; Sapone, Domenico; Scaramella, Roberto; Skordis, Constantinos; Simpson, Fergus; Taylor, Andy; Thomas, Shaun; Trotta, Roberto; Verde, Licia; Vernizzi, Filippo; Vollmer, Adrian; Wang, Yun; Weller, Jochen; Zlosnik, Tom
...We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds...
Lichnerowicz modes and black hole families in Ricci quadratic gravity
Lü, Hong; Perkins, A.; Pope, C. N.; Stelle, K. S.
2017-08-01
A new branch of black hole solutions occurs along with the standard Schwarzschild branch in n -dimensional extensions of general relativity including terms quadratic in the Ricci tensor. The standard and new branches cross at a point determined by a static negative-eigenvalue eigenfunction of the Lichnerowicz operator, analogous to the Gross-Perry-Yaffe eigenfunction for the Schwarzschild solution in standard n =4 dimensional general relativity. This static eigenfunction has two roles: both as a perturbation away from Schwarzschild along the new black-hole branch and also as a threshold unstable mode lying at the edge of a domain of Gregory-Laflamme-type instability of the Schwarzschild solution for small-radius black holes. A thermodynamic analogy with the Gubser and Mitra conjecture on the relation between quantum thermodynamic and classical dynamical instabilities leads to a suggestion that there may be a switch of stability properties between the old and new black-hole branches for small black holes with radii below the branch crossing point.
Black hole critical phenomena without black holes
Indian Academy of Sciences (India)
Abstract. Studying the threshold of black hole formation via numerical evolution has led to the discovery of fascinating nonlinear phenomena. Power-law mass scaling, aspects of universality, and self-similarity have now been found for a large variety of models. However, questions remain. Here I briefly review critical ...
Noncommutative geometry inspired black holes in Rastall gravity
Energy Technology Data Exchange (ETDEWEB)
Ma, Meng-Sen [Shanxi Datong University, Institute of Theoretical Physics, Datong (China); Shanxi Datong University, Department of Physics, Datong (China); Zhao, Ren [Shanxi Datong University, Institute of Theoretical Physics, Datong (China)
2017-09-15
Under two different metric ansatzes, the noncommutative geometry inspired black holes (NCBH) in the framework of Rastall gravity are derived and analyzed. We consider the fluid-type matter with the Gaussian-distribution smeared mass density. Taking a Schwarzschild-like metric ansatz, it is shown that the noncommutative geometry inspired Schwarzschild black hole (NCSBH) in Rastall gravity, unlike its counterpart in general relativity (GR), is not a regular black hole. It has at most one event horizon. After showing a finite maximal temperature, the black hole will leave behind a point-like massive remnant at zero temperature. Considering a more general metric ansatz and a special equation of state of the matter, we also find a regular NCBH in Rastall gravity, which has a similar geometric structure and temperature to that of NCSBH in GR. (orig.)
Accretion onto a noncommutative geometry inspired black hole
Energy Technology Data Exchange (ETDEWEB)
Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)
2017-09-15
The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)
Accretion onto a noncommutative geometry inspired black hole
Kumar, Rahul; Ghosh, Sushant G.
2017-09-01
The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate \\dot{M}, sonic speed a_s and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that \\dot{M} ≈ {M^2} is still achievable but r_s seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process.
Scalar fields in black hole spacetimes
Thuestad, Izak; Khanna, Gaurav; Price, Richard H.
2017-07-01
The time evolution of matter fields in black hole exterior spacetimes is a well-studied subject, spanning several decades of research. However, the behavior of fields in the black hole interior spacetime has only relatively recently begun receiving some attention from the research community. In this paper, we numerically study the late-time evolution of scalar fields in both Schwarzschild and Kerr spacetimes, including the black hole interior. We recover the expected late-time power-law "tails" on the exterior (null infinity, timelike infinity, and the horizon). In the interior region, we find an interesting oscillatory behavior that is characterized by the multipole index ℓ of the scalar field. In addition, we also study the extremal Kerr case and find strong indications of an instability developing at the horizon.
1999-01-01
This graphic shows the computer simulation of a black hole from start to finish. Plasma is falling slowly toward the black hole in a (at the upper left). The plasma has a magnetic field, shown by the white lines. It picks up speed as it falls toward the hole in b (at the upper right), c (lower left) and d (lower right). However, the rotating black hole twists up space itself (and the magnetic field lines) and ejects electromagnetic power along the north and south poles above the black hole. The red and white color shows the immense electromagnetic power output, which eventually will pick up particles and form squirting jets. This simulation was conducted using supercomputers at Japan's National Institute for Fusion Science.
Scalar perturbations of nonsingular nonrotating black holes in conformal gravity
Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan
2017-01-01
We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable und...
Black holes in modified gravity (MOG)
Energy Technology Data Exchange (ETDEWEB)
Moffat, J.W. [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)
2015-04-15
The field equations for scalar-tensor-vector gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass M with two horizons. The strength of the gravitational constant is G = G{sub N} (1 + α) where α is a parameter. A regular singularity-free MOG solution is derived using a nonlinear field dynamics for the repulsive gravitational field component and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completion of the MOG black hole solution is obtained. The Kerr-MOG black hole solution is determined by the mass M, the parameter α and the spin angular momentum J = Ma. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and the shadows cast by the Schwarzschild-MOG and Kerr-MOG black holes are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive component of the gravitational field. (orig.)
Hawking radiation power equations for black holes
Directory of Open Access Journals (Sweden)
Ravi Mistry
2017-10-01
Full Text Available We derive the Hawking radiation power equations for black holes in asymptotically flat, asymptotically Anti-de Sitter (AdS and asymptotically de Sitter (dS black holes. This is done by using the greybody factor for these black holes. We observe that the radiation power equation for asymptotically flat black holes, corresponding to greybody factor at low frequency, depends on both the Hawking temperature and the horizon radius. However, for the greybody factors at asymptotic frequency, it only depends on the Hawking temperature. We also obtain the power equation for asymptotically AdS black holes both below and above the critical frequency. The radiation power equation for at asymptotic frequency is same for both Schwarzschild AdS and Reissner–Nordström AdS solutions and only depends on the Hawking temperature. We also discuss the power equation for asymptotically dS black holes at low frequency, for both even or odd dimensions.
Micro Black Holes and the Democratic Transition
Dvali, Gia
2009-01-01
Unitarity implies that the evaporation of microscopic quasi-classical black holes cannot be universal in different particle species. This creates a puzzle, since it conflicts with the thermal nature of quasi-classical black holes, according to which all the species should see the same horizon and be produced with the same Hawking temperatures. We resolve this puzzle by showing that for the microscopic black holes, on top the usual quantum evaporation time, there is a new time-scale which characterizes a purely classical process during which the black hole looses the ability to differentiate among the species, and becomes democratic. We demonstrate this phenomenon in a well-understood framework of large extra dimensions, with a number of parallel branes. An initially non-democratic black hole is the one localized on one of the branes, with its high-dimensional Schwarzschild radius being much shorter than the interbrane distance. Such a black hole seemingly cannot evaporate into the species localized on the oth...
Energy Technology Data Exchange (ETDEWEB)
Kleihaus, Burkhard, E-mail: b.kleihaus@uni-oldenburg.de [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Kunz, Jutta [Institut für Physik, Universität Oldenburg, Postfach 2503, D-26111 Oldenburg (Germany); Yazadjiev, Stoytcho [Department of Theoretical Physics, Faculty of Physics, Sofia University, Sofia 1164 (Bulgaria)
2015-05-11
In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Kleihaus, Burkhard; Yazadjiev, Stoytcho
2015-01-01
In the presence of a complex scalar field scalar-tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and ordinary hairy black holes. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Danielsson, U H
1993-01-01
In this work the quantum theory of two dimensional dilaton black holes is studied using the Wheeler De Witt equation. The solutions correspond to wave functions of the black hole. It is found that for an observer inside the horizon, there are uncertainty relations for the black hole mass and a parameter in the metric determining the Hawking flux. Only for a particular value of this parameter, can both be known with arbitrary accuracy. In the generic case there is instead a relation which is very similar to the so called string uncertainty relation.
Hayward, Sean Alan
2013-01-01
Black holes, once just fascinating theoretical predictions of how gravity warps space-time according to Einstein's theory, are now generally accepted as astrophysical realities, formed by post-supernova collapse, or as supermassive black holes mysteriously found at the cores of most galaxies, powering active galactic nuclei, the most powerful objects in the universe. Theoretical understanding has progressed in recent decades with a wider realization that local concepts should characterize black holes, rather than the global concepts found in textbooks. In particular, notions such as trapping h
Directory of Open Access Journals (Sweden)
Burkhard Kleihaus
2015-05-01
Full Text Available In the presence of a complex scalar field scalar–tensor theory allows for scalarized rotating hairy black holes. We exhibit the domain of existence for these scalarized black holes, which is bounded by scalarized rotating boson stars and hairy black holes of General Relativity. We discuss the global properties of these solutions. Like their counterparts in general relativity, their angular momentum may exceed the Kerr bound, and their ergosurfaces may consist of a sphere and a ring, i.e., form an ergo-Saturn.
Superluminality, black holes and EFT
Goon, Garrett; Hinterbichler, Kurt
2017-02-01
Under the assumption that a UV theory does not display superluminal behavior, we ask what constraints on superluminality are satisfied in the effective field theory (EFT). We study two examples of effective theories: quantum electrodynamics (QED) coupled to gravity after the electron is integrated out, and the flat-space galileon. The first is realized in nature, the second is more speculative, but they both exhibit apparent superluminality around non-trivial backgrounds. In the QED case, we attempt, and fail, to find backgrounds for which the superluminal signal advance can be made larger than the putative resolving power of the EFT. In contrast, in the galileon case it is easy to find such backgrounds, indicating that if the UV completion of the galileon is (sub)luminal, quantum corrections must become important at distance scales of order the Vainshtein radius of the background configuration, much larger than the naive EFT strong coupling distance scale. Such corrections would be reminiscent of the non-perturbative Schwarzschild scale quantum effects that are expected to resolve the black hole information problem. Finally, a byproduct of our analysis is a calculation of how perturbative quantum effects alter charged Reissner-Nordstrom black holes.
Minimal Length Effects on Tunnelling from Spherically Symmetric Black Holes
Directory of Open Access Journals (Sweden)
Benrong Mu
2015-01-01
Full Text Available We investigate effects of the minimal length on quantum tunnelling from spherically symmetric black holes using the Hamilton-Jacobi method incorporating the minimal length. We first derive the deformed Hamilton-Jacobi equations for scalars and fermions, both of which have the same expressions. The minimal length correction to the Hawking temperature is found to depend on the black hole’s mass and the mass and angular momentum of emitted particles. Finally, we calculate a Schwarzschild black hole's luminosity and find the black hole evaporates to zero mass in infinite time.
Black Hole Shadows of Charged Spinning Black Holes
Takahashi, Rohta
2005-01-01
We propose a method for measuring the black hole charge by imaging a black hole shadow in a galactic center by future interferometers. Even when the black hole is uncharged, it is possible to confirm the charge neutrality by this method. We first derive the analytic formulae of the black hole shadow in an optically thin medium around a charged spinning black hole, and then investigate how contours of the black hole shadow depend on the spin and the charge of the black hole for several inclina...
Monten, Ruben; Toldo, Chiara
2018-02-01
We present new AdS4 black hole solutions in N =2 gauged supergravity coupled to vector and hypermultiplets. We focus on a particular consistent truncation of M-theory on the homogeneous Sasaki–Einstein seven-manifold M 111, characterized by the presence of one Betti vector multiplet. We numerically construct static and spherically symmetric black holes with electric and magnetic charges, corresponding to M2 and M5 branes wrapping non-contractible cycles of the internal manifold. The novel feature characterizing these nonzero temperature configurations is the presence of a massive vector field halo. Moreover, we verify the first law of black hole mechanics and we study the thermodynamics in the canonical ensemble. We analyze the behavior of the massive vector field condensate across the small-large black hole phase transition and we interpret the process in the dual field theory.
Barr, Ian A.; Bull, Anne; O'Brien, Eileen; Drillsma-Milgrom, Katy A.; Milgrom, Lionel R.
2016-07-01
Two-dimensional shadows formed by illuminating vortices are shown to be visually analogous to the gravitational action of black holes on light and surrounding matter. They could be useful teaching aids demonstrating some of the consequences of general relativity.
National Research Council Canada - National Science Library
Corda, Christian
2013-01-01
Introducing a black hole (BH) effective temperature, which takes into account both the non-strictly thermal character of Hawking radiation and the countable behavior of emissions of subsequent Hawking quanta, we recently re...
Holographic black hole chemistry
National Research Council Canada - National Science Library
Karch, Andreas; Robinson, Brandon
2015-01-01
Thermodynamic quantities associated with black holes in Anti-de Sitter space obey an interesting identity when the cosmological constant is included as one of the dynamical variables, the generalized Smarr relation...
The Thermodynamics of Black Holes
Directory of Open Access Journals (Sweden)
Wald Robert M.
2001-01-01
Full Text Available We review the present status of black hole thermodynamics. Our review includes discussion of classical black hole thermodynamics, Hawking radiation from black holes, the generalized second law, and the issue of entropy bounds. A brief survey also is given of approaches to the calculation of black hole entropy. We conclude with a discussion of some unresolved open issues.
Energy Technology Data Exchange (ETDEWEB)
Babichev, Eugeny; Charmousis, Christos [Laboratoire de Physique Théorique (LPT), Univ. Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl [Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca (Chile)
2015-05-01
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.
Exact solution for the interior of a black hole
Nieuwenhuizen, T.M.
2008-01-01
Within the Relativistic Theory of Gravitation it is shown that the equation of state p = rho holds near the center of a black hole. For the stiff equation of state p = rho - rho(c) the interior metric is solved exactly. It is matched with the Schwarzschild metric, which is deformed in a narrow range
Comment on 'Hawking radiation from fluctuating black holes'
Khavkine, I.
2010-01-01
Takahashi and Soda (2010 Class. Quantum Grav. 27 175008) have recently considered the effect (at lowest non-trivial order) of dynamical, quantized gravitational fluctuations on the spectrum of scalar Hawking radiation from a collapsing Schwarzschild black hole. However, due to an unfortunate choice
Gauge field back reaction on a black hole
Energy Technology Data Exchange (ETDEWEB)
Hochberg, D.; Kephart, T.W. (Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States))
1993-02-15
The order-[h bar] fluctuations of gauge fields in the vicinity of a black hole can create a repulsive antigravity region extending out beyond the renormalized Schwarzschild horizon. If the strength of this repulsive force increases as higher orders in the back reaction are included, the formation of a wormholelike object could occur.
Black holes in massive conformal gravity
Energy Technology Data Exchange (ETDEWEB)
Myung, Yun Soo, E-mail: ysmyung@inje.ac.kr
2014-03-07
We analyze the classical stability of Schwarzschild black hole in massive conformal gravity which was recently proposed for another massive gravity model. This model in the Jordan frame is conformally equivalent to the Einstein–Weyl gravity in the Einstein frame. The coupled linearized Einstein equation is decomposed into the traceless and trace equation when one chooses 6m{sup 2}φ=δR. Solving the traceless equation exhibits unstable modes featuring the Gregory–Laflamme s-mode instability of five-dimensional black string, while we find no unstable modes when solving the trace equation. It is shown that the instability of the black hole in massive conformal gravity arises from the massiveness where the geometry of extra dimension trades for mass.
Energy Technology Data Exchange (ETDEWEB)
NONE
2002-02-01
Belief in the existence of black holes is the ultimate act of faith for a physicist. First suggested by the English clergyman John Michell in the year 1784, the gravitational pull of a black hole is so strong that nothing - not even light - can escape. Gravity might be the weakest of the fundamental forces but black-hole physics is not for the faint-hearted. Black holes present obvious problems for would-be observers because they cannot, by definition, be seen with conventional telescopes - although before the end of the decade gravitational-wave detectors should be able to study collisions between black holes. Until then astronomers can only infer the existence of a black hole from its gravitational influence on other matter, or from the X-rays emitted by gas and dust as they are dragged into the black hole. However, once this material passes through the 'event horizon' that surrounds the black hole, we will never see it again - not even with X-ray specs. Despite these observational problems, most physicists and astronomers believe that black holes do exist. Small black holes a few kilometres across are thought to form when stars weighing more than about two solar masses collapse under the weight of their own gravity, while supermassive black holes weighing millions of solar masses appear to be present at the centre of most galaxies. Moreover, some brave physicists have proposed ways to make black holes - or at least event horizons - in the laboratory. The basic idea behind these 'artificial black holes' is not to compress a large amount of mass into a small volume, but to reduce the speed of light in a moving medium to less than the speed of the medium and so create an event horizon. The parallels with real black holes are not exact but the experiments could shed new light on a variety of phenomena. The first challenge, however, is to get money for the research. One year on from a high-profile meeting on artificial black holes in London, for
Black hole entropy and the zeroth law of thermodynamics
Czinner, Viktor G.
2015-06-01
By mapping the nonadditive entropy composition law of the Bekenstein-Hawking formula to an additive one via the so-called "formal logarithm" operation, a new approach to the black hole entropy problem is considered. The new temperature function satisfies the zeroth law of thermodynamics, and turns out to be independent of the mass-energy parameter of the black hole in the case of the Schwarzschild solution. It is shown that pure isolated black holes are thermodynamically stable against spherically symmetric perturbations within this approach.
Adiabatic transport of qubits around a black hole
Viennot, David
2016-01-01
We consider localized qubits evolving around a black hole following a quantum adiabatic dynamics. We develop a geometric structure (based on fibre bundles) permitting to describe the quantum states of a qubit and the spacetime geometry in a single framework. The quantum decoherence induced by the black hole on the qubit is analysed in this framework (the role of the dynamical and geometric phases in this decoherence is treated), especially for the quantum teleportation protocol when one qubit falls to the event horizon. A simple formula to compute the fidelity of the teleportation is derived. The case of a Schwarzschild black hole is analysed.
A new length scale for quantum gravity: A resolution of the black hole information loss paradox
Singh, Tejinder P.
We show why and how Compton wavelength and Schwarzschild radius should be combined into one single new length scale, which we call the Compton-Schwarzschild length. Doing so offers a resolution of the black hole information loss paradox, and suggests Planck mass remnant black holes as candidates for dark matter. It also compels us to introduce torsion, and identify the Dirac field with a complex torsion field. Dirac equation and Einstein equations, are shown to be mutually dual limiting cases of an underlying gravitation theory which involves the Compton-Schwarzschild length scale, and includes a complex torsion field.
Centrella, John
2009-01-01
The final merger of two black holes is expected to be the strongest gravitational wave source for ground-based interferometers such as LIGO, VIRGO, and GEO600, as well as the space-based LISA. Observing these sources with gravitational wave detectors requires that we know the radiation waveforms they emit. And, when the black holes merge in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Since these mergers take place in regions of extreme gravity, we need to solve Einstein's equations of general relativity on a computer. For more than 30 years, scientists have tried to compute black hole mergers using the methods of numerical relativity. The resulting computer codes have been plagued by instabilities, causing them to crash well before the black holes in the binary could complete even a single orbit. Within the past few years, however, this situation has changed dramatically, with a series of remarkable breakthroughs. This talk will focus on new simulations that are revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics.
Exponential fading to white of black holes in quantum gravity
Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.
2017-05-01
Quantization of the gravitational field may allow the existence of a decay channel of black holes into white holes with an explicit time-reversal symmetry. The definition of a meaningful decay probability for this channel is studied in spherically symmetric situations. As a first nontrivial calculation, we present the functional integration over a set of geometries using a single-variable function to interpolate between black-hole and white-hole geometries in a bounded region of spacetime. This computation gives a finite result which depends only on the Schwarzschild mass and a parameter measuring the width of the interpolating region. The associated probability distribution displays an exponential decay law on the latter parameter, with a mean lifetime inversely proportional to the Schwarzschild mass. In physical terms this would imply that matter collapsing to a black hole from a finite radius bounces back elastically and instantaneously, with negligible time delay as measured by external observers. These results invite to reconsider the ultimate nature of astrophysical black holes, providing a possible mechanism for the formation of black stars instead of proper general relativistic black holes. The existence of both this decay channel and black stars can be tested in future observations of gravitational waves.
No-hair theorem for black holes in astrophysical environments.
Gürlebeck, Norman
2015-04-17
According to the no-hair theorem, static black holes are described by a Schwarzschild spacetime provided there are no other sources of the gravitational field. This requirement, however, is in astrophysical realistic scenarios often violated, e.g., if the black hole is part of a binary system or if it is surrounded by an accretion disk. In these cases, the black hole is distorted due to tidal forces. Nonetheless, the subsequent formulation of the no-hair theorem holds: The contribution of the distorted black hole to the multipole moments that describe the gravitational field close to infinity and, thus, all sources is that of a Schwarzschild black hole. It still has no hair. This implies that there is no multipole moment induced in the black hole and that its second Love numbers, which measure some aspects of the distortion, vanish as was already shown in approximations to general relativity. But here we prove this property for astrophysical relevant black holes in full general relativity.
Particle dynamics near Kerr-MOG black hole
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Shahzadi, Misbah [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2017-06-15
This paper explores the dynamics of both neutral and charged particles orbiting near a rotating black hole in scalar-tensor-vector gravity. We study the conditions for the particle to escape at the innermost stable circular orbit. We investigate the stability of orbits through the effective potential and Lyapunov exponent in the presence of a magnetic field. The effective force acting on particle is also discussed. We also study the center of mass energy of particle collision near the horizon of this black hole. Finally, we compare our results with the particle motion around Schwarzschild, Kerr and Schwarzschild-MOG black holes. It is concluded that the external magnetic field, spin parameter and dimensionless parameter of the theory have strong effects on the particle dynamics in modified gravity. (orig.)
Particle dynamics near Kerr-MOG black hole
Sharif, M.; Shahzadi, Misbah
2017-06-01
This paper explores the dynamics of both neutral and charged particles orbiting near a rotating black hole in scalar-tensor-vector gravity. We study the conditions for the particle to escape at the innermost stable circular orbit. We investigate the stability of orbits through the effective potential and Lyapunov exponent in the presence of a magnetic field. The effective force acting on particle is also discussed. We also study the center of mass energy of particle collision near the horizon of this black hole. Finally, we compare our results with the particle motion around Schwarzschild, Kerr and Schwarzschild-MOG black holes. It is concluded that the external magnetic field, spin parameter and dimensionless parameter of the theory have strong effects on the particle dynamics in modified gravity.
Black hole gravitohydromagnetics
Punsly, Brian
2008-01-01
Black hole gravitohydromagnetics (GHM) is developed from the rudiments to the frontiers of research in this book. GHM describes plasma interactions that combine the effects of gravity and a strong magnetic field, in the vicinity (ergosphere) of a rapidly rotating black hole. This topic was created in response to the astrophysical quest to understand the central engines of radio loud extragalactic radio sources. The theory describes a "torsional tug of war" between rotating ergospheric plasma and the distant asymptotic plasma that extracts the rotational inertia of the black hole. The recoil from the struggle between electromagnetic and gravitational forces near the event horizon is manifested as a powerful pair of magnetized particle beams (jets) that are ejected at nearly the speed of light. These bipolar jets feed large-scale magnetized plasmoids on scales as large as millions of light years (the radio lobes of extragalactic radio sources). This interaction can initiate jets that transport energy fluxes exc...
Centrella, Joan
2012-01-01
The final merger of two black holes is expected to be the strongest source of gravitational waves for both ground-based detectors such as LIGO and VIRGO, as well as future. space-based detectors. Since the merger takes place in the regime of strong dynamical gravity, computing the resulting gravitational waveforms requires solving the full Einstein equations of general relativity on a computer. For many years, numerical codes designed to simulate black hole mergers were plagued by a host of instabilities. However, recent breakthroughs have conquered these instabilities and opened up this field dramatically. This talk will focus on.the resulting 'gold rush' of new results that is revealing the dynamics and waveforms of binary black hole mergers, and their applications in gravitational wave detection, testing general relativity, and astrophysics
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Characterizing Black Hole Mergers
Baker, John; Boggs, William Darian; Kelly, Bernard
2010-01-01
Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.
Hennigar, Robie A; Mann, Robert B; Tjoa, Erickson
2017-01-13
We present what we believe is the first example of a "λ-line" phase transition in black hole thermodynamics. This is a line of (continuous) second order phase transitions which in the case of liquid ^{4}He marks the onset of superfluidity. The phase transition occurs for a class of asymptotically anti-de Sitter hairy black holes in Lovelock gravity where a real scalar field is conformally coupled to gravity. We discuss the origin of this phase transition and outline the circumstances under which it (or generalizations of it) could occur.
On the absence of scalar hair for charged rotating black holes in non ...
Indian Academy of Sciences (India)
Recently there has been a considerable resurgence in the no scalar hair theorem for black holes. Investigations regarding no hair theorem, however, had started about thirty years ago. [1]. Inspired by Israel's uniqueness theorem for Schwarzschild and Reissner–Nordstrom black holes [2] and Carter [3] and Wald's [4] ...
Weighing the black hole via quasi-local energy
Ha, Yuan K.
2017-08-01
We set to weigh the black holes at their event horizons in various spacetimes and obtain masses which are substantially higher than their asymptotic values. In each case, the horizon mass of a Schwarzschild, Reissner-Nordström, or Kerr black hole is found to be twice the irreducible mass observed at infinity. The irreducible mass does not contain electrostatic or rotational energy, leading to the inescapable conclusion that particles with electric charges and spins cannot exist inside a black hole. This is proposed as the External Energy Paradigm. A higher mass at the event horizon and its neighborhood is obligatory for the release of gravitational waves in binary black hole merging. We describe how these horizon mass values are obtained in the quasi-local energy approach and applied to the black holes of the first gravitational waves GW150914.
Extra Dimensions and Quantum Black Holes
Loureiro, K F
2007-01-01
In the late nineties several authors suggested that the extra dimensions predicted by string theory might lead to observable effects at high energy colliders. The ATLAS experiment which will start taking data at the LHC in 2007 will be an excellent place to search for such effects. One particularly intriguing possibility is that mini black holes could be produced if the centre-of-mass energy of two elementary particles is higher than the Planck scale and their impact parameter is lower than the Schwarzschild radius. Although the exact signature of a black hole is difficult to predict, some general features can be used as guideline for a search strategy. Non-observation will lead to the determination of lower bounds on the Planck Scale and the number of possible extra dimensions. This talk spans results from running experiments such as the Tevatron, Eöt-Wash and AGASA/Auger and presents predictions on the LHC in general.
Quantum aspects of black holes
2015-01-01
Beginning with an overview of the theory of black holes by the editor, this book presents a collection of ten chapters by leading physicists dealing with the variety of quantum mechanical and quantum gravitational effects pertinent to black holes. The contributions address topics such as Hawking radiation, the thermodynamics of black holes, the information paradox and firewalls, Monsters, primordial black holes, self-gravitating Bose-Einstein condensates, the formation of small black holes in high energetic collisions of particles, minimal length effects in black holes and small black holes at the Large Hadron Collider. Viewed as a whole the collection provides stimulating reading for researchers and graduate students seeking a summary of the quantum features of black holes.
Goldstein, K.D.|info:eu-repo/dai/nl/314132376; Katmadas, S.
2009-01-01
We study non-BPS black hole solutions to ungauged supergravity with 8 supercharges coupled to vector multiplets in four and five dimensions. We identify a large class of five dimensional non-BPS solutions, which we call ``almost BPS'', that are supersymmetric on local patches and satisfy a first
Baker, John
2010-01-01
Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.
Energy Technology Data Exchange (ETDEWEB)
Bender, P. [Univ. of Colorado, Boulder, CO (United States); Bloom, E. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Cominsky, L. [Sonoma State Univ., Rohnert Park, CA (United States). Dept. of Physics and Astronomy] [and others
1995-07-01
Black-hole astrophysics is not just the investigation of yet another, even if extremely remarkable type of celestial body, but a test of the correctness of the understanding of the very properties of space and time in very strong gravitational fields. Physicists` excitement at this new prospect for testing theories of fundamental processes is matched by that of astronomers at the possibility to discover and study a new and dramatically different kind of astronomical object. Here the authors review the currently known ways that black holes can be identified by their effects on their neighborhood--since, of course, the hole itself does not yield any direct evidence of its existence or information about its properties. The two most important empirical considerations are determination of masses, or lower limits thereof, of unseen companions in binary star systems, and measurement of luminosity fluctuations on very short time scales.
Black Hole: The Interior Spacetime
Ong, Yen Chin
2016-01-01
The information loss paradox is often discussed from the perspective of the observers who stay outside of a black hole. However, the interior spacetime of a black hole can be rather nontrivial. We discuss the open problems regarding the volume of a black hole, and whether it plays any role in information storage. We also emphasize the importance of resolving the black hole singularity, if one were to resolve the information loss paradox.
Black Holes and Sub-millimeter Dimensions
Argyres, Philip C; March-Russell, John David; Argyres, Philip C.; Dimopoulos, Savas; March-Russell, John
1998-01-01
Recently, a new framework for solving the hierarchy problem was proposed which does not rely on low energy supersymmetry or technicolor. The fundamental Planck mass is at a TeV and the observed weakness of gravity at long distances is due the existence of new sub-millimeter spatial dimensions. In this letter, we study how the properties of black holes are altered in these theories. Small black holes---with Schwarzschild radii smaller than the size of the new spatial dimensions---are quite different. They are bigger, colder, and longer-lived than a usual $(3+1)$-dimensional black hole of the same mass. Furthermore, they primarily decay into harmless bulk graviton modes rather than standard-model degrees of freedom. We discuss the interplay of our scenario with the holographic principle. Our results also have implications for the bounds on the spectrum of primordial black holes (PBHs) derived from the photo-dissociation of primordial nucleosynthesis products, distortion of the diffuse gamma-ray spectrum, overcl...
Strong gravitational lensing for black holes with scalar charge in massive gravity
Zhang, Ruanjing; Jing, Jiliang; Chen, Songbai
2017-03-01
We investigate the strong gravitational lensing for black holes with scalar charge in massive gravity. We find that the scalar charge and the type of the black hole significantly affect the radius of the photon sphere, deflection angle, angular image position, angular image separation, relative magnifications, and time delay in strong gravitational lensing. Our results can be reduced to those of the Schwarzschild and Reissner-Nordström black holes in some special cases.
Toward quantum corrections in black hole thermodynamics
Melmed, Jeffrey
Motivated by the incertitude of the stability of black holes in thermal equilibrium with their own radiation, yet lacking a closed renormalized effective action for gravity, the issue of stability is addressed from the point of view of quantum field theory in curved space. A conformally coupled scalar field is employed to model the one loop partition function which is then used to describe a finite black hole radiation system in the canonical ensemble. A boundary correct effective action is proposed based on an extension of the recently introduced Brown and Ottewill conformal approach. During the process of that extension, the required boundary correct C2 coefficient, which appears as the fourth order gravitational counterterm in the renormalization of the conformal scalar field action, and which is intimately connected to the anomalous trace of the quantum stress tensor, is found in geometrical terms. The resulting effective theory is applied to radiation systems in flat space and in Schwarzschild spacetimes where thermal quantities are computed by the method of York. In flat space, explicit modifications were found to the Planckian thermal radiation quantities coming from the geometry of the cavity wall. In Schwarzschild it was found that the radiation does not effect the known zero-loop thermal stability, at least to the same level of approximation which is implicit in the quantum stress tensor of Page.
Roldán-Molina, A.; Nunez, Alvaro S.; Duine, R. A.
2017-02-01
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons—the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Roldán-Molina, A; Nunez, Alvaro S; Duine, R A
2017-02-10
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
Prisons of light : black holes
Ferguson, Kitty
What is a black hole? Could we survive a visit to one -- perhaps even venture inside? Have we yet discovered any real black holes? And what do black holes teach us about the mysteries of our Universe? These are just a few of the tantalizing questions examined in this tour-de-force, jargon-free review of one of the most fascinating topics in modern science. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light - Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Reall Harvey S.
2008-09-01
Full Text Available We review black-hole solutions of higher-dimensional vacuum gravity and higher-dimensional supergravity theories. The discussion of vacuum gravity is pedagogical, with detailed reviews of Myers–Perry solutions, black rings, and solution-generating techniques. We discuss black-hole solutions of maximal supergravity theories, including black holes in anti-de Sitter space. General results and open problems are discussed throughout.
Greybody factors for a black hole in massive gravity
Dong, Ruifeng; Stojkovic, Dejan
2015-10-01
An exact solution was recently found in the massive gravity theory having the form of Schwarzschild-de Sitter (dS) black holes with some additional background fields. Hawking radiation will occur at the event and cosmological horizons having the blackbody spectrum, which will be modified by the geometry outside the black hole. In this paper, we study the greybody factors of a test scalar, considering its minimal coupling with the background geometry. The case of small black holes with a horizon radius much smaller than the cosmological dS radius is studied numerically. The case of near-extremal black holes with the horizon radius comparable to the cosmological dS radius is studied analytically. In addition, we considered the coupling of the test field with the background Stückelberg fields, which in turn leads to reductions in particle emission and some nontrivial features (resonances) in the greybody factors.
Strong deflection gravitational lensing by a modified Hayward black hole
Energy Technology Data Exchange (ETDEWEB)
Zhao, Shan-Shan; Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)
2017-05-15
A modified Hayward black hole is a nonsingular black hole. It is proposed that it would form when the pressure generated by quantum gravity can stop matter's collapse as the matter reaches the Planck density. Strong deflection gravitational lensing occurring nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and we estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands a very high resolution, beyond current stage. (orig.)
AdS Black Hole with Phantom Scalar Field
Directory of Open Access Journals (Sweden)
Limei Zhang
2017-01-01
Full Text Available We present an AdS black hole solution with Ricci flat horizon in Einstein-phantom scalar theory. The phantom scalar fields just depend on the transverse coordinates x and y, which are parameterized by the parameter α. We study the thermodynamics of the AdS phantom black hole. Although its horizon is a Ricci flat Euclidean space, we find that the thermodynamical properties of the black hole solution are qualitatively the same as those of AdS Schwarzschild black hole. Namely, there exists a minimal temperature and the large black hole is thermodynamically stable, while the smaller one is unstable, so there is a so-called Hawking-Page phase transition between the large black hole and the thermal gas solution in the AdS space-time in Poincare coordinates. We also calculate the entanglement entropy for a strip geometry dual to the AdS phantom black holes and find that the behavior of the entanglement entropy is qualitatively the same as that of the black hole thermodynamical entropy.
Notes on nonsingular models of black holes
Frolov, Valeri P.
2016-11-01
We discuss static spherically symmetric metrics which represent nonsingular black holes in four- and higher-dimensional spacetime. We impose a set of restrictions, such as a regularity of the metric at the center r =0 and Schwarzschild asymptotic behavior at large r . We assume that the metric besides mass M contains an additional parameter ℓ, which determines the scale where modification of the solution of the Einstein equations becomes significant. We require that the modified metric obeys the limiting curvature condition; that is, its curvature is uniformly restricted by the value ˜ℓ-2. We also make a "more technical" assumption that the metric coefficients are rational functions of r . In particular, the invariant (∇r )2 has the form Pn(r )/P˜n(r ), where Pn and P˜n are polynomials of the order of n . We discuss first the case of four dimensions. We show that when n ≤2 such a metric cannot describe a nonsingular black hole. For n =3 we find a suitable metric, which besides M and ℓ contains a dimensionless numerical parameter. When this parameter vanishes, the obtained metric coincides with Hayward's one. The characteristic property of such spacetimes is -ξ2=(∇r )2, where ξ2 is a timelike at infinity Killing vector. We describe a possible generalization of a nonsingular black-hole metric to the case when this equality is violated. We also obtain a metric for a charged nonsingular black hole obeying similar restrictions as the neutral one and construct higher dimensional models of neutral and charged black holes.
On the structure of composite black p-brane configurations and related black holes
Tseytlin, Arkady A
1997-01-01
We comment on the structure of intersecting black p-brane solutions in string theory. In particular, we explain why dimensional reduction in all internal world-volume directions including time leads to a metric (related by analytic continuation to a cosmological metric) which does not depend on p-brane charges, i.e. is the same as the metric following by reduction from a higher-dimensional `neutral' Schwarzschild black hole.
Charge Loss (or the Lack Thereof) for AdS Black Holes
Ong, Yen Chin
2014-01-01
The evolution of evaporating charged black holes is complicated to model in general, but is nevertheless important since the hints to the Information Loss Paradox and its recent firewall incarnation may lie in understanding more generic geometries than that of Schwarzschild spacetime. Fortunately, for sufficiently large asymptotically flat Reissner-Nordstrom black holes, the evaporation process can be modeled via a system of coupled linear ordinary differential equations, with charge loss rate governed by Schwinger pair-production process. The same model can be generalized to study the evaporation of AdS Reissner-Nordstrom black holes with flat horizon. It was recently found that such black holes always evolve towards extremality since charge loss is inefficient. This property is completely opposite to the asymptotically flat case in which the black hole eventually loses its charges and tends towards Schwarzschild limit. We clarify the underlying reason for this different behavior.
Accretion onto a charged higher-dimensional black hole
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2016-03-15
This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)
Black hole free energy during charged collapse
Edery, Ariel; Beauchesne, Hugues
2012-03-01
Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the gravitational Lagrangian approaches the (Helmholtz) free energy of a Schwarzschild black hole at late times of the collapse. We investigate numerically this association during the collapse of a charged scalar field to a Reissner-Nordström (RN) black hole in isotropic coordinates. Charged collapse yields a large outgoing matter wave in the exterior region but this has a negligible effect on the interior. The thermodynamics via the free energy can therefore be investigated by focusing on the interior. We find that the percentage discrepancy between the numerical value for the Lagrangian and the analytical expression for the free energy reach values as low as 3% depending on the initial state. As a consistency check, we also implement a procedure for prolonging the evolution of the exterior region. The matter Lagrangian approaches zero everywhere (interior and exterior) showing clearly that the entropy of the charged black hole is gravitational in origin.
Dvali, Gia
2013-01-01
According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.
Construction of Penrose Diagrams for Dynamic Black Holes
Brown, Beth A.; Lindesay, James
2008-01-01
A set of Penrose diagrams is constructed in order to examine the large-scale causal structure of black holes with dynamic horizons. Coordinate dependencies of significant features, such as the event horizon and radial mass scale, are demonstrated on the diagrams. Unlike in static Schwarzschild geometries, the radial mass scale is clearly seen to differ from the horizon. Trajectories for photons near the horizon are briefly discussed.
Bellucci, S; Marrani, A; Yeranyan, A
2008-01-01
The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z=0, are obtained for the so-called stu model, the minimal rank-3 N=2 symmetric supergravity in d=4 space-time dimensions. Comparisons with previous results, as well as the fake supergravity (first order) formalism and an analysis of the BPS bound all along the non-BPS attractor flows and of the marginal stability of corresponding D-brane configurations, are given.
Bellucci, Stefano; Ferrara, Sergio; Marrani, Alessio; Yeranyan, Armen
2008-12-01
The general solutions of the radial attractor flow equations for extremal black holes, both for non-BPS with non-vanishing central charge Z and for Z = 0, are obtained for the so-called stu model, the minimal rank-3 N = 2 symmetric supergravity in d = 4 space-time dimensions. Comparisons with previous results, as well as the fake supergravity (first order) formalism and an analysis of the BPS bound all along the non-BPS attractor flows and of the marginal stability of corresponding D-brane configurations, are given.
Visser, Matt; Volovik, Grigory E
2009-01-01
Physicists are pondering on the possibility of simulating black holes in the laboratory by means of various "analog models". These analog models, typically based on condensed matter physics, can be used to help us understand general relativity (Einstein's gravity); conversely, abstract techniques developed in general relativity can sometimes be used to help us understand certain aspects of condensed matter physics. This book contains 13 chapters - written by experts in general relativity, particle physics, and condensed matter physics - that explore various aspects of this two-way traffic.
Directory of Open Access Journals (Sweden)
I. Cabrera-Munguia
2015-04-01
Full Text Available A 6-parametric asymptotically flat exact solution, describing a two-body system of asymmetric black dyons, is studied. The system consists of two unequal counterrotating Kerr–Newman black holes, endowed with electric and magnetic charges which are equal but opposite in sign, separated by a massless strut. The Smarr formula is generalized in order to take into account their contribution to the mass. The expressions for the horizon half-length parameters σ1 and σ2, as functions of the Komar parameters and of the coordinate distance, are displayed, and the thermodynamic properties of the two-body system are studied. Furthermore, the seven physical parameters satisfy a simple algebraic relation which can be understood as a dynamical scenario, in which the physical properties of one body are affected by the ones of the other body.
Black holes and the multiverse
Energy Technology Data Exchange (ETDEWEB)
Garriga, Jaume [Departament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain (Spain); Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Thermodynamics of Accelerating Black Holes.
Appels, Michael; Gregory, Ruth; Kubizňák, David
2016-09-23
We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.
Sub-Planckian black holes and the Generalized Uncertainty Principle
Carr, Bernard J; Nicolini, Piero
2015-01-01
The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under $M \\leftrightarrow M^{-1}$ naturally implies a Generalized Uncertainty Principle with the linear form $\\Delta x \\sim \\frac{1}{\\Delta p} + \\Delta p$. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of $(1+1)$-D gravity. The temperature of sub-Planckian black holes scales as $M$ rather than $M^{-1}$ but the evaporation of those smaller than $10^{-36}$g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark ...
Sub-Planckian black holes and the Generalized Uncertainty Principle
Energy Technology Data Exchange (ETDEWEB)
Carr, Bernard [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Mureika, Jonas [Department of Physics, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045 (United States); Nicolini, Piero [Frankfurt Institute for Advandced Studies (FIAS), Ruth-Moufang-Straße 1, 60438 Frankfurt am Main (Germany); Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt am Main (Germany)
2015-07-10
The Black Hole Uncertainty Principle correspondence suggests that there could exist black holes with mass beneath the Planck scale but radius of order the Compton scale rather than Schwarzschild scale. We present a modified, self-dual Schwarzschild-like metric that reproduces desirable aspects of a variety of disparate models in the sub-Planckian limit, while remaining Schwarzschild in the large mass limit. The self-dual nature of this solution under M↔M{sup −1} naturally implies a Generalized Uncertainty Principle with the linear form Δx∼(1/(Δp))+Δp. We also demonstrate a natural dimensional reduction feature, in that the gravitational radius and thermodynamics of sub-Planckian objects resemble that of (1+1)-D gravity. The temperature of sub-Planckian black holes scales as M rather than M{sup −1} but the evaporation of those smaller than 10{sup −36} g is suppressed by the cosmic background radiation. This suggests that relics of this mass could provide the dark matter.
Gravitational collapse to a Kerr-Newman black hole
Nathanail, Antonios; Most, Elias R.; Rezzolla, Luciano
2017-07-01
We present the first systematic study of the gravitational collapse of rotating and magnetized neutron stars to charged and rotating (Kerr-Newman) black holes. In particular, we consider the collapse of magnetized and rotating neutron stars assuming that no pair-creation takes place and that the charge density in the magnetosphere is so low that the stellar exterior can be described as an electrovacuum. Under these assumptions, which are rather reasonable for a pulsar that has crossed the 'death line', we show that when the star is rotating, it acquires a net initial electrical charge, which is then trapped inside the apparent horizon of the newly formed back hole. We analyse a number of different quantities to validate that the black hole produced is indeed a Kerr-Newman one and show that, in the absence of rotation or magnetic field, the end result of the collapse is a Schwarzschild or Kerr black hole, respectively.
Black holes under external influence £
Indian Academy of Sciences (India)
KTF MFF UK
of the flux of external fields across charged and rotating black holes which are approaching extremal states. Recently this effect has been shown to occur for black hole solutions in string theory. We also discuss black holes surrounded by rings and disks and rotating black holes accelerated by strings. Keywords. Black holes ...
Relativistic hydrodynamics in the presence of puncture black holes
Faber, Joshua A.; Baumgarte, Thomas W.; Etienne, Zachariah B.; Shapiro, Stuart L.; Taniguchi, Keisuke
2007-11-01
Many of the recent numerical simulations of binary black holes in vacuum adopt the moving puncture approach. This successful approach avoids the need to impose numerical excision of the black hole interior and is easy to implement. Here we wish to explore how well the same approach can be applied to moving black hole punctures in the presence of relativistic hydrodynamic matter. First, we evolve single black hole punctures in vacuum to calibrate our Baumgarte-Shapiro-Shibata-Nakamura implementation and to confirm that the numerical solution for the exterior spacetime is invariant to any junk (i.e., constraint-violating) initial data employed in the black hole interior. Then we focus on relativistic Bondi accretion onto a moving puncture Schwarzschild black hole as a numerical test bed for our high-resolution shock-capturing relativistic hydrodynamics scheme. We find that the hydrodynamical equations can be evolved successfully in the interior without imposing numerical excision. These results help motivate the adoption of the moving puncture approach to treat the binary black hole neutron star problem using conformal thin-sandwich initial data.
Effective theory of black holes in the 1/D expansion
Energy Technology Data Exchange (ETDEWEB)
Emparan, Roberto [Institució Catalana de Recerca i Estudis Avançats (ICREA),Passeig Lluís Companys 23, E-08010 Barcelona (Spain); Departament de Física Fonamental, Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona (Spain); Shiromizu, Tetsuya [Department of Mathematics, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute, Nagoya University,Nagoya 464-8602 (Japan); Suzuki, Ryotaku [Department of Physics, Osaka City University,Osaka 558-8585 (Japan); Tanabe, Kentaro [Theory Center, Institute of Particles and Nuclear Studies, KEK,Tsukuba, Ibaraki, 305-0801 (Japan); Tanaka, Takahiro [Department of Physics, Kyoto University,Kyoto, 606-8502 (Japan); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto, 606-8502 (Japan)
2015-06-23
The gravitational field of a black hole is strongly localized near its horizon when the number of dimensions D is very large. In this limit, we can effectively replace the black hole with a surface in a background geometry (e.g. Minkowski or Anti-deSitter space). The Einstein equations determine the effective equations that this ‘black hole surface’ (or membrane) must satisfy. We obtain them up to next-to-leading order in 1/D for static black holes of the Einstein-(A)dS theory. To leading order, and also to next order in Minkowski backgrounds, the equations of the effective theory are the same as soap-film equations, possibly up to a redshift factor. In particular, the Schwarzschild black hole is recovered as a spherical soap bubble. Less trivially, we find solutions for ‘black droplets’, i.e. black holes localized at the boundary of AdS, and for non-uniform black strings.
$W_\\infty$ Algebras, Hawking Radiation and Information Retention by Stringy Black Holes
Ellis, John; Nanopoulos, Dimitri V
2016-01-01
We have argued previously, based on the analysis of two-dimensional stringy black holes, that information in stringy versions of four-dimensional Schwarzschild black holes (whose singular regions are represented by appropriate Wess-Zumino-Witten models) is retained by quantum $W$-symmetries when the horizon area is not preserved due to Hawking radiation. It is key that the exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole requires a contribution from $W_\\infty$ generators in its vertex function. The latter correspond to delocalised, non-propagating, string excitations that guarantee the transfer of information between the string black hole and external particles. When infalling matter crosses the horizon, these topological states are excited via a process: (Stringy black hole) + infalling matter $\\rightarrow $ (Stringy black hole)$^\\star$, where the black hole is viewed as a stringy state with a specific configuration of $W_\\infty$ charges...
DEFF Research Database (Denmark)
Vestergaard, Marianne
2004-01-01
The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....
Indian Academy of Sciences (India)
Black holes are bits of space, or more precisely, 'space-time', from which even light cannot escape, because they are regions of extremely strong gravity. We now know that black holes, es- pecially those that are a million times heavier than our Sun or more, i.e., 'supermassive', are abundant in our universe, occur- ring in the ...
ATLAS simulated black hole event
Pequenão, J
2008-01-01
The simulated collision event shown is viewed along the beampipe. The event is one in which a microscopic-black-hole was produced in the collision of two protons (not shown). The microscopic-black-hole decayed immediately into many particles. The colors of the tracks show different types of particles emerging from the collision (at the center).
Quasinormal modes of black holes in scalar-tensor theories with nonminimal derivative couplings
Dong, Ruifeng; Sakstein, Jeremy; Stojkovic, Dejan
2017-09-01
We study the quasinormal modes of asymptotically anti-de Sitter black holes in a class of shift-symmetric Horndeski theories where a gravitational scalar is derivatively coupled to the Einstein tensor. The spacetime differs from exact Schwarzschild-anti-de Sitter, resulting in a different effective potential for the quasinormal modes and a different spectrum. We numerically compute this spectrum for a massless test scalar coupled both minimally to the metric, and nonminimally to the gravitational scalar. We find interesting differences from the Schwarzschild-anti-de Sitter black hole found in general relativity.
When Charged Black Holes Merge
Kohler, Susanna
2016-08-01
Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge
Prisons of Light - Black Holes
Ferguson, Kitty
1998-05-01
In this jargon-free review of one of the most fascinating topics in modern science, acclaimed science writer Kitty Ferguson examines the discovery of black holes, their nature, and what they can teach us about the mysteries of the universe. In search of the answers, we trace a star from its birth to its death throes, take a hypothetical journey to the border of a black hole and beyond, spend time with some of the world's leading theoretical physicists and astronomers, and take a whimsical look at some of the wild ideas black holes have inspired. Prisons of Light--Black Holes is comprehensive and detailed. Yet Kitty Ferguson's lightness of touch and down-to-earth analogies set this book apart from all others on black holes and make it a wonderfully stimulating and entertaining read.
Energy Technology Data Exchange (ETDEWEB)
Hubeny, V.
2005-01-12
We investigate the geometry of four dimensional black hole solutions in the presence of stringy higher curvature corrections to the low energy effective action. For certain supersymmetric two charge black holes these corrections drastically alter the causal structure of the solution, converting seemingly pathological null singularities into timelike singularities hidden behind a finite area horizon. We establish, analytically and numerically, that the string-corrected two-charge black hole metric has the same Penrose diagram as the extremal four-charge black hole. The higher derivative terms lead to another dramatic effect--the gravitational force exerted by a black hole on an inertial observer is no longer purely attractive. The magnitude of this effect is related to the size of the compactification manifold.
Area spectrum of slowly rotating black holes
Myung, Yun Soo
2010-01-01
We investigate the area spectrum for rotating black holes which are Kerr and BTZ black holes. For slowly rotating black holes, we use the Maggiore's idea combined with Kunstatter's method to derive their area spectra, which are equally spaced.
New entropy formula for Kerr black holes
Gonzalez, Hernan; Grumiller, Daniel; Merbis, Wout; Wutte, Raphaela
2017-01-01
We introduce a new entropy formula for Kerr black holes inspired by recent results for 3-dimensional black holes and cosmologies with soft Heisenberg hair. We show that also Kerr-Taub-NUT black holes obey the same formula.
Are LIGO's Black Holes Made From Smaller Black Holes?
Kohler, Susanna
2017-05-01
The recent successes of the Laser Interferometer Gravitational-Wave Observatory (LIGO) has raised hopes that several long-standing questions in black-hole physics will soon be answerable. Besides revealing how the black-hole binary pairs are built, could detections with LIGO also reveal how the black holes themselves form?Isolation or HierarchyThe first detection of gravitational waves, GW150914, was surprising for a number of reasons. One unexpected result was the mass of the two black holes that LIGO saw merging: they were a whopping 29 and 36 solar masses.On the left of this schematic, two first-generation (direct-collapse) black holes form a merging binary. The right illustrates a second-generation hierarchical merger: each black hole in the final merging binary was formed by the merger of two smaller black holes. [Adapted fromGerosa et al., a simultaneously published paper that also explores the problem of hierarchical mergers and reaches similar conclusions]How do black holes of this size form? One possibility is that they form in isolation from the collapse of a single massive star. In an alternative model, they are created through the hierarchical merger of smaller black holes, gradually building up to the size we observed.A team of scientists led by Maya Fishbach (University of Chicago) suggests that we may soon be able to tell whether or not black holes observed by LIGO formed hierarchically. Fishbach and collaborators argue that hierarchical formation leaves a distinctive signature on the spins of the final black holes and that as soon as we have enough merger detections from LIGO, we can use spin measurements to statistically determine if LIGO black holes were formed hierarchically.Spins from Major MergersWhen two black holes merge, both their original spins and the angular momentum of the pair contribute to the spin of the final black hole that results. Fishbach and collaborators calculate the expected distribution of these final spins assuming that
Magnetic fields around black holes
Garofalo, David A. G.
Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our
Influence of a plasma on the shadow of a spherically symmetric black hole
Perlick, Volker; Bisnovatyi-Kogan, Gennady S
2015-01-01
We analytically calculate the influence of a plasma on the shadow of a black hole (or of another compact object). We restrict to spherically symmetric and static situations, where the shadow is circular. The plasma is assumed to be non-magnetized and pressure-less. We derive the general formulas for a spherically symmetric plasma density on an unspecified spherically symmetric and static spacetime. The formalism applies not only to black holes but also, e.g., to wormholes. As examples for the underlying spacetime model, we consider the Schwarzschild spacetime and the Ellis wormhole. In particular, we treat the case that the plasma is in radial free fall from infinity onto a Schwarzschild black hole. The perspectives of actually observing the influence of a plasma on the shadows of supermassive black holes are discussed.
An exploration of the black hole entropy via the Weyl tensor
Energy Technology Data Exchange (ETDEWEB)
Li, Nan [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Li, Xiao-Long [Beijing Normal University, Department of Astronomy, Beijing (China); Song, Shu-Peng [Beijing Normal University, Department of Physics, Beijing (China)
2016-03-15
The role of the Weyl tensor C{sub μνλρ} in black hole thermodynamics is explored by looking at the relation between the scalar invariant C{sub μνλρ}C{sup μνλρ} and the entropy of n-dimensional static black holes. It is found that this invariant can be identified as the entropy density of the gravitational fields for classical 5-dimensional black holes. We calculate the proper volume integrals of C{sub μνλρ}C{sup μνλρ} for the Schwarzschild and Schwarzschild-anti-de Sitter black holes and show that these integrals correctly lead to the Bekenstein-Hawking entropy formulas, only up to some coefficients. (orig.)
Scalar perturbations of nonsingular nonrotating black holes in conformal gravity
Toshmatov, Bobir; Bambi, Cosimo; Ahmedov, Bobomurat; Stuchlík, Zdeněk; Schee, Jan
2017-09-01
We study scalar and electromagnetic perturbations of a family of nonsingular nonrotating black hole spacetimes that are solutions in a large class of conformally invariant theories of gravity. The effective potential for scalar perturbations depends on the exact form of the scaling factor. Electromagnetic perturbations do not feel the scaling factor, and the corresponding quasinormal mode spectrum is the same as in the Schwarzschild metric. We find that these black hole metrics are stable under scalar and electromagnetic perturbations. Assuming that the quasinormal mode spectrum for scalar perturbations is not too different from that for gravitational perturbations, we can expect that the calculation of the quasinormal mode spectrum and the observation with gravitational wave detectors of quasinormal modes from astrophysical black holes can constrain the scaling factor and test these solutions.
2006-01-01
[figure removed for brevity, see original site] Poster Version This artist's concept shows a supermassive black hole at the center of a remote galaxy digesting the remnants of a star. NASA's Galaxy Evolution Explorer had a 'ringside' seat for this feeding frenzy, using its ultraviolet eyes to study the process from beginning to end. The artist's concept chronicles the star being ripped apart and swallowed by the cosmic beast over time. First, the intact sun-like star (left) ventures too close to the black hole, and its own self-gravity is overwhelmed by the black hole's gravity. The star then stretches apart (middle yellow blob) and eventually breaks into stellar crumbs, some of which swirl into the black hole (cloudy ring at right). This doomed material heats up and radiates light, including ultraviolet light, before disappearing forever into the black hole. The Galaxy Evolution Explorer was able to watch this process unfold by observing changes in ultraviolet light. The area around the black hole appears warped because the gravity of the black hole acts like a lens, twisting and distorting light.
Gyroscope precession along unbound equatorial plane orbits around a Kerr black hole
Bini, Donato; Jantzen, Robert T
2016-01-01
The precession of a test gyroscope along unbound equatorial plane geodesic orbits around a Kerr black hole is analyzed with respect to a static reference frame whose axes point towards the "fixed stars." The accumulated precession angle after a complete scattering process is evaluated and compared with the corresponding change in the orbital angle. Limiting results for the non-rotating Schwarzschild black hole case are also discussed.
Configurational entropy of anti-de Sitter black holes
Directory of Open Access Journals (Sweden)
Nelson R.F. Braga
2017-04-01
Full Text Available Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.
Configurational entropy of anti-de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC – UFABC, 09210-580, Santo André (Brazil)
2017-04-10
Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.
Black hole phase transitions and the chemical potential
Energy Technology Data Exchange (ETDEWEB)
Maity, Reevu, E-mail: reevum@iitk.ac.in; Roy, Pratim, E-mail: proy@iitk.ac.in; Sarkar, Tapobrata, E-mail: tapo@iitk.ac.in
2017-02-10
In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ) dual to the number of colours (N) of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.
Black hole phase transitions and the chemical potential
Directory of Open Access Journals (Sweden)
Reevu Maity
2017-02-01
Full Text Available In the context of black hole thermodynamics and the AdS–CFT correspondence, we consider the chemical potential (μ dual to the number of colours (N of the boundary gauge theory, in the grand canonical ensemble. By appropriately defining μ via densities of thermodynamic quantities, we show that it changes sign precisely at the Hawking–Page transition for AdS–Schwarzschild and RN–AdS black holes in five dimensions, signalling the onset of quantum effects at the transition point. Such behaviour is absent for non-rotating black holes in four dimensions. For Kerr–AdS black holes in four and five dimensions, our analysis points to the fact that μ can change sign in the stable black hole region, i.e. above the Hawking–Page transition temperature, for a range of angular frequencies. We also analyse AdS black holes in five dimensional Gauss–Bonnet gravity, and find similar features for μ as in the Kerr–AdS case.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Orbital resonances around black holes.
Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja
2015-02-27
We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.
Black holes and Higgs stability
Tetradis, Nikolaos
2016-09-20
We study the effect of primordial black holes on the classical rate of nucleation of AdS regions within the standard electroweak vacuum. We find that the energy barrier for transitions to the new vacuum, which characterizes the exponential suppression of the nucleation rate, can be reduced significantly in the black-hole background. A precise analysis is required in order to determine whether the the existence of primordial black holes is compatible with the form of the Higgs potential at high temperature or density in the Standard Model or its extensions.
Erratic Black Hole Regulates Itself
2009-03-01
New results from NASA's Chandra X-ray Observatory have made a major advance in explaining how a special class of black holes may shut off the high-speed jets they produce. These results suggest that these black holes have a mechanism for regulating the rate at which they grow. Black holes come in many sizes: the supermassive ones, including those in quasars, which weigh in at millions to billions of times the mass of the Sun, and the much smaller stellar-mass black holes which have measured masses in the range of about 7 to 25 times the Sun's mass. Some stellar-mass black holes launch powerful jets of particles and radiation, like seen in quasars, and are called "micro-quasars". The new study looks at a famous micro-quasar in our own Galaxy, and regions close to its event horizon, or point of no return. This system, GRS 1915+105 (GRS 1915 for short), contains a black hole about 14 times the mass of the Sun that is feeding off material from a nearby companion star. As the material swirls toward the black hole, an accretion disk forms. This system shows remarkably unpredictable and complicated variability ranging from timescales of seconds to months, including 14 different patterns of variation. These variations are caused by a poorly understood connection between the disk and the radio jet seen in GRS 1915. Chandra, with its spectrograph, has observed GRS 1915 eleven times since its launch in 1999. These studies reveal that the jet in GRS 1915 may be periodically choked off when a hot wind, seen in X-rays, is driven off the accretion disk around the black hole. The wind is believed to shut down the jet by depriving it of matter that would have otherwise fueled it. Conversely, once the wind dies down, the jet can re-emerge. "We think the jet and wind around this black hole are in a sort of tug of war," said Joseph Neilsen, Harvard graduate student and lead author of the paper appearing in the journal Nature. "Sometimes one is winning and then, for reasons we don
van Herck, Walter; Wyder, Thomas
2010-04-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.
Susskind, Leonard
1997-01-01
I will describe profound revolution in our understanding of black holes and their relation to quantum mechanics that has occured over the last few years as a result of a deeper understanding of string theory.
Hawking Radiation-Quasinormal Modes Correspondence for Large AdS Black Holes
Directory of Open Access Journals (Sweden)
Dao-Quan Sun
2017-01-01
Full Text Available It is well-known that the nonstrictly thermal character of the Hawking radiation spectrum generates a natural correspondence between Hawking radiation and black hole quasinormal modes. This main issue has been analyzed in the framework of Schwarzschild black holes, Kerr black holes, and nonextremal Reissner-Nordstrom black holes. In this paper, by introducing the effective temperature, we reanalyze the nonstrictly thermal character of large AdS black holes. The results show that the effective mass corresponding to the effective temperature is approximatively the average one in any dimension. And the other effective quantities can also be obtained. Based on the known forms of frequency in quasinormal modes, we reanalyze the asymptotic frequencies of the large AdS black hole in three and five dimensions. Then we get the formulas of the Bekenstein-Hawking entropy and the horizon’s area quantization with functions of the quantum “overtone” number n.
Turning points of massive particles in Schwarzschild geometry
Polonyi, J.; Radosz, A.; Siwek, A.; Ostasiewicz, K.
2009-01-01
The stable geodesics in Schwarzschild geometry can not approach the center closer than the radius of the photon sphere, 3/2 times the Schwarzschild radius. In other words, massive particles moving along geodesics that cross the photon sphere do not escape, they fall into the black hole.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the conjecture that the primordial black holes ...
Hu, Ya-Peng; Pan, Feng; Wu, Xin-Meng
2017-09-01
It is well known that the black hole can have temperature and radiate the particles with black body spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy for the isolated system into account. In this paper, following the above spirit, the effects of massive graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we will use the de Rham-Gabadadze-Tolley (dRGT) massive gravity which has been proven to be ghost free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just investigate two simple cases related to the two parameters, respectively. Our results show that in the first case the massive graviton can suppress or increase the condensation of black hole in the radiation gas although the T-E diagram is similar as the Schwarzschild black hole case. For the second case, a new T-E diagram has been obtained. Moreover, an interesting and important prediction is that the condensation of black hole just increases from the zero radius of horizon in this case, which is very different from the Schwarzschild black hole case.
Directory of Open Access Journals (Sweden)
Ya-Peng Hu
2017-09-01
Full Text Available It is well known that the black hole can have temperature and radiate the particles with black body spectrum, i.e. Hawking radiation. Therefore, if the black hole is surrounded by an isolated box, there is a thermal equilibrium between the black hole and radiation gas. A simple case considering the thermal equilibrium between the Schwarzschild black hole and radiation gas in an isolated box has been well investigated previously in detail, i.e. taking the conservation of energy and principle of maximal entropy for the isolated system into account. In this paper, following the above spirit, the effects of massive graviton on the thermal equilibrium will be investigated. For the gravity with massive graviton, we will use the de Rham–Gabadadze–Tolley (dRGT massive gravity which has been proven to be ghost free. Because the graviton mass depends on two parameters in the dRGT massive gravity, here we just investigate two simple cases related to the two parameters, respectively. Our results show that in the first case the massive graviton can suppress or increase the condensation of black hole in the radiation gas although the T–E diagram is similar as the Schwarzschild black hole case. For the second case, a new T–E diagram has been obtained. Moreover, an interesting and important prediction is that the condensation of black hole just increases from the zero radius of horizon in this case, which is very different from the Schwarzschild black hole case.
Black Hole Spin Measurement Uncertainty
Salvesen, Greg; Begelman, Mitchell C.
2018-01-01
Angular momentum, or spin, is one of only two fundamental properties of astrophysical black holes, and measuring its value has numerous applications. For instance, obtaining reliable spin measurements could constrain the growth history of supermassive black holes and reveal whether relativistic jets are powered by tapping into the black hole spin reservoir. The two well-established techniques for measuring black hole spin can both be applied to X-ray binaries, but are in disagreement for cases of non-maximal spin. This discrepancy must be resolved if either technique is to be deemed robust. We show that the technique based on disc continuum fitting is sensitive to uncertainties regarding the disc atmosphere, which are observationally unconstrained. By incorporating reasonable uncertainties into black hole spin probability density functions, we demonstrate that the spin measured by disc continuum fitting can become highly uncertain. Future work toward understanding how the observed disc continuum is altered by atmospheric physics, particularly magnetic fields, will further strengthen black hole spin measurement techniques.
Resonant scattering of light in a near-black-hole metric
Energy Technology Data Exchange (ETDEWEB)
Stadnik, Y.V.; Gossel, G.H.; Flambaum, V.V.; Berengut, J.C. [University of New South Wales, School of Physics, Sydney (Australia)
2013-11-15
We show that low-energy photon scattering from a body with radius R slightly larger than its Schwarzschild radius r{sub s} resembles black-hole absorption. This absorption occurs via capture resulting in one of the many long-lived, densely packed resonances that populate the continuum. The lifetimes and density of these meta-stable states tend to infinity in the limit r{sub s} {yields}R. We determine the energy-averaged cross section for particle capture into these resonances and show that it is equal to the absorption cross section for a Schwarzschild black hole. Thus a non-singular static metric may trap photons for arbitrarily long times, making it appear completely 'black' before the actual formation of a black hole. (orig.)
Regular black hole in three dimensions
Myung, Yun Soo; Yoon, Myungseok
2008-01-01
We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.
Rethinking Black Hole Accretion Discs
Salvesen, Greg
Accretion discs are staples of astrophysics. Tapping into the gravitational potential energy of the accreting material, these discs are highly efficient machines that produce copious radiation and extreme outflows. While interesting in their own right, accretion discs also act as tools to study black holes and directly influence the properties of the Universe. Black hole X-ray binaries are fantastic natural laboratories for studying accretion disc physics and black hole phenomena. Among many of the curious behaviors exhibited by these systems are black hole state transitions -- complicated cycles of dramatic brightening and dimming. Using X-ray observations with high temporal cadence, we show that the evolution of the accretion disc spectrum during black hole state transitions can be described by a variable disc atmospheric structure without invoking a radially truncated disc geometry. The accretion disc spectrum can be a powerful diagnostic for measuring black hole spin if the effects of the disc atmosphere on the emergent spectrum are well-understood; however, properties of the disc atmosphere are largely unconstrained. Using statistical methods, we decompose this black hole spin measurement technique and show that modest uncertainties regarding the disc atmosphere can lead to erroneous spin measurements. The vertical structure of the disc is difficult to constrain due to our ignorance of the contribution to hydrostatic balance by magnetic fields, which are fundamental to the accretion process. Observations of black hole X-ray binaries and the accretion environments near supermassive black holes provide mounting evidence for strong magnetization. Performing numerical simulations of accretion discs in the shearing box approximation, we impose a net vertical magnetic flux that allows us to effectively control the level of disc magnetization. We study how dynamo activity and the properties of turbulence driven by the magnetorotational instability depend on the
Anisotropic metamaterial as an analogue of a black hole
Energy Technology Data Exchange (ETDEWEB)
Fernández-Núñez, Isabel; Bulashenko, Oleg, E-mail: oleg.bulashenko@ub.edu
2016-01-08
Propagation of light in a metamaterial medium which mimics curved spacetime and acts like a black hole is studied. We show that for a particular type of spacetimes and wave polarization, the time dilation appears as dielectric permittivity, while the spatial curvature manifests as magnetic permeability. The optical analogue to the relativistic Hamiltonian which determines the ray paths (null geodesics) in the anisotropic metamaterial is obtained. By applying the formalism to the Schwarzschild metric, we compare the ray paths with full-wave simulations in the equivalent optical medium. - Highlights: • Optical analogue to the static anisotropic spacetime metric obeying rotational symmetries is studied. • Explicit expressions for the permittivity and permeability tensors are obtained. • Explicit expression for the optical Hamiltonian is found. • Ray paths are compared with full-wave simulations for the Schwarzschild metric in anisotropic and isotropic cases.
Curing Black Hole Singularities with Local Scale Invariance
Directory of Open Access Journals (Sweden)
Predrag Dominis Prester
2016-01-01
Full Text Available We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1 singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2 instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3 in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4 if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical geometric description; (5 the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.
Black holes in the gravity/gauge theory correspondence
Gregory, J P
2002-01-01
Schwarzschild-AdS x Sphere, which are relevant to my study of the AdS/CFT correspondence. The AdS/CFT correspondence provides a microscopic description of black hole thermodynamics. In this thesis, I study the relation between the classical physics of black holes and this microscopic description. I first consider the gauge theory's holographic encoding of non-trivial global causal structure, by studying various probes of the black hole. I study the charged black hole, so that the thermal scale is separated from the horizon scale, to demonstrate which relates to the field theory scale size. I find that, when probing the horizon, both Wilson loops and the duals of static supergravity probes have a scale size determined by the horizon, but the field theory scale size is divergent for a time-dependent probe. I also use the bulk black hole geometry to study the physics of the boundary theory. If we consider a dynamical boundary, a braneworld cosmology is induced from the bulk. However, the presence of matter on th...
Thermodynamics of Acoustic Black Holes in Two Dimensions
Directory of Open Access Journals (Sweden)
Baocheng Zhang
2016-01-01
Full Text Available It is well-known that the thermal Hawking-like radiation can be emitted from the acoustic horizon, but the thermodynamic-like understanding for acoustic black holes was rarely made. In this paper, we will show that the kinematic connection can lead to the dynamic connection at the horizon between the fluid and gravitational models in two dimensions, which implies that there exists the thermodynamic-like description for acoustic black holes. Then, we discuss the first law of thermodynamics for the acoustic black hole via an intriguing connection between the gravitational-like dynamics of the acoustic horizon and thermodynamics. We obtain a universal form for the entropy of acoustic black holes, which has an interpretation similar to the entropic gravity. We also discuss the specific heat and find that the derivative of the velocity of background fluid can be regarded as a novel acoustic analogue of the two-dimensional dilaton potential, which interprets why the two-dimensional fluid dynamics can be connected to the gravitational dynamics but it is difficult for four-dimensional case. In particular, when a constraint is added for the fluid, the analogue of a Schwarzschild black hole can be realized.
Black hole firewalls, smoke and mirrors
Brustein, Ram; Medved, A. J. M.
2014-07-01
The radiation emitted by a black hole (BH) during its evaporation has to have some degree of quantum coherence to accommodate a unitary time evolution. We parametrize the degree of coherence by the number of coherently emitted particles Ncoh and show that it is severely constrained by the equivalence principle. We discuss, in this context, the fate of a shell of matter that falls into a Schwarzschild BH. Two points of view are considered: that of a stationary external observer and that of the shell itself. From the perspective of the shell, the near-horizon region has an energy density proportional to Ncoh2 in Schwarzschild units. So, if Ncoh is parametrically larger than the square root of the BH entropy SBH1/2, a firewall or more generally a "wall of smoke" forms and the equivalence principle is violated while the BH is still semiclassical. To have a degree of coherence that is parametrically smaller than SBH1/2, one has to introduce a new sub-Planckian gravitational length scale, which likely also violates the equivalence principle. And so our previously proposed model which has Ncoh=SBH1/2 is singled out. From the external-observer perspective, we find that the time it takes for the information about the state of the shell to get re-emitted from the BH is inversely proportional to Ncoh. When the rate of information release becomes of order unity, the semiclassical approximation starts to break down and the BH becomes a perfect reflecting information mirror.
Slowly rotating supercompact Schwarzschild stars
Posada, Camilo
2017-06-01
The Schwarzschild interior solution, or 'Schwarzschild star', which describes a spherically symmetric homogeneous mass with a constant energy density, shows a divergence in pressure when the radius of the star reaches the Schwarzschild-Buchdahl bound. Recently, Mazur and Mottola showed that this divergence is integrable through the Komar formula, inducing non-isotropic transverse stresses on a surface of some radius R0. When this radius approaches the Schwarzschild radius Rs = 2 M, the interior solution becomes one of negative pressure evoking a de Sitter space-time. This gravitational condensate star, or gravastar, is an alternative solution to the idea of a black hole as the ultimate state of gravitational collapse. Using Hartle's model to calculate equilibrium configurations of slowly rotating masses, we report results of surface and integral properties for a Schwarzschild star in the very little studied region Rs < R < (9/8)Rs. We found that in the gravastar limit, the angular velocity of the fluid relative to the local inertial frame tends to zero, indicating rigid rotation. Remarkably, the normalized moment of inertia I/MR2 and the mass quadrupole moment Q approach the corresponding values for the Kerr metric to second order in Ω. These results provide a solution to the problem of the source of a slowly rotating Kerr black hole.
Influence of a plasma on the shadow of a spherically symmetric black hole
Perlick, Volker; Tsupko, Oleg Yu.; Bisnovatyi-Kogan, Gennady S.
2015-11-01
We analytically calculate the influence of a plasma on the shadow of a black hole (or of another compact object). We restrict to spherically symmetric and static situations, where the shadow is circular. The plasma is assumed to be nonmagnetized and pressureless. We derive the general formulas for a spherically symmetric plasma density on an unspecified spherically symmetric and static spacetime. Our main result is an analytical formula for the angular size of the shadow. As a plasma is a dispersive medium, the radius of the shadow depends on the photon frequency. The effect of the plasma is significant only in the radio regime. The formalism applies not only to black holes but also, e.g., to wormholes. As examples for the underlying spacetime model, we consider the Schwarzschild spacetime and the Ellis wormhole. In particular, we treat the case that the plasma is in radial free fall from infinity onto a Schwarzschild black hole. We find that for an observer far away from a Schwarzschild black hole, the plasma has a decreasing effect on the size of the shadow. The perspectives of actually observing the influence of a plasma on the shadows of supermassive black holes are discussed.
Electrically charged black hole solutions in generalized gauge field theories
Diaz-Alonso, J.; Rubiera-Garcia, D.
2011-09-01
We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.
Electrically charged black hole solutions in generalized gauge field theories
Energy Technology Data Exchange (ETDEWEB)
Diaz-Alonso, J; Rubiera-Garcia, D, E-mail: joaquin.diaz@obspm.fr, E-mail: diego.rubiera-garcia@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot. 5 Place Jules Janssen, 92190 Meudon (France); Departamento de Fisica, Universidad de Oviedo. Avda. Calvo Sotelo 18, 33007 Oviedo, Asturias (Spain)
2011-09-22
We summarize the main features of a class of anomalous (asymptotically flat, but non Schwarzschild-like) gravitational configurations in models of gravitating non-linear electrodynamics (G-NED) whose Lagrangian densities are defined as arbitrary functions of the two field invariants and constrained by several physical admissibility conditions. This class of models and their associated electrostatic spherically symmetric black hole (ESSBH) solutions are characterized by the behaviours of the Lagrangian densities around the vacuum and at the boundary of their domain of definition.
From black holes to white holes: a quantum gravitational, symmetric bounce
Olmedo, Javier; Saini, Sahil; Singh, Parampreet
2017-11-01
Recently, a consistent non-perturbative quantization of the Schwarzschild interior resulting in a bounce from black hole to white hole geometry has been obtained by loop quantizing the Kantowski-Sachs vacuum spacetime. As in other spacetimes where the singularity is dominated by the Weyl part of the spacetime curvature, the structure of the singularity is highly anisotropic in the Kantowski-Sachs vacuum spacetime. As a result, the bounce turns out to be in general asymmetric, creating a large mass difference between the parent black hole and the child white hole. In this manuscript, we investigate under what circumstances a symmetric bounce scenario can be constructed in the above quantization. Using the setting of Dirac observables and geometric clocks, we obtain a symmetric bounce condition which can be satisfied by a slight modification in the construction of loops over which holonomies are considered in the quantization procedure. These modifications can be viewed as quantization ambiguities, and are demonstrated in three different flavors, all of which lead to a non-singular black to white hole transition with identical masses. Our results show that quantization ambiguities can mitigate or even qualitatively change some key features of the physics of singularity resolution. Further, these results are potentially helpful in motivating and constructing symmetric black to white hole transition scenarios.
Spacetime completeness of non-singular black holes in conformal gravity
Bambi, Cosimo; Rachwal, Leslaw
2016-01-01
We explicitly prove that the Weyl conformal symmetry solves the black hole singularity problem, otherwise unavoidable in a generally covariant local or non-local gravitational theory. Moreover, we yield explicit examples of local and non-local theories enjoying Weyl and diffeomorphism symmetry (in short co-covariant theories). Following the seminal paper by Narlikar and Kembhavi, we provide an explicit construction of singularity-free spherically symmetric and axi-symmetric exact solutions for black hole spacetimes conformally equivalent to the Schwarzschild or the Kerr spacetime. We first check the absence of divergences in the Kretschmann invariant for the rescaled metrics. Afterwords, we show that the new types of black holes are geodesically complete and linked by a Newman-Janis transformation just as in standard general relativity (based on Einstein-Hilbert action). Furthermore, we argue that no massive or massless particles can reach the former Schwarzschild singularity or touch the former Kerr ring sin...
Lectures on Quantum Black Holes
Dabholkar, Atish
2012-01-01
In these notes we describe recent progress in understanding finite size corrections to the black hole entropy. Much of the earlier work concerning quantum black holes has been in the limit of large charges when the area of the even horizon is also large. In recent years there has been substantial progress in understanding the entropy of supersymmetric black holes within string theory going well beyond the large charge limit. It has now become possible to begin exploring finite size effects in perturbation theory in inverse size and even nonperturbatively, with highly nontrivial agreements between thermodynamics and statistical mechanics. Unlike the leading Bekenstein-Hawking entropy which follows from the two-derivative Einstein-Hilbert action, these finite size corrections depend sensitively on the phase under consideration and contain a wealth of information about the details of compactification as well as the spectrum of nonperturbative states in the theory. Finite-size corrections are therefore very inter...
The black hole quantum atmosphere
Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele
2017-11-01
Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan-Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4 MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
Black holes and galaxy formation
Propst, Raphael J
2010-01-01
Galaxies are the basic unit of cosmology. The study of galaxy formation is concerned with the processes that formed a heterogeneous universe from a homogeneous beginning. The physics of galaxy formation is complicated because it deals with the dynamics of stars, thermodynamics of gas and energy production of stars. A black hole is a massive object whose gravitational field is so intense that it prevents any form of matter or radiation to escape. It is hypothesized that the most massive galaxies in the universe- "elliptical galaxies"- grow simultaneously with the supermassive black holes at their centers, giving us much stronger evidence that black holes control galaxy formation. This book reviews new evidence in the field.
Black holes and random matrices
Cotler, Jordan S.; Gur-Ari, Guy; Hanada, Masanori; Polchinski, Joseph; Saad, Phil; Shenker, Stephen H.; Stanford, Douglas; Streicher, Alexandre; Tezuka, Masaki
2017-05-01
We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function | Z( β + it)|2 as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.
Directory of Open Access Journals (Sweden)
Cosimo Bambi
2017-01-01
Full Text Available We derive and study an approximate static vacuum solution generated by a point-like source in a higher derivative gravitational theory with a pair of complex conjugate ghosts. The gravitational theory is local and characterized by a high derivative operator compatible with Lee–Wick unitarity. In particular, the tree-level two-point function only shows a pair of complex conjugate poles besides the massless spin two graviton. We show that singularity-free black holes exist when the mass of the source M exceeds a critical value Mcrit. For M>Mcrit the spacetime structure is characterized by an outer event horizon and an inner Cauchy horizon, while for M=Mcrit we have an extremal black hole with vanishing Hawking temperature. The evaporation process leads to a remnant that approaches the zero-temperature extremal black hole state in an infinite amount of time.
The black hole quantum atmosphere
Directory of Open Access Journals (Sweden)
Ramit Dey
2017-11-01
Full Text Available Ever since the discovery of black hole evaporation, the region of origin of the radiated quanta has been a topic of debate. Recently it was argued by Giddings that the Hawking quanta originate from a region well outside the black hole horizon by calculating the effective radius of a radiating body via the Stefan–Boltzmann law. In this paper we try to further explore this issue and end up corroborating this claim, using both a heuristic argument and a detailed study of the stress energy tensor. We show that the Hawking quanta originate from what might be called a quantum atmosphere around the black hole with energy density and fluxes of particles peaked at about 4MG, running contrary to the popular belief that these originate from the ultra high energy excitations very close to the horizon. This long distance origin of Hawking radiation could have a profound impact on our understanding of the information and transplanckian problems.
Dilaton field released under collision of dilatonic black holes with Gauss-Bonnet term
Energy Technology Data Exchange (ETDEWEB)
Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of); Ro, Daeho [POSTECH, Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk (Korea, Republic of)
2017-08-15
We investigate the upper limit of the gravitational radiation released upon the collision of two dilatonic black holes by analyzing the Gauss-Bonnet term. Dilatonic black holes have a dilaton hair coupled with this term. Using the laws of thermodynamics, the upper limit of the radiation is obtained, which reflected the effects of the dilaton hair. The amount of radiation released is greater than that emitted by a Schwarzschild black hole due to the contribution from the dilaton hair. In the collision, most of the dilaton hair can be released through radiation, where the energy radiated by the dilaton hair is maximized when the horizon of one black hole is minimized for a fixed second black hole. (orig.)
Black Hole Corrections due to Minimal Length and Modified Dispersion Relation
Tawfik, Abdel Nasser
2015-01-01
The generalized uncertainty principles (GUP) and modified dispersion relations (MDR) are much like two faces for one coin in research for the phenomenology of quantum gravity which apparently plays an important role in estimating the possible modifications of the black hole thermodynamics and the Friedmann equations. We first reproduce the horizon area for different types of black holes and investigate the quantum corrections to Bekenstein-Hawking entropy (entropy-area law). Based on this, we study further thermodynamical quantities and accordingly the modified Friedmann equation in four-dimensional de Sitter-Schwarzschild, Reissner-N\\"{o}rdstrom and Garfinkle-Horowitz-Strominger black holes. In doing this we applied various quantum gravity approaches. The MDR parameter relative to the GUP one is computed and the properties of the black holes are predicted. This should play an important role in estimating response of quantum gravity to the various metric-types of black holes. We found a considerable change in...
A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes
McInnes, Brett
2015-01-01
As with any black hole, asymptotically anti-de Sitter Kerr black holes are described by a small number of parameters, including a "mass parameter" $M$ that reduces to the AdS-Schwarzschild mass in the limit of vanishing angular momentum. In sharp contrast to the asymptotically flat case, the horizon area of such a black hole increases with the angular momentum parameter $a$ if one fixes $M$; this appears to mean that the Penrose process in this case would violate the Second Law of black hole thermodynamics. We show that the correct procedure is to fix not $M$ but rather the "physical" mass $E=M/(1-a^2/L^2)^2$; this is motivated by the First Law. For then the horizon area decreases with $a$. We recommend that $E$ always be used as the mass: for example, in attempts to "over-spin" AdS-Kerr black holes.
Danielsson, U. H.; Dibitetto, G.; Giri, S.
2017-10-01
In this paper we propose that bubbles of AdS within Minkowski spacetime, stabilized at a finite radius by stiff matter and an electromagnetic gas, can be an alternative endpoint of gravitational collapse. The bubbles are horizonless with a size up to 12.5% larger than their Schwarzschild radius depending on their charge. We argue that they are stable against small perturbations, and have thermodynamical properties similar to those of real black holes. We provide a realization of the bubbles within string theory that relies on a specific brane intersection giving rise to a shell carrying dissolved charges from lower dimensional D-branes as well as a gas of open strings. We also note that our construction provides a new way of understanding the entropy of Reissner-Nordström black holes in the extremal limit.
Black Hole Quantum Vacuum Polarization in Higher Dimensions
Flachi, Antonino; Lemos, José P S
2016-01-01
The goal of this paper is to extend to higher dimensionality the methods and computations of vacuum polarization effects in black hole spacetimes. We focus our attention on the case of five dimensional Schwarzschild-Tangherlini black holes, for which we adapt the general method initially developed by Candelas and later refined by Anderson and others. We make use of point splitting regularization and of the WKB approximation to extract the divergences occuring in the coincidence limit of the Green function and, after calculating the counter-terms using the Schwinger - De Witt expansion, we explicitly prove the cancellation of the divergences and the regularity of the vacuum polarization once counter-terms are added up. We finally handle numerically the renormalized expression of the vacuum polarization. As a check on the method we also prove the regularity of the vacuum polarization in the six dimensional case in the large mass limit.
Non-Stationary Dark Energy Around a Black Hole
Akhoury, Ratindranath; Saotome, Ryo; Vikman, Alexander
2011-01-01
Numerical simulations of the accretion of test scalar fields with non-standard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.
Quasi-Normal Modes of Stars and Black Holes
Directory of Open Access Journals (Sweden)
Kokkotas Kostas
1999-01-01
Full Text Available Perturbations of stars and black holes have been one of the main topics of relativistic astrophysics for the last few decades. They are of particular importance today, because of their relevance to gravitational wave astronomy. In this review we present the theory of quasi-normal modes of compact objects from both the mathematical and astrophysical points of view. The discussion includes perturbations of black holes (Schwarzschild, Reissner-Nordström, Kerr and Kerr-Newman and relativistic stars (non-rotating and slowly-rotating. The properties of the various families of quasi-normal modes are described, and numerical techniques for calculating quasi-normal modes reviewed. The successes, as well as the limits, of perturbation theory are presented, and its role in the emerging era of numerical relativity and supercomputers is discussed.
Tachyon motion in a black hole gravitational field
Lipunov, V M
2013-01-01
The motion of superluminal particles in the gravitational field of a non-rotating black hole is analyzed. The relativistic Hamilton-Jacobi equation is solved for particles with imaginary rest mass. It is shown that there are no stable circular orbits and generally no finite motions for tachyons in the Schwarzschild metric and that all unstable circular tachyon orbits lie in a region extending from the gravitational radius to 1.5 times that radius. The particles with speeds exceeding the speed of light are noticed to be able to escape from the space limited by the gravitational radius. The results also indicate that low-energy tachyons near a black hole may acquire higher energies and that this in turn may lead to observable effects.
The Power of Action: "The" Derivation of the Black Hole Negative Mode
Kol, Barak
2006-01-01
The negative mode of the Schwarzschild black hole is central to Euclidean quantum gravity around hot flat space and for the Gregory-Laflamme black string instability. Numerous gauges were employed in the past to analyze it. Here _the_ analytic derivation is found, based on postponing the gauge fixing, on the power of the action and on decoupling of non-dynamic fields. A broad-range generalization to perturbations around arbitrary co-homogeneity 1 geometries is discussed.
Supersymmetric black holes and Freudenthal duality
Marrani, Alessio; Mandal, Taniya; Tripathy, Prasanta K.
2017-07-01
We study the effect of Freudenthal duality on supersymmetric extremal black hole attractors in 𝒩 = 2, D = 4 ungauged supergravity. Freudenthal duality acts on the dyonic black hole charges as an anti-involution which keeps the black hole entropy and the critical points of the effective black hole potential invariant. We analyze its effect on the recently discovered distinct, mutually exclusive phases of axionic supersymmetric black holes, related to the existence of nontrivial involutory constant matrices. In particular, we consider a supersymmetric D0 - D4 - D6 black hole and we explicitly Freudenthal-map it to a supersymmetric D0 - D2 - D4 - D6 black hole. We thus show that the charge representation space of a supersymmetric D0 - D2 - D4 - D6 black hole also contains mutually exclusive domains.
Spin distribution of primordial black holes
Chiba, Takeshi; Yokoyama, Shuichiro
2017-08-01
We estimate the spin distribution of primordial black holes based on the recent study of the critical phenomena in the gravitational collapse of a rotating radiation fluid. We find that primordial black holes are mostly slowly rotating.
Implementing black hole as efficient power plant
Wei, Shao-Wen
2016-01-01
Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are independent of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the efficiency is numerically solved. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work with black hole, and such heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.
Mass Inflation in the Loop Black Hole
Brown, Eric G; Modesto, Leonardo
2011-01-01
In classical general relativity the Cauchy horizon within a two-horizon black hole is unstable via a phenomenon known as mass inflation, in which the mass parameter (and the spacetime curvature) of the black hole diverges at the Cauchy horizon. Here we study this effect for loop black holes -- quantum gravitationally corrected black holes from loop quantum gravity -- whose construction alleviates the $r=0$ singularity present in their classical counterparts. We use a simplified model of mass inflation, which makes use of the generalized DTR relation, to conclude that the Cauchy horizon of loop black holes indeed results in a curvature singularity similar to that found in classical black holes. The DTR relation is of particular utility in the loop black hole because it does not directly rely upon Einstein's field equations. We elucidate some of the interesting and counterintuitive properties of the loop black hole, and corroborate our results using an alternate model of mass inflation due to Ori.
Foundations of Black Hole Accretion Disk Theory
National Research Council Canada - National Science Library
Abramowicz, Marek A; Fragile, P. Chris
2013-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves...
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
Indian Academy of Sciences (India)
Abstract. Current technologies have enabled glimpses at the many facetsof black holes, which we know to be plentiful in our cosmos.A panoramic view of the evidence for them is presented hereacross the large range of masses that they span.
Extremal Higher Spin Black Holes
Bañados, M.; Castro, A.; Faraggi, A.; Jottar, J.I.
The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal
Energy Technology Data Exchange (ETDEWEB)
Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-10-06
Pinhole photography has made major contributions to astrophysics through the use of “coded apertures”. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.
Rotating black hole and quintessence
Ghosh, Sushant G
2015-01-01
We discuss spherically symmetric exact solutions of the Einstein equations for quintessential matter surrounding a black hole (BH), which has additional parameters ($\\alpha$ and $\\omega$) due to the quintessential matter, apart from the mass ($M$). In turn, we employ the Newman\\(-\\)Janis complex transformation to this spherical quintessence BH solution and present a rotating counterpart that is identified, for $\\alpha=-e^2 \
'Black holes': escaping the void.
Waldron, Sharn
2013-02-01
The 'black hole' is a metaphor for a reality in the psyche of many individuals who have experienced complex trauma in infancy and early childhood. The 'black hole' has been created by an absence of the object, the (m)other, so there is no internalized object, no (m)other in the psyche. Rather, there is a 'black hole' where the object should be, but the infant is drawn to it, trapped by it because of an intrinsic, instinctive need for a 'real object', an internalized (m)other. Without this, the infant cannot develop. It is only the presence of a real object that can generate the essential gravity necessary to draw the core of the self that is still in an undeveloped state from deep within the abyss. It is the moving towards a real object, a (m)other, that relativizes the absolute power of the black hole and begins a reformation of its essence within the psyche. © 2013, The Society of Analytical Psychology.
Dvali, Gia
2014-01-01
It is a common wisdom that properties of macroscopic bodies are well described by (semi)classical physics. As we have suggested this wisdom is not applicable to black holes. Despite being macroscopic, black holes are quantum objects. They represent Bose-Einstein condensates of N-soft gravitons at the quantum critical point, where N Bogoliubov modes become gapless. As a result, physics governing arbitrarily-large black holes (e.g., of galactic size) is a quantum physics of the collective Bogoiliubov modes. This fact introduces a new intrinsically-quantum corrections in form of 1/N, as opposed to exp(-N). These corrections are unaccounted by the usual semiclassical expansion in h and cannot be recast in form of a quantum back-reaction to classical metric. Instead the metric itself becomes an approximate entity. These 1/N corrections abolish the presumed properties of black holes, such as non existence of hair, and are the key to nullifying the so-called information paradox.
Black holes in vector-tensor theories
Heisenberg, Lavinia; Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji
2017-08-01
We study static and spherically symmetric black hole (BH) solutions in second-order generalized Proca theories with nonminimal vector field derivative couplings to the Ricci scalar, the Einstein tensor, and the double dual Riemann tensor. We find concrete Lagrangians which give rise to exact BH solutions by imposing two conditions of the two identical metric components and the constant norm of the vector field. These exact solutions are described by either Reissner-Nordström (RN), stealth Schwarzschild, or extremal RN solutions with a non-trivial longitudinal mode of the vector field. We then numerically construct BH solutions without imposing these conditions. For cubic and quartic Lagrangians with power-law couplings which encompass vector Galileons as the specific cases, we show the existence of BH solutions with the difference between two non-trivial metric components. The quintic-order power-law couplings do not give rise to non-trivial BH solutions regular throughout the horizon exterior. The sixth-order and intrinsic vector-mode couplings can lead to BH solutions with a secondary hair. For all the solutions, the vector field is regular at least at the future or past horizon. The deviation from General Relativity induced by the Proca hair can be potentially tested by future measurements of gravitational waves in the nonlinear regime of gravity.
A New Cosmological Model: Black Hole Universe
Zhang T. X.
2009-01-01
A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three laye...
Extremal higher spin black holes
Energy Technology Data Exchange (ETDEWEB)
Bañados, Máximo [Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile); Castro, Alejandra [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, Postbus 94485, Amsterdam, 1090 GL (Netherlands); Faraggi, Alberto [Instituto de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile); Jottar, Juan I. [Institut für Theoretische Physik, ETH Zürich,Zürich, CH-8093 (Switzerland)
2016-04-13
The gauge sector of three-dimensional higher spin gravities can be formulated as a Chern-Simons theory. In this context, a higher spin black hole corresponds to a flat connection with suitable holonomy (smoothness) conditions which are consistent with the properties of a generalized thermal ensemble. Building on these ideas, we discuss a definition of black hole extremality which is appropriate to the topological character of 3d higher spin theories. Our definition can be phrased in terms of the Jordan class of the holonomy around a non-contractible (angular) cycle, and we show that it is compatible with the zero-temperature limit of smooth black hole solutions. While this notion of extremality does not require supersymmetry, we exemplify its consequences in the context of sl(3|2)⊕sl(3|2) Chern-Simons theory and show that, as usual, not all extremal solutions preserve supersymmetries. Remarkably, we find in addition that the higher spin setup allows for non-extremal supersymmetric black hole solutions. Furthermore, we discuss our results from the perspective of the holographic duality between sl(3|2)⊕sl(3|2) Chern-Simons theory and two-dimensional CFTs with W{sub (3|2)} symmetry, the simplest higher spin extension of the N=2 super-Virasoro algebra. In particular, we compute W{sub (3|2)} BPS bounds at the full quantum level, and relate their semiclassical limit to extremal black hole or conical defect solutions in the 3d bulk. Along the way, we discuss the role of the spectral flow automorphism and provide a conjecture for the form of the semiclassical BPS bounds in general N=2 two-dimensional CFTs with extended symmetry algebras.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Li, Guo-Ping; Pu, Jin; Jiang, Qing-Quan; Zu, Xiao-Tao
2017-05-01
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painlevé) of coordinates as well as in different gravity frames, the adiabatic invariant I_adia = \\oint p_i dq_i introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area.
Quantum tunneling, adiabatic invariance and black hole spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Li, Guo-Ping; Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Pu, Jin [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); China West Normal University, College of Physics and Space Science, Nanchong (China); Jiang, Qing-Quan [China West Normal University, College of Physics and Space Science, Nanchong (China)
2017-05-15
In the tunneling framework, one of us, Jiang, together with Han has studied the black hole spectroscopy via adiabatic invariance, where the adiabatic invariant quantity has been intriguingly obtained by investigating the oscillating velocity of the black hole horizon. In this paper, we attempt to improve Jiang-Han's proposal in two ways. Firstly, we once again examine the fact that, in different types (Schwarzschild and Painleve) of coordinates as well as in different gravity frames, the adiabatic invariant I{sub adia} = circular integral p{sub i}dq{sub i} introduced by Jiang and Han is canonically invariant. Secondly, we attempt to confirm Jiang-Han's proposal reasonably in more general gravity frames (including Einstein's gravity, EGB gravity and HL gravity). Concurrently, for improving this proposal, we interestingly find in more general gravity theories that the entropy of the black hole is an adiabatic invariant action variable, but the horizon area is only an adiabatic invariant. In this sense, we emphasize the concept that the quantum of the black hole entropy is more natural than that of the horizon area. (orig.)
Black Hole Horizons and Thermodynamics: A Quantum Approach
Directory of Open Access Journals (Sweden)
Nicola Pinamonti
2010-07-01
Full Text Available We focus on quantization of the metric of a black hole restricted to the Killing horizon with universal radius r0. After imposing spherical symmetry and after restriction to the Killing horizon, the metric is quantized employing the chiral currents formalism. Two "components of the metric" are indeed quantized: The former behaves as an affine scalar field under changes of coordinates, the latter is instead a proper scalar field. The action of the symplectic group on both fields is realized in terms of certain horizon diffeomorphisms. Depending on the choice of the vacuum state, such a representation is unitary. If the reference state of the scalar field is a coherent state rather than a vacuum, spontaneous breaking of conformal symmetry arises and the state contains a Bose-Einstein condensate. In this case the order parameter fixes the actual size of the black hole with respect to r0. Both the constructed state together with the one associated with the affine scalar are thermal states (KMS with respect to Schwarzschild Killing time when restricted to half horizon. The value of the order parameter fixes the temperature at the Hawking value as well. As a result, it is found that the quantum energy and entropy densities coincide with the black hole mass and entropy, provided the universal parameter r0 is suitably chosen, not depending on the size of the actual black hole in particular.
Compensating Scientism through "The Black Hole."
Roth, Lane
The focal image of the film "The Black Hole" functions as a visual metaphor for the sacred, order, unity, and eternal time. The black hole is a symbol that unites the antinomic pairs of conscious/unconscious, water/fire, immersion/emersion, death/rebirth, and hell/heaven. The black hole is further associated with the quest for…
Black Hole Monodromy and Conformal Field Theory
Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J.
2013-01-01
The analytic structure of solutions to the Klein-Gordon equation in a black hole background, as represented by monodromy data, is intimately related to black hole thermodynamics. It encodes the "hidden conformal symmetry" of a nonextremal black hole, and it explains why features of the inner event
On Quantum Contributions to Black Hole Growth
Spaans, M.
2013-01-01
The effects of Wheeler’s quantum foam on black hole growth are explored from an astrophysical per- spective. Quantum fluctuations in the form of mini (10−5 g) black holes can couple to macroscopic black holes and allow the latter to grow exponentially in mass on a time scale of 109 years.
Accretion, primordial black holes and standard cosmology
Indian Academy of Sciences (India)
Abstract. Primordial black holes evaporate due to Hawking radiation. We find that the evaporation times of primordial black holes increase when accretion of radiation is included. Thus, depending on accretion efficiency, more primordial black holes are existing today, which strengthens the con- jecture that the primordial ...
On black holes and gravitational waves
Loinger, Angelo
2002-01-01
Black holes and gravitational waves are theoretical entities of today astrophysics. Various observed phenomena have been associated with the concept of black hole ; until now, nobody has detected gravitational waves. The essays contained in this book aim at showing that the concept of black holes arises from a misinterpretation of general relativity and that gravitational waves cannot exist.
Extremal black holes in N=2 supergravity
Katmadas, S.
2011-01-01
An explanation for the entropy of black holes has been an outstanding problem in recent decades. A special case where this is possible is that of extremal black holes in N=2 supergravity in four and five dimensions. The best developed case is for black holes preserving some supersymmetry (BPS),
Shapes and Positions of Black Hole Shadows in Accretion Disks and Spin Parameters of Black Holes
Takahashi, Rohta
2004-01-01
Can we determine a spin parameter of a black hole by observation of a black hole shadow in an accretion disk? In order to answer this question, we make a qualitative analysis and a quantitative analysis of a shape and a position of a black hole shadow casted by a rotating black hole on an optically thick accretion disk and its dependence on an angular momentum of a black hole. We have found black hole shadows with a quite similar size and a shape for largely different black hole spin paramete...
Gravitational black hole hair from event horizon supertranslations
Energy Technology Data Exchange (ETDEWEB)
Averin, Artem [Arnold-Sommerfeld-Center for Theoretical Physics,Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,80805 München (Germany); Dvali, Gia [Arnold-Sommerfeld-Center for Theoretical Physics,Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,80805 München (Germany); Center for Cosmology and Particle Physics, Department of Physics, New York University,4 Washington Place, New York, NY 10003 (United States); Gomez, Cesar [Instituto de Física Teórica UAM-CSIC, C-XVI, Universidad Autónoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Lüst, Dieter [Arnold-Sommerfeld-Center for Theoretical Physics,Ludwig-Maximilians-Universität, 80333 München (Germany); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut,80805 München (Germany)
2016-06-16
We discuss BMS supertranslations both at null-infinity BMS{sup −} and on the horizon BMS{sup H} for the case of the Schwarzschild black hole. We show that both kinds of supertranslations lead to infinetly many gapless physical excitations. On this basis we construct a quotient algebra A≡BMS{sup H}/BMS{sup −} using suited superpositions of both kinds of transformations which cannot be compensated by an ordinary BMS-supertranslation and therefore are intrinsically due to the presence of an event horizon. We show that transformations in A are physical and generate gapless excitations on the horizon that can account for the gravitational hair as well as for the black hole entropy. We identify the physics of these modes as associated with Bogolioubov-Goldstone modes due to quantum criticality. Classically the number of these gapless modes is infinite. However, we show that due to quantum criticality the actual amount of information-carriers becomes finite and consistent with Bekenstein entropy. Although we only consider the case of Schwarzschild geometry, the arguments are extendable to arbitrary space-times containing event horizons.
Three-dimensional simulations of black hole tori
Hawley, John F.
1991-01-01
The global hydrodynamic nonaxisymmetric instabilities in thick constant angular momentum (l) accretion gas tori in orbit around a Schwarzschild black hole are investigated via 2D and 3D numerical simulations. A radially-wide torus is found to develop and m = 1 nonaxisymmetric density perturbation near the pressure maximum and a trailing spiral wave that extends through the outer part of the torus. This global wave transports angular momentum through the torus, causing the average angular momentum distribution to evolve slowly away from l = constant. The unstable mode drives an accretion flow from the torus into the black hole. The role of accretion is investigated by modeling a wide torus with an inner boundary at the cusp of the Schwarzschild effective potential. In such a torus, accretion is present throughout the evolution; only modest unstable mode growth is observed, and saturation occurs at low amplitude. Comparison simulations performed in the torus equatorial plane show qualitative similarities between the 2D and 3D system, although the 3D modes have a function dependence on height.
Four-dimensional black holes in Einsteinian cubic gravity
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Chandra Catches "Piranha" Black Holes
2007-07-01
Supermassive black holes have been discovered to grow more rapidly in young galaxy clusters, according to new results from NASA's Chandra X-ray Observatory. These "fast-track" supermassive black holes can have a big influence on the galaxies and clusters that they live in. Using Chandra, scientists surveyed a sample of clusters and counted the fraction of galaxies with rapidly growing supermassive black holes, known as active galactic nuclei (or AGN). The data show, for the first time, that younger, more distant galaxy clusters contained far more AGN than older, nearby ones. Galaxy clusters are some of the largest structures in the Universe, consisting of many individual galaxies, a few of which contain AGN. Earlier in the history of the universe, these galaxies contained a lot more gas for star formation and black hole growth than galaxies in clusters do today. This fuel allows the young cluster black holes to grow much more rapidly than their counterparts in nearby clusters. Illustration of Active Galactic Nucleus Illustration of Active Galactic Nucleus "The black holes in these early clusters are like piranha in a very well-fed aquarium," said Jason Eastman of Ohio State University (OSU) and first author of this study. "It's not that they beat out each other for food, rather there was so much that all of the piranha were able to really thrive and grow quickly." The team used Chandra to determine the fraction of AGN in four different galaxy clusters at large distances, when the Universe was about 58% of its current age. Then they compared this value to the fraction found in more nearby clusters, those about 82% of the Universe's current age. The result was the more distant clusters contained about 20 times more AGN than the less distant sample. AGN outside clusters are also more common when the Universe is younger, but only by factors of two or three over the same age span. "It's been predicted that there would be fast-track black holes in clusters, but we never
Wormholes versus black holes: quasinormal ringing at early and late times
Konoplya, R. A.; Zhidenko, A.
2016-12-01
Recently it has been argued that the phantom thin-shell wormholes matched with the Schwarzschild space-time near the Schwarzschild radius ring like Schwarzschild black holes at early times, but differently at late times [1]. Here we consider perturbations of the wormhole which was constructed without thin-shells: the Bronnikov-Ellis wormhole supported by the phantom matter and electromagnetic field. This wormhole solution is known to be stable under specific equation of state of the phantom matter. We show that if one does not use the above thin-shell matching, the wormhole, depending on the values of its parameters, either rings as the black hole at all times or rings differently also at all times. The wormhole's spectrum, investigated here, posses a number of distinctive features. In the final part we have considered general properties of scattering around arbitrary rotating traversable wormholes. We have found that symmetric and non-symmetric (with respect to the throat) wormholes are qualitatively different in this respect: first, superradiance is allowed only if for those non-symmetric wormholes for which the asymptotic values of the rotation parameters are different on both sides from the throat. Second, the symmetric wormholes cannot mimic effectively the ringing of a black hole at a few various dominant multipoles at the same time, so that the future observations of various events should easily tell the symmetric wormhole from a black hole.
Adler, Stephen L
2016-01-01
A frame dependent effective action motivated by the postulates of three-space general coordinate invariance and Weyl scaling invariance exactly mimics a cosmological constant in Robertson-Walker spacetimes. However, in a static spherically symmetric Schwarzschild-like geometry it modifies the black hole horizon structure within microscopic distances of the nominal horizon, in such a way that $g_{00}$ never vanishes. This could have important implications for the black hole "information paradox".
Black hole thermodynamics with conical defects
Appels, Michael; Gregory, Ruth; Kubizňák, David
2017-05-01
Recently we have shown [1] how to formulate a thermodynamic first law for a single (charged) accelerated black hole in AdS space by fixing the conical deficit angles present in the spacetime. Here we show how to generalise this result, formulating thermodynamics for black holes with varying conical deficits. We derive a new potential for the varying tension defects: the thermodynamic length, both for accelerating and static black holes. We discuss possible physical processes in which the tension of a string ending on a black hole might vary, and also map out the thermodynamic phase space of accelerating black holes and explore their critical phenomena.
Collision of two rotating Hayward black holes
Energy Technology Data Exchange (ETDEWEB)
Gwak, Bogeun [Sejong University, Department of Physics and Astronomy, Seoul (Korea, Republic of)
2017-07-15
We investigate the spin interaction and the gravitational radiation thermally allowed in a head-on collision of two rotating Hayward black holes. The Hayward black hole is a regular black hole in a modified Einstein equation, and hence it can be an appropriate model to describe the extent to which the regularity effect in the near-horizon region affects the interaction and the radiation. If one black hole is assumed to be considerably smaller than the other, the potential of the spin interaction can be analytically obtained and is dependent on the alignment of angular momenta of the black holes. For the collision of massive black holes, the gravitational radiation is numerically obtained as the upper bound by using the laws of thermodynamics. The effect of the Hayward black hole tends to increase the radiation energy, but we can limit the effect by comparing the radiation energy with the gravitational waves GW150914 and GW151226. (orig.)
Manschot, Jan; Sen, Ashoke
2012-01-01
Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics - also known as pure Higgs states - have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.
"Twisted" black holes are unphysical
Gray, Finnian; Schuster, Sebastian; Visser, Matt
2016-01-01
So-called "twisted" black holes have recently been proposed by Zhang (1609.09721 [gr-qc]), and further considered by Chen and Jing (1610.00886 [gr-qc]), and more recently by Ong (1610.05757 [gr-qc]). While these spacetimes are certainly Ricci-flat, and so mathematically satisfy the vacuum Einstein equations, they are also merely minor variants on Taub--NUT spacetimes. Consequently they exhibit several unphysical features that make them quite unreasonable as realistic astrophysical objects. Specifically, these "twisted" black holes are not (globally) asymptotically flat. Furthermore, they contain closed timelike curves that are not hidden behind any event horizon --- the most obvious of these closed timelike curves are small azimuthal circles around the rotation axis, but the effect is more general. The entire region outside the horizon is infested with closed timelike curves.
Hod, Shahar
2016-01-01
It has recently been suggested [S. B. Giddings, Phys. Lett. B {\\bf 754}, 39 (2016)] that the Hawking black-hole radiation spectrum originates from an effective quantum "atmosphere" which extends well outside the black-hole horizon. In particular, comparing the Hawking radiation power of a $(3+1)$-dimensional Schwarzschild black hole of horizon radius $r_{\\text{H}}$ with the familiar Stefan-Boltzmann radiation power of a $(3+1)$-dimensional flat space perfect blackbody emitter, Giddings concluded that the source of the Hawking semi-classical black-hole radiation is a quantum region outside the Schwarzschild black-hole horizon whose effective radius $r_{\\text{A}}$ is characterized by the relation $\\Delta r\\equiv r_{\\text{A}}-r_{\\text{H}}\\sim r_{\\text{H}}$. It is of considerable physical interest to test the general validity of Giddings's intriguing conclusion. To this end, we study the Hawking radiation of $(D+1)$-dimensional Schwarzschild black holes. We find that the dimensionless radii $r_{\\text{A}}/r_{\\text...
Directory of Open Access Journals (Sweden)
Aruna Rajagopal
2014-10-01
Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.
Hawking, Stephen W; Perry, Malcolm J; Strominger, Andrew
2016-06-10
It has recently been shown that Bondi-van der Burg-Metzner-Sachs supertranslation symmetries imply an infinite number of conservation laws for all gravitational theories in asymptotically Minkowskian spacetimes. These laws require black holes to carry a large amount of soft (i.e., zero-energy) supertranslation hair. The presence of a Maxwell field similarly implies soft electric hair. This Letter gives an explicit description of soft hair in terms of soft gravitons or photons on the black hole horizon, and shows that complete information about their quantum state is stored on a holographic plate at the future boundary of the horizon. Charge conservation is used to give an infinite number of exact relations between the evaporation products of black holes which have different soft hair but are otherwise identical. It is further argued that soft hair which is spatially localized to much less than a Planck length cannot be excited in a physically realizable process, giving an effective number of soft degrees of freedom proportional to the horizon area in Planck units.
Entanglement Entropy of Black Holes
Directory of Open Access Journals (Sweden)
Sergey N. Solodukhin
2011-10-01
Full Text Available The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as ’t Hooft’s brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the black-hole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.
Rényi entropy and the thermodynamic stability of black holes
Energy Technology Data Exchange (ETDEWEB)
Czinner, Viktor G., E-mail: czinner.viktor@wigner.mta.hu [Laboratory of Physics, College of Science and Technology, Nihon University, 274-8501 Narashinodai, Funabashi, Chiba (Japan); HAS Wigner Research Centre for Physics, H-1525 Budapest, P.O. Box 49 (Hungary); Centro de Matemática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Iguchi, Hideo, E-mail: iguchi.h@phys.ge.cst.nihon-u.ac.jp [Laboratory of Physics, College of Science and Technology, Nihon University, 274-8501 Narashinodai, Funabashi, Chiba (Japan)
2016-01-10
Thermodynamic stability of black holes, described by the Rényi formula as equilibrium compatible entropy function, is investigated. It is shown that within this approach, asymptotically flat, Schwarzschild black holes can be in stable equilibrium with thermal radiation at a fixed temperature. This implies that the canonical ensemble exists just like in anti-de Sitter space, and nonextensive effects can stabilize the black holes in a very similar way as it is done by the gravitational potential of an anti-de Sitter space. Furthermore, it is also shown that a Hawking–Page-like black hole phase transition occurs at a critical temperature which depends on the q-parameter of the Rényi formula.
Information-carrying Hawking radiation and the number of microstate for a black hole
Directory of Open Access Journals (Sweden)
Qing-yu Cai
2016-04-01
Full Text Available We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.
Exact time-dependent states for throat quantized toroidal AdS black holes
Maeda, Hideki; Kunstatter, Gabor
2017-11-01
We investigate exact nonstationary quantum states of vacuum toroidal black holes with a negative cosmological constant in arbitrary dimensions using the framework of throat quantization pioneered by Louko and Mäkelä for Schwarzschild black holes. The system is equivalent to a harmonic oscillator on the half line, in which the central singularity is resolved quantum mechanically by imposing suitable boundary conditions that preserve unitarity. We identify two suitable families of exact time-dependent wave functions with Dirichlet or Neumann boundary conditions at the location of the classical singularity. We find that for highly nonstationary states of large-mass black holes, quantum fluctuations are not negligible in one family, while they are greatly suppressed in the other. The latter, therefore, may provide candidates for describing the dynamics of semiclassical black holes.
Information-carrying Hawking radiation and the number of microstate for a black hole
Energy Technology Data Exchange (ETDEWEB)
Cai, Qing-yu, E-mail: qycai@wipm.ac.cn [State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Sun, Chang-pu, E-mail: cpsun@csrc.ac.cn [Beijing Computational Science Research Center, Beijing 100084 (China); Collaborative Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); You, Li, E-mail: lyou@mail.tsinghua.edu.cn [State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)
2016-04-15
We present a necessary and sufficient condition to falsify whether a Hawking radiation spectrum indicates unitary emission process or not from the perspective of information theory. With this condition, we show the precise values of Bekenstein–Hawking entropies for Schwarzschild black holes and Reissner–Nordström black holes can be calculated by counting the microstates of their Hawking radiations. In particular, for the extremal Reissner–Nordström black hole, its number of microstate and the corresponding entropy we obtain are found to be consistent with the string theory results. Our finding helps to refute the dispute about the Bekenstein–Hawking entropy of extremal black holes in the semiclassical limit.
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Ong, Yen Chin, E-mail: yenchin.ong@nordita.org
2016-02-15
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Hawking Evaporation Time Scale of Topological Black Holes in Anti-de Sitter Spacetime
Ong, Yen Chin
2015-01-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Directory of Open Access Journals (Sweden)
Yen Chin Ong
2016-02-01
Full Text Available It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Effects of critical collapse on primordial black-hole mass spectra
Energy Technology Data Exchange (ETDEWEB)
Kuehnel, Florian [Stockholm University, AlbaNova, Department of Physics, The Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Rampf, Cornelius [University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom); Sandstad, Marit [Stockholm University, Nordita, KTH Royal Institute of Technology, Stockholm (Sweden)
2016-02-15
Certain inflationary models as well as realisations of phase transitions in the early Universe predict the formation of primordial black holes. For most mass ranges, the fraction of matter in the form of primordial black holes is limited by many different observations on various scales. Primordial black holes are assumed to be formed when overdensities that cross the horizon have Schwarzschild radii larger than the horizon. Traditionally it was therefore assumed that primordial black-hole masses were equal to the horizon mass at their time of formation. However, detailed calculations of their collapse show that primordial black holes formed at each point in time should rather form a spectrum of different masses, obeying critical scaling. Though this has been known for more than 15 years, the effect of this scaling behaviour is largely ignored when considering predictions for primordial black-hole mass spectra. In this paper we consider the critical collapse scaling for a variety of models which produce primordial black holes, and find that it generally leads to a shift, broadening and an overall decrease of the mass contained in primordial black holes. This effect is model and parameter dependent and cannot be contained by a constant rescaling of the spectrum; it can become important and should be taken into account when comparing to observational constraints. (orig.)
Thermodynamic analysis of black hole solutions in gravitating nonlinear electrodynamics
Diaz-Alonso, J.; Rubiera-Garcia, D.
2013-10-01
We perform a general study of the thermodynamic properties of static electrically charged black hole solutions of nonlinear electrodynamics minimally coupled to gravitation in three space dimensions. The Lagrangian densities governing the dynamics of these models in flat space are defined as arbitrary functions of the gauge field invariants, constrained by some requirements for physical admissibility. The exhaustive classification of these theories in flat space, in terms of the behaviour of the Lagrangian densities in vacuum and on the boundary of their domain of definition, defines twelve families of admissible models. When these models are coupled to gravity, the flat space classification leads to a complete characterization of the associated sets of gravitating electrostatic spherically symmetric solutions by their central and asymptotic behaviours. We focus on nine of these families, which support asymptotically Schwarzschild-like black hole configurations, for which the thermodynamic analysis is possible and pertinent. In this way, the thermodynamic laws are extended to the sets of black hole solutions of these families, for which the generic behaviours of the relevant state variables are classified and thoroughly analyzed in terms of the aforementioned boundary properties of the Lagrangians. Moreover, we find universal scaling laws (which hold and are the same for all the black hole solutions of models belonging to any of the nine families) running the thermodynamic variables with the electric charge and the horizon radius. These scale transformations form a one-parameter multiplicative group, leading to universal "renormalization group"-like first-order differential equations. The beams of characteristics of these equations generate the full set of black hole states associated to any of these gravitating nonlinear electrodynamics. Moreover the application of the scaling laws allows to find a universal finite relation between the thermodynamic variables
5D Black Holes and Matrix Strings
Dijkgraaf, R; Verlinde, E.; Verlinde, H.
1997-01-01
We derive the world-volume theory, the (non)-extremal entropy and background geometry of black holes and black strings constructed out of the NS IIA fivebrane within the framework of matrix theory. The CFT description of strings propagating in the black hole geometry arises as an effective field theory.
A Black Hole in Our Galactic Center
Ruiz, Michael J.
2008-01-01
An introductory approach to black holes is presented along with astronomical observational data pertaining to the presence of a supermassive black hole at the center of our galaxy. Concepts of conservation of energy and Kepler's third law are employed so students can apply formulas from their physics class to determine the mass of the black hole…
Black holes in multi-fractional and Lorentz-violating models.
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-01-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Black holes in multi-fractional and Lorentz-violating models
Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele
2017-05-01
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.
Black holes in multi-fractional and Lorentz-violating models
Energy Technology Data Exchange (ETDEWEB)
Calcagni, Gianluca [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Rodriguez Fernandez, David [Universidad de Oviedo, Department of Physics, Oviedo (Spain); Ronco, Michele [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Rome (Italy)
2017-05-15
We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length l{sub *}. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to l{sub *}. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models. (orig.)
Spacetime Junctions and the Collapse to Black Holes in Higher Dimensions
Directory of Open Access Journals (Sweden)
Filipe C. Mena
2012-01-01
Full Text Available We review recent results about the modelling of gravitational collapse to black holes in higher dimensions. The models are constructed through the junction of two exact solutions of the Einstein field equations: an interior collapsing fluid solution and a vacuum exterior solution. The vacuum exterior solutions are either static or containing gravitational waves. We then review the global geometrical properties of the matched solutions which, besides black holes, may include the existence of naked singularities and wormholes. In the case of radiating exteriors, we show that the data at the boundary can be chosen to be, in some sense, arbitrarily close to the data for the Schwarzschild-Tangherlini solution.
TRANSFER PANAS LUBANG HITAM SCHWARZSCHILD
Directory of Open Access Journals (Sweden)
Y Tiandho
2015-07-01
Full Text Available Mekanika kuantum menunjukkan bahwa lubang hitam memiliki temperatur sebagai indikasi dapat mengemisikan partikel. Persamaan transfer panas secara general mengandung operator Laplacian yang sifatnya dipengaruhi oleh ruang. Kelengkungan ruang-waktu di daerah sekitar lubang hitam sangat besar sehingga operator Laplacian untuk menghitung distribusi temperaturnya merupakan Laplacian ruang lengkung. Persamaan Fourier untuk lubang hitam Schwarzschild bergantung pada jarak dan radius Schwarzschild. Pada keadaan tunak solusi dari komponen radius mengandung polinomial Legendre dan solusi dari komponen sudut ruang mengadung fungsi spherical harmonics. Untuk kasus dengan persamaan diferensial terhadap waktu bernilai konstan solusi menyimpulkan bahwa temperatur bertambah seiring waktu. Hasil yang telah didapatkan secara umum dapat digunakan untuk menentukan distribusi temperatur pada ruang lengkung akibat suatu objek bermassa M. Koreksi ini sekaligus menggambarkan peristiwa transfer panas dalam konteks relativitas umum.Quantum mechanics show that black hole has temperature that indicated that black hole can emit particles.<0} {0>Persamaan transfer panas secara general mengandung operator Laplacian yang sifatnya dipengaruhi oleh ruang.<}0{>Generally the heat transfer equation contains Laplacian operators that is influenced by space.<0} {0>Kelengkungan ruang-waktu di daerah sekitar lubang hitam sangat besar sehingga operator Laplacian untuk menghitung distribusi temperaturnya merupakan Laplacian ruang lengkung.<}0{>The space-time arch in the surrounding of black hole is very big so that Laplacian operators to calculate the temperature distribution is the arch space Laplacian.<0} {0>Persamaan Fourier untuk lubang hitam Schwarzschild bergantung pada jarak dan radius Schwarzschild.<}0{>Fourier equation for Schwarzschild black hole is depended on the distance and radius of Schwarzschild.<0} {0>Pada keadaan tunak solusi dari komponen radius mengandung polinomial
BSW process of the slowly evaporating charged black hole
Wang, Liancheng; He, Feng; Fu, Xiangyun
2015-01-01
In this paper, we study the BSW process of the slowly evaporating charged black hole. It can be found that the BSW process will also arise near black hole horizon when the evaporation of charged black hole is very slow. But now the background black hole does not have to be an extremal black hole, and it will be approximately an extremal black hole unless it is nearly a huge stationary black hole.
Geodesic flows in a charged black hole spacetime with quintessence
Energy Technology Data Exchange (ETDEWEB)
Nandan, Hemwati [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Uniyal, Rashmi [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Government Degree College, Department of Physics, Tehri Garhwal, Uttarakhand (India)
2017-08-15
We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)
A Zeroth Law Compatible Model to Kerr Black Hole Thermodynamics
Directory of Open Access Journals (Sweden)
Viktor G. Czinner
2017-02-01
Full Text Available We consider the thermodynamic and stability problem of Kerr black holes arising from the nonextensive/nonadditive nature of the Bekenstein–Hawking entropy formula. Nonadditive thermodynamics is often criticized by asserting that the zeroth law cannot be compatible with nonadditive composition rules, so in this work we follow the so-called formal logarithm method to derive an additive entropy function for Kerr black holes also satisfying the zeroth law’s requirement. Starting from the most general, equilibrium compatible, nonadditive entropy composition rule of Abe, we consider the simplest non-parametric approach that is generated by the explicit nonadditive form of the Bekenstein–Hawking formula. This analysis extends our previous results on the Schwarzschild case, and shows that the zeroth law-compatible temperature function in the model is independent of the mass–energy parameter of the black hole. By applying the Poincaré turning point method, we also study the thermodynamic stability problem in the system.
Black holes, dark wormholes, and solitons in f (T ) gravities
Mai, Zhan-Feng; Lü, H.
2017-06-01
By choosing an appropriate vielbein basis, we obtain a class of spherically-symmetric solutions in f (T ) gravities. The solutions are asymptotic to Minkowski spacetimes with leading falloffs the same as those of the Schwarzschild black hole. In general, these solutions have branch-cut singularities in the middle. For appropriately chosen f (T ) functions, extremal black holes can also emerge. Furthermore, we obtain wormhole configurations whose spatial section is analogous to an Ellis wormhole, but -gt t runs from 0 to 1 as the proper radial coordinate runs from -∞ to +∞ . Thus a signal sent from -∞ to +∞ through the wormhole will be infinitely red-shifted. We call such a spacetime configuration a dark wormhole. By introducing a bare cosmological constant Λ0, we construct smooth solitons that are asymptotic to local AdS with an effective Λeff. In the middle of bulk, the soliton metric behaves like the AdS of bare Λ0 in global coordinates. We also embed AdS planar and Lifshitz black holes in f (T ) gravities. Finally we couple the Maxwell field to the f (T ) theories and construct electrically-charged solutions.
Expanding plasmas from anti de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Camilo, Giancarlo [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica Matematica, Sao Paulo (Brazil)
2016-12-15
We introduce a new foliation of AdS{sub 5} black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a(t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordstroem. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a(t) being inversely related to the quench profile μ(t). (orig.)
Bulk viscosity of accretion disks around non rotating black holes
Moeen Moghaddas, M.
2017-01-01
In this paper, we study the Keplerian, relativistic accretion disks around the non rotating black holes with the bulk viscosity. Many of authors studied the relativistic accretion disks around the black holes, but they ignored the bulk viscosity. We introduce a simple method to calculate the bulk in these disks. We use the simple form for the radial component of the four velocity in the Schwarzschild metric, then the other components of the four velocity and the components of the shear and the bulk tensor are calculated. Also all components of the bulk viscosity, the shear viscosity and stress tensor are calculated. It is seen that some components of the bulk tensor are comparable with the shear tensor. We calculate some of the thermodynamic quantities of the relativistic disks. Comparison of thermodynamic quantities shows that in some states influences of the bulk viscosity are important, especially in the inner radiuses. All calculations are done analytically and we do not use the boundary conditions. Finally, we find that in the relativistic disks around the black holes, the bulk viscosity is non-negligible in all the states.
MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES
Energy Technology Data Exchange (ETDEWEB)
Bellovary, Jillian M.; Low, Mordecai-Mark Mac; McKernan, Barry; Ford, K. E. Saavik [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, NY 10024 (United States)
2016-03-10
Accretion disks around supermassive black holes (SMBHs) in active galactic nuclei (AGNs) contain stars, stellar mass black holes, and other stellar remnants, which perturb the disk gas gravitationally. The resulting density perturbations exert torques on the embedded masses causing them to migrate through the disk in a manner analogous to planets in protoplanetary disks. We determine the strength and direction of these torques using an empirical analytic description dependent on local disk gradients, applied to two different analytic, steady-state disk models of SMBH accretion disks. We find that there are radii in such disks where the gas torque changes sign, trapping migrating objects. Our analysis shows that major migration traps generally occur where the disk surface density gradient changes sign from positive to negative, around 20–300R{sub g}, where R{sub g} = 2GM/c{sup 2} is the Schwarzschild radius. At these traps, massive objects in the AGN disk can accumulate, collide, scatter, and accrete. Intermediate mass black hole formation is likely in these disk locations, which may lead to preferential gap and cavity creation at these radii. Our model thus has significant implications for SMBH growth as well as gravitational wave source populations.
Boosting jet power in black hole spacetimes
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W.; Liebling, Steven L.; Motl, Patrick M.; Garrett, Travis
2011-01-01
The extraction of rotational energy from a spinning black hole via the Blandford–Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux. PMID:21768341
Boosting jet power in black hole spacetimes.
Neilsen, David; Lehner, Luis; Palenzuela, Carlos; Hirschmann, Eric W; Liebling, Steven L; Motl, Patrick M; Garrett, Travis
2011-08-02
The extraction of rotational energy from a spinning black hole via the Blandford-Znajek mechanism has long been understood as an important component in models to explain energetic jets from compact astrophysical sources. Here we show more generally that the kinetic energy of the black hole, both rotational and translational, can be tapped, thereby producing even more luminous jets powered by the interaction of the black hole with its surrounding plasma. We study the resulting Poynting jet that arises from single boosted black holes and binary black hole systems. In the latter case, we find that increasing the orbital angular momenta of the system and/or the spins of the individual black holes results in an enhanced Poynting flux.
Information Retention by Stringy Black Holes
Ellis, John
2015-01-01
Building upon our previous work on two-dimensional stringy black holes and its extension to spherically-symmetric four-dimensional stringy black holes, we show how the latter retain information. A key r\\^ole is played by an infinite-dimensional $W_\\infty$ symmetry that preserves the area of an isolated black-hole horizon and hence its entropy. The exactly-marginal conformal world-sheet operator representing a massless stringy particle interacting with the black hole necessarily includes a contribution from $W_\\infty$ generators in its vertex function. This admixture manifests the transfer of information between the string black hole and external particles. We discuss different manifestations of $W_\\infty$ symmetry in black-hole physics and the connections between them.
What does a black hole look like?
Bailyn, Charles D
2014-01-01
Emitting no radiation or any other kind of information, black holes mark the edge of the universe--both physically and in our scientific understanding. Yet astronomers have found clear evidence for the existence of black holes, employing the same tools and techniques used to explore other celestial objects. In this sophisticated introduction, leading astronomer Charles Bailyn goes behind the theory and physics of black holes to describe how astronomers are observing these enigmatic objects and developing a remarkably detailed picture of what they look like and how they interact with their surroundings. Accessible to undergraduates and others with some knowledge of introductory college-level physics, this book presents the techniques used to identify and measure the mass and spin of celestial black holes. These key measurements demonstrate the existence of two kinds of black holes, those with masses a few times that of a typical star, and those with masses comparable to whole galaxies--supermassive black holes...
Braneworld black holes and entropy bounds
Directory of Open Access Journals (Sweden)
Y. Heydarzade
2018-01-01
Full Text Available The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.
Braneworld black holes and entropy bounds
Heydarzade, Y.; Hadi, H.; Corda, C.; Darabi, F.
2018-01-01
The Bousso's D-bound entropy for the various possible black hole solutions on a 4-dimensional brane is checked. It is found that the D-bound entropy here is apparently different from that of obtained for the 4-dimensional black hole solutions. This difference is interpreted as the extra loss of information, associated to the extra dimension, when an extra-dimensional black hole is moved outward the observer's cosmological horizon. Also, it is discussed that N-bound entropy is hold for the possible solutions here. Finally, by adopting the recent Bohr-like approach to black hole quantum physics for the excited black holes, the obtained results are written also in terms of the black hole excited states.
Effects of electromagnetic field on the motion of particles in dyonic Reissner-Nordström black hole
Sharif, M.; Iftikhar, Sehrish
This paper explores dynamics of particles in the combined gravitational and electromagnetic fields of the dyonic Reissner-Nordström background. We discuss possibilities for the particle escape to infinity at inner most stable circular orbit. We study the stability of orbit through Lyapunov exponent and the effective force on particle. The collision of particles is investigated through the center of mass energy near the horizon of black hole. Finally, we compare our results with the motion of particles around Schwarzschild and Reissner-Nordström black hole. We conclude that charge of the black hole has a strong effect on the motion of particles.
Superradiance by mini black holes with mirror
Lee, Jong-Phil
2011-01-01
The superradiant scattering of massive scalar particles by a rotating mini black hole is investigated. Imposing the mirror boundary condition, the system becomes the so called black-hole bomb where the rotation energy of the black hole is transferred to the scattered particle exponentially with time. Bulk emissions as well as brane emissions are considered altogether. It is found that the largest effects are expected for the brane emission of lower angular modes with lighter mass and larger a...
Gravitational lensing by a Horndeski black hole
Badía, Javier; Eiroa, Ernesto F.
2017-11-01
In this article we study gravitational lensing by non-rotating and asymptotically flat black holes in Horndeski theory. By adopting the strong deflection limit, we calculate the deflection angle, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to black holes in General Relativity. We analyze the astrophysical consequences in the case of the nearest supermassive black holes.
Computational Complexity and Black Hole Horizons
Susskind, Leonard
2014-01-01
Computational complexity is essential to understanding the properties of black hole horizons. The problem of Alice creating a firewall behind the horizon of Bob's black hole is a problem of computational complexity. In general we find that while creating firewalls is possible, it is extremely difficult and probably impossible for black holes that form in sudden collapse, and then evaporate. On the other hand if the radiation is bottled up then after an exponentially long period of time firewa...
Cool horizons for entangled black holes
Maldacena, Juan; Susskind, Leonard
2013-01-01
General relativity contains solutions in which two distant black holes are connected through the interior via a wormhole, or Einstein-Rosen bridge. These solutions can be interpreted as maximally entangled states of two black holes that form a complex EPR pair. We suggest that similar bridges might be present for more general entangled states. In the case of entangled black holes one can formulate versions of the AMPS(S) paradoxes and resolve them. This suggests possible resolutions of the fi...
Geometrothermodynamics of Van der Waals black hole
Hu, Yumin; Chen, Juhua; Wang, Yongjiu
2017-12-01
We study the geometrothermodynamics of a special asymptotically AdS black hole, i.e. Van der Waals ( VdW) black hole, in the extended phase space where the negative cosmological constant Λ can be regarded as thermodynamic pressure. Analysing some special conditions of this black hole with geometrothermodynamical method, we find a good correlation with ordinary cases according to the state equation.
Techniques for Binary Black Hole Simulations
Baker, John G.
2006-01-01
Recent advances in techniques for numerical simulation of black hole systems have enabled dramatic progress in astrophysical applications. Our approach to these simulations, which includes new gauge conditions for moving punctures, AMR, and specific tools for analyzing black hole simulations, has been applied to a variety of black hole configurations, typically resulting in simulations lasting several orbits. I will discuss these techniques, what we've learned in applications, and outline some areas for further development.
Low-mass black holes as the remnants of primordial black hole formation.
Greene, Jenny E
2012-01-01
Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.
Rotating black holes in brane worlds
Energy Technology Data Exchange (ETDEWEB)
Frolov, Valeri P.; Stojkovic, Dejan; Fursaev, Dmitri V. E-mail: fursaev@thsun1.jinr.ru
2004-06-01
We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius r{sub 0} reaches this final stationary state is T {approx} r{sub 0}{sup p}'-'1/(G{sigma}), where G is the higher dimensional gravitational coupling constant, {sigma} is the brane tension, and p is the number of extra dimensions. (author)
Rotating black holes in brane worlds
Frolov, Valeri P.; Fursaev, Dmitri V.; Stojkovic, Dejan
2004-01-01
We study interaction of rotating higher dimensional black holes with a brane in space-times with large extra dimensions. We demonstrate that a rotating black hole attached to a brane can be stationary only if the null Killing vector generating the black hole horizon is tangent to the brane world-sheet. The characteristic time when a rotating black hole with the gravitational radius $r_0$ reaches this final stationary state is $T\\sim r_0^{p-1}/(G\\sigma)$, where $G$ is the higher dimensional gr...
Rotating black holes and Coriolis effect
Energy Technology Data Exchange (ETDEWEB)
Chou, Chia-Jui, E-mail: agoodmanjerry.ep02g@nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Wu, Xiaoning, E-mail: wuxn@amss.ac.cn [Institute of Mathematics, Academy of Mathematics and System Science, CAS, Beijing, 100190 (China); Yang, Yi, E-mail: yiyang@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China); Yuan, Pei-Hung, E-mail: phyuan.py00g@nctu.edu.tw [Institute of Physics, National Chiao Tung University, Hsinchu, Taiwan, ROC (China)
2016-10-10
In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Rotating black holes and Coriolis effect
Directory of Open Access Journals (Sweden)
Chia-Jui Chou
2016-10-01
Full Text Available In this work, we consider the fluid/gravity correspondence for general rotating black holes. By using the suitable boundary condition in near horizon limit, we study the correspondence between gravitational perturbation and fluid equation. We find that the dual fluid equation for rotating black holes contains a Coriolis force term, which is closely related to the angular velocity of the black hole horizon. This can be seen as a dual effect for the frame-dragging effect of rotating black hole under the holographic picture.
Particle accelerators inside spinning black holes.
Lake, Kayll
2010-05-28
On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
Porth, Oliver; Mizuno, Yosuke; Younsi, Ziri; Rezzolla, Luciano; Moscibrodzka, Monika; Falcke, Heino; Kramer, Michael
2016-01-01
We present the black hole accretion code (BHAC), a new multidimensional general-relativistic magnetohydrodynamics module for the MPI-AMRVAC framework. BHAC has been designed to solve the equations of ideal general-relativistic magnetohydrodynamics in arbitrary spacetimes and exploits adaptive mesh refinement techniques with an efficient block-based approach. Several spacetimes have already been implemented and tested. We demonstrate the validity of BHAC by means of various one-, two-, and three-dimensional test problems, as well as through a close comparison with the HARM3D code in the case of a torus accreting onto a black hole. The convergence of a turbulent accretion scenario is investigated with several diagnostics and we find accretion rates and horizon-penetrating fluxes to be convergent to within a few percent when the problem is run in three dimensions. Our analysis also involves the study of the corresponding thermal synchrotron emission, which is performed by means of a new general-relativistic radi...
A class of black holes in dRGT massive gravity and their thermodynamical properties
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Suchant G. [Jamia Millia Islamia, Centre of Theoretical Physics, New Delhi (India); University of Kwazulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, Private Bag 54001, Durban (South Africa); Tannukij, Lunchakorn [Mahidol University, Department of Physics, Faculty of Science, Bangkok (Thailand); Wongjun, Pitayuth [Naresuan University, The Institute for Fundamental Study, Phitsanulok (Thailand); Ministry of Education, Thailand Center of Excellence in Physics, Bangkok (Thailand)
2016-03-15
We present an exact spherical black hole solution in de Rham, Gabadadze, and Tolley (dRGT) massive gravity for a generic choice of the parameters in the theory, and also discuss the thermodynamical and phase structure of the black hole in both the grand canonical and the canonical ensembles (for the charged case). It turns out that the dRGT black hole solution includes other known solutions to the Einstein field equations, such as the monopole-de Sitter-Schwarzschild solution with the coefficients of the third and fourth terms in the potential and the graviton mass in massive gravity naturally generates the cosmological constant and the global monopole term. Furthermore, we compute the mass, temperature and entropy of the dRGT black hole, and also perform thermodynamical stability analysis. It turns out that the presence of the graviton mass completely changes the black hole thermodynamics, and it can provide the Hawking-Page phase transition which also occurs for the charged black holes. Interestingly, the entropy of a black hole is barely affected and still obeys the standard area law. In particular, our results, in the limit m{sub g} → 0, reduced exactly to the results of general relativity. (orig.)
Black hole solutions in mimetic Born-Infeld gravity.
Chen, Che-Yu; Bouhmadi-López, Mariam; Chen, Pisin
2018-01-01
The vacuum, static, and spherically symmetric solutions in the mimetic Born-Infeld gravity are studied. The mimetic Born-Infeld gravity is a reformulation of the Eddington-inspired-Born-Infeld (EiBI) model under the mimetic approach. Due to the mimetic field, the theory contains non-trivial vacuum solutions different from those in Einstein gravity. We find that with the existence of the mimetic field, the spacelike singularity inside a Schwarzschild black hole could be altered to a lightlike singularity, even though the curvature invariants still diverge at the singularity. Furthermore, in this case, the maximal proper time for a timelike radially-infalling observer to reach the singularity is found to be infinite.
Renormalized stress-energy tensor for stationary black holes
Levi, Adam
2016-01-01
We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the $t$-splitting variant of the method, which was first presented for $\\left\\langle\\phi^{2}\\right\\rangle_{ren}$, to compute the RSET in a stationary, asymptotically-flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally-coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.
Hairy black holes in N=2 gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Faedo, Federico [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); Klemm, Dietmar; Nozawa, Masato [Dipartimento di Fisica, Università di Milano, Via Celoria 16, 20133 Milano (Italy); INFN, Sezione di Milano, Via Celoria 16, 20133 Milano (Italy)
2015-11-06
We construct black holes with scalar hair in a wide class of four-dimensional N=2 Fayet-Iliopoulos gauged supergravity theories that are characterized by a prepotential containing one free parameter. Considering the truncated model in which only a single real scalar survives, the theory is reduced to an Einstein-scalar system with a potential, which admits at most two AdS critical points and is expressed in terms of a real superpotential. Our solution is static, admits maximally symmetric horizons, asymptotically tends to AdS space corresponding to an extremum of the superpotential, but is disconnected from the Schwarzschild-AdS family. The condition under which the spacetime admits an event horizon is addressed for each horizon topology. It turns out that for hyperbolic horizons the black holes can be extremal. In this case, the near-horizon geometry is AdS{sub 2}×H{sup 2}, where the scalar goes to the other, non-supersymmetric, critical point of the potential. Our solution displays fall-off behaviours different from the standard one, due to the fact that the mass parameter m{sup 2}=−2ℓ{sup −2} at the supersymmetric vacuum lies in a characteristic range m{sub BF}{sup 2}≤m{sup 2}
FEASTING BLACK HOLE BLOWS BUBBLES
2002-01-01
A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas
ATLAS: Black hole production and decay
2004-01-01
This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.
The reluctant father of black holes [Einstein].
Bernstein, J.
1996-06-01
Albert Einstein's equations of gravity are the foundation of the modern view of black holes; ironically, he used the equations in trying to prove these objects cannot exist. The author discusses quantum statistics, white dwarfs and black holes outlining the work of the key protagonists.
Slowly Rotating Black Holes with Nonlinear Electrodynamics
Directory of Open Access Journals (Sweden)
S. H. Hendi
2014-01-01
4 dimensions. These solutions are asymptotically AdS and their horizon has spherical topology. We calculate the physical properties of these black holes and study their dependence on the rotation parameter a as well as the nonlinearity parameter β. In the limit β→∞, the solution describes slowly rotating AdS type black holes.
Scalar absorption by charged rotating black holes
Leite, Luiz C. S.; Benone, Carolina L.; Crispino, Luís C. B.
2017-08-01
We compute numerically the absorption cross section of planar massless scalar waves impinging upon a Kerr-Newman black hole with different incidence angles. We investigate the influence of the black hole electric charge and angular momentum in the absorption spectrum, comparing our numerical computations with analytical results for the limits of high and low frequency.
Quantum aspects of black hole entropy
Indian Academy of Sciences (India)
Abstract. This survey intends to cover recent approaches to black hole entropy which attempt to go beyond the standard semiclassical perspective. Quantum corrections to the semiclassical Bekenstein–. Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail.
Black Hole Entanglement and Quantum Error Correction
Verlinde, E.; Verlinde, H.
2013-01-01
It was recently argued in [1] that black hole complementarity strains the basic rules of quantum information theory, such as monogamy of entanglement. Motivated by this argument, we develop a practical framework for describing black hole evaporation via unitary time evolution, based on a holographic
Primordial braneworld black holes: significant enhancement of ...
Indian Academy of Sciences (India)
Abstract. The Randall-Sundrum (RS-II) braneworld cosmological model with a frac- tion of the total energy density in primordial black holes is considered. Due to their 5d geometry, these black holes undergo modified Hawking evaporation. It is shown that dur- ing the high-energy regime, accretion from the surrounding ...
Black Hole Dynamic Potentials Koustubh Ajit Kabe
Indian Academy of Sciences (India)
Abstract. In the following paper, certain black hole dynamic potentials have been developed definitively on the lines of classical thermodynam- ics. These potentials have been refined in view of the small differences in the equations of the laws of black hole dynamics as given by Bekenstein and those of thermodynamics.
Estimating Black Hole Masses of Blazars
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... Estimating black hole masses of blazars is still a big challenge. Because of the contamination of jets, using the previously suggested size–continuum luminosity relation can overestimate the broad line region (BLR) size and black hole mass for radio-loud AGNs, including blazars. We propose a new relation ...
Lifshitz black holes in IIA supergravity
Barclay, Luke; Gregory, Ruth; Parameswaran, Susha; Tasinato, Gianmassimo; Zavala, Ivonne
We compute string theoretic black hole solutions having Lifshitz asymptotics with a general dynamical exponent z > 1. We start by constructing solutions in a flux compactification of six dimensional supergravity, then uplift them to massive type HA supergravity. Alongside the Lifshitz black holes we
ATLAS: Simulated production of a black hole
2006-01-01
This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collisions. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.
ATLAS: Simulated production of a black hole
2006-01-01
This track is an example of simulated data modelled for the ATLAS detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. These tracks would be produced if a miniature black hole was produced in the proton-proton collision. Such a small black hole would decay instantly to various particles via a process known as Hawking radiation.
Magnetohydrodynamic Simulations of Black Hole Accretion
Avara, Mark J.
Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.
Magnetized black holes and nonlinear electrodynamics
Kruglov, S. I.
2017-08-01
A new model of nonlinear electrodynamics with two parameters is proposed. We study the phenomenon of vacuum birefringence, the causality and unitarity in this model. There is no singularity of the electric field in the center of pointlike charges and the total electrostatic energy is finite. We obtain corrections to the Coulomb law at r →∞. The weak, dominant and strong energy conditions are investigated. Magnetized charged black hole is considered and we evaluate the mass, metric function and their asymptotic at r →∞ and r → 0. The magnetic mass of the black hole is calculated. The thermodynamic properties and thermal stability of regular black holes are discussed. We calculate the Hawking temperature of black holes and show that there are first-order and second-order phase transitions. The parameters of the model when the black hole is stable are found.
Binary Black Holes from Dense Star Clusters
Rodriguez, Carl
2017-01-01
The recent detections of gravitational waves from merging binary black holes have the potential to revolutionize our understanding of compact object astrophysics. But to fully utilize this new window into the universe, we must compare these observations to detailed models of binary black hole formation throughout cosmic time. In this talk, I will review our current understanding of cluster dynamics, describing how binary black holes can be formed through gravitational interactions in dense stellar environments, such as globular clusters and galactic nuclei. I will review the properties and merger rates of binary black holes from the dynamical formation channel. Finally, I will describe how the spins of a binary black hole are determined by its formation history, and how we can use this to discriminate between dynamically-formed binaries and those formed from isolated evolution in galactic fields.
Primordial black hole formation by vacuum bubbles
Deng, Heling; Vilenkin, Alexander
2017-12-01
Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.
Dual jets from binary black holes.
Palenzuela, Carlos; Lehner, Luis; Liebling, Steven L
2010-08-20
The coalescence of supermassive black holes--a natural outcome when galaxies merge--should produce gravitational waves and would likely be associated with energetic electromagnetic events. We have studied the coalescence of such binary black holes within an external magnetic field produced by the expected circumbinary disk surrounding them. Solving the Einstein equations to describe black holes interacting with surrounding plasma, we present numerical evidence for possible jets driven by these systems. Extending the process described by Blandford and Znajek for a single, spinning black hole, the picture that emerges suggests that the electromagnetic field extracts energy from the orbiting black holes, which ultimately merge and settle into the standard Blandford-Znajek scenario. Emissions along these jets could potentially be observable at large distances.
Modeling Flows Around Merging Black Hole Binaries
Centrella, Joan
2008-01-01
Coalescing massive black hole binaries are produced by the merger of galaxies. The final stages of the black hole coalescence produce strong gravitational radiation that can be detected by the space-borne LISA. In cases in which the black hole merger takes place in the presence of gas and magnetic fields, various types of electromagnetic signals may also be produced. Modeling such electromagnetic counterparts of the final merger requires evolving the behavior of both gas and fields in the strong-field regions around the black holes. We have taken a first step towards this problem by mapping the flow of pressureless matter in the dynamic, 3-D general relativistic spacetime around the merging black holes. We report on the results of these initial simulations and discuss their likely importance for future hydrodynamical simulations.
Will we observe black holes at LHC?
Cavaglià, M; Maartens, R; Cavaglia, Marco; Das, Saurya; Maartens, Roy
2003-01-01
The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, implies significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck scale O(TeV), this leads to important changes in the formation and detection of black holes at the the Large Hadron Collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies.
Renormalized vacuum polarization of rotating black holes
Ferreira, Hugo R C
2015-01-01
Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2+1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization (and, more importantly, the renormalized stress-energy tensor), for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.
Rotating embedded black holes: Entropy and Hawking's radiation
Ibohal, Ng.
2004-01-01
In this paper we derive a class of rotating embedded black holes. Then we study Hawking's radiation effects on these embedded black holes. The surface gravity, entropy and angular velocity are given for each of these black holes.
Quasinormal modes of asymptotically flat rotating black holes
Dias, Óscar J. C.; Hartnett, Gavin S.; Santos, Jorge E.
2014-12-01
We study the main properties of general linear perturbations of rotating black holes (BHs) in asymptotically flat higher-dimensional spacetimes. In particular, we determine the quasinormal mode (QNM) spectrum of singly spinning and equal angular momenta Myers-Perry BHs (MP BHs). Emphasis is also given to the timescale of the ultraspinning and bar-mode instabilities in these two families of MP BHs. For the bar-mode instabilities in the singly spinning MP BH, we find excellent agreement with our linear analysis and the nonlinear time evolution of Shibata and Yoshino for d = 6,7 spacetime dimensions. We find that d = 5 singly spinning BHs are linearly stable. In the context of studying general relativity in the large dimension limit, we obtain the QNM spectrum of Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two classes of modes. For large dimensions, we find that in the limit of zero rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs that saturate to finite values.
Revealing Black Holes with Gaia
Breivik, Katelyn; Chatterjee, Sourav; Larson, Shane L.
2017-11-01
We estimate the population of black holes with luminous stellar companions (BH-LCs) in the Milky Way (MW) observable by Gaia. We evolve a realistic distribution of BH-LC progenitors from zero-age to the current epoch taking into account relevant physics, including binary stellar evolution, BH-formation physics, and star formation rate, in order to estimate the BH-LC population in the MW today. We predict that Gaia will discover between 3800 and 12,000 BH-LCs by the end of its 5 {years} mission, depending on BH natal kick strength and observability constraints. We find that the overall yield, and distributions of eccentricities and masses of observed BH-LCs, can provide important constraints on the strength of BH natal kicks. Gaia-detected BH-LCs are expected to have very different orbital properties compared to those detectable via radio, X-ray, or gravitational-wave observations.
Black Holes and Gravitational Properties of Antimatter
Hajdukovic, D
2006-01-01
We speculate about impact of antigravity (i.e. gravitational repulsion between matter and antimatter) on the creation and emission of particles by a black hole. If antigravity is present a black hole made of matter may radiate particles as a black body, but this shouldn't be true for antiparticles. It may lead to radical change of radiation process predicted by Hawking and should be taken into account in preparation of the attempt to create and study mini black holes at CERN. Gravity, including antigravity is more than ever similar to electrodynamics and such similarity with a successfully quantized interaction may help in quantization of gravity.
2001-08-01
ISAAC Finds "Cool" Young Stellar Systems at the Centres of Active Galaxies Summary Supermassive Black Holes are present at the centres of many galaxies, some weighing hundreds of millions times more than the Sun. These extremely dense objects cannot be observed directly, but violently moving gas clouds and stars in their strong gravitational fields are responsible for the emission of energetic radiation from such "active galaxy nuclei" (AGN) . A heavy Black Hole feeds agressively on its surroundings . When the neighbouring gas and stars finally spiral into the Black Hole, a substantial fraction of the infalling mass is transformed into pure energy. However, it is not yet well understood how, long before this dramatic event takes place, all that material is moved from the outer regions of the galaxy towards the central region. So how is the food for the central Black Hole delivered to the table in the first place? To cast more light on this central question, a team of French and Swiss astronomers [1] has carried out a series of trailblazing observations with the VLT Infrared Spectrometer And Array Camera (ISAAC) on the VLT 8.2-m ANTU telescope at the ESO Paranal Observatory. The ISAAC instrument is particularly well suited to this type of observations. Visible light cannot penetrate the thick clouds of dust and gas in the innermost regions of active galaxies, but by recording the infrared light from the stars close to the Black Hole , their motions can be studied. By charting those motions in the central regions of three active galaxies (NGC 1097, NGC 1808 and NGC 5728), the astronomers were able to confirm the presence of "nuclear bars" in all three. These are dynamical structures that "open a road" for the flow of material towards the innermost region. Moreover, the team was surprised to discover signs of a young stellar population near the centres of these galaxies - stars that have apparently formed quite recently in a central gas disk. Such a system is unstable
Black holes in an asymptotically safe gravity theory with higher derivatives
Cai, Yi-Fu; Easson, Damien A.
2010-09-01
We present a class of spherically symmetric vacuum solutions to an asymptotically safe theory of gravity containing high-derivative terms. We find quantum corrected Schwarzschild-(anti)-de Sitter solutions with running gravitational coupling parameters. The evolution of the couplings is determined by their corresponding renormalization group flow equations. These black holes exhibit properties of a classical Schwarzschild solution at large length scales. At the center, the metric factor remains smooth but the curvature singularity, while softened by the quantum corrections, persists. The solutions have an outer event horizon and an inner Cauchy horizon which equate when the physical mass decreases to a critical value. Super-extremal solutions with masses below the critical value correspond to naked singularities. The Hawking temperature of the black hole vanishes when the physical mass reaches the critical value. Hence, the black holes in the asymptotically safe gravitational theory never completely evaporate. For appropriate values of the parameters such stable black hole remnants make excellent dark matter candidates.
Black hole as a wormhole factory
Directory of Open Access Journals (Sweden)
Sung-Won Kim
2015-12-01
Full Text Available There have been lots of debates about the final fate of an evaporating black hole and the singularity hidden by an event horizon in quantum gravity. However, on general grounds, one may argue that a black hole stops radiation at the Planck mass (ħc/G1/2∼10−5 g, where the radiated energy is comparable to the black hole's mass. And also, it has been argued that there would be a wormhole-like structure, known as “spacetime foam”, due to large fluctuations below the Planck length (ħG/c31/2∼10−33 cm. In this paper, as an explicit example, we consider an exact classical solution which represents nicely those two properties in a recently proposed quantum gravity model based on different scaling dimensions between space and time coordinates. The solution, called “Black Wormhole”, consists of two different states, depending on its mass parameter M and an IR parameter ω: For the black hole state (with ωM2>1/2, a non-traversable wormhole occupies the interior region of the black hole around the singularity at the origin, whereas for the wormhole state (with ωM2<1/2, the interior wormhole is exposed to an outside observer as the black hole horizon is disappearing from evaporation. The black hole state becomes thermodynamically stable as it approaches the merging point where the interior wormhole throat and the black hole horizon merges, and the Hawking temperature vanishes at the exact merge point (with ωM2=1/2. This solution suggests the “Generalized Cosmic Censorship” by the existence of a wormhole-like structure which protects the naked singularity even after the black hole evaporation. One could understand the would-be wormhole inside the black hole horizon as the result of microscopic wormholes created by “negative” energy quanta which have entered the black hole horizon in Hawking radiation process; the quantum black hole could be a wormhole factory! It is found that this speculative picture may be consistent with the
Unveiling the edge of time black holes, white holes, wormholes
Gribbin, John
1992-01-01
Acclaimed science writer John Gribbin recounts dramatic stories that have led scientists to believe black holes and their more mysterious kin are not only real, but might actually provide a passage to other universes and travel through time.
Ng, Keith K.; Mann, Robert B.; Martín-Martínez, Eduardo
2017-10-01
The RP3 geon and the Schwarzschild black hole are two black hole spacetimes which differ only behind the event horizon. We show that the thermal Hawking radiation emanating from the two black holes contains nontrivial correlations, that these correlations contain information about their interiors, and demonstrate that a particle detector can recover these correlations. In this manner, a simple particle detector can determine the structure behind the event horizon of an eternal black hole.
Revisiting Black Holes as Dark Matter
Kohler, Susanna
2017-02-01
Could dark matter be made of intermediate-mass black holes formed in the beginning of the universe? A recent study takes a renewed look at this question.Galactic LurkersThe nature of dark matter has long been questioned, but the recent discovery of gravitational waves by the Laser Interferometer Gravitational-Wave Observatory (LIGO) has renewed interest in the possibility that dark matter could consist of primordial black holes in the mass range of 101000 solar masses.The relative amounts of the different constituents of the universe. Dark matter makes up roughly 27%. [ESA/Planck]According to this model, the extreme density of matter present during the universes early expansion led to the formation of a large number of intermediate-mass black holes. These black holes now hide in the halos of galaxies, constituting the mass that weve measured dynamically but remains unseen.LIGOs first gravitational-wave detection revealed the merger of two black holes that were both tens of solar masses in size. If primordial black holes are indeed a major constituent of dark matter, then LIGOs detection is consistent with what we would expect to find: occasional mergers of the intermediate-mass black holes that formed in the early universe and now lurk in galactic halos.Quasar MicrolensingTheres a catch, however. If there truly were a large number of intermediate-mass primordial black holes hiding in galactic halos, they wouldnt go completely unnoticed: we would see signs of their presence in the gravitational microlensing of background quasars. Unseen primordial black holes in a foreground galaxy could cause an image of a background quasar to briefly brighten which would provide us with clear evidence of such black holes despite our not being able to detect them directly.A depiction of quasar microlensing (click for a closer look!). The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. [NASA
Scalar field self-force effects on a particle orbiting a Reissner-Nordstrom black hole
Bini, Donato; Geralico, Andrea
2016-01-01
Scalar field self-force effects on a scalar charge orbiting a Reissner-Nordstr\\"om black hole are investigated. The scalar wave equation is solved analytically in a post-Newtonian framework, and the solution is used to compute the self-field as well as the components of the self-force at the particle's location up to 7.5 post-Newtonian order. The energy fluxes radiated to infinity and down the hole are also evaluated. Comparison with previous numerical results in the Schwarzschild case shows a good agreement in both strong-field and weak-field regimes.
Black holes in Einstein-Gau\\ss -Bonnet-dilaton theory
Blázquez-Salcedo, Jose Luis; Ferrari, Valeria; Gualtieri, Leonardo; Kanti, Panagiota; Khoo, Fech Scen; Kleihaus, Burkhard; Kunz, Jutta; Macedo, Caio F B; Mojica, Sindy; Pani, Paolo; Radu, Eugen
2016-01-01
Generalizations of the Schwarzschild and Kerr black holes are discussed in an astrophysically viable generalized theory of gravity, which includes higher curvature corrections in the form of the Gauss-Bonnet term, coupled to a dilaton. The angular momentum of these black holes can slightly exceed the Kerr bound. The location and the orbital frequency of particles in their innermost stable circular orbits can deviate significantly from the respective Kerr values. Study of the quasinormal modes of the static black holes gives strong evidence that they are mode stable against polar and axial perturbations. Future gravitational wave observations should improve the current bound on the Gauss-Bonnet coupling constant, based on observations of the low-mass x-ray binary A 0620-00.
Energy Technology Data Exchange (ETDEWEB)
Yan, Hao-Peng; Liu, Wen-Biao, E-mail: wbliu@bnu.edu.cn
2016-08-10
Using Parikh–Wilczek tunneling framework, we calculate the tunneling rate from a Schwarzschild black hole under the third order WKB approximation, and then obtain the expressions for emission spectrum and black hole entropy to the third order correction. The entropy contains four terms including the Bekenstein–Hawking entropy, the logarithmic term, the inverse area term, and the square of inverse area term. In addition, we analyse the correlation between sequential emissions under this approximation. It is shown that the entropy is conserved during the process of black hole evaporation, which consists with the request of quantum mechanics and implies the information is conserved during this process. We also compare the above result with that of pure thermal spectrum case, and find that the non-thermal correction played an important role.
Quest for Localized 4-D Black Holes in Brane Worlds. II Removing the bulk singularities
Kanti, P.; Tamvakis, K.
2003-01-01
We analyze further the possibility of obtaining localized black hole solutions in the framework of Randall-Sundrum-type brane-world models. We consider black hole line-elements analytic at the horizon, namely, generalizations of the Painleve and Vaidya metrics, which are taken to have a decaying dependence of the horizon on the extra dimension. These backgrounds have no other singularities apart from the standard black hole singularity which is localized in the direction of the fifth dimension. Both line-elements can be sustained by a regular, shell-like distribution of bulk matter of a non-standard form. Of the two, the Vaidya line-element is shown to provide the most attractive, natural choice: despite the scaling of the horizon, the 5D spacetime has the same topological structure as the one of a RS-Schwarzschild spacetime and demands a minimal bulk energy-momentum tensor.
LIGO Finds Lightest Black-Hole Binary
Kohler, Susanna
2017-11-01
Wednesdayevening the Laser Interferometer Gravitational-wave Observatory (LIGO) collaboration quietly mentioned that theyd found gravitational waves from yet another black-hole binary back in June. This casual announcement reveals what is so far the lightest pair of black holes weve watched merge opening the door for comparisons to the black holes weve detected by electromagnetic means.A Routine DetectionThe chirp signal of GW170608 detected by LIGO Hanford and LIGO Livingston. [LIGO collaboration 2017]After the fanfare of the previous four black-hole-binary merger announcements over the past year and a half as well as the announcement of the one neutron-star binary merger in August GW170608 marks our entry into the era in which gravitational-wave detections are officially routine.GW170608, a gravitational-wave signal from the merger of two black holes roughly a billion light-years away, was detected in June of this year. This detection occurred after wed already found gravitational waves from several black-hole binaries with the two LIGO detectors in the U.S., but before the Virgo interferometer came online in Europe and increased the joint ability of the detectors to localize sources.Mass estimates for the two components of GW170608 using different models. [LIGO collaboration 2017]Overall, GW170608 is fairly unremarkable: it was detected by both LIGO Hanford and LIGO Livingston some 7 ms apart, and the signal looks not unlike those of the previous LIGO detections. But because were still in the early days of gravitational-wave astronomy, every discovery is still remarkable in some way! GW170608 stands out as being the lightest pair of black holes weve yet to see merge, with component masses before the merger estimated at 12 and 7 times the mass of the Sun.Why Size MattersWith the exception of GW151226, the gravitational-wave signal discovered on Boxing Day last year, all of the black holes that have been discovered by LIGO/Virgo have been quite large: the masses
Black Holes Have Simple Feeding Habits
2008-06-01
The biggest black holes may feed just like the smallest ones, according to data from NASA’s Chandra X-ray Observatory and ground-based telescopes. This discovery supports the implication of Einstein's relativity theory that black holes of all sizes have similar properties, and will be useful for predicting the properties of a conjectured new class of black holes. The conclusion comes from a large observing campaign of the spiral galaxy M81, which is about 12 million light years from Earth. In the center of M81 is a black hole that is about 70 million times more massive than the Sun, and generates energy and radiation as it pulls gas in the central region of the galaxy inwards at high speed. In contrast, so-called stellar mass black holes, which have about 10 times more mass than the Sun, have a different source of food. These smaller black holes acquire new material by pulling gas from an orbiting companion star. Because the bigger and smaller black holes are found in different environments with different sources of material to feed from, a question has remained about whether they feed in the same way. Using these new observations and a detailed theoretical model, a research team compared the properties of M81's black hole with those of stellar mass black holes. The results show that either big or little, black holes indeed appear to eat similarly to each other, and produce a similar distribution of X-rays, optical and radio light. AnimationMulti-wavelength Images of M81 One of the implications of Einstein's theory of General Relativity is that black holes are simple objects and only their masses and spins determine their effect on space-time. The latest research indicates that this simplicity manifests itself in spite of complicated environmental effects. "This confirms that the feeding patterns for black holes of different sizes can be very similar," said Sera Markoff of the Astronomical Institute, University of Amsterdam in the Netherlands, who led the study
Black Holes in Modified Gravity (MOG)
Moffat, J W
2014-01-01
The field equations for Scalar-Tensor-Vector-Gravity (STVG) or modified gravity (MOG) have a static, spherically symmetric black hole solution determined by the mass $M$ with either two horizons or no horizon depending on the strength of the gravitational constant $G=G_N(1+\\alpha)$ where $\\alpha$ is a parameter. A regular singularity-free MOG black hole solution is derived using a nonlinear, repulsive gravitational field dynamics and a reasonable physical energy-momentum tensor. The Kruskal-Szekeres completions of the MOG black hole solutions are obtained. The Kerr-MOG black hole solution is determined by the mass $M$, the parameter $\\alpha$ and the spin angular momentum $J=Ma$. The equations of motion and the stability condition of a test particle orbiting the MOG black hole are derived, and the radius of the black hole photosphere and its shadow cast by the Kerr-MOG black hole are calculated. A traversable wormhole solution is constructed with a throat stabilized by the repulsive gravitational field.
Particle creation rate for dynamical black holes
Energy Technology Data Exchange (ETDEWEB)
Firouzjaee, Javad T. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran (Iran, Islamic Republic of); University of Oxford, Department of Physics (Astrophysics), Oxford (United Kingdom); Ellis, George F.R. [University of Cape Town, Mathematics and Applied Mathematics Department, Rondebosch (South Africa)
2016-11-15
We present the particle creation probability rate around a general black hole as an outcome of quantum fluctuations. Using the uncertainty principle for these fluctuation, we derive a new ultraviolet frequency cutoff for the radiation spectrum of a dynamical black hole. Using this frequency cutoff, we define the probability creation rate function for such black holes. We consider a dynamical Vaidya model and calculate the probability creation rate for this case when its horizon is in a slowly evolving phase. Our results show that one can expect the usual Hawking radiation emission process in the case of a dynamical black hole when it has a slowly evolving horizon. Moreover, calculating the probability rate for a dynamical black hole gives a measure of when Hawking radiation can be killed off by an incoming flux of matter or radiation. Our result strictly suggests that we have to revise the Hawking radiation expectation for primordial black holes that have grown substantially since they were created in the early universe. We also infer that this frequency cut off can be a parameter that shows the primordial black hole growth at the emission moment. (orig.)
Discrete quantum spectrum of black holes
Energy Technology Data Exchange (ETDEWEB)
Lochan, Kinjalk, E-mail: kinjalk@iucaa.in; Chakraborty, Sumanta, E-mail: sumanta@iucaa.in
2016-04-10
The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos–Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.
Collisions near Kerr black holes: lower limit of energy between orbiting and incoming particles
Rutkowski, Mieszko
2017-01-01
In our paper we investigate the lower limit of collisional energy of test particles near the Kerr black hole. In particular we examine the minimal Lorentz factor between the freely falling particles and the particles orbiting around a black hole. We consider collisions on the innermost stable circular orbit and examine near-extreme case, where collisions take place near an event horizon. By fine-tuning the particles' angular momentum, the Lorentz factor of the collision can always be minimized to a value dependent on the black hole's spin. We identified that this minimal value is always less than 2√{2}-1/√{3} and more than √{12}-1/√{6} (the limits are the values for an extreme Kerr and Schwarzschild, respectively). It implies that this kind of collisions of compact objects are expected to be highly energetic near supermassive black holes. In addition, we show that an interaction between black hole's and particle's spins has an influence on minimal Lorentz factor. This contribution is nonnegligible for near-extreme black holes. We also discuss the relation between our results and sci-fi movie Interstellar.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Piotr T. Chruściel
2012-05-01
Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Heusler Markus
1998-01-01
Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
Partition functions for supersymmetric black holes
Manschot, Jan
2008-01-01
This dissertation presents recent discoveries on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view within string theory and M-theory. The results are applied to two central research topics in modern theoretical physics, namely (1) the correspondence between the physics (including gravity) within an Anti-de Sitter space and conformal field theory, and (2) the relation between black holes and topological strings.
Quantum chaos and the black hole horizon
CERN. Geneva
2016-01-01
Thanks to AdS/CFT, the analogy between black holes and thermal systems has become a practical tool, shedding light on thermalization, transport, and entanglement dynamics. Continuing in this vein, recent work has shown how chaos in the boundary CFT can be analyzed in terms of high energy scattering right on the horizon of the dual black hole. The analysis revolves around certain out-of-time-order correlation functions, which are simple diagnostics of the butterfly effect. We will review this work, along with a general bound on these functions that implies black holes are the most chaotic systems in quantum mechanics. (NB Room Change to Main Auditorium)
Black hole dynamics at large D
CERN. Geneva
2016-01-01
We demonstrate that the classical dynamics of black holes can be reformulated as a dynamical problem of a codimension one membrane moving in flat space. This membrane - roughly the black hole event horizon - carries a conserved charge current and stress tensor which source radiation. This `membrane paradigm' may be viewed as a simplification of the equations of general relativity at large D, and suggests the possibility of using 1/D as a useful expansion parameter in the analysis of complicated four dimensional solutions of general relativity, for instance the collision between two black holes.
Black hole jet power from impedance matching
Penna, Robert F.
2015-01-01
Black hole jet power depends on the angular velocity of magnetic field lines, $\\Omega_F$. Force-free black hole magnetospheres typically have $\\Omega_F/\\Omega_H \\approx 0.5$, where $\\Omega_H$ is the angular velocity of the horizon. We give a streamlined proof of this result using an extension of the classical black hole membrane paradigm. The proof is based on an impedance-matching argument between membranes at the horizon and infinity. Then we consider a general relativistic magnetohydrodyna...
Testing black hole candidates with electromagnetic radiation
Bambi, Cosimo
2017-04-01
Astrophysical black hole candidates are thought to be the Kerr black holes of general relativity, but there is not yet direct observational evidence that the spacetime geometry around these objects is described by the Kerr solution. The study of the properties of the electromagnetic radiation emitted by gas or stars orbiting these objects can potentially test the Kerr black hole hypothesis. This paper reviews the state of the art of this research field, describing the possible approaches to test the Kerr metric with current and future observational facilities and discussing current constraints.
Depilating Global Charge From Thermal Black Holes
March-Russell, John David; March-Russell, John; Wilczek, Frank
2001-01-01
At a formal level, there appears to be no difficulty involved in introducing a chemical potential for a globally conserved quantum number into the partition function for space-time including a black hole. Were this possible, however, it would provide a form of black hole hair, and contradict the idea that global quantum numbers are violated in black hole evaporation. We demonstrate dynamical mechanisms that negate the formal procedure, both for topological charge (Skyrmions) and complex scalar-field charge. Skyrmions collapse to the horizon; scalar-field charge fluctuates uncontrollably.
Fast plunges into Kerr black holes
Energy Technology Data Exchange (ETDEWEB)
Hadar, Shahar [Racah Institute of Physics, Hebrew University,Jerusalem 91904 (Israel); Porfyriadis, Achilleas P.; Strominger, Andrew [Center for the Fundamental Laws of Nature, Harvard University,Cambridge, MA 02138 (United States)
2015-07-15
Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. For rapidly rotating black holes such fast plunges may be studied in the context of the Kerr/CFT correspondence because they occur in the near-horizon region where dynamics are governed by the infinite dimensional conformal symmetry. In this paper we use conformal transformations to analytically solve for the radiation emitted from fast plunges into near-extreme Kerr black holes. We find perfect agreement between the gravity and CFT computations.
Massive black holes from dissipative dark matter
D'Amico, Guido; Panci, Paolo; Lupi, Alessandro; Bovino, Stefano; Silk, Joe
2018-01-01
We show that a subdominant component of dissipative dark matter resembling the Standard Model can form many intermediate-mass black hole seeds during the first structure formation epoch. We also observe that, in the presence of this matter sector, the black holes will grow at a much faster rate with respect to the ordinary case. These facts can explain the observed abundance of supermassive black holes feeding high-redshift quasars. The scenario will have interesting observational consequences for dark substructures and gravitational wave production.
Cosmic microwave background limits on accreting primordial black holes
Ali-Haïmoud, Yacine; Kamionkowski, Marc
2017-02-01
Interest in the idea that primordial black holes (PBHs) might comprise some or all of the dark matter has recently been rekindled following LIGO's first direct detection of a binary-black-hole merger. Here we revisit the effect of accreting PBHs on the cosmic microwave background (CMB) frequency spectrum and the angular temperature and polarization power spectra. We compute the accretion rate and luminosity of PBHs, accounting for their suppression by Compton drag and Compton cooling by CMB photons. We estimate the gas temperature near the Schwarzschild radius and, hence, the free-free luminosity, accounting for the cooling resulting from collisional ionization when the background gas is mostly neutral. We account approximately for the velocities of PBHs with respect to the background gas. We provide a simple analytic estimate of the efficiency of energy deposition in the plasma. We find that the spectral distortions generated by accreting PBHs are too small to be detected by FIRAS, as well as by future experiments now being considered. We analyze Planck CMB temperature and polarization data and find, under our most conservative hypotheses, and at the order-of-magnitude level, that they rule out PBHs with masses ≳1 02 M⊙ as the dominant component of dark matter.
On the Current Situation Concerning the Black Hole Problem
Directory of Open Access Journals (Sweden)
Rabounski D.
2008-01-01
Full Text Available This paper reviews a new solution which concerns the black hole problem. The new solution, by S.J.Crothers, doesn't eliminate the line-element of the classical "black hole solution" produced by the founders of the problem, but represents the gravitational collapse condition in terms of physical observable quantities accessible to a real observer whose location is in the real Schwazschild space itself, not with the quantities in an abstract flat space tangential to it at the point of observation (as it was in the classical solution. Besides, Schwarzschild space is only a very particular case of Einstein spaces of type I. There are minor studies on the physical conditions of gravitational collapse in other spaces of type I, and nothing on Einstein spaces of type II and type III (of which there are hundreds. Einstein spaces (empty spaces, without distributed matter,wherein Ricci's tensor is proportional to the fundamental metric tensor, are spaces filled by an electromagnetic field, dust, or other substances, of which there are many. As a result, studies on the physical conditions of gravitational collapse are only in their infancy.
Improved Black Hole Fireworks: Asymmetric Black-Hole-to-White-Hole Tunneling Scenario
De Lorenzo, Tommaso
2015-01-01
A new scenario for gravitational collapse has been recently proposed by Haggard and Rovelli. Presenting the model under the name of black hole fireworks, they claimed that the accumulation of quantum gravitational effects outside the horizon can cause the tunneling of geometry from a black hole to a white hole, allowing a bounce of the collapsing star which can eventually go back to infinity. In this paper we discuss the instabilities of this model and propose a simple minimal modification which eliminates them, as well as other related instabilities discussed in the literature. The new scenario is a time-asymmetric version of the original model with a time-scale for the final explosion that is shorter than m log m in Planck units. Our analysis highlights the importance of irreversibility in gravitational collapse which, in turn, uncovers important issues that cannot be addressed in detail without a full quantum gravity treatment.
Cosmological solutions with charged black holes
Bibi, Rashida; Clifton, Timothy; Durk, Jessie
2017-07-01
We consider the problem of constructing cosmological solutions of the Einstein-Maxwell equations that contain multiple charged black holes. By considering the field equations as a set of constraint and evolution equations, we construct exact initial data for N charged black holes on a hypersphere. This corresponds to the maximum of expansion of a cosmological solution, and provides sufficient information for a unique evolution. We then consider the specific example of a universe that contains eight charged black holes, and show that the existence of non-zero electric charge reduces the scale of the cosmological region of the space. These solutions generalize the Majumdar-Papapetrou solutions away from the extremal limit of charged black holes, and provide what we believe to be some of the first relativistic calculations of the effects of electric charge on cosmological backreaction.
Black Hole - Neutron Star Binary Mergers
National Aeronautics and Space Administration — Gravitational radiation waveforms for black hole-neutron star coalescence calculations. The physical input is Newtonian physics, an ideal gas equation of state with...
Merging Black Holes and Gravitational Waves
Centrella, Joan
2009-01-01
This talk will focus on simulations of binary black hole mergers and the gravitational wave signals they produce. Applications to gravitational wave detection with LISA, and electronagnetic counterparts, will be highlighted.
Black hole dynamics in general relativity
Indian Academy of Sciences (India)
Abstract. Basic features of dynamical black holes in full, non-linear general relativity are summarized in a pedagogical fashion. Qualitative properties of the evolution of various horizons follow directly from the celebrated Raychaudhuri equation.
Miller, Jon M.
2017-08-01
Across the mass scale, high-resolution X-ray spectroscopy has transformed our view of accretion onto black holes. The ionized disk winds observed from stellar-mass black holes may sometimes eject more mass than is able to accrete onto the black hole. It is possible that these winds can probe the fundamental physics that drive disk accretion. The most powerful winds from accretion onto massive black holes may play a role in feedback, seeding host bulges with hot gas and halting star formation. The lessons and techniques emerging from these efforts can also reveal the accretion flow geometry in tidal disruption events (TDEs), an especially rich discovery space. This talk will review some recent progress enabled by high-resolution X-ray spectroscopy, and look at the potential of gratings spectrometers and microcalorimeters in the years ahead.
Black hole evaporation rates without spacetime.
Braunstein, Samuel L; Patra, Manas K
2011-08-12
Verlinde recently suggested that gravity, inertia, and even spacetime may be emergent properties of an underlying thermodynamic theory. This vision was motivated in part by Jacobson's 1995 surprise result that the Einstein equations of gravity follow from the thermodynamic properties of event horizons. Taking a first tentative step in such a program, we derive the evaporation rate (or radiation spectrum) from black hole event horizons in a spacetime-free manner. Our result relies on a Hilbert space description of black hole evaporation, symmetries therein which follow from the inherent high dimensionality of black holes, global conservation of the no-hair quantities, and the existence of Penrose processes. Our analysis is not wedded to standard general relativity and so should apply to extended gravity theories where we find that the black hole area must be replaced by some other property in any generalized area theorem.
The physics of accretion onto black holes
Belloni, Tomaso; Casella, Piergiorgio; Gilfanov, Marat; Jonker, Peter; King, Andrew
2015-01-01
This title reviews in-depth research on accretion on all scales, from galactic binaries to intermediate mass and supermassive black holes. Possible future directions of accretion are also discussed. The following main themes are covered: a historical perspective; physical models of accretion onto black holes of all masses; black hole fundamental parameters; and accretion, jets and outflows. An overview and outlook on the topic is also presented. This volume summarizes the status of the study of astrophysical black hole research and is aimed at astrophysicists and graduate students working in this field. Originally published in Space Science Reviews, Vol 183/1-4, 2014.
Black-hole masses of distant quasars
DEFF Research Database (Denmark)
Vestergaard, Marianne
2011-01-01
A brief overview of the methods commonly used to determine or estimate the black hole mass in quiescent or active galaxies is presented and it is argued that the use of mass-scaling relations is both a reliable and the preferred method to apply to large samples of distant quasars. The method uses...... that the black hole masses are very large, of order 1 to 10 billion solar masses, even at the highest redshifts of 4 to 6. The black holes must build up their mass very fast in the early universe. Yet they do not grow much larger than that: a maximum mass of about 10 billion solar masses is also observed....... Preliminary mass functions of active black holes are presented for several quasar samples, including the Sloan Digital Sky Survey. Finally, common concerns related to the application of the mass scaling relations, especially for high redshift quasars, are briefly discussed....
Hagedorn temperature and physics of black holes
Directory of Open Access Journals (Sweden)
Zakharov V.I.
2016-01-01
Full Text Available A mini-review devoted to some implications of the Hagedorn temperature for black hole physics. The existence of a limiting temperature is a generic feature of string models. The Hagedorn temperature was introduced first in the context of hadronic physics. Nowadays, the emphasis is shifted to fundamental strings which might be a necessary ingredient to obtain a consistent theory of black holes. The point is that, in field theory, the local temperature close to the horizon could be arbitrarily high, and this observation is difficult to reconcile with the finiteness of the entropy of black holes. After preliminary remarks, we review our recent attempt to evaluate the entropy of large black holes in terms of fundamental strings. We also speculate on implications for dynamics of large-Nc gauge theories arising within holographic models.
Primordial Black Holes from First Principles (Overview)
Lam, Casey; Bloomfield, Jolyon; Moss, Zander; Russell, Megan; Face, Stephen; Guth, Alan
2017-01-01
Given a power spectrum from inflation, our goal is to calculate, from first principles, the number density and mass spectrum of primordial black holes that form in the early universe. Previously, these have been calculated using the Press- Schechter formalism and some demonstrably dubious rules of thumb regarding predictions of black hole collapse. Instead, we use Monte Carlo integration methods to sample field configurations from a power spectrum combined with numerical relativity simulations to obtain a more accurate picture of primordial black hole formation. We demonstrate how this can be applied for both Gaussian perturbations and the more interesting (for primordial black holes) theory of hybrid inflation. One of the tools that we employ is a variant of the BBKS formalism for computing the statistics of density peaks in the early universe. We discuss the issue of overcounting due to subpeaks that can arise from this approach (the ``cloud-in-cloud'' problem). MIT UROP Office- Paul E. Gray (1954) Endowed Fund.
Testing black hole superradiance with pulsar companions
Directory of Open Access Journals (Sweden)
João G. Rosa
2015-10-01
Full Text Available We show that the magnetic dipole and gravitational radiation emitted by a pulsar can undergo superradiant scattering off a spinning black hole companion. We find that the relative amount of superradiant modes in the radiation depends on the pulsar's angular position relative to the black hole's equatorial plane. In particular, when the pulsar and black hole spins are aligned, superradiant modes are dominant at large angles, leading to an amplification of the pulsar's luminosity, whereas for small angles the radiation is dominantly composed of non-superradiant modes and the signal is attenuated. This results in a characteristic orbital modulation of the pulsar's luminosity, up to the percent level within our approximations, which may potentially yield a signature of superradiant scattering in astrophysical black holes and hence an important test of general relativity.
A menagerie of hairy black holes
Winstanley, Elizabeth
2015-01-01
According to the no-hair conjecture, equilibrium black holes are simple objects, completely determined by global charges which can be measured at infinity. This is the case in Einstein-Maxwell theory due to beautiful uniqueness theorems. However, the no-hair conjecture is not true in general, and there is now a plethora of matter models possessing hairy black hole solutions. In this note we focus on one such matter model: Einstein-Yang-Mills (EYM) theory, and restrict our attention to four-dimensional, static, non-rotating black holes for simplicity. We outline some of the menagerie of EYM solutions in both asymptotically flat and asymptotically anti-de Sitter space. We attempt to make sense of this black hole zoo in terms of Bizon's modified no-hair conjecture.
On the Wheeler-Dewitt Equation for Black Holes
Pollock, M. D.
Integration over the angular coordinates of the evaporating, four-dimensional Schwarzschild black hole leads to a two-dimensional action, for which the Wheeler-DeWitt equation has been found by Tomimatsu, on the apparent horizon, where the Vaidya metric is valid, using the Hamiltonian formalism of Hajicek. For the Einstein theory of gravity coupled to a massless scalar field ζ, the wave function Ψ obeys the Schrödinger equation -i∂ Ψ /∂ ln √ {M} = [-(4 π M)-1 ∂ 2/∂ ζ 2 + M]Ψ , where M is the mass of the hole. The solution is Ψ = Ψ 0 exp [(1)/(2)i (M-k2 M-1 ± 4√ {π } k ζ )], where k2 is the separation constant, and for k2>0 the hole evaporates at the rate Ṁ=-k2/4M2, in agreement with the result of Hawking. Here, this analysis is generalized to the two-dimensional theory { L} = (1)/(2)√ {-h} { A} [A (φ ) + B (∇ φ )2 + (1)/(2)φ 2 R - 4 π C (φ )φ 2 (∇ ζ )2], which subsumes the spherical black holes formulated in D≥4 dimensions, when A = ½ (D - 2) (D - 3)ϕ2 (D - 4)/(D - 2), B=2(D-3)/(D-2), C=1, and also the twodimensional black hole identified by Witten and by Gautam et al., when A=4/α‧, B=2, C=1/8π, c=+8/α‧ being (minus) the central charge. In all cases an analogous Schrödinger equation is obtained. The evaporation rate is ˙ {M} = -(D - 3)kD2 (2M)(D-2)/(D-3) when D≥4 and ˙ {M} = -k22 √ {c}/M when D=2. Since Ψ evolves without violation of unitarity, there is no loss of information during the evaporation process, in accord with the principle of black-hole complementarity introduced by Susskind et al. Finally, comparison with the four-dimensional, cosmological Schrödinger equation, obtained by reduction of the ten-dimensional heterotic superstring theory including terms hat { R}4, shows in both cases that there is a positive semi-definite potential which evolves to zero, this corresponding to the ground state, which is Minkowski space.
Periodic self-lensing from accreting massive black hole binaries
D'Orazio, Daniel J.; Di Stefano, Rosanne
2018-03-01
Nearly 150 massive black hole binary (MBHB) candidates at sub-pc orbital separations have been reported in recent literature. Nevertheless, the definitive detection of even a single such object remains elusive. If at least one of the black holes is accreting, the light emitted from its accretion disc will be lensed by the other black hole for binary orbital inclinations near to the line of sight. This binary self-lensing could provide a unique signature of compact MBHB systems. We show that, for MBHBs with masses in the range 106-1010 M⊙ and with orbital periods less than ˜10 yr, strong lensing events should occur in one to 10s of per cent of MBHB systems that are monitored for an entire orbit. Lensing events will last from days for the less massive, shorter period MBHBs to a year for the most massive ˜10 year orbital period MBHBs. At small inclinations of the binary orbit to the line of sight, lensing must occur and will be accompanied by periodicity due to the relativistic Doppler boost. Flares at the same phase as the otherwise average flux of the Doppler modulation would be a smoking gun signature of self-lensing and can be used to constrain binary parameters. For MBHBs with separation ≳100 Schwarzschild radii, we show that finite-sized source effects could serve as a probe of MBH accretion disc structure. Finally, we stress that our lensing probability estimate implies that ˜10 of the known MBHB candidates identified through quasar periodicity should exhibit strong lensing flares.
Binary Black Hole Late Inspiral: Simulations for Gravitational Wave Observations
Baker, John G.; vanMeter, James R.; Centrella, Joan; Choi, Dae-Il; Kelly, Bernard J.; Koppitz, Michael
2006-01-01
Coalescing binary black hole mergers are expected to be the strongest gravitational wave sources for ground-based interferometers, such as the LIGO, VIRGO, and GEO600, as well as the spacebased interferometer LISA. Until recently it has been impossible to reliably derive the predictions of General Relativity for the final merger stage, which takes place in the strong-field regime. Recent progress in numerical relativity simulations is, however, revolutionizing our understanding of these systems. We examine here the specific case of merging equal-mass Schwarzschild black holes in detail, presenting new simulations in which the black holes start in the late inspiral stage on orbits with very low eccentricity and evolve for approximately 1200M through approximately 7 orbits before merging. We study the accuracy and consistency of our simulations and the resulting gravitational waveforms, which encompass approximately 14 cycles before merger, and highlight the importance of using frequency (rather than time) to set the physical reference when comparing models. Matching our results to PN calculations for the earlier parts of the inspiral provides a combined waveform with less than half a cycle of accumulated phase error through the entire coalescence. Using this waveform, we calculate signal-to-noise ratios (SNRs) for iLIGO, adLIGO, and LISA, highlighting the contributions from the late-inspiral and merger-ringdown parts of the waveform which can now be simulated numerically. Contour plots of SNR as a function of z and M show that adLIGO can achieve SNR 2 10 for some IMBBHs out to z approximately equals 1, and that LISA can see MBBHs in the range 3 x 10(exp 4) approximately 100 out to the earliest epochs of structure formation at z > 15.
Universality of black hole quantum computing
Energy Technology Data Exchange (ETDEWEB)
Dvali, Gia [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); New York Univ., NY (United States). Center for Cosmology and Particle Physics; Gomez, Cesar [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM-CSIC; Luest, Dieter [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Omar, Yasser [Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico; Richter, Benedikt [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics; Instituto de Telecomunicacoes (Portugal). Physics of Information and Quantum Technologies Group; Lisboa Univ. (Portugal). Inst. Superior Tecnico
2017-01-15
By analyzing the key properties of black holes from the point of view of quantum information, we derive a model-independent picture of black hole quantum computing. It has been noticed that this picture exhibits striking similarities with quantum critical condensates, allowing the use of a common language to describe quantum computing in both systems. We analyze such quantum computing by allowing coupling to external modes, under the condition that the external influence must be soft-enough in order not to offset the basic properties of the system. We derive model-independent bounds on some crucial time-scales, such as the times of gate operation, decoherence, maximal entanglement and total scrambling. We show that for black hole type quantum computers all these time-scales are of the order of the black hole half-life time. Furthermore, we construct explicitly a set of Hamiltonians that generates a universal set of quantum gates for the black hole type computer. We find that the gates work at maximal energy efficiency. Furthermore, we establish a fundamental bound on the complexity of quantum circuits encoded on these systems, and characterize the unitary operations that are implementable. It becomes apparent that the computational power is very limited due to the fact that the black hole life-time is of the same order of the gate operation time. As a consequence, it is impossible to retrieve its information, within the life-time of a black hole, by externally coupling to the black hole qubits. However, we show that, in principle, coupling to some of the internal degrees of freedom allows acquiring knowledge about the micro-state. Still, due to the trivial complexity of operations that can be performed, there is no time advantage over the collection of Hawking radiation and subsequent decoding. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Conservation laws for dynamical black holes
Hayward, Sean A.
2006-01-01
An essentially complete new paradigm for dynamical black holes in terms of trapping horizons is presented, including dynamical versions of the physical quantities and laws which were considered important in the classical paradigm for black holes in terms of Killing or event horizons. Three state functions are identified as surface integrals over marginal surfaces: irreducible mass, angular momentum and charge. There are three corresponding conservation laws, expressing the rate of change of t...
Numerical simulation of orbiting black holes.
Brügmann, Bernd; Tichy, Wolfgang; Jansen, Nina
2004-05-28
We present numerical simulations of binary black hole systems which for the first time last for about one orbital period for close but still separate black holes as indicated by the absence of a common apparent horizon. An important part of the method is the construction of comoving coordinates, in which both the angular and the radial motion are minimized through a dynamically adjusted shift condition. We use fixed mesh refinement for computational efficiency.
Measuring spin of black holes in the universe
Indian Academy of Sciences (India)
Table of contents. Measuring spin of black holes in the universe · What is black hole? Accretion Disk and Jet · What is black hole's spin? Accretion Disk · Black Hole's Potential · Light Curves: Photon Count Rate Vs Time · Quasi-Periodic Oscillation · Slide 9 · Model · Slide 11 · Slide 12 · Slide 13 · Summary.
Measurement of Black Hole Mass Radio-Loud Quasars
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... In this work, we construct a sample of 1585 radio-loud quasars to measure their black hole masses using broad emission lines. We compare our black hole masses with the virial black hole masses measured by Shen et al. (2010).We find that there is a large deviation between them if our black hole mass is ...
Towards a characterization of fields leading to black hole hair
Indian Academy of Sciences (India)
a characterization of the fields leading to a black hole hair. Keywords. Black hole; No Hair Theorem. PACS Nos 04.20.−q; 04.70.Bw. 1. Introduction. Black holes are easily amongst the most fascinating offshoots of General Theory of Rel- ativity. One important question asked about a black hole is regarding the information ...
Estimation of Black Hole Masses from Steep Spectrum Radio Quasars
Indian Academy of Sciences (India)
Our black hole masses are compared with the virial black hole masses estimated by Shen (2010). We find that there is a large deviation between the two kinds of values if the black hole masses are estimated from broad emission line of CIV. However, both values are in agreement if the black hole masses are estimated from ...
Phases of Kaluza-Klein Black Holes
DEFF Research Database (Denmark)
Harmark, Troels; Obers, N. A.
2005-01-01
We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon that asymptote to a d-dimensional Minkowski-space times a circle. We start by reviewing the (mu,n) phase diagram...... and the split-up of the phase structure into solutions with an internal SO(d-1) symmetry and solutions with Kaluza-Klein bubbles. We then discuss the uniform black string, non-uniform black string and localized black hole phases, and how those three phases are connected, involving issues such as classical...... instability and horizon-topology changing transitions. Finally, we review the bubble-black hole sequences, their place in the phase structure and interesting aspects such as the continuously infinite non-uniqueness of solutions for a given mass and relative tension....
Black holes: just beyond the event horizon
Vergano, Dan
2007-01-01
An upcoming study adds to the long history, suggesting blakc holes, now almost taken for granted, never actually comme fully into existence, and that the solution to a decades-old black hole paradox may be simpler than supposed. (1 page)
Foundations of Black Hole Accretion Disk Theory.
Abramowicz, Marek A; Fragile, P Chris
2013-01-01
This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).
Electrodynamics of black holes in STU supergravity
Cvetič, M.; Gibbons, G. W.; Pope, C. N.; Saleem, Z. H.
2014-09-01
External magnetic fields can probe the composite structure of black holes in string theory. With this motivation we study magnetised four-charge black holes in the STU model, a consistent truncation of maximally supersymmetric supergravity with four types of electromagnetic fields. We employ solution generating techniques to obtain Melvin backgrounds, and black holes in these backgrounds. For an initially electrically charged static black hole immersed in magnetic fields, we calculate the resultant angular momenta and analyse their global structure. Examples are given for which the ergoregion does not extend to infinity. We calculate magnetic moments and gyromagnetic ratios via Larmor's formula. Our results are consistent with earlier special cases. A scaling limit and associated subtracted geometry in a single surviving magnetic field is shown to lift to AdS 3 × S 2. Magnetizing magnetically charged black holes give static solutions with conical singularities representing strings or struts holding the black holes against magnetic forces. In some cases it is possible to balance these magnetic forces.
Foundations of Black Hole Accretion Disk Theory
Directory of Open Access Journals (Sweden)
Marek A. Abramowicz
2013-01-01
Full Text Available This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks, Shakura-Sunyaev (thin disks, slim disks, and advection-dominated accretion flows (ADAFs. After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs.
Rotating black holes in dilatonic Einstein-Gauss-Bonnet theory.
Kleihaus, Burkhard; Kunz, Jutta; Radu, Eugen
2011-04-15
We construct generalizations of the Kerr black holes by including higher-curvature corrections in the form of the Gauss-Bonnet density coupled to the dilaton. We show that the domain of existence of these Einstein-Gauss-Bonnet-dilaton (EGBD) black holes is bounded by the Kerr black holes, the critical EGBD black holes, and the singular extremal EGBD solutions. The angular momentum of the EGBD black holes can exceed the Kerr bound. The EGBD black holes satisfy a generalized Smarr relation. We also compare their innermost stable circular orbits with those of the Kerr black holes and show the existence of differences which might be observable in astrophysical systems.
Miao, Yan-Gang
2016-01-01
Considering non-Gaussian smeared matter distributions, we investigate thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the 6- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law maintains for the noncommutative black hole with the Hawking temperature within a specific range, but fails with the Hawking temperature beyond this range.
Energy Technology Data Exchange (ETDEWEB)
Miao, Yan-Gang [Nankai University, School of Physics, Tianjin (China); Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, P.O. Box 2735, Beijing (China); CERN, PH-TH Division, Geneva 23 (Switzerland); Xu, Zhen-Ming [Nankai University, School of Physics, Tianjin (China)
2016-04-15
Considering non-Gaussian smeared matter distributions, we investigate the thermodynamic behaviors of the noncommutative high-dimensional Schwarzschild-Tangherlini anti-de Sitter black hole, and we obtain the condition for the existence of extreme black holes. We indicate that the Gaussian smeared matter distribution, which is a special case of non-Gaussian smeared matter distributions, is not applicable for the six- and higher-dimensional black holes due to the hoop conjecture. In particular, the phase transition is analyzed in detail. Moreover, we point out that the Maxwell equal area law holds for the noncommutative black hole whose Hawking temperature is within a specific range, but fails for one whose the Hawking temperature is beyond this range. (orig.)
Massive Black Hole Binary Evolution
Directory of Open Access Journals (Sweden)
Merritt David
2005-11-01
Full Text Available Coalescence of binary supermassive black holes (SBHs would constitute the strongest sources of gravitational waves to be observed by LISA. While the formation of binary SBHs during galaxy mergers is almost inevitable, coalescence requires that the separation between binary components first drop by a few orders of magnitude, due presumably to interaction of the binary with stars and gas in a galactic nucleus. This article reviews the observational evidence for binary SBHs and discusses how they would evolve. No completely convincing case of a bound, binary SBH has yet been found, although a handful of systems (e.g. interacting galaxies; remnants of galaxy mergers are now believed to contain two SBHs at projected separations of <~ 1kpc. N-body studies of binary evolution in gas-free galaxies have reached large enough particle numbers to reproduce the slow, “diffusive” refilling of the binary’s loss cone that is believed to characterize binary evolution in real galactic nuclei. While some of the results of these simulations - e.g. the binary hardening rate and eccentricity evolution - are strongly N-dependent, others - e.g. the “damage” inflicted by the binary on the nucleus - are not. Luminous early-type galaxies often exhibit depleted cores with masses of ~ 1-2 times the mass of their nuclear SBHs, consistent with the predictions of the binary model. Studies of the interaction of massive binaries with gas are still in their infancy, although much progress is expected in the near future. Binary coalescence has a large influence on the spins of SBHs, even for mass ratios as extreme as 10:1, and evidence of spin-flips may have been observed.
Imaging black holes: past, present and future
Falcke, Heino
2017-12-01
This paper briefly reviews past, current, and future efforts to image black holes. Black holes seem like mystical objects, but they are an integral part of current astrophysics and are at the center of attempts to unify quantum physics and general relativity. Yet, nobody has ever seen a black hole. What do they look like? Initially, this question seemed more of an academic nature. However, this has changed over the past two decades. Observations and theoretical considerations suggest that the supermassive black hole, Sgr A*, in the center of our Milky Way is surrounded by a compact, foggy emission region radiating at and above 230 GHz. It has been predicted that the event horizon of Sgr A* should cast its shadow onto that emission region, which could be detectable with a global VLBI array of radio telescopes. In contrast to earlier pictures of black holes, that dark feature is not supposed to be due to a hole in the accretion flow, but would represent a true negative image of the event horizon. Currently, the global Event Horizon Telescope consortium is attempting to make such an image. In the future those images could be improved by adding more telescopes to the array, in particular at high sites in Africa. Ultimately, a space array at THz frequencies, the Event Horizon Imager, could produce much more detailed images of black holes. In combination with numerical simulations and precise measurements of the orbits of stars – ideally also of pulsars – these images will allow us to study black holes with unprecedented precision.
Elvang, Henriette; Figueras, Pau
2007-01-01
Using the inverse scattering method we construct an exact stationary asymptotically flat 4+1-dimensional vacuum solution describing Black Saturn: a spherical black hole surrounded by a black ring. Angular momentum keeps the configuration in equilibrium. Black saturn reveals a number of interesting gravitational phenomena: (1) The balanced solution exhibits 2-fold continuous non-uniqueness for fixed mass and angular momentum; (2) Remarkably, the 4+1d Schwarzschild black hole is not unique, sin...
Black hole clustering and duty cycles in the Illustris simulation
DeGraf, Colin; Sijacki, Debora
2016-01-01
We use the high-resolution cosmological simulation Illustris to investigate the clustering of supermassive black holes across cosmic time, the link between black hole clustering and host halo masses, and the implications for black hole duty cycles. Our predicted black hole correlation length and bias match the observational data very well across the full redshift range probed. Black hole clustering is strongly luminosity-dependent on small, 1-halo scales, with some moderate dependence on larg...
Quantum aspects of black hole entropy
Indian Academy of Sciences (India)
Quantum corrections to the semiclassical Bekenstein–Hawking area law for black hole entropy, obtained within the quantum geometry framework, are treated in some detail. Their ramiﬁcation for the holographic entropy bound for bounded stationary spacetimes is discussed. Four dimensional supersymmetric extremal black ...
Songlines from Direct Collapse Seed Black Holes
Aykutalp, Aycin; Wise, John; Spaans, Marco; Meijerink, Rowin
In the last decade, the growth of supermassive black holes (SMBHs) has been intricately linked to galaxy formation and evolution, and is a key ingredient in the assembly of galaxies. Observations of SMBHs with masses of 109 solar at high redshifts (z~7) poses challenges to the theory of seed black
Energy Technology Data Exchange (ETDEWEB)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil); Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB (Brazil); Bezerra, V.B., E-mail: valdir@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, CEP 58051-970, João Pessoa, PB (Brazil)
2016-10-15
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.
NASA's Chandra Finds Youngest Nearby Black Hole
2010-11-01
Astronomers using NASA's Chandra X-ray Observatory have found evidence of the youngest black hole known to exist in our cosmic neighborhood. The 30-year-old black hole provides a unique opportunity to watch this type of object develop from infancy. The black hole could help scientists better understand how massive stars explode, which ones leave behind black holes or neutron stars, and the number of black holes in our galaxy and others. The 30-year-old object is a remnant of SN 1979C, a supernova in the galaxy M100 approximately 50 million light-years from Earth. Data from Chandra, NASA's Swift satellite, the European Space Agency's XMM-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady during observation from 1995 to 2007. This suggests the object is a black hole being fed either by material falling into it from the supernova or a binary companion. "If our interpretation is correct, this is the nearest example where the birth of a black hole has been observed," said Daniel Patnaude of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. who led the study. The scientists think SN 1979C, first discovered by an amateur astronomer in 1979, formed when a star about 20 times more massive than the Sun collapsed. Many new black holes in the distant universe previously have been detected in the form of gamma-ray bursts (GRBs). However, SN 1979C is different because it is much closer and belongs to a class of supernovas unlikely to be associated with a GRB. Theory predicts most black holes in the universe should form when the core of a star collapses and a GRB is not produced. "This may be the first time the common way of making a black hole has been observed," said co-author Abraham Loeb, also of the Harvard-Smithsonian Center for Astrophysics. "However, it is very difficult to detect this type of black hole birth because decades of X-ray observations are needed to make the case." The idea of a black hole with
New generalized nonspherical black hole solutions
Kleihaus, Burkhard; Radu, Eugen; Rodriguez, Maria J
2010-01-01
We present numerical evidence for the existence of several types of static black hole solutions with a nonspherical event horizon topology in $d\\geq 6$ spacetime dimensions. These asymptotically flat configurations are found for a specific metric ansatz and can be viewed as higher dimensional counterparts of the $d=5$ static black rings, dirings and black Saturn. Similar to that case, they are supported against collapse by conical singularities. The issue of rotating generalizations of these solutions is also considered.
1st Karl Schwarzschild Meeting on Gravitational Physics
Kaminski, Matthias; Mureika, Jonas; Bleicher, Marcus
2016-01-01
These proceedings collect the selected contributions of participants of the First Karl Schwarzschild Meeting on Gravitational Physics, held in Frankfurt, Germany to celebrate the 140th anniversary of Schwarzschild's birth. They are grouped into 4 main themes: I. The Life and Work of Karl Schwarzschild; II. Black Holes in Classical General Relativity, Numerical Relativity, Astrophysics, Cosmology, and Alternative Theories of Gravity; III. Black Holes in Quantum Gravity and String Theory; IV. Other Topics in Contemporary Gravitation. Inspired by the foundational principle ``By acknowledging the past, we open a route to the future", the week-long meeting, envisioned as a forum for exchange between scientists from all locations and levels of education, drew participants from 15 countries across 4 continents. In addition to plenary talks from leading researchers, a special focus on young talent was provided, a feature underlined by the Springer Prize for the best student and junior presentations.
New geometries for black hole horizons
Energy Technology Data Exchange (ETDEWEB)
Armas, Jay [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)
2015-07-10
We construct several classes of worldvolume effective actions for black holes by integrating out spatial sections of the worldvolume geometry of asymptotically flat black branes. This provides a generalisation of the blackfold approach for higher-dimensional black holes and yields a map between different effective theories, which we exploit by obtaining new hydrodynamic and elastic transport coefficients via simple integrations. Using Euclidean minimal surfaces in order to decouple the fluid dynamics on different sections of the worldvolume, we obtain local effective theories for ultraspinning Myers-Perry branes and helicoidal black branes, described in terms of a stress-energy tensor, particle currents and non-trivial boost vectors. We then study in detail and present novel compact and non-compact geometries for black hole horizons in higher-dimensional asymptotically flat space-time. These include doubly-spinning black rings, black helicoids and helicoidal p-branes as well as helicoidal black rings and helicoidal black tori in D≥6.
Bromley, Benjamin C.; Chen, Kaiyou; Miller, Warner A.
1997-01-01
Line emission from an accretion disk and a corotating hot spot about a rotating black hole are considered for possible signatures of the frame-dragging effect. We explicitly compare integrated line profiles from a geometrically thin disk about a Schwarzschild and an extreme Kerr black hole, and show that the line profile differences are small if the inner radius of the disk is near or above the Schwarzschild stable-orbit limit of radius 6GM/sq c. However, if the inner disk radius extends below this limit, as is Possible in the extreme Kerr spacetime, then differences can become significant, especially if the disk emissivity is stronger near the inner regions. We demonstrate that the first three moments of a line profile define a three-dimensional space in which the presence of material at small radii becomes quantitatively evident in broad classes of disk models. In the context of the simple, thin disk paradigm, this moment-mapping scheme suggests formally that the iron line detected by the Advanced Satellite,for Cosmology and Astrophysics mission from MCG --6-30-15 (Tanaka et al.) is approximately 3 times more likely to originate from a disk about a rotating black hole than from a Schwarzschild system. A statistically significant detection of black hole rotation in this way may be achieved after only modest improvements in the quality of data. We also consider light curves and frequency shifts in line emission as a function of time for corotating hot spots in extreme Kerr and Schwarzschild geometries. The frequency-shift profile is a valuable measure of orbital parameters and might possibly be used to detect frame dragging even at radii approaching 6GM/sq c if the inclination angle of the orbital plane is large. The light curve from a hot spot shows differences as well, although these too are pronounced only at large inclination angles.
Wiggly tails: a gravitational wave signature of massive fields around black holes
Degollado, Juan Carlos
2014-01-01
Massive fields can exist in long-lived configurations around black holes. We examine how the gravitational wave signal of a perturbed black hole is affected by such `dirtiness' within linear theory. As a concrete example, we consider the gravitational radiation emitted by the infall of a massive scalar field into a Schwarzschild black hole. Whereas part of the scalar field is absorbed/scattered by the black hole and triggers gravitational wave emission, another part lingers in long-lived quasi-bound states. Solving numerically the Teukolsky master equation for gravitational perturbations coupled to the massive Klein-Gordon equation, we find a characteristic gravitational wave signal, composed by a quasi-normal ringing followed by a late time tail. In contrast to `clean' black holes, however, the late time tail contains small amplitude wiggles with the frequency of the dominating quasi-bound state. Additionally, an observer dependent beating pattern may also be seen. These features were already observed in ful...
Extremely fast orbital decay of the black hole X-ray binary Nova Muscae 1991
González Hernández, J. I.; Suárez-Andrés, L.; Rebolo, R.; Casares, J.
2017-02-01
We present new medium-resolution spectroscopic observations of the black hole X-ray binary Nova Muscae 1991 taken with X-Shooter spectrograph installed at the 8.2-m VLT telescope. These observations allow us to measure the time of inferior conjunction of the secondary star with the black hole in this system that, together with previous measurements, yield an orbital period decay of dot{P}=-20.7± 12.7 ms yr-1 (-24.5 ± 15.1 μs per orbital cycle). This is significantly faster than those previously measured in the other black hole X-ray binaries A0620-00 and XTE J1118+480. No standard black hole X-ray binary evolutionary model is able to explain this extremely fast orbital decay. At this rate, the secondary star would reach the event horizon (as given by the Schwarzschild radius of about 32 km) in roughly 2.7 Myr. This result has dramatic implications on the evolution and lifetime of black hole X-ray binaries.
Real-Time Simulator of Black Hole Optics
Bakala, Pavel; Sramkova, Eva; Torok, Gabriel; Goluchova, Katerina
Our electronic poster presents complex hardware and software simulator of an optical projection for an observer in strong gravitational field of axially symmetric rotating black holes described by the Kerr metric, spherically symmetric Schwarzschild black holes and compact neutron or quark stars. The real-time simulation was created by the application of advanced numerical methods for the integration of zero geodesics and massive parallel computing. The simulation software scans the surroundings and transforms them into a form of an optical projection in the local reference frame of the observers who are inside and outside the ergosphere, above and below the circular photon orbit and in the close vicinity of the black hole’s horizon or at the surface of a neutron star. The simulation contains all the characteristic effects of relativistic optics: multiple direct and indirect pictures, the gravitational and Doppler frequency shift, and the amplification of the intensity of the observed emission. The hardware part of the simulator uses two large TV monitors, four cameras for scanning the surroundings and two powerful laptops. This hardware configuration allows to process the whole surroundings around full 360 degrees and to model their relativistic optical projection in real time. The interactive computer simulation explicitly demonstrates the significant difference between the optics in the strong gravitational field background and the optics we know from our daily life. The properties of the latter, being seemingly obvious, have determined our perception, intuition and imagination from time immemorial. The simulator therefore provides the chance of an intuitive insight into the properties of the curved spacetimes in the vicinity of compact objects to the general public without specific knowledge of mathematical and physical background.
A New Cosmological Model: Black Hole Universe
Directory of Open Access Journals (Sweden)
Zhang T. X.
2009-07-01
Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe
Jets, black holes and disks in blazars
Directory of Open Access Journals (Sweden)
Ghisellini Gabriele
2013-12-01
Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.
Black Hole Accretion in Gamma Ray Bursts
Directory of Open Access Journals (Sweden)
Agnieszka Janiuk
2017-02-01
Full Text Available We study the structure and evolution of the hyperaccreting disks and outflows in the gamma ray bursts central engines. The torus around a stellar mass black hole is composed of free nucleons, Helium, electron-positron pairs, and is cooled by neutrino emission. Accretion of matter powers the relativistic jets, responsible for the gamma ray prompt emission. The significant number density of neutrons in the disk and outflowing material will cause subsequent formation of heavier nuclei. We study the process of nucleosynthesis and its possible observational consequences. We also apply our scenario to the recent observation of the gravitational wave signal, detected on 14 September 2015 by the two Advanced LIGO detectors, and related to an inspiral and merger of a binary black hole system. A gamma ray burst that could possibly be related with the GW150914 event was observed by the Fermi satellite. It had a duration of about 1 s and appeared about 0.4 s after the gravitational-wave signal. We propose that a collapsing massive star and a black hole in a close binary could lead to the event. The gamma ray burst was powered by a weak neutrino flux produced in the star remnant’s matter. Low spin and kick velocity of the merged black hole are reproduced in our simulations. Coincident gravitational-wave emission originates from the merger of the collapsed core and the companion black hole.
The Geometry of Black Hole Singularities
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2014-01-01
Full Text Available Recent results show that important singularities in General Relativity can be naturally described in terms of finite and invariant canonical geometric objects. Consequently, one can write field equations which are equivalent to Einstein's at nonsingular points but, in addition remain well-defined and smooth at singularities. The black hole singularities appear to be less undesirable than it was thought, especially after we remove the part of the singularity due to the coordinate system. Black hole singularities are then compatible with global hyperbolicity and do not make the evolution equations break down, when these are expressed in terms of the appropriate variables. The charged black holes turn out to have smooth potential and electromagnetic fields in the new atlas. Classical charged particles can be modeled, in General Relativity, as charged black hole solutions. Since black hole singularities are accompanied by dimensional reduction, this should affect Feynman's path integrals. Therefore, it is expected that singularities induce dimensional reduction effects in Quantum Gravity. These dimensional reduction effects are very similar to those postulated in some approaches to make Quantum Gravity perturbatively renormalizable. This may provide a way to test indirectly the effects of singularities, otherwise inaccessible.
Black holes in the early Universe.
Volonteri, Marta; Bellovary, Jillian
2012-12-01
The existence of massive black holes (MBHs) was postulated in the 1960s, when the first quasars were discovered. In the late 1990s their reality was proven beyond doubt in the Milky way and a handful nearby galaxies. Since then, enormous theoretical and observational efforts have been made to understand the astrophysics of MBHs. We have discovered that some of the most massive black holes known, weighing billions of solar masses, powered luminous quasars within the first billion years of the Universe. The first MBHs must therefore have formed around the time the first stars and galaxies formed. Dynamical evidence also indicates that black holes with masses of millions to billions of solar masses ordinarily dwell in the centers of today's galaxies. MBHs populate galaxy centers today, and shone as quasars in the past; the quiescent black holes that we detect now in nearby bulges are the dormant remnants of this fiery past. In this review we report on basic, but critical, questions regarding the cosmological significance of MBHs. What physical mechanisms led to the formation of the first MBHs? How massive were the initial MBH seeds? When and where did they form? How is the growth of black holes linked to that of their host galaxy? The answers to most of these questions are works in progress, in the spirit of these reports on progress in physics.
Resonance spectra of caged black holes
Energy Technology Data Exchange (ETDEWEB)
Hod, Shahar [The Ruppin Academic Center, Emeq Hefer (Israel); The Hadassah Institute, Jerusalem (Israel)
2014-11-15
Recent numerical studies of the coupled Einstein-Klein-Gordon system in a cavity have provided compelling evidence that confined scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner-Nordstroem black holes whose confining mirrors are placed in the near-horizon region x{sub m} ≡ (r{sub m} - r{sub +})/r{sub +} << τ ≡ (r{sub +} - r{sub -})/r{sub +} (here r{sub m} is the radius of the confining mirror and r{sub ±} are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled blackhole- field-cage system: ω{sub n} = -2πT{sub BH}.n [1 + O(x{sub m}{sup n}/τ{sup n})], where T{sub BH} is the temperature of the caged black hole and n = 1, 2, 3,.. is the resonance parameter. (orig.)
Asymmetric interiors for small black holes
Energy Technology Data Exchange (ETDEWEB)
Kabat, Daniel [Department of Physics and Astronomy, Lehman College,City University of New York, Bronx NY 10468 (United States); Lifschytz, Gilad [Department of Mathematics, Faculty of Natural Science,University of Haifa, Haifa 31905 (Israel)
2016-08-16
We develop the representation of infalling observers and bulk fields in the CFT as a way to understand the black hole interior in AdS. We first discuss properties of CFT states which are dual to black holes. We then show that in the presence of a Killing horizon bulk fields can be decomposed into pieces we call ingoing and outgoing. The ingoing field admits a simple operator representation in the CFT, even inside a small black hole at late times, which leads to a simple CFT description of infalling geodesics. This means classical infalling observers will experience the classical geometry in the interior. The outgoing piece of the field is more subtle. In an eternal two-sided geometry it can be represented as an operator on the left CFT. In a stable one-sided geometry it can be described using entanglement via the PR construction. But in an evaporating black hole trans-horizon entanglement breaks down at the Page time, which means that for old black holes the PR construction fails and the outgoing field does not see local geometry. This picture of the interior allows the CFT to reconcile unitary Hawking evaporation with the classical experience of infalling observers.
Stationary black holes with stringy hair
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Black Hole Hunters Set New Distance Record
2010-01-01
Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance
Garofalo, David
2017-07-01
The idea that black hole spin is instrumental in the generation of powerful jets in active galactic nuclei and X-ray binaries is arguably the most contentious claim in black hole astrophysics. Because jets are thought to originate in the context of electromagnetism, and the modeling of Maxwell fields in curved spacetime around black holes is challenging, various approximations are made in numerical simulations that fall under the guise of `ideal magnetohydrodynamics'. But the simplifications of this framework may struggle to capture relevant details of real astrophysical environments near black holes. In this work, we highlight tension between analytic and numerical results, specifically between the analytically derived conserved Noether currents for rotating black hole spacetimes and the results of general relativistic numerical simulations (GRMHD). While we cannot definitively attribute the issue to any specific approximation used in the numerical schemes, there seem to be natural candidates, which we explore. GRMHD notwithstanding, if electromagnetic fields around rotating black holes are brought to the hole by accretion, we show from first principles that prograde accreting disks likely experience weaker large-scale black hole-threading fields, implying weaker jets than in retrograde configurations.
Ricci cubic gravity in d dimensions, gravitons and SAdS/Lifshitz black holes
Energy Technology Data Exchange (ETDEWEB)
Ghodsi, Ahmad; Najafi, Farzaneh [Ferdowsi University of Mashhad, Department of Physics, Mashhad (Iran, Islamic Republic of)
2017-08-15
A special class of higher curvature theories of gravity, Ricci cubic gravity (RCG), in general d dimensional space-time has been investigated in this paper. We have used two different approaches, the linearized equations of motion and the auxiliary field formalism to study the massive and massless graviton propagating modes of the AdS background. Using the auxiliary field formalism, we have found the renormalized boundary stress tensor to compute the mass of the Schwarzschild-AdS and Lifshitz black holes in RCG theory. (orig.)
Regular Magnetic Black Hole Gravitational Lensing
Liang, Jun
2017-05-01
The Bronnikov regular magnetic black hole as a gravitational lens is studied. In nonlinear electrodynamics, photons do not follow null geodesics of background geometry, but move along null geodesics of a corresponding effective geometry. To study the Bronnikov regular magnetic black hole gravitational lensing in the strong deflection limit, the corresponding effective geometry should be obtained firstly. This is the most important and key step. We obtain the deflection angle in the strong deflection limit, and further calculate the angular positions and magnifications of relativistic images as well as the time delay between different relativistic images. The influence of the magnetic charge on the black hole gravitational lensing is also discussed. Supported by the Natural Science Foundation of Education Department of Shannxi Province under Grant No 15JK1077, and the Doctorial Scientific Research Starting Fund of Shannxi University of Science and Technology under Grant No BJ12-02.
Fundamental Dynamics of Black Hole Physics
Haramein, Nassim
2002-04-01
The dynamics of rotating, charged black holes, obeying the Kerr-Newman metric is presented. These dynamical high-density, gravitationally collapsing, black hole systems for stellar, galactic, intergalactic and cosmogenesis appear to obey similar constraints on their mass, apparent density and radius. Under these extreme conditions, the gravitational force becomes "balanced" with the larger coupling constant of the electromagnetic force. Thus, the gravitational attraction forms dynamic pseudo equilibrium with the plasma dynamics surrounding the black holes. Thermodynamic-type processes occupy a role in energy transfer between gravitational attraction and electro-dynamic repulsion. Solving the modified Einstein-Maxwell's equations under high magnetic field conditions, with additional thermodynamic conditions, leads to a good description of the processes occurring externally, near and in the event horizons of the Kerr-Newman geometry and leads to a unification possibility. Reference; N. Haramein, Bull. Amer. Phys. Soc. AB06, 1154(2001)
Electron-positron outflow from black holes.
van Putten, M H
2000-04-24
Cosmological gamma-ray bursts (GRBs) appear as the brightest transient phenomena in the Universe. The nature of their central engine is a missing link in the theory of fireballs to stellar mass progenitors, and may be associated with low mass black holes. In contact with an external magnetic field B, black hole spin produces a gravitational potential on the wave function of charged particles. We show that a rapidly rotating black hole of mass M produces outflow from initially electrostatic equilibrium with normalized isotropic emission approximately 10(48)(B/B(c))(2)(M/7M)(2)sin (2) theta erg/s, where B(c) = 4.4x10(13) G. The half-opening angle satisfies theta >or = square root[B(c)/3B]. The outflow proposed as input to GRB fireball models.
Thermodynamics of regular accelerating black holes
Astorino, Marco
2017-03-01
Using the covariant phase space formalism, we compute the conserved charges for a solution, describing an accelerating and electrically charged Reissner-Nordstrom black hole. The metric is regular provided that the acceleration is driven by an external electric field, in spite of the usual string of the standard C-metric. The Smarr formula and the first law of black hole thermodynamics are fulfilled. The resulting mass has the same form of the Christodoulou-Ruffini irreducible mass. On the basis of these results, we can extrapolate the mass and thermodynamics of the rotating C-metric, which describes a Kerr-Newman-(A)dS black hole accelerated by a pulling string.
Black holes thermodynamics, information, and firewalls
Mann, Robert B
2015-01-01
This book reflects the resurgence of interest in the quantum properties of black holes, culminating most recently in controversial discussions about firewalls. On the thermodynamic side, it describes how new developments allowed the inclusion of pressure/volume terms in the first law, leading to a new understanding of black holes as chemical systems, experiencing novel phenomena such as triple points and reentrant phase transitions. On the quantum-information side, the reader learns how basic arguments undergirding quantum complementarity have been shown to be flawed; and how this suggests that a black hole may surround itself with a firewall: a violent and chaotic region of highly excited states. In this thorough and pedagogical treatment, Robert Mann traces these new developments from their roots to our present-day understanding, highlighting their relationships and the challenges they present for quantum gravity.
Black hole chromosphere at the CERN LHC
Anchordoqui, L A; Anchordoqui, Luis; Goldberg, Haim
2003-01-01
If the scale of quantum gravity is near a TeV, black holes will be copiously produced at the LHC. In this work we study the main properties of the light descendants of these black holes. We show that the emitted partons are closely spaced outside the horizon, and hence they do not fragment into hadrons in vacuum but more likely in a kind of quark-gluon plasma. Consequently, the thermal emission occurs far from the horizon, at a temperature characteristic of the QCD scale. We analyze the energy spectrum of the particles emerging from the "chromosphere", and find that the hard hadronic jets are completely suppressed. They are replaced by an isotropic distribution of soft photons and hadrons, with hundreds of particles in the GeV range. This provides a new distinctive signature for black hole events at LHC.
The RIT binary black hole simulations catalog
Healy, James; Lousto, Carlos O.; Zlochower, Yosef; Campanelli, Manuela
2017-11-01
The RIT numerical relativity group is releasing a public catalog of black-hole-binary waveforms. The initial release of the catalog consists of 126 recent simulations that include precessing and nonprecessing systems with mass ratios q=m_1/m2 in the range 1/6≤slant q≤slant1 . The catalog contains information about the initial data of the simulation, the waveforms extrapolated to infinity, as well as information about the peak luminosity and final remnant black hole properties. These waveforms can be used to independently interpret gravitational wave signals from laser interferometric detectors and the remnant properties to model the merger of black-hole binaries from initial configurations.
Cosmological and black hole apparent horizons
Faraoni, Valerio
2015-01-01
This book overviews the extensive literature on apparent cosmological and black hole horizons. In theoretical gravity, dynamical situations such as gravitational collapse, black hole evaporation, and black holes interacting with non-trivial environments, as well as the attempts to model gravitational waves occurring in highly dynamical astrophysical processes, require that the concept of event horizon be generalized. Inequivalent notions of horizon abound in the technical literature and are discussed in this manuscript. The book begins with a quick review of basic material in the first one and a half chapters, establishing a unified notation. Chapter 2 reminds the reader of the basic tools used in the analysis of horizons and reviews the various definitions of horizons appearing in the literature. Cosmological horizons are the playground in which one should take baby steps in understanding horizon physics. Chapter 3 analyzes cosmological horizons, their proposed thermodynamics, and several coordinate systems....
Thermodynamics of higher dimensional black holes
Energy Technology Data Exchange (ETDEWEB)
Accetta, F.S.; Gleiser, M.
1986-05-01
We discuss the thermodynamics of higher dimensional black holes with particular emphasis on a new class of spinning black holes which, due to the increased number of Casimir invariants, have additional spin degrees of freedom. In suitable limits, analytic solutions in arbitrary dimensions are presented for their temperature, entropy, and specific heat. In 5 + 1 and 9 + 1 dimensions, more general forms for these quantities are given. It is shown that the specific heat for a higher dimensional black hole is negative definite if it has only one non-zero spin parameter, regardless of the value of this parameter. We also consider equilibrium configurations with both massless particles and massive string modes. 16 refs., 3 figs.
Massive Black Hole Implicated in Stellar Destruction
2010-01-01
New results from NASA's Chandra X-ray Observatory and the Magellan telescopes suggest that a dense stellar remnant has been ripped apart by a black hole a thousand times as massive as the Sun. If confirmed, this discovery would be a cosmic double play: it would be strong evidence for an intermediate mass black hole, which has been a hotly debated topic, and would mark the first time such a black hole has been caught tearing a star apart. This scenario is based on Chandra observations, which revealed an unusually luminous source of X-rays in a dense cluster of old stars, and optical observations that showed a peculiar mix of elements associated with the X-ray emission. Taken together, a case can be made that the X-ray emission is produced by debris from a disrupted white dwarf star that is heated as it falls towards a massive black hole. The optical emission comes from debris further out that is illuminated by these X-rays. The intensity of the X-ray emission places the source in the "ultraluminous X-ray source" or ULX category, meaning that it is more luminous than any known stellar X-ray source, but less luminous than the bright X-ray sources (active galactic nuclei) associated with supermassive black holes in the nuclei of galaxies. The nature of ULXs is a mystery, but one suggestion is that some ULXs are black holes with masses between about a hundred and several thousand times that of the Sun, a range intermediate between stellar-mass black holes and supermassive black holes located in the nuclei of galaxies. This ULX is in a globular cluster, a very old and crowded conglomeration of stars. Astronomers have suspected that globular clusters could contain intermediate-mass black holes, but conclusive evidence for this has been elusive. "Astronomers have made cases for stars being torn apart by supermassive black holes in the centers of galaxies before, but this is the first good evidence for such an event in a globular cluster," said Jimmy Irwin of the University
Simulations of jets driven by black hole rotation.
Semenov, Vladimir; Dyadechkin, Sergey; Punsly, Brian
2004-08-13
The origin of jets emitted from black holes is not well understood; however, there are two possible energy sources: the accretion disk or the rotating black hole. Magnetohydrodynamic simulations show a well-defined jet that extracts energy from a black hole. If plasma near the black hole is threaded by large-scale magnetic flux, it will rotate with respect to asymptotic infinity, creating large magnetic stresses. These stresses are released as a relativistic jet at the expense of black hole rotational energy. The physics of the jet initiation in the simulations is described by the theory of black hole gravitohydromagnetics.
ENRICHED BLACK HOLE ALGORITHM FOR DIMINUTION OF REAL POWER LOSS
Dr.K.Lenin
2017-01-01
This paper presents an Enriched Black Hole (EBH) algorithm for solving reactive power flow problem. The Black Hole Algorithm starts with a preliminary population of contestant and for all iteration of the black hole algorithm, the most excellent candidate is favored to be the black hole, which followed by pulling further candidates around it, called stars. If a star move very close to the black hole, it will be consumed by the black hole and is vanished undyingly. In such a case, a new star...
Accreting fluids onto regular black holes via Hamiltonian approach
Energy Technology Data Exchange (ETDEWEB)
Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Shahzad, M.U. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan)
2017-08-15
We investigate the accretion of test fluids onto regular black holes such as Kehagias-Sfetsos black holes and regular black holes with Dagum distribution function. We analyze the accretion process when different test fluids are falling onto these regular black holes. The accreting fluid is being classified through the equation of state according to the features of regular black holes. The behavior of fluid flow and the existence of sonic points is being checked for these regular black holes. It is noted that the three-velocity depends on critical points and the equation of state parameter on phase space. (orig.)
The theory of optical black hole lasers
Energy Technology Data Exchange (ETDEWEB)
Gaona-Reyes, José L., E-mail: jgaona@fis.cinvestav.mx; Bermudez, David, E-mail: dbermudez@fis.cinvestav.mx
2017-05-15
The event horizon of black holes and white holes can be achieved in the context of analogue gravity. It was proven for a sonic case that if these two horizons are close to each other their dynamics resemble a laser, a black hole laser, where the analogue of Hawking radiation is trapped and amplified. Optical analogues are also very successful and a similar system can be achieved there. In this work we develop the theory of optical black hole lasers and prove that the amplification is also possible. Then, we study the optical system by determining the forward propagation of modes, obtaining an approximation for the phase difference which governs the amplification, and performing numerical simulations of the pulse propagation of our system. - Highlights: • We develop the conditions to obtain the kinematics of the optical black hole laser. • We prove the amplification of Hawking radiation for the optical case. • We derive the forward propagation of modes and check the result of the backward case. • A model is proposed to calculate the phase difference and the amplification rate. • We perform numerical simulations of a pulse between two solitons forming a cavity.
Black Hole Astrophysics The Engine Paradigm
Meier, David L
2012-01-01
As a result of significant research over the past 20 years, black holes are now linked to some of the most spectacular and exciting phenomena in the Universe, ranging in size from those that have the same mass as stars to the super-massive objects that lie at the heart of most galaxies, including our own Milky Way. This book first introduces the properties of simple isolated holes, then adds in complications like rotation, accretion, radiation, and magnetic fields, finally arriving at a basic understanding of how these immense engines work. Black Hole Astrophysics • reviews our current knowledge of cosmic black holes and how they generate the most powerful observed pheonomena in the Universe; • highlights the latest, most up-to-date theories and discoveries in this very active area of astrophysical research; • demonstrates why we believe that black holes are responsible for important phenomena such as quasars, microquasars and gammaray bursts; • explains to the reader the nature of the violent and spe...
Tidal forces in Kiselev black hole
Energy Technology Data Exchange (ETDEWEB)
Shahzad, M.U. [University of Central Punjab, CAMS, UCP Business School, Lahore (Pakistan); Jawad, Abdul [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2017-06-15
The aim of this paper is to examine the tidal forces occurring in a Kiselev black hole surrounded by radiation and dust fluids. It is noted that the radial and angular components of the tidal force change the sign between event and Cauchy horizons. We solve the geodesic deviation equation for radially free-falling bodies toward Kiselev black holes. We explain the geodesic deviation vector graphically and point out the location of the event and Cauchy horizons for specific values of the radiation and dust parameters. (orig.)
Dynamics of Black Holes in Rotating Cores
Fiestas, Jose A.; Spurzem, Rainer
2010-05-01
We study the dynamical interaction between stars surrounding black holes in self-gravitating galaxy cores by using realistic N-body techniques, calibrated by Fokker-Planck approximated models (Fiestas, Spurzem, & Kim 2006). We study the evolution over the relaxation time (collisional nuclei) of non-spherical (triaxial) models as flattening of the system due to rotation is allowed. We follow the interplay between velocity diffusion due to relaxation and black hole star accretion and study accretion rates and cusp formation in spherically symmetric and axisymmetric models.
Constructing black hole entropy from gravitational collapse
Acquaviva, Giovanni; Goswami, Rituparno; Hamid, Aymen I M
2016-01-01
Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1+1+2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole endstate to the variation of the vacuum gravitational entropy outside the collapsing body.
Constructing black hole entropy from gravitational collapse
Acquaviva, Giovanni; Goswami, Rituparno; Hamid, Aymen I M
2014-01-01
Based on a recent proposal for the gravitational entropy of free gravitational fields, we investigate the thermodynamic properties of black hole formation through gravitational collapse in the framework of the semitetrad 1+1+2 covariant formalism. In the simplest case of an Oppenheimer-Snyder-Datt collapse we prove that the change in gravitational entropy outside a collapsing body is related to the variation of the surface area of the body itself, even before the formation of horizons. As a result, we are able to relate the Bekenstein-Hawking entropy of the black hole endstate to the variation of the vacuum gravitational entropy outside the collapsing body.
Gowdy Cosmological Models from Stringy Black Holes
Cisneros-Perez, Tzihue; Herrera-Aguilar, Alfredo; Mejia-Ambriz, Julio Cesar; Rojas-Macias, Violeta
2006-01-01
In the framework of 4D Einstein-Maxwell Dilaton-Axion theory we show how to obtain a family of both unpolarized and polarized S^1XS^2 Gowdy cosmological models endowed with nontrivial axion, dilaton and electromagnetic fields from a solitonic rotating black hole-type solution by interchanging the r and t coordinates in the region located between the horizons of the black hole configuration. We also get a family of Kantowski-Sachs cosmologies with topology R^1XS^2 from the polarized Gowdy cosm...
Phases of Kaluza-Klein black holes
DEFF Research Database (Denmark)
Elvang, Henriette; Obers, Niels; Harmark, Troels
2004-01-01
We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon and with asymptotics Md × S1, Md being d-dimensional Minkowski space.......We review the latest progress in understanding the phase structure of static and neutral Kaluza-Klein black holes, i.e. static and neutral solutions of pure gravity with an event horizon and with asymptotics Md × S1, Md being d-dimensional Minkowski space....
Local Operators in the Eternal Black Hole.
Papadodimas, Kyriakos; Raju, Suvrat
2015-11-20
In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.
Local Operators in the Eternal Black Hole
Papadodimas, Kyriakos
2015-01-01
We show that, in the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.