WorldWideScience

Sample records for schrodinger equation nls

  1. Finite element method for time-space-fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhu

    2017-07-01

    Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.

  2. Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo

    2007-01-01

    A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.

  3. On the so called rogue waves in nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Y. Charles Li

    2016-04-01

    Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.

  4. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  5. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  6. A conservative local discontinuous Galerkin method for the solution of nonlinear Schr(o)dinger equation in two dimensions

    Institute of Scientific and Technical Information of China (English)

    ZHANG RongPei; YU XiJun; LI MingJun; LI XiangGui

    2017-01-01

    In this study,we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr(o)dinger (NLS) equation.The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux.The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central,alternative and upwind-based flux.We will propose two kinds of time discretization methods for the semi-discrete formulation.One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation.The other one is Krylov implicit integration factor (ⅡF) method which demands much less computational effort.Various numerical experiments are presented to demonstrate the conservation law of mass and energy,the optimal rates of convergence,and the blow-up phenomenon.

  7. Comparison of the Schrodinger and Salpeter equations

    International Nuclear Information System (INIS)

    Jacobs, S.; Olsson, M.G.

    1985-01-01

    A unified approach to the solution of the Schrodinger and spinless Salpeter equations is presented. Fits to heavy quark bound state energies using various potential models are employed to determine whether the Salpeter equation provides a better description of heavy quark systems than the Schrodinger equation

  8. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  9. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  10. On the solution of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Zedan, Hassan A.

    2003-01-01

    In this paper we study the nonlinear Schrodinger equation with respect to the unknown function S(x,t). New dimensional reduction and exact solution for a nonlinear Schrodinger equation are presented and a complete group classification is given with respect to the function S(x,t). Moreover, specializing the potential function S(x,t), new classes of invariant solution and group classification are obtained in the cases of physical interest

  11. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    International Nuclear Information System (INIS)

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  12. The behavior of steady quasisolitons near the limit cases of third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Shagalov, A.G.; Juul Rasmussen, J.

    2002-01-01

    The behavior of steady quasisoliton solutions to the extended third-order nonlinear Schrodinger (NLS) equation is studied in two cases: (i) when the coefficients in the equation approach the Hirota conditions, and (ii) near the limit of the regular NLS equation. (C) 2002 Published by Elsevier...

  13. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  14. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  15. Multibreather solitons in the diffraction managed NLS equation

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis

    2006-01-01

    We study analytically and numerically localized breather solutions in the averaged discrete nonlinear Schroedinger equation (NLS) with diffraction management, a system that models coupled waveguide arrays with periodic diffraction management geometries. Localized breathers can be characterized as constrained critical points of the Hamiltonian of the averaged diffraction managed NLS. In addition to local extrema, we find numerically more general solutions that are saddle points of the constrained Hamiltonian. An interesting class of saddle points are 'multi-bump' solutions that are close to superpositions of translates of simpler breathers. In the case of zero residual diffraction and small diffraction management, the existence of multibumps can be shown rigorously by a continuation argument

  16. Universality in an information-theoretic motivated nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R; Tabia, G

    2007-01-01

    Using perturbative methods, we analyse a nonlinear generalization of Schrodinger's equation that had previously been obtained through information-theoretic arguments. We obtain analytical expressions for the leading correction, in terms of the nonlinearity scale, to the energy eigenvalues of the linear Schrodinger equation in the presence of an external potential and observe some generic features. In one space dimension these are (i) for nodeless ground states, the energy shifts are subleading in the nonlinearity parameter compared to the shifts for the excited states; (ii) the shifts for the excited states are due predominantly to contribution from the nodes of the unperturbed wavefunctions, and (iii) the energy shifts for excited states are positive for small values of a regulating parameter and negative at large values, vanishing at a universal critical value that is not manifest in the equation. Some of these features hold true for higher dimensional problems. We also study two exactly solved nonlinear Schrodinger equations so as to contrast our observations. Finally, we comment on the possible significance of our results if the nonlinearity is physically realized

  17. Random-walk simulation of the Schrodinger equation: H+3

    International Nuclear Information System (INIS)

    Anderson, J.B.

    1975-01-01

    A simple random-walk method for obtaining ab initio solutions of the Schrodinger equation is examined in its application to the case of the molecular ion H + 3 in the equilateral triangle configuration with side length R=1.66 bohr. The method, which is based on the similarity of the Schrodinger equation and the diffusion equation, involves the random movement of imaginary particles (psips) in electron configuration space subject to a variable chance of multiplication or disappearance. The computation requirements for high accuracy in determining energies of H + 3 are greater than those of existing LCAO--MO--SCF--CI methods. For more complex molecular systems the method may be competitive. (auth)

  18. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  19. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  20. Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1989-08-01

    Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt

  1. Exact solutions of a nonpolynomially nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R.; Tan, H.S.

    2007-01-01

    A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics

  2. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  3. A solution of the Schrodinger equation with two-body correlations included

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1984-01-01

    A procedure for introducing the two-body correlations in the solution of the Schrodinger equation is described. The N-body Schrodinger equation for nucleons subject to two-(or many)-body N-N interaction has never been solved with accuracy except for few-body systems. Indeed it is difficult to take the two-body correlations generated by the interaction into account in the wave function

  4. Adiabatic invariants and asymptotic behavior of Lyapunov exponents of the Schrodinger equation

    International Nuclear Information System (INIS)

    Delyon, F.; Foulon, P.

    1986-01-01

    We give an upper bound for the high-energy behavior of the Lyapunov exponent of the one-dimensional Schrodinger equation. We relate this behavior to the diffrentiability properties of the potential. As an application, this result provides an upper bound for the asymptotic length of the gaps of the Schrodinger equation

  5. Scattering of quantized solitary waves in the cubic Schrodinger equation

    International Nuclear Information System (INIS)

    Dolan, L.

    1976-01-01

    The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states

  6. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  7. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  8. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  9. Massively Parallel Algorithms for Solution of Schrodinger Equation

    Science.gov (United States)

    Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad

    1994-01-01

    In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.

  10. Soliton solutions for a quasilinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Duchao Liu

    2013-12-01

    Full Text Available In this article, critical point theory is used to show the existence of nontrivial weak solutions to the quasilinear Schrodinger equation $$ -\\Delta_p u-\\frac{p}{2^{p-1}}u\\Delta_p(u^2=f(x,u $$ in a bounded smooth domain $\\Omega\\subset\\mathbb{R}^{N}$ with Dirichlet boundary conditions.

  11. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  12. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  13. Reduction of the state vector by a nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Pearle, P.

    1976-01-01

    It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation

  14. Self-similar solutions of the modified nonlinear schrodinger equation

    International Nuclear Information System (INIS)

    Kitaev, A.V.

    1986-01-01

    This paper considers a 2 x 2 matrix linear ordinary differential equation with large parameter t and irregular singular point of fourth order at infinity. The leading order of the monodromy data of this equation is calculated in terms of its coefficients. Isomonodromic deformations of the equation are self-similar solutions of the modified nonlinear Schrodinger equation, and therefore inversion of the expressions obtained for the monodromy data gives the leading term in the time-asymptotic behavior of the self-similar solution. The application of these results to the type IV Painleve equation is considered in detail

  15. A discrete homotopy perturbation method for non-linear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  16. Spectral bisection algorithm for solving Schrodinger equation using upper and lower solutions

    Directory of Open Access Journals (Sweden)

    Qutaibeh Deeb Katatbeh

    2007-10-01

    Full Text Available This paper establishes a new criteria for obtaining a sequence of upper and lower bounds for the ground state eigenvalue of Schr"odinger equation $ -Deltapsi(r+V(rpsi(r=Epsi(r$ in $N$ spatial dimensions. Based on this proposed criteria, we prove a new comparison theorem in quantum mechanics for the ground state eigenfunctions of Schrodinger equation. We determine also lower and upper solutions for the exact wave function of the ground state eigenfunctions using the computed upper and lower bounds for the eigenvalues obtained by variational methods. In other words, by using this criteria, we prove that the substitution of the lower(upper bound of the eigenvalue in Schrodinger equation leads to an upper(lower solution. Finally, two proposed iteration approaches lead to an exact convergent sequence of solutions. The first one uses Raielgh-Ritz theorem. Meanwhile, the second approach uses a new numerical spectral bisection technique. We apply our results for a wide class of potentials in quantum mechanics such as sum of power-law potentials in quantum mechanics.

  17. Orbital stability of Gausson solutions to logarithmic Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Alex H. Ardila

    2016-12-01

    Full Text Available In this article we prove of the orbital stability of the ground state for logarithmic Schrodinger equation in any dimension and under nonradial perturbations. This general stability result was announced by Cazenave and Lions [9, Remark II.3], but no details were given there.

  18. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  19. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  20. Stokes phenomena and monodromy deformation problem for nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Chowdury, A.R.; Naskar, M.

    1986-01-01

    Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solution Y /sub j/ in the sector S /sub j/ to that in S /sub j+1/ are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli

  1. Equal-Time and Equal-Space Poisson Brackets of the N -Component Coupled NLS Equation

    International Nuclear Information System (INIS)

    Zhou Ru-Guang; Li Pei-Yao; Gao Yuan

    2017-01-01

    Two Poisson brackets for the N-component coupled nonlinear Schrödinger (NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation. (paper)

  2. A model for the stochastic origins of Schrodinger's equation

    OpenAIRE

    Davidson, Mark P.

    2001-01-01

    A model for the motion of a charged particle in the vacuum is presented which, although purely classical in concept, yields Schrodinger's equation as a solution. It suggests that the origins of the peculiar and nonclassical features of quantum mechanics are actually inherent in a statistical description of the radiative reactive force.

  3. Existence of high-energy solutions for supercritical fractional Schrodinger equations in R^N

    Directory of Open Access Journals (Sweden)

    Lu Gan

    2016-12-01

    Full Text Available In this article, we study supercritical fractional Schr\\"odinger equations. Applying the finite-dimensional reduction method and the penalization method, we obtain the high-energy solutions for this equation.

  4. Null controllability of a cascade system of Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Marcos Lopez-Garcia

    2016-03-01

    Full Text Available This article presents a control problem for a cascade system of two linear N-dimensional Schrodinger equations. We address the problem of null controllability by means of a control supported in a region not satisfying the classical geometrical control condition. The proof is based on the application of a Carleman estimate with degenerate weights to each one of the equations and a careful analysis of the system in order to prove null controllability with only one control force.

  5. Existence of solutions to quasilinear Schrodinger equations with indefinite potential

    Directory of Open Access Journals (Sweden)

    Zupei Shen

    2015-04-01

    Full Text Available In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(xu-(|u| ^2''u=f(u $$ on $\\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.

  6. Fractional Schrodinger equations with new conditions

    Directory of Open Access Journals (Sweden)

    Abderrazek Benhassine

    2018-01-01

    Full Text Available In this article, we study the nonlinear fractional Schrodinger equation $$\\displaylines{ (-\\Delta^{\\alpha}u+ V(xu= f(x,u\\cr u\\in H^{\\alpha}(\\mathbb{R}^{n},\\mathbb{R}, }$$ where $(-\\Delta^{\\alpha}(\\alpha \\in (0, 1$ stands for the fractional Laplacian of order $\\alpha$, $x\\in \\mathbb{R}^{n}$, $V\\in C(\\mathbb{R}^{n},\\mathbb{R}$ may change sign and f is only locally defined near the origin with respect to u. Under some new assumptions on V and f, we show that the above system has infinitely many solutions near the origin. Some examples are also given to illustrate our main theoretical result.

  7. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  8. On the energy-critical fractional Sch\\"odinger equation in the radial case

    OpenAIRE

    Guo, Zihua; Sire, Yannick; Wang, Yuzhao; Zhao, Lifeng

    2013-01-01

    We consider the Cauchy problem for the energy-critical nonlinear Schr\\"odinger equation with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and scattering in the energy space in the defocusing case, and in the focusing case with energy below the ground state.

  9. Stochastic solutions to the Schrodinger equation for fermions

    International Nuclear Information System (INIS)

    Arnow, D.M.

    1981-01-01

    An exact stochastic method has been developed for generating the antisymmetric eigensolution of lowest index and its associated eigenvalue for the Schrodinger wave equation in 3N dimensions. The method is called the Green's function Monte Carlo method for fermions (FGFMC) because it is based on a Monte Carlo solution to the integral form of the Schrodinger equation (using Green's function) and because it is the fermion class of particles in physics which require antisymmetric solutions. The solution consists of two sets of 3N-dimensional points, [R/sub j/ + ] and [R/sub j/ - ], distributed by density functions psi + and psi - , whose difference, psi + -psi - , is proportional to the eigensolution, psi/sub F/. The FGFMC method is successfully applied to a one dimensional problem and a nine dimensional problem, the results of which are presented here. These results demonstrate that this method can be successfully applied to small physical problems on medium-scale computing machines. The key to this success was the transformation of the problem from exponential to linear cost as a function of accuracy. The strong dependence on dimensionality, however, currently results in an exponential cost as a function of problem size, and this, until overcome, imposes a severe barrier to calculations on large systems

  10. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  11. On the Schrodinger field

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1986-01-01

    A brief but systematic discussion of the Schrodinger field is presented from the view point of quantized field theory. It is pointed out that the local momentum conservation equation is not of the usual continuity equation type when two-body potential interaction is presented and nevertheless the total momentum is globally conserved. The Schrodinger equation can be cast into a multicomponent equation containing only first order derivatives, depending on its spin contents. In case of spin 1/2, the g-factor is shown to be 2 even in purely non-relativistic Schrodinger field, in contrast with the general belief that g=2 is a relativistic effect

  12. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  13. On the Schrodinger equation in fluid-dynamical form

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1976-01-01

    The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems

  14. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    International Nuclear Information System (INIS)

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  15. Global well-posedness for nonlinear Schrodinger equations with energy-critical damping

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2015-01-01

    Full Text Available We consider the Cauchy problem for the nonlinear Schrodinger equations with energy-critical damping. We prove the existence of global in-time solutions for general initial data in the energy space. Our results extend some results from [1,2].

  16. Nonlocal and nonlinear dispersion in a nonlinear Schrodinger-type equation: exotic solitons and short-wavelength instabilities

    DEFF Research Database (Denmark)

    Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus

    2004-01-01

    We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...

  17. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  18. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    Science.gov (United States)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  19. Exact solutions of a Schrodinger equation based on the Lambert function

    International Nuclear Information System (INIS)

    Williams, Brian Wesley

    2005-01-01

    An exactly solvable Schrodinger equation of the confluent Natanzon class is derived using the differential properties of the Lambert W function. This potential involves two constant parameters and is defined along the entire real line. Specific spatial forms demonstrating wells and deformed positive barriers are presented

  20. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    International Nuclear Information System (INIS)

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  1. Existence and concentration of semiclassical states for nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Shaowei Chen

    2012-05-01

    Full Text Available In this article, we study the semilinear Schrodinger equation $$ -epsilon^2Delta u+ u+ V(xu=f(u,quad uin H^1(mathbb{R}^N, $$ where $Ngeq 2$ and $epsilon>0$ is a small parameter. The function $V$ is bounded in $mathbb{R}^N$, $inf_{mathbb{R}^N}(1+V(x>0$ and it has a possibly degenerate isolated critical point. Under some conditions on f, we prove that as $epsilono 0$, this equation has a solution which concentrates at the critical point of V.

  2. Deformation from symmetry for Schrodinger equations of higher order on unbounded domains

    Directory of Open Access Journals (Sweden)

    Addolorata Salvatore

    2003-06-01

    Full Text Available By means of a perturbation method recently introduced by Bolle, we discuss the existence of infinitely many solutions for a class of perturbed symmetric higher order Schrodinger equations with non-homogeneous boundary data on unbounded domains.

  3. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  4. Beam stabilization in the two-dimensional nonlinear Schrodinger equation with an attractive potential by beam splitting and radiation

    DEFF Research Database (Denmark)

    leMesurier, B.J.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2004-01-01

    The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrodinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrodinger equation in the critical dimension 2...... losses, and known stable periodic behavior of certain solutions in the presence of attractive potentials....

  5. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    Science.gov (United States)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  6. On a quantum version of conservation laws for derivative nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Sen, S.; Chowdhury, A.R.

    1988-01-01

    The authors derived the quantum mechanical versions of infinite number of conservation laws associated with Derivative Nonlinear Schrodinger equation with the help of a methodology used in string theory. The renormalised version of the conserved quantities are obtained with explicit forms of the counter terms

  7. On some NLS systems and their applications

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Johansson, Magnus

    1996-01-01

    We review our recent results concerning collapse andthermal fluctuations in the two-dimensional nonlinearSchrödinger equation (NLS), inhomogneities in this equationand a nonlocal NLS. We discuss the application to molecularsystems like the organic thin films (Scheibe aggregates).The results are p...

  8. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  9. Infinitely many large energy solutions of superlinear Schrodinger-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Lin Li

    2012-12-01

    Full Text Available In this article we study the existence of infinitely many large energy solutions for the superlinear Schrodinger-Maxwell equations $$displaylines{ -Delta u+V(xu+ phi u=f(x,u quad hbox{in }mathbb{R}^3,cr -Delta phi=u^2, quad hbox{in }mathbb{R}^3, }$$ via the Fountain Theorem in critical point theory. In particular, we do not use the classical Ambrosetti-Rabinowitz condition.

  10. Collapse of solitary excitations in the nonlinear Schrödinger equation with nonlinear damping and white noise

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    in an exponentially decreasing width of the solution in the long-time limit. We also find that a sufficiently large noise variance may cause an initially localized distribution to spread instead of contracting, and that the critical variance necessary to cause dispersion will for small damping be the same......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...

  11. Supersymmetric extensions of Schrodinger-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte; Unterberger, Jeremie

    2006-01-01

    The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values

  12. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  13. Variational Principles, Lie Point Symmetries, and Similarity Solutions of the Vector Maxwell Equations in Non-linear Optics

    DEFF Research Database (Denmark)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey

    2004-01-01

    the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...

  14. Convex Hypersurfaces and $L^p$ Estimates for Schr\\"odinger Equations

    OpenAIRE

    Zheng, Quan; Yao, Xiaohua; Fan, Da

    2004-01-01

    This paper is concerned with Schr\\"odinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p$-$L^q$ estimate of solution operator in free case. This estimate, combining with the results of fractionally integrated groups, allows us to further obtain the $L^p$ estimate of solutions for the initial data belonging to a dense subset of $L^p$ in the case of integrable potentials.

  15. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    Science.gov (United States)

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  16. Numerical computation of soliton dynamics for NLS equations in a driving potential

    Directory of Open Access Journals (Sweden)

    Marco Caliari

    2010-06-01

    Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.

  17. Kmonodium, a Program for the Numerical Solution of the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Angeli, Celestino; Borini, Stefano; Cimiraglia, Renzo

    2005-01-01

    A very simple strategy for the solution of the Schrodinger equation of a particle moving in one dimension subjected to a generic potential is presented. This strategy is implemented in a computer program called Kmonodium, which is free and distributed under the General Public License (GPL).

  18. Polynomially decaying transmission for the nonlinear schrodinger equation in a random medium

    International Nuclear Information System (INIS)

    Devillard, P.; Sovillard, B.

    1986-01-01

    This is the first study of one the transmission problems associate to the nonlinear Schrodinger equation with a random potential. We show that for almost every realization of the medium the rate of transmission vanishes when increasing the size of the medium; however, whereas it decays exponentially in the linear regime, it decays polynomially in the nonlinear one

  19. Existence of infinitely many radial solutions for quasilinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Gui Bao

    2014-10-01

    Full Text Available In this article we prove the existence of radial solutions with arbitrarily many sign changes for quasilinear Schrodinger equation $$ -\\sum_{i,j=1}^{N}\\partial_j(a_{ij}(u\\partial_iu +\\frac{1}{2}\\sum_{i,j=1}^{N}a'_{ij}(u\\partial_iu\\partial_ju+V(xu =|u|^{p-1}u,~x\\in\\mathbb{R}^N, $$ where $N\\geq3$, $p\\in(1,\\frac{3N+2}{N-2}$. The proof is accomplished by using minimization under a constraint.

  20. Hs solutions for nonlinear Schrodinger equations with potentials superquadratic at infinity

    International Nuclear Information System (INIS)

    Zhang Guoping; Yajima, Kenji; Liu Fengshan

    2006-01-01

    In this Letter we study the initial value problem for the nonlinear Schrodinger equation with the potential V superquadratic at infinity. With the local smoothing property and Strichartz inequality obtained by the authors, we prove the existence and the uniqueness of the solution for H s -valued initial data and fractional s by combining the L 2 boundedness theory of pseudo differential operators and the fractional derivatives estimate

  1. Semiclassical quantization of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nohl, C.R.

    1976-01-01

    Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies

  2. Exact solution of nonrelativistic Schrodinger equation for certain central physical potential

    International Nuclear Information System (INIS)

    Bose, S.K.; Gupta, N.

    1998-01-01

    It is obtained here a class/classes of exact solution of the nonrelativistic Schrodinger equation for certain central potentials of physical interest by using proper ansatz/ansatze. The explicit expressions of energy eigenvalue and eigenfunction are obtained for each solution. These solutions are valid when for, in general, each solutions an interrelation between the parameters of the potential and the orbital-angular-momentum quantum number l is satisfied. These solutions, besides having an aesthetic appeal, can be used as benchmark to test the accuracy of nonperturbative methods, which sometimes yield wrong results, of solving the Schrodinger equation. The exact solution for the following central potentials, which are relevant in different areas of physics, have been obtained: 1) V(r)=ar 6 + br 4 + cr 2 ; 2) V(r)=ar 2 + br + c/r; 3) V(r)=r 2 + λr 2 /(1+gr 2 ); 4) V(r)= a/r + b/(r+λ); 5a) V(r)=a/r + b/r 2 +c/r 3 +d/r 4 ; 5)b V(r)=a/r 2 + b/r 2 + c/r 4 + d/r 6 ; 6a) V(r)=a/r 1/2 + b/r 3/2 ; 6b) V(r)=ar 2/3 + br -2/3 + cr -4/3

  3. On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations

    International Nuclear Information System (INIS)

    Zhestkov, S.V.

    2003-01-01

    The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)

  4. Schrodinger equation in two dimensions solution through numerical methods and its graphic representation

    International Nuclear Information System (INIS)

    Faleiro Usanos, E.; Salgado Barea, J.J.

    1995-01-01

    We describe a simple method to solve the time-dependent Schrodinger equation in two dimensions. We apply it to solve three classical problems in quantum physics: a cylindrical obstacle, a finite barrier and a double-slit screen. We show our results through bidimensional diagrams representing the probability density. (Author) 11 refs

  5. Finite difference approximation of control via the potential in a 1-D Schrodinger equation

    Directory of Open Access Journals (Sweden)

    K. Kime

    2000-04-01

    Full Text Available We consider the problem of steering given initial data to given terminal data via a time-dependent potential, the control, in a 1-D Schrodinger equation. We determine a condition for existence of a transferring potential within our approximation. Using Maple, we give equations for the control and also examples in which the potential is restricted to be centralized and to be a step potential.

  6. Analytic smoothing effect for the cubic hyperbolic Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Gaku Hoshino

    2016-01-01

    Full Text Available We study the Cauchy problem for the cubic hyperbolic Schrodinger equation in two space dimensions. We prove existence of analytic global solutions for sufficiently small and exponential decaying data. The method of proof depends on the generalized Leibniz rule for the generator of pseudo-conformal transform acting on pseudo-conformally invariant nonlinearity.

  7. Infinitely many solutions for fractional Schr\\"odinger equations in R^N

    Directory of Open Access Journals (Sweden)

    Caisheng Chen

    2016-03-01

    Full Text Available Using variational methods we prove the existence of infinitely many solutions to the fractional Schrodinger equation $$ (-\\Delta^su+V(xu=f(x,u, \\quad x\\in\\mathbb{R}^N, $$ where $N\\ge 2, s\\in (0,1$. $(-\\Delta^s$ stands for the fractional Laplacian. The potential function satisfies $V(x\\geq V_0>0$. The nonlinearity f(x,u is superlinear, has subcritical growth in u, and may or may not satisfy the (AR condition.

  8. Supersymmetric approach for Killingbeck radial potential plus noncentral potential in Schrodinger equation

    International Nuclear Information System (INIS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.

    2016-01-01

    Killingbeck radial potential, which consists of harmonic oscillator, linier and Coulomb potentials, is combined with non-central potential. The solution of three dimensional Schrodinger equation for Killingbeck potential is combined with Poschl-Teller potential and Symmetrical Top non-central potentials are investigated using supersymmetry (SUSY) operator. The non-relativistic energy is obtained which is infuenced by potentials and the wave functions are produced by using SUSY operator. (paper)

  9. Schr\\"odinger group and quantum finance

    OpenAIRE

    Romero, Juan M.; Lavana, Ulises; Martínez, Elio

    2013-01-01

    Using the one dimensional free particle symmetries, the quantum finance symmetries are obtained. Namely, it is shown that Black-Scholes equation is invariant under Schr\\"odinger group. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited. To get the Black-Scholes equation symmetries, the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schr\\"odinger algebra representation is co...

  10. Solution of the Schrodinger Equation for One-Dimensional Anharmonic Potentials: An Undergraduate Computational Experiment

    Science.gov (United States)

    Beddard, Godfrey S.

    2011-01-01

    A method of solving the Schrodinger equation using a basis set expansion is described and used to calculate energy levels and wavefunctions of the hindered rotation of ethane and the ring puckering of cyclopentene. The calculations were performed using a computer algebra package and the calculations are straightforward enough for undergraduates to…

  11. Infinitely many solutions for sublinear fractional Schrodinger-type equations with general potentials

    Directory of Open Access Journals (Sweden)

    Gang-Ling Hou

    2018-04-01

    Full Text Available This article concerns the fractional Schrodinger type equations $$ (-\\Delta^\\alpha u+V(xu =f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $N\\geq 2$, $\\alpha\\in(0,1$, $(-\\Delta^\\alpha$ stands for the fractional Laplacian, $V$ is a positive continuous potential, $f\\in C(\\mathbb{R}^N\\times\\mathbb{R},\\mathbb{R}$. We establish criteria that guarantee the existence of infinitely many solutions by using the genus properties in critical point theory.

  12. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    Energy Technology Data Exchange (ETDEWEB)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  13. Asymptotically linear Schrodinger equation with zero on the boundary of the spectrum

    Directory of Open Access Journals (Sweden)

    Dongdong Qin

    2015-08-01

    Full Text Available This article concerns the Schr\\"odinger equation $$\\displaylines{ -\\Delta u+V(xu=f(x, u, \\quad \\text{for } x\\in\\mathbb{R}^N,\\cr u(x\\to 0, \\quad \\text{as } |x| \\to \\infty, }$$ where V and f are periodic in x, and 0 is a boundary point of the spectrum $\\sigma(-\\Delta+V$. Assuming that f(x,u is asymptotically linear as $|u|\\to\\infty$, existence of a ground state solution is established using some new techniques.

  14. Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation

    International Nuclear Information System (INIS)

    Bouard, Anne de; Debussche, Arnaud

    2006-01-01

    In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1

  15. Global representations of the Heat and Schrodinger equation with singular potential

    Directory of Open Access Journals (Sweden)

    Jose A. Franco

    2013-07-01

    Full Text Available The n-dimensional Schrodinger equation with a singular potential $V_lambda(x=lambda |x|^{-2}$ is studied. Its solution space is studied as a global representation of $widetilde{SL(2,mathbb{R}}imes O(n$. A special subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. The space of K-finite vectors is calculated, obtaining conditions for $lambda$ so that this space is non-empty. The direct sum of solution spaces over such admissible values of $lambda$ is studied as a representation of the (2n+1-dimensional Heisenberg group.

  16. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  17. Schrodinger representation in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-01-01

    The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward

  18. Bright solitons in coupled defocusing NLS equation supported by coupling: Application to Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.

    2005-01-01

    We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schroedinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type

  19. On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil

    2009-01-01

    Full Text Available A perturbing nonlinear Schrodinger equation is studied under general complex nonhomogeneities and complex initial conditions for zero boundary conditions. The perturbation method together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the symbolic solution algorithm is tested through computing the possible approximations under truncation procedures. The method of solution is illustrated through case studies and figures.

  20. Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem

    International Nuclear Information System (INIS)

    Chen Zhijiang; Kong Fanmei; Din Yibin

    1987-01-01

    An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc

  1. Solution of Schrodinger equation for Three Dimensional Harmonics Oscillator plus Rosen-Morse Non-central potential using NU Method and Romanovski Polynomials

    International Nuclear Information System (INIS)

    Cari, C; Suparmi, A

    2013-01-01

    The energy eigenvalues and eigenfunctions of Schrodinger equation for three dimensional harmonic oscillator potential plus Rosen-Morse non-central potential are investigated using NU method and Romanovski polynomial. The bound state energy eigenvalues are given in a closed form and corresponding radial wave functions are expressed in associated Laguerre polynomials while angular eigen functions are given in terms of Romanovski polynomials. The Rosen-Morse potential is considered to be a perturbation factor to the three dimensional harmonic oscillator potential that causes the increase of radial wave function amplitude and decrease of angular momentum length. Keywords: Schrodinger Equation, Three dimensional Harmonic Oscillator potential, Rosen-morse non-central potential, NU method, Romanovski Polynomials

  2. Semiconductor device simulation by a new method of solving poisson, Laplace and Schrodinger equations

    International Nuclear Information System (INIS)

    Sharifi, M. J.; Adibi, A.

    2000-01-01

    In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as poisson, Laplace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in several cases including the problem of finding electron concentration profile in the channel of a HEMT. In another section, we solve the Poisson equation by this method, choosing the problem of SBD as an example. Finally we solve the Laplace equation in two dimensions and as an example, we focus on the VED. In this paper, we have shown that, the method can get stable and precise results in solving all of these problems. Also the programs which have been written based on this method become considerably faster, more clear, and more abstract

  3. Critical behavior from Schrodinger representation

    International Nuclear Information System (INIS)

    Suranyi, P.

    1992-01-01

    In this paper, the Schrodinger equation for φ 4 field theory is reduced to an infinite set of integral equations. A systematic truncation scheme is proposed and it is solved in second order to obtain the approximate critical behavior of the renormalized mass. The correlation exponent is given as a solution of a transcendental equation. It is in good agreement with the Ising model in all physical dimensions

  4. An implicit fast Fourier transform method for integration of the time dependent Schrodinger or diffusion equation

    International Nuclear Information System (INIS)

    Ritchie, A.B.; Riley, M.E.

    1997-06-01

    The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems

  5. Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation

    OpenAIRE

    Klibanov, Michael V.; Romanov, Vladimir G.

    2014-01-01

    The inverse scattering problem of the reconstruction of the unknown potential with compact support in the 3-d Schr\\"odinger equation is considered. Only the modulus of the scattering complex valued wave field is known, whereas the phase is unknown. It is shown that the unknown potential can be reconstructed via the inverse Radon transform. Therefore, a long standing problem posed in 1977 by K. Chadan and P.C. Sabatier in their book "Inverse Problems in Quantum Scattering Theory" is solved.

  6. Existence of standing waves for Schrodinger equations involving the fractional Laplacian

    Directory of Open Access Journals (Sweden)

    Everaldo S. de Medeiros

    2017-03-01

    Full Text Available We study a class of fractional Schrodinger equations of the form $$ \\varepsilon^{2\\alpha}(-\\Delta^\\alpha u+ V(xu = f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $\\varepsilon$ is a positive parameter, $0 < \\alpha < 1$, $2\\alpha < N$, $(-\\Delta^\\alpha$ is the fractional Laplacian, $V:\\mathbb{R}^{N}\\to \\mathbb{R}$ is a potential which may be bounded or unbounded and the nonlinearity $f:\\mathbb{R}^{N}\\times \\mathbb{R}\\to \\mathbb{R}$ is superlinear and behaves like $|u|^{p-2}u$ at infinity for some $2

  7. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  8. The Schrodinger Eigenvalue March

    Science.gov (United States)

    Tannous, C.; Langlois, J.

    2011-01-01

    A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…

  9. Schrodinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Růžička, František; Zloshchastiev, K. G.

    2017-01-01

    Roč. 9, č. 8 (2017), č. článku 165. ISSN 2073-8994 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : PT symmetry * nonlinear Schrodinger equations * logarithmic nonlinearities Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.457, year: 2016

  10. Analytic energies and wave functions of the two-dimensional Schrodinger equation: ground state of two-dimensional quartic potential and classification of solutions

    Czech Academy of Sciences Publication Activity Database

    Tichý, V.; Kuběna, Aleš Antonín; Skála, L.

    2012-01-01

    Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf

  11. The construction of partner potential from the general potential anharmonic in D-dimensional Schrodinger system

    Science.gov (United States)

    Suparmi; Cari, C.; Wea, K. N.; Wahyulianti

    2018-03-01

    The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.

  12. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  13. Constructing and analysis of soliton-like solutions of (1 + 1), (2 + 1), (3 + 1)-dimensional Schrodinger equations with the third power nonlinearity law

    International Nuclear Information System (INIS)

    Zhestkov, S.V.; Romanenko, A.A.

    2009-01-01

    The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)

  14. Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method

    Directory of Open Access Journals (Sweden)

    Ituen B. Okon

    2017-01-01

    Full Text Available We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP. We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2, lithium hydride molecule (LiH, hydrogen chloride molecule (HCl, and carbon (II oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.

  15. Derivation and solution of a time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter

    International Nuclear Information System (INIS)

    Esrick, M.A.

    1981-01-01

    A time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter is derived from the Gor'kov equations. Three types of traveling wave solutions of the equation are discussed. The phases and amplitudes of these solutions propagate at different speeds. The first type of solution has an amplitude that propagates as a soliton and it is suggested that this solution might correspond to the recently observed propagating collective modes of the order parameter. The amplitude of the second type of solution propagates as a periodic disturbance in space and time. It is suggested that this type of solution might explain the recently observed multiple values of the superconductor energy gap as well as the spatially inhomogenous superconducting state. The third type of solution, which is of a more general character, might provide some insight into non-periodic, inhomogeneous states occuring in superconductors. It is also proposed that quasiparticle injection and microwave irradiation might generate soliton-like disturbances in superconductors

  16. Exact solutions of the Schrodinger equation with the position-dependent mass for a hard-core potential

    International Nuclear Information System (INIS)

    Dong Shihai; Lozada-Cassou, M.

    2005-01-01

    The exact solutions of two-dimensional Schrodinger equation with the position-dependent mass for a hard-core potential are obtained. The eigenvalues related to the position-dependent masses μ 1 and μ 2 , the potential well depth V 0 and the effective range r 0 can be calculated by the boundary condition. We generalize this quantum system to three-dimensional case. The special cases for l=0,1 are studied in detail. For l=0 and c=0, we find that the energy levels will increase with the parameters μ 2 , V 0 and r 0 if μ 1 >μ 2

  17. Nonlinear Schrodinger equation: A testing ground for the quantization of nonlinear waves

    International Nuclear Information System (INIS)

    Klein, A.; Krejs, F.

    1976-01-01

    Quantization of the nonlinear Schrodinger equation is carried out by the method due to Kerman and Klein. A viable procedure is inferred from the quantum interpretation of the classical (soliton) solution. The ground-state energy for a system with n particles is calculated to an accuracy which includes the first quantum correction to the semiclassical result. It is demonstrated that the exact answer can be obtained systematically only at the next level of approximation. For the calculation of the first quantum correction, the quantum theory of the stability of periodic orbits in field theory is developed and discussed. Since one is dealing with a finite many-body problem, the field theory can be written so that no infinite terms are encountered, but the Hamiltonian can also be artificially rearranged so as to destory this feature. For learning purposes the calculations are carried out with the various alternatives, and our methods prove capable of providing a uniform final result

  18. Self-similar solutions with compactly supported profile of some nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Pascal Begout

    2014-04-01

    Full Text Available ``Sharp localized'' solutions (i.e. with compact support for each given time t of a singular nonlinear type Schr\\"odinger equation in the whole space $\\mathbb{R}^N$ are constructed here under the assumption that they have a self-similar structure. It requires the assumption that the external forcing term satisfies that $\\mathbf{f}(t,x=t^{-(\\mathbf{p}-2/2}\\mathbf{F}(t^{-1/2}x$ for some complex exponent $\\mathbf{p}$ and for some profile function $\\mathbf{F}$ which is assumed to be with compact support in $\\mathbb{R}^N$. We show the existence of solutions of the form $\\mathbf{u}(t,x=t^{\\mathbf{p}/2}\\mathbf{U}(t^{-1/2}x$, with a profile $\\mathbf{U}$, which also has compact support in $\\mathbb{R}^N$. The proof of the localization of the support of the profile $\\mathbf{U}$ uses some suitable energy method applied to the stationary problem satisfied by $\\mathbf{U}$ after some unknown transformation.

  19. 33 CFR 151.35 - Certificates needed to carry Category D NLS and Category D Oil-like NLS.

    Science.gov (United States)

    2010-07-01

    ... unless the ship has a Certificate of Inspection endorsed to allow the NLS to be carried in that cargo... Category D oil-like NLS listed in § 151.49 in a cargo tank unless the ship has a Certificate of Inspection... Certificate of Inspection endorsed to allow the NLS to be carried in that cargo tank, and if the ship engages...

  20. Erwin Schrodinger

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Erwin Schrodinger. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 2 February 1999 pp 92-103 Classics. The Fundamental Idea of Wave Mechanics · Erwin Schrodinger · More Details Fulltext PDF ...

  1. SOLUCIÓN DE LA ECUACIÓN NO LINEAL DE SCHRODINGER (1+1 EN UN MEDIO KERR

    Directory of Open Access Journals (Sweden)

    Francis Armando Segovia

    2015-12-01

    Full Text Available Se presenta un marco teórico y se muestra una simulación numérica de la propagación de solitones. Con especial atención a los solitones ópticos espaciales, se calcula analíticamente el perfil de solitón correspondiente a la ecuación Schrodinger no-lineal para un medio Kerr. Los resultados muestran que los solitones ópticos son pulsos estables cuya forma y espectro son preservados en grandes distancias.Solution of the nonlinear Schrodinger equation (1+1 in a Kerr mediumABSTRACTThis document presents a theoretical framework and shows a numerical simulation for the propagation of solitons. With special attention to the spatial optical solitons, we calculates analytically the profile of solitón corresponding to the non-linear Schrodinger equation for a Kerr medium. The results show that the optical solitons are stable pulses whose shape and spectrum are preserved at great distances.Keywords: nonlinear optics, nonlinear Schrodinger equation, solitons.

  2. The Maxwell-Lorentz Model for optical Pulses

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey

    2007-01-01

    Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrodinger (NLS) equation model. While such approach works surprisingly well for description of pulse...

  3. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    Science.gov (United States)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  4. Exact solutions of the Schrodinger equation for an electron in the circular quantum ring taking into account spin-orbit interactions

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The exact solutions of the Schrodinger equation are obtained for an electron in two-dimensional circular semiconductor quantum ring in the presence of the Rashba and Dresselhaus spin-orbit interactions of equal strength. Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on the strength of spin-orbit interaction, the relative ring width, and the depth of a potential well is presented. (authors)

  5. Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems

    Science.gov (United States)

    Abhinav, Kumar; Guha, Partha

    2018-03-01

    Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.

  6. Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and critical exponent

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-12-01

    Full Text Available In this article, we show the existence of infinitely many solutions for the fractional p-Laplacian equations of Schrodinger-Kirchhoff type equation $$ M([u]_{s, p}^p (-\\Delta _p^s u+V(x|u|^{p-2}u= \\alpha |u|^{ p_s^{*}-2 }u+\\beta k(x|u|^{q-2}u \\quad x\\in \\mathbb{R}^N, $$ where $(-\\Delta ^s_p$ is the fractional p-Laplacian operator, $[u]_{s,p}$ is the Gagliardo p-seminorm, $0 sp$, $1

  7. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  8. Periodic oscillations of discrete NLS solitons in the presence of diffraction management

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis; Pelinovsky, Dmitry

    2008-01-01

    We consider the discrete NLS equation with a small-amplitude time-periodic diffraction coefficient which models diffraction management in nonlinear lattices. In the space of one dimension and at the zero-amplitude diffraction management, multi-peak localized modes (called discrete solitons or discrete breathers) are stationary solutions of the discrete NLS equation which are uniquely continued from the anti-continuum limit, where they are compactly supported on finitely many non-zero nodes. We prove that the multi-peak localized modes are uniquely continued to the time-periodic space-localized solutions for small-amplitude diffraction management if the period of the diffraction coefficient is not multiple to the period of the stationary solution. The same result is extended to multi-peaked localized modes in the space of two and three dimensions (which include discrete vortices) under additional non-degeneracy assumptions on the stationary solutions in the anti-continuum limit

  9. KAM for the non-linear Schroedinger equation

    CERN Document Server

    Eliasson, L H

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...

  10. Global solutions of nonlinear Schrödinger equations

    CERN Document Server

    Bourgain, J

    1999-01-01

    This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrödinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented. Several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research r

  11. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  12. New travelling wave solutions of the (1 + 1-dimensional cubic nonlinear Schrodinger equation using novel (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2016-06-01

    Full Text Available In this paper, the novel (G′/G-expansion method is applied to construct exact travelling wave solutions of the cubic nonlinear Schrodinger equation. This technique is straightforward and simple to use, and gives more new general solutions than the other existing methods. Various types of solitary and periodic wave solutions of this equation are derived. The obtained results may be helpful to describe the wave propagation in soliton physics, such as soliton propagation in optical fibers, modulus instability in plasma physics, etc. and provided us the firm mathematical foundation in soliton physics or any varied instances. Furthermore, three-dimensional modules plot of the solutions are also given to visualize the dynamics of the equation.

  13. A second eigenvalue bound for the Dirichlet Schrodinger equation wtih a radially symmetric potential

    Directory of Open Access Journals (Sweden)

    Craig Haile

    2000-01-01

    Full Text Available We study the time-independent Schrodinger equation with radially symmetric potential $k|x|^alpha$, $k ge 0$, $k in mathbb{R}, alpha ge 2$ on a bounded domain $Omega$ in $mathbb{R}^n$, $(n ge 2$ with Dirichlet boundary conditions. In particular, we compare the eigenvalue $lambda_2(Omega$ of the operator $-Delta + k |x|^alpha $ on $Omega$ with the eigenvalue $lambda_2(S_1$ of the same operator $-Delta +kr^alpha$ on a ball $S_1$, where $S_1$ has radius such that the first eigenvalues are the same ($lambda_1(Omega = lambda_1(S_1$. The main result is to show $lambda_2(Omega le lambda_2(S_1$. We also give an extension of the main result to the case of a more general elliptic eigenvalue problem on a bounded domain $Omega$ with Dirichlet boundary conditions.

  14. Deriving average soliton equations with a perturbative method

    International Nuclear Information System (INIS)

    Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.

    1995-01-01

    The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically

  15. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...

  16. PERSAMAAN SCHRODINGER D-DIMENSI BAGIAN SUDUT POTENSIAL POSCHL-TELLER HIPERBOLIK TERDEFORMASI Q PLUS ROSEN-MORSE TRIGONOMETRI MENGGUNAKAN METODE NIKIFOROV-UVAROV

    Directory of Open Access Journals (Sweden)

    S. Suparmi

    2016-11-01

    Full Text Available Metode Nikivarof Uvarov merupakan metode penyelesaian persamaan diferensial orde dua dengan mengubah persamaan diferensial orde dua yang umum (persamaan Schrodinger menjadi persamaan diferensial tipe hipergeometrik melalui substitusi variabel yang sesuai untuk memperoleh eigen value dan fungsi gelombang bagian sudut. Penelitian ini merupakan studi literatur untuk menyelesaikan persamaan Schrodinger D-dimensi bagian sudut dengan potensial Poschl-Teller Hiperbolik Terdeformasi q plus Rosen Morse Trigonometri Terdeformasi q menggunakan metode Nikiforov-Uvarov (NU. Pada penelitian ini bertujuan untuk mengetahui bagaimana fungsi gelombang bagian sudut persamaan schrodinger D-dimensi  untuk potensial Poschl-Teller Hiperbolik Terdeformasi q plus Rosen Morse Trigonometri Terdeformasi q menggunakan metode Nikiforov-Uvarov (NU.Nikivarof Uvarov is a method to solve second order differential equations by changing general second order differential equation to hyper-geometric differential equation type through substituting relevant variable to obtain eigenvalues and the angle of wave function. This is a literature study to solve the D-dimensional Schrodinger equation with a corner section q Deformed Hyperbolic Poschl Teller plus q Deformed Trigonometric Rosen-Morse Potential using Nikiforov-Uvarov (NU. This study aims to determine the way the angle of wave function of D-dimensional Schrodinger equation for q-Deformed Hyperbolic Poschl Teller plus q Deformed  Trigonometric Rosen-Morse Potential using Nikiforov-Uvarov (NU. 

  17. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    International Nuclear Information System (INIS)

    Yang Xiao; Du Dianlou

    2010-01-01

    The Poisson structure on C N xR N is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  18. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  19. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    Science.gov (United States)

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  20. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    International Nuclear Information System (INIS)

    Adami, Riccardo; Noja, Diego; Cacciapuoti, Claudio; Finco, Domenico

    2012-01-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L 2 -norm. We moreover show that the only stationary state with prescribed L 2 -norm is indeed a saddle point. (fast track communication)

  1. Darboux transformation for the NLS equation

    International Nuclear Information System (INIS)

    Aktosun, Tuncay; Mee, Cornelis van der

    2010-01-01

    We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.

  2. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    Science.gov (United States)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  3. KAM for the non-linear Schroedinger equation a short presentation

    CERN Document Server

    Eliasson, H L

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep \\frac{\\p F}{\\p \\bar u}(x,u,\\bar u) ;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real and $F$ is a real analytic function in $\\Re u$, $\\Im u$ and $x$. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it ...

  4. Collapse arresting in an inhomogeneous two-dimensional nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2001-01-01

    Collapse of (2 + 1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schrodinger equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may...

  5. Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K.O.; Samuelsen, Mogens Rugholm

    2009-01-01

    We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as ...

  6. Global existence of small solutions to semilinear Schroedinger equations

    International Nuclear Information System (INIS)

    Chihara, Hiroyuki

    1996-01-01

    We present global existence theorem for semilinear Schrodinger equations. In general, Schrodinger-type equations do not admit the classical energy estimates. To avoid this difficulty, we use S. Doi's method for linear Schrodinger-type equations. Combining his method and L p -L q estimates, we prove the global existence of solutions with small initial data

  7. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  8. Solitary waves for a coupled nonlinear Schrodinger system with dispersion management

    Directory of Open Access Journals (Sweden)

    Panayotis Panayotaros

    2010-08-01

    Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.

  9. Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm

    2010-01-01

    We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e...

  10. Huygens' principle, the free Schrodinger particle and the quantum anti-centrifugal force

    DEFF Research Database (Denmark)

    Cirone, M.A.; Dahl, Jens Peder; Fedorov, M.

    2002-01-01

    Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrodinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force-the quantum anti-centrifugal force-towards its centre. We connect these two...

  11. Gap solitons in periodic Schrodinger lattice system with nonlinear hopping

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2016-10-01

    Full Text Available This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as $\\alpha\\to 0$. Notice that the nonlinear hopping can be sign changing.

  12. An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions

    International Nuclear Information System (INIS)

    Li Hong-Min; Li Yu-Qi; Chen Yong

    2014-01-01

    An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)

  13. Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters

    Science.gov (United States)

    Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard

    2018-05-01

    A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.

  14. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae.

    Science.gov (United States)

    Guo, Min; Yang, Ruifu; Huang, Chen; Liao, Qiwen; Fan, Guangyi; Sun, Chenghang; Lee, Simon Ming-Yuen

    2017-04-04

    The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. The results of this study reveal that

  15. Generalization of the Dirac’s Equation and Sea

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Newton's second law is motion equation in classic mechanics that does not say anything about the nature of force. The equivalent formulations and their extensions such as Lagrangian and Hamiltonian do not explain about mechanism of converting Potential energy to Kinetic energy and Vice versa....... In quantum mechanics, Schrodinger equation is similar to Newton's second law in classic mechanics. Quantum mechanics is also extension of Newtonian mechanics to atomic and subatomic scales and relativistic mechanics is extension of Newtonian mechanics to high velocities near to velocity of light too....... Schrodinger equation is not a relativistic equation, because it is not invariant under Lorentz transformations. Dirac expanded The Schrodinger equation by presenting Dirac Sea and founded relativistic quantum mechanics. In this paper by reconsidering the Dirac Sea and his equation, the structure of photon...

  16. Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation

    Science.gov (United States)

    Osborne, A. R.

    2014-01-01

    Certain homoclinic solutions of the nonlinear Schrödinger (NLS) equation, with spatially periodic boundary conditions, are the most common unstable wave packets associated with the phenomenon of oceanic rogue waves. Indeed the homoclinic solutions due to Akhmediev, Peregrine and Kuznetsov-Ma are almost exclusively used in scientific and engineering applications. Herein I investigate an infinite number of other homoclinic solutions of NLS and show that they reduce to the above three classical homoclinic solutions for particular spectral values in the periodic inverse scattering transform. Furthermore, I discuss another infinity of solutions to the NLS equation that are not classifiable as homoclinic solutions. These latter are the genus-2N theta function solutions of the NLS equation: they are the most general unstable spectral solutions for periodic boundary conditions. I further describe how the homoclinic solutions of the NLS equation, for N = 1, can be derived directly from the theta functions in a particular limit. The solutions I address herein are actual spectral components in the nonlinear Fourier transform theory for the NLS equation: The periodic inverse scattering transform. The main purpose of this paper is to discuss a broader class of rogue wave packets1 for ship design, as defined in the Extreme Seas program. The spirit of this research came from D. Faulkner (2000) who many years ago suggested that ship design procedures, in order to take rogue waves into account, should progress beyond the use of simple sine waves. 1An overview of other work in the field of rogue waves is given elsewhere: Osborne 2010, 2012 and 2013. See the books by Olagnon and colleagues 2000, 2004 and 2008 for the Brest meetings. The books by Kharif et al. (2008) and Pelinovsky et al. (2010) are excellent references.

  17. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  18. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

    Science.gov (United States)

    Zhang, H.; Tian, X.

    2017-12-01

    The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

  19. Generalized Sturmian Solutions for Many-Particle Schrödinger Equations

    DEFF Research Database (Denmark)

    Avery, John; Avery, James Emil

    2004-01-01

    The generalized Sturmian method for obtaining solutions to the many-particle Schrodinger equation is reviewed. The method makes use of basis functions that are solutions of an approximate Schrodinger equation with a weighted zeroth-order potential. The weighting factors are especially chosen so...

  20. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    Science.gov (United States)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  1. Well-posedness and exact controllability of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation

    Directory of Open Access Journals (Sweden)

    Ruili Wen

    2016-08-01

    Full Text Available We consider an open-loop system of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation. Using the multiplier method on Riemannian manifold we show that that the system is well-posed in the sense of Salamon. This implies that the exponential stability of the closed-loop system under the direct proportional output feedback control and the exact controllability of open-loop system are equivalent. So in order to conclude feedback stabilization from well-posedness, we study the exact controllability under a uniqueness assumption by presenting the observability inequality for the dual system. In addition, we show that the system is regular in the sense of Weiss, and that the feedthrough operator is zero.

  2. Linear response theory for magnetic Schrodinger operators in disordered media

    CERN Document Server

    Bouclet, J M; Klein, A; Schenker, J

    2004-01-01

    We justify the linear response theory for an ergodic Schrodinger operator with magnetic field within the non-interacting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-Streda formula for the quantum Hall conductivity at zero temperature.

  3. On Solutions for Linear and Nonlinear Schrödinger Equations with Variable Coefficients: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Gabriel Amador

    2016-05-01

    Full Text Available In this work, after reviewing two different ways to solve Riccati systems, we are able to present an extensive list of families of integrable nonlinear Schrödinger (NLS equations with variable coefficients. Using Riccati equations and similarity transformations, we are able to reduce them to the standard NLS models. Consequently, we can construct bright-, dark- and Peregrine-type soliton solutions for NLS with variable coefficients. As an important application of solutions for the Riccati equation with parameters, by means of computer algebra systems, it is shown that the parameters change the dynamics of the solutions. Finally, we test numerical approximations for the inhomogeneous paraxial wave equation by the Crank-Nicolson scheme with analytical solutions found using Riccati systems. These solutions include oscillating laser beams and Laguerre and Gaussian beams.

  4. Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations

    International Nuclear Information System (INIS)

    Basak, S.; Chowdhury, A.R.

    1987-01-01

    The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way

  5. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang

    2011-01-01

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.

  6. On modelling adiabatic N-soliton interactions and perturbations. Effects of external potentials

    International Nuclear Information System (INIS)

    Gerdjikov, V.; Baizakov, B.

    2005-01-01

    We analyze several perturbed versions of the complex Toda chain (CTC) in an attempt to describe the adiabatic N-soliton train interactions of the perturbed nonlinear Schrodinger equation (NLS). Particular types of perturbations, including quadratic and periodic external potentials are treated by both analytical and numerical means. We show that the perturbed CTC model provides a good description for the N-soliton interactions in the presence of a weak external potential. (authors)

  7. Reflectionless discrete Schr\\"odinger operators are spectrally atypical

    OpenAIRE

    VandenBoom, Tom

    2017-01-01

    We prove that, if an isospectral torus contains a discrete Schr\\"odinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schr\\"odinger operator. We also show that the only reflectionless discrete Schr\\"odinger operators having zero, one, or two spectral gaps are periodic.

  8. 46 CFR 98.31-10 - Certificate of inspection and NLS certificate endorsements.

    Science.gov (United States)

    2010-10-01

    ... AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN... chapter; and (2) Unless it discharges no NLS residues as defined in § 153.2 of this chapter to the sea... discharging NLS residues to the sea. ...

  9. The propagation of nonlinear rayleigh waves in layered elastic half-space

    International Nuclear Information System (INIS)

    Ahmetolan, S.

    2004-01-01

    In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used

  10. VG2 NEP TRAJECTORY DERIVED SUMM NLS COORDS 12SEC V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains Voyager 2 spacecraft position vectors relative to Neptune in minus NLS coordinates. The NLS or Neptune West Longitude System coordinate system...

  11. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease.

    Science.gov (United States)

    Yang, Li; Hu, Chunhua; Li, Na; Zhang, Jiayin; Yan, Jiawen; Deng, Ziniu

    2011-01-01

    The COOH terminal of pthA encoding three nuclear localizing signals (NLS) was amplified by polymerase chain reaction (PCR) from the plasmid of Xanthomonas axonopodis pv. citri, the pathogen of citrus canker disease. Then the sense and antisense strands of the nls were cloned into pBI121 vector. pthA-nls driven by the CaMV35 s promoter was transferred into sweet orange via Agrobacterium -mediated transformation. Successful integration was confirmed by PCR and Southern blotting, and 12 sense-nls (nls (+)) and 9 antisense-nls (nls (-)) transgenic clones were obtained. The expression of nls fragment was analyzed by RT-PCR, Real time q-PCR and Western blotting, in which the specific NLS protein was detected only in nls (+) transgenic clones. In an in vitro assay, when pin-puncture inoculation was performed with 2.5 × 10(7) cfu/ml of bacterial solution, the nls (+) transgenic clones showed no typical lesion development, while typical symptoms were observed in the wild types and the nls (-) transgenic clones. In vivo assay results indicated that the nls (+) transgenic clones showed less disease incidence, in comparison with the wild types and the nls (-) transgenic clones, when pin-puncture inoculation was performed with 10(4)-10(5) cfu/ml. The minimum disease incidence was 23.3% for 'Sucarri' sweet orange and 33.3% for 'Bingtang' sweet orange. When 10(4)-10(7) cfu/ml of pathogen was spray inoculated, the nls (+) transgenic clones did not show any symptom, and even the concentration raised to 10(9) cfu/ml, the disease incidence was 20-80%, while the wild types and the nls (-) transgenic clones had 100% disease development with whatever concentration of inoculum. Two transgenic clones were confirmed to be resistant to citrus canker disease in the repeated inoculation. The results suggested that the transformation of nls sense strands may offer an effective way to acquire resistance to citrus canker disease.

  12. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  13. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  14. Quantum Computer Games: Schrodinger Cat and Hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  15. The Davey-Stewartson Equation on the Half-Plane

    Science.gov (United States)

    Fokas, A. S.

    2009-08-01

    The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.

  16. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    Science.gov (United States)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  17. Newton-Cartan supergravity with torsion and Schrodinger supergravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present

  18. An approach to rogue waves through the cnoidal equation

    Science.gov (United States)

    Lechuga, Antonio

    2014-05-01

    Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.

  19. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  20. Allowable graphs of the nonlinear Schrödinger equation and their ...

    Indian Academy of Sciences (India)

    Bich Nguyen

    2017-11-20

    Nov 20, 2017 ... Non-linear Schrödinger equation; graphs; characteristic polynomial; .... Allowable graphs of the NLS and their applications. 795 ...... nonlinear Schroödinger equation, J. Algebra Appl. 16 (2017) 37 pp., https://doi.org/10.1142/.

  1. Multiple roles for nuclear localization signal (NLS, aa 442-472) of receptor interacting protein 3 (RIP3)

    International Nuclear Information System (INIS)

    Li Mei; Feng Shanshan; Wu Mian

    2008-01-01

    RIP3, a Ser/Thr kinase of RIP (Receptor Interacting Protein) family, is recruited to the TNFR1 signaling complex through RIP and has been shown to mediate apoptosis induction and NF-κB activation. RIP3 is a nucleocytoplasmic shuttling protein and its unconventional nuclear localization signal (NLS, 442-472 aa) is sufficient to trigger apoptosis in the nucleus. In this study, we demonstrate that this NLS exhibits several other roles besides apoptotic function. Firstly, this NLS was found to be required for both RIP3-induced apoptosis and RIP3-mediated NF-κB activation. Next, similar to RHIM motif (RIP homotypic interaction motif), NLS of RIP3 was found to be involved in RIP3-RIP interaction. Furthermore, this NLS was found to be both sufficient and necessary for RIP3 self-association. Our primary data also showed that RIP3 might form a homodimer within cells, and its apoptotic activity may not be required for this dimerization, rather the intactness of NLS determines RIP3-induced apoptosis, since a point mutation at amino acid residue 452 (Ile to Ala) within NLS greatly reduced its apoptotic ability, despite that RIP3 point mutant RIP3/I452A is able to dimerize with wild type RIP3 or itself

  2. Modification of Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2016-05-01

    ``The nature has two magnitudes and two elongations, one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other one is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. These two separated natures of space-time are matched on wave-particle duality. Therefore, the nature of time can be wavy-like and the nature of space can be jerky-like. So, there are two independent variable sources of particle(s)' flow while they are match exactly with each other. These two sources are potential of flow and potential of time (relative time) which vary with respect to both space and time. Here, we propose two additional parts to Schrodinger's equation with respect to relative time: HΨ + ∇t' = EΨ + ∂t' / ∂t , where t is time and t' is relative time: t' = t +/- Δt [Gholibeigian et al., APS March Meeting 2016], which for each atom becomes: tatom = ∑mnucleons + ∑melectrons where m is momentum [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Using time's relativity in Schrodinger equation will give us more precious results. AmirKabir University of Technology,Tehran, Iran.

  3. 33 CFR 151.33 - Certificates needed to carry Category C Oil-like NLS.

    Science.gov (United States)

    2010-07-01

    ... Inspection endorsed to allow the NLS to be carried in that cargo tank, and if the ship engages in a foreign... unless the ship has a Certificate of Inspection endorsed to allow the NLS to be carried in that cargo... Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Noxious Liquid Substance...

  4. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China

    Directory of Open Access Journals (Sweden)

    Ling-Ling Pei

    2018-03-01

    Full Text Available The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N model based on the nonlinear least square (NLS method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N and the NLS-based TNGM (1, N models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC, and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly.

  5. Nonlinear Schroedinger equation with U(p,q) isotopical group

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The properties of the nonlinear Schroedinger equation (NLS) with U(1,1) isogroup are considered in detail. This example illustrates the essential difference between the system and the well-known ''vector'' NLS, i.e. the large set of allowed boundary conditions on the fields that leads to a rich set of solutions of the system. Four types of boundary conditions and related soliton solutions are considered. The Bohr-Sommerfeld quantization allows to interpret them in terms of ''drops'' and ''bubbles'' as bound states of a large number of constituent bosons subject to the thermodynamical relations for gas mixtures. The U(1,1) system under the vanishing boundary conditions may be considered as continuous analog of the Hubbard model and therefore the paper is concluded by studying the inverse scattering equations for this case [ru

  6. The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes

    Science.gov (United States)

    Grinevich, P. G.; Santini, P. M.

    2018-04-01

    The focusing Nonlinear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, the main physical mechanism for the generation of rogue (anomalous) waves (RWs) in Nature. In this paper we investigate the x-periodic Cauchy problem for NLS for a generic periodic initial perturbation of the unstable constant background solution, in the case of N = 1 , 2 unstable modes. We use matched asymptotic expansion techniques to show that the solution of this problem describes an exact deterministic alternate recurrence of linear and nonlinear stages of MI, and that the nonlinear RW stages are described by the N-breather solution of Akhmediev type, whose parameters, different at each RW appearance, are always given in terms of the initial data through elementary functions. This paper is motivated by a preceding work of the authors in which a different approach, the finite gap method, was used to investigate periodic Cauchy problems giving rise to RW recurrence.

  7. On the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice

    Science.gov (United States)

    Penati, T.; Sansottera, M.; Paleari, S.; Koukouloyannis, V.; Kevrekidis, P. G.

    2018-05-01

    We consider a one-dimensional discrete nonlinear Schrödinger (dNLS) model featuring interactions beyond nearest neighbors. We are interested in the existence (or nonexistence) of phase-shift discrete solitons, which correspond to four-site vortex solutions in the standard two-dimensional dNLS model (square lattice), of which this is a simpler variant. Due to the specific choice of lengths of the inter-site interactions, the vortex configurations considered present a degeneracy which causes the standard continuation techniques to be non-applicable. In the present one-dimensional case, the existence of a conserved quantity for the soliton profile (the so-called density current), together with a perturbative construction, leads to the nonexistence of any phase-shift discrete soliton which is at least C2 with respect to the small coupling ɛ, in the limit of vanishing ɛ. If we assume the solution to be only C0 in the same limit of ɛ, nonexistence is instead proved by studying the bifurcation equation of a Lyapunov-Schmidt reduction, expanded to suitably high orders. Specifically, we produce a nonexistence criterion whose efficiency we reveal in the cases of partial and full degeneracy of approximate solutions obtained via a leading order expansion.

  8. Schr"odinger's Unified Field Theory: Physics by Public Relations

    Science.gov (United States)

    Halpern, Paul

    2009-05-01

    We will explore the circumstances surrounding Erwin Schr"odinger's announcement in January 1947 that he had developed a comprehensive unified field theory of gravitation and electromagnetism. We will speculate on Schr"odinger's motivations for the mode and tone of his statements, consider the reaction of the international press within the context of the postwar era, and examine Einstein's response.

  9. On localization in the discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1993-01-01

    For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the discretization becomes too coarse, the discrete equation exhibits...

  10. On a quaternionic generalisation of the Riccati differential equation

    OpenAIRE

    Kravchenko, Viktor; Kravchenko, Vladislav; Williams, Benjamin

    2001-01-01

    A quaternionic partial differential equation is shown to be a generalisation of the Riccati ordinary differential equation and its relationship with the Schrodinger equation is established. Various approaches to the problem of finding particular solutions are explored, and the generalisations of two theorems of Euler on the Riccati differential equation, which correspond to the quaternionic equation, are given.

  11. Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1990-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes

  12. Low-mode truncation methods in the sine-Gordon equation

    International Nuclear Information System (INIS)

    Xiong Chuyu.

    1991-01-01

    In this dissertation, the author studies the chaotic and coherent motions (i.e., low-dimensional chaotic attractor) in some near integrable partial differential equations, particularly the sine-Gordon equation and the nonlinear Schroedinger equation. In order to study the motions, he uses low mode truncation methods to reduce these partial differential equations to some truncated models (low-dimensional ordinary differential equations). By applying many methods available to low-dimensional ordinary differential equations, he can understand the low-dimensional chaotic attractor of PDE's much better. However, there are two important questions one needs to answer: (1) How many modes is good enough for the low mode truncated models to capture the dynamics uniformly? (2) Is the chaotic attractor in a low mode truncated model close to the chaotic attractor in the original PDE? And how close is? He has developed two groups of powerful methods to help to answer these two questions. They are the computation methods of continuation and local bifurcation, and local Lyapunov exponents and Lyapunov exponents. Using these methods, he concludes that the 2N-nls ODE is a good model for the sine-Gordon equation and the nonlinear Schroedinger equation provided one chooses a 'good' basis and uses 'enough' modes (where 'enough' depends on the parameters of the system but is small for the parameter studied here). Therefore, one can use 2N-nls ODE to study the chaos of PDE's in more depth

  13. Image denoising using the squared eigenfunctions of the Schrodinger operator

    KAUST Repository

    Kaisserli, Zineb; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This study introduces a new image denoising method based on the spectral analysis of the semi-classical Schrodinger operator. The noisy image is considered as a potential of the Schrodinger operator, and the denoised image is reconstructed using the discrete spectrum of this operator. First results illustrating the performance of the proposed approach are presented and compared to the singular value decomposition method.

  14. Image denoising using the squared eigenfunctions of the Schrodinger operator

    KAUST Repository

    Kaisserli, Zineb

    2015-02-02

    This study introduces a new image denoising method based on the spectral analysis of the semi-classical Schrodinger operator. The noisy image is considered as a potential of the Schrodinger operator, and the denoised image is reconstructed using the discrete spectrum of this operator. First results illustrating the performance of the proposed approach are presented and compared to the singular value decomposition method.

  15. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  16. Semiclassical limit and well-posedness of nonlinear Schrodinger-Poisson systems

    Directory of Open Access Journals (Sweden)

    Hailiang Li

    2003-09-01

    Full Text Available This paper concerns the well-posedness and semiclassical limit of nonlinear Schrodinger-Poisson systems. We show the local well-posedness and the existence of semiclassical limit of the two models for initial data with Sobolev regularity, before shocks appear in the limit system. We establish the existence of a global solution and show the time-asymptotic behavior of a classical solutions of Schrodinger-Poisson system for a fixed re-scaled Planck constant.

  17. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  18. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  19. On Schr\\"odinger's cat

    OpenAIRE

    de Silva, Nalin

    2010-01-01

    Schr\\"odinger's cat appears to have been harassed in a chamber during the past eighty years or so by interpreting the role of the observer as a person, who sets an experiment and then observes results, may be after some time. The realist position tells us that the physical processes would take place independent of the observer with well defined properties, whereas the positivist position wants us to believe that nothing can be said of a system when it is not being observed. In this paper we q...

  20. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  1. Assessment of Schrodinger Eigenmaps for target detection

    Science.gov (United States)

    Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek

    2014-06-01

    Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.

  2. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  3. Remarks on the spectral theory for the multiparticle-type Schrodinger operator

    International Nuclear Information System (INIS)

    Yafaev, D.R.

    1985-01-01

    Mourre's method is used to prove the limiting absorption principle for the multiparticle Schrodinger operator under the same assumptions on the pair potentials as in the two-particle problem. It is shown that at high energies this principle is valid under wider conditions than on the whole spectral axis. The scattering theory for a Schrodinger operator whose potential decays at infinity in an essentially anisotropic manner is constructed in analogy with the three-particle problem

  4. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  5. The Development of a Consumer Input Program for the National Library Service for the Blind and Physically Handicapped (NLS/BPH) and Network Libraries. Final Report.

    Science.gov (United States)

    Cavenaugh, David

    This document presents a review of the current consumer relations activites of the National Library Service (NLS) for the Blind and Physically Handicapped of the Library of Congress, and an overall plan to improve NLS receipt of user suggestions, comments, opinions, or complaints through libraries which form the nationwide NLS distribution system.…

  6. Envelope compact and solitary pattern structures for the GNLS(m,n,p,q) equations

    International Nuclear Information System (INIS)

    Yan Zhenya

    2006-01-01

    In this Letter, to further understand the role of nonlinear dispersion in the generalized nonlinear Schrodinger equation, we introduce and study the generalized nonlinear Schrodinger equation with nonlinear dispersion (called GNLS(m,n,p,q) equation): iu t +a(u vertical bar u vertical bar n-1 ) xx +bu vertical bar u vertical bar m-1 +ic(u vertical bar u vertical bar p-1 ) xxx +id(u vertical bar u vertical bar q-1 ) x =0. Some new envelope compacton solutions and solitary pattern solutions of GNLS(m,n,p,q) equation are obtained via the gauge transformation and some direct ansatze. In particular, it is shown that GNLS(m,n,p,q) equation with linear dispersion gives rise to envelope compactons and solitary patterns, which implies that nonlinear dispersion is not necessary condition for GNLS(m,n,p,q) equation to admit envelope compactons and solitary patterns. Moreover, some unusually local conservation laws are presented for GNLS + (n,n,n,n) equation and GNLS - (n,n,n,n) equation, respectively

  7. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  8. Dynamics of breathers in discrete nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge

    1998-01-01

    We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...

  9. The discrete symmetry of the N=2 supersymmetric modified NLS hierarchy

    International Nuclear Information System (INIS)

    Sorin, A.

    1996-01-01

    A few new N=2 superintegrable mappings in the (1|2) superspace are proposed and their origin is analyzed. Using one of them, acting like the discrete symmetry transformation of the N=2 supersymmetric modified NLS hierarchy, the recursion operator and Hamiltonian structures of the hierarchy are constructed

  10. Torsional Newton-Cartan geometry and the Schrodinger algebra

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan

    2015-01-01

    We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version

  11. Geometry, Heat Equation and Path Integrals on the Poincare Upper Half-Plane

    OpenAIRE

    Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University

    1988-01-01

    Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation ∂f/∂t=Δ_Hf is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrodinger equation is also valid for our case.

  12. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2014-12-01

    Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

  13. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  14. Finite energy wave signals of extremal amplitude in the spatial NLS-dynamics

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Andonowati, A.

    2006-01-01

    With the aim to find extremal properties of extreme waves, we consider waves of maximal crest (and wave) height in the model of the spatial NLS-dynamics. Using the two motion invariants momentum and Hamiltonian as constraints, we show that so-called cornered solitons provide the maximal crest

  15. Schrodinger cat state generation using a slow light

    International Nuclear Information System (INIS)

    Ham, B. S.; Kim, M. S.

    2003-01-01

    We show a practical application of giant Kerr nonlinearity to quantum information processing based on superposition of two distinct macroscopic states- Schrodinger cat state. The giant Kerr nonlinearity can be achieved by using electromagnetically induced transparency, in which light propagation should be slowed down so that a pi-phase shift can be easily obtained owing to increased interaction time.

  16. Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit

    International Nuclear Information System (INIS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2015-01-01

    Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form V(|ϕ| 2 ). We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrodinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c → +∞. (paper)

  17. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  18. A partial solution for Feynman's problem: A new derivation of the Weyl equation

    Directory of Open Access Journals (Sweden)

    Atsushi Inoue

    2000-07-01

    Full Text Available Associating classical mechanics to a system of partial differential equations, we give a procedure for Feynman-type quantization of a "Schrodinger-type equation with spin." Mathematically, we construct a "good parametrix" for the Weyl equation with an external electromagnetic field. Main ingredients are (i a new interpretation of the matrix structure using superanalysis and (ii another interpretation of the method of characteristics as a quantization procedure of Feynman type.

  19. A method of solving simple harmonic oscillator Schroedinger equation

    Science.gov (United States)

    Maury, Juan Carlos F.

    1995-01-01

    A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.

  20. Hydrogen equation in spaces of arbitrary dimensions

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2015-01-01

    We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z / r. This was not done in a number of relatively recent papers (see [1] and references therein). Therefore, some results obtained in [1] seem to be doubtful. Several required considerations in the area are mentioned. (paper)

  1. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  2. Boundary triples for Schrodinger operators with singular interactions on hypersurfaces

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Langer, M.; Lotoreichik, Vladimir

    2016-01-01

    Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics

  3. On the quantum inverse problem for a new type of nonlinear Schroedinger equation for Alfven waves in plasma

    International Nuclear Information System (INIS)

    Sen, S.; Roy Chowdhury, A.

    1989-06-01

    The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs

  4. Existence and Uniqueness of Solution of Schrodinger equation in extended Colombeau algebra

    Directory of Open Access Journals (Sweden)

    Fariba Fattahi

    2014-09-01

    Full Text Available In this paper, we establish the existence and uniquenessresult of the linear Schr¨odinger equation with Marchaudfractional derivative in Colombeau generalized algebra.The purpose of introducing Marchaud fractional derivativeis regularizing it in Colombeau sense.

  5. Darboux–Bäcklund transformations, dressing & impurities in multi-component NLS

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Panagiota, E-mail: p.adamopoulou@hw.ac.uk [Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Doikou, Anastasia, E-mail: a.doikou@hw.ac.uk [Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Papamikos, Georgios, E-mail: g.papamikos@reading.ac.uk [Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX (United Kingdom)

    2017-05-15

    We consider the discrete and continuous vector non-linear Schrödinger (NLS) model. We focus on the case where space-like local discontinuities are present, and we are primarily interested in the time evolution on the defect point. This in turn yields the time part of a typical Darboux–Bäcklund transformation. Within this spirit we then explicitly work out the generic Bäcklund transformation and the dressing associated to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and integral representation respectively.

  6. Darboux–Bäcklund transformations, dressing & impurities in multi-component NLS

    International Nuclear Information System (INIS)

    Adamopoulou, Panagiota; Doikou, Anastasia; Papamikos, Georgios

    2017-01-01

    We consider the discrete and continuous vector non-linear Schrödinger (NLS) model. We focus on the case where space-like local discontinuities are present, and we are primarily interested in the time evolution on the defect point. This in turn yields the time part of a typical Darboux–Bäcklund transformation. Within this spirit we then explicitly work out the generic Bäcklund transformation and the dressing associated to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and integral representation respectively.

  7. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  8. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  9. Generic singular continuous spectrum for ergodic Schr\\"odinger operators

    OpenAIRE

    Avila, Artur; Damanik, David

    2004-01-01

    We consider Schr\\"odinger operators with ergodic potential $V_\\omega(n)=f(T^n(\\omega))$, $n \\in \\Z$, $\\omega \\in \\Omega$, where $T:\\Omega \\to \\Omega$ is a non-periodic homeomorphism. We show that for generic $f \\in C(\\Omega)$, the spectrum has no absolutely continuous component. The proof is based on approximation by discontinuous potentials which can be treated via Kotani Theory.

  10. The Neutrosophic Logic View to Schrodinger's Cat Paradox, Revisited

    Directory of Open Access Journals (Sweden)

    Florentin Smarandache

    2008-07-01

    Full Text Available The present article discusses Neutrosophic logic view to Schrodinger's cat paradox. We argue that this paradox involves some degree of indeterminacy (unknown which Neutrosophic logic can take into consideration, whereas other methods including Fuzzy logic cannot. To make this proposition clear, we revisit our previous paper by offering an illustration using modified coin tossing problem, known as Parrondo's game.

  11. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    Energy Technology Data Exchange (ETDEWEB)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  12. Chaotic synchronization of symbolic information in the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.

    2003-08-01

    We have studied the discrete nonlinear Schrodinger equation (DNLSE) with on-site defects and periodic boundary conditions. When the array dynamics becomes chaotic, the otherwise quasiperiodic amplitude correlations between the oscillators are destroyed. However, we show that synchronization of symbolic information of suitable amplitude signals is possible in this hamiltonian system. (author)

  13. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  14. Classification of kink type solutions to the extended derivative nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Wyller, J.; Fla, T.; Juul Rasmussen, J.

    1998-01-01

    The Raman Extended Derivative Non Linear Schrodinger (R-EDNLS) equation which models single mode propagation in optical fibers, is shown to possess travelling and stationary kink envelope solutions of monotonic and oscillatory type. These structures have been called optical shocks in analogy...

  15. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    Science.gov (United States)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  16. Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces

    Directory of Open Access Journals (Sweden)

    Xavier Carvajal Paredes

    2010-11-01

    Full Text Available In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq 2heta ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq heta geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.

  17. A Solution of Time Dependent Schrodinger Equation by Quantum Walk

    International Nuclear Information System (INIS)

    Sekino, Hideo; Kawahata, Masayuki; Hamada, Shinji

    2012-01-01

    Time Dependent Schroedinger Equation (TDSE) with an initial Gaussian distribution, is solved by a discrete time/space Quantum Walk (QW) representing consecutive operations corresponding to a dot product of Pauli matrix and momentum operators. We call it as Schroedinger Walk (SW). Though an Hadamard Walk (HW) provides same dynamics of the probability distribution for delta-function-like initial distributions as that of the SW with a delta-function-like initial distribution, the former with a Gaussian initial distribution leads to a solution for advection of the probability distribution; the initial distribution splits into two distinctive distributions moving in opposite directions. Both mechanisms are analysed by investigating the evolution of the both amplitude components. Decoherence of the oscillating amplitudes in central region is found to be responsible for the splitting of the probability distribution in the HW.

  18. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  19. Non-accretive Schrodinger operators and exponential decay of their eigenfunctions

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Raymond, N.; Royer, J.; Siegl, Petr

    2017-01-01

    Roč. 221, č. 2 (2017), s. 779-802 ISSN 0021-2172 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : non-self-adjoint electromagnetic Schrodinger operators * Dirichlet realisation * Agmon-type exponential decay Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.796, year: 2016

  20. Preparing Schrodinger cat states by parametric pumping

    Science.gov (United States)

    Leghtas, Zaki; Touzard, Steven; Pop, Ioan; Vlastakis, Brian; Zalys-Geller, Evan; Albert, Victor V.; Jiang, Liang; Frunzio, Luigi; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.

    2014-03-01

    Maintaining a quantum superposition state of light in a cavity has important applications for quantum error correction. We present an experimental protocol based on parametric pumping and Josephson circuits, which could prepare a Schrodinger cat state in a cavity. This is achieved by engineering a dissipative environment, which exchanges only pairs or quadruples of photons with our cavity mode. The dissipative nature of this preparation would lead to the observation of a dynamical Zeno effect, where the competition between a coherent drive and the dissipation reveals non trivial dynamics. Work supported by: IARPA, ARO, and NSF.

  1. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  2. Randomly forced CGL equation stationary measures and the inviscid limit

    CERN Document Server

    Kuksin, S

    2003-01-01

    We study a complex Ginzburg-Landau (CGL) equation perturbed by a random force which is white in time and smooth in the space variable~$x$. Assuming that $\\dim x\\le4$, we prove that this equation has a unique solution and discuss its asymptotic in time properties. Next we consider the case when the random force is proportional to the square root of the viscosity and study the behaviour of stationary solutions as the viscosity goes to zero. We show that, under this limit, a subsequence of solutions in question converges to a nontrivial stationary process formed by global strong solutions of the nonlinear Schr\\"odinger equation.

  3. Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances

    International Nuclear Information System (INIS)

    Friedland, L.; Shagalov, A.G.

    2005-01-01

    A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed

  4. Spectrum of the linearized operator for the Ginzburg-Landau equation

    Directory of Open Access Journals (Sweden)

    Tai-Chia Lin

    2000-06-01

    Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.

  5. Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Exner, Pavel; Holzmann, M.; Lotoreichik, Vladimir

    2017-01-01

    Roč. 290, 8-9 (2017), s. 1215-1248 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operators * delta-interactions supported on hypersurfaces * approximation by scaled regular potentials * norm resolvent convergence * spectral convergence Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016

  6. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    International Nuclear Information System (INIS)

    Li Jin-Yuan; Fang Nian-Qiao; Yuan Xiao-Bo; Zhang Ji; Xue Yu-Long; Wang Xue-Mu

    2016-01-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. (paper)

  7. Paradoxical effects of Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45+ cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice

    International Nuclear Information System (INIS)

    Bergstrom, Dane; Leyton, Jeffrey V.; Zereshkian, Arman; Chan, Conrad; Cai, Zhongli; Reilly, Raymond M.

    2016-01-01

    Introduction: 111 In-DTPA-NLS-CSL360 radioimmunoconjugates (RIC) recognize the overexpression of the interleukin-3 receptor α-subchain (CD123) relative to the β-subchain (CD131) on leukemia stem cells (LSC). Our aim was to study Auger electron radioimmunotherapy (RIT) of acute myeloid leukemia (AML) with 111 In-DTPA-NLS-CSL360 in non-obese diabetic severe combined immunodeficiency (NOD/SCID) mice or NOD-Rag1 null IL2rγ null (NRG) mice engrafted with CD123 + human AML-5 cells. Methods: The toxicity of three doses of 111 In-DTPA-NLS-CSL360 (3.3–4.8 MBq; 11–15 μg each) injected i.v. every two weeks was studied in non-engrafted NOD/SCID or NRG mice pre-treated with 200 cGy of γ-radiation required for AML engraftment. Engraftment efficiency of (1–5) × 10 6 cells AML-5 cells inoculated i.v. into NOD/SCID or NRG mice was assessed by flow cytometric analysis for human CD45 + (hCD45 + ) cells in the bone marrow (BM) and spleen. AML-5 engrafted mice were treated with two or three doses (3.7 MBq; 10 μg each) every two weeks of 111 In-DTPA-NLS-CSL360, non-specific 111 In-DTPA-NLS-hIgG, unlabeled CSL360 (10 μg) or normal saline. The percentage of hCD45 + cells in the BM and spleen were measured at one week after completion of treatment. Results: 111 In-DTPA-NLS-CSL360 in combination with 200 cGy of γ-radiation caused an initial transient decrease in body weight in NOD/SCID but not in NRG mice. There were no hematological, liver or kidney toxicities. The spleen exhibited 13-fold lower engraftment efficiency than the BM in NOD/SCID mice inoculated with 1 × 10 6 cells but both organs were highly (>85%) engrafted in NRG mice. Unexpectedly, 111 In-DTPA-NLS-CSL360 or non-specific 111 In-DTPA-NLS-hIgG caused a paradoxical 1.5-fold increase (P < 0.0001) in the proportion of hCD45 + cells in the BM of NOD/SCID mice compared to normal saline treated mice. 111 In-DTPA-NLS-CSL360 reduced hCD45 + cells in the spleen by 3.0-fold compared to 111 In-DTPA-NLS-hIgG (P = 0

  8. On the bound states of Schrodinger operators with -interactions on conical surfaces

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Ourmieres-Bonafos, T.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  9. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-03-14

    Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein) as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  10. Uniform decay for a local dissipative Klein-Gordon-Schrodinger type system

    Directory of Open Access Journals (Sweden)

    Marilena N. Poulou

    2012-10-01

    Full Text Available In this article, we consider a nonlinear Klein-Gordon-Schrodinger type system in $mathbb{R}^n$, where the nonlinear term exists and the damping term is effective. We prove the existence and uniqueness of a global solution and its exponential decay. The result is achieved by using the multiplier technique.

  11. The Hardy inequality and the heat equation with magnetic field in any dimension

    Czech Academy of Sciences Publication Activity Database

    Cazacu, C.; Krejčiřík, David

    2016-01-01

    Roč. 41, č. 7 (2016), s. 1056-1088 ISSN 0360-5302 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Aharonov-Bohm magnetic field * Hardy inequality * heat equation * large time behaviour of solutions * magnetic Schrodinger operator Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  12. The application of the extending symmetry group approach in optical soliton communication

    International Nuclear Information System (INIS)

    Ruan Hangyu; Li Huijun; Chen Yixin

    2005-01-01

    A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the nonlinear Schroedinger equation (NLS) with distributed dispersion, nonlinearity and gain or loss. We study the transformations between the standard NLS equation and the NLS equations with distributed dispersion, nonlinearity and gain or loss. Appropriate solitary wave solutions can be applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers

  13. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Science.gov (United States)

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  14. Construction of two-dimensional Schrodinger operator with given scattering amplitude at fixed energy

    International Nuclear Information System (INIS)

    Novikov, R.G.

    1986-01-01

    The classical necessary properties of the scattering amplitude (reciprocity and unitarity) are, provided its L 2 norm is small, sufficient for the existence of a two-dimensional Schrodinger operator with the given scattering amplitude at fixed energy

  15. Multiple soliton production and the Korteweg-de Vries equation.

    Science.gov (United States)

    Hershkowitz, N.; Romesser, T.; Montgomery, D.

    1972-01-01

    Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.

  16. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  17. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Malomed, Boris A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Huang, Tingwen [Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of a transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.

  18. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import

    Directory of Open Access Journals (Sweden)

    Sheehy Noreen

    2011-03-01

    Full Text Available Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  19. The Library of Congress: Evaluation of the NLS/BPH Braille and Audio Magazine Program. Final Project Report.

    Science.gov (United States)

    Bosma and Associates International, Seattle, WA.

    This final report presents an independent formative and summative evaluation of the National Library Services for the Blind and Physically Handicapped (NLS/BPH) braille and audio magazine program. In this program, 77 magazines are distributed directly to subscribers, with 43 magazines available on audio flexible discs and 34 magazines available in…

  20. Well-posedness and ill-posedness of the fifth-order modified KdV equation

    Directory of Open Access Journals (Sweden)

    Soonsik Kwon

    2008-01-01

    Full Text Available We consider the initial value problem of the fifth-order modified KdV equation on the Sobolev spaces. $$displaylines{ partial_t u - partial_x^5u + c_1partial_x^3(u^3 + c_2upartial_x upartial_x^2 u + c_3uupartial_x^3 u =0cr u(x,0= u_0(x }$$ where $u:mathbb{R}imesmathbb{R} o mathbb{R} $ and $c_j$'s are real. We show the local well-posedness in $H^s(mathbb{R}$ for $sgeq 3/4$ via the contraction principle on $X^{s,b}$ space. Also, we show that the solution map from data to the solutions fails to be uniformly continuous below $H^{3/4}(mathbb{R}$. The counter example is obtained by approximating the fifth order mKdV equation by the cubic NLS equation.

  1. Three-Dimensional Coupled NLS Equations for Envelope Gravity Solitary Waves in Baroclinic Atmosphere and Modulational Instability

    Directory of Open Access Journals (Sweden)

    Baojun Zhao

    2018-01-01

    Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.

  2. Spectral stability of shifted states on star graphs

    Science.gov (United States)

    Kairzhan, Adilbek; Pelinovsky, Dmitry E.

    2018-03-01

    We consider the nonlinear Schrödinger (NLS) equation with the subcritical power nonlinearity on a star graph consisting of N edges and a single vertex under generalized Kirchhoff boundary conditions. The stationary NLS equation may admit a family of solitary waves parameterized by a translational parameter, which we call the shifted states. The two main examples include (i) the star graph with even N under the classical Kirchhoff boundary conditions and (ii) the star graph with one incoming edge and N  -  1 outgoing edges under a single constraint on coefficients of the generalized Kirchhoff boundary conditions. We obtain the general counting results on the Morse index of the shifted states and apply them to the two examples. In the case of (i), we prove that the shifted states with even N ≥slant 4 are saddle points of the action functional which are spectrally unstable under the NLS flow. In the case of (ii), we prove that the shifted states with the monotone profiles in the N  -  1 edges are spectrally stable, whereas the shifted states with non-monotone profiles in the N  -  1 edges are spectrally unstable, the two families intersect at the half-soliton states which are spectrally stable but nonlinearly unstable under the NLS flow. Since the NLS equation on a star graph with shifted states can be reduced to the homogeneous NLS equation on an infinite line, the spectral instability of shifted states is due to the perturbations breaking this reduction. We give a simple argument suggesting that the spectrally stable shifted states in the case of (ii) are nonlinearly unstable under the NLS flow due to the perturbations breaking the reduction to the homogeneous NLS equation.

  3. Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    Chen Yue

    Full Text Available The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60

  4. Dynamical criteria for rogue waves in nonlinear Schrödinger models

    International Nuclear Information System (INIS)

    Calini, Annalisa; Schober, Constance M

    2012-01-01

    We investigate rogue waves in deep water in the framework of the nonlinear Schrödinger (NLS) and Dysthe equations. Amongst the homoclinic orbits of unstable NLS Stokes waves, we seek good candidates to model actual rogue waves. In this paper we propose two selection criteria: stability under perturbations of initial data, and persistence under perturbations of the NLS model. We find that requiring stability selects homoclinic orbits of maximal dimension. Persistence under (a particular) perturbation selects a homoclinic orbit of maximal dimension all of whose spatial modes are coalesced. These results suggest that more realistic sea states, described by JONSWAP power spectra, may be analyzed in terms of proximity to NLS homoclinic data. In fact, using the NLS spectral theory, we find that rogue wave events in random oceanic sea states are well predicted by proximity to homoclinic data of the NLS equation. (invited article)

  5. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models

    International Nuclear Information System (INIS)

    Baron, H.E.; Zakrzewski, W.J.

    2016-01-01

    We investigate the validity of collective coordinate approximations to the scattering of two solitons in several classes of (1+1) dimensional field theory models. We consider models which are deformations of the sine-Gordon (SG) or the nonlinear Schrödinger (NLS) model which posses soliton solutions (which are topological (SG) or non-topological (NLS)). Our deformations preserve their topology (SG), but change their integrability properties, either completely or partially (models become ‘quasi-integrable’). As the collective coordinate approximation does not allow for the radiation of energy out of a system we look, in some detail, at how the approximation fares in models which are ‘quasi-integrable’ and therefore have asymptotically conserved charges (i.e. charges Q(t) for which Q(t→−∞)=Q(t→∞)). We find that our collective coordinate approximation, based on geodesic motion etc, works amazingly well in all cases where it is expected to work. This is true for the physical properties of the solitons and even for their quasi-conserved (or not) charges. The only time the approximation is not very reliable (and even then the qualitative features are reasonable, but some details are not reproduced well) involves the processes when the solitons come very close together (within one width of each other) during their scattering.

  6. XMM-Newton observation of the NLS1 galaxy Ark 564. I. Spectral analysis of the time-average spectrum

    NARCIS (Netherlands)

    Papadakis, I.E.; Brinkmann, W.; Page, M.J.; McHardy, I.; Uttley, P.

    2007-01-01

    Context: .We present the results from the spectral analysis of the time-average spectrum of the Narrow Line Seyfert 1 (NLS1) galaxy Ark 564 from a ~100 ks XMM-Newton observation. Aims: .Our aim is to characterize accurately the shape of the time-average, X-ray continuum spectrum of the source and

  7. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  8. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.

    Science.gov (United States)

    Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M

    2012-08-01

    Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger

  9. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  10. Spectral analysis of a class of Schrodinger operators exhibiting a parameter-dependent spectral transition

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel; Khrabustovskyi, A.; Tater, Miloš

    2016-01-01

    Roč. 49, č. 16 (2016), s. 165302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operator * eigenvalue estimates * spectral transition Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016

  11. Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS

    Directory of Open Access Journals (Sweden)

    Valovka Taras

    2008-07-01

    Full Text Available Abstract Background The enzymes responsible for the synthesis of poly-ADP-ribose are named poly-ADP-ribose polymerases (PARP. PARP-2 is a nuclear protein, which regulates a variety of cellular functions that are mainly controlled by protein-protein interactions. A previously described non-conventional bipartite nuclear localization sequence (NLS lies in the amino-terminal DNA binding domain of PARP-2 between amino acids 1–69; however, this targeting sequence has not been experimentally examined or validated. Results Using a site-directed mutagenesis approach, we found that lysines 19 and 20, located within a previously described bipartite NLS, are not required for nuclear localization of PARP-2. In contrast, lysine 36, which is located within a predicted classical monopartite NLS, was required for PARP-2 nuclear localization. While wild type PARP-2 interacted with importin α3 and to a very weak extent with importin α1 and importin α5, the mutant PARP-2 (K36R did not interact with importin α3, providing a molecular explanation why PARP-2 (K36R is not targeted to the nucleus. Conclusion Our results provide strong evidence that lysine 36 of PARP-2 is a critical residue for proper nuclear targeting of PARP-2 and consequently for the execution of its biological functions.

  12. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus

    1998-01-01

    A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp...

  13. Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Hassan A. Zedan

    2012-01-01

    Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.

  14. The quadratic-form identity for constructing Hamiltonian structures of the NLS-MKdV hierarchy and multi-component Levi hierarchy

    International Nuclear Information System (INIS)

    Dong Huanhe; Wang Xiangrong

    2008-01-01

    The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the NLS-MKdV hierarchy, and integrable coupling of multi-component Levi hierarchy are obtained by the quadratic-form identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies

  15. Topological characteristics of the spectrum of the Schrodinger operator in a magnetic field and in a weak potential

    International Nuclear Information System (INIS)

    Lyskova, A.S.

    1986-01-01

    This paper studies the two-dimensional Schrodinger operator H in a periodic magnetic field B(x,y) and in an electric field with periodic potential V(x,y). It is assumed that the functions B(x,y) and V(x,y) are periodic with respect to some lattice in R 2 and that the m agnetic flux through a unit cell is an integral number. The operator H is represented as a direct integral over the two-dimensional torus of the reciprocal lattice of elliptic self-adjoint operators H /sub p1/, /sub p2/ which possess a discrete spectrum lambda /sub j/ (p 1 ,p 2 ), j = 0,1,2.... On the basis of an exactly integrable case - the Schrodinger operator in a constant magnetic field - perturbation theory is used to investigate the typical dispersion laws lambda /sub j/ (p 1 ,p 2 ) and establish their topological characteristics (quantum numbers). A theorem is proved: In the general case, the Schrodinger operator has a coutable number of dispersion laws with arbitrary quantum numbers in no way related to one another or to thflux of the external magnetic field

  16. Strichartz estimates on $alpha$-modulation spaces

    Directory of Open Access Journals (Sweden)

    Weichao Guo

    2013-05-01

    Full Text Available In this article, we consider some dispersive equations, including Schrodinger equations, nonelliptic Schrodinger equations, and wave equations. We develop some Strichartz estimates in the frame of alpha-modulation spaces.

  17. Construction of wave operator for two-dimensional Klein-Gordon-Schrodinger systems with Yukawa coupling

    Directory of Open Access Journals (Sweden)

    Kai Tsuruta

    2013-05-01

    Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.

  18. Nonlinear Wave Propagation

    Science.gov (United States)

    2015-05-07

    associated with the lattice background; the nonlinearity is derived from the inclusion of cubic nonlinearity. Often the background potential is periodic...dispersion branch we can find discrete evolution equations for the envelope associated with the lattice NLS equation (1) by looking for solutions of...spatial operator in the above NLS equation can be elliptic, hyperbolic or parabolic . We remark that further reduction is possible by going into a moving

  19. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  20. The soliton solution of BBGKY quantum kinetic equations chain for different type particles system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Avazov, U.; Hassan, T.

    2006-12-01

    In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations

  1. Schrodinger equations with indefinite effective mass

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Levai, G.

    2012-01-01

    Roč. 376, č. 45 (2012), s. 3000-3005 ISSN 0375-9601 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : quantum particle * effective mass * position dependence * energy dependence * stability * solvable models Subject RIV: BE - Theoretical Physics Impact factor: 1.766, year: 2012

  2. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1.

    Science.gov (United States)

    Li, You; Zhao, Lei; Wang, Shuai; Xing, Junji; Zheng, Chunfu

    2012-09-01

    Herpes simplex virus type 1 (HSV-1) triplex is a complex of three protein subunits, consisting of two copies of VP23 and one copy of VP19C. Here, we identified a non-classical NLS of VP19C between aa 50 and 61, and the nuclear import of VP19C was mediated by RanGTP and importin β1-, but not importin α5-, dependent pathway. Additionally, recombinant virus harbouring this NLS mutation (NLSm) replicates less efficiently as wild-type. These data strongly suggested that the nuclear import of VP19C is required for efficient HSV-1 production.

  3. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  4. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations

    International Nuclear Information System (INIS)

    Anco, Stephen C

    2006-01-01

    Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from group-invariant flows of non-stretching curves in constant-curvature manifolds and Lie-group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming from a covariantly constant frame, and higher order counterparts generated by an underlying vector mKdV recursion operator. In the Lie-group case, the hierarchy comprises a group-invariant analogue of the vector NLS equation coming from a left-invariant frame, along with higher order counterparts generated by a recursion operator that is like a square root of the mKdV one. The corresponding respective curve flows are found to be given by geometric nonlinear PDEs, specifically mKdV and group-invariant analogues of Schroedinger maps. In all cases the hierarchies also contain variants of vector sine-Gordon equations arising from the kernel of the respective recursion operators. The geometric PDEs that describe the corresponding curve flows are shown to be wave maps

  5. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations

    Energy Technology Data Exchange (ETDEWEB)

    Anco, Stephen C [Department of Mathematics, Brock University, St Catharines, ON (Canada)

    2006-03-03

    Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from group-invariant flows of non-stretching curves in constant-curvature manifolds and Lie-group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming from a covariantly constant frame, and higher order counterparts generated by an underlying vector mKdV recursion operator. In the Lie-group case, the hierarchy comprises a group-invariant analogue of the vector NLS equation coming from a left-invariant frame, along with higher order counterparts generated by a recursion operator that is like a square root of the mKdV one. The corresponding respective curve flows are found to be given by geometric nonlinear PDEs, specifically mKdV and group-invariant analogues of Schroedinger maps. In all cases the hierarchies also contain variants of vector sine-Gordon equations arising from the kernel of the respective recursion operators. The geometric PDEs that describe the corresponding curve flows are shown to be wave maps.

  6. Stability analysis of embedded solitons in the generalized third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pelinovsky, Dmitry E.; Yang Jianke

    2005-01-01

    We study the generalized third-order nonlinear Schroedinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved quantities, we qualitatively characterize the stable dynamics of embedded solitons

  7. Introduction to quantum mechanics Schrödinger equation and path integral

    CERN Document Server

    Müller-Kirsten, H J W

    2012-01-01

    This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrodinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions. In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introdu...

  8. Titchmarsh-Weyl theory for canonical systems

    Directory of Open Access Journals (Sweden)

    Keshav Raj Acharya

    2014-11-01

    Full Text Available The main purpose of this paper is to develop Titchmarsh- Weyl theory of canonical systems. To this end, we first observe the fact that Schrodinger and Jacobi equations can be written into canonical systems. We then discuss the theory of Weyl m-function for canonical systems and establish the relation between the Weyl m-functions of Schrodinger equations and that of canonical systems which involve Schrodinger equations.

  9. Relaxation parameter estimation and comparison of NLS and LLS methods for DCE MRI in the cervix

    DEFF Research Database (Denmark)

    Mariager, Christian; Kallehauge, Jesper; Tanderup, Kari

    Dynamic Contrast Enhanced (DCE) MRI is a promising tool for tumor treatment planning. However, prior knowledge of the T1 value within each tumor voxel is needed to utilize this technique. Therefore, a T1 relaxation measurement is performed before the DCE experiment to establish a baseline, before...... any injection of contrast agent. This T1 relaxation measurement is often performed using a variable flip angle spoiled gradient recalled echo (SPGR) sequence. T1 can then be estimated using either a linear least squares (LLS) or a non-linear least squares (NLS) fitting algorithm....

  10. Time-Reversal Generation of Rogue Waves

    Science.gov (United States)

    Chabchoub, Amin; Fink, Mathias

    2014-03-01

    The formation of extreme localizations in nonlinear dispersive media can be explained and described within the framework of nonlinear evolution equations, such as the nonlinear Schrödinger equation (NLS). Within the class of exact NLS breather solutions on a finite background, which describe the modulational instability of monochromatic wave trains, the hierarchy of rational solutions localized in both time and space is considered to provide appropriate prototypes to model rogue wave dynamics. Here, we use the time-reversal invariance of the NLS to propose and experimentally demonstrate a new approach to constructing strongly nonlinear localized waves focused in both time and space. The potential applications of this time-reversal approach include remote sensing and motivated analogous experimental analysis in other nonlinear dispersive media, such as optics, Bose-Einstein condensates, and plasma, where the wave motion dynamics is governed by the NLS.

  11. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-05-01

    A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

  12. Soliton Resolution for the Derivative Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine

    2018-05-01

    We study the derivative nonlinear Schrödinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. At leading order and in space-time cones, the solution has the form of a multi-soliton whose parameters are slightly modified from their initial values by soliton-soliton and soliton-radiation interactions. Our analysis provides an explicit expression for the correction dispersive term. We use the nonlinear steepest descent method of Deift and Zhou (Commun Pure Appl Math 56:1029-1077, 2003) revisited by the {\\overline{partial}} -analysis of McLaughlin and Miller (IMRP Int Math Res Pap 48673:1-77, 2006) and Dieng and McLaughlin (Long-time asymptotics for the NLS equation via dbar methods. Preprint, arXiv:0805.2807, 2008), and complemented by the recent work of Borghese et al. (Ann Inst Henri Poincaré Anal Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.08.006, 2017) on soliton resolution for the focusing nonlinear Schrödinger equation. Our results imply that N-soliton solutions of the derivative nonlinear Schrödinger equation are asymptotically stable.

  13. Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Keefe, L.R.

    1984-01-01

    The bifurcation structure of even, spatially periodic solutions to the time-dependent Ginzburg-Landau equation is investigated analytically and numerically. A rich variety of behavior, including limit cycles, two-tori, period-doubling sequences, and strange attractors are found to exist in the phase space of the solutions constructed from spatial Fourier modes. Beginning with unstable perturbations to the spatially homogeneous Stokes solution, changes in solution behavior are examined as the perturbing wavenumber q is varied in the range 0.6 to 1.3. Solution bifurcations as q changes are often found to be associated with symmetry making or breaking changes in the structure of attractors in phase space. Two distinct mirror image attractors are found to coexist for many values of q. Chaotic motion is found for two ranges of q Lyapunov exponents of the solutions and the Lyapunov dimension of the corresponding attractors are calculated for the larger of these regions. Poincare sections of the attractors within this chaotic range are consistent with the dimension calculation and also reveal a bifurcation structure within the chaos which broadly resembles that found in one-dimensional quadratic maps. The integrability of the Ginzburg-Landau equation is also examined. It is demonstrated that the equation does not possess the Painleve property, except for a special case of the coefficients which corresponds to the integrable non-linear Schroedinger (NLS) equation

  14. On $L^p$ Estimates for the Time-Dependent Schrodinger Operator on $L^2$

    CERN Document Server

    Mortad, M H

    2006-01-01

    Let L denote the time-dependent Schrodinger operator in n space variables. We consider a variety of Lebesgue norms for functions u on R^{n+1}, and prove or disprove estimates for such norms of u in terms of the L^2-norms of u and Lu. The results have implications for self-adjo intness of operators of the form L+V where V is a multiplication operator. The proofs are based mainly on the Strichartz-type inequalities.

  15. Inverse scattering transform for the vector nonlinear Schroedinger equation with nonvanishing boundary conditions

    International Nuclear Information System (INIS)

    Prinari, Barbara; Ablowitz, Mark J.; Biondini, Gino

    2006-01-01

    The inverse scattering transform for the vector defocusing nonlinear Schroedinger (NLS) equation with nonvanishing boundary values at infinity is constructed. The direct scattering problem is formulated on a two-sheeted covering of the complex plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic extension on either sheet of the Riemann surface. Therefore, a suitable modification of both the direct and the inverse problem formulations is necessary. On the direct side, this is accomplished by constructing two additional analytic eigenfunctions which are expressed in terms of the adjoint eigenfunctions. The discrete spectrum, bound states and symmetries of the direct problem are then discussed. In the most general situation, a discrete eigenvalue corresponds to a quartet of zeros (poles) of certain scattering data. The inverse scattering problem is formulated in terms of a generalized Riemann-Hilbert (RH) problem in the upper/lower half planes of a suitable uniformization variable. Special soliton solutions are constructed from the poles in the RH problem, and include dark-dark soliton solutions, which have dark solitonic behavior in both components, as well as dark-bright soliton solutions, which have one dark and one bright component. The linear limit is obtained from the RH problem and is shown to correspond to the Fourier transform solution obtained from the linearized vector NLS system

  16. Spectral Theory for Schrodinger Operators with delta-Interactions Supported on Curves in R-3

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Frank, R. L.; Kuhn, C.; Lotoreichik, Vladimir; Rohleder, J.

    2017-01-01

    Roč. 18, č. 4 (2017), s. 1305-1347 ISSN 1424-0637 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : spectral theory * scattering theory * self-adjoint Schrodinger operators Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.599, year: 2016

  17. Solution of D dimensional Dirac equation for hyperbolic tangent potential using NU method and its application in material properties

    Energy Technology Data Exchange (ETDEWEB)

    Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com [Physics Department, Faculty of Mathematics and Science, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Deta, U. A. [Physics Department, Faculty of Science and Mathematics Education and Teacher Training, Surabaya State University, Surabaya (Indonesia)

    2016-02-08

    The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy. The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.

  18. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance

    Directory of Open Access Journals (Sweden)

    Pengcheng HAN

    2017-12-01

    Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

  19. Nuclear structure information studied through Dirac equation with deformed mean fields

    International Nuclear Information System (INIS)

    Dudek, J.

    2000-01-01

    Complete text of publication follows. Relativistic mean-field theory provides a formal expression for the Dirac equation for the nucleonic motion in an atomic nucleus. The 'potentials' within such a formalism are given in terms of the meson fields, the latter obtained through a coupled system of equations of the Klein-Grodon type. Usually the whole system is being solved by using a Hartree approximation by employing an iterative selfonsistent algorithms. On a more phenomenological level one can parametrize the potentials that enter into a Dirac equation rather than obtain the selfconsistently; such a simplification was suggested some time ago by the Munich group. We introduce a Woods-Saxon type parametrisation and verify by a non-linear search routine what are the 'best fit potential parameters' that reproduce the single particle excitations in the double-magic spherical nuclei as well as the band-head properties in some hundreds of deformed nuclei. Next, by introducing a low-energy reduction of the Dirac equation, one may obtain in a natural way a Pauli Schrodinger type equation with a position dependent effective mass. The role of the corresponding term in a description of single particle energies of the nucleons is illustrated and the implications for the cranking equation are discussed in some detail. (author)

  20. On the absence of resonances for Schrodinger operators with non-trapping potentials in the classical limit

    International Nuclear Information System (INIS)

    Klein, M.

    1985-01-01

    We provide bounds on resolvents of dilated Schrodinger operators via exterior scaling. This depends crucially on a non-trapping condition on the potential which has a clear interpretation in classical mechanics. These bounds are a powerful tool to prove absence of resonances due to the tail of the potential in the shape resonance problem

  1. A Masterpiece in a New Genre: The Rhetorical Negotiation of Two Audiences in Schrodinger's "What Is Life?"

    Science.gov (United States)

    Ceccarelli, Leah

    1994-01-01

    Argues that, by identifying physicist Erwin Schrodinger's book "What is Life?" as inspirational community-forming discourse, it is possible to recognize the rhetorical artistry of his negotiation between two audiences. Notes that the book builds common ground, applies productive ambiguity at a key point of collision, and skillfully…

  2. Energy analysis of four dimensional extended hyperbolic Scarf I plus three dimensional separable trigonometric noncentral potentials using SUSY QM approach

    International Nuclear Information System (INIS)

    Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.

    2016-01-01

    The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential. (paper)

  3. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain

    Directory of Open Access Journals (Sweden)

    Yuta eKimura

    2014-02-01

    Full Text Available Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1 and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1.

  4. Difference Schemes for Equations of Schrodinger Type.

    Science.gov (United States)

    1984-06-01

    is defined by #(4) = ( ’(O)(z) - 0(o)(z))/z. By defintion , the degree of #1 is one less than that of . The main results that we need are contained in...0 and a < 0, the heme (3.10) is conditionally stable, the necessary and suEcient condition being (3.11). The least restrictive stability condition is

  5. Equivalence of the Weyl, Coulomb, unitary, and covariant gauges in the functional Schrodinger picture

    International Nuclear Information System (INIS)

    Namgung, W.

    1991-01-01

    The well known requirement that physical theories should be gauge independent is not so apparent in the actual calculation of gauge theories, especially in the perturbative approach. In this paper the authors show that the Weyl, Coulomb, and unitary gauges of the scalar QED are manifestly equivalent in the context of the functional Schrodinger picture. Further, the three gauge conditions are shown equivalent to the covariant gauge in the way that they correspond to some specific cases of the latter

  6. Natural Orbitals from Generalized Sturmian Calculations

    DEFF Research Database (Denmark)

    Avery, John Scales; Avery, James Emil

    2003-01-01

    The generalized Sturmian method is a direct configuration interaction method for solving the Schr\\"odinger equation of a many-electron system. The configurations in the basis set are solutions to an approximate Schr\\"odinger equation with a weighted potential $\\beta_\

  7. Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Juul Rasmussen, J.; Shagalov, A.G.

    2001-01-01

    The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrodinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha (3) (alpha (3) is the coefficient...... in the third derivative term) and vanish at alpha3 -->0. The most essential, at small alpha (3), is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and also in numerical...

  8. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  9. Modification of Time-dependent Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Kazem

    2016-03-01

    In Sadra's theory, the relative time for an atom (body) which is varying continuously becomes momentums of its involved fundamental particles (strings), (time's relativity) [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Einstein's theory of special relativity might be special form of Sadra's theory. ``The nature has two magnitudes and two elongations, the one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. Sadra separated the nature of time from nature of space. Therefore we can match these two natures on wave-particle duality. It means that the nature of time might be wavy-like and the nature of space might be jerky-like. So, there are two independent variable sources for particle(s)' flow with respect of its two natures such as potential of flow and relative time which vary with respect of both space and time. Consequently we propose two additional parts to Schrodinger's equation: H⌢ Ψ +tp ∇t' = ih/2 π ∂/∂t Ψ +tp∂/∂t t' , where tp is Planck's time and t' is relative time: t' = f (m , v , t) = t +/- Δt , in which t is time, m is mass and vis speed of particle . AmirKabir University of Technology, Tehran, Iran.

  10. On the representation of contextual probabilistic dynamics in the complex Hilbert space: Linear and nonlinear evolutions, Schrodinger dynamics

    International Nuclear Information System (INIS)

    Khrennikov, A.

    2005-01-01

    We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)

  11. Cycle O(CY1991) NLS trade studies and analyses report. Book 2, part 2: Propulsion

    Science.gov (United States)

    Cronin, R.; Werner, M.; Bonson, S.; Spring, R.; Houston, R.

    1992-01-01

    This report documents the propulsion system tasks performed in support of the National Launch System (NLS) Cycle O preliminary design activities. The report includes trades and analyses covering the following subjects: (1) Maximum Tank Stretch Study; (2) No LOX Bleed Performance Analysis; (3) LOX Bleed Trade Study; (4) LO2 Tank Pressure Limits; (5) LOX Tank Pressurization System Using Helium; (6) Space Transportation Main Engine (STME) Heat Exchanger Performance; (7) LH2 Passive Recirculation Performance Analysis; (8) LH2 Bleed/Recirculation Study; (9) LH2 Tank Pressure Limits; and (10) LH2 Pressurization System. For each trade study an executive summary and a detailed trade study are provided. For the convenience of the reader, a separate section containing a compilation of only the executive summaries is also provided.

  12. Optical analogues of the Newton-Schrödinger equation and boson star evolution.

    Science.gov (United States)

    Roger, Thomas; Maitland, Calum; Wilson, Kali; Westerberg, Niclas; Vocke, David; Wright, Ewan M; Faccio, Daniele

    2016-11-14

    Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.

  13. Angular distribution of scission neutrons studied with time-dependent Schrödinger equation

    Science.gov (United States)

    Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae

    2018-03-01

    We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections

  14. Positive ground state solutions to Schrodinger-Poisson systems with a negative non-local term

    Directory of Open Access Journals (Sweden)

    Yan-Ping Gao

    2015-04-01

    Full Text Available In this article, we study the Schrodinger-Poisson system $$\\displaylines{ -\\Delta u+u-\\lambda K(x\\phi(xu=a(x|u|^{p-1}u, \\quad x\\in\\mathbb{R}^3, \\cr -\\Delta\\phi=K(xu^{2},\\quad x\\in\\mathbb{R}^3, }$$ with $p\\in(1,5$. Assume that $a:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ and $K:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ are nonnegative functions and satisfy suitable assumptions, but not requiring any symmetry property on them, we prove the existence of a positive ground state solution resolved by the variational methods.

  15. Generalized Robin Boundary Conditions, Robin-to-Dirichlet Maps, and Krein-Type Resolvent Formulas for Schr\\"odinger Operators on Bounded Lipschitz Domains

    OpenAIRE

    Gesztesy, Fritz; Mitrea, Marius

    2008-01-01

    We study generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schr\\"odinger operators on bounded Lipschitz domains in $\\bbR^n$, $n\\ge 2$. We also discuss the case of bounded $C^{1,r}$-domains, $(1/2)

  16. Supersymmetry, reflectionless symmetric potentials and the inverse method

    International Nuclear Information System (INIS)

    Bagchi, B.

    1990-01-01

    The role of inverse scattering method is illustrated to examine the connection between the multi-soliton solutions of Korteweg-de Vries (KdV) equation and discrete eigenvalues of Schrodinger equation. The necessity of normalization of the Schrodinger wave functions, which are constructed purely from a supersymmetric consideration is pointed out

  17. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-01-01

    The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised.

  18. Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....

  19. Back-angle anomaly 16O + 28Si and phenomenological effective surface potential

    International Nuclear Information System (INIS)

    Saad, S.S.; Darwish, N.Z.; El-Sharkawy

    1995-01-01

    The connection between the equations of classical hydrodynamics describing the flow of a liquid and the quantum-mechanical Schrodinger equation is discussed. A non-linear form of the latter is derived. The non-linearity of the Schrodinger equation is approximated by a phenomenological potential which is used to compute the differential cross-section (dσ/dΩ) for the elastic scattering of 16 O on 28 Si. (author)

  20. Artificial boundary conditions for certain evolution PDEs with cubic nonlinearity for non-compactly supported initial data

    Science.gov (United States)

    Vaibhav, V.

    2011-04-01

    The paper addresses the problem of constructing non-reflecting boundary conditions for two types of one dimensional evolution equations, namely, the cubic nonlinear Schrödinger (NLS) equation, ∂tu+Lu-iχ|u|2u=0 with L≡-i∂x2, and the equation obtained by letting L≡∂x3. The usual restriction of compact support of the initial data is relaxed by allowing it to have a constant amplitude along with a linear phase variation outside a compact domain. We adapt the pseudo-differential approach developed by Antoine et al. (2006) [5] for the NLS equation to the second type of evolution equation, and further, extend the scheme to the aforementioned class of initial data for both of the equations. In addition, we discuss efficient numerical implementation of our scheme and produce the results of several numerical experiments demonstrating its effectiveness.

  1. Transport by negative eddy viscosity in soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The forced Schrodinger equation is used to describe the microhydrodynamical state of strong soliton turbulence. The Schrodinger equation is transformed into a master equation and is decomposed into a macrogroup, a microgroup, and a submicrogroup, representative of the three transport processes of spectral evolution, transport property, and relaxation. The kinetic equation for the macrodistribution is derived and reverted to the continuum by the method of moments in order to find the equation of spectral evolution. The spectral flow is found to be governed by three types of transport, which are discussed.

  2. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2011-01-01

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

  3. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation

    OpenAIRE

    Papadopoulos , D. F.; Anastassi , Z. A.; Simos , T. E.

    2010-01-01

    Abstract A new Runge-Kutta-Nystrom method, with phase-lag and amplification error of order infinity, for the numerical solution of the Schrodinger equation is developed in this paper. The new method is based on the Runge-Kutta-Nystrom method with fourth algebraic order, developed by Dormand, El-Mikkawy and Prince. Numerical illustrations indicate that the new method is much more efficient than other methods derived for the same purpose. phone: +30-210-9421510 (Simos, T. E.) ...

  4. 'Parity effect' based generation of Schrodinger cat like states in high-Q microcavity

    International Nuclear Information System (INIS)

    Napoli, A.; Messina, A.

    1999-01-01

    It has been very recently shown that the dynamics of a two-level atom coupled to a bimodal degenerate cavity field by two-photon processes, is characterized by an interesting nonclassical dynamical behavior christened ''parity effect''. This effect consists in the fact that if the cavity field is prepared leaving one mode in its vacuum state and exciting the other one in a generic linear combination of even number states only, or odd number states only, then there exists an appropriate intensity-dependent interval of time after which the bimodal cavity exhibits macroscopically different parity-dependent quantum features. We show that this nonclassical effect is at the origin of the possibility of generating Schrodinger cat like states of the bimodal field appropriately selecting its initial conditions

  5. Solitons and Weakly Nonlinear Waves in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1985-01-01

    Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...

  6. Schrodinger's mechanics interpretation

    CERN Document Server

    Cook, David B

    2018-01-01

    The interpretation of quantum mechanics has been in dispute for nearly a century with no sign of a resolution. Using a careful examination of the relationship between the final form of classical particle mechanics (the Hamilton–Jacobi Equation) and Schrödinger's mechanics, this book presents a coherent way of addressing the problems and paradoxes that emerge through conventional interpretations.Schrödinger's Mechanics critiques the popular way of giving physical interpretation to the various terms in perturbation theory and other technologies and places an emphasis on development of the theory and not on an axiomatic approach. When this interpretation is made, the extension of Schrödinger's mechanics in relation to other areas, including spin, relativity and fields, is investigated and new conclusions are reached.

  7. Existence and smoothness of solutions to second initial boundary value problems for Schrodinger systems in cylinders with non-smooth bases

    Directory of Open Access Journals (Sweden)

    Nguyen Manh Hung

    2008-03-01

    Full Text Available In this paper, we consider the second initial boundary value problem for strongly general Schrodinger systems in both the finite and the infinite cylinders $Q_T, 0

  8. A Microscopic Quantal Model for Nuclear Collective Rotation

    International Nuclear Information System (INIS)

    Gulshani, P.

    2007-01-01

    A microscopic, quantal model to describe nuclear collective rotation in two dimensions is derived from the many-nucleon Schrodinger equation. The Schrodinger equation is transformed to a body-fixed frame to decompose the Hamiltonian into a sum of intrinsic and rotational components plus a Coriolis-centrifugal coupling term. This Hamiltonian (H) is expressed in terms of space-fixed-frame particle coordinates and momenta by using commutator of H with a rotation angle. A unified-rotational-model type wavefunction is used to obtain an intrinsic Schrodinger equation in terms of angular momentum quantum number and two-body operators. A Hartree-Fock mean-field representation of this equation is then obtained and, by means of a unitary transformation, is reduced to a form resembling that of the conventional semi-classical cranking model when exchange terms and intrinsic spurious collective excitation are ignored

  9. Remarks on the microscopic derivation of the collective model

    International Nuclear Information System (INIS)

    Toyoda, T.; Wildermuth, K.

    1984-01-01

    The rotational part of the phenomenological collective model of Bohr and Mottelson and others is derived microscopically, starting with the Schrodinger equation written in projection form and introducing a new set of 'relative Euler angles'. In order to derive the local Schrodinger equation of the collective model, it is assumed that the intrinsic wave functions give strong peaking properties to the overlapping kernels

  10. A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation

    Science.gov (United States)

    Başhan, Ali; Uçar, Yusuf; Murat Yağmurlu, N.; Esen, Alaattin

    2018-01-01

    In the present paper, a Crank-Nicolson-differential quadrature method (CN-DQM) based on utilizing quintic B-splines as a tool has been carried out to obtain the numerical solutions for the nonlinear Schrödinger (NLS) equation. For this purpose, first of all, the Schrödinger equation has been converted into coupled real value differential equations and then they have been discretized using both the forward difference formula and the Crank-Nicolson method. After that, Rubin and Graves linearization techniques have been utilized and the differential quadrature method has been applied to obtain an algebraic equation system. Next, in order to be able to test the efficiency of the newly applied method, the error norms, L2 and L_{∞}, as well as the two lowest invariants, I1 and I2, have been computed. Besides those, the relative changes in those invariants have been presented. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison clearly indicates that the currently utilized method, namely CN-DQM, is an effective and efficient numerical scheme and allows us to propose to solve a wide range of nonlinear equations.

  11. Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems

    KAUST Repository

    Trillo, S.

    2014-12-03

    We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign.

  12. The higher-dimensional Ablowitz–Ladik model: From (non-)integrability and solitary waves to surprising collapse properties and more exotic solutions

    International Nuclear Information System (INIS)

    Kevrekidis, P.G.; Herring, G.J.; Lafortune, S.; Hoq, Q.E.

    2012-01-01

    We propose a consideration of the properties of the two-dimensional Ablowitz–Ladik discretization of the ubiquitous nonlinear Schrödinger (NLS) model. We use singularity confinement techniques to suggest that the relevant discretization should not be integrable. More importantly, we identify the prototypical solitary waves of the model and examine their stability, illustrating the remarkable feature that near the continuum limit, this discretization leads to the absence of collapse and complete spectral wave stability, in stark contrast to the standard discretization of the NLS. We also briefly touch upon the three-dimensional case and generalizations of our considerations therein, and also present some more exotic solutions of the model, such as exact line solitons and discrete vortices. -- Highlights: ► The two-dimensional version of the Ablowitz–Ladik discretization of the nonlinear Schrödinger (NLS) equation is considered. ► It is found that near the continuum limit the fundamental discrete soliton is spectrally stable. ► This finding is in sharp contrast with the case of the standard discretization of the NLS equation. ► In the three-dimensional version of the model, the fundamental solitons are unstable. ► Additional waveforms such as exact unstable line solitons and discrete vortices are also touched upon.

  13. The higher-dimensional Ablowitz–Ladik model: From (non-)integrability and solitary waves to surprising collapse properties and more exotic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Kevrekidis, P.G., E-mail: kevrekid@gmail.com [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Herring, G.J. [Department of Mathematics and Statistics, Cameron University, Lawton, OK 73505 (United States); Lafortune, S. [Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Hoq, Q.E. [Department of Mathematics and Computer Science, Western New England College, Springfield, MA 01119 (United States)

    2012-02-06

    We propose a consideration of the properties of the two-dimensional Ablowitz–Ladik discretization of the ubiquitous nonlinear Schrödinger (NLS) model. We use singularity confinement techniques to suggest that the relevant discretization should not be integrable. More importantly, we identify the prototypical solitary waves of the model and examine their stability, illustrating the remarkable feature that near the continuum limit, this discretization leads to the absence of collapse and complete spectral wave stability, in stark contrast to the standard discretization of the NLS. We also briefly touch upon the three-dimensional case and generalizations of our considerations therein, and also present some more exotic solutions of the model, such as exact line solitons and discrete vortices. -- Highlights: ► The two-dimensional version of the Ablowitz–Ladik discretization of the nonlinear Schrödinger (NLS) equation is considered. ► It is found that near the continuum limit the fundamental discrete soliton is spectrally stable. ► This finding is in sharp contrast with the case of the standard discretization of the NLS equation. ► In the three-dimensional version of the model, the fundamental solitons are unstable. ► Additional waveforms such as exact unstable line solitons and discrete vortices are also touched upon.

  14. The harmonic oscillator and the position dependent mass Schroedinger equation: isospectral partners and factorization operators

    International Nuclear Information System (INIS)

    Morales, J.; Ovando, G.; Pena, J. J.

    2010-01-01

    One of the most important scientific contributions of Professor Marcos Moshinsky has been his study on the harmonic oscillator in quantum theory vis a vis the standard Schroedinger equation with constant mass [1]. However, a simple description of the motion of a particle interacting with an external environment such as happen in compositionally graded alloys consist of replacing the mass by the so-called effective mass that is in general variable and dependent on position. Therefore, honoring in memoriam Marcos Moshinsky, in this work we consider the position-dependent mass Schrodinger equations (PDMSE) for the harmonic oscillator potential model as former potential as well as with equi-spaced spectrum solutions, i.e. harmonic oscillator isospectral partners. To that purpose, the point canonical transformation method to convert a general second order differential equation (DE), of Sturm-Liouville type, into a Schroedinger-like standard equation is applied to the PDMSE. In that case, the former potential associated to the PDMSE and the potential involved in the Schroedinger-like standard equation are related through a Riccati-type relationship that includes the equivalent of the Witten superpotential to determine the exactly solvable positions-dependent mass distribution (PDMD)m(x). Even though the proposed approach is exemplified with the harmonic oscillator potential, the procedure is general and can be straightforwardly applied to other DEs.

  15. Accurate first principles calculation of many-body interactions

    International Nuclear Information System (INIS)

    Tawa, G.J.; Moskowitz, J.W.; Schmidt, K.E.

    1991-01-01

    This paper reports on the electronic structure Schrodinger equation that is solved for the van der Waals complexes spin-polarized H 2 and H 3 , and the closed-shell systems He 2 and He 3 by Monte Carlo methods. Two types of calculations are performed, variational Monte Carlo, which gives an upper bound to the eigenvalue of the Schrodinger equation, and Green's function Monte Carlo, which can solve the Schrodinger equation exactly within statistical sampling errors. The simulations are carried out on an ETA-10 supercomputer, and already existing computer codes were extensively modified to ensure highly efficient coding. A major component of the computations was the development of highly optimized many-electron wave functions. The results from the variational Monte Carlo simulations are reported for both the two- and three-body interaction energies

  16. Soliton formation at critical density in laser-irradiated plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Bondeson, A.; Lisak, M.

    1979-01-01

    The generation of Langmuir solitons at the resonance layer in a plasma irradiated by a strong high-frequency pump is investigated. The process is modelled by the nonlinear Schrodinger equation including an external pump, a density gradient and linear damping. The evolution equation is reformulated as an exact variational principle and the one-soliton generation process is studied by substituting various trial solutions. The applicability conditions for the nonlinear Schrodinger equation are re-examined and found to be more restrictive than previously stated. (author)

  17. Calculation of Free-Free Opacities

    Science.gov (United States)

    Bhatia, A. K.; Maiden, D.; Ritchie, A. B., Jr.

    2003-01-01

    Free-free absorption is an important contribution to the opacity for radiation transport through hot materials Temperatures can be as high as several keV, such that it becomes a computational challenge to solve the Schrodinger equation efficiently for rapidly oscillating continuum functions for high angular momenta. Several groups\\footnots, including ours, have studied the phase amplitude solution (PAS) of the Schrodinger equation, in which one solves equations for the wave function amplitude and phase, which are: smooth functions of the electron energy. It is also important to have an accurate Schroudinger benchmark for the development of the PAS method. We present results for dipole matrix elements, Gaunt factors, and cross sections for the absorption of radiation at various energies for Cs XIX at temperature=100 eV and density=0.187 g/cc for our newly developed PAS and Schrodinger benchmark.

  18. Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: a comparative study with protamine and lipofectamine.

    Science.gov (United States)

    Nematollahi, Mohammad Hadi; Torkzadeh-Mahanai, Masoud; Pardakhty, Abbas; Ebrahimi Meimand, Hossein Ali; Asadikaram, Gholamreza

    2017-10-28

    Non-viral gene delivery methods are considered due to safety and simplicity in human gene therapy. Since the use of cationic peptide and niosome represent a promising approach for gene delivery purposes we used recombinant fusion protein and cationic niosome as a gene carrier. A multi-domain fusion protein including nuclear localization motif (NLS) and two DNA-binding (Mu) domains, namely NLS-Mu-Mu (NMM) has been designed, cloned and expressed in E. coli DE3 strain. Afterward, the interested protein was purified by affinity chromatography. Binary vectors based on protein/DNA and ternary vectors based on protein/DNA/niosome were prepared. Protamine was used as a control. DNA condensing properties of NMM and protamine were evaluated by various experiments. Furthermore, we examined cytotoxicity, hemolysis and transfection potential of the binary and ternary complexes in HEK293T and MCF-7 cell lines. Protamine and Lipofectamine™2000 were used as positive controls, correspondingly. The recombinant NMM was expressed and purified successfully and DNA was condensed efficiently at charge ratios that were not harmful to cells. Peptidoplexes showed transfection efficiency (TE) but ternary complexes had higher TE. Additionally, NMM ternary complex was more efficient compared to protamine ternary vectors. Our results showed that niosomal ternary vector of NMM is a promising non-viral gene carrier to achieve an effective and safe carrier system for gene therapy.

  19. On wave-packet dynamics in a decaying quadratic potential

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Henriksen, Niels Engholm

    1997-01-01

    We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics.......We consider the time-dependent Schrodinger equation for a quadratic potential with an exponentially decaying force constant. General analytical solutions are presented and we highlight in particular, the signatures of classical mechanics in the wave packet dynamics....

  20. From Baking a Cake to Solving the Schrodinger Equation

    OpenAIRE

    Olszewski, Edward A.

    2005-01-01

    The primary emphasis of this study has been to explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. Restricting our consideration to the genoise, one of the basic cakes of classic French cuisine, we have obtained a semi-empirical formula for its baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The formula, which is based on the Diffusion e...

  1. Computer Solution of the Schrodinger Equation--Two Useful Programs.

    Science.gov (United States)

    Evans, D. E.

    1980-01-01

    Describes a general purpose algorithm which enables one to calculate the allowed energy eigenvalues for an arbitrary potential. Results of a calculation where a centrifugal potential is added to the hydrogenic Coulomb potential are discussed. (Author/HM)

  2. The Schroedinger representation for φ4 theory and the O(N) σ-model

    International Nuclear Information System (INIS)

    Pachos, J.

    1996-01-01

    In this work we apply the field theoretical Schrodinger representation to the massive φ 4 theory and the O(N) σ model in 1+1 dimensions. The Schrodinger equation for the φ 4 theory is reviewed and then solved classically and semiclassically to obtain the vacuum functional as an expansion of local functionals. These results are compared with equivalent ones derived from the path integral formulation to prove their agreement with the conventional field theoretical methods. For the O(N)σ model we construct the functional Laplacian, which is the principal ingredient of the corresponding Schrodinger equation. This result is used to construct the generalised Virasoro operators for this model and study their algebra. (Author)

  3. Nonlinear excitations in two-dimensional molecular structures with impurities

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Rasmussen, Kim; Christiansen, Peter Leth

    1995-01-01

    We study the nonlinear dynamics of electronic excitations interacting with acoustic phonons in two-dimensional molecular structures with impurities. We show that the problem is reduced to the nonlinear Schrodinger equation with a varying coefficient. The latter represents the influence...... of the impurity. Transforming the equation to the noninertial frame of reference coupled with the center of mass we investigate the soliton behavior in the close vicinity of the impurity. With the help of the lens transformation we show that the soliton width is governed by an Ermakov-Pinney equation. We also...... excitations. Analytical results are in good agreement with numerical simulations of the nonlinear Schrodinger equation....

  4. Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2016-05-01

    Full Text Available To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD and a bifunctional R11 (RGD-NLS, which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100–280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18. More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector.

  5. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Science.gov (United States)

    Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047

  6. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    International Nuclear Information System (INIS)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  7. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  8. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  9. Code Samples Used for Complexity and Control

    Science.gov (United States)

    Ivancevic, Vladimir G.; Reid, Darryn J.

    2015-11-01

    The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents

  10. Noncommutativity into Dirac Equation with mass dependent on the position

    International Nuclear Information System (INIS)

    Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva

    2013-01-01

    Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)

  11. Gauge equivalence of σ models with non-compact Grassmannian manifolds

    International Nuclear Information System (INIS)

    Kundu, A.

    1986-01-01

    The gauge equivalence (GE) of σ models associated with non-compact Grassmannian manifolds is investigated with emphasis on the necessary restrictions for the choice of gauge elements in such cases. The importance of GE in solving a non-linear system with the help of inverse scattering data of its gauge related counterpart is demonstrated. The gauge relations between generalised Landau-Lifshitz (LL) and non-linear Schroedinger (NLS) type equations and also between non-linear σ models and generalised 'sine-sinh-Gordon' equations for non-compact SU(p,q)/S(U(u,v) x U(s,t)) manifolds are established. Using H-gauge invariance of LL the GE is extended to some higher-order specific non-linear systems. The gauge connection among various LL and NLS equations are schematically represented. Along with the recovery of earlier results important new results, some with significant non-compact structures, are discovered. (author)

  12. Plane-wave electronic structure calculations on a parallel supercomputer

    International Nuclear Information System (INIS)

    Nelson, J.S.; Plimpton, S.J.; Sears, M.P.

    1993-01-01

    The development of iterative solutions of Schrodinger's equation in a plane-wave (pw) basis over the last several years has coincided with great advances in the computational power available for performing the calculations. These dual developments have enabled many new and interesting condensed matter phenomena to be studied from a first-principles approach. The authors present a detailed description of the implementation on a parallel supercomputer (hypercube) of the first-order equation-of-motion solution to Schrodinger's equation, using plane-wave basis functions and ab initio separable pseudopotentials. By distributing the plane-waves across the processors of the hypercube many of the computations can be performed in parallel, resulting in decreases in the overall computation time relative to conventional vector supercomputers. This partitioning also provides ample memory for large Fast Fourier Transform (FFT) meshes and the storage of plane-wave coefficients for many hundreds of energy bands. The usefulness of the parallel techniques is demonstrated by benchmark timings for both the FFT's and iterations of the self-consistent solution of Schrodinger's equation for different sized Si unit cells of up to 512 atoms

  13. Time-dependent embedding

    OpenAIRE

    Inglesfield, J. E.

    2007-01-01

    A method of solving the time-dependent Schr\\"odinger equation is presented, in which a finite region of space is treated explicitly, with the boundary conditions for matching the wave-functions on to the rest of the system replaced by an embedding term added on to the Hamiltonian. This time-dependent embedding term is derived from the Fourier transform of the energy-dependent embedding potential, which embeds the time-independent Schr\\"odinger equation. Results are presented for a one-dimensi...

  14. 3+1 dimensional envelop waves and its stability in magnetized dusty plasma

    International Nuclear Information System (INIS)

    Duan Wenshan

    2006-01-01

    It is well known that there are envelope solitary waves in unmagnetized dusty plasmas which are described by a nonlinear Schrodinger equation (NLSE). A three dimension nonlinear Schrodinger equation for small but finite amplitude dust acoustic waves is first obtained for magnetized dusty plasma in this paper. It suggest that in magnetized dusty plasmas the envelope solitary waves exist. The modulational instability for three dimensional NLSE is studied as well. The regions of stability and instability are well determined in this paper

  15. An integrable Hamiltonian hierarchy and its constrained flows with generalized Hamiltonian regular representations, as well as its expanding integrable system

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2003-01-01

    A new subalgebra of loop algebra A-tilde 2 is first constructed. It follows that an isospectral problem is established. Using Tu-pattern gives rise to a new integrable hierarchy, which possesses bi-Hamiltonian structure. As its reduction cases, the well-known standard Schrodinger equation and MKdV equation are presented, respectively. Furthermore, by making use of bi-symmetry constraints, generalized Hamiltonian regular representations for the hierarchy are obtained. At last, we obtain an expanding integrable system of this hierarchy by applying a scalar transformation between two isospectral problems and constructing a five-dimensional loop algebra G-tilde. In particular, the expanding integrable models of Schrodinger equation and MKdV equation are presented, respectively

  16. Lower bound on the spectrum of the Schr\\"odinger operator in the plane with delta-potential supported by a curve

    OpenAIRE

    Lobanov, Igor; Lotoreichik, Vladimir; Popov, Igor

    2009-01-01

    We consider the Schr\\"odinger operator in the plane with delta-potential supported by a curve. For the cases of an infinite curve and a finite loop we give estimates on the lower bound of the spectrum expressed explicitly through the strength of the interaction and a parameter which characterizes geometry of the curve. Going further we cut the curve into finite number of pieces and estimate the bottom of the spectrum using the parameters for the pieces. As an application of the elaborated the...

  17. Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice

    Science.gov (United States)

    Butt, Imran A.; Wattis, Jonathan A. D.

    2007-02-01

    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrödinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher order analysis yielding a generalized NLS, which includes known stabilizing terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximized for stationary breathers and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt and Wattis 2006 J. Phys. A: Math. Gen. 39 4955), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalized NLS equation.

  18. Geometry, commutation relations and the quantum fictitious force

    DEFF Research Database (Denmark)

    Botero, J.; Cirone, M.A.; Dahl, Jens Peder

    2003-01-01

    We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave.......We express the commutation relation between the operators of the momentum and the radial unit vectors in D dimensions in differential and integral form. We connect this commutator with the quantum fictitious potential emerging in the radial Schrodinger equation of an s-wave....

  19. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    Science.gov (United States)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  20. Multi-soliton and rogue-wave solutions of the higher-order Hirota system for an erbium-doped nonlinear fiber

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Da-Wei [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics; Shijiazhuang Tiedao University (China). Dept. of Mathematics and Physics; Gao, Yi-Tian; Sun, Yu-Hao; Feng, Yu-Jie; Xue, Long [Beijing University of Aeronautics and Astronautics, Beijing (China). State Key Laboratory of Software Development Environment; Ministry of Education, Beijing (China). Key Laboratory of Fluid Mechanics

    2014-10-15

    The nonlinear Schroedinger (NLS) equation appears in fluid mechanics, plasma physics, etc., while the Hirota equation, a higher-order NLS equation, has been introduced. In this paper, a higher-order Hirota system is investigated, which describes the wave propagation in an erbium-doped nonlinear fiber with higher-order dispersion. By virtue of the Darboux transformation and generalized Darboux transformation, multi-soliton solutions and higher-order rogue-wave solutions are derived, beyond the published first-order consideration. Wave propagation and interaction are analyzed: (i) Bell-shape solitons, bright- and dark-rogue waves are found; (ii) the two-soliton interaction is elastic, i.e., the amplitude and velocity of each soliton remain unchanged after the interaction; (iii) the coefficient in the system affects the direction of the soliton propagation, patterns of the soliton interaction, distance, and direction of the first-order rogue-wave propagation, as well as the range and direction of the second-order rogue-wave interaction.

  1. Quasihomogeneous function method and Fock's problem

    International Nuclear Information System (INIS)

    Smyshlyaev, V.P.

    1987-01-01

    The diffraction of a high-frequency wave by a smooth convex body near the tangency point of the limiting ray to the surface is restated as the scattering problem for the Schrodinger equation with a linear potential on a half-axis. Various prior estimates for the scattering problem are used in order to prove existence, uniqueness, and smoothness theorems. The corresponding solution satisfies the principle of limiting absorption. The formal solution of the corresponding Schrodinger equation in the form of quasihomogeneous functions is essentially used in their constructions

  2. Wave instabilities in nonlinear Schrödinger systems with non vanishing background

    KAUST Repository

    Trillo, Stefano; Gongora, J. S. Totero; Fratalocchi, Andrea

    2014-01-01

    We investigate wave collapse in the generalized nonlinear Schrödinger (NLS) equation and in the presence of a non vanishing background. Through the use of virial identities, we establish a new criterion for blow-up.

  3. Fragmentation of Nimotuzumab for Preparation of 125I-F(ab’)2-Nimotuzumab as a Precursor for Preparing 125I-F(ab’)2-Nimotuzumab-NLS Radiopharmaceutical for Cancer Therapy

    International Nuclear Information System (INIS)

    Haryuni, R.D.; Bahtiar, A.; Soenarjo, S.; Harahap, Y.; Mutalib, A.; Ramli, M.; Hermanto, S.; Ardiyatno, C.N.; Susilo, V.Y.; Haffid, D.

    2014-01-01

    Nimotuzumab is an anticancer agent which belongs to the inhibitor group of Epidermal Growth Factor Receptor (EGFR). This monoclonal antibody has a relatively high molecular weight which slows penetration on tumor cells, making it less attractive in imaging kinetics and potentially elicits antibodies responses. Therefore, in this study nimotuzumab was fragmented to form a bivalent antibody [F(ab’) 2 ] and then labeled with 125 I to form 125 I-F(ab’) 2 -nimotuzumab which can be used further as a precursor for preparing 125 I-F(ab’) 2 -nimotuzumab-NLS (NLS = nuclear localization sequence) radiopharmaceutical for radioimmunotherapy. The aims of this study was to obtain characteristics of 125 I-F(ab’) 2 -nimotuzumab by comparing with the 125 I labeled-intact nimotuzumab ( 125 I-nimotuzumab). This study was initiated by purifying nimotuzumab by mean of dialysis. The purified nimotuzumab was then fragmented by using pepsin. The F(ab') 2 -nimotuzumab formed was then purified from its by-products which formed in fragmentation process by using a PD-10 column (consisted Sephadex G25). The intact nimotuzumab and its F(ab’)2 fragment were then labeled with the 125 I to form 125 I-nimotuzumab and 125 I-F(ab’) 2 -nimotuzumab. The radiochemical purity are 98.27 % and 93.24 %, respectively. Stability test results show that, both 125 I-nimotuzumab and 125 I-F(ab’) 2 -nimotuzumab are more stable at 4 °C than at room temperature storage and 37 °C. (author)

  4. Periodic wavetrains for systems of coupled nonlinear Schrödinger ...

    Indian Academy of Sciences (India)

    Systems of coupled nonlinear Schrödinger equations (cNLS) have received tremendous ..... The propagation of optical solitons along fibers has played an important role ... To increase the information carrying capacity, it will be desirable and ...

  5. Wave instabilities in the presence of non vanishing background in nonlinear Schrödinger systems

    KAUST Repository

    Trillo, S.; Gongora, J. S. Totero; Fratalocchi, Andrea

    2014-01-01

    We investigate wave collapse ruled by the generalized nonlinear Schrödinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse

  6. Classification of integrable Volterra-type lattices on the sphere: isotropic case

    International Nuclear Information System (INIS)

    Adler, V E

    2008-01-01

    The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS type are discussed

  7. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  8. Fragmentation of Nimotuzumab for Preparation of 125I-F(ab’2-Nimotuzumab as a Precursor for Preparing 125I-F(ab’2-Nimotuzumab-NLS Radiopharmaceutical for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    R.D. Haryuni

    2014-04-01

    Full Text Available Nimotuzumab is an anticancer agent which belongs to the inhibitor group of Epidermal Growth Factor Receptor (EGFR. This monoclonal antibody has a relatively high molecular weight which makes slow penetration on tumor cell, as concequence, it is less attractive in imaging kinetics, and potentially elicits antibodies respons. Therefore in this study nimotuzumab was fragmented to form bivalent antibody [F(ab’2] and then labeled with 125I to form 125I-F(ab’2-nimotuzumab which can be used further as a precursor for preparing 125I-F(ab’2-nimotuzumab-NLS (NLS = nuclear localizing sequences radiopharmaceutical for radioimmunotherapy. The aims of this study were to obtain characteristics of 125I-F(ab’2-nimotuzumab by comparing with the 125I labeled-intact nimotuzumab (125I-nimotuzumab. This study was initiated by purifying nimotuzumab by mean of dialysis. The purified nimotuzumab was then fragmented by using pepsin. The F(ab'2-nimotuzumab formed was then purified from its by-products which formed in fragmentation process by using a PD-10 column (consisted Sephadex G25. The intact nimotuzumab and its F(ab’2 fragment were then labeled with the 125I to form 125I-nimotuzumab and 125I-F(ab’2-nimotuzumab. The radiochemical purity are 98.27 % and 93.24 % ,respectively. Stability test results show that, both of 125I-nimotuzumab and 125I-F(ab’2-nimotuzumab more stable at 4 °C than at room temperature storage and 37 °C

  9. Study of heavy quarkonium with energy dependent potential

    International Nuclear Information System (INIS)

    Gupta, Pramila; Mehrotra, I

    2009-01-01

    It is well known that charmonium and bottonium states can be calculated by using a nonrelativistic Schrodinger equation. The basic reasons are: 1) the mass of charm and bottom quarks is much larger than QCD scale, which makes this system free of strong normalization effects and 2) the binding energy is small compared to the mass energy ψ and γ states in terms of nonrelativistic qq system governed by more or less phenomenological potentials. In the present work we have studied mass spectra of charmonium and bottonium using the following energy dependent model in the framework of nonrelativistic Schrodinger equation

  10. Monrelativistic particle in a magnetic field in two-dimensional Lobachevsky space, the cylindrical coordinates and the Poincare half-plane

    International Nuclear Information System (INIS)

    Ovsiyu, E.M.

    2012-01-01

    Exact solutions of the Schrodinger equation in the two-dimensional Riemannian space of negative curvature, the hyperbolic Lobachevsky plane, in the presence of an external magnetic field, which is an analog of a uniform magnetic field in the Minkowski space, are constructed. The description uses the cylindrical and quasi-Cartesian coordinates. The quasi-Cartesian coordinates determine the Poincare half-plane. In the both coordinate systems, the Schrodinger equation is solved exactly, the wave functions are constructed. A generalized formula for energy levels is found, which describes the quantized motion of a particle in a magnetic field in the Lobachevsky plane. (authors)

  11. Relativity theory (a bibliography with abstracts). Report for 1970--Feb 77

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1977-04-01

    Research studies are presented on special and general relativity. Gravitational theory, field theory, and space--time studies are included, as are studies involving the Minkowski space, the Schrodinger equations, the Dirac equations, and the Lorentz transformations

  12. Discrete breathers in a two-dimensional Fermi-Pasta-Ulam lattice

    International Nuclear Information System (INIS)

    Butt, Imran A; Wattis, Jonathan A D

    2006-01-01

    Using asymptotic methods, we investigate whether discrete breathers are supported by a two-dimensional Fermi-Pasta-Ulam lattice. A scalar (one-component) two-dimensional Fermi-Pasta-Ulam lattice is shown to model the charge stored within an electrical transmission lattice. A third-order multiple-scale analysis in the semi-discrete limit fails, since at this order, the lattice equations reduce to the (2 + 1)-dimensional cubic nonlinear Schroedinger (NLS) equation which does not support stable soliton solutions for the breather envelope. We therefore extend the analysis to higher order and find a generalized (2 + 1)-dimensional NLS equation which incorporates higher order dispersive and nonlinear terms as perturbations. We find an ellipticity criterion for the wave numbers of the carrier wave. Numerical simulations suggest that both stationary and moving breathers are supported by the system. Calculations of the energy show the expected threshold behaviour whereby the energy of breathers does not go to zero with the amplitude; we find that the energy threshold is maximized by stationary breathers, and becomes arbitrarily small as the boundary of the domain of ellipticity is approached

  13. Nonlinear Maxwell's and Schrodinger equations for describing the volumetric interaction of femtosecond laser pulses with transparent solid dielectrics: effect of the boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Zhukov, V.P.; Bulgakova, Nadezhda M.; Fedoruk, M.P.

    2017-01-01

    Roč. 84, č. 7 (2017), s. 439-446 ISSN 1070-9762 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S Institutional support: RVO:68378271 Keywords : glass * femtosecond laser pulses * Maxwell's and Schrdinger equations Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.299, year: 2016

  14. Nonlinear Evolution of Alfvenic Wave Packets

    Science.gov (United States)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  15. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P., E-mail: matlap@bell.net [NUTECH Services, 3313 Fenwick Crescent, Mississauga, Ontario, L5L 5N1 (Canada)

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  16. Breatherlike impurity modes in discrete nonlinear lattices

    DEFF Research Database (Denmark)

    Hennig, D.; Rasmussen, Kim; Tsironis, G. P.

    1995-01-01

    We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...

  17. Defocusing regimes of nonlinear waves in media with negative dispersion

    DEFF Research Database (Denmark)

    Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.

    1996-01-01

    Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...

  18. Extreme wave phenomena in down-stream running modulated waves

    NARCIS (Netherlands)

    Andonowati, A.; Karjanto, N.; van Groesen, Embrecht W.C.

    Modulational, Benjamin-Feir, instability is studied for the down-stream evolution of surface gravity waves. An explicit solution, the soliton on finite background, of the NLS equation in physical space is used to study various phenomena in detail. It is shown that for sufficiently long modulation

  19. Stability analysis of the Peregrine solution via squared eigenfunctions

    Science.gov (United States)

    Schober, C. M.; Strawn, M.

    2017-10-01

    A preliminary numerical investigation involving ensembles of perturbed initial data for the Peregrine soliton (the lowest order rational solution of the nonlinear Schrödinger equation) indicates that it is unstable [16]. In this paper we analytically investigate the linear stability of the Peregrine soliton, appealing to the fact that the Peregrine solution can be viewed as the singular limit of a single mode spatially periodic breathers (SPB). The "squared eigenfunction" connection between the Zakharov-Shabat (Z-S) system and the linearized NLS equation is employed in the stability analysis. Specifically, we determine the eigenfunctions of the Z-S system associated with the Peregrine soliton and construct a family of solutions of the associated linearized NLS (about the Peregrine) in terms of quadratic products of components of the eigenfunctions (i.e., the squared eigenfunction). We find there exist solutions of the linearization that grow exponentially in time, thus showing the Peregrine soliton is linearly unstable.

  20. Solution of the time-dependent Schrodinger equation for highly symmetric potentials

    Czech Academy of Sciences Publication Activity Database

    Schmidt, B.; Kaprálová-Žďánská, Petra Ruth

    2000-01-01

    Roč. 127, 2-3 (2000), s. 290-308 ISSN 0010-4655 Institutional research plan: CEZ:AV0Z4040901 Keywords : DISCRETE VARIABLE REPRESENTATIONS * FILTER DIAGONALIZATION * MOLECULAR-DYNAMICS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.090, year: 2000

  1. General, Interactive Computer Program for the Solution of the Schrodinger Equation

    Science.gov (United States)

    Griffin, Donald C.; McGhie, James B.

    1973-01-01

    Discusses an interactive computer algorithm which allows beginning students to solve one- and three-dimensional quantum problems. Included is an example of the Thomas-Fermi-Dirac central field approximation. (CC)

  2. Light Meets Water in Nonlocal Media: Surface Tension Analogue in Optics

    Science.gov (United States)

    Horikis, Theodoros P.; Frantzeskakis, Dimitrios J.

    2017-06-01

    Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrödinger (NLS) model in 2 +1 dimensions. We identify an analogue of surface tension in optics, namely, a single parameter depending on the degree of nonlocality, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvili (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality. We demonstrate the emergence of robust optical antidark solitons forming Y -, X -, and H -shaped wave patterns, which are approximated by colliding KPII line solitons, similar to those observed in shallow waters.

  3. Quasi-invariant modified Sobolev norms for semi linear reversible PDEs

    International Nuclear Information System (INIS)

    Faou, Erwan; Grébert, Benoît

    2010-01-01

    We consider a general class of infinite dimensional reversible differential systems. Assuming a nonresonance condition on linear frequencies, we construct for such systems almost invariant pseudo-norms that are close to Sobolev-like norms. This allows us to prove that if the Sobolev norm of index s of the initial data z 0 is sufficiently small (of order ε) then the Sobolev norm of the solution is bounded by 2ε over a very long time interval (of order ε −r with r arbitrary). It turns out that this theorem applies to a large class of reversible semi-linear partial differential equations (PDEs) including the nonlinear Schrödinger (NLS) equation on the d-dimensional torus. We also apply our method to a system of coupled NLS equations which is reversible but not Hamiltonian. We also note that for the same class of reversible systems we can prove a Birkhoff normal form theorem, which in turn implies the same bounds on the Sobolev norms. Nevertheless the techniques that we use to prove the existence of quasi-invariant pseudo-norms are much more simple and direct

  4. Quaestiones Mathematicae - Vol 49, No 7 (2017)

    African Journals Online (AJOL)

    Inverse problems for difference equations with quadratic Eigenparameter dependent boundary conditions · EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. Sonja Currie, Anne D. Love, 861-877. A study of ∇-discrete fractional calculus operator on the radial Schrodinger equation ...

  5. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    Science.gov (United States)

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  6. Global Well-Posedness for Cubic NLS with Nonlinear Damping

    KAUST Repository

    Antonelli, Paolo

    2010-11-04

    We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.

  7. Spinning solitons in cubic-quintic nonlinear media

    Indian Academy of Sciences (India)

    in contrast to a recently found azimuthal instability of spinning doughnut-shaped solitons in the CQ NLS equation, their GL counterparts may be completely stable. On the other hand, a problem of fundamental interest is the possibility of the formation of fully three-dimensional (3D) optical spatiotemporal solitons, also referred ...

  8. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    where Γ is the damping (> 0) and gain (< 0) parameter. Using the perturbation method and zeroth approximation, one-soliton solution is constructed and the amplification and damping of soliton is explained in figure 2. In addition, by introducing the initial phase. Figure 1. Two soliton solutions of the NLS equation. Figure 2.

  9. Quasi-integrable non-linear Schrödinger models, infinite towers of exactly conserved charges and bright solitons

    Science.gov (United States)

    Blas, H.; do Bonfim, A. C. R.; Vilela, A. M.

    2017-05-01

    Deformations of the focusing non-linear Schrödinger model (NLS) are considered in the context of the quasi-integrability concept. We strengthen the results of JHEP 09 (2012) 103 10.1007/JHEP06(2015)177" TargetType="URL"/> for bright soliton collisions. We addressed the focusing NLS as a complement to the one in JHEP 03 (2016) 005 10.1007/JHEP06(2015)177" TargetType="URL"/> , in which the modified defocusing NLS models with dark solitons were shown to exhibit an infinite tower of exactly conserved charges. We show, by means of analytical and numerical methods, that for certain two-bright-soliton solutions, in which the modulus and phase of the complex modified NLS field exhibit even parities under a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved during the scattering process of the solitons. We perform extensive numerical simulations and consider the bright solitons with deformed potential V=2η /2+\\upepsilon{({|ψ |}^2)}^{2+\\upepsilon},\\upepsilon \\in \\mathbb{R},η <0 . However, for two-soliton field components without definite parity we also show numerically the vanishing of the first non-trivial anomaly and the exact conservation of the relevant charge. So, the parity symmetry seems to be a sufficient but not a necessary condition for the existence of the infinite tower of conserved charges. The model supports elastic scattering of solitons for a wide range of values of the amplitudes and velocities and the set { η, ɛ}. Since the NLS equation is ubiquitous, our results may find potential applications in several areas of non-linear science.

  10. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  11. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms.

    Science.gov (United States)

    Wu, Wei; Sankhala, Rajeshwer S; Florio, Tyler J; Zhou, Lixin; Nguyen, Nhan L T; Lokareddy, Ravi K; Cingolani, Gino; Panté, Nelly

    2017-09-12

    The influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection. Atomic structures of importin α bound to two variants of NLS2 revealed NLS2 primarily binds the major-NLS binding site of importin α, unlike NLS1 that associates with the minor NLS-pocket. Though peptides corresponding to NLS1 and NLS2 bind weakly to importin α, the two NLSs synergize in the context of the full length NP to confer high avidity for importin α7, explaining why the virus efficiently replicates in the respiratory tract that exhibits high levels of this isoform. This study, the first to functionally characterize NLS2, demonstrates NLS2 plays an important and unexpected role in influenza A virus infection. We propose NLS1 and NLS2 form a bipartite NLS in trans, which ensures high avidity for importin α7 while preventing non-specific binding to viral RNA.

  12. Analysis of Quantum Effects in Non-Uniformly Doped MOS Structures

    National Research Council Canada - National Science Library

    Fiegna, Claudio

    1997-01-01

    This paper presents results from the self-consistent solution of Schrodinger and Poisson equations obtained in one-dimensional non-uniformly doped MOS structures suitable for the fabrication of very short transistors...

  13. Exact solution of a quantum forced time-dependent harmonic oscillator

    Science.gov (United States)

    Yeon, Kyu Hwang; George, Thomas F.; Um, Chung IN

    1992-01-01

    The Schrodinger equation is used to exactly evaluate the propagator, wave function, energy expectation values, uncertainty values, and coherent state for a harmonic oscillator with a time dependent frequency and an external driving time dependent force. These quantities represent the solution of the classical equation of motion for the time dependent harmonic oscillator.

  14. Relativity theory (a bibliography with abstracts). Report for 1970--1976

    International Nuclear Information System (INIS)

    Grooms, D.W.

    1976-03-01

    Research studies are presented on special and general relativity. Gravitational theory, field theory, and space--time studies are included as are studies involving the Minkowski space, the Schrodinger equations, the Dirac equations, and the Lorentz transformations. (This updated bibliography contains 136 abstracts, 4 of which are new entries to the previous edition.)

  15. Space-time caustics

    Directory of Open Access Journals (Sweden)

    Arthur D. Gorman

    1986-01-01

    Full Text Available The Lagrange manifold (WKB formalism enables the determination of the asymptotic series solution of linear differential equations modelling wave propagation in spatially inhomogeneous media at caustic (turning points. Here the formalism is adapted to determine a class of asymptotic solutions at caustic points for those equations modelling wave propagation in media with both spatial and temporal inhomogeneities. The analogous Schrodinger equation is also considered.

  16. Designing an ultrafast laser virtual laboratory using MATLAB GUIDE

    Science.gov (United States)

    Cambronero-López, F.; Gómez-Varela, A. I.; Bao-Varela, C.

    2017-05-01

    In this work we present a virtual simulator developed using the MATLAB GUIDE environment based on the numerical resolution of the nonlinear Schrödinger equation (NLS) and using the split step method for the study of the spatial-temporal propagation of nonlinear ultrashort laser pulses. This allows us to study the spatial-temporal propagation of ultrafast pulses as well as the influence of high-order spectral phases such as group delay dispersion and third-order dispersion on pulse compression in time. The NLS can describe several nonlinear effects, in particular in this paper we consider the Kerr effect, cross-polarized wave generation and cubic-quintic propagation in order to highlight the potential of this equation combined with the GUIDE environment. Graphical user interfaces are commonly used in science and engineering teaching due to their educational value, and have proven to be an effective way to engage and motivate students. Specifically, the interactive graphical interfaces presented provide the visualization of some of the most important nonlinear optics phenomena and allows users to vary the values of the main parameters involved.

  17. Solitons in monuniform media

    International Nuclear Information System (INIS)

    Castro, J.J.B. de; Sudano, J.P.

    1982-01-01

    Explicit one-solition of a nonlinear Schrodinger equation with an inhomogeneous term are obtained by reducing the problem to the inverse-scattering method, extending the ideas of Zakhavov and Shabat. (Author) [pt

  18. Generalized NLS hierarchies from rational W algebras

    International Nuclear Information System (INIS)

    Toppan, F.

    1993-11-01

    Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs

  19. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  20. Schrodinger Equation Solutions that Lead to the Solution for the Hydrogen Atom

    Science.gov (United States)

    Newhouse, Paul F.; McGill, K.C.

    2004-01-01

    Two exercises that would provide beginning quantum theory students with an introduction to more advanced quantum mechanical treatments, especially the hydrogen atom are given. The exercises are stepwise in difficulty, leading naturally to the full hydrogen atom development and greatly extend the pedagogy of most multidimensional Cartesian systems…

  1. Spike-layer solutions to nonlinear fractional Schrodinger equations with almost optimal nonlinearities

    Directory of Open Access Journals (Sweden)

    Jinmyoung Seok

    2015-07-01

    Full Text Available In this article, we are interested in singularly perturbed nonlinear elliptic problems involving a fractional Laplacian. Under a class of nonlinearity which is believed to be almost optimal, we construct a positive solution which exhibits multiple spikes near any given local minimum components of an exterior potential of the problem.

  2. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  3. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-01

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  4. Approximation of quantum observables by molecular dynamics simulations

    KAUST Repository

    Sandberg, Mattias

    2016-01-06

    In this talk I will discuss how to estimate the uncertainty in molecular dynamics simulations. Molecular dynamics is a computational method to study molecular systems in materials science, chemistry, and molecular biology. The wide popularity of molecular dynamics simulations relies on the fact that in many cases it agrees very well with experiments. If we however want the simulation to predict something that has no comparing experiment, we need a mathematical estimate of the accuracy of the computation. In the case of molecular systems with few particles, such studies are made by directly solving the Schrodinger equation. In this talk I will discuss theoretical results on the accuracy between quantum mechanics and molecular dynamics, to be used for systems that are too large to be handled computationally by the Schrodinger equation.

  5. On two-spectra inverse problems

    OpenAIRE

    Guliyev, Namig J.

    2018-01-01

    We consider a two-spectra inverse problem for the one-dimensional Schr\\"{o}dinger equation with boundary conditions containing rational Herglotz--Nevanlinna functions of the eigenvalue parameter and provide a complete solution of this problem.

  6. Real and Hybrid Atomic Orbitals.

    Science.gov (United States)

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  7. On a Stable and Consistent Finite Difference Scheme for a Time ...

    African Journals Online (AJOL)

    NJABS

    established time independent Schrodinger Wave Equation (SWE). To develop the stability criterion .... the rate at which signals in the numerical scheme travel will be faster than their real world counterparts and this unrealistic expectation leads ...

  8. Science Academies' Refresher Course on Applications of Quantum ...

    Indian Academy of Sciences (India)

    IAS Admin

    2015-11-10

    Nov 10, 2015 ... at clarifying basic concepts and improving the pedagogical skills of participants. Module 1: Basics of quantum mechanics: Historical remarks, Mathematical background, Schrodinger equation,. Abstract formulation, Dirac notation, Representations and Pictures, Linear Oscillator, Perturbation Theory.

  9. On the stability of soliton solution in NLS-type general field model

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Nayyar, A.H.

    1982-08-01

    A model incorporating the nonlinear Schroedinger equation and its generalizations is considered and the stability of its periodic-in-time solutions under the restriction of a fixed charge Q is analysed. It is shown that the necessary condition for the stability is given by the inequality deltaQ/deltaν<0, where ν is the parameter of periodicity of the solution in time. In particular, one specific class of Lagrangians is considered and, in addition, the sufficient conditions for the stability of the soliton solutions are also determined. This study thus examines both the necessary and the sufficient conditions for the stability of the solutions of nonlinear Schroedinger equation and some of its generalizations. (author)

  10. Breatherlike excitations in discrete lattices with noise and nonlinear damping

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri B.; Johansson, Magnus

    1997-01-01

    We discuss the stability of highly localized, ''breatherlike,'' excitations in discrete nonlinear lattices under the influence of thermal fluctuations. The particular model considered is the discrete nonlinear Schrodinger equation in the regime of high nonlinearity, where temperature effects...

  11. The transmission factor of a bloch wall for spin waves whose wave vector is perpendicular to the wall (1961); Facteur de transmission d'une paroi de bloch pour des ondes de spin de vecteur d'onde normal a la paroi (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Boutron, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    When, for a ferromagnetic, the anisotropic energy takes the form E= K sin{sup 2} {alpha}, the study of the propagation of spin waves of low energy across a Bloch wall leads to a one-dimensional Schrodinger equation in which is found a potential well which has the remarkable property of being completely transparent for all values of the incident wave energy. (author) [French] Dans un ferromagnetique, lorsque la densite d'energie d'anisotropie est de la forme E= K sin{sup 2} {alpha}, l'etude de la propagation des ondes de spin de faible energie a travers une paroi de Bloch, conduit a une equation de Schrodinger a une dimension, dans laquelle figure un puits de potentiel qui a la propriete remarquable d'etre completement transparent quelle que soit l'energie de l'onde incidente. (auteur)

  12. Upper-hybrid solitons and oscillating-two-stream instabilities

    International Nuclear Information System (INIS)

    Porkolab, M.; Goldman, M.V.

    1976-01-01

    A warm two-fluid theory of soliton formation near the upper-hybrid frequency is developed. Several forms of the nonlinear Schrodinger equation are obtained, depending on whether the electric field is completely perpendicular to the dc magnetic field or whether it has an additional small component parallel to the magnetic field. For the perpendicular case, the character of the soliton depends on its scale length, L, and on β. For low β, when L c/ω/subp//subi/ the super-Alvenic solitons described magnetohydromagnetically by Kaufman and Stenflo are obtained. However, the case E/sub parallel/not-equal0 may be of more interest, since it couples the pump to the excited waves more efficiently. In the limit of linearization about an infinite wavelength pump, the nonlinear Schrodinger equations yield purely growing (oscillating-two-stream) instabilities in both cases

  13. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka, E-mail: kinjo@sci.hokudai.ac.jp

    2015-07-31

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS{sup SV40}) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS{sup SV40} in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS{sup SV40} formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS{sup SV40} likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS{sup SV40} can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus.

  14. Efficient and dynamic nuclear localization of green fluorescent protein via RNA binding

    International Nuclear Information System (INIS)

    Kitamura, Akira; Nakayama, Yusaku; Kinjo, Masataka

    2015-01-01

    Classical nuclear localization signal (NLS) sequences have been used for artificial localization of green fluorescent protein (GFP) in the nucleus as a positioning marker or for measurement of the nuclear-cytoplasmic shuttling rate in living cells. However, the detailed mechanism of nuclear retention of GFP-NLS remains unclear. Here, we show that a candidate mechanism for the strong nuclear retention of GFP-NLS is via the RNA-binding ability of the NLS sequence. GFP tagged with a classical NLS derived from Simian virus 40 (GFP-NLS SV40 ) localized not only in the nucleoplasm, but also to the nucleolus, the nuclear subdomain in which ribosome biogenesis takes place. GFP-NLS SV40 in the nucleolus was mobile, and intriguingly, the diffusion coefficient, which indicates the speed of diffusing molecules, was 1.5-fold slower than in the nucleoplasm. Fluorescence correlation spectroscopy (FCS) analysis showed that GFP-NLS SV40 formed oligomers via RNA binding, the estimated molecular weight of which was larger than the limit for passive nuclear export into the cytoplasm. These findings suggest that the nuclear localization of GFP-NLS SV40 likely results from oligomerization mediated via RNA binding. The analytical technique used here can be applied for elucidating the details of other nuclear localization mechanisms, including those of several types of nuclear proteins. In addition, GFP-NLS SV40 can be used as an excellent marker for studying both the nucleoplasm and nucleolus in living cells. - Highlights: • Nuclear localization signal-tagged GFP (GFP-NLS) showed clear nuclear localization. • The GFP-NLS dynamically localized not only in the nucleoplasm, but also to the nucleolus. • The nuclear localization of GFP-NLS results from transient oligomerization mediated via RNA binding. • Our NLS-tagging procedure is ideal for use in artificial sequestration of proteins in the nucleus

  15. Hydrodynamic optical soliton tunneling

    Science.gov (United States)

    Sprenger, P.; Hoefer, M. A.; El, G. A.

    2018-03-01

    A notion of hydrodynamic optical soliton tunneling is introduced in which a dark soliton is incident upon an evolving, broad potential barrier that arises from an appropriate variation of the input signal. The barriers considered include smooth rarefaction waves and highly oscillatory dispersive shock waves. Both the soliton and the barrier satisfy the same one-dimensional defocusing nonlinear Schrödinger (NLS) equation, which admits a convenient dispersive hydrodynamic interpretation. Under the scale separation assumption of nonlinear wave (Whitham) modulation theory, the highly nontrivial nonlinear interaction between the soliton and the evolving hydrodynamic barrier is described in terms of self-similar, simple wave solutions to an asymptotic reduction of the Whitham-NLS partial differential equations. One of the Riemann invariants of the reduced modulation system determines the characteristics of a soliton interacting with a mean flow that results in soliton tunneling or trapping. Another Riemann invariant yields the tunneled soliton's phase shift due to hydrodynamic interaction. Soliton interaction with hydrodynamic barriers gives rise to effects that include reversal of the soliton propagation direction and spontaneous soliton cavitation, which further suggest possible methods of dark soliton control in optical fibers.

  16. Designing an ultrafast laser virtual laboratory using MATLAB GUIDE

    International Nuclear Information System (INIS)

    Cambronero-López, F; Gómez-Varela, A I; Bao-Varela, C

    2017-01-01

    In this work we present a virtual simulator developed using the MATLAB GUIDE environment based on the numerical resolution of the nonlinear Schrödinger equation (NLS) and using the split step method for the study of the spatial–temporal propagation of nonlinear ultrashort laser pulses. This allows us to study the spatial–temporal propagation of ultrafast pulses as well as the influence of high-order spectral phases such as group delay dispersion and third-order dispersion on pulse compression in time. The NLS can describe several nonlinear effects, in particular in this paper we consider the Kerr effect, cross-polarized wave generation and cubic–quintic propagation in order to highlight the potential of this equation combined with the GUIDE environment. Graphical user interfaces are commonly used in science and engineering teaching due to their educational value, and have proven to be an effective way to engage and motivate students. Specifically, the interactive graphical interfaces presented provide the visualization of some of the most important nonlinear optics phenomena and allows users to vary the values of the main parameters involved. (paper)

  17. Three-dimensional solutions in media with spatial dependence of nonlinear refractive index

    International Nuclear Information System (INIS)

    Kovachev, L.M.; Kaymakanova, N.I.; Dakova, D.Y.; Pavlov, L.I.; Donev, S.G.; Pavlov, R.L.

    2004-01-01

    We investigate a nonparaxial vector generalization of the scalar 3D+1 Nonlinear Schrodinger Equation (NSE). Exact analytical 3D+1 soliton solutions are obtained for the first time in media of spatial dependence of the nonlinear refractive index

  18. Analogy between the standard gauge model of the basic forces and ...

    African Journals Online (AJOL)

    distance) forces in nature characterized by the conventional gauge-invariant substitution, δγψ→(-i(elhc)Aγ)Ψ for the electromagnetic field (in the Schrodinger or Dirac equation for the normal hydrogen atom in conventional quantum mechanics), and ...

  19. Cosmic time gauge in quantum cosmology and chaotic inflation model

    International Nuclear Information System (INIS)

    Hosoya, A.

    1986-01-01

    The author proposes a cosmic time gauge formalism in quantum cosmology to get an equation for the Schrodinger type. Its application to the chaotic inflation scenario reveals that the uncertainty in the scale factor grows exponentially as the universe inflates

  20. Stationary states of the two-dimensional nonlinear Schrödinger model with disorder

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Hendriksen, D.; Christiansen, Peter Leth

    1998-01-01

    Solitonlike excitations in the presence of disorder in the two-dimensional cubic nonlinear Schrodinger equation are analyzed. The continuum as well as the discrete problem are analyzed. In the continuum model, otherwise unstable excitations are stabilized in the presence of disorder...

  1. Sharper criteria for the wave collapse

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.; Rypdal, K.

    1995-01-01

    Sharper criteria for three-dimensional wave collapse described by the Nonlinear Schrodinger Equation (NLSE) are derived. The collapse threshold corresponds to the ground state soliton which is known to be unstable. Thus, for nonprefocusing distributions this represents the separatrix between...

  2. Development of an eight-band theory for quantum dot heterostructures

    NARCIS (Netherlands)

    Pokatilov, E.P.; Fonoberov, V.A.; Fomin, V.; Devreese, J.T.

    2001-01-01

    We derive a nonsymmetrized eight-band effective-mass Hamiltonian for quantum dot heterostructures (QDH's) in Burt's envelope-function representation. The 8*8 radial Hamiltonian and the boundary conditions for the Schrodinger equation are obtained for spherical QDH's. Boundary conditions for

  3. Asymptotic behaviour of solutions to a system of Schrödinger equations

    Czech Academy of Sciences Publication Activity Database

    Carvajal, X.; Gamboa, P.; Nečasová, Šárka; Nguyen, H. H.; Vero, O.

    2017-01-01

    Roč. 2017, č. 171 (2017), s. 1-23 ISSN 1072-6691 R&D Projects: GA ČR GA16-03230S Institutional support: RVO:67985840 Keywords : coupled Schrodinger system * energy conservation * global solution * growth of solutions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.954, year: 2016 https://ejde.math.txstate.edu/Volumes/2017/171/abstr.html

  4. The role of the National Launch System in support of Space Station Freedom

    Science.gov (United States)

    Green, J. L.; Saucillo, R. J.; Cirillo, W. M.

    1992-08-01

    A study was performed to determine the most appropriate potential use of the National Launch System (NLS) for Space Station Freedom (SSF) logistics resupply and growth assembly needs. Objectives were to estimate earth-to-SSF cargo requirements, identify NLS sizing trades, and assess operational constraints of a shuttle and NLS transportation infrastructure. Detailed NLS and Shuttle flight manifests were developed to model varying levels of NLS support. NLS delivery of SSF propellant, and in some cases, cryoenic fluids, yield significant shuttle flight savings with minimum impact to the baseline SSF design. Additional cargo can be delivered by the NLS if SSF trash disposal techniques are employed to limit return cargo requirements. A common vehicle performance level can be used for both logistics resupply and growth hardware delivery.

  5. Classical-Quantum Correspondence by Means of Probability Densities

    Science.gov (United States)

    Vegas, Gabino Torres; Morales-Guzman, J. D.

    1996-01-01

    Within the frame of the recently introduced phase space representation of non relativistic quantum mechanics, we propose a Lagrangian from which the phase space Schrodinger equation can be derived. From that Lagrangian, the associated conservation equations, according to Noether's theorem, are obtained. This shows that one can analyze quantum systems completely in phase space as it is done in coordinate space, without additional complications.

  6. Searches for H2O masers toward narrow-line Seyfert 1 galaxies

    Science.gov (United States)

    Yoshiaki, Hagiwara; Doi, Akihiro; Hachisuka, Kazuya; Horiuchi, Shinji

    2018-05-01

    We present searches for 22 GHz H2O masers toward 36 narrow-line Seyfert 1 galaxies (NLS1s), selected from known NLS1s with vsys ≲ 41000 km s-1. Out of the 36 NLS1s in our sample, 11 have been first surveyed in our observations, while the observations of other NLS1s were previously reported in literature. In our survey, no new water maser source from NLS1s was detected at the 3σ rms level of 8.4 mJy to 144 mJy, which depends on different observing conditions or inhomogeneous sensitivities of each observation using three different telescopes. It is likely that the non-detection of new masers in our NLS1 sample is primarily due to insufficient sensitivities of our observations. Including the five known NLS1 masers, the total detection rate of the H2O maser in NLS1s is not remarkably different from that of type 2 Seyfert galaxies or LINERs. However, more extensive and systematic searches of NLS1 would be required for a statistical discussion of the detection rate of the NLS1 maser, compared with that of type 2 Seyferts or LINERs.

  7. Correlates and importance of neglect-like symptoms in complex regional pain syndrome.

    Science.gov (United States)

    Wittayer, Matthias; Dimova, Violeta; Birklein, Frank; Schlereth, Tanja

    2018-05-01

    Neglect-like symptoms (NLS) are frequently observed in complex regional pain syndrome (CRPS). The clinical meaning of NLS, however, is largely unknown. Therefore, this study sets out to assess the importance of NLS for patient outcome and to explore their clinical correlates. We assessed NLS in a group of 53 patients with CRPS and compared the results to 28 healthy volunteers. To define the origin of the NLS reports, we tested the subjective visual midline, performed a limb-laterality recognition test, and quantitative sensory testing. In addition, psychological and pain assessment scales were completed. Tests were analyzed with univariate and multivariate approaches. After 6 months, patients were reassessed and the influence of NLS on pain outcome was determined. Most patients reported NLS in the questionnaire, whereas subjective visual midline and limb-laterality recognition test in contrast to previous studies did not reveal perceptual disturbances. Neglect-like symptom scores were associated with pain and pain catastrophizing in acute CRPS and anxiety and thermal sensory loss in chronic CRPS. Furthermore, high NLS scores had a negative impact on pain outcome after 6 months. Our results indicate that NLS have a different meaning in acute and chronic CRPS and might be of prognostic value. Possibly, treatment should focus on reducing NLS.

  8. Hydrogen atom in intense magnetic field.

    Science.gov (United States)

    Canuto, V.; Kelly, D. C.

    1972-01-01

    The structure of a hydrogen atom situated in an intense magnetic field is investigaged. Three approaches are employed. An elementary Bohr picture establishes a crucial magnetic field strength, H sub a approximately equal to 5 x 10 to the 9th G. Fields in excess of H sub a are intense in that they are able to modify the characteristic atomic scales of length and binding energy. A second approach solves the Schrodinger equation by a combination of variational methods and perturbation theory. It yields analytic expressions for the wave functions and energy eigenvalues. A third approach determines the energy eigenvalues by reducing the Schrodinger equation to a one-dimensional wave equation, which is then solved numerically. Energy eigenvalues are tabulated for field strengths of 2 x 10 to the 10th G and 2 x 10 to the 12th G. It is found that at 2 x 10 to the 12th G the lowest energy eigenvalue is changed from -13.6 to about -180 eV in agreement with previous variational computations.

  9. Restoration of nuclear-import failure caused by triple A syndrome and oxidative stress

    International Nuclear Information System (INIS)

    Kiriyama, Takao; Hirano, Makito; Asai, Hirohide; Ikeda, Masanori; Furiya, Yoshiko; Ueno, Satoshi

    2008-01-01

    Triple A syndrome is an autosomal recessive neurological disease, mimicking motor neuron disease, and is caused by mutant ALADIN, a nuclear-pore complex component. We recently discovered that the pathogenesis involved impaired nuclear import of DNA repair proteins, including DNA ligase I and the cerebellar ataxia causative protein aprataxin. Such impairment was overcome by fusing classical nuclear localization signal (NLS) and 137-aa downstream sequence of XRCC1, designated stretched NLS (stNLS). We report here that the minimum essential sequence of stNLS (mstNLS) is residues 239-276, downsized by more than 100 aa. mstNLS enabled efficient nuclear import of DNA repair proteins in patient fibroblasts, functioned under oxidative stress, and reduced oxidative-stress-induced cell death, more effectively than stNLS. The stress-tolerability of mstNLS was also exerted in control fibroblasts and neuroblastoma cells. These findings may help develop treatments for currently intractable triple A syndrome and other oxidative-stress-related neurological diseases, and contribute to nuclear compartmentalization study

  10. The analytical evolution of NLS solitons due to the numerical discretization error

    Science.gov (United States)

    Hoseini, S. M.; Marchant, T. R.

    2011-12-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank-Nicolson scheme and a scheme, due to Taha [1], based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t^{-{1\\over 2}}, which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank-Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found.

  11. The analytical evolution of NLS solitons due to the numerical discretization error

    International Nuclear Information System (INIS)

    Hoseini, S M; Marchant, T R

    2011-01-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank–Nicolson scheme and a scheme, due to Taha, based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t -1/2 , which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank–Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found. (paper)

  12. Discrete variable representation for singular Hamiltonians

    DEFF Research Database (Denmark)

    Schneider, B. I.; Nygaard, Nicolai

    2004-01-01

    We discuss the application of the discrete variable representation (DVR) to Schrodinger problems which involve singular Hamiltonians. Unlike recent authors who invoke transformations to rid the eigenvalue equation of singularities at the cost of added complexity, we show that an approach based...

  13. On the Interpretation of Measurement Within the Quantum Theory

    Science.gov (United States)

    Cooper, Leon N.; Van Vechten, Deborah

    1969-01-01

    In interpretation of the process of measurement is proposed which can be placed wholly within the quantum theory. The entire system including the apparatus and even the mind of the observer can be considered to develop according to the Schrodinger equation. (RR)

  14. Students' Levels of Explanations, Models, and Misconceptions in Basic Quantum Chemistry: A Phenomenographic Study

    Science.gov (United States)

    Stefani, Christina; Tsaparlis, Georgios

    2009-01-01

    We investigated students' knowledge constructions of basic quantum chemistry concepts, namely atomic orbitals, the Schrodinger equation, molecular orbitals, hybridization, and chemical bonding. Ausubel's theory of meaningful learning provided the theoretical framework and phenomenography the method of analysis. The semi-structured interview with…

  15. Group-kinetic theory of turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.

  16. Solutions of the Schrodinger Equation Using Approximate Nucleon-Nucleon and Lambda-Nucleon Potentials.

    Science.gov (United States)

    Banerjee, S. N.; Chakraborty, S. N.

    1980-01-01

    Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)

  17. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    International Nuclear Information System (INIS)

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan

    2006-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  18. Extension of noncommutative soliton hierarchies

    International Nuclear Information System (INIS)

    Dimakis, Aristophanes; Mueller-Hoissen, Folkert

    2004-01-01

    A linear system, which generates a Moyal-deformed two-dimensional soliton equation as an integrability condition, can be extended to a three-dimensional linear system, treating the deformation parameter as an additional coordinate. The supplementary integrability conditions result in a first-order differential equation with respect to the deformation parameter, the flow of which commutes with the flow of the deformed soliton equation. In this way, a deformed soliton hierarchy can be extended to a bigger hierarchy by including the corresponding deformation equations. We prove the extended hierarchy properties for the deformed AKNS hierarchy, and specialize to the cases of deformed NLS, KdV and mKdV hierarchies. Corresponding results are also obtained for the deformed KP hierarchy. A deformation equation determines a kind of Seiberg-Witten map from classical solutions to solutions of the respective 'noncommutative' deformed equation

  19. Peptide domains involved in the localization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein to the nucleolus

    International Nuclear Information System (INIS)

    Rowland, Raymond R.R.; Schneider, Paula; Fang Ying; Wootton, Sarah; Yoo, Dongwan; Benfield, David A.

    2003-01-01

    The nucleocapsid (N) protein of porcine reproductive and respiratory syndrome virus (PRRSV) is the principal component of the viral nucleocapsid and localizes to the nucleolus. Peptide sequence analysis of the N protein of several North American isolates identified two potential nuclear localization signal (NLS) sequences located at amino acids 10-13 and 41-42, which were labeled NLS-1 and NLS-2, respectively. Peptides containing NLS-1 or NLS-2 were sufficient to accumulate enhanced green fluorescent protein (EGFP) in the nucleus. The inactivation of NLS-1 by site-directed mutagenesis or the deletion of the first 14 amino acids did not affect N protein localization to the nucleolus. The substitution of key lysine residues with uncharged amino acids in NLS-2 blocked nuclear/nucleolar localization. Site-directed mutagenesis within NLS-2 identified the sequence, KKNKK, as forming the core localization domain within NLS-2. Using an in vitro pull-down assay, the N protein was able to bind importin-α, importin-β nuclear transport proteins. The localization pattern of N-EGFP fusion peptides represented by a series of deletions from the C- and N-terminal ends of the N protein identified a region covering amino acids 41-72, which contained a nucleolar localization signal (NoLS) sequence. The 41-72 N peptide when fused to EGFP mimicked the nucleolar-cytoplasmic distribution of native N. These results identify a single NLS involved in the transport of N from the cytoplasm and into nucleus. An additional peptide sequence, overlapping NLS-2, is involved in the further targeting of N to the nucleolus

  20. Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss

    International Nuclear Information System (INIS)

    Peleg, Avner; Nguyen, Quan M.; Chung, Yeojin

    2010-01-01

    We study the dynamics of fast soliton collisions in a Kerr nonlinear optical waveguide with weak cubic loss. We obtain analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Our analytic predictions are confirmed by numerical simulations with the perturbed nonlinear Schroedinger (NLS) equation. Furthermore, we show that the deterministic collision-induced dynamics of soliton amplitudes in a broadband waveguide system with N frequency channels is described by a Lotka-Volterra model for N competing species. For a two-channel system we find that stable transmission with equal prescribed amplitudes can be achieved by a proper choice of linear amplifier gain. The predictions of the Lotka-Volterra model are confirmed by numerical solution of a perturbed coupled-NLS model.

  1. On quantum mechanical phase-space wave functions

    DEFF Research Database (Denmark)

    Wlodarz, Joachim J.

    1994-01-01

    An approach to quantum mechanics based on the notion of a phase-space wave function is proposed within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the phase-space wave function is equivalent to the quantum Liouville equation for the Wigner distribution...... function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. Phys. 98, 3103 (1993)] is also discussed....

  2. Simulations of interference effects in gated two-dimensional ballistic electron systems

    DEFF Research Database (Denmark)

    Jauho, Antti-Pekka; Pichugin, K.N.; Sadreev, A.F.

    1999-01-01

    We present detailed simulations addressing recent electronic interference experiments,where a metallic gate is used to locally modify the Fermi wavelength of the charge carriers. Our numerical calculations are based on a solution of the one-particle Schrodinger equation for a realistic model of t...

  3. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The effect of tailoring the graphene sheets used as channel in a graphene nanoribbon field effect transistor (GNRFET) was investigated. The study was performed using self-consistent solution of Poisson's and Schrodinger's equation in combination with non-equilibrium Green's function (NEGF) formalism. Graphene sheet ...

  4. Definition of Virtual Levels.

    Science.gov (United States)

    Shore, Bruce W.

    1979-01-01

    Presents an examination of graphical displays of solutions to time-dependent Schrodinger equation modeling a laser-excited three-level atom. It suggests that an energy level may be regarded as virtual when it is detuned from resonance by more than two Rabi frequencies. (Author/HM)

  5. Ehrenfest's theorem and the validity of the two-step model for strong-field ionization

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    By comparison with the solution of the time-dependent Schrodinger equation we explore the validity of the two-step semiclassical model for strong-field ionization in elliptically polarized laser pulses. We find that the discrepancy between the two-step model and the quantum theory correlates...

  6. Self-focusing instability of two-dimensional solitons and vortices

    DEFF Research Database (Denmark)

    Kuznetsov, E.A.; Juul Rasmussen, J.

    1995-01-01

    The instability of two-dimensional solitons and vortices is demonstrated in the framework of the three-dimensional nonlinear Schrodinger equation (NLSE). The instability can be regarded as the analog of the Kadomtsev-Petviashvili instability [B. B. Kadomtsev and V. I. Petviashvili, Sov. Phys. Dokl...

  7. Switching between bistable states in a discrete nonlinear model with long-range dispersion

    DEFF Research Database (Denmark)

    Johansson, Magnus; Gaididei, Yuri B.; Christiansen, Peter Leth

    1998-01-01

    In the framework of a discrete nonlinear Schrodinger equation with long-range dispersion, we propose a general mechanism for obtaining a controlled switching between bistable localized excitations. We show that the application of a spatially symmetric kick leads to the excitation of an internal...

  8. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  9. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  10. Lam\\'e polynomials, hyperelliptic reductions and Lam\\'e band structure

    OpenAIRE

    Maier, Robert S.

    2003-01-01

    The band structure of the Lam\\'e equation, viewed as a one-dimensional Schr\\"odinger equation with a periodic potential, is studied. At integer values of the degree parameter l, the dispersion relation is reduced to the l=1 dispersion relation, and a previously published l=2 dispersion relation is shown to be partially incorrect. The Hermite-Krichever Ansatz, which expresses Lam\\'e equation solutions in terms of l=1 solutions, is the chief tool. It is based on a projection from a genus-l hype...

  11. Numerical study of the time evolution of a wave packet in quantum mechanics

    International Nuclear Information System (INIS)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  12. Numerical study of the time evolution of a wave packet in quantum mechanics. Estudio numerico de la evolucion de un paquete de ondas en mecanica cuantica

    Energy Technology Data Exchange (ETDEWEB)

    Segura, J.; Fernandez de Cordoba, P.

    1993-01-01

    We solve the Schrodinger equation in order to study the time evolution of a wave packet in different situations of physical interest. This work illustrates, with pedagogical aim, some quantum phenomena which shock our classical conception of the universe: propagation in classically forbidden regions, energy quantization. (Author)

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    We consider an interacting one-dimensional molecular wire attached to two metal electrodes on either side of it. The electrostatic potential profile across the wire-electrode interface has been deduced solving the Schrodinger and Poisson equations self-consistently. Since the Poisson distribution crucially depends on ...

  14. InAlGaAs/AlGaAs quantum wells: line widths, transition energies and segregation

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Hvam, Jørn Märcher; Langbein, Wolfgang

    2000-01-01

    We investigate the optical properties of InAlCaAs/AlGaAs quantum wells pseudomorphically grown on GaAs using molecular beam epitaxy (MBE). The transition energies, measured with photoluminescence (PL), are modelled solving the Schrodinger equation, and taking into account segregation in the group...

  15. Two-beam interaction in saturable media

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Schmidt, Michel R.; Juul Rasmussen, Jens

    1998-01-01

    The dynamics of two coupled soliton solutions of the nonlinear Schrodinger equation with a saturable nonlinearity is investigated It is shown by means of a variational method and by direct numerical calculations that two well-separated solitons can orbit around each other, if their initial velocity...

  16. Strong isotope effects on the charge transfer in slow collisions of He2+ with atomic hydrogen, deuterium, and tritium

    NARCIS (Netherlands)

    Stolterfoht, N.; Cabrera-Trujillo, R.; Oehrn, Y.; Deumens, E.; Hoekstra, R.; Sabin, J. R.

    2007-01-01

    Probabilities and cross sections for charge transfer by He2+ impact on atomic hydrogen (H), deuterium (D), and tritium (T) at low collision energies are calculated. The results are obtained using an ab initio theory, which solves the time-dependent Schrodinger equation. For the H target, excellent

  17. Identification and functional characterization of a novel bipartite nuclear localization sequence in ARID1A

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Nicholas W. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Shoji, Yutaka [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); Conrads, Kelly A.; Stroop, Kevin D. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); Hamilton, Chad A. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Gynecologic Oncology Service, Department of Obstetrics and Gynecology, Walter Reed National Military Medical Center, 8901 Wisconsin Ave, MD, Bethesda, 20889 (United States); Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda 20814, MD (United States); Darcy, Kathleen M. [Women' s Health Integrated Research Center at Inova Health System, Gynecologic Cancer Center of Excellence, Annandale 22003, VA (United States); The John P. Murtha Cancer Center, Walter Reed National Military Medical Center, 8901 Wisconsin Avenue, Bethesda 20889, MD (United States); Maxwell, George L. [Department of Obstetrics and Gynecology, Inova Fairfax Hospital, Falls Church, VA 22042 (United States); Risinger, John I. [Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids 49503, MI (United States); and others

    2016-01-01

    AT-rich interactive domain-containing protein 1A (ARID1A) is a recently identified nuclear tumor suppressor frequently altered in solid tumor malignancies. We have identified a bipartite-like nuclear localization sequence (NLS) that contributes to nuclear import of ARID1A not previously described. We functionally confirm activity using GFP constructs fused with wild-type or mutant NLS sequences. We further show that cyto-nuclear localized, bipartite NLS mutant ARID1A exhibits greater stability than nuclear-localized, wild-type ARID1A. Identification of this undescribed functional NLS within ARID1A contributes vital insights to rationalize the impact of ARID1A missense mutations observed in patient tumors. - Highlights: • We have identified a bipartite nuclear localization sequence (NLS) in ARID1A. • Confirmation of the NLS was performed using GFP constructs. • NLS mutant ARID1A exhibits greater stability than wild-type ARID1A.

  18. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230

    International Nuclear Information System (INIS)

    Kakuk, Annamaria; Friedlaender, Elza; Vereb, Gyoergy; Lisboa, Duarte; Bagossi, Peter; Toth, Gabor; Gergely, Pal; Vereb, Gyoergy

    2008-01-01

    PI4K230, an isoform of phosphatidylinositol 4-kinase, known primarily as a cytoplasmic membrane-bound enzyme, was detected recently also in the nucleolus of several cells. Here we provide mechanistic insight on the targeting function of its putative nuclear localization signal (NLS) sequences using molecular modeling, digitonin-permeabilized HeLa cells and binding to various importins. The synthetic sequence 916 NFNHIHKRIRRVADKYLSG 934 comprising a putative monopartite NLS (NLS1), targeted covalently bound fluorescent BSA to the nucleoplasm via classical importin α/β mechanism employing importins α1 and α3 but not α5. This transport was inhibited by wheat germ agglutinin and GTPγS. The sequence 1414 SKKTNRGSQLHKYYMKRRTL 1433 , a putative bipartite NLS (NLS2) proved ineffective in nuclear targeting if conjugated to fluorescently labeled BSA. Nonetheless, NLS2 or either of its basic clusters directed to the nucleolus soybean trypsin inhibitor that can pass the nuclear pore complex passively; moreover, an expressed 58 kDa fragment of PI4K230 (AA1166-1667) comprising NLS2 was also imported into the nucleus by import factors of reticulocyte lysate or by importin α1/β or α3/β complexes and localized to the nucleolus. We conclude that the putative bipartite NLS itself is a nucleolar targeting signal, and for nuclear import PI4K230 requires a larger sequence around it or, alternatively, the monopartite NLS

  19. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  20. Low-lying spectra in anharmonic three-body oscillators with a strong short-range

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2003-01-01

    Roč. 36, č. 38 (2003), s. 9929-9941 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : three-body Schrodinger equation * limit * large repulsion Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003

  1. Computer Series, 38.

    Science.gov (United States)

    Moore, John W., Ed.

    1983-01-01

    Discusses numerical solution of the one-dimension Schrodinger equation. A PASCAL computer program for the Apple II which performs the calculations is available from the authors. Also discusses quantization and perturbation theory using microcomputers, indicating benefits of using the addition of a perturbation term to harmonic oscillator as an…

  2. A Pedagogical Approach to the Magnus Expansion

    Science.gov (United States)

    Blanes, S.; Casas, F.; Oteo, J. A.; Ros, J.

    2010-01-01

    Time-dependent perturbation theory as a tool to compute approximate solutions of the Schrodinger equation does not preserve unitarity. Here we present, in a simple way, how the "Magnus expansion" (also known as "exponential perturbation theory") provides such unitary approximate solutions. The purpose is to illustrate the importance and…

  3. Computer Series, 99: Bits and Pieces, 39.

    Science.gov (United States)

    Moore, John W., Ed.

    1989-01-01

    Presents five computer programs: (1) Accurate Numerical Solutions of the One-Dimensional Schrodinger Equation; (2) NMR Simulation and Interactive Drill/Interpretation; (3) A Simple Computer Program for the Calculation of 13C-NMR Chemical Shifts; (4) Constants of 1:1 Complexes from NMR or Spectrophotometric Measurements; and (5) Saturation…

  4. Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics

    Science.gov (United States)

    Ercolani, Gianfranco

    2005-01-01

    The finite-difference boundary-value method is a numerical method suited for the solution of the one-dimensional Schrodinger equation encountered in problems of hindered rotation. Further, the application of the method, in combination with experimental results for the evaluation of the rotational energy barrier in ethane is presented.

  5. Current Density and Continuity in Discretized Models

    Science.gov (United States)

    Boykin, Timothy B.; Luisier, Mathieu; Klimeck, Gerhard

    2010-01-01

    Discrete approaches have long been used in numerical modelling of physical systems in both research and teaching. Discrete versions of the Schrodinger equation employing either one or several basis functions per mesh point are often used by senior undergraduates and beginning graduate students in computational physics projects. In studying…

  6. Stationary solutions and self-trapping in discrete quadratic nonlinear systems

    DEFF Research Database (Denmark)

    Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev

    1998-01-01

    We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...... the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system...

  7. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  8. Travelling Solitons in the Damped Driven Nonlinear Schroedinger Equation

    CERN Document Server

    Barashenkov, I V

    2003-01-01

    The well-known effect of the linear damping on the moving nonlinear Schrodinger soliton (even when there is energy supply via the spatially homogeneous driving) is to quench its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity. We show that two or more parametrically driven damped solitons can form a complex travelling with zero momentum at a nonzero constant speed. All travelling complexes we have found so far, turned out to be unstable. Thus, the parametric driving is capable of sustaining the uniform motion of damped solitons, but some additional agent is required to make this motion stable.

  9. Development of kinetics equations from the Boltzmann equation; Etablissement des equations de la cinetique a partir de l'equation de Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Plas, R.

    1962-07-01

    The author reports a study on kinetics equations for a reactor. He uses the conventional form of these equations but by using a dynamic multiplication factor. Thus, constants related to delayed neutrons are not modified by efficiency factors. The author first describes the theoretic kinetic operation of a reactor and develops the associated equations. He reports the development of equations for multiplication factors.

  10. Large-Scale Environment Properties of Narrow-Line Seyfert 1 Galaxies at z < 0.4

    Energy Technology Data Exchange (ETDEWEB)

    Järvelä, Emilia [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Lähteenmäki, A. [Metsähovi Radio Observatory, Aalto University, Espoo (Finland); Department of Electronics and Nanoengineering, Aalto University, Espoo (Finland); Tartu Observatory, Tõravere (Estonia); Lietzen, H., E-mail: emilia.jarvela@aalto.fi [Tartu Observatory, Tõravere (Estonia)

    2017-11-30

    The large-scale environment is believed to affect the evolution and intrinsic properties of galaxies. It offers a new perspective on narrow-line Seyfert 1 galaxies (NLS1) which have not been extensively studied in this context before. We study a large and diverse sample of 960 NLS1 galaxies using a luminosity-density field constructed using Sloan Digital Sky Survey. We investigate how the large-scale environment is connected to the properties of NLS1 galaxies, especially their radio loudness. Furthermore, we compare the large-scale environment properties of NLS1 galaxies with other active galactic nuclei (AGN) classes, for example, other jetted AGN and broad-line Seyfert 1 (BLS1) galaxies, to shed light on their possible relations. In general NLS1 galaxies reside in less dense large-scale environments than any of our comparison samples, thus supporting their young age. The average luminosity-density and distribution to different luminosity-density regions of NLS1 sources is significantly different compared to BLS1 galaxies. This contradicts the simple orientation-based unification of NLS1 and BLS1 galaxies, and weakens the hypothesis that BLS1 galaxies are the parent population of NLS1 galaxies. The large-scale environment density also has an impact on the intrinsic properties of NLS1 galaxies; the radio loudness increases with the increasing luminosity-density. However, our results suggest that the NLS1 population is indeed heterogeneous, and that a considerable fraction of them are misclassified. We support a suggested description that the traditional classification based on the radio loudness should be replaced with the division to jetted and non-jetted sources.

  11. Nonlinear dynamics of a parametrically driven sine-Gordon system

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm

    1993-01-01

    We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...

  12. Strongly nonlinear evolution of low-frequency wave packets in a dispersive plasma

    Science.gov (United States)

    Vasquez, Bernard J.

    1993-01-01

    The evolution of strongly nonlinear, strongly modulated wave packets is investigated in a dispersive plasma using a hybrid numerical code. These wave packets have amplitudes exceeding the strength of the external magnetic field, along which they propagate. Alfven (left helicity) wave packets show strong steepening for p Schrodinger (DNLS) equation.

  13. Alternative Form of the Hydrogenic Wave Functions for an Extended, Uniformly Charged Nucleus.

    Science.gov (United States)

    Ley-Koo, E.; And Others

    1980-01-01

    Presented are forms of harmonic oscillator attraction and Coulomb wave functions which can be explicitly constructed and which lead to numerical results for the energy eigenvalues and eigenfunctions of the atomic system. The Schrodinger equation and its solution and specific cases of muonic atoms illustrating numerical calculations are included.…

  14. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  15. The Jost function and the S-matrix asymptotic expressions for large complex angular momenta in the presence of central and spin-orbital interaction

    International Nuclear Information System (INIS)

    Pivovarchik, V.N.; Poplavskij, I.V.

    1982-01-01

    The asymptotic behaviour of the regular solution, the Yost function and the S-matrix of the Schrodinger equation is estimated by means of WKB quasiclassical method at a fixed physical value of energy (k>0) for lambda→infinity in the domain Re lambda→0 for central and spin-orbital interaction [ru

  16. Nonlocal description of X waves in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole

    2006-01-01

    We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...

  17. Component separation in harmonically trapped boson-fermion mixtures

    DEFF Research Database (Denmark)

    Nygaard, Nicolai; Mølmer, Klaus

    1999-01-01

    We present a numerical study of mixed boson-fermion systems at zero temperature in isotropic and anise tropic harmonic traps. We investigate the phenomenon of component separation as a function of the strength ut the interparticle interaction. While solving a Gross-Pitaevskii mean-field equation ...... for the boson distribution in the trap, we utilize two different methods to extract the density profile of the fermion component; a semiclassical Thomas-Fermi approximation and a quantum-mechanical Slater determinant Schrodinger equation....

  18. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  19. The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein

    Directory of Open Access Journals (Sweden)

    Panté Nelly

    2009-06-01

    Full Text Available Abstract Background Early in infection, the genome of the influenza A virus, consisting of eight complexes of RNA and proteins (termed viral ribonucleoproteins; vRNPs, enters the nucleus of infected cells for replication. Incoming vRNPs are imported into the nucleus of infected cells using at least two nuclear localization sequences on nucleoprotein (NP; NLS1 at the N terminus, and NLS2 in the middle of the protein. Progeny vRNP assembly occurs in the nucleus, and later in infection, these are exported from the nucleus to the cytoplasm. Nuclear-exported vRNPs are different from incoming vRNPs in that they are prevented from re-entering the nucleus. Why nuclear-exported vRNPs do not re-enter the nucleus is unknown. Results To test our hypothesis that the exposure of NLSs on the vRNP regulates the directionality of the nuclear transport of the influenza vRNPs, we immunolabeled the two NLSs of NP (NLS1 and NLS2 and analyzed their surface accessibility in cells infected with the influenza A virus. We found that the NLS1 epitope on NP was exposed throughout the infected cells, but the NLS2 epitope on NP was only exposed in the nucleus of the infected cells. Addition of the nuclear export inhibitor leptomycin B further revealed that NLS1 is no longer exposed in cytoplasmic NP and vRNPs that have already undergone nuclear export. Similar immunolabeling studies in the presence of leptomycin B and with cells transfected with the cDNA of NP revealed that the NLS1 on NP is hidden in nuclear exported-NP. Conclusion NLS1 mediates the nuclear import of newly-synthesized NP and incoming vRNPs. This NLS becomes hidden on nuclear-exported NP and nuclear-exported vRNPs. Thus the selective exposure of the NLS1 constitutes a critical mechanism to regulate the directionality of the nuclear transport of vRNPs during the influenza A viral life cycle.

  20. Soliton–antisoliton interaction in a parametrically driven easy-plane magnetic wire

    Energy Technology Data Exchange (ETDEWEB)

    Urzagasti, D., E-mail: deterlino@yahoo.com [Instituto de Investigaciones Físicas, UMSA, P.O. Box 8635, La Paz (Bolivia, Plurinational State of); Aramayo, A. [Instituto de Investigaciones Físicas, UMSA, P.O. Box 8635, La Paz (Bolivia, Plurinational State of); Laroze, D. [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Max Planck Institute for Polymer Research, 55021 Mainz (Germany)

    2014-07-11

    In the present work we study the soliton–antisoliton interaction in an anisotropic easy-plane magnetic wire forced by a transverse uniform and oscillatory magnetic field. This system is described in the continuous framework by the Landau–Lifshitz–Gilbert equation. We find numerically that the spatio-temporal magnetization field exhibits both annihilative and repulsive soliton–antisoliton interactions. We also describe this system with the aim of the associated Parametrically Driven and Damped Nonlinear Schrödinger amplitude equation and give an approximate analytical solution that roughly describes the repulsive interaction. - Highlights: • We study the interactions of solitons with opposite polarity with the LLG equation. • We found that there exists both annihilative and repulsive interactions. • Similar results we found for the Parametrically Driven and Damped NLS equation. • We obtain an approximate analytical solution for the repulsive interaction.

  1. Association of Neglect-Like Symptoms with Anxiety, Somatization, and Depersonalization in Complex Regional Pain Syndrome.

    Science.gov (United States)

    Michal, Matthias; Adler, Julia; Reiner, Iris; Wermke, Andreas; Ackermann, Tatiana; Schlereth, Tanja; Birklein, Frank

    2017-04-01

    Many patients with complex regional pain syndrome (CRPS) report some foreignness of the affected limb, which is referred to as "neglect-like symptoms" (NLS). Despite similarities of the NLS reports to symptoms of body image disturbances in mental disorders, no study has been conducted to examine such associations. We investigated 50 patients with CRPS and 45 pain control patients (N = 27, chronic limb pain; N = 18, migraine headache). NLS, anxiety, depression, depersonalization, and somatization were assessed using validated questionnaires. Seventy-two percent of the CRPS patients reported at least one NLS vs 29.6% and 33.3% in the two patient control groups. In limb pain controls, NLS correlated with pain intensity. In CRPS patients, NLS correlated with anxiety (rho = 0.658, P  psychological studies. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  2. Application of the Finite Element Method in Atomic and Molecular Physics

    Science.gov (United States)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  3. Variational Perturbation Treatment of the Confined Hydrogen Atom

    Science.gov (United States)

    Montgomery, H. E., Jr.

    2011-01-01

    The Schrodinger equation for the ground state of a hydrogen atom confined at the centre of an impenetrable cavity is treated using variational perturbation theory. Energies calculated from variational perturbation theory are comparable in accuracy to the results from a direct numerical solution. The goal of this exercise is to introduce the…

  4. Doing Physics with Microcomputers.

    Science.gov (United States)

    Bak, Per

    1983-01-01

    Describes how microcomputers can perform very demanding/large-scale physics calculations at speeds not much slower than those of modern, full-size computers. Among the examples provided are a Monte Carlo simulation of the three-dimensional Ising model and a program (for the Apple microcomputer) using the time-independent Schrodinger Equation. (JN)

  5. Reflection and Non-Reflection of Particle Wavepackets

    Science.gov (United States)

    Cox, Timothy; Lekner, John

    2008-01-01

    Exact closed-form solutions of the time-dependent Schrodinger equation are obtained, describing the propagation of wavepackets in the neighbourhood of a potential. Examples given include zero reflection, total reflection and partial reflection of the wavepacket, for the sech[superscript 2]x/a, 1/x[superscript 2] and delta(x) potentials,…

  6. Excitation of helium Rydberg states and doubly excited resonances in strong extreme ultraviolet fields: Full-dimensional quantum dynamics using exponentially tempered Gaussian basis sets

    Czech Academy of Sciences Publication Activity Database

    Kaprálová-Žďánská, Petra Ruth; Šmydke, Jan; Civiš, Svatopluk

    2013-01-01

    Roč. 139, č. 10 (2013), s. 104314 ISSN 0021-9606 R&D Projects: GA ČR GAP205/11/0571; GA AV ČR IAAX00100903 Institutional support: RVO:61388955 Keywords : HARMONIC-GENERATION SPECTRA * DEPENDENT SCHRODINGER-EQUATION * MOLECULAR MULTIPHOTON PROCESSES Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.122, year: 2013

  7. The nuclear import of RNA helicase A is mediated by importin-α3

    International Nuclear Information System (INIS)

    Aratani, Satoko; Oishi, Takayuki; Fujita, Hidetoshi; Nakazawa, Minako; Fujii, Ryouji; Imamoto, Naoko; Yoneda, Yoshihiro; Fukamizu, Akiyoshi; Nakajima, Toshihiro

    2006-01-01

    RNA helicase A (RHA), an ATPase/helicase, regulates the gene expression at various steps including transcriptional activation and RNA processing. RHA is known to shuttle between the nucleus and cytoplasm. We identified the nuclear localization signal (NLS) of RHA and analyzed the nuclear import mechanisms. The NLS of RHA (RHA-NLS) consisting of 19 amino acid residues is highly conserved through species and does not have the consensus classical NLS. In vitro nuclear import assays revealed that the nuclear import of RHA was Ran-dependent and mediated with the classical importin-α/β-dependent pathway. The binding assay indicated that the basic residues in RHA-NLS were used for interaction with importin-α. Furthermore, the nuclear import of RHA-NLS was supported by importin-α1 and preferentially importin-α3. Our results indicate that the nuclear import of RHA is mediated by the importin-α3/importin-β-dependent pathway and suggest that the specificity for importin may regulate the functions of cargo proteins

  8. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  9. The significance of classical structures in quantum theories

    International Nuclear Information System (INIS)

    Lowe, M.J.

    1978-09-01

    The implications for the quantum theory of the presence of non-linear classical solutions of the equations of motion are investigated in various model systems under the headings: (1) Canonical quantisation of the soliton in lambdaphi 4 theory in two dimensions. (2) Bound for soliton masses in two dimensional field theories. (3) The canonical quantisation of a soliton like solution in the non-linear schrodinger equation. (4) The significance of the instanton classical solution in a quantum mechanical system. (U.K.)

  10. A generalization of the simplest equation method and its application to (3+1)-dimensional KP equation and generalized Fisher equation

    International Nuclear Information System (INIS)

    Zhao, Zhonglong; Zhang, Yufeng; Han, Zhong; Rui, Wenjuan

    2014-01-01

    In this paper, the simplest equation method is used to construct exact traveling solutions of the (3+1)-dimensional KP equation and generalized Fisher equation. We summarize the main steps of the simplest equation method. The Bernoulli and Riccati equation are used as simplest equations. This method is straightforward and concise, and it can be applied to other nonlinear partial differential equations

  11. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein

    OpenAIRE

    Zhang, Fang; White, Raymond L.; Neufeld, Kristi L.

    2000-01-01

    Mutation of the adenomatous polyposis coli (APC) gene is an early step in the development of colorectal carcinomas. APC protein is located in both the cytoplasm and the nucleus. The objective of this study was to define the nuclear localization signals (NLSs) in APC protein. APC contains two potential NLSs comprising amino acids 1767–1772 (NLS1APC) and 2048–2053 (NLS2APC). Both APC NLSs are well conserved among human, mouse, rat, and fly. NLS1APC and NLS2APC each w...

  12. Author Details

    African Journals Online (AJOL)

    Adeleke, OJ. Vol 22, No 1-2 (2014) - Articles On a Stable and Consistent Finite Difference Scheme for a Time-Dependent Schrodinger Wave Equation in a Finitely Low Potential Well Abstract PDF. ISSN: 0794-5698. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's ...

  13. Laser-induced blurring of molecular structure information in high harmonic spectroscopy

    DEFF Research Database (Denmark)

    Risoud, Francois; Leveque, Camille; Labeye, Marie

    2017-01-01

    High harmonic spectroscopy gives access to molecular structure with Angstrom resolution. Such information is encoded in the destructive interferences occurring between the harmonic emissions from the different parts of the molecule. By solving the time-dependent Schrodinger equation, either....... These findings have important consequences for molecular imaging and orbital tomography using high harmonic spectroscopy....

  14. Solitary wave dynamics in time-dependent potentials

    International Nuclear Information System (INIS)

    Abou Salem, Walid K.

    2008-01-01

    The long time dynamics of solitary wave solutions of the nonlinear Schroedinger equation in time-dependent external potentials is rigorously studied. To set the stage, the well-posedness of the Cauchy problem for a generalized nonautonomous nonlinear Schroedinger equation with time-dependent nonlinearities and potential is established. Afterward, the dynamics of NLS solitary waves in time-dependent potentials is studied. It is shown that in the space-adiabatic regime where the external potential varies slowly in space compared to the size of the soliton, the dynamics of the center of the soliton is described by Hamilton's equations, plus terms due to radiation damping. Finally, two physical applications are discussed: the first is adiabatic transportation of solitons and the second is the Mathieu instability of trapped solitons due to time-periodic perturbations

  15. Coupled harmonic oscillators and their quantum entanglement

    Science.gov (United States)

    Makarov, Dmitry N.

    2018-04-01

    A system of two coupled quantum harmonic oscillators with the Hamiltonian H ̂=1/2 (1/m1p̂1 2+1/m2p̂2 2+A x12+B x22+C x1x2) can be found in many applications of quantum and nonlinear physics, molecular chemistry, and biophysics. The stationary wave function of such a system is known, but its use for the analysis of quantum entanglement is complicated because of the complexity of computing the Schmidt modes. Moreover, there is no exact analytical solution to the nonstationary Schrodinger equation H ̂Ψ =i ℏ ∂/Ψ ∂ t and Schmidt modes for such a dynamic system. In this paper we find a solution to the nonstationary Schrodinger equation; we also find in an analytical form a solution to the Schmidt mode for both stationary and dynamic problems. On the basis of the Schmidt modes, the quantum entanglement of the system under consideration is analyzed. It is shown that for certain parameters of the system, quantum entanglement can be very large.

  16. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  17. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  18. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  19. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    International Nuclear Information System (INIS)

    Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying; Kirby, Ralph; Lin, Alan

    2013-01-01

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20 NLS mutant gene and examined polysome profile of cells that had been transfected with the S20 NLS gene. As a result, we observed the formation of recombinant 40S carried S20 NLS but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20 NLS in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20 NLS in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20 NLS is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20 NLS . • Cytoplasm-retained S20 NLS is crucial for creating a functional small subunit

  20. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.