WorldWideScience

Sample records for schumann resonances preparations

  1. Magnetic elliptical polarization of Schumann resonances

    International Nuclear Information System (INIS)

    Sentman, D.D.

    1987-01-01

    Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references

  2. Schumann Resonances and Their Potential Applications: a Review Article

    Directory of Open Access Journals (Sweden)

    Amal Fathi Alrais

    2017-12-01

    Full Text Available Introduction: Schumann resonances is an important topic gains great interest in research areas which has extensive use of Schumann resonances in a variety of desplines such as biological evolutionary processes, the optimal functioning of the human brain waves and lightning-related studies. Materials and Methods: This dictates the major emphasis on economic, environmental, and engineering applications and hazard assessments in the form of earthquake and volcano monitoring. Results: This review is aimed at the reader generally unfamiliar with the Schumann Resonances. It is our hope that this review will increase the interest in SR among researchers previously unfamiliar with this phenomenon. Discussion and Conclusions: In this review paper, a brief introduction about Schumann resonances is presented. A general description of Earth’s ionosphere is outlined. The electromagnetic waves spectrum from lightning is discussed. The history of Schumann resonances is briefly presented. The connection of man with nature through Schumann resonances is introduced. Present Schumann resonances researches are briefly outlined. Schumann (global electromagnetic resonances in the cavity Earth – ionosphere play a critical role in all biological evolutionary processes. However, there is a great need for independent research into the bio-compatibility between natural and manmade signals. Serious attention must now be paid to the possible biological role of standing waves in the atmosphere. Being a global phenomenon, Schumann resonances have numerous applications in lightning research.

  3. Investigations of Relatively Easy To Construct Antennas With Efficiency in Receiving Schumann Resonances: Preparations for a Miniaturized Reconfigurable ELF Receiver

    Science.gov (United States)

    Farmer, Brian W.; Hannan, Robert C.

    2003-01-01

    Relatively little is known about the cavity between the Earth and the ionosphere, which opens opportunities for technological advances and unique ideas. One effective means to study this cavity is with extremely low frequency (ELF) antennas. Possible applications of these antennas are global weather prediction, earthquake prediction, planetary exploration, communication, wireless transmission of power, or even a free energy source. The superconducting quantum interference device SQUID) and the coil antenna are the two most acceptable receivers discovered for picking up ELF magnetic fields. Both antennas have the potential for size reduction, allowing them to be portable enough for access to space and even for personal ware. With improvements of these antennas and signal processing, insightful analysis of Schumann resonance (SR) can give the science community a band of radio frequency (RF) signals for improving life here on Earth and exploring beyond.

  4. Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances

    Science.gov (United States)

    Williams, E. R.; Yu, H.

    2014-12-01

    Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.

  5. Universal and local time components in Schumann resonance intensity

    Directory of Open Access Journals (Sweden)

    A. P. Nickolaenko

    2008-05-01

    Full Text Available We extend the technique suggested by Sentman and Fraser (1991 and discussed by Pechony and Price (2006, the technique for separating the local and universal time variations in the Schumann resonance intensity. Initially, we simulate the resonance oscillations in a uniform Earth-ionosphere cavity with the distribution of lightning strokes based on the OTD satellite data. Different field components were used in the Dayside source model for the Moshiri (Japan, geographic coordinates: 44.365° N, 142.24° E and Lehta (Karelia, Russia, 64.427° N, 33.974° E observatories. We use the extended Fourier series for obtaining the modulating functions. Simulations show that the algorithm evaluates the impact of the source proximity in the resonance intensity. Our major goal was in estimating the universal alteration factors, which reflect changes in the global thunderstorm activity. It was achieved by compensating the local factors present in the initial data. The technique is introduced with the model Schumann resonance data and afterwards we use the long-term experimental records at the above sites for obtaining the diurnal/monthly variations of the global thunderstorms.

  6. Characteristics of Schumann Resonance Parameters at Kuju Station

    Directory of Open Access Journals (Sweden)

    Ikeda Akihiro

    2017-01-01

    Full Text Available The ground magnetic field variation in the extremely low frequency (ELF range has been measured by an induction magnetometer at Kuju, Japan (KUJ; M.Lat. = 23.4 degrees, M. Lon. = 201.0 degrees since 2003. The first mode of the Schumann resonance (SR around 8 Hz can be seen at KUJ. The SR in H (horizontal northward component shows maximum peaks around 08 UT and 15 UT. In the case of D (horizontal eastward component, the SR shows its maximum peak around 08 UT. These peaks are coincident with the enhancement of lightning activity in Africa and Asia. Thus, we found the influence of the lightning activity on the observed SR at KUJ.

  7. Artificial excitation of ELF waves with frequency of Schumann resonance

    Science.gov (United States)

    Streltsov, A. V.; Guido, T.; Tulegenov, B.; Labenski, J.; Chang, C.-L.

    2014-11-01

    We report results from the experiment aimed at the artificial excitation of extremely low-frequency (ELF) electromagnetic waves with frequencies corresponding to the frequency of Schumann resonance. Electromagnetic waves with these frequencies can form a standing pattern inside the spherical cavity formed by the surface of the Earth and the ionosphere. In the experiment the ELF waves were excited by heating the ionosphere with X-mode HF electromagnetic waves generated at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska. The experiment demonstrates that heating of the ionosphere can excite relatively large-amplitude electromagnetic waves with frequencies in the range 7.8-8.0 Hz when the ionosphere has a strong F layer, the frequency of the HF radiation is in the range 3.20-4.57 MHz, and the electric field greater than 5 mV/m is present in the ionosphere.

  8. Evidence on a link between the intensity of Schumann resonance and global surface temperature

    Directory of Open Access Journals (Sweden)

    M. Sekiguchi

    2006-08-01

    Full Text Available A correlation is investigated between the intensity of the global electromagnetic oscillations (Schumann resonance with the planetary surface temperature. The electromagnetic signal was monitored at Moshiri (Japan, and temperature data were taken from surface meteorological observations. The series covers the period from November 1998 to May 2002. The Schumann resonance intensity is found to vary coherently with the global ground temperature in the latitude interval from 45° S to 45° N: the relevant cross-correlation coefficient reaches the value of 0.9. It slightly increases when the high-latitude temperature is incorporated. Correspondence among the data decreases when we reduce the latitude interval, which indicates the important role of the middle-latitude lightning in the Schumann resonance oscillations. We apply the principal component (or singular spectral analysis to the electromagnetic and temperature records to extract annual, semiannual, and interannual variations. The principal component analysis (PCA clarifies the links between electromagnetic records and meteorological data.

  9. Analytic Theory of Titans Schumann Resonance: Constraints on Ionospheric Conductivity and Buried Water Ocean

    Science.gov (United States)

    Beghin, Christian; Randriamboarison, Orelien; Hamelin, Michel; Karkoschka, Erich; Sotin, Christophe; Whitten, Robert C.; Berthelier, Jean-Jacques; Grard, Rejean; Simoes, Fernando

    2013-01-01

    This study presents an approximate model for the atypical Schumann resonance in Titan's atmosphere that accounts for the observations of electromagnetic waves and the measurements of atmospheric conductivity performed with the Huygens Atmospheric Structure and Permittivity, Wave and Altimetry (HASI-PWA) instrumentation during the descent of the Huygens Probe through Titan's atmosphere in January 2005. After many years of thorough analyses of the collected data, several arguments enable us to claim that the Extremely Low Frequency (ELF) wave observed at around 36 Hz displays all the characteristics of the second harmonic of a Schumann resonance. On Earth, this phenomenon is well known to be triggered by lightning activity. Given the lack of evidence of any thunderstorm activity on Titan, we proposed in early works a model based on an alternative powering mechanism involving the electric current sheets induced in Titan's ionosphere by the Saturn's magnetospheric plasma flow. The present study is a further step in improving the initial model and corroborating our preliminary assessments. We first develop an analytic theory of the guided modes that appear to be the most suitable for sustaining Schumann resonances in Titan's atmosphere. We then introduce the characteristics of the Huygens electric field measurements in the equations, in order to constrain the physical parameters of the resonating cavity. The latter is assumed to be made of different structures distributed between an upper boundary, presumably made of a succession of thin ionized layers of stratospheric aerosols spread up to 150 km and a lower quasi-perfect conductive surface hidden beneath the non-conductive ground. The inner reflecting boundary is proposed to be a buried water-ammonia ocean lying at a likely depth of 55-80 km below a dielectric icy crust. Such estimate is found to comply with models suggesting that the internal heat could be transferred upwards by thermal conduction of the crust, while

  10. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2005-06-01

    Full Text Available The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the Schumann resonance, possibly associated with two large land earthquakes (one is the Chi-chi earthquake and another one on 2 November 1999 (Chia-yi earthquake with a magnitude again greater than 6.0. Conspicuous effects are observed for the larger Chi-chi earthquake, so that we summarize the characteristics for this event. The anomaly is characterized mainly by the unusual increase in amplitude of the fourth Schumann resonance mode and a significant frequency shift of its peak frequency (~1.0Hz from the conventional value on the By magnetic field component which is sensitive to the waves propagating in the NS meridian plane. Anomalous Schumann resonance signals appeared from about one week to a few days before the main shock. Secondly, the goniometric estimation of the arrival angle of the anomalous signal is found to coincide with the Taiwan azimuth (the unresolved dual direction indicates toward South America. Also, the pulsed signals, such as the Q-bursts, were simultaneously observed with the "carrier" frequency around the peak frequency of the fourth Schumann resonance mode. The anomaly for the second event for the Chia-yi earthquake on 2 November had much in common. But, most likely due to a small magnitude, the anomaly appears one day before and lasts until one day after the main shock, with the enhancement at the fourth Schumann resonance mode being smaller in amplitude than the case of the Chi-chi earthquake. Yet, the other characteristics, including the goniometric direction finding result, frequency shift, etc., are nearly the same. Although the emphasis of the present study is

  11. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2005-06-01

    Full Text Available The Schumann resonance phenomenon has been monitored at Nakatsugawa (near Nagoya in Japan since the beginning of 1999, and due to the occurance of a severe earthquake (so-called Chi-chi earthquake on 21 September 1999 in Taiwan we have examined our Schumann resonance data at Nakatsugawa during the entire year of 1999. We have found a very anomalous effect in the Schumann resonance, possibly associated with two large land earthquakes (one is the Chi-chi earthquake and another one on 2 November 1999 (Chia-yi earthquake with a magnitude again greater than 6.0. Conspicuous effects are observed for the larger Chi-chi earthquake, so that we summarize the characteristics for this event. The anomaly is characterized mainly by the unusual increase in amplitude of the fourth Schumann resonance mode and a significant frequency shift of its peak frequency (~1.0Hz from the conventional value on the By magnetic field component which is sensitive to the waves propagating in the NS meridian plane. Anomalous Schumann resonance signals appeared from about one week to a few days before the main shock. Secondly, the goniometric estimation of the arrival angle of the anomalous signal is found to coincide with the Taiwan azimuth (the unresolved dual direction indicates toward South America. Also, the pulsed signals, such as the Q-bursts, were simultaneously observed with the "carrier" frequency around the peak frequency of the fourth Schumann resonance mode. The anomaly for the second event for the Chia-yi earthquake on 2 November had much in common. But, most likely due to a small magnitude, the anomaly appears one day before and lasts until one day after the main shock, with the enhancement at the fourth Schumann resonance mode being smaller in amplitude than the case of the Chi-chi earthquake. Yet, the other characteristics, including the goniometric direction finding result, frequency shift, etc., are nearly the same. Although the emphasis of

  12. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  13. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS—IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    International Nuclear Information System (INIS)

    Simões, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Hamelin, Michel; Berthelier, Jean-Jacques; Béghin, Christian; Lebreton, Jean-Pierre; Grard, Rejean; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  14. Aliasing of the Schumann resonance background signal by sprite-associated Q-bursts

    Science.gov (United States)

    Guha, Anirban; Williams, Earle; Boldi, Robert; Sátori, Gabriella; Nagy, Tamás; Bór, József; Montanyà, Joan; Ortega, Pascal

    2017-12-01

    The Earth's naturally occurring Schumann resonances (SR) are composed of a quasi-continuous background component and a larger-amplitude, short-duration transient component, otherwise called 'Q-burst' (Ogawa et al., 1967). Sprites in the mesosphere are also known to accompany the energetic positive ground flashes that launch the Q-bursts (Boccippio et al., 1995). Spectra of the background Schumann Resonances (SR) require a natural stabilization period of ∼10-12 min for the three conspicuous modal parameters to be derived from Lorentzian fitting. Before the spectra are computed and the fitting process is initiated, the raw time series data need to be properly filtered for local cultural noise, narrow band interference as well as for large transients in the form of global Q-bursts. Mushtak and Williams (2009) describe an effective technique called Isolated Lorentzian (I-LOR), in which, the contributions from local cultural and various other noises are minimized to a great extent. An automated technique based on median filtering of time series data has been developed. These special lightning flashes are known to have greater contribution in the ELF range (below 1 kHz) compared to general negative CG strikes (Huang et al., 1999; Cummer et al., 2006). The global distributions of these Q-bursts have been studied by Huang et al. (1999) Rhode Island, USA by wave impedance methods from single station ELF measurements at Rhode Island, USA and from Japan Hobara et al. (2006). The present work aims to demonstrate the effect of Q-bursts on SR background spectra using GPS time-stamped observation of TLEs. It is observed that the Q-bursts selected for the present work do alias the background spectra over a 5-s period, though the amplitudes of these Q-bursts are far below the background threshold of 16 Core Standard Deviation (CSD) so that they do not strongly alias the background spectra of 10-12 min duration. The examination of one exceptional Q-burst shows that appreciable

  15. Peculiar transient events in the Schumann resonance band and their possible explanation

    Science.gov (United States)

    Ondrásková, Adriena; Bór, József; S[Breve]Evcík, Sebastián; Kostecký, Pavel; Rosenberg, Ladislav

    2008-04-01

    Superimposed on the continuous Schumann resonance (SR) background in the extremely low frequency (ELF) band, transient signals (e.g. bursts) can be observed, which originate from intense lightning discharges occurring at different locations on the globe. From the many transients that were observed at the Astronomical and Geophysical Observatory (AGO) of Comenius University near Modra, western Slovakia, in the vertical electric field component mainly during May and June of 2006, a peculiar group of events could be recognized. According to the waveform analysis, these peculiar events in most cases consist of two overlapping transients with a characteristic time difference of 0.13-0.15 s between the onsets. On the other hand, the spectrum of these peculiar transients showed discernible SR peaks for higher modes as well (n>7). The same events could be found in the records of the Széchenyi István Geophysical Observatory of the Geodetic and Geophysical Research Institute of the Hungarian Academy of Sciences near Nagycenk, Hungary (NCK). The natural origin of the peculiar events was verified from the NCK data and the source location was determined from the second transient. The results suggest that the two consecutive transients originated in the same thunderstorm. Furthermore, the phase spectrum analysis indicates that the sources have coherently excited the Earth-ionosphere cavity. These findings seem to support the idea that electromagnetic waves orbiting the Earth might trigger lightning discharges. The possibility that electromagnetic waves may trigger discharges was first considered by Nikola Tesla.

  16. Inversion of Multi-Station Schumann Resonance Background Records for Global Lightning Activity in Absolute Units

    Science.gov (United States)

    Williams, E. R.; Mushtak, V. C.; Guha, A.; Boldi, R. A.; Bor, J.; Nagy, T.; Satori, G.; Sinha, A. K.; Rawat, R.; Hobara, Y.; Sato, M.; Takahashi, Y.; Price, C. G.; Neska, M.; Alexander, K.; Yampolski, Y.; Moore, R. C.; Mitchell, M. F.; Fraser-Smith, A. C.

    2014-12-01

    Every lightning flash contributes energy to the TEM mode of the natural global waveguide that contains the Earth's Schumann resonances. The modest attenuation at ELF (0.1 dB/Mm) allows for the continuous monitoring of the global lightning with a small number of receiving stations worldwide. In this study, nine ELF receiving sites (in Antarctica (3 sites), Hungary, India, Japan, Poland, Spitsbergen and USA) are used to provide power spectra at 12-minute intervals in two absolutely calibrated magnetic fields and occasionally, one electric field, with up to five resonance modes each. The observables are the extracted modal parameters (peak intensity, peak frequency and Q-factor) for each spectrum. The unknown quantities are the geographical locations of three continental lightning 'chimneys' and their lightning source strengths in absolute units (C2 km2/sec). The unknowns are calculated from the observables by the iterative inversion of an evolving 'sensitivity matrix' whose elements are the partial derivatives of each observable for all receiving sites with respect to each unknown quantity. The propagation model includes the important day-night asymmetry of the natural waveguide. To overcome the problem of multiple minima (common in inversion problems of this kind), location information from the World Wide Lightning Location Network has been used to make initial guess solutions based on centroids of stroke locations in each chimney. Results for five consecutive days in 2009 (Jan 7-11) show UT variations with the African chimney dominating on four of five days, and America dominating on the fifth day. The amplitude variations in absolute source strength exceed that of the 'Carnegie curve' of the DC global circuit by roughly twofold. Day-to-day variations in chimney source strength are of the order of tens of percent. Examination of forward calculations performed with the global inversion solution often show good agreement with the observed diurnal variations at

  17. Comparison of global storm activity rate calculated from Schumann resonance background components to electric field intensity E0 Z

    Science.gov (United States)

    Nieckarz, Zenon; Kułak, Andrzej; Zięba, Stanisław; Kubicki, Marek; Michnowski, Stanisław; Barański, Piotr

    2009-02-01

    This work presents the results of a comparison between the global storm activity rate IRS and electric field intensity E0 Z. The permanent analysis of the IRS may become an important tool for testing Global Electric Circuit models. IRS is determined by a new method that uses the background component of the first 7 Schumann resonances (SR). The rate calculations are based on ELF observations carried out in 2005 and 2006 in the observatory station "Hylaty" of the Jagiellonian University in the Eastern Carpathians (Kułak, A., Zięba, S., Micek, S., Nieckarz, Z., 2003. Solar variations in extremely low frequency propagation parameters: I. A two-dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. Geophys. Res., 108, 1270, doi:10.1029/2002JA009304). Diurnal runs of the IRS rate were compared with diurnal runs of E0 Z amplitudes registered at the Earth's surface in the Geophysical Observatory of the Polish Academy of Sciences in Świder (Kubicki, M., 2005. Results of Atmospheric Electricity and Meteorological Observations, S. Kalinowski Geophysical Observatory at Świder 2004, Pub. Inst. Geophysics Polish Academy of Sciences, D-68 (383), Warszawa.). The days with the highest values of the correlation coefficient ( R) between amplitudes of both observed parameters characterizing atmosphere electric activity are shown. The seasonal changes of R, IRS and E0 Z are also presented.

  18. Investigation of Global Lightning using Schumann Resonances measured by High Frequency Induction Coil Magnetometers in the UK

    Science.gov (United States)

    Beggan, C.; Gabillard, T.; Swan, A.; Flower, S. M.; Thomson, A. W.

    2012-12-01

    In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory, in the Scottish Borders of the United Kingdom. The induction coils permit us to measure the very rapid changes of the magnetic field. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1904) and is located in a rural valley with a quiet magnetic environment. The data output from the induction coils are digitized and logged onsite before being collected once per hour and sent to the Edinburgh office via the Internet. We intend to run the coils as a long term experiment. We present initial results from first five months of data. Analysis of spectrograms and power spectral density plots in the frequency band of 3-40 Hz from the coils show diffuse bands of peak power around 7.8 Hz, 14.3 Hz, 20.8 Hz, 27 Hz, 34 Hz and 39Hz related to the global Schumann resonances. We also detect a strong narrow peak at 25 Hz, which is a harmonic of the UK electrical power system. There are a number of features in the data that we wish to investigate, including the diurnal and seasonal variation of the Schumann resonances. For example, it has been suggested that lightning activity is related to climate variability in the tropics and that perhaps Madden-Julian Oscillations (MJO) or El Niño Southern Oscillation (ENSO)-like correlations are detectable within the data. On longer timescales, we will look for solar cycle and climate variations. We also wish to note that the data is freely available on request to the community.

  19. Numerical Simulation of the Variation of Schumann Resonance Associated with Seismogenic Processe in the Lithosphere-Atmosphere-Ionosphere system

    Science.gov (United States)

    Liu, L.; Huang, Q.; Wang, Y.

    2012-12-01

    The variations in the strength and frequency shift of the Schumann resonance (SR) of the electromagnetic (EM) field prior to some significance earthquakes were reported by a number of researchers. As a robust physical phenomenon constantly exists in the resonant cavity formed by the lithosphere-atmosphere-ionosphere system, irregular variations in SR parameters can be naturally attributed to be the potential precursory observables for forecasting earthquake occurrences. Schumann resonance (SR) of the EM field between the lithosphere and the ionosphere occurs because the space between the surface of the Earth and the conductive ionosphere acts as a closed waveguide. The cavity is naturally excited by electric currents generated by lightning. SR is the principal background in the electromagnetic spectrum at extremely low frequencies (ELF) between 3-69 Hz. We simulated the EM field in the lithosphere-ionosphere waveguide with a 2-dimensional (2D), cylindrical whole-earth model by the hybrid pseudo-spectral and finite difference time domain method. Considering the seismogensis as a fully coupled seismoelectric process, we simulate the seismic wave and EM wave in this 2D model. The excitation of SR in the background EM field are generated by the electric-current impulses due to lightning thunderstorms within the lowest 10 kilometers of the atmosphere . The diurnal variation and the latitude-dependence in ion concentration in the ionosphere are included in the model. After the SR has reached the steady state, the impulse generated by the seismogenic process (pre-, co- and post-seismic) in the crust is introduced to assess the possible precursory effects on SR strength and frequency. The modeling results explain the observed fact of why SR has a much more sensitive response to continental earthquakes, and much less response to oceanic events; the reason is simply due to the shielding effect of the conductive ocean that prevents effective radiation of the seismoelectric

  20. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS-IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas [NASA/GSFC, Heliophysics Science Division, Space Weather Laboratory (Code 674), Greenbelt, MD (United States); Hamelin, Michel; Berthelier, Jean-Jacques [LATMOS/IPSL, UPMC, Paris (France); Beghin, Christian; Lebreton, Jean-Pierre [LPC2E, CNRS/Universite d' Orleans (France); Grard, Rejean [ESA/ESTEC, Research Scientific Support Department, Noordwijk (Netherlands); Sentman, Davis [Institute of Geophysics, University of Alaska Fairbanks, Fairbanks, AK (United States); Takahashi, Yukihiro [Department of Geophysics, Tohoku University, Sendai (Japan); Yair, Yoav [Department Life Natural Sciences, Open University of Israel, Raanana (Israel)

    2012-05-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  1. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    Science.gov (United States)

    Saroka, Kevin S; Vares, David E; Persinger, Michael A

    2016-01-01

    In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m) and magnetic field (pT) components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV) obtained by whole brain quantitative electroencephalography (QEEG) between rostral-caudal and left-right (hemispheric) comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz), second (13-14 Hz) and third (19-20 Hz) harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  2. Similar Spectral Power Densities Within the Schumann Resonance and a Large Population of Quantitative Electroencephalographic Profiles: Supportive Evidence for Koenig and Pobachenko.

    Directory of Open Access Journals (Sweden)

    Kevin S Saroka

    Full Text Available In 1954 and 1960 Koenig and his colleagues described the remarkable similarities of spectral power density profiles and patterns between the earth-ionosphere resonance and human brain activity which also share magnitudes for both electric field (mV/m and magnetic field (pT components. In 2006 Pobachenko and colleagues reported real time coherence between variations in the Schumann and brain activity spectra within the 6-16 Hz band for a small sample. We examined the ratios of the average potential differences (~3 μV obtained by whole brain quantitative electroencephalography (QEEG between rostral-caudal and left-right (hemispheric comparisons of 238 measurements from 184 individuals over a 3.5 year period. Spectral densities for the rostral-caudal axis revealed a powerful peak at 10.25 Hz while the left-right peak was 1.95 Hz with beat-differences of ~7.5 to 8 Hz. When global cerebral measures were employed, the first (7-8 Hz, second (13-14 Hz and third (19-20 Hz harmonics of the Schumann resonances were discernable in averaged QEEG profiles in some but not all participants. The intensity of the endogenous Schumann resonance was related to the 'best-of-fitness' of the traditional 4-class microstate model. Additional measurements demonstrated real-time coherence for durations approximating microstates in spectral power density variations between Schumann frequencies measured in Sudbury, Canada and Cumiana, Italy with the QEEGs of local subjects. Our results confirm the measurements reported by earlier researchers that demonstrated unexpected similarities in the spectral patterns and strengths of electromagnetic fields generated by the human brain and the earth-ionospheric cavity.

  3. Anomalous ELF phenomena in the Schumann resonance band as observed at Moshiri (Japan in possible association with an earthquake in Taiwan

    Directory of Open Access Journals (Sweden)

    M. Hayakawa

    2008-12-01

    Full Text Available The ELF observation at Moshiri (geographic coordinates: 44.29° N, 142.21° E in Hokkaido, Japan, was used to find anomalous phenomena in the Schumann resonance band, possibly associated with a large earthquake (magnitude of 7.8 in Taiwan on 26 December 2006. The Schumann resonance signal (fundamental (n=1, 8 Hz; 2nd harmonic, 14 Hz, 3rd harmonic, 20 Hz, 4th, 26 Hz etc. is known to be supported by electromagnetic radiation from the global thunderstorms, and the anomaly in this paper is characterized by an increase in intensity at frequencies from the third to fourth Schumann resonance modes mainly in the BEW component with a minor corresponding increase in the BNS component also. Spectral modification takes place only in the interval of 21:00 UT±1 h, which corresponds to the global lightning activity concentrated in America. While distortions were absent in other lightning-active UT intervals, in particular, around 08:00 UT±1 h (Asian thunderstorms and around 15±1 h (African lightning activity. The anomaly occurred on 23 December three days prior to the main shock. The results observed were explained in terms of ELF radio wave perturbation caused by the lower ionospheric depression around the earthquake epicenter. The difference in the path lengths between the direct radio wave from an active global thunderstorm center and the wave scattered from the non-uniformity above Taiwan causes interference at higher resonance modes, which is successful in explaining the observational data.

  4. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  5. Solar storm effects during Saint Patrick's Days in 2013 and 2015 on the Schumann resonances measured by the ELF station at Sierra Nevada (Spain)

    Science.gov (United States)

    Salinas, A.; Toledo-Redondo, S.; Navarro, E. A.; Fornieles-Callejón, J.; Portí, J. A.

    2016-12-01

    The effects of solar storms occurring during the days 17 to 19 March 2013 and 2015, St. Patrick's Day intervals, on Schumann resonances (SRs) have been studied. To do this, the experimental data recorded by the Juan Antonio Morente extremely low frequency station located at Sierra Nevada, Spain, have been processed in order to obtain hourly averaged information on the first three resonance modes. Results are compared with monthly averages of the SR data for each hour to detect deviations from the regular behavior. Evidence of significant changes in the peak amplitudes and frequencies of the SRs have been identified in the station's measurements and related to the coronal mass ejection impact in the magnetosphere, detected by in situ plasma measurements onboard spacecraft in the solar wind. However, the complicated nature of the Schumann resonances, dependent on multiple variables and subject to multiple unavoidable interferences (e.g., lightning or human radio sources), in conjunction with the complex magnetosphere-ionosphere-atmosphere coupling processes, makes it difficult to conclude that the observed deviations are exclusively due to the solar events mentioned. Results extracted from only two solar events cannot be considered as conclusive, and therefore, independent comparison with results reported by other research would seem advisable in future works on this subject.

  6. On Day-to-Day Variability of Global Lightning Activity as Quantified from Background Schumann Resonance Observations

    Science.gov (United States)

    Mushtak, V. C.; Williams, E. R.

    2011-12-01

    Among the palette of methods (satellite, VLF, ELF) for monitoring global lightning activity, observations of the background Schumann resonances (SR) provide a unique prospect for estimating the integrated activity of global lightning activity in absolute units (coul2 km2/sec). This prospect is ensured by the SR waves' low attenuation, with wavelengths commensurate with the dimensions of dominant regional lightning "chimneys", and by the accumulating methodology for background SR techniques. Another benefit is the reduction of SR measurements into a compact set of resonance characteristics (modal frequencies, intensities, and quality factors). Suggested and tested in numerical simulations by T.R. Madden in the 1960s, the idea to invert the SR characteristics for the global lightning source has been farther developed, statistically substantiated, and practically realized here on the basis of the computing power and the quantity of experimental material way beyond what the SR pioneers had at their disposal. The critical issue of the quality of the input SR parameters is addressed by implementing a statistically substantiated sanitizing procedure to dispose of the fragments of the observed time series containing unrepresentative elements - local interference of various origin and strong ELF transients originating outside the major "chimneys" represented in the source model. As a result of preliminary research, a universal empirical sanitizing criterion has been established. Due to the fact that the actual observations have been collected from a set of individually organized ELF stations with various equipment sets and calibration techniques, the relative parameters in both input (the intensities) and output (the "chimney" activities) are being used as far as possible in the inversion process to avoid instabilities caused by calibration inconsistencies. The absolute regional activities - and so the sought for global activity in absolute units - is determined in the

  7. Power line emission 50/60 Hz and Schumann resonances observed by microsatellite Chibis-M in the Earth's ionosphere

    Science.gov (United States)

    Dudkin, Denys; Pilipenko, Vyacheslav; Dudkin, Fedir; Pronenko, Vira; Klimov, Stanislav

    2015-04-01

    The overhead power lines are the sources of intense wideband electromagnetic (EM) emission, especially in ELF-VLF range, because of significant length (up to a few thousand kilometers) and strong 50/60 Hz currents with noticeable distortion. The radiation efficiency of the power line emission (PLE) increases with the harmonic order, so they are well observed by ground-based EM sensors. However their observations by low orbiting satellites (LEO) are very rare, particularly at basic harmonic 50/60 Hz, because of the ionospheric plasma opacity in ELF band. The Schumann resonance (SR) is the narrow-band EM noise that occurs due to the global thunderstorm activity in the Earth-ionosphere cavity. The first five eigenmodes of the SR are 7.8, 14.3, 20.8, 27.3 and 33.8 Hz and, thus, SR harmonics are also strongly absorbed by the Earth ionosphere. The published numerical simulations show that the penetration depth of such an ELF emission into the Earth's ionosphere is limited to 50-70 km for electric field and 120-240 km for magnetic field. From this follows, that PLE and SR can hardly ever be detected by LEO satellites, i.e. above the F-layer of ionosphere. In spite of this fact, these emissions were recently observed with use of the electric field antennas placed on the satellites C/NOFS (USA) and Chibis-M (Russia). Microsatellite Chibis-M was launched on January 24, 2012, at 23:18:30 UTC from the cargo ship "Progress M-13M" to circular orbit with altitude ~500 km and inclination ~52° . Chibis-M mass is about 40 kg where one third is a scientific instrumentation. The dimensions of the microsatellite case are 0.26x0.26x0.54 m with the outside mounted solar panels, service and scientific instrumentation. The main scientific objective of Chibis-M is the theoretical model verification for the atmospheric gamma-ray bursts. It requires the study of the accompanying EM processes such as the plasma waves produced by the lightning discharges in the VLF band. Chibis-M decayed on 15

  8. Determination of the Global-Average Charge Moment of a Lightning Flash Using Schumann Resonances and the LIS/OTD Lightning Data

    Science.gov (United States)

    Boldi, Robert; Williams, Earle; Guha, Anirban

    2018-01-01

    In this paper, we use (1) the 20 year record of Schumann resonance (SR) signals measured at West Greenwich Rhode Island, USA, (2) the 19 year Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) lightning data, and (3) the normal mode equations for a uniform cavity model to quantify the relationship between the observed Schumann resonance modal intensity and the global-average vertical charge moment change M (C km) per lightning flash. This work, by integrating SR measurements with satellite-based optical measurements of global flash rate, accomplishes this quantification for the first time. To do this, we first fit the intensity spectra of the observed SR signals to an eight-mode, three parameter per mode, (symmetric) Lorentzian line shape model. Next, using the LIS/OTD lightning data and the normal mode equations for a uniform cavity model, we computed the expected climatological-daily-average intensity spectra. We then regressed the observed modal intensity values against the expected modal intensity values to find the best fit value of the global-average vertical charge moment change of a lightning flash (M) to be 41 C km per flash with a 99% confidence interval of ±3.9 C km per flash, independent of mode. Mode independence argues that the model adequately captured the modal intensity, the most important fit parameter herein considered. We also tested this relationship for the presence of residual modal intensity at zero lightning flashes per second and found no evidence that modal intensity is significantly different than zero at zero lightning flashes per second, setting an upper limit to the amount of nonlightning contributions to the observed modal intensity.

  9. Pianist Jeanne Schumann to perform

    OpenAIRE

    Crichton, Juliet B.

    2005-01-01

    Award-winning pianist Jeanne Schumann will present the Marilyn Norstedt Memorial Concert at 7:30 p.m. Saturday, April 2, in the Squires Recital Salon on Virginia Tech's campus. The concert is sponsored by Musica Viva! of Southwest Virginia and the Virginia Tech University Libraries.

  10. Verification of the effects of Schumann frequency range electromagnetic fields on the human cardiovascular system

    Science.gov (United States)

    Tuzhilkin, D. A.; Borodin, A. S.

    2017-11-01

    The results of the study of variations in the electromagnetic background parameters of the Schumann resonator frequency range and the variability indices of the human heart period during its free activity are presented on the basis of 24-hour synchronous monitoring data. It is shown that the integral evaluation of the conjugacy of the heart rate variability indices from the Schumann resonance parameters is extremely weak. In this case, the differential evaluation of this dependence with separation into characteristic time intervals of the day, characterized by different motor activity of the subjects, becomes significantly higher. The number of volunteers whose conjugacy is characterized by a strong correlation in some cases reaches 35 percent of the sample.

  11. Clara Schumann: 'A woman's love and life': a psychoanalytic interpretation.

    Science.gov (United States)

    Halberstadt-Freud, H C

    1995-01-01

    This study was undertaken to demonstrate how psychoanalysis can shed new light on a much studied life history. Clara's emotional life knew a sequence of losses and "prohibited" intimate relationships that created grave loyalty, identity, and identificatory conflicts for her. Since her early childhood, when her father forced her to give up her mother, she had been forced into a choice between the love objects most dear to her and the one on whom she depended for her emotional survival. This resulted in her later repetition compulsion to maneuver herself into the same conflict of loyalty and in her hesitation to decide when choosing one object meant losing the other. Clara had never known a normal separation, only loss and abandonment. She strove to combine the incompatible and succeeded in remaining loyal not only to her mother and father, but also to Robert Schumann, and eventually to Johannes Brahms. Clara Schumann's ideals were conflicted not only because she was educated by two men who were fighting each other, but also because her father, as well as Robert, had internally inconsistent and ambiguous ideas about women. Clara not only had to be obedient and creative, but self-sufficient at the same time. She was partially able to satisfy her own and her partner's needs and solve her deficiencies by projective identification, choosing taciturn men, more maternal than she.

  12. Robert Schumann and translation: poetic creativity, simultaneity and movement

    Directory of Open Access Journals (Sweden)

    João Azenha Junior

    2012-07-01

    Full Text Available In diesem Aufsatz werden die Gesammelten Schriften über Musik und Musiker von Robert Schumann untersucht, insbesondere die Rezensionen, die der Komponist zwischen 1834 und 1836 verfasst hat. Es soll festgestellt werden, inwiefern sich darin die wichtigsten Auffassungen über Sprache und Übersetzung, die Ende des 18. und Beginn des 19. Jahrhunderts in Deutschland entstanden, wiederfinden. Im Vordergrund der Untersuchung steht die Dimension der Bewegung, die sich sowohl im Individuum als auch in der Zeit festmachen lässt. Im Individuum manifestiert sich die Bewegung als ein sehr persönlicher Vorgang, da es sich innerhalb verschiedener Zeichensysteme bewegt, die seine Gedanken ausdrücken; oder aber es bewegt sich innerhalb verschiedener Sprachen. Die Zeitdimension wiederum bedeutet, in ein Umfeld einzutauchen, das die Zeitbarrieren überwindet und die Vergangenheit auf einen Schlag mit der Gegenwart und der Zukunft verbindet.

  13. Maurice Schumann, la voix de la résistance

    OpenAIRE

    Tellier, Thibault

    2012-01-01

    Maurice Schumann a participé au premier plan à la Résistance contre l’ennemi allemand. Il a été, au cours des cinq années de guerre, la voix de la résistance de la France libre qui, chaque jour, s’adressait aux Français et aux combattants de l’ombre pour les encourager à poursuivre leur périlleux et courageux engagement. Ce texte a donc pour but de présenter les grandes lignes de son engagement et montrer en quoi sa fonction de porte-parole de la France Libre le situe parfaitement dans les pe...

  14. Chaves para ouvir Schumann (paralipomena à Kreisleriana - I

    Directory of Open Access Journals (Sweden)

    Leopoldo Waizbort

    2006-07-01

    Full Text Available Os paralipomena à "Kreisleriana" op. 16 de Robert Schumann (1810-1856 pretendem oferecer um espaço de indagações que circunscreva a obra e a insira em seu contexto. Informações sobre o compositor, seus círculos de sociabilidade e existência, assim como do ambiente no qual ele atua são mobilizadas tendo em vista caracterizar a obra de arte musical e permitir uma primeira aproximação à fatura complexa da obra e seus variados aspectos, elementos e condicionantes. O texto é parte de um estudo mais amplo, ainda incompleto.The paralipomena to Robert Schumann’s "Kreisleriana" op. 16 raise questions concerning this piece and its historical and social context. Information about the composer and his social environment is gathered in order to characterize the musical work of art and allow a first approach to the complex elements that interfere on its making. The text is part of a broader study, still unfinished.

  15. AUS module MIRANDA - a data preparation code based on multiregion resonance theory

    International Nuclear Information System (INIS)

    Robinson, G.S.

    1977-07-01

    MIRANDA is a data preparation module of the AUS reactor neutronics scheme and is used to prepare multigroup cross-section data which are pertinent to a particular reactor system from a general purpose multigroup library of cross sections. The cross-section library has been prepared from ENDF/B and includes temperature dependent data and resonance cross sections represented by subgroup parameters. The MIRANDA module includes a multiregion resonance calculation in slab, cylinder or cluster geometry, a homogeneous Bsub(L) flux solution, and a group condensation facility. Interaction with other AUS modules, particularly for burnup calculations, is provided. (Author)

  16. Schumann resonance for tyros essentials of global electromagnetic resonance in the Earth-ionosphere cavity

    CERN Document Server

    Nickolaenko, Alexander

    2014-01-01

    This thorough book describes data gathering equipment and field-sites, industrial and natural interference, typical results and common obstacles to measurement. Covers representative results, unusual radio signals in extremely low frequency bands and more.

  17. Nuclear magnetic resonance characterization of apple juice containing enzyme preparations

    International Nuclear Information System (INIS)

    Prestes, Rosilene A.; Almeida, Denise Milleo; Barison, Andersson; Pinheiro, Luis Antonio; Wosiacki, Gilvan

    2012-01-01

    In this work, 1 H nuclear magnetic resonance ( 1 H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym Yieldmash and Ultrazym AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes. (author)

  18. Solar flux variability in the Schumann-Runge continuum as a function of solar cycle 21

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Hinteregger, H.E.

    1980-01-01

    Measurements of the solar flux in the Schumann-Runge continuum (1350-1750 A) by the Atmosphere Explorer satellites reveal a strong dependence on solar activity. Solar intensities over the rising phase of cycle 21, increase by more than a factor of two at the shorter wavelengths (1350 A), with a smaller change (approx.10%) at 1750 A. A significant 27 day variability is found to exist superimposed on the solar cycle variation. Because radiation in this portion of the spectum is important to the lower thermosphere in the photodissociation of 0 2 and the production of 0( 1 D), we use the unattenuated Schumann-Runge continuum dissociation frequency as a parameter to illustrate the magnitude and temporal characteristics of this variation. The values of this parameter, J/sub infinity/(0 2 )/sub SR/, range from 1.5 x 10 -6 s -1 for April 23, 1974, to 2.8 x 10 -6 s -1 for February 19, 1979. In studies of oxygen in the lower thermosphere, it is therefore necessary to use solar spectral intensities representative of the actual conditions for which the calculations are made. Both the J/sub infinity/(0 2 )/sub SR/ parameter and the solar flux at various wavelengths over the 1350 to 1750 A range can be expressed in terms of the F10.7 index to a reasonable approximation

  19. Chemical separation of plutonium from air filters and preparation of filaments for resonance ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Eberhardt, K.; Erdmann, N.; Funk, H.; Herrmann, G.; Naehler, A.; Passler, G.; Trautmann, N.; Urban, F.

    1995-01-01

    Resonance ionization mass spectroscopy (RIMS) is used for the determination of plutonium in environmental samples. A chemical procedure based on an ion-exchange technique for the separation of plutonium from a polycarbonate filter is described. The overall yield is about 60% as determined by α-particle spectroscopy. A technique for the subsequent preparation of samples for RIMS measurements is developed. Plutonium is electrode-posited as hydroxide and covered with a thin metallic layer. While heating such a sandwich filament the plutonium hydroxide is reduced to the metal and an atomic beam is evaporated from the surface, as required for RIMS. copyright American Institute of Physics 1995

  20. Determination of scutellarin in breviscapine preparations using quantitative proton nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhenzuo Jiang

    2016-04-01

    Full Text Available The objective of the present study was to develop the selection criteria of proton signals for the determination of scutellarin using quantitative nuclear magnetic resonance (qNMR, which is the main bioactive compound in breviscapine preparations for the treatment of cerebrovascular disease. The methyl singlet signal of 3-(trimethylsilylpropionic-2,2,3,3-d4 acid sodium salt was selected as the internal standard for quantification. The molar concentration of scutellarin was determined by employing different proton signals. To obtain optimum proton signals for the quantification, different combinations of proton signals were investigated according to two selection criteria: the recovery rate of qNMR method and quantitative results compared with those obtained with ultra-performance liquid chromatography. As a result, the chemical shift of H-2′ and H-6′ at δ 7.88 was demonstrated as the most suitable signal with excellent linearity range, precision, and recovery for determining scutellarin in breviscapine preparations from different manufacturers, batch numbers, and dosage forms. Hierarchical cluster analysis was employed to evaluate the determination results. The results demonstrated that the selection criteria of proton signals established in this work were reliable for the qNMR study of scutellarin in breviscapine preparations.

  1. A Burke-Schumann Analysis of Dual-Flame Structure Supported by a Burning Droplet

    Science.gov (United States)

    Nayagam, V.; Dietrich, D.; Williams, F. A.

    2016-01-01

    Droplet combustion experiments carried out onboard the International Space Station (ISS), using pure fuels and fuel mixtures, have shown that quasi-steady burning can be sustained by a non-traditional flame configuration, namely a "cool flame" burning in the "partial-burning" regime where both fuel and oxygen leak through the low-temperature controlled flame-sheet. Recent experiments involving large, bi-component fuel (n-decane and hexanol, 50/50 by volume) droplets at elevated pressures show that the visible, hot flame becomes extremely weak while the burning rate remains relatively high, suggesting the possibility of simultaneous presence of "cool" and "hot" flames of roughly equal importance. The radiant output from these bi-component droplets is relatively high and cannot be accounted for only by the presence of a visible hot-flame. In this analysis we explore the theoretical possibility of a dual-flame structure, where one flame lies close to the droplet surface called the "cool-flame," and other farther away from the droplet surface, termed the "hot-flame." A Burke-Schumann analysis of this dual-structure seems to indicate such flame structures are possible over a narrow range of initial conditions. Theoretical results can be compared against available experimental data for pure and bi-component fuel droplet combustion to test how realistic the model may be.

  2. Resonance

    DEFF Research Database (Denmark)

    Petersen, Nils Holger

    2014-01-01

    A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice.......A chapter in a book about terminology within the field of medievalism: the chapter discusses the resonance of medieval music and ritual in modern (classical) music culture and liturgical practice....

  3. Resonances

    DEFF Research Database (Denmark)

    an impetus or drive to that account: change, innovation, rupture, or discontinuity. Resonances: Historical Essays on Continuity and Change explores the historiographical question of the modes of interrelation between these motifs in historical narratives. The essays in the collection attempt to realize...

  4. Using biharmonic laser pumping for preparation of pure and entangled multiexciton states in clusters of resonantly interacting fluorescent centres

    International Nuclear Information System (INIS)

    Basieva, I.T.; Basiev, T.T.; Dietler, G.; Pukhov, K.K.; Sekatskii, S.K.

    2007-01-01

    Use of a biharmonic laser pumping for preparation of pure and entangled multiexciton states in dimers and tetramers of resonantly interacting fluorescent particles is analysed. Special emphasis is given to the preparation of all possible pure exciton states and their maximally entangled Bell states. The general results are illustrated using as an example the pair and quartet centres of neodymium ions in calcium fluoride (M- and N-centres), where all necessary experimental information concerning the interactions and decoherence is available, and experimental preparation of Bell vacuum-single exciton and vacuum-biexciton states has been recently demonstrated. These results can be easily rescaled for the cases of quantum dots and dye molecules. Numerical results are compared with the analytical results obtained for a particular case of the biharmonic excitation of dimers. Excellent agreement between these approaches is demonstrated

  5. Magnetic resonance colonography with limited bowel preparation: a comparison of three strategies

    NARCIS (Netherlands)

    Florie, Jasper; van Gelder, Rogier E.; Haberkorn, Brigitte; Birnie, Erwin; Lavini, Cristina; Reitsma, Johannes B.; Stoker, Jaap

    2007-01-01

    PURPOSE: To prospectively compare three strategies of magnetic resonance colonography (MRC) with fecal tagging. MATERIALS AND METHODS: Three strategies were compared: (S1) gadolinium as oral tagging agent and a gadolinium-water mixture for rectal filling (bright lumen), (S2) oral barium and water

  6. Anisotropic localized surface plasmon resonances in CuS nanoplates prepared by size-selective precipitation

    Science.gov (United States)

    Hamanaka, Yasushi; Yamada, Kaoru; Hirose, Tatsunori; Kuzuya, Toshihiro

    2018-05-01

    CuS nanoplates were synthesized by a colloidal method and separated into four fractions of nanoplates with different aspect ratios by a size-selective precipitation. In addition to a strong near infrared absorption band ascribed to the in-plane mode of the localized surface plasmon resonance (LSPR), we found a weak absorption band on the high frequency tail of the in-plane LSPR band. The frequency of the weak absorption band was almost constant and independent of the aspect ratio, while the in-plane LSPR band exhibited a strong aspect ratio dependence. These characteristics suggested that the weak absorption band is ascribed to the out-of-plane LSPR. Although the out-of-plane LSPR was expected to be difficult to observe for CuS nanoplates due to its low intensity and overlap with the strong in-plane resonance, we could successfully identify the out-of-plane mode by reducing the width of the size distribution and spectral broadening caused thereby.

  7. Robust infrared-shielding coating films prepared using perhydropolysilazane and hydrophobized indium tin oxide nanoparticles with tuned surface plasmon resonance.

    Science.gov (United States)

    Katagiri, Kiyofumi; Takabatake, Ryuichi; Inumaru, Kei

    2013-10-23

    Robust infrared (IR)-shielding coating films were prepared by dispersing indium tin oxide (ITO) nanoparticles (NPs) in a silica matrix. Hydrophobized ITO NPs were synthesized via a liquid phase process. The surface plasmon resonance (SPR) absorption of the ITO NPs could be tuned by varying the concentration of Sn doping from 3 to 30 mol %. The shortest SPR wavelength and strongest SPR absorption were obtained for the ITO NPs doped with 10% Sn because they possessed the highest electron carrier density. Coating films composed of a continuous silica matrix homogeneously dispersed with ITO NPs were obtained using perhydropolysilazane (PHPS) as a precursor. PHPS was completely converted to silica by exposure to the vapor from aqueous ammonia at 50 °C. The prepared coating films can efficiently shield IR radiation even though they are more than 80% transparent in the visible range. The coating film with the greatest IR-shielding ability completely blocked IR light at wavelengths longer than 1400 nm. The pencil hardness of this coating film was 9H at a load of 750 g, which is sufficiently robust for applications such as automotive glass.

  8. Stability of Mixed Preparations Consisting of Commercial Moisturizing Creams with an Ointment Base Investigated by Magnetic Resonance Imaging.

    Science.gov (United States)

    Onuki, Yoshinori; Funatani, Chiaki; Yamamoto, Yoshihisa; Fukami, Toshiro; Koide, Tatsuo; Hayashi, Yoshihiro; Takayama, Kozo

    2017-01-01

    A moisturizing cream mixed with a steroid ointment is frequently prescribed to patients suffering from atopic dermatitis. However, there is a concern that the mixing operation causes destabilization. The present study was performed to investigate the stability of such preparations closely using magnetic resonance imaging (MRI). As sample preparations, five commercial moisturizing creams that are popular in Japan were mixed with an ointment base, a white petrolatum, at a volume ratio of 1 : 1. The mixed preparations were stored at 60°C to accelerate the destabilization processes. Subsequently, the phase separations induced by the storage test were monitored using MRI. Using advanced MR technologies including spin-spin relaxation time (T 2 ) mapping and MR spectroscopy, we successfully characterized the phase-separation behavior of the test samples. For most samples, phase separations developed by the bleeding of liquid oil components. From a sample consisting of an oil-in-water-type cream, Urepearl Cream 10%, a distinct phase-separation mode was observed, which was initiated by the aqueous component separating from the bottom part of the sample. The resultant phase separation was the most distinct among the test samples. To investigate the phase separation quantitatively and objectively, we conducted a histogram analysis on the acquired T 2 maps. The water-in-oil type creams were found to be much more stable after mixing with ointment base than those of oil-in-water type creams. This finding strongly supported the validity of the mixing operation traditionally conducted in pharmacies.

  9. Preparation and characterization of composites of ultrasonic gel and copper sulphate for using as magnetic resonance body simulator

    International Nuclear Information System (INIS)

    Cardoso, Gabriela P.; Soares, Sidney S.; Gontijo, Rodrigo M.G.; Batista, Adriana S.M.; Pereira, Esther Lorrayne M.

    2017-01-01

    The use of magnetic resonance (MRI) body simulators has application in both equipment control and didactics, providing training to new professionals, regarding the manipulation of parameters related to image weights. For this, it is necessary to simulate longitudinal (T1) and transverse (T2) relaxation times in order to control the extrinsic echo time (TE) and repetition time (TR) parameters in obtaining images with different contrasts. For this purpose, composites with different proportions of ultrasonic gel and copper sulphate were prepared for submission to MRI for the characterization of the times T1 and T2. The selection of copper sulphate, paramagnetic material, was conducted considering relaxation times similar to the different body tissues in order to reproduce images of suitable contrasts. Copper sulphate powder was characterized by the X-Ray Diffraction (XRD) technique which showed characteristic peaks of copper and sulfate group. The composite was evaluated using Fourier Transform Infrared Spectrometry (FTIR) and Visible Ultraviolet Spectrometry (UV-Vis) techniques, demonstrating composite stability for future imaging tests. In the UV-Vis analyzes the peak centered at 725 nm was monitored by the overlap of the peaks at wavelengths between 200 - 450 nm, gel and copper. FTIR of the copper sulphate powder was used for comparison with composite spectrum

  10. Discussion of "Fluvial system response to late Pleistocene-Holocene sea-level change on Santa Rosa Island, Channel Islands National Park, California" (Schumann et al., 2016. Geomorphology, 268: 322-340)

    Science.gov (United States)

    Pinter, Nicholas; Hardiman, Mark; Scott, Andrew C.; Anderson, R. Scott

    2018-01-01

    Schumann et al. (2016) presented a field assessment of late Pleistocene to Holocene fluvial sediments preserved in the valleys of Santa Rosa Island, California. This is a rigorous study, based on stratigraphic descriptions of 54 sections and numerous radiocarbon ages. The paper makes important contributions that we would like to highlight, but other parts of the paper rely upon overly simplistic interpretations that lead to misleading conclusions. In one case, a conclusion of the Schumann et al. paper has important management implications for Santa Rosa Island and similar locations, compelling us to discuss and qualify this conclusion.

  11. Deep-UV high resolution cavity ring-down spectroscopy of the Schumann-Runge bands in O-16(2) and O-18(2) at wavelengths 197-203 nm

    NARCIS (Netherlands)

    Hannemann, S.; van Duijn, E.J.; Ubachs, W.M.G.

    2005-01-01

    With the use of a novel titanium:sapphire laser source delivering, upon fourth harmonic generation, narrowband and tunable radiation in the deep-UV, spectroscopic studies were performed on weak Schumann-Runge bands of oxygen. Improved values for rotational and fine structure molecular parameters for

  12. Noncontrast magnetic resonance angiography of the hand: improved arterial conspicuity by multidirectional flow-sensitive dephasing magnetization preparation in 3D balanced steady-state free precession imaging.

    Science.gov (United States)

    Fan, Zhaoyang; Hodnett, Philip A; Davarpanah, Amir H; Scanlon, Timothy G; Sheehan, John J; Varga, John; Carr, James C; Li, Debiao

    2011-08-01

    : To develop a flow-sensitive dephasing (FSD) preparative scheme to facilitate multidirectional flow-signal suppression in 3-dimensional balanced steady-state free precession imaging and to validate the feasibility of the refined sequence for noncontrast magnetic resonance angiography (NC-MRA) of the hand. : A new FSD preparative scheme was developed that combines 2 conventional FSD modules. Studies using a flow phantom (gadolinium-doped water 15 cm/s) and the hands of 11 healthy volunteers (6 males and 5 females) were performed to compare the proposed FSD scheme with its conventional counterpart with respect to the signal suppression of multidirectional flow. In 9 of the 11 healthy subjects and 2 patients with suspected vasculitis and documented Raynaud phenomenon, respectively, 3-dimensional balanced steady-state free precession imaging coupled with the new FSD scheme was compared with spatial-resolution-matched (0.94 × 0.94 × 0.94 mm) contrast-enhanced magnetic resonance angiography (0.15 mmol/kg gadopentetate dimeglumine) in terms of overall image quality, venous contamination, motion degradation, and arterial conspicuity. : The proposed FSD scheme was able to suppress 2-dimensional flow signal in the flow phantom and hands and yielded significantly higher arterial conspicuity scores than the conventional scheme did on NC-MRA at the regions of common digitals and proper digitals. Compared with contrast-enhanced magnetic resonance angiography, the refined NC-MRA technique yielded comparable overall image quality and motion degradation, significantly less venous contamination, and significantly higher arterial conspicuity score at digital arteries. : The FSD-based NC-MRA technique is improved in the depiction of multidirectional flow by applying a 2-module FSD preparation, which enhances its potential to serve as an alternative magnetic resonance angiography technique for the assessment of hand vascular abnormalities.

  13. Comparison of E-coli O157 : H7 preparation methods used for detection with surface plasmon resonance sensor

    Czech Academy of Sciences Publication Activity Database

    Taylor, A. D.; Yu, Q.; Chen, S.; Homola, Jiří; Jiang, S.

    2005-01-01

    Roč. 107, č. 1 (2005), s. 202-208 ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. Madrid, 04.04.2004-07.04.2004] Grant - others:US FDA(US) FD-U-002250 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.646, year: 2005

  14. Philipp Thomas et Schumann Christoph (sous la direction de, From the Syrian Land to the States of Syria and Lebanon (Beiruter Texte und Studien 96. Würzburg et Beirut: Ergon Verlag in Kommission, 2004, 7 p. + 366 p.

    Directory of Open Access Journals (Sweden)

    Frank Peter

    2007-11-01

    Full Text Available Cet ouvrage collectif, dirigé par Thomas Philipp et Christoph Schumann, réunit 21 contributions portant sur l'émergence de nouvelles identités et idéologies, entre les années 1841 et 1940, dans le Bilâd al-Shâm, la région comprise entre les montagnes du Taurus, le désert syrien, le Sinaï et la Méditerranée. Philipp et Schumann considèrent que peu de recherches ont abordé cette région en tant qu’une unité (as integrated region fondée sur des caractéristiques sociales, culturelles et historiqu...

  15. Preparation and characterization of alginate based-fluorescent magnetic nanoparticles for fluorescence/magnetic resonance multimodal imaging applications

    Science.gov (United States)

    Kwon, Yong-Su; Choi, Kee-Bong; Lim, Hyungjun; Lee, Sunghwi; Lee, Jae-Jong

    2018-06-01

    Simple and versatile methodologies have been reported that customize the surface of superparamagnetic iron oxide (SPIO) nanoparticles and impart additional fluorescence capabilities to these contrast agents. Herein, we present the rational design, synthesis, characterization, and biological applications of a new magnetic-based fluorescent probe. The dual modality imaging protocol was developed by labeling fluorophore with alginate natural polymers that have excellent biocompatibility and biodegradability, and using gelification method to form nanocomposites containing SPIO. The formation of alginate-based fluorescent magnetic (AFM) nanoparticles was observed in spherical and elliptical forms with a diameter of less than 500 nm by a transmission electron microscope (TEM). The fluorescent wavelength band in the range of 560 nm was also confirmed in the UV–visible spectrophotometer. In this study, we demonstrate that the multi-tasking design of AFM nanoparticles provides an ideal platform for building balanced dual-image probes of magnetic resonance imaging and optical imaging.

  16. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  17. Influence of Substrate Biasing on (Ba,Sr)TiO3 Films Prepared by Electron Cyclotron Resonance Plasma Sputtering

    Science.gov (United States)

    Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji

    2004-03-01

    (Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.

  18. Preparation and Evaluation of Multiple Nanoemulsions Containing Gadolinium (III) Chelate as a Potential Magnetic Resonance Imaging (MRI) Contrast Agent.

    Science.gov (United States)

    Sigward, Estelle; Corvis, Yohann; Doan, Bich-Thuy; Kindsiko, Kadri; Seguin, Johanne; Scherman, Daniel; Brossard, Denis; Mignet, Nathalie; Espeau, Philippe; Crauste-Manciet, Sylvie

    2015-09-01

    The objective was to develop, characterize and assess the potentiality of W1/O/W2 self-emulsifying multiple nanoemulsions to enhance signal/noise ratio for Magnetic Resonance Imaging (MRI). For this purpose, a new formulation, was designed for encapsulation efficiency and stability. Various methods were used to characterize encapsulation efficiency ,in particular calorimetric methods (Differential Scanning Calorimetry (DSC), thermogravimetry analysis) and ultrafiltration. MRI in vitro relaxivities were assessed on loaded DTPA-Gd multiple nanoemulsions. Characterization of the formulation, in particular of encapsulation efficiency was a challenge due to interactions found with ultrafiltration method. Thanks to the specifically developed DSC protocol, we were able to confirm the formation of multiple nanoemulsions, differentiate loaded from unloaded nanoemulsions and measure the encapsulation efficiency which was found to be quite high with a 68% of drug loaded. Relaxivity studies showed that the self-emulsifying W/O/W nanoemulsions were positive contrast agents, exhibiting higher relaxivities than those of the DTPA-Gd solution taken as a reference. New self-emulsifying multiple nanoemulsions that were able to load satisfactory amounts of contrasting agent were successfully developed as potential MRI contrasting agents. A specific DSC protocol was needed to be developed to characterize these complex systems as it would be useful to develop these self-formation formulations.

  19. 27Al nuclear magnetic resonance of glassy and crystalline Zr(1-x)AlxO(2-x/2) materials prepared from solution precursors

    International Nuclear Information System (INIS)

    Balmer, M.L.; Eckert, H.; Das, N.; Lange, F.F.

    1996-01-01

    The local environment of the aluminum atoms in a series of metastable Zr (1-x) Al x O (2-x/2) crystalline materials (0.08 ≤ x ≤ 0.57), prepared by diffusion-limited crystallization of amorphous precursors, has been determined by 27 Al magic angle spinning nuclear magnetic resonance (MAS NMR). Results show the existence of aluminum in 4-, 5-, and 6-fold coordination in both the amorphous and crystalline states. Although the relative amounts of each type of coordination show no compositional dependence in the amorphous state, the results for the crystalline materials show a systematic decrease in the average aluminum coordination number with increasing aluminum content. Comparisons of MAS NMR results between pure Al 2 O 3 precursors and Zr (1-x) Al x O (2-x/2) crystalline materials processed under similar conditions show a profound effect of ZrO 2 on the coordination environment of the aluminum atom. Both a random distribution model and a model that assumes small-scale clustering of aluminum ions are considered to explain the trends in the type of aluminum coordination as a function of composition

  20. In vivo cleavage rate of a dextran-bound magnetic resonance imaging contrast agent: preparation and intravascular pharmacokinetic characteristics in the rabbit.

    Science.gov (United States)

    Hals, Petter Arnt; Sontum, Per Christian; Holtz, Eckart; Klaveness, Jo; Rongved, Pål

    2013-02-01

    Earlier described dextran-based contrast agents for magnetic resonance imaging (MRI) comprising the gadolinium chelate diethylenetriamine pentaacetic acid (GdDTPA, 1) have shown significantly shorter in vivo contrast duration in rat than what would be expected from the initial average molecular weight (Mw) of the dextran fraction (71.4 kD). To investigate this further, four dextran fractions with given initial average molecular weight (Mw) of 10.4, 41.0, 71.4 and 580 kD were used as starting material to prepare products 2-5 where one of the carboxylic acid functionalities in GdDTPA was used as a direct covalent ester linker to hydroxyl groups in dextrans. A fifth derivative (6) was an amide-ester bound β-alanine-DTPAGd conjugate with dextran having Mw 71.4 kD. The reference compound GdDTPA (1) and gadoliniumlabelled dextran derivatives 2-6 were injected intravenously in rabbits. Pharmacokinetic parameters showed that when GdDTPA is ester-bound directly to dextran hydroxyls, the cleavage rates of 2-5 were only moderately dependent on the molecular weights of the dextrans, having blood pool half-lives comparable to the low-molecular reference compound (t 1/2,β 0.3 - 0.5 hrs.). Presence of a β-alanine spacer in 6 prolonged the plasma half-life t 1/2,β to 6.9 hours, rendering a blood residence time suitable for blood pool slow release of GdDTPA. Biological cleavage regenerates the clinically acceptable carrier dextran and the β-alanine derivative of GdDTPA, pointing at a clinically acceptable product class for blood-pool contrast in MRI.

  1. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  2. Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances

    Science.gov (United States)

    Yang, H.; Pasko, V. P.

    2003-12-01

    Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model

  3. Preparation of EVA/silica nano composites characterized with solid state nuclear magnetic resonance; Obtencao de nanocomposito de EVA/SILICA e caracterizacao por ressonancia magnetica nuclear no estado solido

    Energy Technology Data Exchange (ETDEWEB)

    Passos, Adriano A; Tavares, Maria I.B.; Neto, Roberto C.P.; Moreira, Leonardo A; Ferreira, Antonio G., E-mail: mibt@ima.ufrj.br [Centro de Tecnologia, Instituto de Macromoleculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Nano composites of poly(ethylene-co-vinyl acetate)/silica (SiO{sub 2}) with dimensions of ca. 40 nm were prepared via solution intercalation employing chloroform as a solvent. They were mainly characterized with nuclear magnetic resonance spectroscopy (NMR) employing carbon-13 (polymeric matrix), silicon-29 (nanoparticles) and through the determination of the proton spin-lattice relaxation time in the rotating frame (T{sub 1{rho}H}) (polymer matrix). From the NMR results it was inferred that up to 5% of silica in mass a well dispersed nano composite was obtained, owing to a strong interaction between silica and the EVA matrix. (author)

  4. Magnetic resonance colonography with a limited bowel preparation and automated carbon dioxide insufflation in comparison to conventional colonoscopy: Patient burden and preferences

    Energy Technology Data Exchange (ETDEWEB)

    Paardt, M.P. van der, E-mail: m.p.vanderpaardt@amc.uva.nl [Department of Radiology, Academic Medical Center Amsterdam, Amsterdam (Netherlands); Boellaard, T.N., E-mail: t.n.boellaard@amc.uva.nl [Department of Radiology, Academic Medical Center Amsterdam, Amsterdam (Netherlands); Zijta, F.M., E-mail: fmzijta@yahoo.com [Department of Radiology, Medisch Centrum Haaglanden, Den Haag (Netherlands); Baak, L.C., E-mail: l.c.baak@olvg.nl [Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands); Depla, A.C.T.M., E-mail: actm.depla@slz.nl [Department of Gastroenterology and Hepatology, Slotervaartziekenhuis, Amsterdam (Netherlands); Dekker, E., E-mail: e.dekker@amc.uva.nl [Department of Gastroenterology and Hepatology, Academic Medical Center Amsterdam, Amsterdam (Netherlands); Nederveen, A.J., E-mail: a.j.nederveen@amc.uva.nl [Department of Radiology, Academic Medical Center Amsterdam, Amsterdam (Netherlands); Bipat, S., E-mail: s.bipat@amc.uva.nl [Department of Radiology, Academic Medical Center Amsterdam, Amsterdam (Netherlands); Stoker, J., E-mail: j.stoker@amc.uva.nl [Department of Radiology, Academic Medical Center Amsterdam, Amsterdam (Netherlands)

    2015-01-15

    Highlights: • MR colonography with a limited bowel preparation and automated carbon dioxide insufflation demonstrated less burden compared to colonoscopy. • When discarding the bowel preparation, the examinations were rated equally burdensome. • The majority of patients preferred MR colonography over colonoscopy for their future examination of the bowel. - Abstract: Objectives: To evaluate patient burden and preferences for MR colonography with a limited bowel preparation and automated carbon dioxide insufflation in comparison to conventional colonoscopy. Methods: Symptomatic patients were consecutively recruited to undergo MR colonography with automated carbon dioxide insufflation and a limited bowel preparation followed within four weeks by colonoscopy with a standard bowel cleansing preparation. Four questionnaires regarding burden (on a five-point scale) and preferences (on a seven-point scale) were addressed after MR colonography and colonoscopy and five weeks after colonoscopy. Results: Ninety-nine patients (47 men, 52 women; mean age 62.3, SD 8.7) were included. None of the patients experienced severe or extreme burden from the MR colonography bowel preparation compared to 31.5% of the patients for the colonoscopy bowel preparation. Colonoscopy was rated more burdensome (25.6% severe or extreme burden) compared to MR colonography (5.2% severe or extreme burden) (P < 0.0001). When discarding the bowel preparations, the examinations were rated equally burdensome (P = 0.35). The majority of patients (61.4%) preferred MR colonography compared to colonoscopy (29.5%) immediately after the examinations and five weeks later (57.0% versus 39.5%). Conclusion: MR colonography with a limited bowel preparation and automated carbon dioxide insufflation demonstrated less burden compared to colonoscopy. The majority of patients preferred MR colonography over colonoscopy.

  5. Initial deposition and electron paramagnetic resonance defects characterization of TiO{sub 2} films prepared using successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yiyong, E-mail: wuyiyong2001@yahoo.com.cn [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Shi Yaping [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China); Harbin University of Commerce, P.O. 493, Song bei District, Harbin, 150028 (China); Xu Xianbin; Sun Chengyue [National Key Laboratory of Materials Behaviors and Evaluation Technology in Space Environments, Harbin Institute of Technology, P.O. 432, Nan gang District, Harbin, 150080 (China)

    2012-06-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO{sub 2}) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO{sub 2} film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 A/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: Black-Right-Pointing-Pointer TiO{sub 2} films are deposited on glass at 25 Degree-Sign C by successive ionic layer adsorption and reaction method with a rate of 4.6 A/cycle. Black-Right-Pointing-Pointer The films nucleate in an island mode initially but grow in a layer mode afterwards. Black-Right-Pointing-Pointer The SILAR TiO{sub 2} films nucleation period is five cycles. Black-Right-Pointing-Pointer Electron paramagnetic resonance spectroscopy shows that TiO{sub 2} films paramagnetic defects are attributed to oxygen vacancies. Black-Right-Pointing-Pointer They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  6. Initial deposition and electron paramagnetic resonance defects characterization of TiO2 films prepared using successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Wu Yiyong; Shi Yaping; Xu Xianbin; Sun Chengyue

    2012-01-01

    Successive ionic layer adsorption and reaction (SILAR) technique was considered promisingly to deposit ultra thin titanium dioxide (TiO 2 ) films under ambient condition. In this paper, the growth process, structures and paramagnetic defects of the films were characterized by complementary techniques of atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and electron paramagnetic resonance spectroscopy. The results indicate that on glass substrate the SILAR TiO 2 film nucleates in an island mode within the initial five deposition cycles but grows in a layer-by-layer mode afterwards. The growth rate was measured as 4.6 Å/cycle. In the as-deposited films, a kind of paramagnetic defects is detected at g (2.0029) and it can be attributed to oxygen vacancies. These as-received oxygen vacancies could be annealed out at 473 K. Ultraviolet irradiation on the as-deposited films can also decrease the density of the defects. The relative mechanisms on the phenomenon were discussed in this paper. - Highlights: ► TiO 2 films are deposited on glass at 25 °C by successive ionic layer adsorption and reaction method with a rate of 4.6 Å/cycle. ► The films nucleate in an island mode initially but grow in a layer mode afterwards. ► The SILAR TiO 2 films nucleation period is five cycles. ► Electron paramagnetic resonance spectroscopy shows that TiO 2 films paramagnetic defects are attributed to oxygen vacancies. ► They will decrease by anneal or ultraviolet radiation and form hydroxyl or superoxide radicals.

  7. Preparation of the study of the quark-gluon plasma in ALICE: the V0 detector and the low masses resonances in the muon spectrometer

    International Nuclear Information System (INIS)

    Nendaz, F.

    2009-09-01

    The ALICE (A Large Ion Collider Experiment) experiment at LHC will study from 2010 the quark-gluon plasma (QGP), phase of the matter in which quarks and gluons are deconfined. The work presented here was done within the ALICE collaboration, for preparing the analysis of the incoming experimental data. Besides a theoretical approach of the QGP and of the chiral symmetry, we develop three experimental aspects: the V0 sub-detector, the study of the low mass mesons and the deconvolution. First, we detail the measures of luminosity and multiplicity that can be done with the V0. We then develop the study of the dimuons in the muon spectrometer. We concentrate on the low masses mesons: the rho, the omega and the phi. Finally, we present a method for improving the spectrometer data: the Richardson-Lucy deconvolution. (author)

  8. Multiphoton resonances

    International Nuclear Information System (INIS)

    Shore, B.W.

    1977-01-01

    The long-time average of level populations in a coherently-excited anharmonic sequence of energy levels (e.g., an anharmonic oscillator) exhibits sharp resonances as a function of laser frequency. For simple linearly-increasing anharmonicity, each resonance is a superposition of various multiphoton resonances (e.g., a superposition of 3, 5, 7, . . . photon resonances), each having its own characteristic width predictable from perturbation theory

  9. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    1977-03-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. While the existence of sideband resonances of the main betatron oscillation frequencies has been previously observed and analyzed, the resonances observed in SPEAR do not appear to be of the same variety. Experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  10. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  11. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  12. Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by means of three-dimensional preparative gas chromatography and nuclear magnetic resonance/infrared/mass spectrometric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sciarrone, Danilo [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Chromaleont s.r.l. A start-up of the University of Messina, c/o University of Messina, Viale Annunziata, 98168 Messina (Italy); Pantò, Sebastiano [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Rotondo, Archimede [Dipartimento di Scienze Chimiche, Università di Messina, Via D’Alcontres 31, 98166 Messina (Italy); Tedone, Laura; Tranchida, Peter Quinto [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Dugo, Paola [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus Bio-Medico, Via Álvaro del Portillo, 21 - 00128 Roma (Italy); Mondello, Luigi, E-mail: lmondello@unime.it [Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, University of Messina, Viale Annunziata, 98168, Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus Bio-Medico, Via Álvaro del Portillo, 21 - 00128 Roma (Italy)

    2013-06-27

    Graphical abstract: -- Highlights: •A recently-developed three-dimensional prep-GC system has been applied to wampee essential oil. •The prep GC system enables the rapid collection of pure compounds from complex samples. •An isolated unknown solute was identified through NMR, IR and MS data. •The structure of an oxygenated sesquiterpene is here reported for the first time. -- Abstract: The present research reports the use of a three-dimensional preparative gas chromatography (prep GC) system, equipped with three Deans-switch devices and 5%diphenyl/wax/mid-polarity ionic liquid stationary phases, for the isolation of volatile components from a complex natural source, namely wampee essential oil (derived from Clausena lansium Skeels leaves). Collection was performed by using a simple and effective lab-constructed trapping device. Initially, an unknown (and abundant) wampee oil constituent was erroneously identified as α-sinensal, through an MS database search (a low similarity match was attained), performed after a GC-quadMS experiment., The unknown compound was then the isolated by using the novel prep GC system, in a highly pure form (at the mg level), and was correctly identified by using nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). Both FTIR and MS data were used to confirm the NMR information. The name given to the molecule was (2E,6E)-2-methyl-6-(4-methylcyclohex-3-enylidene)hept-2-enal. The results herein described will demonstrate the need for a high-resolution GC step, prior to analyte collection, in the prep GC analysis of complex samples.

  13. Rapid collection and identification of a novel component from Clausena lansium Skeels leaves by means of three-dimensional preparative gas chromatography and nuclear magnetic resonance/infrared/mass spectrometric analysis

    International Nuclear Information System (INIS)

    Sciarrone, Danilo; Pantò, Sebastiano; Rotondo, Archimede; Tedone, Laura; Tranchida, Peter Quinto; Dugo, Paola; Mondello, Luigi

    2013-01-01

    Graphical abstract: -- Highlights: •A recently-developed three-dimensional prep-GC system has been applied to wampee essential oil. •The prep GC system enables the rapid collection of pure compounds from complex samples. •An isolated unknown solute was identified through NMR, IR and MS data. •The structure of an oxygenated sesquiterpene is here reported for the first time. -- Abstract: The present research reports the use of a three-dimensional preparative gas chromatography (prep GC) system, equipped with three Deans-switch devices and 5%diphenyl/wax/mid-polarity ionic liquid stationary phases, for the isolation of volatile components from a complex natural source, namely wampee essential oil (derived from Clausena lansium Skeels leaves). Collection was performed by using a simple and effective lab-constructed trapping device. Initially, an unknown (and abundant) wampee oil constituent was erroneously identified as α-sinensal, through an MS database search (a low similarity match was attained), performed after a GC-quadMS experiment., The unknown compound was then the isolated by using the novel prep GC system, in a highly pure form (at the mg level), and was correctly identified by using nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS). Both FTIR and MS data were used to confirm the NMR information. The name given to the molecule was (2E,6E)-2-methyl-6-(4-methylcyclohex-3-enylidene)hept-2-enal. The results herein described will demonstrate the need for a high-resolution GC step, prior to analyte collection, in the prep GC analysis of complex samples

  14. Preparation and characterization of composites of ultrasonic gel and copper sulphate for using as magnetic resonance body simulator; Preparação e caracterização de compósitos de gel de ultrassom e sulfato de cobre para uso como simulador de corpo em exames de resonância magnética

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Gabriela P.; Soares, Sidney S.; Gontijo, Rodrigo M.G.; Batista, Adriana S.M., E-mail: sidneyss70soares@gmail.com, E-mail: gabrielapontesc@gmail.com, E-mail: rodrigogadelhagontijo1@hotmail.com, E-mail: driananuclear@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Anatomia e Imagem; Pereira, Esther Lorrayne M., E-mail: esther_machado@outlook.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2017-07-01

    The use of magnetic resonance (MRI) body simulators has application in both equipment control and didactics, providing training to new professionals, regarding the manipulation of parameters related to image weights. For this, it is necessary to simulate longitudinal (T1) and transverse (T2) relaxation times in order to control the extrinsic echo time (TE) and repetition time (TR) parameters in obtaining images with different contrasts. For this purpose, composites with different proportions of ultrasonic gel and copper sulphate were prepared for submission to MRI for the characterization of the times T1 and T2. The selection of copper sulphate, paramagnetic material, was conducted considering relaxation times similar to the different body tissues in order to reproduce images of suitable contrasts. Copper sulphate powder was characterized by the X-Ray Diffraction (XRD) technique which showed characteristic peaks of copper and sulfate group. The composite was evaluated using Fourier Transform Infrared Spectrometry (FTIR) and Visible Ultraviolet Spectrometry (UV-Vis) techniques, demonstrating composite stability for future imaging tests. In the UV-Vis analyzes the peak centered at 725 nm was monitored by the overlap of the peaks at wavelengths between 200 - 450 nm, gel and copper. FTIR of the copper sulphate powder was used for comparison with composite spectrum.

  15. Multiquark Resonances

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    Multiquark resonances are undoubtedly experimentally observed. The number of states and the amount of details on their properties has been growing over the years. It is very recent the discovery of two pentaquarks and the confirmation of four tetraquarks, two of which had not been observed before. We mainly review the theoretical understanding of this sector of particle physics phenomenology and present some considerations attempting a coherent description of the so called X and Z resonances. The prominent problems plaguing theoretical models, like the absence of selection rules limiting the number of states predicted, motivate new directions in model building. Data are reviewed going through all of the observed resonances with particular attention to their common features and the purpose of providing a starting point to further research.

  16. Neuroaesthetic Resonance

    DEFF Research Database (Denmark)

    Brooks, Anthony Lewis

    2013-01-01

    Neuroaesthetic Resonance emerged from a mature body of patient- centered gesture-control research investigating non-formal rehabilitation via ICT-enhanced-Art to question ‘Aesthetic Resonance’. Motivating participation, ludic engagement, and augmenting physical motion in non-formal (fun) treatment...... sessions are achieved via adaptive action-analyzed activities. These interactive virtual environments are designed to empower patients’ creative and/or playful expressions via digital feedback stimuli. Unconscious self- pushing of limits result from innate distractive mechanisms offered by the alternative...... the unencumbered motion-to-computer-generated activities - ‘Music Making’, ‘Painting’, ‘Robotic’ and ‘Video Game’ control. A focus of this position paper is to highlight how Aesthetic Resonance, in this context, relates to the growing body of research on Neuroaesthetics to evolve Neuroaesthetic Resonance....

  17. Baryon Resonances

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Sun Baoxi; Vicente Vacas, M.J.; Ramos, A.; Gonzalez, P.; Vijande, J.; Martinez Torres, A.; Khemchandani, K.

    2010-01-01

    In this talk I show recent results on how many excited baryon resonances appear as systems of one meson and one baryon, or two mesons and one baryon, with the mesons being either pseudoscalar or vectors. Connection with experiment is made including a discussion on old predictions and recent results for the photoproduction of the Λ(1405) resonance, as well as the prediction of one 1/2 + baryon state around 1920 MeV which might have been seen in the γp→K + Λ reaction.

  18. 996 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    996. RESONANCE. November 2013. Page 2. 997. RESONANCE. November 2013. Page 3. 998. RESONANCE. November 2013. Page 4. 999. RESONANCE. November 2013. Page 5. 1000. RESONANCE. November 2013. Page 6. 1001. RESONANCE. November 2013. Page 7. 1002. RESONANCE. November 2013 ...

  19. 817 RESONANCE September 2013

    Indian Academy of Sciences (India)

    IAS Admin

    817. RESONANCE ⎜ September 2013. Page 2. 818. RESONANCE ⎜ September 2013. Page 3. 819. RESONANCE ⎜ September 2013. Page 4. 820. RESONANCE ⎜ September 2013. Page 5. 821. RESONANCE ⎜ September 2013. Page 6. 822. RESONANCE ⎜ September 2013. Page 7. 823. RESONANCE ⎜ September ...

  20. 369 RESONANCE April 2016

    Indian Academy of Sciences (India)

    IAS Admin

    369. RESONANCE ⎜ April 2016. Page 2. 370. RESONANCE ⎜ April 2016. Page 3. 371. RESONANCE ⎜ April 2016. Page 4. 372. RESONANCE ⎜ April 2016. Page 5. 373. RESONANCE ⎜ April 2016. Page 6. 374. RESONANCE ⎜ April 2016. Page 7. 375. RESONANCE ⎜ April 2016.

  1. Synchrobetatron resonances

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    At the 1975 Particle Accelerator Conference it was reported that a class of resonances were observed in SPEAR II that had not appeared before in SPEAR I. These resonances occur when the betatron oscillation wave numbers ν/sub x/ or ν/sub y/ and the synchrotron wave number ν/sub s/ satisfy the relation (ν/sub x,y/ - mν/sub s/) = 5, with m an integer denoting the m/sup th/ satellite. The main difference between SPEAR II and SPEAR I is the value of ν/sub s/, which in SPEAR II is approximately 0.04, an order of magnitude larger than in SPEAR I. An ad hoc meeting was held at the 1975 Particle Accelerator Conference, where details of the SPEAR II results were presented and various possible mechanisms for producing these resonances were discussed. Later, experiments were performed at SPEAR to identify the mechanism believed to be the most likely explanation. Some of the current experimental knowledge and theoretical views on the source of these resonances are presented

  2. Autostereogram resonators

    Science.gov (United States)

    Leavey, Sean; Rae, Katherine; Murray, Adam; Courtial, Johannes

    2012-09-01

    Autostereograms, or "Magic Eye" pictures, are repeating patterns designed to give the illusion of depth. Here we discuss optical resonators that create light patterns which, when viewed from a suitable position by a monocular observer, are autostereograms of the three-dimensional shape of one of the mirror surfaces.

  3. Initial growth of Pterygota macrocarpa Schumann (Sterculiaceae ...

    African Journals Online (AJOL)

    Objective: A study on the growth of Pterygota macrocarpa (Sterculiaceae), in the nursery depending on the intensity of the light, was conducted within the Forest Management Unit of Bossematié. The main objective is to seek additional information on the initial growth of Pterygota macrocarpa , an overexploited and ...

  4. Resonating Statements

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Jensen, Tina Blegind

    2015-01-01

    IT projects are often complex arrangements of technological components, social actions, and organizational transformation that are difficult to manage in practice. This paper takes an analytical discourse perspective to explore the process of legitimizing IT projects. We introduce the concept...... of resonating statements to highlight how central actors navigate in various discourses over time. Particularly, the statements and actions of an IT project manager are portrayed to show how individuals can legitimize actions by connecting statements to historically produced discourses. The case study...... as part of a feedback loop to re-attach the localized IT project to the broader national discourse. The paper concludes with reflections on how to actively build on resonating statements as a strategic resource for legitimizing IT projects...

  5. Gravitoelectromagnetic resonances

    International Nuclear Information System (INIS)

    Tsagas, Christos G.

    2011-01-01

    The interaction between gravitational and electromagnetic radiation has a rather long research history. It is well known, in particular, that gravity-wave distortions can drive propagating electromagnetic signals. Since forced oscillations provide the natural stage for resonances to occur, gravitoelectromagnetic resonances have been investigated as a means of more efficient gravity-wave detection methods. In this report, we consider the coupling between the Weyl and the Maxwell fields on a Minkowski background, which also applies to astrophysical environments where gravity is weak, at the second perturbative level. We use covariant methods that describe gravitational waves via the transverse component of the shear, instead of pure-tensor metric perturbations. The aim is to calculate the properties of the electromagnetic signal, which emerges from the interaction of its linear counterpart with an incoming gravitational wave. Our analysis shows how the wavelength and the amplitude of the gravitationally driven electromagnetic wave vary with the initial conditions. More specifically, for certain initial data, the amplitude of the induced electromagnetic signal is found to diverge. Analogous, diverging, gravitoelectromagnetic resonances were also reported in cosmology. Given that, we extend our Minkowski space study to cosmology and discuss analogies and differences in the physics and in the phenomenology of the Weyl-Maxwell coupling between the aforementioned two physical environments.

  6. Magnetic resonance annual 1986

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1986-01-01

    This book contains papers written on magnetic resonance during 1986. Topics include: musculosketetal magnetic resonance imaging; imaging of the spine; magnetic resonance chemical shift imaging; magnetic resonance imaging in the central nervous system; comparison to computed tomography; high resolution magnetic resonance imaging using surface coils; magnetic resonance imaging of the chest; magnetic resonance imaging of the breast; magnetic resonance imaging of the liver; magnetic resonance spectroscopy of neoplasms; blood flow effects in magnetic resonance imaging; and current and potential applications of clinical sodium magnetic resonance imaging

  7. 1004 RESONANCE November 2013

    Indian Academy of Sciences (India)

    IAS Admin

    1004. RESONANCE │ November 2013. Page 2. 1005. RESONANCE │ November 2013. Page 3. 1006. RESONANCE │ November 2013. Page 4. 1007. RESONANCE │ November 2013. Page 5. 1008. RESONANCE │ November 2013. Page 6. 1009. RESONANCE │ November 2013. Page 7. 1010. RESONANCE ...

  8. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  9. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1980-01-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (author)

  10. Applied neutron resonance theory

    International Nuclear Information System (INIS)

    Froehner, F.H.

    1978-07-01

    Utilisation of resonance theory in basic and applications-oriented neutron cross section work is reviewed. The technically important resonance formalisms, principal concepts and methods as well as representative computer programs for resonance parameter extraction from measured data, evaluation of resonance data, calculation of Doppler-broadened cross sections and estimation of level-statistical quantities from resonance parameters are described. (orig.) [de

  11. Narrow dibaryon resonances

    International Nuclear Information System (INIS)

    Kajdalov, A.B.

    1986-01-01

    Experimental data on np interactions indicating to existence of narrow resonances in pp-system are discussed. Possible theoretical interpretations of these resonances are given. Experimental characteristics of the dibaryon resonances with isospin I=2 are considered

  12. MRI (Magnetic Resonance Imaging)

    Science.gov (United States)

    ... Procedures Medical Imaging MRI (Magnetic Resonance Imaging) MRI (Magnetic Resonance Imaging) Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Magnetic Resonance Imaging (MRI) is a medical imaging procedure for ...

  13. Regenerative feedback resonant circuit

    Science.gov (United States)

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  14. Personnel Preparation.

    Science.gov (United States)

    Fair, George, Ed.; Stodden, Robert, Ed.

    1981-01-01

    Three articles comprise a section on personnel preparation in vocational education. Articles deal with two inservice programs in career/vocational education for the handicapped and a project to train paraprofessionals to assist special educators in vocational education. (CL)

  15. Resonances, resonance functions and spectral deformations

    International Nuclear Information System (INIS)

    Balslev, E.

    1984-01-01

    The present paper is aimed at an analysis of resonances and resonance states from a mathematical point of view. Resonances are characterized as singular points of the analytically continued Lippman-Schwinger equation, as complex eigenvalues of the Hamiltonian with a purely outgoing, exponentially growing eigenfunction, and as poles of the S-matrix. (orig./HSI)

  16. Solution preparation

    International Nuclear Information System (INIS)

    Seitz, M.G.

    1982-01-01

    Reviewed in this statement are methods of preparing solutions to be used in laboratory experiments to examine technical issues related to the safe disposal of nuclear waste from power generation. Each approach currently used to prepare solutions has advantages and any one approach may be preferred over the others in particular situations, depending upon the goals of the experimental program. These advantages are highlighted herein for three approaches to solution preparation that are currently used most in studies of nuclear waste disposal. Discussion of the disadvantages of each approach is presented to help a user select a preparation method for his particular studies. Also presented in this statement are general observations regarding solution preparation. These observations are used as examples of the types of concerns that need to be addressed regarding solution preparation. As shown by these examples, prior to experimentation or chemical analyses, laboratory techniques based on scientific knowledge of solutions can be applied to solutions, often resulting in great improvement in the usefulness of results

  17. Stochastic resonance

    International Nuclear Information System (INIS)

    Wellens, Thomas; Shatokhin, Vyacheslav; Buchleitner, Andreas

    2004-01-01

    We are taught by conventional wisdom that the transmission and detection of signals is hindered by noise. However, during the last two decades, the paradigm of stochastic resonance (SR) proved this assertion wrong: indeed, addition of the appropriate amount of noise can boost a signal and hence facilitate its detection in a noisy environment. Due to its simplicity and robustness, SR has been implemented by mother nature on almost every scale, thus attracting interdisciplinary interest from physicists, geologists, engineers, biologists and medical doctors, who nowadays use it as an instrument for their specific purposes. At the present time, there exist a lot of diversified models of SR. Taking into account the progress achieved in both theoretical understanding and practical application of this phenomenon, we put the focus of the present review not on discussing in depth technical details of different models and approaches but rather on presenting a general and clear physical picture of SR on a pedagogical level. Particular emphasis will be given to the implementation of SR in generic quantum systems-an issue that has received limited attention in earlier review papers on the topic. The major part of our presentation relies on the two-state model of SR (or on simple variants thereof), which is general enough to exhibit the main features of SR and, in fact, covers many (if not most) of the examples of SR published so far. In order to highlight the diversity of the two-state model, we shall discuss several examples from such different fields as condensed matter, nonlinear and quantum optics and biophysics. Finally, we also discuss some situations that go beyond the generic SR scenario but are still characterized by a constructive role of noise

  18. Sample preparation

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Sample preparation prior to HPLC analysis is certainly one of the most important steps to consider in trace or ultratrace analysis. For many years scientists have tried to simplify the sample preparation process. It is rarely possible to inject a neat liquid sample or a sample where preparation may not be any more complex than dissolution of the sample in a given solvent. The last process alone can remove insoluble materials, which is especially helpful with the samples in complex matrices if other interactions do not affect extraction. Here, it is very likely a large number of components will not dissolve and are, therefore, eliminated by a simple filtration process. In most cases, the process of sample preparation is not as simple as dissolution of the component interest. At times, enrichment is necessary, that is, the component of interest is present in very large volume or mass of material. It needs to be concentrated in some manner so a small volume of the concentrated or enriched sample can be injected into HPLC. 88 refs

  19. Pilot-scale electron cyclotron resonance-metal organic chemical vapor deposition system for the preparation of large-area fluorine-doped SnO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Bup Ju [Department of Energy and Environmental Engineering, Shinhan University, 233-1, Sangpae-dong, Dongducheon, Gyeonggi-do 483-777 (Korea, Republic of); Hudaya, Chairul [Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Lee, Joong Kee, E-mail: leejk@kist.re.kr [Center for Energy Convergence, Green City Research Institute, Korea Institute of Science and Technology, Hwarangno 14 gil 5, Seoul 136-791 (Korea, Republic of); Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2016-05-15

    The authors report the surface morphology, optical, electrical, thermal and humidity impacts, and electromagnetic interference properties of fluorine-doped tin oxide (SnO{sub 2}:F or “FTO”) thin films on a flexible polyethylene terephthalate (PET) substrate fabricated by a pilot-scale electron cyclotron resonance–metal organic chemical vapor deposition (PS ECR-MOCVD). The characteristics of large area FTO thin films were compared with a commercially available transparent conductive electrode made of tin-doped indium oxide (ITO), prepared with an identical film and PET thickness of 125 nm and 188 μm, respectively. The results revealed that the as-prepared FTO thin films exhibited comparable performances with the incumbent ITO films, including a high optical transmittance of 97% (substrate-subtracted), low electrical resistivity of about 5 × 10{sup −3} Ω cm, improved electrical and optical performances due to the external thermal and humidity impact, and an excellent shielding effectiveness of electromagnetic interference of nearly 2.3 dB. These excellent performances of the FTO thin films were strongly attributed to the design of the PS ECR-MOCVD, which enabled a uniform plasma environment resulting from a proper mixture of electromagnetic profiles and microwave power.

  20. Photonic devices prepared by embossing in PDMS

    Energy Technology Data Exchange (ETDEWEB)

    Jandura, D., E-mail: jandura@fyzika.uniza.sk; Pudis, D.; Berezina, S.

    2017-02-15

    Highlights: • Fabrication technology of photonic devices based on embossing in PDMS is presented. • Analysis of morphological properties of prepared devices in PDMS by CLSM and AFM. • Spectral characterization of PDMS ring resonator proved the resonator functionality. - Abstract: In this paper, we present useful technique for fabrication of novel photonic devices created in the polydimethylsiloxane (PDMS). We use combination of direct laser writing in thin photoresist layer with embossing process of liquid PDMS. We prepared ring resonator and Mach-Zehnder interferometer in PDMS. The shape of prepared PDMS photonic devices was analyzed by confocal laser microscope and atomic force microscope. Optical characterization of these devices reveals extinction ratios of up to 20 dB.

  1. Radioprotective preparation

    International Nuclear Information System (INIS)

    Stefanova, D.; Frattadochi, A.; Gattavecchia, E.; Ferri, E.; Tonnelli, D.

    1988-01-01

    The invention is intended for radiation injuries prophylaxis in mammals. It has an well expressed radioprotective effect against acute gamma irradiation on cellular level as well as a prolonged action when applied up to 48 hours before the acute irradiation. The preparation is a coprecipitate of the natural tripeptide glutathione (reduced form) and polyvinyl pyrrolidone (pvp) in ratio 30-60/70-40. It is obtained by incubation method with subsequent lyophilization from water solution of the initial components. The molecular mass of the pvp is 20 till 360.10 3 . 2 claims

  2. Target preparation

    International Nuclear Information System (INIS)

    Hinn, G.M.

    1984-01-01

    A few of the more interesting of the 210 targets prepared in the Laboratory last year are listed. In addition the author continues to use powdered silver mixed with /sup 9,10/BeO to produce sources for accelerator radio dating of Alaskan and South Polar snow. Currently, he is trying to increase production by multiple sample processing. Also the author routinely makes 3 μg/cm 2 cracked slacked carbon stripper foils and is continuing research with some degree of success in making enriched 28 Si targets starting with the oxide

  3. Crossing simple resonances

    International Nuclear Information System (INIS)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances

  4. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2014-01-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state

  5. Neutron resonance averaging

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs

  6. Crossing simple resonances

    Energy Technology Data Exchange (ETDEWEB)

    Collins, T.

    1985-08-01

    A simple criterion governs the beam distortion and/or loss of protons on a fast resonance crossing. Results from numerical integrations are illustrated for simple sextupole, octupole, and 10-pole resonances.

  7. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  8. Resonant thermonuclear reaction rate

    International Nuclear Information System (INIS)

    Haubold, H.J.; Mathai, A.M.

    1986-01-01

    Basic physical principles for the resonant and nonresonant thermonuclear reaction rates are applied to find their standard representations for nuclear astrophysics. Closed-form representations for the resonant reaction rate are derived in terms of Meijer's G-function. Analytic representations of the resonant and nonresonant nuclear reaction rates are compared and the appearance of Meijer's G-function is discussed in physical terms

  9. Production and testing of an s-band resonator with a Nb3Sn surface

    International Nuclear Information System (INIS)

    Peiniger, M.

    1983-01-01

    This report describes the preparation of a niobium s-band resonator with Nb3Sn surface using a special vapor phase deposition method. High-frequency superconductivity tests were performed on this resonator. Measurements of transition temperature, penetration depth, energy gap, and temperature dependence of surface conductivity of Nb3Sn, and resonator behaviour at high electrical field strengths are reported. (GSCH)

  10. Quantum mechanical resonances

    International Nuclear Information System (INIS)

    Cisneros S, A.; McIntosh, H.V.

    1982-01-01

    A discussion of the nature of quantum mechanical resonances is presented from the point of view of the spectral theory of operators. In the case of Bohr-Feshbach resonances, graphs are presented to illustrate the theory showing the decay of a doubly excited metastable state and the excitation of the resonance by an incident particle with proper energy. A characterization of resonances is given as well as a procedure to determine widths using the spectral density function. A sufficient condition is given for the validity of the Breit-Wigner formula for Bohr-Feshbach resonances. (author)

  11. Microstrip resonators for electron paramagnetic resonance experiments

    Science.gov (United States)

    Torrezan, A. C.; Mayer Alegre, T. P.; Medeiros-Ribeiro, G.

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5×1010 spins/GHz1/2 despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  12. Microstrip resonators for electron paramagnetic resonance experiments.

    Science.gov (United States)

    Torrezan, A C; Mayer Alegre, T P; Medeiros-Ribeiro, G

    2009-07-01

    In this article we evaluate the performance of an electron paramagnetic resonance (EPR) setup using a microstrip resonator (MR). The design and characterization of the resonator are described and parameters of importance to EPR and spin manipulation are examined, including cavity quality factor, filling factor, and microwave magnetic field in the sample region. Simulated microwave electric and magnetic field distributions in the resonator are also presented and compared with qualitative measurements of the field distribution obtained by a perturbation technique. Based on EPR experiments carried out with a standard marker at room temperature and a MR resonating at 8.17 GHz, the minimum detectable number of spins was found to be 5 x 10(10) spins/GHz(1/2) despite the low MR unloaded quality factor Q0=60. The functionality of the EPR setup was further evaluated at low temperature, where the spin resonance of Cr dopants present in a GaAs wafer was detected at 2.3 K. The design and characterization of a more versatile MR targeting an improved EPR sensitivity and featuring an integrated biasing circuit for the study of samples that require an electrical contact are also discussed.

  13. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  14. Atlas of neutron resonances

    CERN Document Server

    Mughabghab, Said

    2018-01-01

    Atlas of Neutron Resonances: Resonance Properties and Thermal Cross Sections Z= 1-60, Sixth Edition, contains an extensive list of detailed individual neutron resonance parameters for Z=1-60, as well as thermal cross sections, capture resonance integrals, average resonance parameters and a short survey of the physics of thermal and resonance neutrons. The long introduction contains: nuclear physics formulas aimed at neutron physicists; topics of special interest such as valence neutron capture, nuclear level density parameters, and s-, p-, and d-wave neutron strength functions; and various comparisons of measured quantities with the predictions of nuclear models, such as the optical model. As in the last edition, additional features have been added to appeal to a wider spectrum of users. These include: spin-dependent scattering lengths that are of interest to solid-state physicists, nuclear physicists and neutron evaluators; calculated and measured Maxwellian average 5-keV and 30-keV capture cross sections o...

  15. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  16. Electron paramagnetic resonance

    CERN Document Server

    Al'tshuler, S A

    2013-01-01

    Electron Paramagnetic Resonance is a comprehensive text on the field of electron paramagnetic resonance, covering both the theoretical background and the results of experiment. This book is composed of eight chapters that cover theoretical materials and experimental data on ionic crystals, since these are the materials that have been most extensively studied by the methods of paramagnetic resonance. The opening chapters provide an introduction to the basic principles of electron paramagnetic resonance and the methods of its measurement. The next chapters are devoted to the theory of spectra an

  17. Ramifide resonators for cyclotrons

    International Nuclear Information System (INIS)

    Smirnov, Yu.V.

    2000-01-01

    The resonators with the conductors ramified form for cyclotrons are systematized and separated into the self-contained class - the ramified resonators for cyclotrons (Carr). The ramified resonators are compared with the quarter-wave and half-wave nonramified resonators, accomplished from the transmitting lines fragments. The CRR are classified into two types: ones with the additional structural element, switched in parallel and in series. The CRR may include several additional structural elements. The CRR calculations may be concluded by analytical methods - the method of matrix calculation or the method of telegraph equations and numerical methods - by means of the ISFEL3D, MAFIA and other programs [ru

  18. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  19. Electron Paramagnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 11. Electron Paramagnetic Resonance Spectroscopy: Biological Applications. B G Hegde. General Article Volume 20 Issue 11 November 2015 pp 1017-1032. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  1. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  2. Resonance and Fractal Geometry

    NARCIS (Netherlands)

    Broer, Henk W.

    The phenomenon of resonance will be dealt with from the viewpoint of dynamical systems depending on parameters and their bifurcations. Resonance phenomena are associated to open subsets in the parameter space, while their complement corresponds to quasi-periodicity and chaos. The latter phenomena

  3. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  4. Cardiac magnetic resonance imaging

    African Journals Online (AJOL)

    2011-03-06

    Mar 6, 2011 ... Cardiac magnetic resonance imaging. Cardiovascular magnetic resonance imaging is becoming a routine diagnostic technique. BRUCE s sPOTTiswOOdE, PhD. MRC/UCT Medical Imaging Research Unit, University of Cape Town, and Division of Radiology, Stellenbosch University. Bruce Spottiswoode ...

  5. Fundamentals of nanomechanical resonators

    CERN Document Server

    Schmid, Silvan; Roukes, Michael Lee

    2016-01-01

    This authoritative book introduces and summarizes the latest models and skills required to design and optimize nanomechanical resonators, taking a top-down approach that uses macroscopic formulas to model the devices. The authors cover the electrical and mechanical aspects of nano electromechanical system (NEMS) devices. The introduced mechanical models are also key to the understanding and optimization of nanomechanical resonators used e.g. in optomechanics. Five comprehensive chapters address: The eigenmodes derived for the most common continuum mechanical structures used as nanomechanical resonators; The main sources of energy loss in nanomechanical resonators; The responsiveness of micro and nanomechanical resonators to mass, forces, and temperature; The most common underlying physical transduction mechanisms; The measurement basics, including amplitude and frequency noise. The applied approach found in this book is appropriate for engineering students and researchers working with micro and nanomechanical...

  6. Resonant snubber inverter

    Science.gov (United States)

    Lai, Jih-Sheng; Young, Sr., Robert W.; Chen, Daoshen; Scudiere, Matthew B.; Ott, Jr., George W.; White, Clifford P.; McKeever, John W.

    1997-01-01

    A resonant, snubber-based, soft switching, inverter circuit achieves lossless switching during dc-to-ac power conversion and power conditioning with minimum component count and size. Current is supplied to the resonant snubber branches solely by the main inverter switches. Component count and size are reduced by use of a single semiconductor switch in the resonant snubber branches. Component count is also reduced by maximizing the use of stray capacitances of the main switches as parallel resonant capacitors. Resonance charging and discharging of the parallel capacitances allows lossless, zero voltage switching. In one embodiment, circuit component size and count are minimized while achieving lossless, zero voltage switching within a three-phase inverter.

  7. Electron paramagnetic resonance (EPR) biodosimetry

    International Nuclear Information System (INIS)

    Desrosiers, Marc; Schauer, David A.

    2001-01-01

    Radiation-induced electron paramagnetic resonance (EPR) signals were first reported by Gordy et al. [Proc. Natl. Acad. Sci. USA 41 (1955) 983]. The application of EPR spectroscopy to ionizing radiation dosimetry was later proposed by Brady et al. [Health Phys. 15 (1968) 43]. Since that time EPR dosimetry has been applied to accident and epidemiologic dose reconstruction, radiation therapy, food irradiation, quality assurance programs and archaeological dating. Materials that have been studied include bone, tooth enamel, alanine and quartz. This review paper presents the fundamentals and applications of EPR biodosimetry. Detailed information regarding sample collection and preparation, EPR measurements, dose reconstruction, and data analysis and interpretation will be reviewed for tooth enamel. Examples of EPR biodosimetry application in accidental overexposures, radiopharmaceutical dose assessment and retrospective epidemiologic studies will also be presented

  8. Spin resonance with trapped ions

    Energy Technology Data Exchange (ETDEWEB)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E [Institut fuer Laser-Physik, Universitaet Hamburg, Jungiusstrasse 9, 20355 Hamburg (Germany)

    2003-03-14

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped {sup 171}Yb{sup +}, we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states.

  9. Spin resonance with trapped ions

    International Nuclear Information System (INIS)

    Wunderlich, Ch; Balzer, Ch; Hannemann, T; Mintert, F; Neuhauser, W; Reiss, D; Toschek, P E

    2003-01-01

    A modified ion trap is described where experiments (in particular related to quantum information processing) that usually require optical radiation can be carried out using microwave or radio frequency electromagnetic fields. Instead of applying the usual methods for coherent manipulation of trapped ions, a string of ions in such a modified trap can be treated like a molecule in nuclear magnetic resonance experiments taking advantage of spin-spin coupling. The collection of trapped ions can be viewed as an N-qubit molecule with adjustable spin-spin coupling constants. Given N identically prepared quantum mechanical two-level systems (qubits), the optimal strategy to estimate their quantum state requires collective measurements. Using the ground state hyperfine levels of electrodynamically trapped 171 Yb + , we have implemented an adaptive algorithm for state estimation involving sequential measurements on arbitrary qubit states

  10. Obtenção de nanocompósito de EVA/sílica e caracterização por ressonância magnética nuclear no estado sólido Preparation of EVA/silica nanocomposites characterized with solid state nuclear magnetic resonance

    Directory of Open Access Journals (Sweden)

    Adriano A. Passos

    2011-01-01

    Full Text Available Nanocompósitos a base de poli(etileno-co-acetato de vinila (EVA e óxido de sílica (SiO2, com tamanho nanométrico da ordem de 40 nm, foram preparados via intercalação por solução, empregando clorofórmio como solvente. Os nanocompósitos foram caracterizados principalmente pela espectroscopia de ressonância magnética nuclear (RMN, empregando a análise dos núcleos de carbono-13 (matriz polimérica; silício-29 (nanopartícula e pela determinação do tempo de relaxação spin-rede do núcleo de hidrogênio no eixo rotatório (T1rH (matriz polimérica. Pelos dados de RMN foi observado que até cerca de 5% de sílica em massa obteve-se um nanocompósito polimérico com boa dispersão da sílica devido a uma forte interação entre a sílica e matriz de EVA.Nanocomposites of poly(ethylene-co-vinyl acetate/silica (SiO2 with dimensions of ca. 40 nm were prepared via solution intercalation employing chloroform as a solvent. They were mainly characterized with nuclear magnetic resonance spectroscopy (NMR employing carbon-13 (polymeric matrix, silicon-29 (nanoparticles and through the determination of the proton spin-lattice relaxation time in the rotating frame (T1rH (polymer matrix. From the NMR results it was inferred that up to 5% of silica in mass a well dispersed nanocomposite was obtained, owing to a strong interaction between silica and the EVA matrix.

  11. Advances in magnetic resonance 10

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 10, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters that examine superoperators in magnetic resonance; ultrasonically modulated paramagnetic resonance; and the utility of electron paramagnetic resonance (EPR) and electron-nuclear double-resonance (ENDOR) techniques for studying low-frequency modes of atomic fluctuations and their significance for understanding the mechanism of structural phase transitions in solids.

  12. Multiple photon resonances

    International Nuclear Information System (INIS)

    Elliott, C.J.; Feldman, B.J.

    1979-02-01

    A detailed theoretical analysis is presented of the interaction of intense near-resonant monochromatic radiation with an N-level anharmonic oscillator. In particular, the phenomenon of multiple photon resonance, the process by which an N-level system resonantly absorbs two or more photons simultaneously, is investigated. Starting from the Schroedinger equation, diagrammatic techniques are developed that allow the resonant process to be analyzed quantitatively, in analogy with well-known two-level coherent phenomena. In addition, multiple photon Stark shifts of the resonances, shifts absent in two-level theory, are obtained from the diagrams. Insights into the nature of multiple photon resonances are gained by comparing the quantum mechanical system with classical coupled pendulums whose equations of motion possess identical eigenvalues and eigenvectors. In certain limiting cases, including that of the resonantly excited N-level harmonic oscillator and that of the equally spaced N-level system with equal matrix elements, analytic results are derived. The influence of population relaxation and phase-disrupting collisions on the multiple photon process are also analyzed, the latter by extension of the diagrammatic technique to the density matrix equations of motion. 11 figures

  13. Properties of spiral resonators

    International Nuclear Information System (INIS)

    Haeuser, J.

    1989-10-01

    The present thesis deals with the calculation and the study of the application possibilities of single and double spiral resonators. The main aim was the development and the construction of reliable and effective high-power spiral resonators for the UNILAC of the GSI in Darmstadt and the H - -injector for the storage ring HERA of DESY in Hamburg. After the presentation of the construction and the properties of spiral resonators and their description by oscillating-circuit models the theoretical foundations of the bunching are presented and some examples of a rebuncher and debuncher and their influence on the longitudinal particle dynamics are shown. After the description of the characteristic accelerator quantities by means of an oscillating-circuit model and the theory of an inhomogeneous λ/4 line it is shown, how the resonance frequency and the efficiency of single and double spiral resonators can be calculated from the geometrical quantities of the structure. In the following the dependence of the maximal reachable resonator voltage in dependence on the gap width and the surface of the drift tubes is studied. Furthermore the high-power resonators are presented, which were built for the different applications for the GSI in Darmstadt, DESY in Hamburg, and for the FOM Institute in Amsterdam. (orig./HSI) [de

  14. Magnetic Resonance Force Microscopy System

    Data.gov (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  15. Resonant power converters

    CERN Document Server

    Kazimierczuk, Marian K

    2012-01-01

    This book is devoted to resonant energy conversion in power electronics. It is a practical, systematic guide to the analysis and design of various dc-dc resonant inverters, high-frequency rectifiers, and dc-dc resonant converters that are building blocks of many of today's high-frequency energy processors. Designed to function as both a superior senior-to-graduate level textbook for electrical engineering courses and a valuable professional reference for practicing engineers, it provides students and engineers with a solid grasp of existing high-frequency technology, while acquainting them wit

  16. Excitation of Nucleon Resonances

    International Nuclear Information System (INIS)

    Burkert, Volker D.

    2001-01-01

    I discuss developments in the area of nucleon resonance excitation, both necessary and feasible, that would put our understanding of nucleon structure in the regime of strong QCD on a qualitatively new level. They involve the collection of high quality data in various channels, a more rigorous approach in the search for ''missing'' resonances, an effort to compute some critical quantities in nucleon resonance excitations from first principles, i.e. QCD, and a proposal focused to obtain an understanding of a fundamental quantity in nucleon structure

  17. Dihadronic and dileptonic resonances

    International Nuclear Information System (INIS)

    Gareev, F.A.; Barabanov, M.Yu.; Kazacha, G.S.

    1997-01-01

    Simple phenomenological rules are suggested for calculation of dihadron and dilepton resonance masses. A general interpretation is given for different exotic resonances in nuclear physics: Darmstadt-effect, dibaryon, dipion and other resonances. Information about the inner structure of e ± , proton, neutron, pions and so on can be obtained from the usual reactions of the type e + + e - =>γγ, e ± +γ=>e ± γ, e ± μ ± , e ± N... at low, intermediate and high energies using existing experimental devices

  18. Multiquark resonant states

    International Nuclear Information System (INIS)

    Shahbazian, B.A.

    1982-01-01

    The invariant mass spectra of forty nine hadronic systems with hypercharge, strangeness and baryon number, varied in wide limits have been studied. Resonance peaks have been found in the invariant mass spectra of Y 2 and #betta#pπ 2495 MeV/c 2 resonant states. Three more candidates for anti qq 4 states were found #bettaπ# + π + : 1705, 2072, 2605 MeV/c 2 . The masses of all these candidates are in good agreement with Bag Model predictions. A hypercharge selection rule is suggested: ''The hypercharge of hadronic resonances in weak gravitational fields cannot exceed one Y <= 1

  19. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  20. Writing with resonance

    DEFF Research Database (Denmark)

    Meier, Ninna; Wegener, Charlotte

    2017-01-01

    In this article, we explore what organization and management scholars can do to write with resonance and to facilitate an emotional, bodily, or in other ways sensory connection between the text and the reader. We propose that resonance can be relevant for organization and management scholars in two......, and thus bring forward the field of research in question. We propose that writing with resonance may be a way to further the impact of academic work by extending the modalities with which our readers can relate to and experience our work....

  1. Doubly resonant multiphoton ionization

    International Nuclear Information System (INIS)

    Crance, M.

    1978-01-01

    A particular case of doubly resonant multiphoton ionization is theoretically investigated. More precisely, two levels quasi-resonant with two successive harmonics of the field frequency are considered. The method used is based on the effective operator formalism first introduced for this problem by Armstrong, Beers and Feneuille. The main result is to show the possibility of observing large interference effects on the width of the resonances. Moreover this treatment allows us to make more precise the connection between effective operator formalism and standard perturbation theory

  2. An automatic method for detection and classification of Ionospheric Alfvén Resonances using signal and image processing techniques

    Science.gov (United States)

    Beggan, Ciaran

    2014-05-01

    Induction coils permit us to measure the very rapid changes of the magnetic field. In June 2012, the British Geological Survey Geomagnetism team installed two high frequency (100 Hz) induction coil magnetometers at the Eskdalemuir Observatory (55.3° N, 3.2° W, L~3), in the Scottish Borders of the United Kingdom. The Eskdalemuir Observatory is one of the longest running geophysical sites in the UK (beginning operation in 1908) and is located in a rural valley with a quiet magnetic environment. The coils record magnetic field changes over an effective frequency range of about 0.1-40Hz, and encompass phenomena such as the Schumann resonances, magnetospheric pulsations and Ionospheric Alfvén Resonances (IAR). In this study we focus on the IAR, which are related to the vibration of magnetic field lines passing through the ionosphere, believed to be mainly excited by lower atmospheric electrical discharges. The IAR typically manifest as a series of spectral resonances structures (SRS) within the 1-6Hz frequency range, usually appearing a fine bands or fringes in spectrogram plots. The SRS tend to occur daily between 18.00-06.00UT at the Eskdalemuir site, disappearing during the daylight hours. They usually start as a single low frequency before bifurcating into 5-10 separate fringes, increasing in frequency until around midnight. The fringes also widen in frequency before fading around 06.00UT. Occasionally, the fringes decrease in frequency slightly around 03.00UT before fading. In order to quantify the daily, seasonal and annual changes of the SRS, we developed a new method to identify the fringes and to quantify their occurrence in frequency (f) and the change in frequency (Δf). The method uses short time-series of 100 seconds to produce an FFT spectral plot from which the non-stationary peaks are identified using the residuals from a best-fit six order spline. This is repeated for an entire day of data. The peaks from each time-slice are placed into a matrix

  3. Advanced resonance self-shielding method for gray resonance treatment in lattice physics code GALAXY

    International Nuclear Information System (INIS)

    Koike, Hiroki; Yamaji, Kazuya; Kirimura, Kazuki; Sato, Daisuke; Matsumoto, Hideki; Yamamoto, Akio

    2012-01-01

    A new resonance self-shielding method based on the equivalence theory is developed for general application to the lattice physics calculations. The present scope includes commercial light water reactor (LWR) design applications which require both calculation accuracy and calculation speed. In order to develop the new method, all the calculation processes from cross-section library preparation to effective cross-section generation are reviewed and reframed by adopting the current enhanced methodologies for lattice calculations. The new method is composed of the following four key methods: (1) cross-section library generation method with a polynomial hyperbolic tangent formulation, (2) resonance self-shielding method based on the multi-term rational approximation for general lattice geometry and gray resonance absorbers, (3) spatially dependent gray resonance self-shielding method for generation of intra-pellet power profile and (4) integrated reaction rate preservation method between the multi-group and the ultra-fine-group calculations. From the various verifications and validations, applicability of the present resonance treatment is totally confirmed. As a result, the new resonance self-shielding method is established, not only by extension of a past concentrated effort in the reactor physics research field, but also by unification of newly developed unique and challenging techniques for practical application to the lattice physics calculations. (author)

  4. Preparing for Surgery

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Preparing for Surgery Home For Patients Search FAQs Preparing for Surgery ... Surgery FAQ080, August 2011 PDF Format Preparing for Surgery Gynecologic Problems What is the difference between outpatient ...

  5. Evaluation of stable tungsten isotopes in the resolved resonance region

    Directory of Open Access Journals (Sweden)

    Schillebeeckx P.

    2013-03-01

    Full Text Available In the last decade benchmark experiments and simulations, together with newly obtained neutron cross section data, have pointed out deficiencies in evaluated data files of W isotopes. The role of W as a fundamental structural material in different nuclear applications fully justifies a new evaluation of 182, 183, 184, 186W neutron resonance parameters. In this regard transmission and capture cross section measurements on natural and enriched tungsten samples were performed at the GELINA facility of the EC-JRC-IRMM. A resonance parameter file used as input in the resonance shape analysis was prepared based on the available literature and adjusted in first instance to transmission data.

  6. Magnetic Resonance (MR) Defecography

    Science.gov (United States)

    ... to a CD or uploaded to a digital cloud server. Magnetic resonance (MR) defecography is a special ... with you. top of page What are the benefits vs. risks? Benefits MR defecography helps assess pelvic ...

  7. Quantum Proximity Resonances

    International Nuclear Information System (INIS)

    Heller, E.J.

    1996-01-01

    It is well known that at long wavelengths λ an s-wave scatterer can have a scattering cross section σ on the order of λ 2 , much larger than its physical size, as measured by the range of its potential. Very interesting phenomena can arise when two or more identical scatterers are placed close together, well within one wavelength. We show that, for a pair of identical scatterers, an extremely narrow p-wave open-quote open-quote proximity close-quote close-quote resonance develops from a broader s-wave resonance of the individual scatterers. A new s-wave resonance of the pair also appears. The relation of these proximity resonances (so called because they appear when the scatterers are close together) to the Thomas and Efimov effects is discussed. copyright 1996 The American Physical Society

  8. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others

    2016-04-15

    We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  9. Magnetic resonance angiography (MRA)

    International Nuclear Information System (INIS)

    Arlart, I.P.; Guhl, L.

    1992-01-01

    An account is given in this paper of the physical and technical principles underlying the 'time-of-flight' technique for imaging of vessels by magnetic resonance tomography. Major indications for the new procedure of magnetic resonance angiography at present are intracerebral and extracerebral vessels, with digital subtraction angiography quite often being required to cope with minor alterations (small aneurysms, small occlusions). Magnetic resonance angiography and digital subtraction angiography are compared to each other for advantages and disadvantages. Basically, replacement of radiological angiography by magnetic resonance angiography appears to be possible only within limits, since X-ray diagnostics primarily provides morphological information about vessels, whereas flow dynamics is visualized by the 'time-of-flight' technique. (orig.) [de

  10. Magnetic Resonance Cholangiopancreatography (MRCP)

    Science.gov (United States)

    ... radio waves and a computer to evaluate the liver, gallbladder, bile ducts, pancreas and pancreatic duct for disease. It is ... of the hepatobiliary and pancreatic systems, including the liver, gallbladder, bile ducts, pancreas and pancreatic duct . Magnetic resonance imaging (MRI) ...

  11. Piezoelectric MEMS resonators

    CERN Document Server

    Piazza, Gianluca

    2017-01-01

    This book introduces piezoelectric microelectromechanical (pMEMS) resonators to a broad audience by reviewing design techniques including use of finite element modeling, testing and qualification of resonators, and fabrication and large scale manufacturing techniques to help inspire future research and entrepreneurial activities in pMEMS. The authors discuss the most exciting developments in the area of materials and devices for the making of piezoelectric MEMS resonators, and offer direct examples of the technical challenges that need to be overcome in order to commercialize these types of devices. Some of the topics covered include: Widely-used piezoelectric materials, as well as materials in which there is emerging interest Principle of operation and design approaches for the making of flexural, contour-mode, thickness-mode, and shear-mode piezoelectric resonators, and examples of practical implementation of these devices Large scale manufacturing approaches, with a focus on the practical aspects associate...

  12. Lattices of dielectric resonators

    CERN Document Server

    Trubin, Alexander

    2016-01-01

    This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the  expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas  and lattices of d...

  13. Resonances in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram

    2016-04-01

    We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.

  14. Accidental degeneracy of resonances

    International Nuclear Information System (INIS)

    Hernandez, E.; Mondragon, A.; Jauregui, A.

    2001-01-01

    Full text: It will be shown that a degeneracy of resonances is associated with a second rank pole in the scattering matrix and a Jordan cycle of generalized eigenfunctions of the radial Schrodinger equation. The generalized Gamow-Jordan eigenfunctions are basis elements of an expansion in complex resonance energy eigenfunctions. In this orthonormal basis, the Hamiltonian is represented by a non-diagonal complex matrix with a Jordan block of rank two. Some general properties of the degeneracy of resonances will be exhibited and discussed in an explicit example of degeneracy of resonant states and double poles in the scattering matrix of a double barrier potential. The cross section, scattering wave functions and Jordan-Gamow eigenfunctions are computed at degeneracy and their properties as functions of the control parameters of the system are discussed. (Author)

  15. Resonant diphoton phenomenology simplified

    International Nuclear Information System (INIS)

    Panico, Giuliano; Vecchi, Luca; Wulzer, Andrea

    2016-01-01

    A framework is proposed to describe resonant diphoton phenomenology at hadron colliders in full generality. It can be employed for a comprehensive model-independent interpretation of the experimental data. Within the general framework, few benchmark scenarios are defined as representative of the various phenomenological options and/or of motivated new physics scenarios. Their usage is illustrated by performing a characterization of the 750 GeV excess, based on a recast of available experimental results. We also perform an assessment of which properties of the resonance could be inferred, after discovery, by a careful experimental study of the diphoton distributions. These include the spin J of the new particle and its dominant production mode. Partial information on its CP-parity can also be obtained, but only for J≥2. The complete determination of the resonance CP properties requires studying the pattern of the initial state radiation that accompanies the resonant diphoton production.

  16. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  17. Magnetic resonance angiography

    Science.gov (United States)

    ... Saunders; 2015:chap 17. Litt H, Carpenter JP. Magnetic resonance imaging. In: Cronenwett JL, Johnston KW, eds. Rutherford's Vascular Surgery . 8th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap ...

  18. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  19. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Robertson, Angus

    1990-01-01

    An assessment is made of the clinical benefits of expensive diagnostic technology, such as the magnetic resonance imaging. It is concluded that to most radiologists, magnetic resonance imaging has a definite place in the diagnostic scenario, especially for demonstrating central nervous system lesions in multiple sclerosis. While it is recognized that medical and financial resources are limited, it is emphasised that the cost to society must be balanced against the patient benefit. 17 refs

  20. Comment on resonant absorption

    International Nuclear Information System (INIS)

    Hammerling, P.

    1977-01-01

    An average over angles of incidence of the usual resonant absorption function is presented. This form is appropriate under experimental conditions where the angles of incidence vary greatly and in an unknown manner. For comparison a lens-ellipsoidal mirror illumination system with a known longitudinal aberration is considered. In the latter example the angles of incidence are readily obtained and the resulting resonance absorption function evaluated. The associated fields are calculated in a similar fashion. (author)

  1. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  2. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications

  3. Resonance phenomena near thresholds

    International Nuclear Information System (INIS)

    Persson, E.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1995-12-01

    The trapping effect is investigated close to the elastic threshold. The nucleus is described as an open quantum mechanical many-body system embedded in the continuum of decay channels. An ensemble of compound nucleus states with both discrete and resonance states is investigated in an energy-dependent formalism. It is shown that the discrete states can trap the resonance ones and also that the discrete states can directly influence the scattering cross section. (orig.)

  4. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  5. Resonance probe; La sonde a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)

  6. Resonant enhancement in leptogenesis

    Science.gov (United States)

    Dev, P. S. B.; Garny, M.; Klaric, J.; Millington, P.; Teresi, D.

    2018-02-01

    Vanilla leptogenesis within the type I seesaw framework requires the mass scale of the right-handed neutrinos to be above 109 GeV. This lower bound can be avoided if at least two of the sterile states are almost mass degenerate, which leads to an enhancement of the decay asymmetry. Leptogenesis models that can be tested in current and upcoming experiments often rely on this resonant enhancement, and a systematic and consistent description is therefore necessary for phenomenological applications. In this paper, we give an overview of different methods that have been used to study the saturation of the resonant enhancement when the mass difference becomes comparable to the characteristic width of the Majorana neutrinos. In this limit, coherent flavor transitions start to play a decisive role, and off-diagonal correlations in flavor space have to be taken into account. We compare various formalisms that have been used to describe the resonant regime and discuss under which circumstances the resonant enhancement can be captured by simplified expressions for the CP asymmetry. Finally, we briefly review some of the phenomenological aspects of resonant leptogenesis.

  7. Resonant ultrasound spectrometer

    Science.gov (United States)

    Migliori, Albert; Visscher, William M.; Fisk, Zachary

    1990-01-01

    An ultrasound resonant spectrometer determines the resonant frequency spectrum of a rectangular parallelepiped sample of a high dissipation material over an expected resonant response frequency range. A sample holder structure grips corners of the sample between piezoelectric drive and receive transducers. Each transducer is mounted on a membrane for only weakly coupling the transducer to the holder structure and operatively contacts a material effective to remove system resonant responses at the transducer from the expected response range. i.e., either a material such as diamond to move the response frequencies above the range or a damping powder to preclude response within the range. A square-law detector amplifier receives the response signal and retransmits the signal on an isolated shield of connecting cabling to remove cabling capacitive effects. The amplifier also provides a substantially frequency independently voltage divider with the receive transducer. The spectrometer is extremely sensitive to enable low amplitude resonance to be detected for use in calculating the elastic constants of the high dissipation sample.

  8. Electrothermally Tunable Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2017-03-18

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of electrothermally actuated microelectromechanical arch beams. The beams are made of silicon and are intentionally fabricated with some curvature as in-plane shallow arches. An electrothermal voltage is applied between the anchors of the beam generating a current that controls the axial stress caused by thermal expansion. When the electrothermal voltage increases, the compressive stress increases inside the arch beam. This leads to an increase in its curvature, thereby increasing its resonance frequencies. We show here that the first resonance frequency can increase monotonically up to twice its initial value. We show also that after some electrothermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches as wide-range tunable resonators. Analytical results based on the nonlinear Euler Bernoulli beam theory are generated and compared with the experimental data and the results of a multi-physics finite-element model. A good agreement is found among all the results. [2016-0291

  9. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  10. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Alcheikh, Nouha; Ramini, Abdallah; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2016-01-01

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  11. Electrothermally Tunable Bridge Resonator

    KAUST Repository

    Hajjaj, Amal Z.

    2016-12-05

    This paper demonstrates experimentally, theoretically, and numerically a wide-range tunability of an in-plane clamped-clamped microbeam, bridge, and resonator compressed by a force due to electrothermal actuation. We demonstrate that a single resonator can be operated at a wide range of frequencies. The microbeam is actuated electrothermally, by passing a DC current through it. We show that when increasing the electrothermal voltage, the compressive stress inside the microbeam increases, which leads eventually to its buckling. Before buckling, the fundamental frequency decreases until it drops to very low values, almost to zero. After buckling, the fundamental frequency increases, which is shown to be as high as twice the original resonance frequency. Analytical results based on the Galerkin discretization of the Euler Bernoulli beam theory are generated and compared to the experimental data and to simulation results of a multi-physics finite-element model. A good agreement is found among all the results.

  12. Higgs-photon resonances

    Energy Technology Data Exchange (ETDEWEB)

    Dobrescu, Bogdan A.; Fox, Patrick J.; Kearney, John [Fermilab, Theoretical Physics Department, Batavia, IL (United States)

    2017-10-15

    We study models that produce a Higgs boson plus photon (h{sup 0}γ) resonance at the LHC. When the resonance is a Z{sup '} boson, decays to h{sup 0}γ occur at one loop. If the Z{sup '} boson couples at tree level to quarks, then the h{sup 0}γ branching fraction is typically of order 10{sup -5} or smaller. Nevertheless, there are models that would allow the observation of Z{sup '} → h{sup 0}γ at √(s) = 13 TeV with a cross section times branching fraction larger than 1 fb for a Z{sup '} mass in the 200-450 GeV range, and larger than 0.1 fb for a mass up to 800 GeV. The one-loop decay of the Z{sup '} into lepton pairs competes with h{sup 0}γ, even if the Z{sup '} couplings to leptons vanish at tree level. We also present a model in which a Z{sup '} boson decays into a Higgs boson and a pair of collimated photons, mimicking an h{sup 0}γ resonance. In this model, the h{sup 0}γ resonance search would be the discovery mode for a Z{sup '} as heavy as 2 TeV. When the resonance is a scalar, although decay to h{sup 0}γ is forbidden by angular momentum conservation, the h{sup 0} plus collimated photons channel is allowed. We comment on prospects of observing an h{sup 0}γ resonance through different Higgs decays, on constraints from related searches, and on models where h{sup 0} is replaced by a nonstandard Higgs boson. (orig.)

  13. Magnetic resonance annual, 1988

    International Nuclear Information System (INIS)

    Kressel, H.Y.

    1987-01-01

    This book features reviews of high-resolution MRI of the knee, MRI of the normal and ischmeic hip, MRI of the heart, and temporomandibular joint imaging, as well as thorough discussion on artifacts in magnetic resonance imaging. Contributors consider the clinical applications of gadolinium-DTPA in magnetic resonance imaging and the clinical use of partial saturation and saturation recovery sequences. Timely reports assess the current status of rapid MRI and describe a new rapid gated cine MRI technique. Also included is an analysis of cerebrospinal fluid flow effects during MRI of the central nervous system

  14. Acoustic Fano resonators

    KAUST Repository

    Amin, Muhammad

    2014-07-01

    The resonances with asymmetric Fano line-shapes were originally discovered in the context of quantum mechanics (U. Fano, Phys. Rev., 124, 1866-1878, 1961). Quantum Fano resonances were generated from destructive interference of a discrete state with a continuum one. During the last decade this concept has been applied in plasmonics where the interference between a narrowband polariton and a broader one has been used to generate electromagnetically induced transparency (EIT) (M. Rahmani, et al., Laser Photon. Rev., 7, 329-349, 2013).

  15. Giant nuclear resonances

    International Nuclear Information System (INIS)

    Snover, K.A.

    1989-01-01

    Giant nuclear resonances are elementary mods of oscillation of the whole nucleus, closely related to the normal modes of oscillation of coupled mechanical systems. They occur systematically in most if not all nuclei, with oscillation energies typically in the range 10-30 MeV. One of the best - known examples is the giant electric dipole (El) resonance, in which all the protons and all the neutrons oscillate with opposite phase, producing a large time - varying electric dipole moment which acts as an effective antenna for radiating gamma ray. This paper discusses this mode as well as quadrupole and monopole modes

  16. Nanoantenna using mechanical resonance

    KAUST Repository

    Chang Hwa Lee,

    2010-11-01

    Nanoantenna using mechanical resonance vibration is made from an indium tin oxide (ITO) coated vertically aligned nanorod array. Only this structure works as a radio with demodulator without any electrical circuit using field emission phenomenon. A top-down fabrication method of an ITO coated nanorod array is proposed using a modified UV lithography. The received radio frequency and the resonance frequency of nanoantenna can be controlled by the fabrication condition through the height of a nanorod array. The modulated signals are received successfully with the transmission carrier wave frequency (248MHz) and the proposed nanoantenna is expected to be used in communication system for ultra small scale sensor. ©2010 IEEE.

  17. Resonant freak microwaves

    International Nuclear Information System (INIS)

    Aguiar, F.M. de

    2011-01-01

    The Helmholtz equation describing transverse magnetic modes in a closed flat microwave resonator with 60 randomly distributed discs is numerically solved. At lower frequencies, the calculated wave intensity spatially distributed obeys the universal Porter-Thomas form if localized modes are excluded. A superposition of resonant modes is shown to lead to rare events of extreme intensities (freak waves) at localized 'hot spots'. The temporally distributed intensity of such a superposition at the center of a hot spot also follows the Porter-Thomas form. Branched modes are found at higher frequencies. The results bear resemblance to recent experiments reported in an open cavity.

  18. Physics of Sports: Resonances

    Science.gov (United States)

    Browning, David

    2000-04-01

    When force is applied by an athlete to sports equipment resonances can occur. Just a few examples are: the ringing of a spiked volleyball, the strumming of a golf club shaft during a swing, and multiple modes induced in an aluminum baseball bat when striking a ball. Resonances produce acoustic waves which, if conditions are favorable, can be detected off the playing field. This can provide a means to evaluate athletic performance during game conditions. Results are given from the use of a simple hand-held acoustic detector - by a spectator sitting in the stands - to determine how hard volleyballs were spiked during college and high school games.

  19. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  20. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 3. Preparing for the Transit of Venus. N Rathnasree Sanat Kumar. Classroom Volume 9 Issue 3 March 2004 pp 65-75. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/03/0065-0075. Keywords.

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Fire Synthesis - Preparation of Alumina Products. Tanu Mimani. Volume 16 Issue 12 December 2011 ... Author Affiliations. Tanu Mimani1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.

  2. Uncertainty quantification in resonance absorption

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2012-01-01

    We assess the uncertainty in the resonance escape probability due to uncertainty in the neutron and radiation line widths for the first 21 resonances in 232 Th as given by . Simulation, quadrature and polynomial chaos methods are used and the resonance data are assumed to obey a beta distribution. We find the uncertainty in the total resonance escape probability to be the equivalent, in reactivity, of 75–130 pcm. Also shown are pdfs of the resonance escape probability for each resonance and the variation of the uncertainty with temperature. The viability of the polynomial chaos expansion method is clearly demonstrated.

  3. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  4. Imaging by magnetic resonance

    International Nuclear Information System (INIS)

    Duroure, J.F.; Serpolay, H.; Vallens, D.

    1995-01-01

    Here are described the advanced technology for nuclear magnetic resonance imaging: reduction of acquisition times, and rebuilding times, images quality improvement. The tendency is to open the machines at low and middle field, on a market being at 10% of NMR I sales, with economical, scientifical and ergonomic reasons broadly developed by constructors

  5. Neutron resonance spectroscopy

    International Nuclear Information System (INIS)

    Gunsing, F.

    2005-06-01

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  6. Neutron resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gunsing, F

    2005-06-15

    The present document has been written in order to obtain the diploma 'Habilitation a Diriger des Recherches'. Since this diploma is indispensable to supervise thesis students, I had the intention to write a document that can be useful for someone starting in the field of neutron resonance spectroscopy. Although the here described topics are already described elsewhere, and often in more detail, it seemed useful to have most of the relevant information in a single document. A general introduction places the topic of neutron-nucleus interaction in a nuclear physics context. The large variations of several orders of magnitude in neutron-induced reaction cross sections are explained in terms of nuclear level excitations. The random character of the resonances make nuclear model calculation predictions impossible. Then several fields in physics where neutron-induced reactions are important and to which I have contributed in some way or another, are mentioned in a first synthetic chapter. They concern topics like parity nonconservation in certain neutron resonances, stellar nucleosynthesis by neutron capture, and data for nuclear energy applications. The latter item is especially important for the transmutation of nuclear waste and for alternative fuel cycles. Nuclear data libraries are also briefly mentioned. A second chapter details the R-matrix theory. This formalism is the foundation of the description of the neutron-nucleus interaction and is present in all fields of neutron resonance spectroscopy. (author)

  7. Magnetic resonance fingerprinting.

    Science.gov (United States)

    Ma, Dan; Gulani, Vikas; Seiberlich, Nicole; Liu, Kecheng; Sunshine, Jeffrey L; Duerk, Jeffrey L; Griswold, Mark A

    2013-03-14

    Magnetic resonance is an exceptionally powerful and versatile measurement technique. The basic structure of a magnetic resonance experiment has remained largely unchanged for almost 50 years, being mainly restricted to the qualitative probing of only a limited set of the properties that can in principle be accessed by this technique. Here we introduce an approach to data acquisition, post-processing and visualization--which we term 'magnetic resonance fingerprinting' (MRF)--that permits the simultaneous non-invasive quantification of multiple important properties of a material or tissue. MRF thus provides an alternative way to quantitatively detect and analyse complex changes that can represent physical alterations of a substance or early indicators of disease. MRF can also be used to identify the presence of a specific target material or tissue, which will increase the sensitivity, specificity and speed of a magnetic resonance study, and potentially lead to new diagnostic testing methodologies. When paired with an appropriate pattern-recognition algorithm, MRF inherently suppresses measurement errors and can thus improve measurement accuracy.

  8. Neutron resonance absorption theory

    International Nuclear Information System (INIS)

    Reuss, P.

    1991-11-01

    After some recalls on the physics of neutron resonance absorption during their slowing down, this paper presents the main features of the theoretical developments performed by the french school of reactor physics: the effective reaction rate method so called Livolant-Jeanpierre theory, the generalizations carried out by the author, and the probability table method [fr

  9. Resonance charge exchange processes

    International Nuclear Information System (INIS)

    Duman, E.L.; Evseev, A.V.; Eletskij, A.V.; Radtsig, A.A.; Smirnov, B.M.

    1979-01-01

    The calculation results for the resonance charge exchange cross sections for positive and negative atomic and molecular ions are given. The calculations are performed on the basis of the asymptotic theory. The factors affecting the calculation accuracy are analysed. The calculation data for 28 systems are compared with the experiment

  10. Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  11. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    Magnetic resonance imaging (MRI) is a new and innovative technique that affords anatomic images in multiple planes and that may provide information about tissue characterization. The magnetic resonance images are obtained by placing the patient or the area of interest within a powerful, highly uniform, static magnetic field. Magnetized protons (hydrogen nuclei) within the patient align like small magnets in this field. Radiofrequency pulses are then used to create an oscillating magnetic field perpendicular to the main field. Magnetic resonance images differ from those produced by x-rays: the latter are associated with absorption of x-ray energy while magnetic resonance images are based on proton density and proton relaxation dynamics. Proton characteristics vary according to the tissue under examination and reflect its physical and chemical properties. To resolve issues regarding safety and efficacy, the Warren Grant Magnuson Clinical Center and the Office of Medical Applications of Research of the National Institutes of Health (NIH) convened a consensus conference about MRI Oct 26 through 28, 1987. At the NIH, the Consensus Development Conference brings together investigators in the biomedical sciences, clinical investigators, practicing physicians, and consumer and special interest groups to make a scientific assessment of technologies, including drugs, devices, and procedures, and to seek agreement on their safety and effectiveness

  12. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  13. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  14. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  15. Isotopic effect giant resonances

    International Nuclear Information System (INIS)

    Buenerd, M.; Lebrun, D.; Martin, P.; Perrin, G.; Saintignon, P. de; Chauvin, J.; Duhamel, G.

    1981-10-01

    The systematics of the excitation energy of the giant dipole, monopole, and quadrupole resonances are shown to exhibit an isotopic effect. For a given element, the excitation energy of the transition decreases faster with the increasing neutron number than the empirical laws fitting the overall data. This effect is discussed in terms of the available models

  16. Magnetostatic wave tunable resonators

    Science.gov (United States)

    Castera, J.-P.; Hartemann, P.

    1983-06-01

    Theoretical principles and techniques for the implementation of magnetostatic surface wave and volume wave resonators in high frequency oscillators are discussed. Magnetostatic waves are magnetic waves that propagate in materials exposed to a polarized magnetic field. The propagation speed ranges from 3-300 km/sec for wavelengths between 1 micron and 10 mm, in the presence of lags from 10-1000 nsec/ cm. Tunable resonators in the 1-20 GHz frequency range have been manufactured with YIG using liquid phase epitaxy for deposition on gadolinium and gallium substrates. Distributed-mirror Fabry-Perot cavity resonators are described and performance tests results are reported, including losses of 8 dB, a quality coefficient under voltage of 450, and frequency rejection outside of resonance better than 10 dB. However, saturation occurs at low power levels at frequencies lower than 4.2 GHz, a feature overcome with forward volume magnetostatic wave generators, which have a quality factor of 500, an insertion loss of 22 dB, and rejection around 15 dB.

  17. Proton resonance spectroscopy

    International Nuclear Information System (INIS)

    Shriner, J.F. Jr.

    1991-11-01

    This report discusses the following topics: Complete Level Scheme for 30 P; A Search for Resonances Suitable for Tests of Detailed-Balance Violation; The Fourier Transform as a Tool for Detecting Chaos; Entrance Channel Correlations in p + 27 Al; The Parity Dependence of Level Densities in 49 V; and A Computer Program for the Calculation of Angular Momentum Coupling

  18. Screening Resonances In Plasmas

    International Nuclear Information System (INIS)

    Winkler, P.

    1998-01-01

    When it was suggested that a new recombination mechanism (Resonant Radiative Recombination (RRR)) which, based on very general physical arguments, should happen in dense plasmas and promises to provide useful information for the local temperature and density diagnostics of plasmas, they assumed the existence of screening resonances. For model potentials the existence of screening resonances has been demonstrated beyond reasonable doubt in a number of calculations. The key question, how well those potentials describe the dominant effects of a real plasma remains open. The relation of theoretical predictions to experimentally measurable effects is an important issue at the present stage of their research. In particular, RRR is expected to account for enhanced recombination rates of low energetic electrons with their ions, since the first stage is the resonant capture of a slow electron by an atom or ion. The mechanism that traps an electron is a combination of complicated many-body interactions of the ions and electrons. For clarity they start here, however, with a discussion in terms of local potential traps the shapes of which are determined predominantly and in an average way by two factors: the degree of screening present at the ionic site and the degree of short-range order in the immediate neighborhood of this ion

  19. Electron Paramagnetic Resonance Imaging

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,EPR (Electron Paramagnetic Resonance) imaging is particularlyuseful in monitoring hypoxic zones in tumors which arehighly resistant to radiation and chemotherapeutic treatment.This first part of the ...

  20. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  1. Isoscalar giant resonances

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, D. H. [Texas A and M Univ., College Station (USA). Cyclotron Inst.; Ikegami, H.; Muraoka, M. [eds.

    1980-01-01

    The current status of the knowledges of giant quadrupole resonance (GQR), low energy octupole resonance (LEOR), and giant monopole resonance (GMR), is described. In the lowest order of multipole resonance, both isoscalar and isovector modes can occur. The characteristics of the GQR in light nuclei are apparent in the experimental result for Mg-24. All of the isoscalar E2 strength are known in Mg-24. The Goldhaber-Teller model is preferred over the Steinwedel-Jensen model for the giant dipole resonance (GDR) transition density. A few interesting and puzzling features have been seen in Pb-208. There is some conflict between inelastic alpha and electron scatterings. About LEOR, the RPA calculation of Liu and Brown was compared to the data for 3/sup -/ strength in Ca-40, Zr-90 and Pb-208. The calculation was employed the residual interaction of the Skyrme type. The agreement in Zr-90 was excellent. The effect of quadrupole deformation on the LEOR in Sm isotopes was large. The inelastic alpha scattering data on Al-27, Ca-40, Ti-48, Ni-58, Zn-64 and 66, Zr-90, Sn-116, 118, 120 and 124, Sm-144, 148 and 154, and Pb-208 were utilized in order to identify the GMR, and the GMR parameters were obtained. The GMR exhausting a large fraction of the sum rule was apparent in the nuclei with mass larger than 90. The splitting of the GDR and the broadening of the GQR in permanently deformed nuclei were established. The splitting of GMR was seen in Sm-154. The studies with heavy ions are also described.

  2. NRSC, Neutron Resonance Spectrum Calculation System

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2004-01-01

    1 - Description of program or function: The NRSC system is a package of four programs for calculating detailed neutron spectra and related quantities, for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening and unresolved resonance level. 2 - Methods: NRSC consists of four programs: GEXSCO, RMET21, ALAMBDA and WLUTIL. GEXSCO prepares the nuclear data from ENDF/B evaluated nuclear data pre-processed with NJOY or Cullen's codes up to the Doppler Broadening or unresolved resonance level for RMET21 input. RMET21 calculates spectra and related quantities for homogeneous mixtures of isotopes and cylindrical reactor pin cells, in the energy resonance region, using slowing-down algorithms and, in the case of pin cells, the collision probability method. ALAMBDA obtains lambda factors (Goldstein-Cohen intermediate resonance factors in the formalism of WIMSD code) of different isotopes for including on WIMSD-type multigroup libraries for WIMSD or other cell-codes, from output of RMET21 program. WLUTIL is an auxiliary program for extracting tabulated parameters related with RMET21 program calculations from WIMSD libraries for comparisons, and for producing new WIMSD libraries with parameters calculated with RMET21 and ALAMBDA programs. 3 - Restrictions on the complexity of the problem: GEXSCO program has fixed array dimensions that are suitable for processing all reasonable outputs from nuclear data pre-processing programs. RMET21 program uses variable dimension method from a fixed general array. ALAMBDA and WLUTIL programs have fixed arrays that are adapted to standard WIMSD libraries. All programs can be easily modified to adapt to special requirements

  3. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Science.gov (United States)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  4. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    Directory of Open Access Journals (Sweden)

    Vladislav Yakubov

    2017-08-01

    Full Text Available Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  5. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... for Brain Tumors Radiation Therapy for Head and Neck Cancer Others : American Stroke Association National Stroke Association ... MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain Tumor Treatment Magnetic Resonance Imaging ( ...

  6. Magnetic Resonance Imaging (MRI) Safety

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) Safety What is MRI and how ... What is MRI and how does it work? Magnetic resonance imaging, or MRI, is a way of obtaining ...

  7. Nanoelectromechanical resonator for logic operations

    KAUST Repository

    Kazmi, Syed N. R.; Hafiz, Md A. Al; Chappanda, Karumbaiah N.; Ilyas, Saad; Holguin, Jorge; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e

  8. Magnetic Resonance Imaging of Stroke

    NARCIS (Netherlands)

    Bouts, Mark. J. R. J.; Wu, O.; Dijkhuizen, R. M.

    2017-01-01

    Magnetic resonance imaging (MRI) provides a powerful (neuro)imaging modality for the diagnosis and outcome prediction after (acute) stroke. Since MRI allows noninvasive, longitudinal, and three-dimensional assessment of vessel occlusion (with magnetic resonance angiography (MRA)), tissue injury

  9. Preparation and application of various nanoparticles in biology and medicine

    OpenAIRE

    Vardan Gasparyan

    2013-01-01

    The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contr...

  10. Probabilistic interpretation of resonant states

    Indian Academy of Sciences (India)

    The present paper reviews the basic definition of the resonant state in quantum ... We show that particles leak from the central region in the resonant state. The ..... The basic idea is as follows (figure 4): Consider a resonant eigenstate. Φn(x ...

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) ... limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a noninvasive ...

  13. Magnetic Resonance Imaging (MRI) -- Head

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  14. Introduction lecture to magnetic resonance

    International Nuclear Information System (INIS)

    Conard, J.

    1980-01-01

    This lecture deals with all that is common either to electron paramagnetic resonance (E.P.R.) or to nuclear magnetic resonance (N.M.R.). It will present, in an as elementary form as possible, the main concepts used in magnetic resonance emphasizing some aspects, specific for interface science. (orig./BHO)

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging ( ... the limitations of Children’s (Pediatric) MRI? What is Children’s (Pediatric) MRI? Magnetic resonance imaging (MRI) is a ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - Head Magnetic resonance imaging (MRI) of the head uses a powerful ... the Head? What is MRI of the Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that ...

  17. Resonant SIMP dark matter

    Directory of Open Access Journals (Sweden)

    Soo-Min Choi

    2016-07-01

    Full Text Available We consider a resonant SIMP dark matter in models with two singlet complex scalar fields charged under a local dark U(1D. After the U(1D is broken down to a Z5 discrete subgroup, the lighter scalar field becomes a SIMP dark matter which has the enhanced 3→2 annihilation cross section near the resonance of the heavier scalar field. Bounds on the SIMP self-scattering cross section and the relic density can be fulfilled at the same time for perturbative couplings of SIMP. A small gauge kinetic mixing between the SM hypercharge and dark gauge bosons can be used to make SIMP dark matter in kinetic equilibrium with the SM during freeze-out.

  18. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  19. A New Resonance Tube

    Science.gov (United States)

    Bates, Alan

    2017-12-01

    The measurement of the speed of sound in air with the resonance tube is a popular experiment that often yields accurate results. One approach is to hold a vibrating tuning fork over an air column that is partially immersed in water. The column is raised and lowered in the water until the generated standing wave produces resonance: this occurs at the point where sound is perceived to have maximum loudness, or at the point where the amplitude of the standing wave has maximum value, namely an antinode. An antinode coincides with the position of the tuning fork, beyond the end of the air column, which consequently introduces an end correction. One way to minimize this end correction is to measure the distance between consecutive antinodes.

  20. Resonance of curved nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Calabri, L [CNR-INFM-National Research Center on nanoStructures and bioSystems at Surfaces (S3), Via Campi 213/a, 41100 Modena (Italy); Pugno, N [Department of Structural Engineering and Geotechnics, Politecnico di Torino, Turin (Italy); Ding, W [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States); Ruoff, R S [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208-3111 (United States)

    2006-08-23

    The effects of non-ideal experimental configuration on the mechanical resonance of boron (B) nanowires (NWs) were studied to obtain the corrected value for the Young's modulus. The following effects have been theoretically considered: (i) the presence of intrinsic curvature (ii) non-ideal clamps (iii) spurious masses (iv) coating layer, and (v) large displacements. An energy-based analytical analysis was developed to treat such effects and their interactions. Here, we focus on treating the effect of the intrinsic curvature on the mechanical resonance. The analytical approach has been confirmed by numerical FEM analysis. A parallax method was used to obtain the three-dimensional geometry of the NW.

  1. Magnetic resonance imaging

    International Nuclear Information System (INIS)

    Sigal, R.

    1988-01-01

    This book is an introduction to magnetic resonance imaging (MRI). The basic principles for the interpretation of MR images are developed. The book is divided into five chapters: introduction, tissue, parameters, acquisition parameters, contribution to diagnosis, and practical management of an MR examination. Eight exercises allow the reader to test the knowledge he has acquired. Signal localization and MR artefacts are reviewed in an appendix

  2. Ultraminiature resonator accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, D.R.; Kravitz, S.H.; Vianco, P.T.

    1996-04-01

    A new family of microminiature sensors and clocks is being developed with widespread application potential for missile and weapons applications, as biomedical sensors, as vehicle status monitors, and as high-volume animal identification and health sensors. To satisfy fundamental technology development needs, a micromachined clock and an accelerometer have initially been undertaken as development projects. A thickness-mode quartz resonator housed in a micromachined silicon package is used as the frequency-modulated basic component of the sensor family. Resonator design philosophy follows trapped energy principles and temperature compensation methodology through crystal orientation control, with operation in the 20--100 MHz range, corresponding to quartz wafer thicknesses in the 75--15 micron range. High-volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Chemical etching of quartz, as well as micromachining of silicon, achieves the surface and volume mechanical features necessary to fashion the resonating element and the mating package. Integration of the associated oscillator and signal analysis circuitry into the silicon package is inherent to the realization of a size reduction requirement. A low temperature In and In/Sn bonding technology allows assembly of the dissimilar quartz and silicon materials, an otherwise challenging task. Unique design features include robust vibration and shock performance, capacitance sensing with micromachined diaphragms, circuit integration, capacitance-to-frequency transduction, and extremely small dimensioning. Accelerometer sensitivities were measured in the 1--3 ppm/g range for the milligram proof-mass structures employed in the prototypes evaluated to date.

  3. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  4. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  5. Resonant state expansions

    International Nuclear Information System (INIS)

    Lind, P.

    1993-02-01

    The completeness properties of the discrete set of bound state, virtual states and resonances characterizing the system of a single nonrelativistic particle moving in a central cutoff potential is investigated. From a completeness relation in terms of these discrete states and complex scattering states one can derive several Resonant State Expansions (RSE). It is interesting to obtain purely discrete expansion which, if valid, would significantly simplify the treatment of the continuum. Such expansions can be derived using Mittag-Leffler (ML) theory for a cutoff potential and it would be nice to see if one can obtain the same expansions starting from an eigenfunction theory that is not restricted to a finite sphere. The RSE of Greens functions is especially important, e.g. in the continuum RPA (CRPA) method of treating giant resonances in nuclear physics. The convergence of RSE is studied in simple cases using square well wavefunctions in order to achieve high numerical accuracy. Several expansions can be derived from each other by using the theory of analytic functions and one can the see how to obtain a natural discretization of the continuum. Since the resonance wavefunctions are oscillating with an exponentially increasing amplitude, and therefore have to be interpreted through some regularization procedure, every statement made about quantities involving such states is checked by numerical calculations.Realistic nuclear wavefunctions, generated by a Wood-Saxon potential, are used to test also the usefulness of RSE in a realistic nuclear calculation. There are some fundamental differences between different symmetries of the integral contour that defines the continuum in RSE. One kind of symmetry is necessary to have an expansion of the unity operator that is idempotent. Another symmetry must be used if we want purely discrete expansions. These are found to be of the same form as given by ML. (29 refs.)

  6. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  7. Optical resonator theory

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaeg Won; Cho, Sunh Oh; Jeong, Young Uk; Lee, Byung Cheol; Lee, Jong Min

    2000-10-01

    In this report we present a theoretical study of bare optical resonators having in mind to extend it to active resonators. To compute diffractional losses, phase shifts, intensity distributions and phases of radiation fields on mirrors, we coded a package of numerical procedures on bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, are programmed for finding numeric solutions to the pair of integral equations. The iterative method had been tried by Fox and Li, but it was not applicable to cases for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this report, we implemented the matrix method to extend the computational limit further. A great deal of case studies are carried out with various configurations of stable and unstable resonators. Our results presented in this report show not only a good agreement with the results previously obtained by Fox and Li, but also a legitimacy of our numerical procedures in high Fresnel numbers.

  8. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  9. Investigation of magnetic interactions in sulfides by means of magnetic resonance

    International Nuclear Information System (INIS)

    Veen, G. van.

    1978-01-01

    Investigations have been designed to gather more information about magnetic pair interactions in sulfides by isomorphic substitution of the magnetic ions in suitable chosen diamagnetic host lattices and measurement of electron spin resonance of coupled pairs and of electron spin resonance or electron nuclear double resonance of the hyperfine interaction due to the nuclei of diamagnetic cations. The greater part of this thesis is devoted to preliminaries of magnetic resonance interpretation and sample selection and preparation. The measurements on the magnetically diluted compounds, which are described, only have an exploratory nature. (Auth.)

  10. Persistence, resistance, resonance

    Science.gov (United States)

    Tsadka, Maayan

    Sound cannot travel in a vacuum, physically or socially. The ways in which sound operates are a result of acoustic properties, and the ways by which it is considered to be music are a result of social constructions. Therefore, music is always political, regardless of its content: the way it is performed and composed; the choice of instrumentation, notation, tuning; the medium of its distribution; its inherent hierarchy and power dynamics, and more. My compositional praxis makes me less interested in defining a relationship between music and politics than I am in erasing---or at least blurring---the borders between them. In this paper I discuss the aesthetics of resonance and echo in their metaphorical, physical, social, and musical manifestations. Also discussed is a political aesthetic of resonance, manifested through protest chants. I transcribe and analyze common protest chants from around the world, categorizing and unifying them as universal crowd-mobilizing rhythms. These ideas are explored musically in three pieces. Sumud: Rhetoric of Resistance in Three Movements, for two pianos and two percussion players, is a musical interpretation of the political/social concept of sumud, an Arabic word that literally means "steadfastness" and represents Palestinian non-violent resistance. The piece is based on common protest rhythms and uses the acoustic properties inherent to the instruments. The second piece, Three Piano Studies, extends some of the musical ideas and techniques used in Sumud, and explores the acoustic properties and resonance of the piano. The final set of pieces is part of my Critical Mess Music Project. These are site-specific musical works that attempt to blur the boundaries between audience, performers and composer, in part by including people without traditional musical training in the process of music making. These pieces use the natural structure and resonance of an environment, in this case, locations on the UCSC campus, and offer an active

  11. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  12. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  13. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  14. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  15. Materials Preparation Center

    Data.gov (United States)

    Federal Laboratory Consortium — MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: rare earth metals,...

  16. Resonance frequency analysis

    Directory of Open Access Journals (Sweden)

    Rajiv K Gupta

    2011-01-01

    Full Text Available Initial stability at the placement and development of osseointegration are two major issues for implant survival. Implant stability is a mechanical phenomenon which is related to the local bone quality and quantity, type of implant, and placement technique used. The application of a simple, clinically applicable, non-invasive test to assess implant stability and osseointegration is considered highly desirable. Resonance frequency analysis (RFA is one of such techniques which is most frequently used now days. The aim of this paper was to review and analyze critically the current available literature in the field of RFA, and to also discuss based on scientific evidence, the prognostic value of RFA to detect implants at risk of failure. A search was made using the PubMed database to find all the literature published on "Resonance frequency analysis for implant stability" till date. Articles discussed in vivo or in vitro studies comparing RFA with other methods of implant stability measurement and articles discussing its reliability were thoroughly reviewed and discussed. A limited number of clinical reports were found. Various studies have demonstrated the feasibility and predictability of the technique. However, most of these articles are based on retrospective data or uncontrolled cases. Randomized, prospective, parallel-armed longitudinal human trials are based on short-term results and long-term follow up are still scarce in this field. Nonetheless, from available literature, it may be concluded that RFA technique evaluates implant stability as a function of stiffness of the implant bone interface and is influenced by factors such as bone type, exposed implant height above the alveolar crest. Resonance frequency analysis could serve as a non-invasive diagnostic tool for detecting the implant stability of dental implants during the healing stages and in subsequent routine follow up care after treatment. Future studies, preferably randomized

  17. Magnetic resonance instrumentation

    International Nuclear Information System (INIS)

    Bell, R.A.

    1987-01-01

    Magnetic resonance (MR), while opening new vistas to diagnostic medicine, utilizes equipment that is unfamiliar to most clinicians. Beyond learning to cope with new terms, such as spin-echo, T1, T2, and spin density, health care professionals are faced with the inclusion of magnetic and radiofrequency effects in their facilities produced by a complex array of devices. It is the purpose of this chapter to outline the components of an MR imaging system, to discuss their functions, and to note the variations in equipment commercially available

  18. General resonance mediation

    International Nuclear Information System (INIS)

    McGarrie, Moritz

    2012-07-01

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for σ(visible → hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  19. Advanced Nuclear Magnetic Resonance

    OpenAIRE

    Alonso, Diego A.

    2014-01-01

    Transparencias en inglés de la asignatura "Resonancia Magnética Nuclear Avanzada" (Advanced Nuclear Magnetic Resonance) (36643) que se imparte en el Máster de Química Médica como asignatura optativa de 3 créditos ECTS. En esta asignatura se completa el estudio iniciado en la asignatura de quinto curso de la licenciatura en Química "Determinación estructural" (7448) y en la del Grado de Química de tercer curso "Determinación estructural de los compuestos orgánicos" (26030) en lo referente a té...

  20. Cranial magnetic resonance imaging

    International Nuclear Information System (INIS)

    Elster, A.D.

    1988-01-01

    Cranial Magnetic Resonance Imaging is comprehensive, well structured, and well written. The material is current and well referenced. The illustrations are good and complement the text well. The overall quality of publication is above average. The greatest attribute of the book is its readability. The author demonstrates ample skill in making complex subjects, such as MR physics and imaging of cerebral hemorrhage, easy to understand. The book closes with a detailed atlas on the anatomic appearance of the brain on MR images in the axial, coronal, and sagittal planes

  1. Dental magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hilgenfeld, Tim; Bendszus, Martin; Haehnel, Stefan

    2016-01-01

    Growing distribution and utilization of digital volume tomography (DVT) extend the spectrum of clinical dental imaging. Additional diagnostic value, however, comes along with an increasing amount of radiation. In contrast, magnetic resonance imaging is a radiation free imaging technique. Furthermore, it offers a high soft tissue contrast. Morphological and numerical dental anomalies, differentiation of periapical lesions and exclusion of complications of dental diseases are field of applications for dental MRI. In addition, detection of caries and periodontal lesions and injury of inferior alveolar nerve are promising application areas in the future.

  2. General resonance mediation

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2012-07-15

    We extend the framework of general gauge mediation to cases where the mediating fields have a nontrivial spectral function, as might arise from strong dynamics. We demonstrate through examples that this setup describes a broad class of possible models of gauge mediated supersymmetry breaking. A main emphasis is to give general formulas for cross sections for {sigma}(visible {yields} hidden) in these resonance models. We will also give formulas for soft masses, A-terms and demonstrate the framework with a holographic setup.

  3. Nuclear magnetic resonance scattering

    International Nuclear Information System (INIS)

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  4. Resonant MEMS tunable VCSEL

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Chung, Il-Sug; Semenova, Elizaveta

    2013-01-01

    We demonstrate how resonant excitation of a microelectro-mechanical system can be used to increase the tuning range of a vertical-cavity surface-emitting laser two-fold by enabling both blue- and red-shifting of the wavelength. In this way a short-cavity design enabling wide tuning range can...... be realized. A high-index-contrast subwavelength grating verticalcavity surface-emitting laser with a monolithically integrated anti-reflection coating is presented. By incorporating an antireflection coating into the air cavity, higher tuning efficiency can be achieved at low threshold current. The first...

  5. Resonance test system

    Science.gov (United States)

    Musial, Walter [Boulder, CO; White, Darris [Superior, CO

    2011-05-31

    An apparatus (10) for applying at least one load to a specimen (12) according to one embodiment of the invention may comprise a mass (18). An actuator (20) mounted to the specimen (12) and operatively associated with the mass (18) moves the mass (18) along a linear displacement path (22) that is perpendicular to a longitudinal axis of the specimen (12). A control system (26) operatively associated with the actuator (20) operates the actuator (20) to reciprocate the mass (18) along the linear displacement path (22) at a reciprocating frequency, the reciprocating frequency being about equal to a resonance frequency of the specimen (12) in a test configuration.

  6. Electron spin resonance

    International Nuclear Information System (INIS)

    Wasson, J.R.; Salinas, J.E.

    1980-01-01

    Published literature concerning electron spin resonance (ESR) from July 1977 to July 1979 is reviewed. The 108 literature sources cited were chosen from literally thousands and are intended to serve as a guide to the current literature and to provide an eclectic selection of publications cited for their contributions to the advance and/or applications of ESR spectroscopy. 40 of the sources are reviews, and a table is included to indicate the topic(s) mainly covered in each review. Other divisions of the material reviewed are apparatus and spectral analysis, analytical applications, and selected paramagnetic materials

  7. Apodized coupled resonator waveguides.

    Science.gov (United States)

    Capmany, J; Muñoz, P; Domenech, J D; Muriel, M A

    2007-08-06

    In this paper we propose analyse the apodisation or windowing of the coupling coefficients in the unit cells of coupled resonator waveguide devices (CROWs) as a means to reduce the level of secondary sidelobes in the bandpass characteristic of their transfer functions. This technique is regularly employed in the design of digital filters and has been applied as well in the design of other photonic devices such as corrugated waveguide filters and fiber Bragg gratings. The apodisation of both Type-I and Type-II structures is discussed for several windowing functions.

  8. Nanotube resonator devices

    Science.gov (United States)

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  9. Proton capture resonance studies

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, G.E. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bilpuch, E.G. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Bybee, C.R. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Cox, J.M.; Fittje, L.M. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Labonte, M.A.; Moore, E.F.; Shriner, J.D. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Shriner, J.F. Jr. [Tennessee Technological University, Cookeville, Tennessee (United States) 38505]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Vavrina, G.A. [North Carolina State University, Raleigh, North Carolina (United States) 27695]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708; Wallace, P.M. [Duke University, Durham, North Carolina (United States) 27708]|[Triangle Universities Nuclear Laboratory, Durham, North Carolina (United States) 27708

    1997-02-01

    The fluctuation properties of quantum systems now are used as a signature of quantum chaos. The analyses require data of extremely high quality. The {sup 29}Si(p,{gamma}) reaction is being used to establish a complete level scheme of {sup 30}P to study chaos and isospin breaking in this nuclide. Determination of the angular momentum J, the parity {pi}, and the isospin T from resonance capture data is considered. Special emphasis is placed on the capture angular distributions and on a geometric description of these angular distributions. {copyright} {ital 1997 American Institute of Physics.}

  10. Magnetic resonance angiography

    National Research Council Canada - National Science Library

    Arlart, I; Bongartz, Georg M; Marchal, Guy, Prof. Dr. Med

    2002-01-01

    ... radiology. I would like to thank the editors as well as the authors of the individual chapters for their outstanding performance in the preparation of this second edition, which provides a muchneeded update of the technique of MRA and offers a comprehensive overview of the current state of development of this fascinating modality. I am ...

  11. Documents preparation and review

    International Nuclear Information System (INIS)

    1999-01-01

    Ignalina Safety Analysis Group takes active role in assisting regulatory body VATESI to prepare various regulatory documents and reviewing safety reports and other documentation presented by Ignalina NPP in the process of licensing of unit 1. The list of main documents prepared and reviewed is presented

  12. Resonantly scattering crystals and surfaces

    International Nuclear Information System (INIS)

    Gunn, J.M.F.; Mahon, P.J.

    1990-12-01

    We examine coherence effects from forming a crystal of resonant scatterers by generalising the Fano model for autoionising resonances in electron scattering from atoms to a lattice of such scatterers. (We have in mind the case of neutron scattering from nuclei.) We solve this problem to yield two branches to the dispersion relation for the neutron in general and three when the resonance coincides with a Brillouin Zone boundary. The 'width' of the resonance is enhanced over the isolated nucleus, the best candidate for observation being the 2eV 185 Re resonance near the Bragg condition. We use these results to calculate the reflection coefficient from a surface, revealing total external reflection near resonance. We discuss experimental feasibility in both the neutron and electron cases. (author)

  13. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  14. Behavioral Stochastic Resonance

    Science.gov (United States)

    Freund, Jan A.; Schimansky-Geier, Lutz; Beisner, Beatrix; Neiman, Alexander; Russell, David F.; Yakusheva, Tatyana; Moss, Frank

    2001-03-01

    Zooplankton emit weak electric fields into the surrounding water that originate from their own muscular activities associated with swimming and feeding. Juvenile paddlefish prey upon single zooplankton by detecting and tracking these weak electric signatures. The passive electric sense in the fish is provided by an elaborate array of electroreceptors, Ampullae Lorenzini, spread over the surface of an elongated rostrum. We have previously shown that the fish use stochastic resonance to enhance prey capture near the detection threshold of their sensory system. But stochastic resonance requires an external source of electrical noise in order to function. The required noise can be provided by a swarm of plankton, for example Daphnia. Thus juvenile paddlefish can detect and attack single Daphnia as outliers in the vicinity of the swarm by making use of noise from the swarm itself. From the power spectral density of the noise plus the weak signal from a single Daphnia we calculate the signal-to-noise ratio and the Fisher information at the surface of the paddlefish's rostrum. The results predict a specific attack pattern for the paddlefish that appears to be experimentally testable.

  15. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  16. Slowing down with resonance absorption

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Nair, R.P.K.

    1979-08-01

    The presence of heavy nuclei in nuclear reactors, in significant concentrations, facilitates the appearance of absorption resonances. For the moderation in the presence of absorbers an exact solution of the integral equations is possible by numerical methods. Approximated solutions for separated resonances in function of the practical width, (NR and NRIM approximations) are discussed in this paper. The method is generalized, presenting the solution by an intermediate approximation, in the definition of the resonance integral. (Author) [pt

  17. Q-Boosted Optomechanical Resonators

    Science.gov (United States)

    2015-11-18

    type a knob for optical Qo, where the inability to smooth etched nitride sidewall surfaces relegates OMO’s using it to Qo’s on the order of...6: Operation of an RP-OMO. As the ring resonator coupled to tapered fiber in (a) displaces by ∂r, the optical path length change produces the shift...frequency 0, B input pump laser field, tot the total optical resonator damping, ext the coupling between optical resonator and the tapered fiber

  18. Spectra of resonance surface photoionization

    Energy Technology Data Exchange (ETDEWEB)

    Antsiferov, V.V.; Smirnov, G.I.; Telegin, G.G. [Budker Nuclear Physics Institute, Novosibirsk (Russian Federation)

    1995-09-01

    The theory of nonactivated electron transfer between atoms interacting reasonantly with coherent radiation and a metal surface is developed. The spectral resonances in photoabsorption and surface photoionization are found to be related to nonlinear interference effects in the interaction between discrete atomic levels and the continuum formed by the quasi-continuous electron spectrum of a normal metal. The asymmetry in the resonance surface photoionization spectrum is shown to have a shape typical of the Fano autoionization resonances. 18 refs.

  19. Resonance capture and Saturn's rings

    International Nuclear Information System (INIS)

    Patterson, C.W.

    1986-05-01

    We have assigned the resonances apparently responsible for the stabilization of the Saturn's shepherd satellites and for the substructure seen in the F-ring and the ringlets in the C-ring. We show that Saturn's narrow ringlets have a substructure determined by three-body resonances with Saturn's ringmoons and the sun. We believe such resonances have important implications to satellite formation. 17 refs., 1 fig., 1 tab

  20. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  1. Resonance phenomenon in classical cepheids

    International Nuclear Information System (INIS)

    Takeuti, Mine; Aikawa, Toshiki

    1981-01-01

    To investigate resonance phenomenon in classical cepheids, the non-linear radial oscillation of stars is studied based on the assumption that the non-adiabatic perturbation is expressed in terms of van der Pol's type damping. Two- and three-wave resonance in this system is applied to classical cepheids to describe their bump and double-mode behavior. The phase of bump and the depression of amplitude are explained for bump cepheids. The double-periodicity is shown by the enhancement of the third overtone in three-wave resonance. Non-linear effect on resonant period is also discussed briefly. (author)

  2. Transit time for resonant tunneling

    International Nuclear Information System (INIS)

    Garcia Calderon, G.; Rubio, A.

    1990-09-01

    This work considers properties of the partial widths in one dimensional elastic resonant tunneling in order to propose a transit-time τ tr = (h/2π)/Γ n T res ) where Γ n is the elastic width and T res the transmission coefficient at resonance energy. This time is interpreted as an average over the resonance energy width. It is shown that the tunneling current density integrated across a sharp resonance is inversely proportional to τ tr . This transit time may be much larger than the values predicted by other definitions. (author). 20 refs

  3. Advances in magnetic resonance 6

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 6 focuses on the theoretical and practical aspects of applying magnetic resonance methods to various problems in physical chemistry, emphasizing the different aspects of the exegesis of these problems. This book discusses the gas phase magnetic resonance of electronically excited molecules; techniques for observing excited electronic states; NMR studies in liquids at high pressure; and effect of pressure on self-diffusion in liquids. The nuclear magnetic resonance investigations of organic free radicals; measurement of proton coupling constants by NMR; an

  4. Orbital resonances around black holes.

    Science.gov (United States)

    Brink, Jeandrew; Geyer, Marisa; Hinderer, Tanja

    2015-02-27

    We compute the length and time scales associated with resonant orbits around Kerr black holes for all orbital and spin parameters. Resonance-induced effects are potentially observable when the Event Horizon Telescope resolves the inner structure of Sgr A*, when space-based gravitational wave detectors record phase shifts in the waveform during the resonant passage of a compact object spiraling into the black hole, or in the frequencies of quasiperiodic oscillations for accreting black holes. The onset of geodesic chaos for non-Kerr spacetimes should occur at the resonance locations quantified here.

  5. Properties of resonance wave functions.

    Science.gov (United States)

    More, R. M.; Gerjuoy, E.

    1973-01-01

    Construction and study of resonance wave functions corresponding to poles of the Green's function for several illustrative models of theoretical interest. Resonance wave functions obtained from the Siegert and Kapur-Peierls definitions of the resonance energies are compared. The comparison especially clarifies the meaning of the normalization constant of the resonance wave functions. It is shown that the wave functions may be considered renormalized in a sense analogous to that of quantum field theory. However, this renormalization is entirely automatic, and the theory has neither ad hoc procedures nor infinite quantities.

  6. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  7. PREPARATIVE SKIN PREPARATION AND SURGICAL WOUND INFECTION

    Directory of Open Access Journals (Sweden)

    Anjanappa

    2015-01-01

    Full Text Available BACKGROUND AND OBJECTIVE: It is an established fact now that the normal skin of healthy human beings harbours a rich bacterial fl ora. Normally considered non - pathogenic , these organisms way be a potential source of infection of the surgical wound. Approximately 20% of the resident flora is beyond the reach of surgical scrubs and antiseptics. The goal of surgical preparation of the skin with antiseptics is to remove transient and pathogenic microorganisms on the skin surface and to reduce the resident flora to a low level. Povidone iodine (I odophors and chlorhexidine are most often used antiseptics for pre - operative skin preparation. OBJECTIVES : To evaluate the efficacy of povidone iodine alone and in combination with antiseptic agent containing alcoholic chlorhexidine in preoperative skin p reparation by taking swab culture. (2 To compare the rate of postoperative wound infection in both the groups. METHODS: One hundred patients (fifty in each group undergoing clean elective surgery with no focus of infection on the body were included in th e study. The pre - operative skin preparation in each group is done with the respective antiseptic regimen. In both the groups after application of antiseptics , sterile saline swab culture was taken immediately from site of incision. In cases which showed gr owth of organisms , the bacteria isolated were identified by their morphological and cultural characteristics. Grams staining , coagulase test and antibiotic sensitivity test were done wherever necessary and difference in colonization rates was determined as a measure of efficacy of antiseptic regimen. RESULTS: The results of the study showed that when compared to povidone iodine alone , using a combination of povidone iodine and alcoholic solution of chlorhexidine , the colonization rates of the site of incisi on were reduced significantly. As for the rate of post - operative wound infection , it is also proven that wound infections are also

  8. Noble metal nanostructures for double plasmon resonance with tunable properties

    Science.gov (United States)

    Petr, M.; Kylián, O.; Kuzminova, A.; Kratochvíl, J.; Khalakhan, I.; Hanuš, J.; Biederman, H.

    2017-02-01

    We report and compare two vacuum-based strategies to produce Ag/Au materials characterized by double plasmon resonance peaks: magnetron sputtering and method based on the use of gas aggregation sources (GAS) of nanoparticles. It was observed that the double plasmon resonance peaks may be achieved by both of these methods and that the intensities of individual localized surface plasmon resonance peaks may be tuned by deposition conditions. However, in the case of sputter deposition it was necessary to introduce a separation dielectric interlayer in between individual Ag and Au nanoparticle films which was not the case of films prepared by GAS systems. The differences in the optical properties of sputter deposited bimetallic Ag/Au films and coatings consisted of individual Ag and Au nanoparticles produced by GAS is ascribed to the divers mechanisms of nanoparticles formation.

  9. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    International Nuclear Information System (INIS)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M; Van der Hout, R; Hulshof, J; Fey, R H B

    2010-01-01

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators

  10. Amplitude saturation of MEMS resonators explained by autoparametric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Van der Avoort, C; Bontemps, J J M; Steeneken, P G; Le Phan, K; Van Beek, J T M [NXP Research, Eindhoven (Netherlands); Van der Hout, R; Hulshof, J [Department of Mathematics, VU University—Faculty of Sciences, De Boelelaan 1081a, 1081 HV Amsterdam (Netherlands); Fey, R H B, E-mail: cas.van.der.avoort@nxp.com [Department of Mechanical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven (Netherlands)

    2010-10-15

    This paper describes a phenomenon that limits the power handling of MEMS resonators. It is observed that above a certain driving level, the resonance amplitude becomes independent of the driving level. In contrast to previous studies of power handling of MEMS resonators, it is found that this amplitude saturation cannot be explained by nonlinear terms in the spring constant or electrostatic force. Instead we show that the amplitude in our experiments is limited by nonlinear terms in the equation of motion which couple the in-plane length-extensional resonance mode to one or more out-of-plane (OOP) bending modes. We present experimental evidence for the autoparametric excitation of these OOP modes using a vibrometer. The measurements are compared to a model that can be used to predict a power-handling limit for MEMS resonators.

  11. Cyclotron resonance for electrons over helium in resonator

    CERN Document Server

    Shikin, V B

    2002-01-01

    The problem on the cyclotron resonance (CR) for electrons on the helium film, positioned in the resonator lower part, is solved. It is shown, that it relates to one of the examples of the known problem on the oscillations of the coupled oscillators system. The coupling constant between these oscillators constituting the variable function of the problem parameters. It is minimal in the zero magnetic field and reaches its maximum under the resonance conditions, when the cyclotron frequency coincides with one of the resonator modes. The CR details of the Uhf CR-energy absorption coupled by the electrons + resonator system, are calculated. The applications of the obtained results to the available CR experiments for electrons over helium

  12. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  13. Resonant High Power Combiners

    CERN Document Server

    Langlois, Michel; Peillex-Delphe, Guy

    2005-01-01

    Particle accelerators need radio frequency sources. Above 300 MHz, the amplifiers mostly used high power klystrons developed for this sole purpose. As for military equipment, users are drawn to buy "off the shelf" components rather than dedicated devices. IOTs have replaced most klystrons in TV transmitters and find their way in particle accelerators. They are less bulky, easier to replace, more efficient at reduced power. They are also far less powerful. What is the benefit of very compact sources if huge 3 dB couplers are needed to combine the power? To alleviate this drawback, we investigated a resonant combiner, operating in TM010 mode, able to combine 3 to 5 IOTs. Our IOTs being able to deliver 80 kW C.W. apiece, combined power would reach 400 kW minus the minor insertion loss. Values for matching and insertion loss are given. The behavior of the system in case of IOT failure is analyzed.

  14. Laser cooling at resonance

    Science.gov (United States)

    Yudkin, Yaakov; Khaykovich, Lev

    2018-05-01

    We show experimentally that three-dimensional laser cooling of lithium atoms on the D2 line is possible when the laser light is tuned exactly to resonance with the dominant atomic transition. Qualitatively, it can be understood by applying simple Doppler cooling arguments to the specific hyperfine structure of the excited state of lithium atoms, which is both dense and inverted. However, to build a quantitative theory, we must resolve to a full model which takes into account both the entire atomic structure of all 24 Zeeman sublevels and the laser light polarization. Moreover, by means of Monte Carlo simulations, we show that coherent processes play an important role in showing consistency between the theory and the experimental results.

  15. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  16. Magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Meyerhoff, D.J.; Weiner, M.W.

    1989-01-01

    A major function of the liver is regulation of carbohydrate, lipid, and nitrogen metabolism. Food is absorbed by the intestines and transported to the liver by the portal circulation. Substrates are metabolized and stored in the liver to maintain optimal blood concentrations of glucose and lipids. Ammonia generated in the gastrointestinal tract is converted to urea in the liver by the urea cycle. Various forms of liver disease are associated with disorders of carbohydrate, fat, and nitrogen metabolism. Therefore the ability to characterize liver metabolism noninvasively is of potential diagnostic value. Magnetic resonance spectroscopy (MRS) provides information about tissue metabolism by measuring concentrations of metabolites. However, to determine the anatomic location from which spectroscopic signals are derived, MRS could be performed in conjunction with MRI. This paper summarizes the current experience with spectroscopy ion animal models of human disease and reviews the clinical experience with hepatic MRS to date

  17. Magnetic resonance in neuroborreliosis

    International Nuclear Information System (INIS)

    Ustymowicz, A.; Zajkowska, J.

    2003-01-01

    Magnetic resonance (MR) is commonly used in diagnosing infections of the central nervous system. The aim of the study is to evaluate central nervous system changes in neuroborreliosis patients. MR examinations were performed in 44 patients with clinical symptoms, epidemiology and laboratory tests results of neuroborreliosis. Abnormalities were detected in 22 patients. Most of them presented cortico-subcortical atrophy (86%). In 9 cases foci of increased signal in T2-weighted and FLAIR images were observed in white matter. They were single or multiple, located subcorticaly and paraventriculary. In 2 subjects areas of increased signal were found in the brain stem. Central nervous system abnormalities detected with MR are not specific for Lyme disease. They can suggest demyelinating lesions and/or gliosis observed in many nervous system disorders (SM, ADEM, lacunar infarcts). (author)

  18. Cine magnetic resonance

    International Nuclear Information System (INIS)

    Higgins, C.B.; Sechtem, U.P.; Pflugfelder, P.

    1987-01-01

    Cine magnetic resonance (MR) is a fast MR imaging process with referencing of the imaging data to the electrocardiogram (ECG) so that images corresponding to 21-msec segments of the cardiac cycle are acquired. A series of such images, each corresponding to a 21-msec segment of the cardiac cycle, can be laced together for viewing in the cine format at a framing rate of 20 to 40 frames per second. Since cine angiograms of the heart are usually done at 30 frames per second, this technique achieves a temporal resolution adequate for the evluation of central cardiovascular function. The major application of this technique is to depict central cardiovascular function and blood flow

  19. Cascaded resonant bridge converters

    Science.gov (United States)

    Stuart, Thomas A. (Inventor)

    1989-01-01

    A converter for converting a low voltage direct current power source to a higher voltage, high frequency alternating current output for use in an electrical system where it is desired to use low weight cables and other circuit elements. The converter has a first stage series resonant (Schwarz) converter which converts the direct current power source to an alternating current by means of switching elements that are operated by a variable frequency voltage regulator, a transformer to step up the voltage of the alternating current, and a rectifier bridge to convert the alternating current to a direct current first stage output. The converter further has a second stage series resonant (Schwarz) converter which is connected in series to the first stage converter to receive its direct current output and convert it to a second stage high frequency alternating current output by means of switching elements that are operated by a fixed frequency oscillator. The voltage of the second stage output is controlled at a relatively constant value by controlling the first stage output voltage, which is accomplished by controlling the frequency of the first stage variable frequency voltage controller in response to second stage voltage. Fault tolerance in the event of a load short circuit is provided by making the operation of the first stage variable frequency voltage controller responsive to first and second stage current limiting devices. The second stage output is connected to a rectifier bridge whose output is connected to the input of the second stage to provide good regulation of output voltage wave form at low system loads.

  20. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  1. Shape resonances in molecular fields

    International Nuclear Information System (INIS)

    Dehmer, J.L.

    1984-01-01

    A shape resonance is a quasibound state in which a particle is temporarily trapped by a potential barrier (i.e., the shape of the potential), through which it may eventually tunnel and escape. This simple mechanism plays a prominent role in a variety of excitation processes in molecules, ranging from vibrational excitation by slow electrons to ionization of deep core levels by x-rays. Moreover, their localized nature makes shape resonances a unifying link between otherwise dissimilar circumstances. One example is the close connection between shape resonances in electron-molecule scattering and in molecular photoionization. Another is the frequent persistence of free-molecule shape resonant behavior upon adsorption on a surface or condensation into a molecular solid. The main focus of this article is a discussion of the basic properties of shape resonances in molecular fields, illustrated by the more transparent examples studied over the last ten years. Other aspects to be discussed are vibrational effects of shape resonances, connections between shape resonances in different physical settings, and examples of shape resonant behavior in more complex cases, which form current challenges in this field

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses a powerful ... for an MRI exam contains a metal called gadolinium . Gadolinium can be used in patients with iodine ...

  3. Stark resonances in disordered systems

    International Nuclear Information System (INIS)

    Grecchi, V.; Maioli, M.; Modena Univ.; Sacchetti, A.

    1992-01-01

    By slightly restricting the conditions given by Herbst and Howland, we prove the existence of resonances in the Stark effect of disordered systems (and atomic crystals) for large atomic mean distance. In the crystal case the ladders of resonances have the Wannier behavior for small complex field. (orig.)

  4. Atomic and molecular resonance ionization

    International Nuclear Information System (INIS)

    Botter, R.; Petit, A.

    1990-01-01

    Published in summary form only the paper recalls the principle of resonance photoionization, transition probability, selectivity and critical parameters. Examples of applications are briefly treated: Trace analysis by resonance ionization mass spectroscopy for detection of Fe in Zr F 4 for fabrication of optical fibers and laser isotopic separation of U 235 and Gd 157 [fr

  5. Physics of optimal resonant tunneling

    NARCIS (Netherlands)

    Racec, P.N.; Stoica, T.; Popescu, C.; Lepsa, M.I.; Roer, van de T.G.

    1997-01-01

    The optimal resonant tunneling, or the complete tunneling transparence of a biased double-barrier resonant-tunneling (DBRT) structure, is discussed. It is shown that its physics does not rest on the departure from the constant potential within the barriers and well, due to the applied electric

  6. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... work? Unlike conventional x-ray examinations and computed tomography (CT) scans, MRI does not utilize ionizing radiation. Instead, ... Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic Resonance Imaging (MRI) Safety Contrast Materials Children ...

  7. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance Imaging Children’s magnetic resonance imaging (MRI) uses ... identify and accurately characterize diseases than other imaging methods. This detail makes MRI an invaluable tool in ...

  8. Resonance journal of science education

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE | May 2010. Resonance journal of science education. May 2010 Volume 15 Number 5. On the Measurement of Phase Difference using CROs b. SERIES ARTICLES. 400. Aerobasics – An Introduction to Aeronautics. Mini and Micro Airplanes. S P Govinda Raju. GENERAL ARTICLES. 411. Bird of Passage at ...

  9. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    International Nuclear Information System (INIS)

    Singh, Asha; Jayabalan, J; Chari, Rama; Srivastava, Himanshu; Oak, S M

    2010-01-01

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  10. Tuning the localized surface plasmon resonance of silver nanoplatelet colloids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Asha; Jayabalan, J; Chari, Rama [Laser Physics Applications Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Srivastava, Himanshu [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Oak, S M, E-mail: jjaya@rrcat.gov.i [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2010-08-25

    The effect of femtosecond laser irradiation on silver nanoplatelet colloids is described. It is shown that irradiation with a femtosecond laser of appropriate fluence can be used to tune the localized surface plasmon resonances of triangular silver nanoplatelets by a few tens of nanometres. This peak shift is shown to be caused by the structural modifications of the particle tips. We have also shown that post-preparation addition of poly-vinyl pyrrolidone to the nanocolloid arrests the peak shift.

  11. Preparation of bromine fluoride

    International Nuclear Information System (INIS)

    Domange, Pr; Duflo, J.

    1958-05-01

    This note addresses the preparation of bromine fluoride. It indicates the implemented process for the reaction, used products (fluorine and bromine), and column characteristics. It describes the operating mode. Apparatus drawing is provided

  12. Dukovany ASSET mission preparation

    Energy Technology Data Exchange (ETDEWEB)

    Kouklik, I [NPP Dukovany (Czech Republic)

    1997-12-31

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future.

  13. Sperm preparation for fertilization

    NARCIS (Netherlands)

    Gadella, B.M.

    2014-01-01

    Description This book contains 19 chapters that discuss theoretical and applied andrology for domestic, zoo and wild animals. Topics include semen and its constituents; sperm production and harvest; determinants of sperm morphology; sperm preparation for fertilization; practical aspects of semen

  14. Dukovany ASSET mission preparation

    International Nuclear Information System (INIS)

    Kouklik, I.

    1996-01-01

    We are in the final stages of the Dukovany ASSET mission 1996 preparation. I would like to present some of our recent experiences. Maybe they would be helpful to other plants, that host ASSET missions in future

  15. FERMILAB: Preparing to collide

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Against the background of stringent Environment, Safety and Health (ES&H) regulations mandated by the US Department of Energy for all national Labs, Fermilab prepared to mount the next major Tevatron proton-antiproton collider run

  16. Integrated unaligned resonant modulator tuning

    Energy Technology Data Exchange (ETDEWEB)

    Zortman, William A.; Lentine, Anthony L.

    2017-10-03

    Methods and systems for tuning a resonant modulator are disclosed. One method includes receiving a carrier signal modulated by the resonant modulator with a stream of data having an approximately equal number of high and low bits, determining an average power of the modulated carrier signal, comparing the average power to a predetermined threshold, and operating a tuning device coupled to the resonant modulator based on the comparison of the average power and the predetermined threshold. One system includes an input structure, a plurality of processing elements, and a digital control element. The input structure is configured to receive, from the resonant modulator, a modulated carrier signal. The plurality of processing elements are configured to determine an average power of the modulated carrier signal. The digital control element is configured to operate a tuning device coupled to the resonant modulator based on the average power of the modulated carrier signal.

  17. Giant first-forbidden resonances

    International Nuclear Information System (INIS)

    Krmpotic, F.; Nakayama, K.; Sao Paulo Univ.; Pio Galeao, A.; Sao Paulo Univ.

    1983-01-01

    Recent experimental data on first-forbidden charge-exchange resonances are discussed in the framework of a schematic model. We also evaluate the screening of the weak coupling constants induced by both the giant resonances and the δ-isobar. It is shown that the last effect does not depend on the multipolarity of the one-particle moment. Due to the same reason, the fraction of the reaction strength pushed up into the δ-resonance region is always the same regardless of the quantum numbers carried by the excitation. Simple expressions are derived for the dependence of the excitation energies of the first-forbidden giant resonances on the mass number and isospin of the target. The model reproduces consistently both the Gamow-Teller and the first-forbidden resonances. (orig.)

  18. Nonlinear elasticity in resonance experiments

    Science.gov (United States)

    Li, Xun; Sens-Schönfelder, Christoph; Snieder, Roel

    2018-04-01

    Resonant bar experiments have revealed that dynamic deformation induces nonlinearity in rocks. These experiments produce resonance curves that represent the response amplitude as a function of the driving frequency. We propose a model to reproduce the resonance curves with observed features that include (a) the log-time recovery of the resonant frequency after the deformation ends (slow dynamics), (b) the asymmetry in the direction of the driving frequency, (c) the difference between resonance curves with the driving frequency that is swept upward and downward, and (d) the presence of a "cliff" segment to the left of the resonant peak under the condition of strong nonlinearity. The model is based on a feedback cycle where the effect of softening (nonlinearity) feeds back to the deformation. This model provides a unified interpretation of both the nonlinearity and slow dynamics in resonance experiments. We further show that the asymmetry of the resonance curve is caused by the softening, which is documented by the decrease of the resonant frequency during the deformation; the cliff segment of the resonance curve is linked to a bifurcation that involves a steep change of the response amplitude when the driving frequency is changed. With weak nonlinearity, the difference between the upward- and downward-sweeping curves depends on slow dynamics; a sufficiently slow frequency sweep eliminates this up-down difference. With strong nonlinearity, the up-down difference results from both the slow dynamics and bifurcation; however, the presence of the bifurcation maintains the respective part of the up-down difference, regardless of the sweep rate.

  19. Auxiliary resonant DC tank converter

    Science.gov (United States)

    Peng, Fang Z.

    2000-01-01

    An auxiliary resonant dc tank (ARDCT) converter is provided for achieving soft-switching in a power converter. An ARDCT circuit is coupled directly across a dc bus to the inverter to generate a resonant dc bus voltage, including upper and lower resonant capacitors connected in series as a resonant leg, first and second dc tank capacitors connected in series as a tank leg, and an auxiliary resonant circuit comprising a series combination of a resonant inductor and a pair of auxiliary switching devices. The ARDCT circuit further includes first clamping means for holding the resonant dc bus voltage to the dc tank voltage of the tank leg, and second clamping means for clamping the resonant dc bus voltage to zero during a resonant period. The ARDCT circuit resonantly brings the dc bus voltage to zero in order to provide a zero-voltage switching opportunity for the inverter, then quickly rebounds the dc bus voltage back to the dc tank voltage after the inverter changes state. The auxiliary switching devices are turned on and off under zero-current conditions. The ARDCT circuit only absorbs ripples of the inverter dc bus current, thus having less current stress. In addition, since the ARDCT circuit is coupled in parallel with the dc power supply and the inverter for merely assisting soft-switching of the inverter without participating in real dc power transmission and power conversion, malfunction and failure of the tank circuit will not affect the functional operation of the inverter; thus a highly reliable converter system is expected.

  20. The hospital preparation of radiopharmaceuticals

    International Nuclear Information System (INIS)

    The subject is covered in sections: introduction; preparation ((general - sterilization), production areas (laboratories), working methods for injections, working methods for oral preparations and iodination procedures); analytical testing (general, standards common to injections and oral preparations, standards for injections, standards for oral preparations); reliable methods of preparing sup(99m)Tc-radiopharmaceuticals and 51 Cr-red cells; commercial radiopharmaceutical kits. (U.K.)

  1. Magnetic resonance imaging of the genitourinary tract

    International Nuclear Information System (INIS)

    Strake, L. te; Persijn van Meerten, E.L. van; Trimbos, J.B.M.Z.; Paul, L.C.; Langeveld, J.W.; Bloem, J.L.; Bluemm, R.G.; Doornbos, J.

    1986-01-01

    This is an overview of the current applications of magnetic resonance imaging (MRI) in the genitourinary tract based on the experience with the 0.5-Tesla MR scanner (Gyroscan, Philips) at the Leiden University Hospital and on reports in the literature. MRI appears to share some of the limitations of CT. MRI cannot reliably differentiate between a malignant and a benign tumor. In the staging of ovarian malignancies by means of MRI, bowel preparation would be desirable. On the other hand, the soft-tissue contrast resolution of MRI is superior to that of CT and images can be obtained in any plane. Thus MRI promises to be an accurate method for staging malignancies. The results in the examination of transplant kidneys are encouraging. It is expected that there will be a place for MRI as a complementary technique to ultrasonography in the diagnosis of scrotal disease. (Auth.)

  2. Potential of Piezoelectric MEMS Resonators for Grape Must Fermentation Monitoring

    Directory of Open Access Journals (Sweden)

    Georg Pfusterschmied

    2017-06-01

    Full Text Available In this study grape must fermentation is monitored using a self-actuating/self-sensing piezoelectric micro-electromechanical system (MEMS resonator. The sensor element is excited in an advanced roof tile-shaped vibration mode, which ensures high Q-factors in liquids (i.e., Q ~100 in isopropanol, precise resonance frequency analysis, and a fast measurement procedure. Two sets of artificial model solutions are prepared, representing an ordinary and a stuck/sluggish wine fermentation process. The precision and reusability of the sensor are shown using repetitive measurements (10 times, resulting in standard deviations of the measured resonance frequencies of ~0.1%, Q-factor of ~11%, and an electrical conductance peak height of ~12%, respectively. With the applied evaluation procedure, moderate standard deviations of ~1.1% with respect to density values are achieved. Based on these results, the presented sensor concept is capable to distinguish between ordinary and stuck wine fermentation, where the evolution of the wine density associated with the decrease in sugar and the increase in ethanol concentrations during fermentation processes causes a steady increase in the resonance frequency for an ordinary fermentation. Finally, the first test measurements in real grape must are presented, showing a similar trend in the resonance frequency compared to the results of an artificial solutions, thus proving that the presented sensor concept is a reliable and reusable platform for grape must fermentation monitoring.

  3. Tune space manipulations in jumping depolarizing resonances

    International Nuclear Information System (INIS)

    Ratner, L.G.; Ahrens, L.A.

    1987-01-01

    In February 1986, the AGS polarized beam reached a momentum of 22 GeV/c with a 45% polarization and an intensity of 1 to 2 x 10 10 polarized protons per pulse at a repetition rate of 2.1 seconds. In order to achieve this, one had to overcome the effect of some 40 depolarizing resonances. In our first commissioning run in 1984, we had reached 16.5 GeV/c using, with suitable modifications, the conventional techniques first used at the Argonne ZGS. This worked well, but we found that the fast tune shifts required to cross the intrinsic depolarizing resonances were causing an increase in beam emittance which led to the need for stronger corrections later in the cycle and to diminished extraction efficiency. For the 1986 run, we were prepared to minimize this emittance growth by the application of slow quadrupole pulses to change the region in tune space in which we operated the first tune quads. In this paper we give a brief description of the conventional corrections, but our main emphasis is on the descriptions of tune space manipulations

  4. Review on resonance cone fields

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro.

    1980-02-01

    Resonance cone fields and lower hybrid heating are reviewed in this report. The resonance cone fields were reported by Fisher and Gould, and they proposed the use of the measurement of resonance cones and structure as a diagnostic tool to determine the plasma density and electron temperature in magnetoplasma. After the resonance cone, a wave-like disturbance persists. Ohnuma et al. have measured bending, reflection and ducting of resonance cones in detail. The thermal modes in inhomogeneous magnetoplasma were seen. The reflection of thermal mode near an electron plasma frequency layer and an insulating plate has been observed. The non-linear effects of resonance cones is reported. Monochromatic electron beam produces the noise of broad band whistler mode. Lower hybrid waves have been the subject of propagation from the edge of plasma to the lower hybrid layer. Linear lower hybrid waves were studied. The lower hybrid and ion acoustic waves radiated from a point source were observed. The parametric decay of finite-extent, cold electron plasma waves was studied. The lower hybrid cone radiated from a point source going along magnetic field lines was observed. Several experimental data on the lower hybrid heating in tokamak devices have been reported. The theories on resonance cones and lower hybrid waves are introduced in this report. (Kato, T.)

  5. Morphology, magnetic and resonance properties of Fe/MgO multilayers

    International Nuclear Information System (INIS)

    Garcia-Garcia, A; Algarabel, P A; Ibarra, M R; Vovk, A; Strichovanec, P; Pardo, J A; Magen, C; Golub, V; Salyuk, O

    2011-01-01

    Magnetic, resonance and transport properties of Fe(t nm)/MgO(3.0 nm) multilayers prepared by pulsed laser deposition were investigated. Comparison of the data allows conclusions on Fe layers morphology. For t 1.25 nm a continuous coverage of MgO by Fe takes place. However, the morphology of Fe layers is rough. This causes the appearance of magnetostatic resonance modes analogous to those observed for continuous films deposited on embossed surfaces.

  6. Resonance ionization spectroscopy 1990

    International Nuclear Information System (INIS)

    Parks, J.E.; Omenetto, N.

    1991-01-01

    The Fifth International Symposium on Resonance Ionization Spectroscopy (RIS) and its Applications was held in Varese, Italy, 16-21 September 1990. Interest in RIS and its applications continues to grow, and RIS is expanding into a more diverse and mature field of study. This maturity was evident in this meeting both in the basic science and understanding of RIS processes and in the number of new and improved applications and techniques. The application of RIS techniques to molecular detection problems made remarkable progress since the last meeting two years ago. Subtle effects pertaining to isotopic discrimination received more theoretical attention, and there now seems to be good understanding of these effects, which can lead to correction procedures and/or methods to avoid isotopic effects. RIS applications were presented in which significant, real world problems were addressed, demonstrating its capability to solve problems that previously could not be accurately solved by other more traditional techniques. The contributions to the conference are grouped under the following major topic headings: physics applications of rare atoms; laser ionization mechanisms - spectroscopy; atomic, molecular and ion sources; molecular RIS; atomic RIS - Rydberg states; environmental trace analysis; biological and medical applications; state selected chemistry; new laser sources and techniques; ultra-high resolution and isotopic selectivity; surface and bulk analysis. (Author)

  7. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Osonka, P.L.

    1985-01-01

    Transverse (to the velocity, v-bar, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasms by either an electromagnetic wave or by the field of charged particles traveling parallel to v-bar. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d≅2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E 2 /sub L/). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  8. Nucleon Resonance Physics

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D.

    2016-07-25

    Recent results of meson photo-production at the existing electron machines with polarized real photon beams and the measurement of polarization observables of the final state baryons have provided high precision data that led to the discovery of new excited nucleon and $\\Delta$ states using multi-channel partial wave analyses procedures. The internal structure of several prominent excited states has been revealed employing meson electroproduction processes. On the theoretical front, lattice QCD is now predicting the baryon spectrum with very similar characteristics as the constituent quark model, and continuum QCD, such as is represented in the Dyson-Schwinger Equations approach and in light front relativistic quark models, describes the non-perturbative behavior of resonance excitations at photon virtuality of $Q^2 > 1.5GeV^2$. In this talk I discuss the need to continue a vigorous program of nucleon spectroscopy and the study of the internal structure of excited states as a way to reveal the effective degrees of freedom underlying the excited states and their dependence on the distance scale probed.

  9. Transverse electron resonance accelerator

    International Nuclear Information System (INIS)

    Csonka, P.L.

    1985-01-01

    Transverse (to the velocity, v, of the particles to be accelerated) electron oscillations are generated in high (e.g. solid) density plasmas by either an electromagnetic wave or by the field of charged particles traveling parallel to v. The generating field oscillates with frequency ω = ω/sub p/, where ω/sub p/ is the plasma frequency. The plasma is confined to a sequence of microstructures with typical dimensions of d approx. = 2πc/ω/sub p/, allowing the generating fields to penetrate. Since ω/sub p/ is now high, the time scales, T, are correspondingly reduced. The microstructures are allowed to explode after t = T, until then they are confined by ion inertia. As a result of resonance, the electric field, E, inside the microstructures can exceed the generating field E/sub L/. The generating force is proportional to E/sub L/ (as opposed to E/sub L/ 2 ). Phase matching of particles is possible by appropriate spacing of the microstructures or by a gas medium. The generating beam travels outside the plasma, filamentation is not a problem. The mechanism is relatively insensitive to the exact shape and position of the microstructures. This device contains features of various earlier proposed acceleration mechanisms and may be considered as the limiting case of several of those for small d, T and high E

  10. Parallel magnetic resonance imaging

    International Nuclear Information System (INIS)

    Larkman, David J; Nunes, Rita G

    2007-01-01

    Parallel imaging has been the single biggest innovation in magnetic resonance imaging in the last decade. The use of multiple receiver coils to augment the time consuming Fourier encoding has reduced acquisition times significantly. This increase in speed comes at a time when other approaches to acquisition time reduction were reaching engineering and human limits. A brief summary of spatial encoding in MRI is followed by an introduction to the problem parallel imaging is designed to solve. There are a large number of parallel reconstruction algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH and GRAPPA, selected to demonstrate the different approaches. Theoretical (the g-factor) and practical (coil design) limits to acquisition speed are reviewed. The practical implementation of parallel imaging is also discussed, in particular coil calibration. How to recognize potential failure modes and their associated artefacts are shown. Well-established applications including angiography, cardiac imaging and applications using echo planar imaging are reviewed and we discuss what makes a good application for parallel imaging. Finally, active research areas where parallel imaging is being used to improve data quality by repairing artefacted images are also reviewed. (invited topical review)

  11. Magnetic resonance imaging methodology

    International Nuclear Information System (INIS)

    Moser, Ewald; Stadlbauer, Andreas; Windischberger, Christian; Quick, Harald H.; Ladd, Mark E.

    2009-01-01

    Magnetic resonance (MR) methods are non-invasive techniques to provide detailed, multi-parametric information on human anatomy, function and metabolism. Sensitivity, specificity, spatial and temporal resolution may, however, vary depending on hardware (e.g., field strength, gradient strength and speed) and software (optimised measurement protocols and parameters for the various techniques). Furthermore, multi-modality imaging may enhance specificity to better characterise complex disease patterns. Positron emission tomography (PET) is an interesting, largely complementary modality, which might be combined with MR. Despite obvious advantages, combining these rather different physical methods may also pose challenging problems. At this early stage, it seems that PET quality may be preserved in the magnetic field and, if an adequate detector material is used for the PET, MR sensitivity should not be significantly degraded. Again, this may vary for the different MR techniques, whereby functional and metabolic MR is more susceptible than standard anatomical imaging. Here we provide a short introduction to MR basics and MR techniques, also discussing advantages, artefacts and problems when MR hardware and PET detectors are combined. In addition to references for more detailed descriptions of MR fundamentals and applications, we provide an early outlook on this novel and exciting multi-modality approach to PET/MR. (orig.)

  12. Noncontrast Magnetic Resonance Lymphography.

    Science.gov (United States)

    Arrivé, Lionel; Derhy, Sarah; El Mouhadi, Sanaâ; Monnier-Cholley, Laurence; Menu, Yves; Becker, Corinne

    2016-01-01

    Different imaging techniques have been used for the investigation of the lymphatic channels and lymph glands. Noncontrast magnetic resonance (MR) lymphography has significant advantages in comparison with other imaging modalities. Noncontrast MR lymphography uses very heavily T2-weighted fast spin echo sequences which obtain a nearly complete signal loss in tissue background and specific display of lymphatic vessels with a long T2 relaxation time. The raw data can be processed with different algorithms such as maximum intensity projection algorithm to obtain an anatomic representation. Standard T2-weighted MR images easily demonstrate the location of edema. It appears as subcutaneous infiltration of soft tissue with a classical honeycomb pattern. True collection around the muscular area may be demonstrated in case of severe lymphedema. Lymph nodes may be normal in size, number, and signal intensity; in other cases, lymph nodes may be smaller in size or number of lymph nodes may be restricted. MR lymphography allows a classification of lymphedema in aplasia (no collecting vessels demonstrated); hypoplasia (a small number of lymphatic vessels), and numerical hyperplasia or hyperplasia (with an increased number of lymphatic vessels of greater and abnormal diameter). Noncontrast MR lymphography is a unique noninvasive imaging modality for the diagnosis of lymphedema. It can be used for positive diagnosis, differential diagnosis, and specific evaluation of lymphedema severity. It may also be used for follow-up evaluation after treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Magnetic resonance imaging. 1

    International Nuclear Information System (INIS)

    Wall, E.E. van der; Roos, A.A. de; Doornbos, J.; Dijkman, P.R.M. van; Matheijssen, N.A.A.; Laarse, A. van der; Krauss, X.H.; Blokland, J.A.k.; Manger Cats, V.; Voorthuisen, A.E. van; Bruschke, A.V.G.

    1991-01-01

    The cardiovascular applications of MRI in coronary artery disease have considerably increased in recent years. Although many applications overlap those of other more cost-effective techniques, such as echocardiography, radionuclide angiography, and CT, MRI offers unique features not shared by the conventional techniques. Technical advantages are the excellent spatial resolution, the characterization of myocardial tissue, and the potential for three-dimensional imaging. This allows the accurate assessment of left ventricular mass and volume, the differentiation of infarcted tissue from normal myocardial tissue, and the determination of systolic wall thickening and regional wall motion abnormalities. Also inducible myocardial ischemia using pharmacological stress (dipyramidole or dobutamine) may be assessed by magnetic resonance imaging. Future technical developments include real-time imaging and noninvasive visualization of the coronary arteries. These advantages will have a major impact on the application of MRI in coronary artery disease, potentially unsurpassed by other techniques and certainly justifying the expenses. Consequently, the clinical use of MRI for the detection of coronary artery disease largely depends on the progress of technical developments. (author). 134 refs.; 10 figs.; 2 tabs

  14. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah; Alcheikh, Nouha; Ilyas, Saad; Younis, Mohammad I.

    2016-01-01

    efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting

  15. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen

    2017-12-22

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  16. Advances in magnetic resonance 9

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 9 describes the magnetic resonance in split constants and dipolar relaxation. This book discusses the temperature-dependent splitting constants in the ESR spectra of organic free radicals; temperature-dependent splittings in ion pairs; and magnetic resonance induced by electrons. The electron impact excitation of atoms and molecules; intramolecular dipolar relaxation in multi-spin systems; and dipolar cross-correlation problem are also elaborated. This text likewise covers the NMR studies of molecules oriented in thermotropic liquid crystals and diffusion

  17. The Resonance Integral of Gold

    Energy Technology Data Exchange (ETDEWEB)

    Jirlow, K; Johansson, E

    1959-04-15

    The resonance activation integral of gold has been determined, by means of cadmium ratio measurements of thin foils in a neutron beam. Comparison was made with a 1/v detector, and the neutron spectra were measured with a chopper. The resonance integral, RI, is defined as {integral}{sub 0.5}{sup {infinity}}{sigma}{sub r}(E)dE/E, where {sigma}{sub r}(E) is the differenc between the total absorption cross section and the 1/v part. An experimental value of 1490 {+-} 40 barns has been obtained. RI has also been computed from resonance parameter data with the result 1529 {+-} 70 barns.

  18. Advances in magnetic resonance 1

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 1, discusses developments in various areas of magnetic resonance. The subject matter ranges from original theoretical contributions through syntheses of points of view toward series of phenomena to critical and painstaking tabulations of experimental data. The book contains six chapters and begins with a discussion of the theory of relaxation processes. This is followed by separate chapters on the development of magnetic resonance techniques for studying rate processes in chemistry and the application of these techniques to various problems; the geometri

  19. Hadron excitation of giant resonances

    International Nuclear Information System (INIS)

    Morsch, H.-P.

    1985-01-01

    A review is given on giant resonance studies in heavy nuclei using scattering of different hadronic probes. Concerning isoscalar giant resonances compression modes are discussed with the possibility to obtain more detailed structure information. From detailed studies of α scattering the distribution of isoscalar strengths of multipolarity up to L=6 was obtained. Some recent aspects of heavy ion excitation of collective modes are mentioned. The possibility to study isovector giant resonances in hadron charge exchange reactions is discussed. Finally, a comparison is made between α and 200 MeV proton scattering from which isoscalar and spin-isospin continuum response are extracted. (orig.)

  20. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-01-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the resutls on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monople giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excelent agreement with recent experimental data, showing that the decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  1. Statistical decay of giant resonances

    International Nuclear Information System (INIS)

    Dias, H.; Teruya, N.; Wolynec, E.

    1986-02-01

    Statistical calculations to predict the neutron spectrum resulting from the decay of Giant Resonances are discussed. The dependence of the results on the optical potential parametrization and on the level density of the residual nucleus is assessed. A Hauser-Feshbach calculation is performed for the decay of the monopole giant resonance in 208 Pb using the experimental levels of 207 Pb from a recent compilation. The calculated statistical decay is in excellent agreement with recent experimental data, showing that decay of this resonance is dominantly statistical, as predicted by continuum RPA calculations. (Author) [pt

  2. Superresolution Imaging Using Resonant Multiples

    KAUST Repository

    Guo, Bowen; Schuster, Gerard T.

    2017-01-01

    A resonant multiple is defined as a multiple reflection that revisits the same subsurface location along coincident reflection raypaths. We show that resonant first-order multiples can be migrated with either Kirchhoff or wave-equation migration methods to give images with approximately twice the spatial resolution compared to post-stack primary-reflection images. A moveout-correction stacking method is proposed to enhance the signal-to-noise ratios (SNRs) of the resonant multiples before superresolution migration. The effectiveness of this procedure is validated by synthetic and field data tests.

  3. Wireless transmission of power

    International Nuclear Information System (INIS)

    Grotz, T.

    1991-01-01

    This paper reports that it has been proven by researchers that electrical energy can be propagated around the world between the surface of the Earth and the ionosphere at extremely low frequencies in what is known as the Schumann Cavity. Experiments to data have shown that electromagnetic waves with frequencies in the range of 8 Hz, the fundamental Schumann Resonance frequency, propagate with litter attenuation around the planet within the Schumann Cavity. It is the intent of this research to determine if the Schumann Cavity can be resonated, if the power that is delivered to the cavity propagated with very low losses, and if power can be extracted at other locations within the cavity. Experimental data collected and calculations made in recent years support the hypothesis that wireless power transmission is a viable and practical alternative to the present systems of power transmission

  4. Preparation of alumina microspheres

    International Nuclear Information System (INIS)

    Santos, W.R. dos; Abrao, A.

    1980-01-01

    Inorganic exchangers are widely used for adsorption and column partition chromatography. The main difficulty of using commercial alumina (in powder) for column chromatography is related to its packing, and the operations through the column become diffcult and time-consuming; also it turns to be virtually impossible to use large dimension columns. In order to eliminate these problems, a process for the preparation of alumina micro-spheres was developed as an adaptation of a similar process used to prepare nuclear fuel microspheres (UO 2 , ThO 2 ). The flowsheet of this process is presented together with the analytical results of sphericity after calcination, granulometry, density and characterization by X-ray diffractometry. Solubility tests showed that the so-prepared microspheres are well resistant to strong acids and bases; retention tests showed their efficiency, mainly to copper. (C.L.B.) [pt

  5. Surface preparation of niobium

    International Nuclear Information System (INIS)

    Kneisel, P.

    1980-01-01

    Any discussion of surface preparation for superconducting rf-surfaces is certainly connected with the question what is the best recipe for achieving high Q-values and high break-down fields. Since the break-down in a cavity is not understood so far and because several mechanisms play a role, it also is not possible to give one recipe which always works. Nevertheless in the past certain preparation techniques for niobium surfaces have been developed and certain rules for preparation can be applied. In the following the to-days state of the art will be described and it is attempted to give a short description of the surface in conjunction with the methods of surface treatments, which generally can be applied to niobium cavities. (orig./WTR)

  6. Preparation of shaped bodies

    International Nuclear Information System (INIS)

    Sutcliffe, P.W.; Isaacs, J.W.; Lyon, C.E.

    1979-01-01

    A method for the preparation of a shaped body includes pressing a powder to give a 'green' shaped body, the powder having been made by comminuting a material prepared by means of a gelation process, the material prior to comminuting being of a selected physical configuration (e.g. spherical). Thus, a material prepared by means of a gelation process can be transported and handled in an environmentally desirable, substantially dust-free form (e.g. spherical particles) and then comminuted to produce a powder for pressing into e.g. a shaped nuclear fuel body (e.g. pellets of (70%U/30%Pu)O 2 ), which can be sintered. (author)

  7. Quantum and classical control of single photon states via a mechanical resonator

    International Nuclear Information System (INIS)

    Basiri-Esfahani, Sahar; Myers, Casey R; Combes, Joshua; Milburn, G J

    2016-01-01

    Optomechanical systems typically use light to control the quantum state of a mechanical resonator. In this paper, we propose a scheme for controlling the quantum state of light using the mechanical degree of freedom as a controlled beam splitter. Preparing the mechanical resonator in non-classical states enables an optomechanical Stern–Gerlach interferometer. When the mechanical resonator has a small coherent amplitude it acts as a quantum control, entangling the optical and mechanical degrees of freedom. As the coherent amplitude of the resonator increases, we recover single photon and two-photon interference via a classically controlled beam splitter. The visibility of the two-photon interference is particularly sensitive to coherent excitations in the mechanical resonator and this could form the basis of an optically transduced weak-force sensor. (paper)

  8. Deconvolution of ferromagnetic resonance in devitrification process of Co-based amorphous alloys

    International Nuclear Information System (INIS)

    Montiel, H.; Alvarez, G.; Betancourt, I.; Zamorano, R.; Valenzuela, R.

    2006-01-01

    Ferromagnetic resonance (FMR) measurements were carried out on soft magnetic amorphous ribbons of composition Co 66 Fe 4 B 12 Si 13 Nb 4 Cu prepared by melt spinning. In the as-cast sample, a simple FMR spectrum was apparent. For treatment times of 5-20 min a complex resonant absorption at lower fields was detected; deconvolution calculations were carried out on the FMR spectra and it was possible to separate two contributions. These results can be interpreted as the combination of two different magnetic phases, corresponding to the amorphous matrix and nanocrystallites. The parameters of resonant absorptions can be associated with the evolution of nanocrystallization during the annealing

  9. Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Nina GRIDINA

    2013-02-01

    Full Text Available Performed in this paper is numerical modeling of the angular dependence for light reflectivity R(F in surface plasmon-polariton resonance (SPR realized in Kretschmann geometry when studying the interface gold/suspension of spherical particles (cells in the assumption that the dielectric permittivity of particles suspension is described by the theory of effective medium. It has been shown that availability of suspended particles in solution inevitably results in appearance of an intermediate layer with the ε gradient between gold surface and suspension bulk, as a result of which the SPR angle shifts to lower values. Near the critical angle, the first derivative dR/dF demonstrates a clearly pronounced peak, which allows determining the value for suspension bulk and the gradient in the intermediate layer. Obtained in our experiments were SPR curves for two suspensions of erythrocytes – the dense one (erythrocyte mass after centrifuging and loose solution (whole blood. In the case of erythrocyte mass, fitting the experimental and calculated curves enabled us to quantitatively determine the bulk value for this erythrocyte mass (εb =1.96, thickness of the intermediate layer dm (300…400 nm and gradient in the intermediate layer. On the contrary, the SPR curve for whole blood appeared to be close to that of pure plasma. This fact allows only estimation of the thickness dm~2000...3000 nm as well as minimum ε value in the intermediate layer, which is close to that of plasma (ε = 1.79. Also, discussed is the mechanism of influence of the cell shape near the gold surface on the SPR effect.

  10. Ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Tajima, T.

    1982-01-01

    Ion cyclotron resonance heating of plasmas in tokamak and EBT configurations has been studied using 1-2/2 and 2-1/2 dimensional fully self-consistent electromagnetic particle codes. We have tested two major antenna configurations; we have also compared heating efficiencies for one and two ion species plasmas. We model a tokamak plasma with a uniform poloidal field and 1/R toroidal field on a particular q surface. Ion cyclotron waves are excited on the low field side by antennas parallel either to the poloidal direction or to the toroidal direction with different phase velocities. In 2D, minority ion heating (vsub(perpendicular)) and electron heating (vsub(parallel),vsub(perpendicular)) are observed. The exponential electron heating seems due to the decay instability. The minority heating is consistent with mode conversion of fast Alfven waves and heating by electrostatic ion cyclotron modes. Minority heating is stronger with a poloidal antenna. The strong electron heating is accompanied by toroidal current generation. In 1D, no thermal instability was observed and only strong minority heating resulted. For an EBT plasma we model it by a multiple mirror. We have tested heating efficiency with various minority concentrations, temperatures, mirror ratios, and phase velocities. In this geometry we have beach or inverse beach heating associated with the mode conversion layer perpendicular to the toroidal field. No appreciable electron heating is observed. Heating of ions is linear in time. For both tokamak and EBT slight majority heating above the collisional rate is observed due to the second harmonic heating. (author)

  11. Nested trampoline resonators for optomechanics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, M. J., E-mail: mweaver@physics.ucsb.edu; Pepper, B.; Luna, F.; Perock, B. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de [Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands); Bouwmeester, D. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Huygens-Kamerlingh Onnes Laboratorium, Universiteit Leiden, 2333 CA Leiden (Netherlands)

    2016-01-18

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si{sub 3}N{sub 4} with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... is not harmful, but it may cause some medical devices to malfunction. Most orthopedic implants pose no ... Head? Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. ...

  13. Dipole Resonances of 76Ge

    Science.gov (United States)

    Ilieva, R. S.; Cooper, N.; Werner, V.; Rusev, G.; Pietralla, N.; Kelly, J. H.; Tornow, W.; Yates, S. W.; Crider, B. P.; Peters, E.

    2013-10-01

    Dipole resonances in 76Ge have been studied using the method of Nuclear Resonance Fluorescence (NRF). The experiment was performed using the Free Electron Laser facility at HI γS/TUNL, which produced linearly polarised quasi-monoenergetic photons in the 4-9 MeV energy range. Photon strength, in particular dipole strength, is an important ingredient in nuclear reaction calculations, and recent interest in its study has been stimulated by observations of a pygmy dipole resonance near the neutron separation energy Sn of certain nuclei. Furthermore, 76Ge is a candidate for 0 ν 2 β -decay. The results are complimentary to a relevant experiment done at TU Darmstadt using Bremsstrahlung beams. Single-resonance parities and a preliminary estimate of the total photo-excitation cross section will be presented. This work was supported by the U.S. DOE under grant no. DE-FG02-91ER40609.

  14. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... are the limitations of MRI of the Head? What is MRI of the Head? Magnetic resonance imaging ( ... brain) in routine clinical practice. top of page What are some common uses of the procedure? MR ...

  15. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Radiologist prepping patient for magnetic resonance ...

  16. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... As the hydrogen atoms return to their usual alignment, they emit different amounts of energy that vary ... story about radiology? Share your patient story here Images × Image Gallery Magnetic Resonance Imaging (MRI) procedure View ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  18. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ... the web pages found at these links. About Us | Contact Us | FAQ | Privacy | Terms of Use | Links | ...

  19. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... immediately after the exam. A few patients experience side effects from the contrast material, including nausea and local ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ...

  20. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... magnetic resonance imaging (MRI) uses a powerful magnetic field, radio waves and a computer to produce detailed ... problems, medications, recent surgeries and allergies. The magnetic field is not harmful, but it may cause some ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... by the interpreting radiologist. Frequently, the differentiation of abnormal (diseased) tissue from normal tissues is better with ... Tumor Treatment Magnetic Resonance Imaging (MRI) Safety Alzheimer's Disease Head Injury Brain Tumors Images related to Magnetic ...

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... or thyroid problems. Any of these conditions may influence the decision on whether contrast material will be ... bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  3. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the technologist or scheduler before the exam. ... patient for magnetic resonance imaging (MRI) exam. View full size with caption Pediatric Content Some imaging tests ...

  4. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... it is useful to bring that to the attention of the scheduler before the exam and bring ... Image Gallery Magnetic Resonance Imaging (MRI) procedure View full size with caption Pediatric Content Some imaging tests ...

  5. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... MRI) exam. View full size with caption Pediatric Content Some imaging tests and treatments have special pediatric considerations. The teddy bear denotes child-specific content. Related Articles and Media Catheter Angiography Magnetic Resonance, ...

  6. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow- ... necessary in trauma situations. Although there is no reason to believe that magnetic resonance imaging harms the ...

  7. Magnetic resonance imaging the basics

    CERN Document Server

    Constantinides, Christakis

    2014-01-01

    Magnetic resonance imaging (MRI) is a rapidly developing field in basic applied science and clinical practice. Research efforts in this area have already been recognized with five Nobel prizes awarded to seven Nobel laureates in the past 70 years. Based on courses taught at The Johns Hopkins University, Magnetic Resonance Imaging: The Basics provides a solid introduction to this powerful technology. The book begins with a general description of the phenomenon of magnetic resonance and a brief summary of Fourier transformations in two dimensions. It examines the fundamental principles of physics for nuclear magnetic resonance (NMR) signal formation and image construction and provides a detailed explanation of the mathematical formulation of MRI. Numerous image quantitative indices are discussed, including (among others) signal, noise, signal-to-noise, contrast, and resolution. The second part of the book examines the hardware and electronics of an MRI scanner and the typical measurements and simulations of m...

  8. Ion Cyclotron Resonance Facility (ICR)

    Data.gov (United States)

    Federal Laboratory Consortium — his facility is charged with developing and exploiting the unique capabilities of Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometry, and leads the...

  9. Nested trampoline resonators for optomechanics

    International Nuclear Information System (INIS)

    Weaver, M. J.; Pepper, B.; Luna, F.; Perock, B.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Heeck, K.; Man, S. de; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si 3 N 4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators

  10. Nested trampoline resonators for optomechanics

    Science.gov (United States)

    Weaver, M. J.; Pepper, B.; Luna, F.; Buters, F. M.; Eerkens, H. J.; Welker, G.; Perock, B.; Heeck, K.; de Man, S.; Bouwmeester, D.

    2016-01-01

    Two major challenges in the development of optomechanical devices are achieving a low mechanical and optical loss rate and vibration isolation from the environment. We address both issues by fabricating trampoline resonators made from low pressure chemical vapor deposition Si3N4 with a distributed Bragg reflector mirror. We design a nested double resonator structure with 80 dB of mechanical isolation from the mounting surface at the inner resonator frequency, and we demonstrate up to 45 dB of isolation at lower frequencies in agreement with the design. We reliably fabricate devices with mechanical quality factors of around 400 000 at room temperature. In addition, these devices were used to form optical cavities with finesse up to 181 000 ± 1000. These promising parameters will enable experiments in the quantum regime with macroscopic mechanical resonators.

  11. Narrow n anti n resonances

    International Nuclear Information System (INIS)

    Bogdanova, L.N.; Dalkarov, O.D.; Kerbikov, B.O.; Shapiro, I.S.

    1975-01-01

    The present status of the problem of quasinuclear states in systems of nucleons and antinucleons is reviewed. The theoretical predictions are compared with experimental data on narrow meson resonances near N anti N threshold which appeared in 1971-74

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Related Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's (Pediatric) CT (Computed Tomography) Magnetic ... the possible charges you will incur. Web page review process: This Web page is reviewed regularly by ...

  13. Resonance detection of Moessbauer radiation

    International Nuclear Information System (INIS)

    Morozov, V.V.

    1985-01-01

    The resonance detection method as compared with the usual method of registering Moessbauer spectra has a number of advantages, one of which is the increase of resolution of the Moessbauer spectrum. The method is based on the modulation of a secondary radiation of a converter tuned in the resonance with the Moessbauer gamma-quantum source. The resonance detection method with account of supression, secondary radiation outgoing from the converter is investigated. The converter represents a substrate enriched by the Moessbauer isotope placed either inside the gas counter, or coupled with any other detecting device. Analytical expressions for Moessbauer spectrum parameters: effect, area and width of the spectral line are derived. It is shown that the joint application of usual and resonance detection methods for registering the Moessbauer spectrum allows one to determine parameters of the source, converter and the investigated absorber

  14. Triplet State Resonance Raman Spectroscopy

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N. H.; Pagsberg, Palle Bjørn

    1978-01-01

    Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied......Makes the first report on the resonance Raman spectrum of a molecule in its triplet state generated by pulse radiolysis. A solution of 0.01 mol dm-3 of p-terphenyl in benzene was studied...

  15. Magnetic Resonance Imaging. Chapter 15

    Energy Technology Data Exchange (ETDEWEB)

    Leach, M. O. [The Institute of Cancer Research and The Royal Marsden Hospital, London (United Kingdom)

    2014-09-15

    In Chapter 14, the principles of nuclear magnetic resonance were presented, along with an introduction to image forming processes. In this chapter, magnetic resonance imaging (MRI) will be reviewed, beginning with the hardware needed and its impact on image quality. The acquisition processes and image reconstruction will be discussed, as well as the artefacts that are possible, with discussion of the important area of safety and bioeffects completing the chapter.

  16. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  17. Resonant Impulsive Stimulated Raman Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, A; Chesnoy, J

    1988-03-15

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution.

  18. Hadronic resonances at FAIR energies

    International Nuclear Information System (INIS)

    Vogel, Sascha

    2013-01-01

    These proceedings cover the analysis of hadronic resonances in heavy ion collisions. The model used for these studies is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The model will be briefly explained, resonance observables will be highlighted and various kinematical issues will be investigated. Special emphasis will be put on the FAIR energy regime, especially highlighting the Compressed Baryonic Matter (CBM) program.

  19. Resonant Impulsive Stimulated Raman Scattering

    International Nuclear Information System (INIS)

    Mokhtari, A.; Chesnoy, J.

    1988-01-01

    Using a femtosecond dye laser, we observe in real-time vibrational oscillations excited by impulsive stimulated Raman scattering (ISRS) close to an electronic resonance. We perform single-beam Raman excitation and probe the driven coherence by a polarization-sensitive detection. We demonstrate for the first time impulsively Raman-induced dichroism, birefringence as well as frequency and time delay shifts. We analyse the characteristics of resonant ISRS on a vibrational mode of a dye molecule (malachite green) in solution

  20. Memory effects on stochastic resonance

    Science.gov (United States)

    Neiman, Alexander; Sung, Wokyung

    1996-02-01

    We study the phenomenon of stochastic resonance (SR) in a bistable system with internal colored noise. In this situation the system possesses time-dependent memory friction connected with noise via the fluctuation-dissipation theorem, so that in the absence of periodic driving the system approaches the thermodynamic equilibrium state. For this non-Markovian case we find that memory usually suppresses stochastic resonance. However, for a large memory time SR can be enhanced by the memory.

  1. Advances in magnetic resonance 2

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 2, features a mixture of experimental and theoretical contributions. The book contains four chapters and begins with an ambitious and general treatment of the problem of signal-to-noise ratio in magnetic resonance. This is followed by separate chapters on the interpretation of nuclear relaxation in fluids, with special reference to hydrogen; and various aspects of molecular theory of importance in NMR.

  2. Preparation of hydraulic cement

    Energy Technology Data Exchange (ETDEWEB)

    1921-08-28

    A process for the preparation of hydraulic cement by the use of oil-shale residues is characterized in that the oil-shale refuse is mixed with granular basic blast-furnace slag and a small amount of portland cement and ground together.

  3. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  4. Preparation of 1-bromoheptacosane

    International Nuclear Information System (INIS)

    Hernandez, L.; Hernandez, A.; Gonzalez, J.C.

    1996-01-01

    Alkybromides are ones of the main organic precursors for fatty acids and alcohols labelling with Carbon 1-14. In this work the preparation of 1-bromoheptacosane by bromodescarboxylation of 1-octacosanoic acid is described. The synthesis yielded 80.5% of final product and more than 97% of chemical purity. Clean-up procedure modifications and spectral data bromoheptacosane are also reported

  5. Preparing for CLIC tests

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Canon 5 undergoes first brazing for preparation in the CLIC study at the CLIC Test Facility 2 (CTF2). This will test injection for a proposed linear collider that will further explore discoveries made at the LHC. Electric fields in the canon will boost electrons into the acceleration fields of the collider.

  6. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  7. Process for preparing radiopharmaceuticals

    International Nuclear Information System (INIS)

    Barak, M.; Winchell, H.S.

    1977-01-01

    A process for the preparation of technetium-99m labeled pharmaceuticals is disclosed. The process comprises initially isolating technetium-99m pertechnetate by adsorption upon an adsorbent packing in a chromatographic column. The technetium-99m is then eluted from the packing with a biological compound to form a radiopharmaceutical

  8. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  9. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  10. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    2000-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After giving a sharp estimate of the resonance domain, we

  11. Symmetry and resonance in Hamiltonian systems

    NARCIS (Netherlands)

    Tuwankotta, J.M.; Verhulst, F.

    1999-01-01

    In this paper we study resonances in two degrees of freedom, autonomous, hamiltonian systems. Due to the presence of a symmetry condition on one of the degrees of freedom, we show that some of the resonances vanish as lower order resonances. After determining the size of the resonance domain, we

  12. Microelectromechanical resonator and method for fabrication

    Science.gov (United States)

    Wittwer, Jonathan W [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2009-11-10

    A method is disclosed for the robust fabrication of a microelectromechanical (MEM) resonator. In this method, a pattern of holes is formed in the resonator mass with the position, size and number of holes in the pattern being optimized to minimize an uncertainty .DELTA.f in the resonant frequency f.sub.0 of the MEM resonator due to manufacturing process variations (e.g. edge bias). A number of different types of MEM resonators are disclosed which can be formed using this method, including capacitively transduced Lame, wineglass and extensional resonators, and piezoelectric length-extensional resonators.

  13. Transmission Line Resonator Segmented with Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Boer, Vincent; Petersen, Esben Thade

    2016-01-01

    Transmission line resonators are often used as coils in high field MRI. Due to distributed nature of such resonators, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the resonator. The equations for optimal...... values of evenly distributed capacitors are presented. The performances of the segmented resonator and a regular transmission line resonator are compared....

  14. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned and the limited capacity of the main auditorium, you are requested to register in advance via ...

  15. Porous electrode preparation method

    Science.gov (United States)

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  16. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place in the afternoons of 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register in advance via Ind...

  17. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register in advance ...

  18. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2009-01-01

    The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 11, 13, 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register ...

  19. Preparation to exceptional operations

    International Nuclear Information System (INIS)

    Sort, M.

    1984-01-01

    Preparation to special maintenance operations requires a specific approach according to the considered intervention type. Replacement of vapor generators is representative of a kind of intervention where technics is generally only an adaptation to the power plant context of processes already in application in construction, and where methodology, planning and organization have an important role because of the variety and the quantity of taskworks to be done, the involved manpower, the dosimetry and time lag requirements [fr

  20. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  1. Overview of Site Preparation

    International Nuclear Information System (INIS)

    Garin, P.

    2006-01-01

    The preparation of Cadarache as the host of ITER is organised at a double level: Europe, since the beginning of the candidature in 2001, is coordinating the so-called European ITER Site Studies; France, as the host country, has put in place a dedicated structure at a decisional level (close to the government), and operational level in the PACA region with two entities: The Agency Iter France (AIF), inside the CEA, interlocutor of international and European entities, in charge of site preparation and fund recollection; An accompanying prefectoral mission, in charge mainly of road adaptation and the international school. The paper will cover all the aspects related to the preparation of the implementation of ITER: Technical aspects: the progress of site preparation itself, its servicing (water supply, electrical supply, Internet...), the road adaptation between the large harbour of Fos-sur-mer and Cadarache, etc. will be detailed. Regulatory procedures: in the framework of the delegation that the ITER partners gave to the CEA/AIF on 14 th September 2005, two main large files are in progress: The public debate, organised by an independent authority, informs the population of the challenges and impacts of ITER in Provence; The safety documents: the writing of the preliminary safety report, which will be submitted to the Nuclear Safety Authority and the files submitted to the public during the public enquiries are ongoing. Socioeconomic aspects: the welcome of ITER staff and their families is operational, via a dedicated Welcome Office; the location of an international school in Manosque leads now to its pre-figuration. The overall organisation will be described, as well as all planning forecast for the coming years, leading to the start of construction. (author)

  2. Preparing for evil.

    Science.gov (United States)

    Mitroff, Ian I; Alpaslan, Murat C

    2003-04-01

    How can you plan for every crisis that might occur, even for ones you can't imagine? The task seems so daunting and so limitless that many firms don't even start. In fact, as the authors' 20 years of research shows, three out of four Fortune 500 companies are prepared to handle only the types of calamities they've already suffered, and not even all of those. That's unfortunate because the research also shows that crisis-prepared companies fare better financially, have stronger reputations, and ultimately stay in business longer than their crisis prone counterparts. Crisis-prepared companies use a systematic approach to focus their efforts. In addition to planning for natural disasters, they divide man-made calamities into two sorts--accidental or "normal" ones, like the Exxon Valdez oil spill, and deliberate or "abnormal" ones, like product tampering. Then they take steps to broaden their thinking about such potential crises. They consider threats that would be common in other industries, for instance. And they seek input from outsiders such as investigative journalists and even reformed criminals. But if these companies think broadly about possible threats, they think narrowly about implementation. Each year, smart companies focus their resources and attention on a few facilities picked at random, just as airlines conduct detailed security checks on just a few passengers for each flight. That reduces the probability of an attack on the entire organization even as it allows the business to migrate steadily to a higher level of crisis readiness. Crisis-prepared companies know that disasters cannot be managed through cost-benefit analyses. It is precisely because the effects of a disaster cannot be predicted or controlled that smart companies focus their efforts on preventing crises rather than containing them after the fact.

  3. The Preparation of Graphene

    Institute of Scientific and Technical Information of China (English)

    Chen Yanyan

    2015-01-01

    Graphene has unique structure and possesses excellent physical and chemical properties, and it has received a great deal of attention in related research fields. The quality, quantity and application of graphene are related to its preparation methods. At present the bottleneck of graphene research is that both high-quality and large quantity of graphene could not be obtained simultaneously and the reason is that the basic mechanism of graphene formation has mot been wel understood.

  4. PREPARING A MARKETING STRATEGY

    OpenAIRE

    Grönholm, Eija

    2010-01-01

    The objective of this thesis was to prepare a marketing strategy for Living City Centre of Kotka Association. The work was implemented with the members of the association and the executive director Reijo Saksa. Living City Centre of Kotka Association was founded in spring 2006 for promoting living, enjoyable and safe centers in the City of Kotka. The association has two permanent employees. The main duties are managing the Kotka market places and promoting the stakeholder connections betw...

  5. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  6. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz

    2017-11-24

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  7. Magnetic resonance and porous materials

    International Nuclear Information System (INIS)

    McDonald, P.; Strange, J.

    1998-01-01

    Mention the words magnetic resonance to your medical advisor and he or she will immediately think of a multi-million pound scanner that peers deep into the brain. A chemist, on the other hand, will imagine a machine that costs several hundred thousand pounds and produces high-resolution spectra for chemical analysis. Food technologists will probably think of a bench-top instrument for determining moisture content, while an oil prospector will envisage a device that can be operated several kilometres down an oil well. To a physicist the term is more likely to conjure up a mental picture of nuclear spins precessing in a magnetic field. These examples illustrate the diverse aspects of a phenomenon discovered by physicists over 50 years ago. Electron spin resonance was first discovered by Russian scientists, and nuclear magnetic resonance was discovered in the US shortly afterwards by Ed Purcell at Harvard University and Felix Bloch at Stanford University. Today, nuclear magnetic resonance (NMR) is the most widely used technique. Modern NMR machines are making it possible to probe microstructure and molecular movement in materials as diverse as polymers, cements, rocks, soil and foods. NMR allows the distribution of different components in a material to be determined with a resolution approaching 1μm, although the signal can be sensitive to even smaller lengthscales. In this article the authors describe how physicists are still developing magnetic resonance to exploit a range of new applications. (UK)

  8. Nonlinear Dynamics of Nanomechanical Resonators

    Science.gov (United States)

    Ramakrishnan, Subramanian; Gulak, Yuiry; Sundaram, Bala; Benaroya, Haym

    2007-03-01

    Nanoelectromechanical systems (NEMS) offer great promise for many applications including motion and mass sensing. Recent experimental results suggest the importance of nonlinear effects in NEMS, an issue which has not been addressed fully in theory. We report on a nonlinear extension of a recent analytical model by Armour et al [1] for the dynamics of a single-electron transistor (SET) coupled to a nanomechanical resonator. We consider the nonlinear resonator motion in both (a) the Duffing and (b) nonlinear pendulum regimes. The corresponding master equations are derived and solved numerically and we consider moment approximations as well. In the Duffing case with hardening stiffness, we observe that the resonator is damped by the SET at a significantly higher rate. In the cases of softening stiffness and the pendulum, there exist regimes where the SET adds energy to the resonator. To our knowledge, this is the first instance of a single model displaying both negative and positive resonator damping in different dynamical regimes. The implications of the results for SET sensitivity as well as for, as yet unexplained, experimental results will be discussed. 1. Armour et al. Phys.Rev.B (69) 125313 (2004).

  9. Space charge in nanostructure resonances

    Science.gov (United States)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  10. Highly Tunable Electrostatic Nanomechanical Resonators

    KAUST Repository

    Kazmi, Syed Naveed Riaz; Hajjaj, Amal Z.; Hafiz, Md Abdullah Al; Da Costa, Pedro M. F. J.; Younis, Mohammad I.

    2017-01-01

    There has been significant interest towards highly tunable resonators for on-demand frequency selection in modern communication systems. Here, we report highly tunable electrostatically actuated silicon-based nanomechanical resonators. In-plane doubly-clamped bridges, slightly curved as shallow arches due to residual stresses, are fabricated using standard electron beam lithography and surface nanomachining. The resonators are designed such that the effect of mid-plane stretching dominates the softening effect of the electrostatic force. This is achieved by controlling the gap-to-thickness ratio and by exploiting the initial curvature of the structure from fabrication. We demonstrate considerable increase in the resonance frequency of nanoresonators with the dc bias voltages up to 108% for 180 nm thick structures with a transduction gap of 1 $mu$m separating them from the driving/sensing electrodes. The experimental results are found in good agreement with those of a nonlinear analytical model based on the Euler-Bernoulli beam theory. As a potential application, we demonstrate a tunable narrow band-pass filter using two electrically coupled nanomechanical arch resonators with varied dc bias voltages.

  11. Pattern formation in optical resonators

    International Nuclear Information System (INIS)

    Weiss, C O; Larionova, Ye

    2007-01-01

    We review pattern formation in optical resonators. The emphasis is on 'particle-like' structures such as vortices or spatial solitons. On the one hand, similarities impose themselves with other fields of physics (condensed matter, phase transitions, particle physics, fluds/super fluids). On the other hand the feedback is led by the resonator mirrors to bi- and multi-stability of the spatial field structure, which is the basic ingredient for optical information processing. The spatial dimension or the 'parallelism' is the strength of optics compared to electronics (and will have to be employed to fully use the advantages optics offers in information processing). But even in the 'serial' processing tasks of telecoms (e.g. information buffering) spatial resonator solitons can do better than the schemes proposed so far-including 'slow light'. Pattern formation in optical resonators will likely be the key to brain-like information processing like cognition, learning and association; to complement the precise but limited algorithmic capabilities of electronic processing. But even in the short term it will be useful for solving serial optical processing problems. The prospects for technical uses of pattern formation in resonators are one motivation for this research. The fundamental similarities with other fields of physics, on the other hand, inspire transfer of concepts between fields; something that has always proven fruitful for gaining deeper insights or for solving technical problems

  12. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Raposo, V.; Zazo, M.; Flores, A. G.; Iñiguez, J. [Departamento de Física Aplicada, University of Salamanca, E-37071 Salamanca (Spain); Garcia, J.; Vega, V.; Prida, V. M. [Departamento de Física, Universidad de Oviedo, E-33007 Oviedo (Spain)

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which was achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.

  13. Neutron resonance spectroscopy for the characterization of materials and objects

    International Nuclear Information System (INIS)

    Schillebeeckx, P; Borella, A; Emiliani, F; Kopecky, S; Lampoudis, C; Gorini, G; Cippo, E Perelli; Kockelmann, W; Rhodes, N J; Schooneveld, E M; Moxon, M; Postma, H; Van Beveren, C

    2012-01-01

    The resonance structure in neutron induced reaction cross sections can be used to determine the elemental compositions of materials or objects. The occurrence of resonances is the basis of neutron resonance capture analysis (NRCA) and neutron resonance transmission analysis (NRTA). NRCA and NRTA are fully non-destructive methods to determine the bulk elemental composition without the need of any sample preparation and resulting in a negligible residual activity. They have been applied to determine the elemental composition of archaeological objects and to characterize reference materials used for cross section measurements. For imaging applications a position sensitive neutron detector has been developed within the ANCIENT CHARM project. The detector is based on a 10 × 10 array of 6 Li-glass scintillators mounted on a pitch of 2.5 mm, resulting in a 25 × 25 mm 2 active area. The detector has been tested at the time-of-flight facility GELINA and used at the ISIS spallation source to study cultural heritage objects.

  14. Neutron resonance spectroscopy for the characterization of materials and objects

    Science.gov (United States)

    Schillebeeckx, P.; Borella, A.; Emiliani, F.; Gorini, G.; Kockelmann, W.; Kopecky, S.; Lampoudis, C.; Moxon, M.; Perelli Cippo, E.; Postma, H.; Rhodes, N. J.; Schooneveld, E. M.; Van Beveren, C.

    2012-03-01

    The resonance structure in neutron induced reaction cross sections can be used to determine the elemental compositions of materials or objects. The occurrence of resonances is the basis of neutron resonance capture analysis (NRCA) and neutron resonance transmission analysis (NRTA). NRCA and NRTA are fully non-destructive methods to determine the bulk elemental composition without the need of any sample preparation and resulting in a negligible residual activity. They have been applied to determine the elemental composition of archaeological objects and to characterize reference materials used for cross section measurements. For imaging applications a position sensitive neutron detector has been developed within the ANCIENT CHARM project. The detector is based on a 10 × 10 array of 6Li-glass scintillators mounted on a pitch of 2.5 mm, resulting in a 25 × 25 mm2 active area. The detector has been tested at the time-of-flight facility GELINA and used at the ISIS spallation source to study cultural heritage objects.

  15. Nuclear level mixing resonance spectroscopy

    International Nuclear Information System (INIS)

    Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.

    1985-01-01

    The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)

  16. Optical resonators and neural networks

    Science.gov (United States)

    Anderson, Dana Z.

    1986-08-01

    It may be possible to implement neural network models using continuous field optical architectures. These devices offer the inherent parallelism of propagating waves and an information density in principle dictated by the wavelength of light and the quality of the bulk optical elements. Few components are needed to construct a relatively large equivalent network. Various associative memories based on optical resonators have been demonstrated in the literature, a ring resonator design is discussed in detail here. Information is stored in a holographic medium and recalled through a competitive processes in the gain medium supplying energy to the ring rsonator. The resonator memory is the first realized example of a neural network function implemented with this kind of architecture.

  17. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  18. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  19. Resonance power supplies for large accelerator

    International Nuclear Information System (INIS)

    Karady, G.; Schneider, E.J.

    1993-01-01

    The resonance power supply has been proposed as an efficient power supply for a future 6 GB, keon producing accelerator. This report presents a detailed analysis of the circuit operation. Based on these analyses each component is designed, one line diagram is developed, component requirements are determined and a detailed cost estimate is prepared. The major components of the system are: the magnet power supply, high voltage by-pass thyristor switch, with l0kA repetitive interruption capability, capacitor banks, capacitor bank thyristor switch, and an energy make up device. The most important components are the bypass thyristor switch and the energy injection device. The bypass thyristor switch is designed to turn on and interrupt to 10 kA dc current with a recovery voltage of 20kV and repetition frequency of 3 Hz. The switch consists of a large array of series and parallel connected thyristors and gate turn off (GTO) devices. The make up energy device is designed to replace the circuit energy losses. A capacitor bank is charged with constant current and discharged during the acceleration period. One of the advantages of the developed circuit is that it can be supplied directly from the local power network. In order to prove the validity of the assumptions, a scaled down model circuit was thoroughly tested. These tests proved that the engineering design of critical components is correct and this resonant power supply can be properly controlled by an inventer/rectifier connected in series with the magnet and by the make up energy device. This finding reduces the system cost

  20. Nanoelectromechanical resonator for logic operations

    KAUST Repository

    Kazmi, Syed N. R.

    2017-08-29

    We report an electro-thermally tunable in-plane doubly-clamped nanoelectromechanical resonator capable of dynamically performing NOR, NOT, XNOR, XOR, and AND logic operations. Toward this, a silicon based resonator is fabricated using standard e-beam lithography and surface nanomachining of a highly conductive device layer of a silicon-on-insulator (SOI) wafer. The performance of this logic device is examined at elevated temperatures, ranging from 25 °C to 85 °C, demonstrating its resilience for most of the logic operations; thereby paving the way towards nano-elements-based mechanical computing.

  1. The Resonance Integral of Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Hellstrand, E; Lundgren, G

    1962-08-15

    The resonance integral of niobium has been studied by both pile oscillator and activation techniques. A value of 8.15b {+-} 0.65 b was obtained for the infinitely dilute integral. In addition, the variation of the resonance integral with foil thickness has been measured for thicknesses in the range 0.06 mm to 1.36 mm. A separate study of the half-life of the isomeric state in {sup 94}Nb yielded a value T{sub 1/2} = 6.30 - 0.03 m which is about 5 % lower than the value given in literature.

  2. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  3. Inelastic scattering in resonant tunneling

    DEFF Research Database (Denmark)

    Wingreen, Ned S.; Jacobsen, Karsten Wedel; Wilkins, John W.

    1989-01-01

    The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability or the esc......The exact resonant-tunneling transmission probability for an electron interacting with phonons is presented in the limit that the elastic coupling to the leads is independent of energy. The phonons produce transmission sidebands but do not affect the integrated transmission probability...

  4. Thermal resonance in signal transmission

    International Nuclear Information System (INIS)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-01-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems

  5. Thermal resonance in signal transmission

    Energy Technology Data Exchange (ETDEWEB)

    Reigada, Ramon; Sarmiento, Antonio; Lindenberg, Katja

    2001-06-01

    We use temperature tuning to control signal propagation in simple one-dimensional arrays of masses connected by hard anharmonic springs and with no local potentials. In our numerical model a sustained signal is applied at one site of a chain immersed in a thermal environment and the signal-to-noise ratio is measured at each oscillator. We show that raising the temperature can lead to enhanced signal propagation along the chain, resulting in thermal resonance effects akin to the resonance observed in arrays of bistable systems.

  6. Coupled-resonator optical waveguides

    DEFF Research Database (Denmark)

    Raza, Søren; Grgic, Jure; Pedersen, Jesper Goor

    2010-01-01

    Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex-valued paramet......Coupled-resonator optical waveguides hold potential for slow-light propagation of optical pulses. The dispersion properties may adequately be analyzed within the framework of coupled-mode theory. We extend the standard coupled-mode theory for such structures to also include complex...

  7. Giant resonances: reaction theory approach

    International Nuclear Information System (INIS)

    Toledo Piza, A.F.R. de; Foglia, G.A.

    1989-09-01

    The study of giant resonances through the use of reaction theory approach is presented and discussed. Measurements of cross-sections to the many available decay channels following excitation of giant multipole resonances (GMR) led one to view these phenomena as complicated dynamical syndromes so that theoretical requirements for their study must be extended beyond the traditional bounds of nuclear structure models. The spectra of decay products following GMR excitation in heavy nuclei are well described by statistical model (Hauser-Feshback, HF) predictions indicated that spreading of the collective modes plays a major role in shaping exclusive cross-sections. (A.C.A.S.) [pt

  8. Nonlinear phenomena at cyclotron resonance

    International Nuclear Information System (INIS)

    Subbarao, D.; Uma, R.

    1986-01-01

    Finite amplitude electromagnetic waves in a magnetoplasma which typically occur in situations as in present day wave heating, current drives and other schemes in magnetically confined fusion systems, can show qualitatively different absorption and emission characteristics around resonant frequencies of the plasma because of anharmonicity. Linear wave plasma coupling as well as weak nonlinear effects such as parametric instabilities generally overlook this important effect even though the thresholds for the two phenomena as shown here are comparable. Though the effects described here are relevant to a host of nonlinear resonance effects in fusion plasmas, the authors mainly limit themselves to ECRH

  9. Classical resonances and quantum scarring

    International Nuclear Information System (INIS)

    Manderfeld, Christopher

    2003-01-01

    We study the correspondence between phase-space localization of quantum (quasi-)energy eigenstates and classical correlation decay, given by Ruelle-Pollicott resonances of the Frobenius-Perron operator. It will be shown that scarred (quasi-)energy eigenstates are correlated: pairs of eigenstates strongly overlap in phase space (scar in same phase-space regions) if the difference of their eigenenergies is close to the phase of a leading classical resonance. Phase-space localization of quantum states will be measured by L 2 norms of their Husimi functions

  10. Migraine and magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Younis, Samaira; Hougaard, Anders; Vestergaard, Mark B.

    2017-01-01

    Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation in the meth......Purpose of review: To present an updated and streamlined overview of the metabolic and biochemical aspect of the migraine pathophysiology based on findings from phosphorous (31P) and hydrogen (1H) magnetic resonance spectroscopy (MRS) studies. Recent findings: Despite of the variation...

  11. Algorithm of resonance orders for the objects

    Science.gov (United States)

    Zhang, YongGang; Zhang, JianXue

    2018-03-01

    In mechanical engineering, the object resonance phenomena often occur when the external incident wave frequency is close to object of the natural frequency. Object resonance phenomena get the maximum value when the external incident frequency is equal to object the natural frequency. Experiments found that resonance intension of the object is changed, different objects resonance phenomena present different characteristics of ladders. Based on object orders resonance characteristics, the calculation method of object orders resonance is put forward in the paper, and the application for the light and sound waves on the seven order resonance characteristics by people feel, the result error is less than 1%.Visible in this paper, the method has high accuracy and usability. The calculation method reveals that some object resonance occur present order characteristic only four types, namely the first-orders resonance characteristics, third-orders characteristics, five orders characteristic, and seven orders characteristic.

  12. Miniaturised self-resonant split-ring resonator antenna

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Breinbjerg, Olav

    2009-01-01

    at the resonance is governed by the arc length of the monopole. Numerical and experimental results are presented for an antenna configuration of 1/23.4 wavelength in diameter (ka~0.134). The antenna is tuned to 50 ohms without any matching network, and its efficiency is measured to be 17.5%....

  13. Preparing for Emergency Situations

    Science.gov (United States)

    Asproth, Viveca; Amcoff Nyström, Christina

    2010-11-01

    Disaster relief can be seen as a dynamic multi actor process with actors both joining and leaving the relief work during the help and rescue phase after the disaster has occurred. Actors may be governmental agencies, non profit voluntary organisations or spontaneous helpers comprised of individual citizens or temporal groups of citizens. Hence, they will vary widely in agility, competence, resources, and endurance. To prepare for for disasters a net based Agora with simulation of emergency situations for mutual preparation, training, and organisational learning is suggested. Such an Agora will ensure future security by: -Rising awareness and preparedness of potential disaster responders by help of the components and resources in the netAgora environment; -Improving cooperation and coordination between responders; -Improving competence and performance of organisations involved in security issues; -Bridging cultural differences between responders from different organizations and different backgrounds. The developed models are intended to reflect intelligent anticipatory systems for human operator anticipation of future consequences. As a way to catch what should be included in this netbased Agora and to join the split pictures that is present, Team Syntegrity could be a helpful tool. The purpose of Team Syntegrity is to stimulate collaboration and incite cross fertilization and creativity. The difference between syntegration and other group work is that the participants are evenly and uniquely distributed and will collectively have the means, the knowledge, the experience, the perspectives, and the expertise, to deal with the topic. In this paper the possibilities with using Team Syntegrity in preparation for the development of a netbased Agora is discussed. We have identified that Team Syntegrity could be useful in the steps User Integration, Designing the netAgora environment, developing Test Scenarios, and assessment of netAgora environment.

  14. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  15. Potassium fluorotitanate preparation

    International Nuclear Information System (INIS)

    Perillo, Patricia; Ares, Osvaldo; Botbol, Jose.

    1989-01-01

    In order to determine the best conditions for potassium fluotitanate preparation as intermediate step in the electrolytic production of metalic titanium, the effects of a number of experimental variables have been studied. This method is a process of sintering titanium dioxide with potassium fluosilicate and potassium chloride, followed by leaching with boiling water and further crystallization by cooling the solution. An overall yield of 90% has been attained under the following conditions: working temperature: 750 deg C; heating time for sintering: 3 hours; molar ratio: titanium dioxide: potassium fluosilicate: potassium chloride: 1 : 2 : 0.4; number of leachings: 6. (Author) [es

  16. Geometrical optics model of Mie resonances

    Science.gov (United States)

    Roll; Schweiger

    2000-07-01

    The geometrical optics model of Mie resonances is presented. The ray path geometry is given and the resonance condition is discussed with special emphasis on the phase shift that the rays undergo at the surface of the dielectric sphere. On the basis of this model, approximate expressions for the positions of first-order resonances are given. Formulas for the cavity mode spacing are rederived in a simple manner. It is shown that the resonance linewidth can be calculated regarding the cavity losses. Formulas for the mode density of Mie resonances are given that account for the different width of resonances and thus may be adapted to specific experimental situations.

  17. Physiologic effects of bowel preparation

    DEFF Research Database (Denmark)

    Holte, Kathrine; Nielsen, Kristine Grubbe; Madsen, Jan Lysgård

    2004-01-01

    healthy volunteers (median age, 63 years) underwent bowel preparation with bisacodyl and sodium phosphate. Fluid and food intake were standardized according to weight, providing adequate calorie and oral fluid intake. Before and after bowel preparation, weight, exercise capacity, orthostatic tolerance...

  18. Data Breach Preparation

    Energy Technology Data Exchange (ETDEWEB)

    Belangia, David Warren [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-13

    The Home Depot Data Breach is the second largest data breach on record. It has or will affect up to 56 million debit or credit cards. A trusted vendor account, coupled with the use of a previously unknown variant of malware that allowed the establishment of a foothold, was the entry point into the Home Depot network. Once inside the perimeter, privilege escalation provided an avenue to obtain the desired information. Home Depot did, however, learn some lessons from Target. Home Depot certainly communicated better than Target, procured insurance, and instituted as secure an environment as possible. There are specific measures an institution should undertake to prepare for a data breach, and everyone can learn from this breach. Publicly available information about the Home Depot Data Breach provides insight into the attack, an old malware variant with a new twist.While the malware was modified as to be unrecognizable with tools, it probably should have been detected. There are also concerns with Home Depot’s insurance and the insurance provider’s apparent lack of fully reimbursing Home Depot for their losses. The effect on shareholders and Home Depot’s stock price was short lived. This story is still evolving but provides interesting lessons learned concerning how an organization should prepare for it inevitable breach.

  19. PREPARATION FOR RETIREMENT PROGRAMME

    CERN Multimedia

    Human Resources Division

    2001-01-01

    27 March 2001 from 2.00 p.m. to 5.30 p.m. 28 March 2001 from 2.00 p.m. to 5.30 p.m. 29 March 2001 from 2.00 p.m. to 5.30 p.m. 30 March 2001 from 2.00 p.m. to 4.45 p.m. Auditorium (Main Building) After the success of the preparation seminars held in recent years, it has been decided that the programme should continue. The forthcoming seminar has been prepared in close collaboration with the CERN Pensioners' Association. The programme will be organised over several half-day sessions. Once again this year, a special session will be devoted to the 10th revision of the Swiss state pension scheme, the 'AVS' (Assurance-Vieillesse et Survivants), and the consequences for international civil servants. A talk will be given by Mrs Danièle Siebold, Director of the Caisse Cantonale Genevoise de Compensation, aimed mainly at those residing in or intending to move to Switzerland, or who worked in Switzerland before joining CERN. To enable Mrs Siebold to respond to your concerns as effectively as possible, please ...

  20. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2007-01-01

    The Department of Human Resources is organising a preparation for retirement seminar which will take place on the four successive afternoons of 2 to 5 October 2007. Similar seminars in the past have always proved highly successful. Retirement marks the end of one’s working life and the start of a new period of life. This period of transition and change is experienced differently from one individual to another. In any case, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above as well as those who have retired during the year have been sent a personal invitation to attend. Spouses are welcome. Staff members below 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned and the limited capacity of th...

  1. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2011-01-01

    The Human Resources Department is organizing a Preparation for Retirement Seminar, which will take place on 18 and 21 October 2011 in the afternoon in the Main Auditorium and on 19 October and 15 and 16 November 2011 in the afternoon in the Council Chamber. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned, you are ...

  2. Preparation for Retirement Seminar

    CERN Multimedia

    HR Department

    2011-01-01

    The Human Resources Department is organizing a Preparation for Retirement Seminar, which will take place on 18 and 21 October 2011 in the afternoon in the Main Auditorium and on 19 October and 15 and 16 November 2011 in the afternoon in the Council Chamber. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to availability of places. Registration: In view of the number of people concerned, you are r...

  3. Preparing Students for Globalization

    DEFF Research Database (Denmark)

    Friesel, Anna

    2010-01-01

    A. Friesel. Preparing Students for Globalization Working with International Teams with Projects // Electronics and Electrical Engineering. - Kaunas: Technologija, 2019. - No. 6(102). - P. 111-114. This paper summarizes the activities, contents and overall outcomes of our experiences with internat......A. Friesel. Preparing Students for Globalization Working with International Teams with Projects // Electronics and Electrical Engineering. - Kaunas: Technologija, 2019. - No. 6(102). - P. 111-114. This paper summarizes the activities, contents and overall outcomes of our experiences...... the positive influence on number of our partnership agreements with other European universities. Globalisation makes it necessary to cooperate on an international platform. At the IHK we have more than 50 active Erasmus agreements. We also have bilateral agreements with many non-European countries, for example......: USA, China, Korea, Mexico, Chile and others. We describe our experiences of working on industrial projects with international teams and analyse the development and trends in student mobility. The growing popularity of these programmes and the increasing number of the students joining our international...

  4. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  5. Preparation for retirement seminar

    CERN Multimedia

    HR Department

      The Human Resources Department is organizing a preparation for retirement seminar, which will take place on the afternoons of the 25 and 27 November 2009. Similar seminars in the past have always proved highly successful. Retirement marks the end of a person’s working life and the start of a new chapter. This period of transition is experienced differently from one individual to another. In all cases, being well-informed and prepared greatly facilitates the change in lifestyle. We would like to draw your attention to the following information: Staff concerned: All staff members aged 58 and above have been sent a personal invitation to attend. Spouses are welcome. Staff members under the age of 58 who are interested in attending the seminar may also apply. Their applications will be accepted subject to the availability of places. Registration: In view of the number of people concerned and the limited capacity of the Main Auditorium, you are requested to register in advance via Indico. &a...

  6. End-preparation assessments and tests for compounded sterile preparations.

    Science.gov (United States)

    McElhiney, Linda F

    2013-01-01

    Outsourcing has become a necessity to obtain sterile products that are currently on backorder. Because of the expense of outsourcing sterile compounding, pharmacy leadership in health systems are now considering the option of insourcing and batch preparing compounded sterile preparations, which can be a viable option for a health system. It can significantly decrease drug-spending costs, and the pharmacy has a complete record of the compounding process. The key to preparing high-quality, safe, sterile preparations and meeting United States Pharmacopeia standards is end-preparation assessments and tests.

  7. Interface losses in multimaterial resonators

    DEFF Research Database (Denmark)

    Villanueva, L.G.; Amato, B.; Larsen, Tom

    2014-01-01

    We present an extensive study shedding light on the role of surface and bulk losses in micromechanical resonators. We fabricate thin silicon nitride membranes of different sizes and we coat them with different thicknesses of metal. We later characterize the 81 lowest out-of-plane flexural vibrati...

  8. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  9. Jet-associated resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Englert, Christoph [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Ferretti, Gabriele [Chalmers University of Technology, Department of Physics, Goeteborg (Sweden); Spannowsky, Michael [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2017-12-15

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet-Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities. (orig.)

  10. Trends in resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    The author reviews the history of resonance ionization spectroscopy and then comments on the delineations of RIS with reference to many related laser processes. The substance of the paper deals with the trends in RIS and especially how the needs for sensitive analytical methods have overshadowed the orginal plan to study excited species. 9 refs., 1 fig

  11. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Children’s (Pediatric) Magnetic Resonance ...

  12. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician Resources Professions Site Index A-Z Magnetic Resonance Imaging (MRI) - ...

  13. Low field magnetic resonance imaging

    Science.gov (United States)

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  14. Charmed baryonic resonances in medium

    Directory of Open Access Journals (Sweden)

    Tolos Laura

    2015-01-01

    Full Text Available We discuss the behavior of dynamically-generated charmed baryonic resonances in matter within a unitarized coupled-channel model consistent with heavy-quark spin symmetry. We analyze the implications for the formation of D-meson bound states in nuclei and the propagation of D mesons in heavy-ion collisions from RHIC to FAIR energies.

  15. Electro-Mechanical Resonance Curves

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2018-01-01

    Recently I have been investigating the frequency response of galvanometers. These are direct-current devices used to measure small currents. By using a low-frequency function generator to supply the alternating-current signal and a stopwatch smartphone app to measure the period, I was able to take data to allow a resonance curve to be drawn. This…

  16. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. May 2012 Volume 17 Number 5. SERIES ARTICLES. 436 Dawn of Science. The Quest for Power. T Padmanabhan. GENERAL ARTICLES. 441 Bernoulli Runs Using 'Book Cricket' to Evaluate. Cricketers. Anand Ramalingam. 454 Wilhelm Ostwald, the Father of Physical Chemistry.

  17. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... Magnetic Resonance Imaging Sponsored by Please note RadiologyInfo.org is not a medical facility. Please contact your ... links: For the convenience of our users, RadiologyInfo .org provides links to relevant websites. RadiologyInfo.org , ACR ...

  18. Giant resonances on excited states

    International Nuclear Information System (INIS)

    Besold, W.; Reinhard, P.G.; Toepffer, C.

    1984-01-01

    We derive modified RPA equations for small vibrations about excited states. The temperature dependence of collective excitations is examined. The formalism is applied to the ground state and the first excited state of 90 Zr in order to confirm a hypothesis which states that not only the ground state but every excited state of a nucleus has a giant resonance built upon it. (orig.)

  19. Biosensing by WGM Microspherical Resonators

    Directory of Open Access Journals (Sweden)

    Giancarlo C. Righini

    2016-06-01

    Full Text Available Whispering gallery mode (WGM microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed.

  20. RESONANCE--I-Ju-ne

    Indian Academy of Sciences (India)

    I read the above article in the Classroom Section of the March 2006 issue of Resonance with great interest, but was disappointed at the end. The problem investigated is an ... In our article, we have shown that the approach in solving of this problem is not correct. In a typical RC circuit, value of inductance is taken as zero, ...

  1. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos About Us News Physician ... Magnetic resonance imaging (MRI) is a noninvasive medical test that physicians use to diagnose medical conditions. MRI ...

  3. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... structures of the brain and can also provide functional information (fMRI) in selected cases. MR images of ... Articles and Media MR Angiography (MRA) Magnetic Resonance, Functional (fMRI) - Brain Head and Neck Cancer Treatment Brain ...

  4. Model for resonant plasma probe.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Johnson, William Arthur; Hebner, Gregory Albert; Jorgenson, Roy E.; Coats, Rebecca Sue

    2007-04-01

    This report constructs simple circuit models for a hairpin shaped resonant plasma probe. Effects of the plasma sheath region surrounding the wires making up the probe are determined. Electromagnetic simulations of the probe are compared to the circuit model results. The perturbing effects of the disc cavity in which the probe operates are also found.

  5. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. July 2007 Volume 12 Number 7. GENERAL ARTICLES. 04 Josiah Willard Gibbs. V Kumaran. 12 Josiah Willard ... IISc, Bangalore). Rapidity: The Physical Meaning of the Hyperbolic Angle in. Special Relativity. Giorgio Goldoni. Survival in Stationary Phase. S Mahadevan. Classroom.

  6. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... of which shows a thin slice of the body. The images can then be studied from different angles by ... about radiology? Share your patient story here Images ... Articles and Media Catheter Angiography Magnetic Resonance, Functional (fMRI) - Brain Children's ( ...

  7. Tuning Fano Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Prokopeva, Ludmila

    2013-01-01

    We demonstrate strong electrical control of plasmonic Fano resonances in dolmen structures using tunable interband transitions in graphene. Such graphene-plasmonic hybrid devices can have applications in light modulation and sensing. OCIS codes: (250.5403) Plasmonics; (160.4670) Optical materials...

  8. Resonance journal of science education

    Indian Academy of Sciences (India)

    Resonance journal of science education. February 2012 Volume 17 Number 2. SERIES ARTICLES. 106 Dawn of Science. Calculus is Developed in Kerala. T Padmanabhan. GENERAL ARTICLES. 117 Willis H Carrier: Father of Air Conditioning. R V Simha. 139 Refrigerants For Vapour Compression Refrigeration. Systems.

  9. Jet-associated resonance spectroscopy

    Science.gov (United States)

    Englert, Christoph; Ferretti, Gabriele; Spannowsky, Michael

    2017-12-01

    We present a model-independent study aimed at characterising the nature of possible resonances in the jet-photon or jet- Z final state at hadron colliders. Such resonances are expected in many models of compositeness and would be a clear indication of new physics. At leading order, in the narrow width approximation, the matrix elements are parameterised by just a few constants describing the coupling of the various helicities to the resonance. We present the full structure of such amplitudes up to spin 2 and use them to simulate relevant kinematic distributions that could serve to constrain the coupling structure. This also generalises the signal generation strategy that is currently pursued by ATLAS and CMS to the most general case in the considered channels. While the determination of the P/CP properties of the interaction seems to be out of reach within this framework, there is a wealth of information to be gained about the spin of the resonance and the relative couplings of the helicities.

  10. Prepare Healthy Foods with Toddlers

    Science.gov (United States)

    Izumi-Taylor, Satomi; Rike, Cheryl

    2011-01-01

    Toddlers--from about 16 to 36 months--can learn a variety of skills as they prepare food and follow recipes in developmentally appropriate ways. Early childhood teachers are encouraged to support young children's healthy eating habits by offering simple food preparation experiences. When toddlers--and preschoolers--safely prepare healthy snacks,…

  11. Electrically protected resonant exchange qubits in triple quantum dots.

    Science.gov (United States)

    Taylor, J M; Srinivasa, V; Medford, J

    2013-08-02

    We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating point with a narrowband response to high frequency electric fields. Furthermore, existing double quantum dot advances, including robust preparation and measurement via spin-to-charge conversion, are immediately applicable to the new qubit. Finally, the electric dipole terms implicit in the high frequency coupling enable strong coupling with superconducting microwave resonators, leading to more robust two-qubit gates.

  12. Studies on polyaspartamide gadolinium complexes as potential magnetic resonance imaging contrast agents

    International Nuclear Information System (INIS)

    Yan Guoping; Liu Maili; Li Liyun

    2005-01-01

    Purpose: A series of polyaspartamide gadolinium complexes containing pyridoxamine groups were studied as the potential magnetic resonance imaging (MRI) contrast agents for liver enhancement. Methods: These polyaspartamide gadolinium complexes were prepared and evaluated by relaxivity, acute toxicity studies and magnetic resonance imaging of the liver in rats. Results: These polyaspartamide gadolinium complexes have higher relaxation effectiveness than that of the clinically used gadolinium diethylenetriaminepentaacetic acid and possess the low intravenous acute toxicities to Institute for Cancer Research (ICR) mice. Magnetic resonance imaging of the liver in rats indicated that they greatly enhance the contrast of magnetic resonance images and provide prolonged intravascular duration in the liver. Conclusion: These results indicated that the polyaspartamide gadolinium complexes containing pyridoxamine groups could be considered as the appropriate MRI contrast agents for liver enhancement

  13. Achieving Optimal Self-Adaptivity for Dynamic Tuning of Organic Semiconductors through Resonance Engineering.

    Science.gov (United States)

    Tao, Ye; Xu, Lijia; Zhang, Zhen; Chen, Runfeng; Li, Huanhuan; Xu, Hui; Zheng, Chao; Huang, Wei

    2016-08-03

    Current static-state explorations of organic semiconductors for optimal material properties and device performance are hindered by limited insights into the dynamically changed molecular states and charge transport and energy transfer processes upon device operation. Here, we propose a simple yet successful strategy, resonance variation-based dynamic adaptation (RVDA), to realize optimized self-adaptive properties in donor-resonance-acceptor molecules by engineering the resonance variation for dynamic tuning of organic semiconductors. Organic light-emitting diodes hosted by these RVDA materials exhibit remarkably high performance, with external quantum efficiencies up to 21.7% and favorable device stability. Our approach, which supports simultaneous realization of dynamically adapted and selectively enhanced properties via resonance engineering, illustrates a feasible design map for the preparation of smart organic semiconductors capable of dynamic structure and property modulations, promoting the studies of organic electronics from static to dynamic.

  14. Double Fano resonances in plasmon coupling nanorods

    International Nuclear Information System (INIS)

    Liu, Fei; Jin, Jie

    2015-01-01

    Fano resonances are investigated in nanorods with symmetric lengths and side-by-side assembly. Single Fano resonance can be obtained by a nanorod dimer, and double Fano resonances are shown in nanorod trimers with side-by-side assembly. With transverse plasmon excitation, Fano resonances are caused by the destructive interference between a bright superradiant mode and dark subradiant modes. The bright mode originates from the electric plasmon resonance, and the dark modes originate from the magnetic resonances induced by near-field inter-rod coupling. Double Fano resonances result from double dark modes at different wavelengths, which are induced and tuned by the asymmetric gaps between the adjacent nanorods. Fano resonances show a high figure of merit and large light extinction in the periodic array of assembled nanorods, which can potentially be used in multiwavelength sensing in the visible and near-infrared regions. (paper)

  15. Resonance – Journal of Science Education | News

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Website Reviews. Articles in Resonance – Journal of Science Education. Volume 4 Issue 8 August 1999 pp 91-93 Website Reviews. Website Review · Harini Nagendra · More Details Fulltext PDF ...

  16. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What ...

  17. High quality-factor optical resonators

    International Nuclear Information System (INIS)

    Henriet, Rémi; Salzenstein, Patrice; Coillet, Aurélien; Saleh, Khaldoun; Chembo, Yanne K; Ristic, Davor; Ferrari, Maurizio; Mortier, Michel; Rasoloniaina, Alphonse; Dumeige, Yannick; Féron, Patrice; Cibiel, Gilles; Llopis, Olivier

    2014-01-01

    Various resonators are investigated for microwave photonic applications. Micro-sphere, disk and fiber ring resonators were designed, realized and characterized. Obtained quality factors are as high as Q = 10 10 . (paper)

  18. Advances in magnetic and optical resonance

    CERN Document Server

    Warren, Warren S

    1997-01-01

    Since 1965, Advances in Magnetic and Optical Resonance has provided researchers with timely expositions of fundamental new developments in the theory of, experimentation with, and application of magnetic and optical resonance.

  19. Highly Tunable Electrothermally Actuated Arch Resonator

    KAUST Repository

    Hajjaj, Amal Z.; Ramini, Abdallah; Alcheikh, Nouha; Younis, Mohammad I.

    2016-01-01

    that after some electro-thermal voltage load, the third resonance frequency starts to become more sensitive to the axial thermal stress, while the first resonance frequency becomes less sensitive. These results can be used as guidelines to utilize arches

  20. Resonance formation in photon-photon collisions

    International Nuclear Information System (INIS)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the γγ* production of spin-one resonances. 37 refs., 17 figs., 5 tabs

  1. Preparing for public policy

    Science.gov (United States)

    Plapp, Brendan

    2002-03-01

    In the early 1990s, the tight job market for Ph.D. recipients in physics led to a reexamination of graduate programs by some departments. The speaker participated in this reanalysis at his graduate institution and arranged presentations of alternative careers to the physics graduate student body. What became clear was that diverse options were open; job seekers just needed flexible expectations. However, there are a number of additions or modifications to graduate programs which could further help to prepare Ph.D. recipients as they move into non-traditional roles, such as additional and more formal experience in communicating science to a wide range of audiences. In particular, it would be advantageous to learn how to explain the role that basic scientific research projects play in the larger public policy arena. Examples from the speaker's experience of working as a staff member in the U.S. Congress will be presented to illustrate the skills needed in that environment.

  2. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  3. Hospital preparation and drills

    International Nuclear Information System (INIS)

    Marshall, J.C.; Mettler, F.A. Jr.

    1990-01-01

    The authors discuss how effective management of radiation accidents requires a large amount of preparation and thought. In addition, training of the staff is absolutely essential. This is best accomplished through annual drills, but also may be accomplished through the use of videotapes. The critical points to be remembered in the handling of such accidents and in writing the procedures is that treatment of non-radiation-related injuries and medical stabilization are paramount. The second point is that it is important to be able to distinguish between a patient who has been irradiated from an external radiation source and one who is contaminated with radioactive materials. The handling of these two types of accidents is entirely different and this distinction needs to be made early. All of the items outlined in this chapter concern the care of the severely injured and radioactively contaminated

  4. Preparing the operating budget.

    Science.gov (United States)

    Williams, R B

    1983-12-01

    The process of preparing a hospital pharmacy budget is presented. The desired characteristics of a budget and the process by which it is developed and approved are described. Fixed, flexible, and zero-based budget types are explained, as are the major components of a well-developed budget: expense, workload, productivity, revenue, and capital equipment and other expenditures. Specific methods for projecting expenses and revenues, based on historical data, are presented along with a discussion of variables that must be considered in order to achieve an accurate and useful budget. The current shift in emphasis away from revenue capture toward critical analysis of pharmacy costs underscores the importance of budgetary analysis for hospital pharmacy managers.

  5. Preparing paraffin wax, etc

    Energy Technology Data Exchange (ETDEWEB)

    1935-12-27

    A process is described for preparing paraffin wax by separation from substances containing bitumen, consisting of treating the raw material at an elevated temperature under such moderate conditions and by means of such organic solvents that the bitumen present in the raw material or formed in the process dissolves as well as the asphaltic and phenolic substances and the humic acids which may be said to be neither extracts nor decomposed materials, and then submitting the products and extracts to a treatment with hydrogen gas, which is effected below 300/sup 0/C, and passing the material over fixed hydrogenation catalysts above 300/sup 0/C by means of hydrogenation catalysts finely dispersed in carbonaceous materials all avoiding decomposition with the formation of volatile products.

  6. Decommissioning. Success with preparation

    International Nuclear Information System (INIS)

    Klasen, Joerg; Schulz, Rolf; Wilhelm, Oliver

    2017-01-01

    The decommissioning of a nuclear power plant poses a significant challenge for the operating company. The business model is turned upside down and a working culture developed for power operation has to be adapted while necessary know- how for the upcoming tasks has to be built up. The trauma for the employees induced by the final plant shut-down has to be considered and respected. The change of working culture in the enterprise has to be managed and the organization has to be prepared for the future. Here the methods of Change-Management offer a systematic and effective approach. Confidence in the employee's competencies is one of the key success factors for the change into the future.

  7. Radiation-induced frequency transients in AT, BT, and SC cut quartz resonators

    International Nuclear Information System (INIS)

    Koehler, D.R.

    1979-01-01

    Earlier studies of transient frequency changes in high-purity swept AT quartz resonators led to the conclusion that impurity-induced effects were small, while the observed changes were qualitatively and quantitatively well characterized in terms of the time changing temperature of the vibrating quartz and its effect on frequency. 5 MHz, AT cut fifth overtone, and BT and SC cut third overtone resonators were prepared from a single stone of Sawyer swept Premium-Q quartz. The resonators were operated in precision ovenized oscillators at or near their turnover temperatures. Pulsed irradiation, at dose levels of the order of 10 4 rads (Si) per pulse, was accomplished at Sandia. The experimental data display negative frequency transients for the AT cut resonators, positive frequency transients for the BT cut resonators, and very small transient effects for the SC cut resonators. From these experimental results, it is concluded that no measurable impurity-induced frequency changes are observed in this high-purity swept-quartz and that the frequency transients are accurately modelled in terms of transient temperature effects stemming from the thermal characteristics of the resonator structure

  8. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  9. Resonant acoustic radiation force optical coherence elastography

    OpenAIRE

    Qi, Wenjuan; Li, Rui; Ma, Teng; Li, Jiawen; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2013-01-01

    We report on a resonant acoustic radiation force optical coherence elastography (ARF-OCE) technique that uses mechanical resonant frequency to characterize and identify tissues of different types. The linear dependency of the resonant frequency on the square root of Young's modulus was validated on silicone phantoms. Both the frequency response spectrum and the 3D imaging results from the agar phantoms with hard inclusions confirmed the feasibility of deploying the resonant frequency as a mec...

  10. Resonance phenomena at high level density

    International Nuclear Information System (INIS)

    Sobeslavsky, E.; Dittes, F.M.; Rotter, I.; Technische Univ. Dresden

    1994-11-01

    We investigate the behaviour of resonances as a function of the coupling strength between bound and unbound states on the basis of a simple S-matrix model. Resonance energies and widths are calculated for well isolated, overlapping and strongly overlapping resonance states. The formation of shorter and longer time scales (trapping effect) is traced. We illustrate that the cross section results from an interference of all resonance states in spite of the fact that their lifetimes may be very different. (orig.)

  11. Magnetic resonance for wireless power transfer

    OpenAIRE

    Hui, SYR

    2016-01-01

    Magnetic resonance has been a cornerstone of nonradiative wireless power transfer (WPT) since the late 19th century. However, some researchers have the misconception that magnetic resonance for WPT was developed recently. This article traces some early work of Tesla and other researchers related to the use of magnetic resonance in WPT. Included are some examples of magnetic resonance-based WPT projects conducted by researchers in the biomedical and power electronics communities over the last ...

  12. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... and other diseases assess bone loss examine complex fractures top of page How should I prepare my ... radiologist should be aware of them. Parents or family members who accompany patients into the scanning room ...

  13. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... top of page How should I prepare my child for the MRI? Your child may be asked ... exam time. top of page What will my child experience during and after the procedure? Your child ...

  14. Topical contrast-enhanced magnetic resonance dacryocystography

    International Nuclear Information System (INIS)

    Yoshikawa, Takeshi; Sugimura, Kazuro; Hirota, Shozo

    2000-01-01

    The purpose of this study was to evaluate the usefulness of magnetic resonance dacryocystography (MRD) with topical administration of normal saline solution and diluted Gd-DTPA solution for the assessment of lacrimal outflow disorders. Two T2-weighted sequences and two T1-weighted sequences were evaluated in this study. The 1:100 diluted Gd solution was prepared by diluting Gd-DTPA (Magnevist) with normal saline solution. A phantom study using tube phantoms of various diameters filled with normal saline solution and 1:100 diluted Gd solution was performed. A preliminary study was performed in ten normal volunteers Eighteen patients with lacrimal outflow disorders underwent clinical MRD, and 14 also underwent conventional dacryocystography (CDG). MRD images were evaluated and compared with clinical symptoms and CDG images. In all sequences, MRD could visualize the full length of 0.7 to 1.7 mm diameter tube phantoms and could show all of the normal lacrimal sacs and nasolacrimal ducts. In the clinical study, MRD findings were compatible with the symptoms in 14 patients but were not compatible with CDG findings in half of the cases. Topical contrast-enhanced MRD provided a simple, non-invasive means of obtaining detailed morphological and functional information on the lacrimal drainage apparatus. (author)

  15. Magnetic resonance perfusion imaging without contrast media

    International Nuclear Information System (INIS)

    Martirosian, Petros; Graf, Hansjoerg; Schick, Fritz; Boss, Andreas; Schraml, Christina; Schwenzer, Nina F.; Claussen, Claus D.

    2010-01-01

    Principles of magnetic resonance imaging techniques providing perfusion-related contrast weighting without administration of contrast media are reported and analysed systematically. Especially common approaches to arterial spin labelling (ASL) perfusion imaging allowing quantitative assessment of specific perfusion rates are described in detail. The potential of ASL for perfusion imaging was tested in several types of tissue. After a systematic comparison of technical aspects of continuous and pulsed ASL techniques the standard kinetic model and tissue properties of influence to quantitative measurements of perfusion are reported. For the applications demonstrated in this paper a flow-sensitive alternating inversion recovery (FAIR) ASL perfusion preparation approach followed by true fast imaging with steady precession (true FISP) data recording was developed and implemented on whole-body scanners operating at 0.2, 1.5 and 3 T for quantitative perfusion measurement in various types of tissue. ASL imaging provides a non-invasive tool for assessment of tissue perfusion rates in vivo. Images recorded from kidney, lung, brain, salivary gland and thyroid gland provide a spatial resolution of a few millimetres and sufficient signal to noise ratio in perfusion maps after 2-5 min of examination time. Newly developed ASL techniques provide especially high image quality and quantitative perfusion maps in tissues with relatively high perfusion rates (as also present in many tumours). Averaging of acquisitions and image subtraction procedures are mandatory, leading to the necessity of synchronization of data recording to breathing in abdominal and thoracic organs. (orig.)

  16. Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction

    Science.gov (United States)

    Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping

    2018-04-01

    We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.

  17. Noise in nonlinear nanoelectromechanical resonators

    Science.gov (United States)

    Guerra Vidal, Diego N.

    Nano-Electro-Mechanical Systems (NEMS), due to their nanometer scale size, possess a number of desirable attributes: high sensitivity to applied forces, fast response times, high resonance frequencies and low power consumption. However, ultra small size and low power handling result in unwanted consequences: smaller signal size and higher dissipation, making the NEMS devices more susceptible to external and intrinsic noise. The simplest version of a NEMS, a suspended nanomechanical structure with two distinct excitation states, can be used as an archetypal two state system to study a plethora of fundamental phenomena such as Duffing nonlinearity, stochastic resonance, and macroscopic quantum tunneling at low temperatures. From a technical perspective, there are numerous applications such nanomechanical memory elements, microwave switches and nanomechanical computation. The control and manipulation of the mechanical response of these two state systems can be realized by exploiting a (seemingly) counterintuitive physical phenomenon, Stochastic Resonance: in a noisy nonlinear mechanical system, the presence of noise can enhance the system response to an external stimulus. This Thesis is mainly dedicated to study possible applications of Stochastic Resonance in two-state nanomechanical systems. First, on chip signal amplification by 1/falpha is observed. The effectiveness of the noise assisted amplification is observed to decrease with increasing a. Experimental evidence shows an increase in asymmetry between the two states with increasing noise color. Considering the prevalence of 1/f alpha noise in the materials in integrated circuits, the signal enhancement demonstrated here, suggests beneficial use of the otherwise detrimental noise. Finally, a nanomechanical device, operating as a reprogrammable logic gate, and performing fundamental logic functions such as AND/OR and NAND/NOR is presented. The logic function can be programmed (from AND to OR) dynamically, by

  18. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  19. Projection operator treatment of single particle resonances

    International Nuclear Information System (INIS)

    Lev, A.; Beres, W.P.

    1976-01-01

    A projection operator method is used to obtain the energy and width of a single particle resonance. The resonance energy is found without scanning. An example of the first g/sub 9/2/ neutron resonance in 40 Ca is given and compared with the traditional phase shift method. The results of both approaches are quite similar. 4 figures

  20. Interactions among resonances in the unresolved region

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1982-11-01

    The theory on resonance absorption in the unresolved region is reviewed and a subroutine is presented, optional to UNRES in MC 2 code. Comparisons with the isolated resonance model suggest the necessity, in some cases, of considering interference and overlapping effects among resonances of the system. (Author) [pt

  1. Giant multipole resonances: perspectives after ten years

    International Nuclear Information System (INIS)

    Bertrand, F.E.

    1980-01-01

    Nearly ten years ago evidence was published for the first of the so-called giant multipole resonances, the giant quadrupole resonance. During the ensuing years research in this field has spread to many nuclear physics laboratories throughout the world. The present status of electric giant multipole resonances is reviewed. 24 figures, 1 table

  2. Review of 241 Pu resonance parameters

    International Nuclear Information System (INIS)

    Derrien, H.

    1981-10-01

    The status of 241 Pu resonance parameters is reviewed. The most important recent results are compared in some energy ranges, both from single level and multilevel point of view. It appears that an accurate set of resonance parameters is not still obtained for a general description of the cross-sections in the resonance region. Some recommendations are given for further experiments or evaluations

  3. Observation of pulsed neutron Ramsey resonance

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)]. E-mail: yasuhiro.masuda@kek.jp; Skoy, V. [Joint Institute for Nuclear Reasearch, 141980 Dubna, Moscow Region (Russian Federation); Ino, T. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Jeong, S.C. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan); Watanabe, Y. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba Ibaraki 305-0801 (Japan)

    2007-07-15

    A Ramsey resonance for pulsed neutrons was observed. The separated oscillatory fields for nuclear magnetic resonance were synchronized with a neutron pulse, and then the Ramsey resonance was observed as a function of the neutron velocity. The phase of one of the oscillatory fields was modulated as a function of the neutron time of flight for a neutron velocity measurement.

  4. Depolarization due to the resonance tail during a fast resonance jump

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1980-01-01

    The mechanism of depolarization due to a fast resonance jump is studied. The dominant effect for cases of interest is not dependent on the rate of passage through resonance, but rather on the size of the resonance jump as compared to the width, epsilon, of the resonance. The results are applied to a calculation of depolarization in the AGS at Brookhaven National Laboratory

  5. Numerical simulation of laser resonators

    International Nuclear Information System (INIS)

    Yoo, J. G.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    We developed numerical simulation packages for laser resonators on the bases of a pair of integral equations. Two numerical schemes, a matrix formalism and an iterative method, were programmed for finding numeric solutions to the pair of integral equations. The iterative method was tried by Fox and Li, but it was not applicable for high Fresnel numbers since the numerical errors involved propagate and accumulate uncontrollably. In this paper, we implement the matrix method to extend the computational limit further. A great number of case studies are carried out with various configurations of stable and unstable r;esonators to compute diffraction losses, phase shifts, intensity distributions and phases of the radiation fields on mirrors. Our results presented in this paper show not only a good agreement with the results previously obtained by Fox and Li, but also the legitimacy of our numerical procedures for high Fresnel numbers.

  6. A cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Sprangle, P.; Tang, C.M.; Vlahos, L.

    1983-01-01

    A laser acceleration mechanism which utilizes a strong static, almost uniform, magnetic field together with an intense laser pulse is analyzed. The interaction and acceleration mechanism relies on a self resonance effect. Since the laser field is assumed to be diffraction limited, the magnetic field must be spatially varied to maintain resonance. The effective accelerating gradient is shown to scale like 1/√E /SUB b/ , where E /SUB b/ is the electron energy. For a numerical illustration the authors consider a 1 x 10 13 W/cm 2 , CO 2 laser and show that electrons can be accelerated to more than 500 MeV in a distance of 15 m (approximately two Rayleigh lengths)

  7. Protein folding and wring resonances

    DEFF Research Database (Denmark)

    Bohr, Jakob; Bohr, Henrik; Brunak, Søren

    1997-01-01

    The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested that prot......The polypeptide chain of a protein is shown to obey topological contraints which enable long range excitations in the form of wring modes of the protein backbone. Wring modes of proteins of specific lengths can therefore resonate with molecular modes present in the cell. It is suggested...... that protein folding takes place when the amplitude of a wring excitation becomes so large that it is energetically favorable to bend the protein backbone. The condition under which such structural transformations can occur is found, and it is shown that both cold and hot denaturation (the unfolding...

  8. Improving the wide resonance approximation

    International Nuclear Information System (INIS)

    Aboustta, Mohamed A.; Martinez, Aquilino S.

    1999-01-01

    A resonance is considered wide if its practical width, in energy, exceeds the average energy loss per collision, E(1-α A )/2, of the absorbing material. When the mass number, A, is taken infinite, the scattering produces only a change in the direction of motion of the neutron and not in its energy. Based on this assumption, the integral in the slowing-down equation describing the contribution of the resonant absorber is evaluated by taking its limit when α A →1. This work questions the necessity to take such a limit and shows that it is still possible to obtain a simple and more accurate expression for the integral without taking such limit

  9. Improving the wide resonance approximation

    Energy Technology Data Exchange (ETDEWEB)

    Aboustta, Mohamed A.; Martinez, Aquilino S

    1999-03-01

    A resonance is considered wide if its practical width, in energy, exceeds the average energy loss per collision, E(1-{alpha}{sub A})/2, of the absorbing material. When the mass number, A, is taken infinite, the scattering produces only a change in the direction of motion of the neutron and not in its energy. Based on this assumption, the integral in the slowing-down equation describing the contribution of the resonant absorber is evaluated by taking its limit when {alpha}{sub A}{yields}1. This work questions the necessity to take such a limit and shows that it is still possible to obtain a simple and more accurate expression for the integral without taking such limit.

  10. Principles of magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mlynarik, V.; Tkac, I.; Srbecky, M.

    1995-01-01

    The aim of this review is to describe and explain the basic principles of magnetic resonance imaging. The first part of the text is devoted to the phenomenon of magnetic resonance (the interaction of RF magnetic field with the set of magnetic moments in the homogeneous magnetic field) and to relaxation processes. Then, the creation of MR image is described (slice selection, phase and frequency encoding of spatial information). The basic and the most frequently used techniques are explained (spin echo, gradient echo). The way the repetition and echo times influence the image quality and contrast (T1 or T2 weighing) is described. The part with the technical description of the MR equipment is included in the review. The MR imagination examination are compared with X-ray computer tomography technique

  11. Resonant quasiparticles in plasma turbulence

    International Nuclear Information System (INIS)

    Mendonca, J.T.; Bingham, R.; Shukla, P.K.

    2003-01-01

    A general view is proposed on wave propagation in fluids and plasmas where the resonant interaction of monochromatic waves with quasiparticles is considered. A kinetic equation for quasiparticles is used to describe the broadband turbulence interacting with monochromatic waves. Resonant interactions occur when the phase velocity of the long wavelength monochromatic wave is nearly equal to the group velocity of short wavelength wave packets, or quasiparticles, associated with the turbulent spectrum. It is shown that quasiparticle Landau damping can take place, as well as quasiparticle beam instabilities, thus establishing a direct link between short and large wavelength perturbations of the medium. This link is distinct from the usual picture of direct and inverse energy cascades, and it can be used as a different paradigm for the fluid and plasma turbulence theories

  12. Limits to magnetic resonance microscopy

    International Nuclear Information System (INIS)

    Glover, Paul; Mansfield, Peter

    2002-01-01

    The last quarter of the twentieth century saw the development of magnetic resonance imaging (MRI) grow from a laboratory demonstration to a multi-billion dollar worldwide industry. There is a clinical body scanner in almost every hospital of the developed nations. The field of magnetic resonance microscopy (MRM), after mostly being abandoned by researchers in the first decade of MRI, has become an established branch of the science. This paper reviews the development of MRM over the last decade with an emphasis on the current state of the art. The fundamental principles of imaging and signal detection are examined to determine the physical principles which limit the available resolution. The limits are discussed with reference to liquid, solid and gas phase microscopy. In each area, the novel approaches employed by researchers to push back the limits of resolution are discussed. Although the limits to resolution are well known, the developments and applications of MRM have not reached their limit. (author)

  13. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.

    2018-01-12

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  14. Simultaneous electrical and mechanical resonance drive for large signal amplification of micro resonators

    KAUST Repository

    Hasan, M. H.; Alsaleem, F. M.; Jaber, Nizar; Hafiz, Md Abdullah Al; Younis, Mohammad I.

    2018-01-01

    Achieving large signal-noise ratio using low levels of excitation signal is key requirement for practical applications of micro and nano electromechanical resonators. In this work, we introduce the double electromechanical resonance drive concept to achieve an order-of-magnitude dynamic signal amplification in micro resonators. The concept relies on simultaneously activating the micro-resonator mechanical and electrical resonance frequencies. We report an input voltage amplification up to 15 times for a micro-resonator when its electrical resonance is tuned to match the mechanical resonance that leads to dynamic signal amplification in air (Quality factor enhancement). Furthermore, using a multi-frequency excitation technique, input voltage and vibrational amplification of up to 30 times were shown for the same micro-resonator while relaxing the need to match its mechanical and electrical resonances.

  15. Dating by electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Poupeau, G.; Rossi, A.M.

    1984-01-01

    Some natural materials behave like dosimeters in front of the ionizing particle flux coming from environmental radioactivity and the cosmic radiation. This property is used for the dating by Electron Paramagnetic Resonance (EPR). Before presenting the basic principles of the EPR analysis and the dating method which uses such a phenomenous, it is reviewed several types of application currently in course of development. (L.C.) [pt

  16. Pole counting and resonance classification

    International Nuclear Information System (INIS)

    Morgan, D.

    1992-01-01

    S-wave resonances occurring close to an inelastic threshold can be classified according to the number of nearby poles they possess. One then has a useful possibility of distinguishing dynamical alternatives by objective appeal to data. Making this quantitative entails developing suitable effective range expansions for various realizations of potential scattering. A key application is deciding the make-up of f 0 (976) (S*). (author)

  17. Dynamic control of chaotic resonators

    KAUST Repository

    Di Falco, A.; Bruck, R.; Liu, C.; Muskens, O.; Fratalocchi, Andrea

    2016-01-01

    We report on the all-optical control of chaotic optical resonators based on silicon on insulator (SOI) platform. We show that simple non-chaotic cavities can be tuned to exhibit chaotic behavior via intense optical pump- ing, inducing a local change of refractive index. To this extent we have fabricated a number of devices and demonstrated experimentally and theoretically that chaos can be triggered on demand on an optical chip. © 2016 SPIE.

  18. Nucleon Resonance Transition Form factors

    Energy Technology Data Exchange (ETDEWEB)

    Burkert, Volker D. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mokeev, Viktor I. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Aznauryan, Inna G. [Yerevan Physics Inst. (YerPhI) (Armenia)

    2016-08-01

    We discuss recent results from CLAS on electromagnetic resonance transition amplitudes and their dependence on the distance scale (Q2). From the comparison of these results with most advanced theoretical calculations within QCD-based approaches there is clear evidence that meson-baryon contributions are present and important at large distances, i.e. small Q2, and that quark core contributions dominate the short distance behavior.

  19. Nuclear quadrupole resonance of arsenolite

    International Nuclear Information System (INIS)

    Madarazo, R.

    1988-01-01

    A pulsed Nuclear Quadrupole Resonance (NQR) spectrometer was constructed using imported Matec units. Peripherical components were specially assembled and tested for the implantation of the spin-echo technique in the Laboratorio de Centros de Cor of IFUSP. The R.F. operation range is from 50 to 1 ) and spin-spin (T 2 ) relaxation times were carried out at room temperature in arsenolite. The 75 As NQR frequency measured at room temperature is 116.223 MHz. (author) [pt

  20. Parity violation in neutron resonances

    International Nuclear Information System (INIS)

    Mitchell, G.E.; Lowie, L.Y.; Bowman, J.D.; Knudson, J.; Crawford, B.E.; Delheij, P.P.J.; Haseyama, T.; Masaike, A.; Matsuda, Y.; Masuda, Y.

    1997-01-01

    The observation of very large parity violation in neutron resonances has led to a new approach to the study of symmetry breaking in nuclei. The origin of the enhancement of parity violation is discussed, as well as the new (statistical) analysis approach. The TRIPLE experimental system and analysis methods, their improvements are described. Sign correlation and results from recent parity violation experiments are presented and discussed. (author)