WorldWideScience

Sample records for schrodinger equation nls

  1. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  2. Finite element method for time-space-fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhu

    2017-07-01

    Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.

  3. Comparison of the Schrodinger and Salpeter equations

    International Nuclear Information System (INIS)

    Jacobs, S.; Olsson, M.G.

    1985-01-01

    A unified approach to the solution of the Schrodinger and spinless Salpeter equations is presented. Fits to heavy quark bound state energies using various potential models are employed to determine whether the Salpeter equation provides a better description of heavy quark systems than the Schrodinger equation

  4. On the so called rogue waves in nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Y. Charles Li

    2016-04-01

    Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.

  5. Soliton solutions for a quasilinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Duchao Liu

    2013-12-01

    Full Text Available In this article, critical point theory is used to show the existence of nontrivial weak solutions to the quasilinear Schrodinger equation $$ -\\Delta_p u-\\frac{p}{2^{p-1}}u\\Delta_p(u^2=f(x,u $$ in a bounded smooth domain $\\Omega\\subset\\mathbb{R}^{N}$ with Dirichlet boundary conditions.

  6. Semiclassical quantization of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nohl, C.R.

    1976-01-01

    Using the functional integral technique of Dashen, Hasslacher, and Neveu, we perform a semiclassical quantization of the nonlinear Schrodinger equation (NLSE), which reproduces McGuire's exact result for the energy levels of the bound states of the theory. We show that the stability angle formalism leads to the one-loop normal ordering and self-energy renormalization expected from perturbation theory, and demonstrate that taking into account center-of-mass motion gives the correct nonrelativistic energy--momentum relation. We interpret the classical solution in the context of the quantum theory, relating it to the matrix element of the field operator between adjacent bound states in the limit of large quantum numbers. Finally, we quantize the NLSE as a theory of N component fermion fields and show that the semiclassical method yields the exact energy levels and correct degeneracies

  7. Fractional Schrodinger equations with new conditions

    Directory of Open Access Journals (Sweden)

    Abderrazek Benhassine

    2018-01-01

    Full Text Available In this article, we study the nonlinear fractional Schrodinger equation $$\\displaylines{ (-\\Delta^{\\alpha}u+ V(xu= f(x,u\\cr u\\in H^{\\alpha}(\\mathbb{R}^{n},\\mathbb{R}, }$$ where $(-\\Delta^{\\alpha}(\\alpha \\in (0, 1$ stands for the fractional Laplacian of order $\\alpha$, $x\\in \\mathbb{R}^{n}$, $V\\in C(\\mathbb{R}^{n},\\mathbb{R}$ may change sign and f is only locally defined near the origin with respect to u. Under some new assumptions on V and f, we show that the above system has infinitely many solutions near the origin. Some examples are also given to illustrate our main theoretical result.

  8. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  9. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  10. Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo

    2007-01-01

    A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.

  11. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  12. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  13. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  14. Multibreather solitons in the diffraction managed NLS equation

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis

    2006-01-01

    We study analytically and numerically localized breather solutions in the averaged discrete nonlinear Schroedinger equation (NLS) with diffraction management, a system that models coupled waveguide arrays with periodic diffraction management geometries. Localized breathers can be characterized as constrained critical points of the Hamiltonian of the averaged diffraction managed NLS. In addition to local extrema, we find numerically more general solutions that are saddle points of the constrained Hamiltonian. An interesting class of saddle points are 'multi-bump' solutions that are close to superpositions of translates of simpler breathers. In the case of zero residual diffraction and small diffraction management, the existence of multibumps can be shown rigorously by a continuation argument

  15. Nonlinear damped Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Tarek Saanouni

    2015-04-01

    Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.

  16. Massively Parallel Algorithms for Solution of Schrodinger Equation

    Science.gov (United States)

    Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad

    1994-01-01

    In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.

  17. On the solution of the nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Zayed, E.M.E.; Zedan, Hassan A.

    2003-01-01

    In this paper we study the nonlinear Schrodinger equation with respect to the unknown function S(x,t). New dimensional reduction and exact solution for a nonlinear Schrodinger equation are presented and a complete group classification is given with respect to the function S(x,t). Moreover, specializing the potential function S(x,t), new classes of invariant solution and group classification are obtained in the cases of physical interest

  18. Darboux transformation for the NLS equation

    International Nuclear Information System (INIS)

    Aktosun, Tuncay; Mee, Cornelis van der

    2010-01-01

    We analyze a certain class of integral equations associated with Marchenko equations and Gel'fand-Levitan equations. Such integral equations arise through a Fourier transformation on various ordinary differential equations involving a spectral parameter. When the integral operator is perturbed by a finite-rank perturbation, we explicitly evaluate the change in the solution in terms of the unperturbed quantities and the finite-rank perturbation. We show that this result provides a fundamental approach to derive Darboux transformations for various systems of ordinary differential operators. We illustrate our theory by providing the explicit Darboux transformation for the Zakharov-Shabat system and show how the potential and wave function change when a simple discrete eigenvalue is added to the spectrum, and thus we also provide a one-parameter family of Darboux transformations for the nonlinear Schroedinger equation.

  19. Exact Solution of a Generalized Nonlinear Schrodinger Equation Dimer

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Maniadis, P.; Tsironis, G.P.

    1998-01-01

    We present exact solutions for a nonlinear dimer system defined throught a discrete nonlinear Schrodinger equation that contains also an integrable Ablowitz-Ladik term. The solutions are obtained throught a transformation that maps the dimer into a double Sine-Gordon like ordinary nonlinear...... differential equation....

  20. Multiple solutions to some singular nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Monica Lazzo

    2001-01-01

    Full Text Available We consider the equation $$ - h^2 Delta u + V_varepsilon(x u = |u|^{p-2} u $$ which arises in the study of standing waves of a nonlinear Schrodinger equation. We allow the potential $V_varepsilon$ to be unbounded below and prove existence and multiplicity results for positive solutions.

  1. Dynamical symmetries of semi-linear Schrodinger and diffusion equations

    International Nuclear Information System (INIS)

    Stoimenov, Stoimen; Henkel, Malte

    2005-01-01

    Conditional and Lie symmetries of semi-linear 1D Schrodinger and diffusion equations are studied if the mass (or the diffusion constant) is considered as an additional variable. In this way, dynamical symmetries of semi-linear Schrodinger equations become related to the parabolic and almost-parabolic subalgebras of a three-dimensional conformal Lie algebra (conf 3 ) C . We consider non-hermitian representations and also include a dimensionful coupling constant of the non-linearity. The corresponding representations of the parabolic and almost-parabolic subalgebras of (conf 3 ) C are classified and the complete list of conditionally invariant semi-linear Schrodinger equations is obtained. Possible applications to the dynamical scaling behaviour of phase-ordering kinetics are discussed

  2. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  3. Localized solutions for a nonlocal discrete NLS equation

    Energy Technology Data Exchange (ETDEWEB)

    Ben, Roberto I. [Instituto de Desarrollo Humano, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, 1613 Los Polvorines (Argentina); Cisneros Ake, Luís [Department of Mathematics, ESFM, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos Edificio 9, 07738 México D.F. (Mexico); Minzoni, A.A. [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico); Panayotaros, Panayotis, E-mail: panos@mym.iimas.unam.mx [Depto. Matemáticas y Mecánica, I.I.M.A.S.-U.N.A.M., Apdo. Postal 20-726, 01000 México D.F. (Mexico)

    2015-09-04

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces.

  4. Localized solutions for a nonlocal discrete NLS equation

    International Nuclear Information System (INIS)

    Ben, Roberto I.; Cisneros Ake, Luís; Minzoni, A.A.; Panayotaros, Panayotis

    2015-01-01

    We study spatially localized time-periodic solutions of breather type for a cubic discrete NLS equation with a nonlocal nonlinearity that models light propagation in a liquid crystal waveguide array. We show the existence of breather solutions in the limit where both linear and nonlinear intersite couplings vanish, and in the limit where the linear coupling vanishes with arbitrary nonlinear intersite coupling. Breathers of this nonlocal regime exhibit some interesting features that depart from what is seen in the NLS breathers with power nonlinearity. One property we see theoretically is the presence of higher amplitude at interfaces between sites with zero and nonzero amplitude in the vanishing linear coupling limit. A numerical study also suggests the presence of internal modes of orbitally stable localized modes. - Highlights: • Show existence of spatially localized solutions in nonlocal discrete NLS model. • Study spatial properties of localized solutions for arbitrary nonlinear nonlocal coupling. • Present numerical evidence that nonlocality leads to internal modes around stable breathers. • Present theoretical and numerical evidence for amplitude maxima at interfaces

  5. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  6. Orbital stability of Gausson solutions to logarithmic Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Alex H. Ardila

    2016-12-01

    Full Text Available In this article we prove of the orbital stability of the ground state for logarithmic Schrodinger equation in any dimension and under nonradial perturbations. This general stability result was announced by Cazenave and Lions [9, Remark II.3], but no details were given there.

  7. A model for the stochastic origins of Schrodinger's equation

    OpenAIRE

    Davidson, Mark P.

    2001-01-01

    A model for the motion of a charged particle in the vacuum is presented which, although purely classical in concept, yields Schrodinger's equation as a solution. It suggests that the origins of the peculiar and nonclassical features of quantum mechanics are actually inherent in a statistical description of the radiative reactive force.

  8. Reduction of the state vector by a nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Pearle, P.

    1976-01-01

    It is hypothesized that the state vector describes the physical state of a single system in nature. Then it is necessary that the state vector of a macroscopic apparatus not assume the form of a superposition of macroscopically distinguishable state vectors. To prevent this, it is suggested that a nonlinear term be added to the Schrodinger equation, which rapidly drives the amplitude of one or another of the state vectors in such a superposition to one, and the rest to zero. It is proposed that it is the phase angles of the amplitudes immediately after a measurement which determine which amplitude is driven to one. A diffusion equation is arrived at to describe the reduction of an ensemble of state vectors corresponding to an ensemble of macroscopically identically prepared experiments. Then a nonlinear term to add to the Schrodinger equation is presented, and it is shown that this leads to the diffusion equation in a weak-coupling approximation

  9. Scattering of quantized solitary waves in the cubic Schrodinger equation

    International Nuclear Information System (INIS)

    Dolan, L.

    1976-01-01

    The quantum mechanics for N particles interacting via a delta-function potential in one space dimension and one time dimension is known. The second-quantized description of this system has for its Euler-Lagrange equations of motion the cubic Schrodinger equation. This nonlinear differential equation supports solitary wave solutions. A quantization of these solitons reproduces the weak-coupling limit to the known quantum mechanics. The phase shift for two-body scattering and the energy of the N-body bound state is derived in this approximation. The nonlinear Schrodinger equation is contrasted with the sine-Gordon theory in respect to the ideas which the classical solutions play in the description of the quantum states

  10. Self-similar solutions of the modified nonlinear schrodinger equation

    International Nuclear Information System (INIS)

    Kitaev, A.V.

    1986-01-01

    This paper considers a 2 x 2 matrix linear ordinary differential equation with large parameter t and irregular singular point of fourth order at infinity. The leading order of the monodromy data of this equation is calculated in terms of its coefficients. Isomonodromic deformations of the equation are self-similar solutions of the modified nonlinear Schrodinger equation, and therefore inversion of the expressions obtained for the monodromy data gives the leading term in the time-asymptotic behavior of the self-similar solution. The application of these results to the type IV Painleve equation is considered in detail

  11. Existence of solutions to quasilinear Schrodinger equations with indefinite potential

    Directory of Open Access Journals (Sweden)

    Zupei Shen

    2015-04-01

    Full Text Available In this article, we study the existence and multiplicity of solutions of the quasilinear Schrodinger equation $$ -u''+V(xu-(|u| ^2''u=f(u $$ on $\\mathbb{R}$, where the potential $V$ allows sign changing and the nonlinearity satisfies conditions weaker than the classical Ambrosetti-Rabinowitz condition. By a local linking theorem and the fountain theorem, we obtain the existence and multiplicity of solutions for the equation.

  12. Null controllability of a cascade system of Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Marcos Lopez-Garcia

    2016-03-01

    Full Text Available This article presents a control problem for a cascade system of two linear N-dimensional Schrodinger equations. We address the problem of null controllability by means of a control supported in a region not satisfying the classical geometrical control condition. The proof is based on the application of a Carleman estimate with degenerate weights to each one of the equations and a careful analysis of the system in order to prove null controllability with only one control force.

  13. Random-walk simulation of the Schrodinger equation: H+3

    International Nuclear Information System (INIS)

    Anderson, J.B.

    1975-01-01

    A simple random-walk method for obtaining ab initio solutions of the Schrodinger equation is examined in its application to the case of the molecular ion H + 3 in the equilateral triangle configuration with side length R=1.66 bohr. The method, which is based on the similarity of the Schrodinger equation and the diffusion equation, involves the random movement of imaginary particles (psips) in electron configuration space subject to a variable chance of multiplication or disappearance. The computation requirements for high accuracy in determining energies of H + 3 are greater than those of existing LCAO--MO--SCF--CI methods. For more complex molecular systems the method may be competitive. (auth)

  14. Universality in an information-theoretic motivated nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R; Tabia, G

    2007-01-01

    Using perturbative methods, we analyse a nonlinear generalization of Schrodinger's equation that had previously been obtained through information-theoretic arguments. We obtain analytical expressions for the leading correction, in terms of the nonlinearity scale, to the energy eigenvalues of the linear Schrodinger equation in the presence of an external potential and observe some generic features. In one space dimension these are (i) for nodeless ground states, the energy shifts are subleading in the nonlinearity parameter compared to the shifts for the excited states; (ii) the shifts for the excited states are due predominantly to contribution from the nodes of the unperturbed wavefunctions, and (iii) the energy shifts for excited states are positive for small values of a regulating parameter and negative at large values, vanishing at a universal critical value that is not manifest in the equation. Some of these features hold true for higher dimensional problems. We also study two exactly solved nonlinear Schrodinger equations so as to contrast our observations. Finally, we comment on the possible significance of our results if the nonlinearity is physically realized

  15. Solutions to nonlinear Schrodinger equations for special initial data

    Directory of Open Access Journals (Sweden)

    Takeshi Wada

    2015-11-01

    Full Text Available This article concerns the solvability of the nonlinear Schrodinger equation with gauge invariant power nonlinear term in one space dimension. The well-posedness of this equation is known only for $H^s$ with $s\\ge 0$. Under some assumptions on the nonlinearity, this paper shows that this equation is uniquely solvable for special but typical initial data, namely the linear combinations of $\\delta(x$ and p.v. (1/x, which belong to $H^{-1/2-0}$. The proof in this article allows $L^2$-perturbations on the initial data.

  16. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  17. On the Schrodinger equation in fluid-dynamical form

    International Nuclear Information System (INIS)

    Wong, C.Y.

    1976-01-01

    The fluid-dynamical form of the Schrodinger equations is studied to examine the nature of the quantum forces arising from the quantum potential of Madelung and Bohm. It is found that they are in the form of a stress tensor having diagonal and nondiagonal components. Future studies of these quantum stress tensors in a many-body system may shed some light on the mechanism of spontaneous symmetry breaking and the generation of vorticity in many nuclear systems

  18. Existence and concentration of semiclassical states for nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Shaowei Chen

    2012-05-01

    Full Text Available In this article, we study the semilinear Schrodinger equation $$ -epsilon^2Delta u+ u+ V(xu=f(u,quad uin H^1(mathbb{R}^N, $$ where $Ngeq 2$ and $epsilon>0$ is a small parameter. The function $V$ is bounded in $mathbb{R}^N$, $inf_{mathbb{R}^N}(1+V(x>0$ and it has a possibly degenerate isolated critical point. Under some conditions on f, we prove that as $epsilono 0$, this equation has a solution which concentrates at the critical point of V.

  19. Exact solutions of a nonpolynomially nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Parwani, R.; Tan, H.S.

    2007-01-01

    A nonlinear generalisation of Schrodinger's equation had previously been obtained using information-theoretic arguments. The nonlinearities in that equation were of a nonpolynomial form, equivalent to the occurrence of higher-derivative nonlinear terms at all orders. Here we construct some exact solutions to that equation in 1+1 dimensions. On the half-line, the solutions resemble (exponentially damped) Bloch waves even though no external periodic potential is included. The solutions are nonperturbative as they do not reduce to solutions of the linear theory in the limit that the nonlinearity parameter vanishes. An intriguing feature of the solutions is their infinite degeneracy: for a given energy, there exists a very large arbitrariness in the normalisable wavefunctions. We also consider solutions to a q-deformed version of the nonlinear equation and discuss a natural discretisation implied by the nonpolynomiality. Finally, we contrast the properties of our solutions with other solutions of nonlinear Schrodinger equations in the literature and suggest some possible applications of our results in the domains of low-energy and high-energy physics

  20. Stokes phenomena and monodromy deformation problem for nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Chowdury, A.R.; Naskar, M.

    1986-01-01

    Following Flaschka and Newell, the inverse problem for Painleve IV is formulated with the help of similarity variables. The Painleve IV arises as the eliminant of the two second-order ordinary differential equations originating from the nonlinear Schrodinger equation. Asymptotic expansions are obtained near the singularities at zero and infinity of the complex eigenvalue plane. The corresponding analysis then displays the Stokes phenomena. The monodromy matrices connecting the solution Y /sub j/ in the sector S /sub j/ to that in S /sub j+1/ are fixed in structure by the imposition of certain conditions. It is then shown that a deformation keeping the monodromy data fixed leads to the nonlinear Schrodinger equation. While Flaschka and Newell did not make any absolute determination of the Stokes parameters, the present approach yields the values of the Stokes parameters in an explicit way, which in turn can determine the matrix connecting the solutions near zero and infinity. Finally, it is shown that the integral equation originating from the analyticity and asymptotic nature of the problem leads to the similarity solution previously determined by Boiti and Pampinelli

  1. Existence of infinitely many radial solutions for quasilinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Gui Bao

    2014-10-01

    Full Text Available In this article we prove the existence of radial solutions with arbitrarily many sign changes for quasilinear Schrodinger equation $$ -\\sum_{i,j=1}^{N}\\partial_j(a_{ij}(u\\partial_iu +\\frac{1}{2}\\sum_{i,j=1}^{N}a'_{ij}(u\\partial_iu\\partial_ju+V(xu =|u|^{p-1}u,~x\\in\\mathbb{R}^N, $$ where $N\\geq3$, $p\\in(1,\\frac{3N+2}{N-2}$. The proof is accomplished by using minimization under a constraint.

  2. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  3. Stochastic solutions to the Schrodinger equation for fermions

    International Nuclear Information System (INIS)

    Arnow, D.M.

    1981-01-01

    An exact stochastic method has been developed for generating the antisymmetric eigensolution of lowest index and its associated eigenvalue for the Schrodinger wave equation in 3N dimensions. The method is called the Green's function Monte Carlo method for fermions (FGFMC) because it is based on a Monte Carlo solution to the integral form of the Schrodinger equation (using Green's function) and because it is the fermion class of particles in physics which require antisymmetric solutions. The solution consists of two sets of 3N-dimensional points, [R/sub j/ + ] and [R/sub j/ - ], distributed by density functions psi + and psi - , whose difference, psi + -psi - , is proportional to the eigensolution, psi/sub F/. The FGFMC method is successfully applied to a one dimensional problem and a nine dimensional problem, the results of which are presented here. These results demonstrate that this method can be successfully applied to small physical problems on medium-scale computing machines. The key to this success was the transformation of the problem from exponential to linear cost as a function of accuracy. The strong dependence on dimensionality, however, currently results in an exponential cost as a function of problem size, and this, until overcome, imposes a severe barrier to calculations on large systems

  4. Ground state solutions for asymptotically periodic Schrodinger equations with critical growth

    Directory of Open Access Journals (Sweden)

    Hui Zhang

    2013-10-01

    Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.

  5. Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1989-08-01

    Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt

  6. Adiabatic invariants and asymptotic behavior of Lyapunov exponents of the Schrodinger equation

    International Nuclear Information System (INIS)

    Delyon, F.; Foulon, P.

    1986-01-01

    We give an upper bound for the high-energy behavior of the Lyapunov exponent of the one-dimensional Schrodinger equation. We relate this behavior to the diffrentiability properties of the potential. As an application, this result provides an upper bound for the asymptotic length of the gaps of the Schrodinger equation

  7. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  8. A conservative local discontinuous Galerkin method for the solution of nonlinear Schr(o)dinger equation in two dimensions

    Institute of Scientific and Technical Information of China (English)

    ZHANG RongPei; YU XiJun; LI MingJun; LI XiangGui

    2017-01-01

    In this study,we present a conservative local discontinuous Galerkin (LDG) method for numerically solving the two-dimensional nonlinear Schr(o)dinger (NLS) equation.The NLS equation is rewritten as a firstorder system and then we construct the LDG formulation with appropriate numerical flux.The mass and energy conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes such as the central,alternative and upwind-based flux.We will propose two kinds of time discretization methods for the semi-discrete formulation.One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy conservation.The other one is Krylov implicit integration factor (ⅡF) method which demands much less computational effort.Various numerical experiments are presented to demonstrate the conservation law of mass and energy,the optimal rates of convergence,and the blow-up phenomenon.

  9. Existence of high-energy solutions for supercritical fractional Schrodinger equations in R^N

    Directory of Open Access Journals (Sweden)

    Lu Gan

    2016-12-01

    Full Text Available In this article, we study supercritical fractional Schr\\"odinger equations. Applying the finite-dimensional reduction method and the penalization method, we obtain the high-energy solutions for this equation.

  10. Deformation from symmetry for Schrodinger equations of higher order on unbounded domains

    Directory of Open Access Journals (Sweden)

    Addolorata Salvatore

    2003-06-01

    Full Text Available By means of a perturbation method recently introduced by Bolle, we discuss the existence of infinitely many solutions for a class of perturbed symmetric higher order Schrodinger equations with non-homogeneous boundary data on unbounded domains.

  11. A Large Class of Exact Solutions to the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Karaoglu, Bekir

    2007-01-01

    A remarkable property of a large class of functions is exploited to generate exact solutions to the one-dimensional Schrodinger equation. The method is simple and easy to implement. (Contains 1 table and 1 figure.)

  12. A solution of the Schrodinger equation with two-body correlations included

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1984-01-01

    A procedure for introducing the two-body correlations in the solution of the Schrodinger equation is described. The N-body Schrodinger equation for nucleons subject to two-(or many)-body N-N interaction has never been solved with accuracy except for few-body systems. Indeed it is difficult to take the two-body correlations generated by the interaction into account in the wave function

  13. Exact solitary wave solution for higher order nonlinear Schrodinger equation using He's variational iteration method

    Science.gov (United States)

    Rani, Monika; Bhatti, Harbax S.; Singh, Vikramjeet

    2017-11-01

    In optical communication, the behavior of the ultrashort pulses of optical solitons can be described through nonlinear Schrodinger equation. This partial differential equation is widely used to contemplate a number of physically important phenomena, including optical shock waves, laser and plasma physics, quantum mechanics, elastic media, etc. The exact analytical solution of (1+n)-dimensional higher order nonlinear Schrodinger equation by He's variational iteration method has been presented. Our proposed solutions are very helpful in studying the solitary wave phenomena and ensure rapid convergent series and avoid round off errors. Different examples with graphical representations have been given to justify the capability of the method.

  14. Equal-Time and Equal-Space Poisson Brackets of the N -Component Coupled NLS Equation

    International Nuclear Information System (INIS)

    Zhou Ru-Guang; Li Pei-Yao; Gao Yuan

    2017-01-01

    Two Poisson brackets for the N-component coupled nonlinear Schrödinger (NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation. (paper)

  15. Collective spin by linearization of the Schrodinger equation for nuclear collective motion

    International Nuclear Information System (INIS)

    Greiner, M.; Scheid, W.; Herrmann, R.

    1988-01-01

    The free Schrodinger equation for multipole degrees of freedom is linearized so that energy and momentum operators appear only in first order. As an example, the authors demonstrate the linearization procedure for quadrupole degrees of freedom. The wave function solving this equation carries a spin. The authors derive the operator of the collective spin and its eigen values depending on multipolarity

  16. Stabilization of solutions to higher-order nonlinear Schrodinger equation with localized damping

    Directory of Open Access Journals (Sweden)

    Eleni Bisognin

    2007-01-01

    Full Text Available We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.

  17. A study on linear and nonlinear Schrodinger equations by the variational iteration method

    International Nuclear Information System (INIS)

    Wazwaz, Abdul-Majid

    2008-01-01

    In this work, we introduce a framework to obtain exact solutions to linear and nonlinear Schrodinger equations. The He's variational iteration method (VIM) is used for analytic treatment of these equations. Numerical examples are tested to show the pertinent features of this method

  18. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  19. Analytic smoothing effect for the cubic hyperbolic Schrodinger equation in two space dimensions

    Directory of Open Access Journals (Sweden)

    Gaku Hoshino

    2016-01-01

    Full Text Available We study the Cauchy problem for the cubic hyperbolic Schrodinger equation in two space dimensions. We prove existence of analytic global solutions for sufficiently small and exponential decaying data. The method of proof depends on the generalized Leibniz rule for the generator of pseudo-conformal transform acting on pseudo-conformally invariant nonlinearity.

  20. Global well-posedness for nonlinear Schrodinger equations with energy-critical damping

    Directory of Open Access Journals (Sweden)

    Binhua Feng

    2015-01-01

    Full Text Available We consider the Cauchy problem for the nonlinear Schrodinger equations with energy-critical damping. We prove the existence of global in-time solutions for general initial data in the energy space. Our results extend some results from [1,2].

  1. On a quantum version of conservation laws for derivative nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Sen, S.; Chowdhury, A.R.

    1988-01-01

    The authors derived the quantum mechanical versions of infinite number of conservation laws associated with Derivative Nonlinear Schrodinger equation with the help of a methodology used in string theory. The renormalised version of the conserved quantities are obtained with explicit forms of the counter terms

  2. Solution of the Schrodinger Equation for One-Dimensional Anharmonic Potentials: An Undergraduate Computational Experiment

    Science.gov (United States)

    Beddard, Godfrey S.

    2011-01-01

    A method of solving the Schrodinger equation using a basis set expansion is described and used to calculate energy levels and wavefunctions of the hindered rotation of ethane and the ring puckering of cyclopentene. The calculations were performed using a computer algebra package and the calculations are straightforward enough for undergraduates to…

  3. On existence of soliton solutions of arbitrary-order system of nonlinear Schrodinger equations

    International Nuclear Information System (INIS)

    Zhestkov, S.V.

    2003-01-01

    The soliton solutions are constructed for the system of arbitrary-order coupled nonlinear Schrodinger equations . The necessary and sufficient conditions of existence of these solutions are obtained. It is shown that the maximum number of solitons in nondegenerate case is 4L, where L is order of the system. (author)

  4. Kmonodium, a Program for the Numerical Solution of the One-Dimensional Schrodinger Equation

    Science.gov (United States)

    Angeli, Celestino; Borini, Stefano; Cimiraglia, Renzo

    2005-01-01

    A very simple strategy for the solution of the Schrodinger equation of a particle moving in one dimension subjected to a generic potential is presented. This strategy is implemented in a computer program called Kmonodium, which is free and distributed under the General Public License (GPL).

  5. Exact solutions of a Schrodinger equation based on the Lambert function

    International Nuclear Information System (INIS)

    Williams, Brian Wesley

    2005-01-01

    An exactly solvable Schrodinger equation of the confluent Natanzon class is derived using the differential properties of the Lambert W function. This potential involves two constant parameters and is defined along the entire real line. Specific spatial forms demonstrating wells and deformed positive barriers are presented

  6. Polynomially decaying transmission for the nonlinear schrodinger equation in a random medium

    International Nuclear Information System (INIS)

    Devillard, P.; Sovillard, B.

    1986-01-01

    This is the first study of one the transmission problems associate to the nonlinear Schrodinger equation with a random potential. We show that for almost every realization of the medium the rate of transmission vanishes when increasing the size of the medium; however, whereas it decays exponentially in the linear regime, it decays polynomially in the nonlinear one

  7. Solution of the Schrodinger Equation for a Diatomic Oscillator Using Linear Algebra: An Undergraduate Computational Experiment

    Science.gov (United States)

    Gasyna, Zbigniew L.

    2008-01-01

    Computational experiment is proposed in which a linear algebra method is applied to the solution of the Schrodinger equation for a diatomic oscillator. Calculations of the vibration-rotation spectrum for the HCl molecule are presented and the results show excellent agreement with experimental data. (Contains 1 table and 1 figure.)

  8. Schrodinger equation in two dimensions solution through numerical methods and its graphic representation

    International Nuclear Information System (INIS)

    Faleiro Usanos, E.; Salgado Barea, J.J.

    1995-01-01

    We describe a simple method to solve the time-dependent Schrodinger equation in two dimensions. We apply it to solve three classical problems in quantum physics: a cylindrical obstacle, a finite barrier and a double-slit screen. We show our results through bidimensional diagrams representing the probability density. (Author) 11 refs

  9. Beam stabilization in the two-dimensional nonlinear Schrodinger equation with an attractive potential by beam splitting and radiation

    DEFF Research Database (Denmark)

    leMesurier, B.J.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2004-01-01

    The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrodinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrodinger equation in the critical dimension 2...... losses, and known stable periodic behavior of certain solutions in the presence of attractive potentials....

  10. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2014-12-01

    Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

  11. Finite difference approximation of control via the potential in a 1-D Schrodinger equation

    Directory of Open Access Journals (Sweden)

    K. Kime

    2000-04-01

    Full Text Available We consider the problem of steering given initial data to given terminal data via a time-dependent potential, the control, in a 1-D Schrodinger equation. We determine a condition for existence of a transferring potential within our approximation. Using Maple, we give equations for the control and also examples in which the potential is restricted to be centralized and to be a step potential.

  12. Weak and Strong Order of Convergence of a Semidiscrete Scheme for the Stochastic Nonlinear Schrodinger Equation

    International Nuclear Information System (INIS)

    Bouard, Anne de; Debussche, Arnaud

    2006-01-01

    In this article we analyze the error of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation with power nonlinearity. We consider supercritical or subcritical nonlinearity and the equation can be either focusing or defocusing. Allowing sufficient spatial regularity we prove that the numerical scheme has strong order 1/2 in general and order 1 if the noise is additive. Furthermore, we also prove that the weak order is always 1

  13. A Solution of Time Dependent Schrodinger Equation by Quantum Walk

    International Nuclear Information System (INIS)

    Sekino, Hideo; Kawahata, Masayuki; Hamada, Shinji

    2012-01-01

    Time Dependent Schroedinger Equation (TDSE) with an initial Gaussian distribution, is solved by a discrete time/space Quantum Walk (QW) representing consecutive operations corresponding to a dot product of Pauli matrix and momentum operators. We call it as Schroedinger Walk (SW). Though an Hadamard Walk (HW) provides same dynamics of the probability distribution for delta-function-like initial distributions as that of the SW with a delta-function-like initial distribution, the former with a Gaussian initial distribution leads to a solution for advection of the probability distribution; the initial distribution splits into two distinctive distributions moving in opposite directions. Both mechanisms are analysed by investigating the evolution of the both amplitude components. Decoherence of the oscillating amplitudes in central region is found to be responsible for the splitting of the probability distribution in the HW.

  14. Bright solitons in coupled defocusing NLS equation supported by coupling: Application to Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Adhikari, Sadhan K.

    2005-01-01

    We demonstrate the formation of bright solitons in coupled self-defocusing nonlinear Schroedinger (NLS) equation supported by attractive coupling. As an application we use a time-dependent dynamical mean-field model to study the formation of stable bright solitons in two-component repulsive Bose-Einstein condensates (BECs) supported by interspecies attraction in a quasi one-dimensional geometry. When all interactions are repulsive, there cannot be bright solitons. However, bright solitons can be formed in two-component repulsive BECs for a sufficiently attractive interspecies interaction, which induces an attractive effective interaction among bosons of same type

  15. Numerical computation of soliton dynamics for NLS equations in a driving potential

    Directory of Open Access Journals (Sweden)

    Marco Caliari

    2010-06-01

    Full Text Available We provide numerical computations for the soliton dynamics of the nonlinear Schrodinger equation with an external potential. After computing the ground state solution r of a related elliptic equation we show that, in the semi-classical regime, the center of mass of the solution with initial datum built upon r is driven by the solution to $ddot x=- abla V(x$. Finally, we provide examples and analyze the numerical errors in the two dimensional case when V is a harmonic potential.

  16. A discrete homotopy perturbation method for non-linear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    H. A. Wahab

    2015-12-01

    Full Text Available A general analysis is made by homotopy perturbation method while taking the advantages of the initial guess, appearance of the embedding parameter, different choices of the linear operator to the approximated solution to the non-linear Schrodinger equation. We are not dependent upon the Adomian polynomials and find the linear forms of the components without these calculations. The discretised forms of the nonlinear Schrodinger equation allow us whether to apply any numerical technique on the discritisation forms or proceed for perturbation solution of the problem. The discretised forms obtained by constructed homotopy provide the linear parts of the components of the solution series and hence a new discretised form is obtained. The general discretised form for the NLSE allows us to choose any initial guess and the solution in the closed form.

  17. Nonlocal and nonlinear dispersion in a nonlinear Schrodinger-type equation: exotic solitons and short-wavelength instabilities

    DEFF Research Database (Denmark)

    Oster, Michael; Gaididei, Yuri B.; Johansson, Magnus

    2004-01-01

    We study the continuum limit of a nonlinear Schrodinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose-Einstein condensates. The resulting continuum nonlinear Schrodinger-type equation includes both nonlocal and nonlinear...

  18. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  19. Convex Hypersurfaces and $L^p$ Estimates for Schr\\"odinger Equations

    OpenAIRE

    Zheng, Quan; Yao, Xiaohua; Fan, Da

    2004-01-01

    This paper is concerned with Schr\\"odinger equations whose principal operators are homogeneous elliptic. When the corresponding level hypersurface is convex, we show the $L^p$-$L^q$ estimate of solution operator in free case. This estimate, combining with the results of fractionally integrated groups, allows us to further obtain the $L^p$ estimate of solutions for the initial data belonging to a dense subset of $L^p$ in the case of integrable potentials.

  20. Hs solutions for nonlinear Schrodinger equations with potentials superquadratic at infinity

    International Nuclear Information System (INIS)

    Zhang Guoping; Yajima, Kenji; Liu Fengshan

    2006-01-01

    In this Letter we study the initial value problem for the nonlinear Schrodinger equation with the potential V superquadratic at infinity. With the local smoothing property and Strichartz inequality obtained by the authors, we prove the existence and the uniqueness of the solution for H s -valued initial data and fractional s by combining the L 2 boundedness theory of pseudo differential operators and the fractional derivatives estimate

  1. Infinitely many large energy solutions of superlinear Schrodinger-Maxwell equations

    Directory of Open Access Journals (Sweden)

    Lin Li

    2012-12-01

    Full Text Available In this article we study the existence of infinitely many large energy solutions for the superlinear Schrodinger-Maxwell equations $$displaylines{ -Delta u+V(xu+ phi u=f(x,u quad hbox{in }mathbb{R}^3,cr -Delta phi=u^2, quad hbox{in }mathbb{R}^3, }$$ via the Fountain Theorem in critical point theory. In particular, we do not use the classical Ambrosetti-Rabinowitz condition.

  2. Supersymmetric approach for Killingbeck radial potential plus noncentral potential in Schrodinger equation

    International Nuclear Information System (INIS)

    Cari, C.; Suparmi, A.; Yunianto, M.; Pratiwi, B. N.

    2016-01-01

    Killingbeck radial potential, which consists of harmonic oscillator, linier and Coulomb potentials, is combined with non-central potential. The solution of three dimensional Schrodinger equation for Killingbeck potential is combined with Poschl-Teller potential and Symmetrical Top non-central potentials are investigated using supersymmetry (SUSY) operator. The non-relativistic energy is obtained which is infuenced by potentials and the wave functions are produced by using SUSY operator. (paper)

  3. Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrodinger equation

    OpenAIRE

    Klibanov, Michael V.; Romanov, Vladimir G.

    2014-01-01

    The inverse scattering problem of the reconstruction of the unknown potential with compact support in the 3-d Schr\\"odinger equation is considered. Only the modulus of the scattering complex valued wave field is known, whereas the phase is unknown. It is shown that the unknown potential can be reconstructed via the inverse Radon transform. Therefore, a long standing problem posed in 1977 by K. Chadan and P.C. Sabatier in their book "Inverse Problems in Quantum Scattering Theory" is solved.

  4. On Perturbative Cubic Nonlinear Schrodinger Equations under Complex Nonhomogeneities and Complex Initial Conditions

    Directory of Open Access Journals (Sweden)

    Magdy A. El-Tawil

    2009-01-01

    Full Text Available A perturbing nonlinear Schrodinger equation is studied under general complex nonhomogeneities and complex initial conditions for zero boundary conditions. The perturbation method together with the eigenfunction expansion and variational parameters methods are used to introduce an approximate solution for the perturbative nonlinear case for which a power series solution is proved to exist. Using Mathematica, the symbolic solution algorithm is tested through computing the possible approximations under truncation procedures. The method of solution is illustrated through case studies and figures.

  5. Spectral bisection algorithm for solving Schrodinger equation using upper and lower solutions

    Directory of Open Access Journals (Sweden)

    Qutaibeh Deeb Katatbeh

    2007-10-01

    Full Text Available This paper establishes a new criteria for obtaining a sequence of upper and lower bounds for the ground state eigenvalue of Schr"odinger equation $ -Deltapsi(r+V(rpsi(r=Epsi(r$ in $N$ spatial dimensions. Based on this proposed criteria, we prove a new comparison theorem in quantum mechanics for the ground state eigenfunctions of Schrodinger equation. We determine also lower and upper solutions for the exact wave function of the ground state eigenfunctions using the computed upper and lower bounds for the eigenvalues obtained by variational methods. In other words, by using this criteria, we prove that the substitution of the lower(upper bound of the eigenvalue in Schrodinger equation leads to an upper(lower solution. Finally, two proposed iteration approaches lead to an exact convergent sequence of solutions. The first one uses Raielgh-Ritz theorem. Meanwhile, the second approach uses a new numerical spectral bisection technique. We apply our results for a wide class of potentials in quantum mechanics such as sum of power-law potentials in quantum mechanics.

  6. Semiconductor device simulation by a new method of solving poisson, Laplace and Schrodinger equations

    International Nuclear Information System (INIS)

    Sharifi, M. J.; Adibi, A.

    2000-01-01

    In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as poisson, Laplace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in several cases including the problem of finding electron concentration profile in the channel of a HEMT. In another section, we solve the Poisson equation by this method, choosing the problem of SBD as an example. Finally we solve the Laplace equation in two dimensions and as an example, we focus on the VED. In this paper, we have shown that, the method can get stable and precise results in solving all of these problems. Also the programs which have been written based on this method become considerably faster, more clear, and more abstract

  7. Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation

    Energy Technology Data Exchange (ETDEWEB)

    Mani Rajan, M.S., E-mail: senthilmanirajanofc@gmail.com [Department of Physics, Anna University, Madurai Region, Ramanathapuram (India); Mahalingam, A. [Department of Physics, Anna University, Chennai - 600 025 (India); Uthayakumar, A. [Department of Physics, Presidency College, Chennai - 600 005 (India)

    2014-07-15

    We investigated the soliton solution for N coupled nonlinear Schrödinger (CNLS) equations. These equations are coupled due to the cross-phase-modulation (CPM). Lax pair of this system is obtained via the Ablowitz–Kaup–Newell–Segur (AKNS) scheme and the corresponding Darboux transformation is constructed to derive the soliton solution. One and two soliton solutions are generated. Using two soliton solutions of 3 CNLS equation, nonlinear tunneling of soliton for both with and without exponential background has been discussed. Finally cascade compression of optical soliton through multi-nonlinear barrier has been discussed. The obtained results may have promising applications in all-optical devices based on optical solitons, study of soliton propagation in birefringence fiber systems and optical soliton with distributed dispersion and nonlinearity management. -- Highlights: •We consider the nonlinear tunneling of soliton in birefringence fiber. •3-coupled NLS (CNLS) equation with variable coefficients is considered. •Two soliton solutions are obtained via Darboux transformation using constructed Lax pair. •Soliton tunneling through dispersion barrier and well are investigated. •Finally, cascade compression of soliton has been achieved.

  8. Global representations of the Heat and Schrodinger equation with singular potential

    Directory of Open Access Journals (Sweden)

    Jose A. Franco

    2013-07-01

    Full Text Available The n-dimensional Schrodinger equation with a singular potential $V_lambda(x=lambda |x|^{-2}$ is studied. Its solution space is studied as a global representation of $widetilde{SL(2,mathbb{R}}imes O(n$. A special subspace of solutions for which the action globalizes is constructed via nonstandard induction outside the semisimple category. The space of K-finite vectors is calculated, obtaining conditions for $lambda$ so that this space is non-empty. The direct sum of solution spaces over such admissible values of $lambda$ is studied as a representation of the (2n+1-dimensional Heisenberg group.

  9. Infinitely many solutions for fractional Schr\\"odinger equations in R^N

    Directory of Open Access Journals (Sweden)

    Caisheng Chen

    2016-03-01

    Full Text Available Using variational methods we prove the existence of infinitely many solutions to the fractional Schrodinger equation $$ (-\\Delta^su+V(xu=f(x,u, \\quad x\\in\\mathbb{R}^N, $$ where $N\\ge 2, s\\in (0,1$. $(-\\Delta^s$ stands for the fractional Laplacian. The potential function satisfies $V(x\\geq V_0>0$. The nonlinearity f(x,u is superlinear, has subcritical growth in u, and may or may not satisfy the (AR condition.

  10. Asymptotically linear Schrodinger equation with zero on the boundary of the spectrum

    Directory of Open Access Journals (Sweden)

    Dongdong Qin

    2015-08-01

    Full Text Available This article concerns the Schr\\"odinger equation $$\\displaylines{ -\\Delta u+V(xu=f(x, u, \\quad \\text{for } x\\in\\mathbb{R}^N,\\cr u(x\\to 0, \\quad \\text{as } |x| \\to \\infty, }$$ where V and f are periodic in x, and 0 is a boundary point of the spectrum $\\sigma(-\\Delta+V$. Assuming that f(x,u is asymptotically linear as $|u|\\to\\infty$, existence of a ground state solution is established using some new techniques.

  11. Numerical solution of the Schrodinger equation for stationary bound states using nodel theorem

    International Nuclear Information System (INIS)

    Chen Zhijiang; Kong Fanmei; Din Yibin

    1987-01-01

    An iterative procedure for getting the numerical solution of Schrodinger equation on stationary bound states is introduced. The theoretical foundtion, the practical steps and the method are presented. An example is added at the end. Comparing with other methods, the present one requires less storage, less running time but posesses higher accuracy. It can be run on the personal computer or microcomputer with 256 K memory and 16 bit word length such as IBM/PC, MC68000/83/20, PDP11/23 etc

  12. Infinitely many solutions for sublinear fractional Schrodinger-type equations with general potentials

    Directory of Open Access Journals (Sweden)

    Gang-Ling Hou

    2018-04-01

    Full Text Available This article concerns the fractional Schrodinger type equations $$ (-\\Delta^\\alpha u+V(xu =f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $N\\geq 2$, $\\alpha\\in(0,1$, $(-\\Delta^\\alpha$ stands for the fractional Laplacian, $V$ is a positive continuous potential, $f\\in C(\\mathbb{R}^N\\times\\mathbb{R},\\mathbb{R}$. We establish criteria that guarantee the existence of infinitely many solutions by using the genus properties in critical point theory.

  13. An implicit fast Fourier transform method for integration of the time dependent Schrodinger or diffusion equation

    International Nuclear Information System (INIS)

    Ritchie, A.B.; Riley, M.E.

    1997-06-01

    The authors have found that the conventional exponentiated split operator procedure is subject to difficulties in energy conservation when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. They report comparisons of this novel implicit split operator procedure with the conventional exponentiated split operator procedure on hydrogen atom solutions. The results look promising for a purely numerical approach to certain electron quantum mechanical problems

  14. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  15. Exact solution of nonrelativistic Schrodinger equation for certain central physical potential

    International Nuclear Information System (INIS)

    Bose, S.K.; Gupta, N.

    1998-01-01

    It is obtained here a class/classes of exact solution of the nonrelativistic Schrodinger equation for certain central potentials of physical interest by using proper ansatz/ansatze. The explicit expressions of energy eigenvalue and eigenfunction are obtained for each solution. These solutions are valid when for, in general, each solutions an interrelation between the parameters of the potential and the orbital-angular-momentum quantum number l is satisfied. These solutions, besides having an aesthetic appeal, can be used as benchmark to test the accuracy of nonperturbative methods, which sometimes yield wrong results, of solving the Schrodinger equation. The exact solution for the following central potentials, which are relevant in different areas of physics, have been obtained: 1) V(r)=ar 6 + br 4 + cr 2 ; 2) V(r)=ar 2 + br + c/r; 3) V(r)=r 2 + λr 2 /(1+gr 2 ); 4) V(r)= a/r + b/(r+λ); 5a) V(r)=a/r + b/r 2 +c/r 3 +d/r 4 ; 5)b V(r)=a/r 2 + b/r 2 + c/r 4 + d/r 6 ; 6a) V(r)=a/r 1/2 + b/r 3/2 ; 6b) V(r)=ar 2/3 + br -2/3 + cr -4/3

  16. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  17. The behavior of steady quasisolitons near the limit cases of third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Shagalov, A.G.; Juul Rasmussen, J.

    2002-01-01

    The behavior of steady quasisoliton solutions to the extended third-order nonlinear Schrodinger (NLS) equation is studied in two cases: (i) when the coefficients in the equation approach the Hirota conditions, and (ii) near the limit of the regular NLS equation. (C) 2002 Published by Elsevier...

  18. Nonlinear Schrodinger equation: A testing ground for the quantization of nonlinear waves

    International Nuclear Information System (INIS)

    Klein, A.; Krejs, F.

    1976-01-01

    Quantization of the nonlinear Schrodinger equation is carried out by the method due to Kerman and Klein. A viable procedure is inferred from the quantum interpretation of the classical (soliton) solution. The ground-state energy for a system with n particles is calculated to an accuracy which includes the first quantum correction to the semiclassical result. It is demonstrated that the exact answer can be obtained systematically only at the next level of approximation. For the calculation of the first quantum correction, the quantum theory of the stability of periodic orbits in field theory is developed and discussed. Since one is dealing with a finite many-body problem, the field theory can be written so that no infinite terms are encountered, but the Hamiltonian can also be artificially rearranged so as to destory this feature. For learning purposes the calculations are carried out with the various alternatives, and our methods prove capable of providing a uniform final result

  19. A second eigenvalue bound for the Dirichlet Schrodinger equation wtih a radially symmetric potential

    Directory of Open Access Journals (Sweden)

    Craig Haile

    2000-01-01

    Full Text Available We study the time-independent Schrodinger equation with radially symmetric potential $k|x|^alpha$, $k ge 0$, $k in mathbb{R}, alpha ge 2$ on a bounded domain $Omega$ in $mathbb{R}^n$, $(n ge 2$ with Dirichlet boundary conditions. In particular, we compare the eigenvalue $lambda_2(Omega$ of the operator $-Delta + k |x|^alpha $ on $Omega$ with the eigenvalue $lambda_2(S_1$ of the same operator $-Delta +kr^alpha$ on a ball $S_1$, where $S_1$ has radius such that the first eigenvalues are the same ($lambda_1(Omega = lambda_1(S_1$. The main result is to show $lambda_2(Omega le lambda_2(S_1$. We also give an extension of the main result to the case of a more general elliptic eigenvalue problem on a bounded domain $Omega$ with Dirichlet boundary conditions.

  20. Existence of standing waves for Schrodinger equations involving the fractional Laplacian

    Directory of Open Access Journals (Sweden)

    Everaldo S. de Medeiros

    2017-03-01

    Full Text Available We study a class of fractional Schrodinger equations of the form $$ \\varepsilon^{2\\alpha}(-\\Delta^\\alpha u+ V(xu = f(x,u \\quad\\text{in } \\mathbb{R}^N, $$ where $\\varepsilon$ is a positive parameter, $0 < \\alpha < 1$, $2\\alpha < N$, $(-\\Delta^\\alpha$ is the fractional Laplacian, $V:\\mathbb{R}^{N}\\to \\mathbb{R}$ is a potential which may be bounded or unbounded and the nonlinearity $f:\\mathbb{R}^{N}\\times \\mathbb{R}\\to \\mathbb{R}$ is superlinear and behaves like $|u|^{p-2}u$ at infinity for some $2

  1. Approximate Solutions of Schrodinger Equation with Some Diatomic Molecular Interactions Using Nikiforov-Uvarov Method

    Directory of Open Access Journals (Sweden)

    Ituen B. Okon

    2017-01-01

    Full Text Available We used a tool of conventional Nikiforov-Uvarov method to determine bound state solutions of Schrodinger equation with quantum interaction potential called Hulthen-Yukawa inversely quadratic potential (HYIQP. We obtained the energy eigenvalues and the total normalized wave function. We employed Hellmann-Feynman Theorem (HFT to compute expectation values r-2, r-1, T, and p2 for four different diatomic molecules: hydrogen molecule (H2, lithium hydride molecule (LiH, hydrogen chloride molecule (HCl, and carbon (II oxide molecule. The resulting energy equation reduces to three well-known potentials which are as follows: Hulthen potential, Yukawa potential, and inversely quadratic potential. The bound state energies for Hulthen and Yukawa potentials agree with the result reported in existing literature. We obtained the numerical bound state energies of the expectation values by implementing MATLAB algorithm using experimentally determined spectroscopic constant for the different diatomic molecules. We developed mathematica programming to obtain wave function and probability density plots for different orbital angular quantum number.

  2. Self-similar solutions with compactly supported profile of some nonlinear Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Pascal Begout

    2014-04-01

    Full Text Available ``Sharp localized'' solutions (i.e. with compact support for each given time t of a singular nonlinear type Schr\\"odinger equation in the whole space $\\mathbb{R}^N$ are constructed here under the assumption that they have a self-similar structure. It requires the assumption that the external forcing term satisfies that $\\mathbf{f}(t,x=t^{-(\\mathbf{p}-2/2}\\mathbf{F}(t^{-1/2}x$ for some complex exponent $\\mathbf{p}$ and for some profile function $\\mathbf{F}$ which is assumed to be with compact support in $\\mathbb{R}^N$. We show the existence of solutions of the form $\\mathbf{u}(t,x=t^{\\mathbf{p}/2}\\mathbf{U}(t^{-1/2}x$, with a profile $\\mathbf{U}$, which also has compact support in $\\mathbb{R}^N$. The proof of the localization of the support of the profile $\\mathbf{U}$ uses some suitable energy method applied to the stationary problem satisfied by $\\mathbf{U}$ after some unknown transformation.

  3. Schrodinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Růžička, František; Zloshchastiev, K. G.

    2017-01-01

    Roč. 9, č. 8 (2017), č. článku 165. ISSN 2073-8994 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : PT symmetry * nonlinear Schrodinger equations * logarithmic nonlinearities Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.457, year: 2016

  4. On the Schrodinger field

    International Nuclear Information System (INIS)

    Takahashi, Y.

    1986-01-01

    A brief but systematic discussion of the Schrodinger field is presented from the view point of quantized field theory. It is pointed out that the local momentum conservation equation is not of the usual continuity equation type when two-body potential interaction is presented and nevertheless the total momentum is globally conserved. The Schrodinger equation can be cast into a multicomponent equation containing only first order derivatives, depending on its spin contents. In case of spin 1/2, the g-factor is shown to be 2 even in purely non-relativistic Schrodinger field, in contrast with the general belief that g=2 is a relativistic effect

  5. Staggered and short-period solutions of the saturable discrete nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K.O.; Samuelsen, Mogens Rugholm

    2009-01-01

    We point out that the nonlinear Schrodinger lattice with a saturable nonlinearity also admits staggered periodic aswell as localized pulse-like solutions. Further, the same model also admits solutions with a short period. We examine the stability of these solutions and find that the staggered as ...

  6. Exact solutions of the two-dimensional discrete nonlinear Schrodinger equation with saturable nonlinearity

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, K. O.; Samuelsen, Mogens Rugholm

    2010-01-01

    We show that the two-dimensional, nonlinear Schrodinger lattice with a saturable nonlinearity admits periodic and pulse-like exact solutions. We establish the general formalism for the stability considerations of these solutions and give examples of stability diagrams. Finally, we show that the e...

  7. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  8. Exact solutions of the Schrodinger equation with the position-dependent mass for a hard-core potential

    International Nuclear Information System (INIS)

    Dong Shihai; Lozada-Cassou, M.

    2005-01-01

    The exact solutions of two-dimensional Schrodinger equation with the position-dependent mass for a hard-core potential are obtained. The eigenvalues related to the position-dependent masses μ 1 and μ 2 , the potential well depth V 0 and the effective range r 0 can be calculated by the boundary condition. We generalize this quantum system to three-dimensional case. The special cases for l=0,1 are studied in detail. For l=0 and c=0, we find that the energy levels will increase with the parameters μ 2 , V 0 and r 0 if μ 1 >μ 2

  9. Erwin Schrodinger

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Erwin Schrodinger. Articles written in Resonance – Journal of Science Education. Volume 4 Issue 2 February 1999 pp 92-103 Classics. The Fundamental Idea of Wave Mechanics · Erwin Schrodinger · More Details Fulltext PDF ...

  10. Existence and Uniqueness of Solution of Schrodinger equation in extended Colombeau algebra

    Directory of Open Access Journals (Sweden)

    Fariba Fattahi

    2014-09-01

    Full Text Available In this paper, we establish the existence and uniquenessresult of the linear Schr¨odinger equation with Marchaudfractional derivative in Colombeau generalized algebra.The purpose of introducing Marchaud fractional derivativeis regularizing it in Colombeau sense.

  11. Derivation and solution of a time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter

    International Nuclear Information System (INIS)

    Esrick, M.A.

    1981-01-01

    A time-dependent, nonlinear, Schrodinger-like equation for the superconductivity order parameter is derived from the Gor'kov equations. Three types of traveling wave solutions of the equation are discussed. The phases and amplitudes of these solutions propagate at different speeds. The first type of solution has an amplitude that propagates as a soliton and it is suggested that this solution might correspond to the recently observed propagating collective modes of the order parameter. The amplitude of the second type of solution propagates as a periodic disturbance in space and time. It is suggested that this type of solution might explain the recently observed multiple values of the superconductor energy gap as well as the spatially inhomogenous superconducting state. The third type of solution, which is of a more general character, might provide some insight into non-periodic, inhomogeneous states occuring in superconductors. It is also proposed that quasiparticle injection and microwave irradiation might generate soliton-like disturbances in superconductors

  12. Analytic energies and wave functions of the two-dimensional Schrodinger equation: ground state of two-dimensional quartic potential and classification of solutions

    Czech Academy of Sciences Publication Activity Database

    Tichý, V.; Kuběna, Aleš Antonín; Skála, L.

    2012-01-01

    Roč. 90, č. 6 (2012), s. 503-513 ISSN 0008-4204 Institutional support: RVO:67985556 Keywords : Schroninger equation * partial differential equation * analytic solution * anharmonic oscilator * double-well Subject RIV: BE - Theoretical Physics Impact factor: 0.902, year: 2012 http://library.utia.cas.cz/separaty/2012/E/kubena-analytic energies and wave functions of the two-dimensional schrodinger equation.pdf

  13. Constructing and analysis of soliton-like solutions of (1 + 1), (2 + 1), (3 + 1)-dimensional Schrodinger equations with the third power nonlinearity law

    International Nuclear Information System (INIS)

    Zhestkov, S.V.; Romanenko, A.A.

    2009-01-01

    The problem of existence of soliton-like solutions of (1+1), (2+1), (3+1)-dimensional Schrodinger equations with the third power nonlinearity law is investigated. The numerical-analytical method of constructing solitons is developed. (authors)

  14. Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional p-Laplacian and critical exponent

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-12-01

    Full Text Available In this article, we show the existence of infinitely many solutions for the fractional p-Laplacian equations of Schrodinger-Kirchhoff type equation $$ M([u]_{s, p}^p (-\\Delta _p^s u+V(x|u|^{p-2}u= \\alpha |u|^{ p_s^{*}-2 }u+\\beta k(x|u|^{q-2}u \\quad x\\in \\mathbb{R}^N, $$ where $(-\\Delta ^s_p$ is the fractional p-Laplacian operator, $[u]_{s,p}$ is the Gagliardo p-seminorm, $0 sp$, $1

  15. Born approximation to a perturbative numerical method for the solution of the Schrodinger equation

    International Nuclear Information System (INIS)

    Adam, Gh.

    1978-05-01

    A perturbative numerical (PN) method is given for the solution of a regular one-dimensional Cauchy problem arising from the Schroedinger equation. The present method uses a step function approximation for the potential. Global, free of scaling difficulty, forward and backward PN algorithms are derived within first order perturbation theory (Born approximation). A rigorous analysis of the local truncation errors is performed. This shows that the order of accuracy of the method is equal to four. In between the mesh points, the global formula for the wavefunction is accurate within O(h 4 ), while that for the first order derivative is accurate within O(h 3 ). (author)

  16. Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Hassan A. Zedan

    2012-01-01

    Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.

  17. The Schrodinger Eigenvalue March

    Science.gov (United States)

    Tannous, C.; Langlois, J.

    2011-01-01

    A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…

  18. On some NLS systems and their applications

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Rasmussen, Kim; Johansson, Magnus

    1996-01-01

    We review our recent results concerning collapse andthermal fluctuations in the two-dimensional nonlinearSchrödinger equation (NLS), inhomogneities in this equationand a nonlocal NLS. We discuss the application to molecularsystems like the organic thin films (Scheibe aggregates).The results are p...

  19. Solution of Schrodinger equation for Three Dimensional Harmonics Oscillator plus Rosen-Morse Non-central potential using NU Method and Romanovski Polynomials

    International Nuclear Information System (INIS)

    Cari, C; Suparmi, A

    2013-01-01

    The energy eigenvalues and eigenfunctions of Schrodinger equation for three dimensional harmonic oscillator potential plus Rosen-Morse non-central potential are investigated using NU method and Romanovski polynomial. The bound state energy eigenvalues are given in a closed form and corresponding radial wave functions are expressed in associated Laguerre polynomials while angular eigen functions are given in terms of Romanovski polynomials. The Rosen-Morse potential is considered to be a perturbation factor to the three dimensional harmonic oscillator potential that causes the increase of radial wave function amplitude and decrease of angular momentum length. Keywords: Schrodinger Equation, Three dimensional Harmonic Oscillator potential, Rosen-morse non-central potential, NU method, Romanovski Polynomials

  20. Exact solutions of the Schrodinger equation for an electron in the circular quantum ring taking into account spin-orbit interactions

    International Nuclear Information System (INIS)

    Kudryashov, V.V.; Baran, A.V.

    2012-01-01

    The exact solutions of the Schrodinger equation are obtained for an electron in two-dimensional circular semiconductor quantum ring in the presence of the Rashba and Dresselhaus spin-orbit interactions of equal strength. Confinement is simulated by a realistic potential well of finite depth. The dependence of energy levels on the strength of spin-orbit interaction, the relative ring width, and the depth of a potential well is presented. (authors)

  1. On the energy-critical fractional Sch\\"odinger equation in the radial case

    OpenAIRE

    Guo, Zihua; Sire, Yannick; Wang, Yuzhao; Zhao, Lifeng

    2013-01-01

    We consider the Cauchy problem for the energy-critical nonlinear Schr\\"odinger equation with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and scattering in the energy space in the defocusing case, and in the focusing case with energy below the ground state.

  2. New travelling wave solutions of the (1 + 1-dimensional cubic nonlinear Schrodinger equation using novel (G′/G-expansion method

    Directory of Open Access Journals (Sweden)

    M.G. Hafez

    2016-06-01

    Full Text Available In this paper, the novel (G′/G-expansion method is applied to construct exact travelling wave solutions of the cubic nonlinear Schrodinger equation. This technique is straightforward and simple to use, and gives more new general solutions than the other existing methods. Various types of solitary and periodic wave solutions of this equation are derived. The obtained results may be helpful to describe the wave propagation in soliton physics, such as soliton propagation in optical fibers, modulus instability in plasma physics, etc. and provided us the firm mathematical foundation in soliton physics or any varied instances. Furthermore, three-dimensional modules plot of the solutions are also given to visualize the dynamics of the equation.

  3. Critical behavior from Schrodinger representation

    International Nuclear Information System (INIS)

    Suranyi, P.

    1992-01-01

    In this paper, the Schrodinger equation for φ 4 field theory is reduced to an infinite set of integral equations. A systematic truncation scheme is proposed and it is solved in second order to obtain the approximate critical behavior of the renormalized mass. The correlation exponent is given as a solution of a transcendental equation. It is in good agreement with the Ising model in all physical dimensions

  4. Well-posedness and exact controllability of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation

    Directory of Open Access Journals (Sweden)

    Ruili Wen

    2016-08-01

    Full Text Available We consider an open-loop system of a fourth order Schrodinger equation with variable coefficients and Neumann boundary control and collocated observation. Using the multiplier method on Riemannian manifold we show that that the system is well-posed in the sense of Salamon. This implies that the exponential stability of the closed-loop system under the direct proportional output feedback control and the exact controllability of open-loop system are equivalent. So in order to conclude feedback stabilization from well-posedness, we study the exact controllability under a uniqueness assumption by presenting the observability inequality for the dual system. In addition, we show that the system is regular in the sense of Weiss, and that the feedthrough operator is zero.

  5. Schrodinger representation in renormalizable quantum field theory

    International Nuclear Information System (INIS)

    Symanzik, K.

    1983-01-01

    The problem of the Schrodinger representation arose from work on the Nambu-Goto Ansatz for integration over surfaces. Going beyond semiclassical approximation leads to two problems of nonrenormalizibility and of whether Dirichlet boundary conditions can be imposed on a ''Euclidean'' quantum field theory. The Schrodinger representation is constructed in a way where the principles of general renormalization theory can be refered to. The Schrodinger function of surface terms is studied, as well as behaviour at the boundary. The Schrodinger equation is derived. Completeness, unitarity, and computation of expectation values are considered. Extensions of these methods into other Bose field theories such as Fermi fields and Marjorana fields is straightforward

  6. Three-Dimensional Coupled NLS Equations for Envelope Gravity Solitary Waves in Baroclinic Atmosphere and Modulational Instability

    Directory of Open Access Journals (Sweden)

    Baojun Zhao

    2018-01-01

    Full Text Available Envelope gravity solitary waves are an important research hot spot in the field of solitary wave. And the weakly nonlinear model equations system is a part of the research of envelope gravity solitary waves. Because of the lack of technology and theory, previous studies tried hard to reduce the variable numbers and constructed the two-dimensional model in barotropic atmosphere and could only describe the propagation feature in a direction. But for the propagation of envelope gravity solitary waves in real ocean ridges and atmospheric mountains, the three-dimensional model is more appropriate. Meanwhile, the baroclinic problem of atmosphere is also an inevitable topic. In the paper, the three-dimensional coupled nonlinear Schrödinger (CNLS equations are presented to describe the evolution of envelope gravity solitary waves in baroclinic atmosphere, which are derived from the basic dynamic equations by employing perturbation and multiscale methods. The model overcomes two disadvantages: (1 baroclinic problem and (2 propagation path problem. Then, based on trial function method, we deduce the solution of the CNLS equations. Finally, modulational instability of wave trains is also discussed.

  7. Schr\\"odinger group and quantum finance

    OpenAIRE

    Romero, Juan M.; Lavana, Ulises; Martínez, Elio

    2013-01-01

    Using the one dimensional free particle symmetries, the quantum finance symmetries are obtained. Namely, it is shown that Black-Scholes equation is invariant under Schr\\"odinger group. In order to do this, the one dimensional free non-relativistic particle and its symmetries are revisited. To get the Black-Scholes equation symmetries, the particle mass is identified as the inverse of square of the volatility. Furthermore, using financial variables, a Schr\\"odinger algebra representation is co...

  8. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    Science.gov (United States)

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  9. Collapse of solitary excitations in the nonlinear Schrödinger equation with nonlinear damping and white noise

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    in an exponentially decreasing width of the solution in the long-time limit. We also find that a sufficiently large noise variance may cause an initially localized distribution to spread instead of contracting, and that the critical variance necessary to cause dispersion will for small damping be the same......We study the effect of adding noise and nonlinear damping in the two-dimensional nonlinear Schrodinger equation (NLS). Using a collective approach, we find that for initial conditions where total collapse occurs in the unperturbed NLS, the presence of the damping term will instead...

  10. Supersymmetric extensions of Schrodinger-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte; Unterberger, Jeremie

    2006-01-01

    The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values

  11. Modification of Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2016-05-01

    ``The nature has two magnitudes and two elongations, one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other one is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. These two separated natures of space-time are matched on wave-particle duality. Therefore, the nature of time can be wavy-like and the nature of space can be jerky-like. So, there are two independent variable sources of particle(s)' flow while they are match exactly with each other. These two sources are potential of flow and potential of time (relative time) which vary with respect to both space and time. Here, we propose two additional parts to Schrodinger's equation with respect to relative time: HΨ + ∇t' = EΨ + ∂t' / ∂t , where t is time and t' is relative time: t' = t +/- Δt [Gholibeigian et al., APS March Meeting 2016], which for each atom becomes: tatom = ∑mnucleons + ∑melectrons where m is momentum [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Using time's relativity in Schrodinger equation will give us more precious results. AmirKabir University of Technology,Tehran, Iran.

  12. Variational Principles, Lie Point Symmetries, and Similarity Solutions of the Vector Maxwell Equations in Non-linear Optics

    DEFF Research Database (Denmark)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey

    2004-01-01

    the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr nonlinearity, are shown to reduce...... the properties of Maxwell's equations in nonlinear optics, without resorting to the commonly used nonlinear Schr\\"odinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to nonlinear sideband wave interactions. This is important in femto......-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field $E$, in terms of the the canonical variables, with possible multiple real roots for $E$. In order...

  13. Nonlinear Maxwell's and Schrodinger equations for describing the volumetric interaction of femtosecond laser pulses with transparent solid dielectrics: effect of the boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Zhukov, V.P.; Bulgakova, Nadezhda M.; Fedoruk, M.P.

    2017-01-01

    Roč. 84, č. 7 (2017), s. 439-446 ISSN 1070-9762 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S Institutional support: RVO:68378271 Keywords : glass * femtosecond laser pulses * Maxwell's and Schrdinger equations Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.299, year: 2016

  14. Modification of Time-dependent Schrodinger Equation in Quantum Mechanics by Adding Derivations of Time's Flow (Relative Time) with Respect of the Both Space and Time Based on the ``Substantial Motion'' Theory of Iranian Philosopher; Mulla Sadra

    Science.gov (United States)

    Gholibeigian, Hassan; Gholibeigian, Kazem

    2016-03-01

    In Sadra's theory, the relative time for an atom (body) which is varying continuously becomes momentums of its involved fundamental particles (strings), (time's relativity) [Gholibeigian, APS March Meeting 2015, abstract #V1.023]. Einstein's theory of special relativity might be special form of Sadra's theory. ``The nature has two magnitudes and two elongations, the one is gradual being (wavy-like motion) which belongs to the time and dividable to the former and the next times in mind, and the other is jerky-like motion which belongs to the space and dividable to the former and the next places'' [Asfar, Mulla Sadra, (1571/2-1640)]. Sadra separated the nature of time from nature of space. Therefore we can match these two natures on wave-particle duality. It means that the nature of time might be wavy-like and the nature of space might be jerky-like. So, there are two independent variable sources for particle(s)' flow with respect of its two natures such as potential of flow and relative time which vary with respect of both space and time. Consequently we propose two additional parts to Schrodinger's equation: H⌢ Ψ +tp ∇t' = ih/2 π ∂/∂t Ψ +tp∂/∂t t' , where tp is Planck's time and t' is relative time: t' = f (m , v , t) = t +/- Δt , in which t is time, m is mass and vis speed of particle . AmirKabir University of Technology, Tehran, Iran.

  15. Schrodinger's mechanics interpretation

    CERN Document Server

    Cook, David B

    2018-01-01

    The interpretation of quantum mechanics has been in dispute for nearly a century with no sign of a resolution. Using a careful examination of the relationship between the final form of classical particle mechanics (the Hamilton–Jacobi Equation) and Schrödinger's mechanics, this book presents a coherent way of addressing the problems and paradoxes that emerge through conventional interpretations.Schrödinger's Mechanics critiques the popular way of giving physical interpretation to the various terms in perturbation theory and other technologies and places an emphasis on development of the theory and not on an axiomatic approach. When this interpretation is made, the extension of Schrödinger's mechanics in relation to other areas, including spin, relativity and fields, is investigated and new conclusions are reached.

  16. Difference Schemes for Equations of Schrodinger Type.

    Science.gov (United States)

    1984-06-01

    is defined by #(4) = ( ’(O)(z) - 0(o)(z))/z. By defintion , the degree of #1 is one less than that of . The main results that we need are contained in...0 and a < 0, the heme (3.10) is conditionally stable, the necessary and suEcient condition being (3.11). The least restrictive stability condition is

  17. Schrodinger equations with indefinite effective mass

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav; Levai, G.

    2012-01-01

    Roč. 376, č. 45 (2012), s. 3000-3005 ISSN 0375-9601 R&D Projects: GA ČR GAP203/11/1433 Institutional support: RVO:61389005 Keywords : quantum particle * effective mass * position dependence * energy dependence * stability * solvable models Subject RIV: BE - Theoretical Physics Impact factor: 1.766, year: 2012

  18. Nonlinear Schroedinger Approximations for Partial Differential Equations with Quadratic and Quasilinear Terms

    Science.gov (United States)

    Cummings, Patrick

    We consider the approximation of solutions of two complicated, physical systems via the nonlinear Schrodinger equation (NLS). In particular, we discuss the evolution of wave packets and long waves in two physical models. Due to the complicated nature of the equations governing many physical systems and the in-depth knowledge we have for solutions of the nonlinear Schrodinger equation, it is advantageous to use approximation results of this kind to model these physical systems. The approximations are simple enough that we can use them to understand the qualitative and quantitative behavior of the solutions, and by justifying them we can show that the behavior of the approximation captures the behavior of solutions to the original equation, at least for long, but finite time. We first consider a model of the water wave equations which can be approximated by wave packets using the NLS equation. We discuss a new proof that both simplifies and strengthens previous justification results of Schneider and Wayne. Rather than using analytic norms, as was done by Schneider and Wayne, we construct a modified energy functional so that the approximation holds for the full interval of existence of the approximate NLS solution as opposed to a subinterval (as is seen in the analytic case). Furthermore, the proof avoids problems associated with inverting the normal form transform by working with a modified energy functional motivated by Craig and Hunter et al. We then consider the Klein-Gordon-Zakharov system and prove a long wave approximation result. In this case there is a non-trivial resonance that cannot be eliminated via a normal form transform. By combining the normal form transform for small Fourier modes and using analytic norms elsewhere, we can get a justification result on the order 1 over epsilon squared time scale.

  19. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  20. Gap solitons in periodic Schrodinger lattice system with nonlinear hopping

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2016-10-01

    Full Text Available This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as $\\alpha\\to 0$. Notice that the nonlinear hopping can be sign changing.

  1. Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth

    1999-01-01

    Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...

  2. The construction of partner potential from the general potential anharmonic in D-dimensional Schrodinger system

    Science.gov (United States)

    Suparmi; Cari, C.; Wea, K. N.; Wahyulianti

    2018-03-01

    The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.

  3. On Schr\\"odinger's cat

    OpenAIRE

    de Silva, Nalin

    2010-01-01

    Schr\\"odinger's cat appears to have been harassed in a chamber during the past eighty years or so by interpreting the role of the observer as a person, who sets an experiment and then observes results, may be after some time. The realist position tells us that the physical processes would take place independent of the observer with well defined properties, whereas the positivist position wants us to believe that nothing can be said of a system when it is not being observed. In this paper we q...

  4. On the structure of critical energy levels for the cubic focusing NLS on star graphs

    International Nuclear Information System (INIS)

    Adami, Riccardo; Noja, Diego; Cacciapuoti, Claudio; Finco, Domenico

    2012-01-01

    We provide information on a non-trivial structure of phase space of the cubic nonlinear Schrödinger (NLS) on a three-edge star graph. We prove that, in contrast to the case of the standard NLS on the line, the energy associated with the cubic focusing Schrödinger equation on the three-edge star graph with a free (Kirchhoff) vertex does not attain a minimum value on any sphere of constant L 2 -norm. We moreover show that the only stationary state with prescribed L 2 -norm is indeed a saddle point. (fast track communication)

  5. Linear response theory for magnetic Schrodinger operators in disordered media

    CERN Document Server

    Bouclet, J M; Klein, A; Schenker, J

    2004-01-01

    We justify the linear response theory for an ergodic Schrodinger operator with magnetic field within the non-interacting particle approximation, and derive a Kubo formula for the electric conductivity tensor. To achieve that, we construct suitable normed spaces of measurable covariant operators where the Liouville equation can be solved uniquely. If the Fermi level falls into a region of localization, we recover the well-known Kubo-Streda formula for the quantum Hall conductivity at zero temperature.

  6. Inhomogeneous Heisenberg spin chain and quantum vortex filament as non-holonomically deformed NLS systems

    Science.gov (United States)

    Abhinav, Kumar; Guha, Partha

    2018-03-01

    Through the Hasimoto map, various dynamical systems can be mapped to different integrodifferential generalizations of Nonlinear Schrödinger (NLS) family of equations some of which are known to be integrable. Two such continuum limits, corresponding to the inhomogeneous XXX Heisenberg spin chain [J. Phys. C 15, L1305 (1982)] and that of a thin vortex filament moving in a superfluid with drag [Eur. Phys. J. B 86, 275 (2013) 86; Phys. Rev. E 91, 053201 (2015)], are shown to be particular non-holonomic deformations (NHDs) of the standard NLS system involving generalized parameterizations. Crucially, such NHDs of the NLS system are restricted to specific spectral orders that exactly complements NHDs of the original physical systems. The specific non-holonomic constraints associated with these integrodifferential generalizations additionally posses distinct semi-classical signature.

  7. Quantum Computer Games: Schrodinger Cat and Hounds

    Science.gov (United States)

    Gordon, Michal; Gordon, Goren

    2012-01-01

    The quantum computer game "Schrodinger cat and hounds" is the quantum extension of the well-known classical game fox and hounds. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. "Schrodinger cat and hounds" demonstrates the effects of superposition, destructive and constructive interference, measurements and…

  8. 33 CFR 151.35 - Certificates needed to carry Category D NLS and Category D Oil-like NLS.

    Science.gov (United States)

    2010-07-01

    ... unless the ship has a Certificate of Inspection endorsed to allow the NLS to be carried in that cargo... Category D oil-like NLS listed in § 151.49 in a cargo tank unless the ship has a Certificate of Inspection... Certificate of Inspection endorsed to allow the NLS to be carried in that cargo tank, and if the ship engages...

  9. Deriving average soliton equations with a perturbative method

    International Nuclear Information System (INIS)

    Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.

    1995-01-01

    The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically

  10. Periodic oscillations of discrete NLS solitons in the presence of diffraction management

    International Nuclear Information System (INIS)

    Panayotaros, Panayotis; Pelinovsky, Dmitry

    2008-01-01

    We consider the discrete NLS equation with a small-amplitude time-periodic diffraction coefficient which models diffraction management in nonlinear lattices. In the space of one dimension and at the zero-amplitude diffraction management, multi-peak localized modes (called discrete solitons or discrete breathers) are stationary solutions of the discrete NLS equation which are uniquely continued from the anti-continuum limit, where they are compactly supported on finitely many non-zero nodes. We prove that the multi-peak localized modes are uniquely continued to the time-periodic space-localized solutions for small-amplitude diffraction management if the period of the diffraction coefficient is not multiple to the period of the stationary solution. The same result is extended to multi-peaked localized modes in the space of two and three dimensions (which include discrete vortices) under additional non-degeneracy assumptions on the stationary solutions in the anti-continuum limit

  11. Global existence of small solutions to semilinear Schroedinger equations

    International Nuclear Information System (INIS)

    Chihara, Hiroyuki

    1996-01-01

    We present global existence theorem for semilinear Schrodinger equations. In general, Schrodinger-type equations do not admit the classical energy estimates. To avoid this difficulty, we use S. Doi's method for linear Schrodinger-type equations. Combining his method and L p -L q estimates, we prove the global existence of solutions with small initial data

  12. Huygens' principle, the free Schrodinger particle and the quantum anti-centrifugal force

    DEFF Research Database (Denmark)

    Cirone, M.A.; Dahl, Jens Peder; Fedorov, M.

    2002-01-01

    Huygens' principle following from the d'Alembert wave equation is not valid in two-dimensional space. A Schrodinger particle of vanishing angular momentum moving freely in two dimensions experiences an attractive force-the quantum anti-centrifugal force-towards its centre. We connect these two...

  13. Collapse arresting in an inhomogeneous two-dimensional nonlinear Schrodinger model

    DEFF Research Database (Denmark)

    Schjødt-Eriksen, Jens; Gaididei, Yuri Borisovich; Christiansen, Peter Leth

    2001-01-01

    Collapse of (2 + 1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schrodinger equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may...

  14. Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Henning, D.; Gabriel, H.

    1996-01-01

    We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interes...... nonlinear Schrodinger equation. In this way eve are able to construct coherent solitonlike structures of profile determined by the map parameters.......We investigate the solution properties oi. a generalized discrete nonlinear Schrodinger equation describing a nonlinear lattice chain. The generalized equation interpolates between the integrable discrete Ablowitz-Ladik equation and the nonintegrable discrete Schrodinger equation. Special interest...

  15. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  16. Solitary waves for a coupled nonlinear Schrodinger system with dispersion management

    Directory of Open Access Journals (Sweden)

    Panayotis Panayotaros

    2010-08-01

    Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.

  17. Global solutions of nonlinear Schrödinger equations

    CERN Document Server

    Bourgain, J

    1999-01-01

    This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrödinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented. Several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research r

  18. Assessment of Schrodinger Eigenmaps for target detection

    Science.gov (United States)

    Dorado Munoz, Leidy P.; Messinger, David W.; Czaja, Wojtek

    2014-06-01

    Non-linear dimensionality reduction methods have been widely applied to hyperspectral imagery due to its structure as the information can be represented in a lower dimension without losing information, and because the non-linear methods preserve the local geometry of the data while the dimension is reduced. One of these methods is Laplacian Eigenmaps (LE), which assumes that the data lies on a low dimensional manifold embedded in a high dimensional space. LE builds a nearest neighbor graph, computes its Laplacian and performs the eigendecomposition of the Laplacian. These eigenfunctions constitute a basis for the lower dimensional space in which the geometry of the manifold is preserved. In addition to the reduction problem, LE has been widely used in tasks such as segmentation, clustering, and classification. In this regard, a new Schrodinger Eigenmaps (SE) method was developed and presented as a semi-supervised classification scheme in order to improve the classification performance and take advantage of the labeled data. SE is an algorithm built upon LE, where the former Laplacian operator is replaced by the Schrodinger operator. The Schrodinger operator includes a potential term V, that, taking advantage of the additional information such as labeled data, allows clustering of similar points. In this paper, we explore the idea of using SE in target detection. In this way, we present a framework where the potential term V is defined as a barrier potential: a diagonal matrix encoding the spatial position of the target, and the detection performance is evaluated by using different targets and different hyperspectral scenes.

  19. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    Science.gov (United States)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  20. Preparing Schrodinger cat states by parametric pumping

    Science.gov (United States)

    Leghtas, Zaki; Touzard, Steven; Pop, Ioan; Vlastakis, Brian; Zalys-Geller, Evan; Albert, Victor V.; Jiang, Liang; Frunzio, Luigi; Schoelkopf, Robert J.; Mirrahimi, Mazyar; Devoret, Michel H.

    2014-03-01

    Maintaining a quantum superposition state of light in a cavity has important applications for quantum error correction. We present an experimental protocol based on parametric pumping and Josephson circuits, which could prepare a Schrodinger cat state in a cavity. This is achieved by engineering a dissipative environment, which exchanges only pairs or quadruples of photons with our cavity mode. The dissipative nature of this preparation would lead to the observation of a dynamical Zeno effect, where the competition between a coherent drive and the dissipation reveals non trivial dynamics. Work supported by: IARPA, ARO, and NSF.

  1. KAM for the non-linear Schroedinger equation

    CERN Document Server

    Eliasson, L H

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep|u|^2u;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it If $|\\ep|$ is sufficiently small, then there is a large subset $U'$ of $U$ such that for all $...

  2. From Baking a Cake to Solving the Schrodinger Equation

    OpenAIRE

    Olszewski, Edward A.

    2005-01-01

    The primary emphasis of this study has been to explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. Restricting our consideration to the genoise, one of the basic cakes of classic French cuisine, we have obtained a semi-empirical formula for its baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The formula, which is based on the Diffusion e...

  3. Computer Solution of the Schrodinger Equation--Two Useful Programs.

    Science.gov (United States)

    Evans, D. E.

    1980-01-01

    Describes a general purpose algorithm which enables one to calculate the allowed energy eigenvalues for an arbitrary potential. Results of a calculation where a centrifugal potential is added to the hydrogenic Coulomb potential are discussed. (Author/HM)

  4. Reflectionless discrete Schr\\"odinger operators are spectrally atypical

    OpenAIRE

    VandenBoom, Tom

    2017-01-01

    We prove that, if an isospectral torus contains a discrete Schr\\"odinger operator with nonconstant potential, the shift dynamics on that torus cannot be minimal. Consequently, we specify a generic sense in which finite unions of nondegenerate closed intervals having capacity one are not the spectrum of any reflectionless discrete Schr\\"odinger operator. We also show that the only reflectionless discrete Schr\\"odinger operators having zero, one, or two spectral gaps are periodic.

  5. Image denoising using the squared eigenfunctions of the Schrodinger operator

    KAUST Repository

    Kaisserli, Zineb; Laleg-Kirati, Taous-Meriem

    2015-01-01

    This study introduces a new image denoising method based on the spectral analysis of the semi-classical Schrodinger operator. The noisy image is considered as a potential of the Schrodinger operator, and the denoised image is reconstructed using the discrete spectrum of this operator. First results illustrating the performance of the proposed approach are presented and compared to the singular value decomposition method.

  6. Newton-Cartan supergravity with torsion and Schrodinger supergravity

    NARCIS (Netherlands)

    Bergshoeff, Eric; Rosseel, Jan; Zojer, Thomas

    2015-01-01

    We derive a torsionfull version of three-dimensional N - 2 Newton-Cartan supergravity using a non-relativistic notion of the superconformal tensor calculus. The "superconformal" theory that we start with is Schrodinger supergravity which we obtain by gauging the Schrodinger superalgebra. We present

  7. Image denoising using the squared eigenfunctions of the Schrodinger operator

    KAUST Repository

    Kaisserli, Zineb

    2015-02-02

    This study introduces a new image denoising method based on the spectral analysis of the semi-classical Schrodinger operator. The noisy image is considered as a potential of the Schrodinger operator, and the denoised image is reconstructed using the discrete spectrum of this operator. First results illustrating the performance of the proposed approach are presented and compared to the singular value decomposition method.

  8. Schr"odinger's Unified Field Theory: Physics by Public Relations

    Science.gov (United States)

    Halpern, Paul

    2009-05-01

    We will explore the circumstances surrounding Erwin Schr"odinger's announcement in January 1947 that he had developed a comprehensive unified field theory of gravitation and electromagnetism. We will speculate on Schr"odinger's motivations for the mode and tone of his statements, consider the reaction of the international press within the context of the postwar era, and examine Einstein's response.

  9. VG2 NEP TRAJECTORY DERIVED SUMM NLS COORDS 12SEC V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset contains Voyager 2 spacecraft position vectors relative to Neptune in minus NLS coordinates. The NLS or Neptune West Longitude System coordinate system...

  10. 46 CFR 98.31-10 - Certificate of inspection and NLS certificate endorsements.

    Science.gov (United States)

    2010-10-01

    ... AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN... chapter; and (2) Unless it discharges no NLS residues as defined in § 153.2 of this chapter to the sea... discharging NLS residues to the sea. ...

  11. Embedded solitons in the third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pal, Debabrata; Ali, Sk Golam; Talukdar, B

    2008-01-01

    We work with a sech trial function with space-dependent soliton parameters and envisage a variational study for the nonlinear Schoedinger (NLS) equation in the presence of third-order dispersion. We demonstrate that the variational equations for pulse evolution in this NLS equation provide a natural basis to derive a potential model which can account for the existence of a continuous family of embedded solitons supported by the third-order NLS equation. Each member of the family is parameterized by the propagation velocity and co-efficient of the third-order dispersion

  12. Evolutionary gradient of predicted nuclear localization signals (NLS)-bearing proteins in genomes of family Planctomycetaceae.

    Science.gov (United States)

    Guo, Min; Yang, Ruifu; Huang, Chen; Liao, Qiwen; Fan, Guangyi; Sun, Chenghang; Lee, Simon Ming-Yuen

    2017-04-04

    The nuclear envelope is considered a key classification marker that distinguishes prokaryotes from eukaryotes. However, this marker does not apply to the family Planctomycetaceae, which has intracellular spaces divided by lipidic intracytoplasmic membranes (ICMs). Nuclear localization signal (NLS), a short stretch of amino acid sequence, destines to transport proteins from cytoplasm into nucleus, and is also associated with the development of nuclear envelope. We attempted to investigate the NLS motifs in Planctomycetaceae genomes to demonstrate the potential molecular transition in the development of intracellular membrane system. In this study, we identified NLS-like motifs that have the same amino acid compositions as experimentally identified NLSs in genomes of 11 representative species of family Planctomycetaceae. A total of 15 NLS types and 170 NLS-bearing proteins were detected in the 11 strains. To determine the molecular transformation, we compared NLS-bearing protein abundances in the 11 representative Planctomycetaceae genomes with them in genomes of 16 taxonomically varied microorganisms: nine bacteria, two archaea and five fungi. In the 27 strains, 29 NLS types and 1101 NLS-bearing proteins were identified, principal component analysis showed a significant transitional gradient from bacteria to Planctomycetaceae to fungi on their NLS-bearing protein abundance profiles. Then, we clustered the 993 non-redundant NLS-bearing proteins into 181 families and annotated their involved metabolic pathways. Afterwards, we aligned the ten types of NLS motifs from the 13 families containing NLS-bearing proteins among bacteria, Planctomycetaceae or fungi, considering their diversity, length and origin. A transition towards increased complexity from non-planctomycete bacteria to Planctomycetaceae to archaea and fungi was detected based on the complexity of the 10 types of NLS-like motifs in the 13 NLS-bearing proteins families. The results of this study reveal that

  13. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  14. From nonlinear Schrödinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    Science.gov (United States)

    Yang, Xiao; Du, Dianlou

    2010-08-01

    The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  15. From nonlinear Schroedinger hierarchy to some (2+1)-dimensional nonlinear pseudodifferential equations

    International Nuclear Information System (INIS)

    Yang Xiao; Du Dianlou

    2010-01-01

    The Poisson structure on C N xR N is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schroedinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.

  16. KAM for the non-linear Schroedinger equation a short presentation

    CERN Document Server

    Eliasson, H L

    2006-01-01

    We consider the $d$-dimensional nonlinear Schr\\"o\\-dinger equation under periodic boundary conditions:-i\\dot u=\\Delta u+V(x)*u+\\ep \\frac{\\p F}{\\p \\bar u}(x,u,\\bar u) ;\\quad u=u(t,x),\\;x\\in\\T^dwhere $V(x)=\\sum \\hat V(a)e^{i\\sc{a,x}}$ is an analytic function with $\\hat V$ real and $F$ is a real analytic function in $\\Re u$, $\\Im u$ and $x$. (This equation is a popular model for the `real' NLS equation, where instead of the convolution term $V*u$ we have the potential term $Vu$.) For $\\ep=0$ the equation is linear and has time--quasi-periodic solutions $u$,u(t,x)=\\sum_{s\\in \\AA}\\hat u_0(a)e^{i(|a|^2+\\hat V(a))t}e^{i\\sc{a,x}}, \\quad 0<|\\hat u_0(a)|\\le1,where $\\AA$ is any finite subset of $\\Z^d$. We shall treat $\\omega_a=|a|^2+\\hat V(a)$, $a\\in\\AA$, as free parameters in some domain $U\\subset\\R^{\\AA}$. This is a Hamiltonian system in infinite degrees of freedom, degenerate but with external parameters, and we shall describe a KAM-theory which, in particular, will have the following consequence: \\smallskip {\\it ...

  17. SOLUCIÓN DE LA ECUACIÓN NO LINEAL DE SCHRODINGER (1+1 EN UN MEDIO KERR

    Directory of Open Access Journals (Sweden)

    Francis Armando Segovia

    2015-12-01

    Full Text Available Se presenta un marco teórico y se muestra una simulación numérica de la propagación de solitones. Con especial atención a los solitones ópticos espaciales, se calcula analíticamente el perfil de solitón correspondiente a la ecuación Schrodinger no-lineal para un medio Kerr. Los resultados muestran que los solitones ópticos son pulsos estables cuya forma y espectro son preservados en grandes distancias.Solution of the nonlinear Schrodinger equation (1+1 in a Kerr mediumABSTRACTThis document presents a theoretical framework and shows a numerical simulation for the propagation of solitons. With special attention to the spatial optical solitons, we calculates analytically the profile of solitón corresponding to the non-linear Schrodinger equation for a Kerr medium. The results show that the optical solitons are stable pulses whose shape and spectrum are preserved at great distances.Keywords: nonlinear optics, nonlinear Schrodinger equation, solitons.

  18. PERSAMAAN SCHRODINGER D-DIMENSI BAGIAN SUDUT POTENSIAL POSCHL-TELLER HIPERBOLIK TERDEFORMASI Q PLUS ROSEN-MORSE TRIGONOMETRI MENGGUNAKAN METODE NIKIFOROV-UVAROV

    Directory of Open Access Journals (Sweden)

    S. Suparmi

    2016-11-01

    Full Text Available Metode Nikivarof Uvarov merupakan metode penyelesaian persamaan diferensial orde dua dengan mengubah persamaan diferensial orde dua yang umum (persamaan Schrodinger menjadi persamaan diferensial tipe hipergeometrik melalui substitusi variabel yang sesuai untuk memperoleh eigen value dan fungsi gelombang bagian sudut. Penelitian ini merupakan studi literatur untuk menyelesaikan persamaan Schrodinger D-dimensi bagian sudut dengan potensial Poschl-Teller Hiperbolik Terdeformasi q plus Rosen Morse Trigonometri Terdeformasi q menggunakan metode Nikiforov-Uvarov (NU. Pada penelitian ini bertujuan untuk mengetahui bagaimana fungsi gelombang bagian sudut persamaan schrodinger D-dimensi  untuk potensial Poschl-Teller Hiperbolik Terdeformasi q plus Rosen Morse Trigonometri Terdeformasi q menggunakan metode Nikiforov-Uvarov (NU.Nikivarof Uvarov is a method to solve second order differential equations by changing general second order differential equation to hyper-geometric differential equation type through substituting relevant variable to obtain eigenvalues and the angle of wave function. This is a literature study to solve the D-dimensional Schrodinger equation with a corner section q Deformed Hyperbolic Poschl Teller plus q Deformed Trigonometric Rosen-Morse Potential using Nikiforov-Uvarov (NU. This study aims to determine the way the angle of wave function of D-dimensional Schrodinger equation for q-Deformed Hyperbolic Poschl Teller plus q Deformed  Trigonometric Rosen-Morse Potential using Nikiforov-Uvarov (NU. 

  19. Generalized NLS hierarchies from rational W algebras

    International Nuclear Information System (INIS)

    Toppan, F.

    1993-11-01

    Finite rational W algebras are very natural structures appearing in coset constructions when a Kac-Moody subalgebra is factored out. The problem of relating these algebras to integrable hierarchies of equations is studied by showing how to associate to a rational W algebra its corresponding hierarchy. Two examples are worked out, the sl(2)/U(1) coset, leading to the Non-Linear Schroedinger hierarchy, and the U(1) coset of the Polyakov-Bershadsky W algebra, leading to a 3-field representation of the KP hierarchy already encountered in the literature. In such examples a rational algebra appears as algebra of constraints when reducing a KP hierarchy to a finite field representation. This fact arises the natural question whether rational algebras are always associated to such reductions and whether a classification of rational algebras can lead to a classification of the integrable hierarchies. (author). 19 refs

  20. NLS-RARα promotes proliferation and inhibits differentiation in HL-60 cells.

    Science.gov (United States)

    Hu, Xiu-Xiu; Zhong, Liang; Zhang, Xi; Gao, Yuan-Mei; Liu, Bei-Zhong

    2014-01-01

    A unique mRNA produced in leukemic cells from a t(15;17) acute promyelocytic leukemia (APL) patient encodes a fusion protein between the retinoic acid receptor α (RARα) and a myeloid gene product called PML. Studies have reported that neutrophil elastase (NE) cleaves bcr-1-derived PML-RARα in early myeloid cells, leaving only the nuclear localization signal (NLS) of PML attached to RARα. The resultant NLS-RARα fusion protein mainly localizes to, and functions within, the cell nucleus. It is speculated that NLS-RARα may act in different ways from the wild-type RARα, but its biological characteristics have not been reported. This study takes two approaches. Firstly, the NLS-RARα was silenced with pNLS-RARα-shRNA. The mRNA and protein expression of NLS-RARα were detected by RT-PCR and Western blot respectively. Cell proliferation in vitro was assessed by MTT assay. Flow cytometry (FCM) was used to detect the differentiation of cells. Secondly, the NLS-RARα was over-expressed by preparation of recombinant adenovirus HL-60/pAd-NLS-RARα. The assays of mRNA and protein expression of NLS-RARα, and cell proliferation, were as above. By contrast, cell differentiation was stimulated by all trans retinoic acid (ATRA) (2.5µmol/L) at 24h after virus infection of pAd-NLS-RARα, and then detected by CD11b labeling two days later. The transcription and translation of C-MYC was detected in HL-60/pAd-NLS-RARα cells which treated by ATRA. Our results showed that compared to the control groups, the expression of NLS-RARα was significantly reduced in the HL-60/pNLS-RARα-shRNA cells, and increased dramatically in the HL-60/pAd-NLS-RARα cells. The proliferation was remarkably inhibited in the HL-60/pNLS-RARα-shRNA cells in a time-dependent manner, but markedly promoted in the HL-60/pAd-NLS-RARα cells. FCM outcome revealed the differentiation increased in HL-60/pNLS-RARα-shRNA cells, and decreased in the HL-60/pAd-NLS-RARα cells treated with 2.5µmol/L ATRA. The

  1. The Neutrosophic Logic View to Schrodinger's Cat Paradox, Revisited

    Directory of Open Access Journals (Sweden)

    Florentin Smarandache

    2008-07-01

    Full Text Available The present article discusses Neutrosophic logic view to Schrodinger's cat paradox. We argue that this paradox involves some degree of indeterminacy (unknown which Neutrosophic logic can take into consideration, whereas other methods including Fuzzy logic cannot. To make this proposition clear, we revisit our previous paper by offering an illustration using modified coin tossing problem, known as Parrondo's game.

  2. Dynamics of breathers in discrete nonlinear Schrodinger models

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Johansson, Magnus; Aubry, Serge

    1998-01-01

    We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized...

  3. Torsional Newton-Cartan geometry and the Schrodinger algebra

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan

    2015-01-01

    We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version

  4. Boundary triples for Schrodinger operators with singular interactions on hypersurfaces

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Langer, M.; Lotoreichik, Vladimir

    2016-01-01

    Roč. 7, č. 2 (2016), s. 290-302 ISSN 2220-8054 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : boundary triple * Weyl function * Schrodinger operator * singular potential * delta-interaction * hypersurface Subject RIV: BE - Theoretical Physics

  5. Schrodinger cat state generation using a slow light

    International Nuclear Information System (INIS)

    Ham, B. S.; Kim, M. S.

    2003-01-01

    We show a practical application of giant Kerr nonlinearity to quantum information processing based on superposition of two distinct macroscopic states- Schrodinger cat state. The giant Kerr nonlinearity can be achieved by using electromagnetically induced transparency, in which light propagation should be slowed down so that a pi-phase shift can be easily obtained owing to increased interaction time.

  6. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

    Science.gov (United States)

    Zhang, H.; Tian, X.

    2017-12-01

    The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

  7. 33 CFR 151.33 - Certificates needed to carry Category C Oil-like NLS.

    Science.gov (United States)

    2010-07-01

    ... Inspection endorsed to allow the NLS to be carried in that cargo tank, and if the ship engages in a foreign... unless the ship has a Certificate of Inspection endorsed to allow the NLS to be carried in that cargo... Environmental Protection to the Antarctic Treaty as it Pertains to Pollution from Ships Noxious Liquid Substance...

  8. Generic singular continuous spectrum for ergodic Schr\\"odinger operators

    OpenAIRE

    Avila, Artur; Damanik, David

    2004-01-01

    We consider Schr\\"odinger operators with ergodic potential $V_\\omega(n)=f(T^n(\\omega))$, $n \\in \\Z$, $\\omega \\in \\Omega$, where $T:\\Omega \\to \\Omega$ is a non-periodic homeomorphism. We show that for generic $f \\in C(\\Omega)$, the spectrum has no absolutely continuous component. The proof is based on approximation by discontinuous potentials which can be treated via Kotani Theory.

  9. The exact rogue wave recurrence in the NLS periodic setting via matched asymptotic expansions, for 1 and 2 unstable modes

    Science.gov (United States)

    Grinevich, P. G.; Santini, P. M.

    2018-04-01

    The focusing Nonlinear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, the main physical mechanism for the generation of rogue (anomalous) waves (RWs) in Nature. In this paper we investigate the x-periodic Cauchy problem for NLS for a generic periodic initial perturbation of the unstable constant background solution, in the case of N = 1 , 2 unstable modes. We use matched asymptotic expansion techniques to show that the solution of this problem describes an exact deterministic alternate recurrence of linear and nonlinear stages of MI, and that the nonlinear RW stages are described by the N-breather solution of Akhmediev type, whose parameters, different at each RW appearance, are always given in terms of the initial data through elementary functions. This paper is motivated by a preceding work of the authors in which a different approach, the finite gap method, was used to investigate periodic Cauchy problems giving rise to RW recurrence.

  10. On the nonexistence of degenerate phase-shift discrete solitons in a dNLS nonlocal lattice

    Science.gov (United States)

    Penati, T.; Sansottera, M.; Paleari, S.; Koukouloyannis, V.; Kevrekidis, P. G.

    2018-05-01

    We consider a one-dimensional discrete nonlinear Schrödinger (dNLS) model featuring interactions beyond nearest neighbors. We are interested in the existence (or nonexistence) of phase-shift discrete solitons, which correspond to four-site vortex solutions in the standard two-dimensional dNLS model (square lattice), of which this is a simpler variant. Due to the specific choice of lengths of the inter-site interactions, the vortex configurations considered present a degeneracy which causes the standard continuation techniques to be non-applicable. In the present one-dimensional case, the existence of a conserved quantity for the soliton profile (the so-called density current), together with a perturbative construction, leads to the nonexistence of any phase-shift discrete soliton which is at least C2 with respect to the small coupling ɛ, in the limit of vanishing ɛ. If we assume the solution to be only C0 in the same limit of ɛ, nonexistence is instead proved by studying the bifurcation equation of a Lyapunov-Schmidt reduction, expanded to suitably high orders. Specifically, we produce a nonexistence criterion whose efficiency we reveal in the cases of partial and full degeneracy of approximate solutions obtained via a leading order expansion.

  11. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease.

    Science.gov (United States)

    Yang, Li; Hu, Chunhua; Li, Na; Zhang, Jiayin; Yan, Jiawen; Deng, Ziniu

    2011-01-01

    The COOH terminal of pthA encoding three nuclear localizing signals (NLS) was amplified by polymerase chain reaction (PCR) from the plasmid of Xanthomonas axonopodis pv. citri, the pathogen of citrus canker disease. Then the sense and antisense strands of the nls were cloned into pBI121 vector. pthA-nls driven by the CaMV35 s promoter was transferred into sweet orange via Agrobacterium -mediated transformation. Successful integration was confirmed by PCR and Southern blotting, and 12 sense-nls (nls (+)) and 9 antisense-nls (nls (-)) transgenic clones were obtained. The expression of nls fragment was analyzed by RT-PCR, Real time q-PCR and Western blotting, in which the specific NLS protein was detected only in nls (+) transgenic clones. In an in vitro assay, when pin-puncture inoculation was performed with 2.5 × 10(7) cfu/ml of bacterial solution, the nls (+) transgenic clones showed no typical lesion development, while typical symptoms were observed in the wild types and the nls (-) transgenic clones. In vivo assay results indicated that the nls (+) transgenic clones showed less disease incidence, in comparison with the wild types and the nls (-) transgenic clones, when pin-puncture inoculation was performed with 10(4)-10(5) cfu/ml. The minimum disease incidence was 23.3% for 'Sucarri' sweet orange and 33.3% for 'Bingtang' sweet orange. When 10(4)-10(7) cfu/ml of pathogen was spray inoculated, the nls (+) transgenic clones did not show any symptom, and even the concentration raised to 10(9) cfu/ml, the disease incidence was 20-80%, while the wild types and the nls (-) transgenic clones had 100% disease development with whatever concentration of inoculum. Two transgenic clones were confirmed to be resistant to citrus canker disease in the repeated inoculation. The results suggested that the transformation of nls sense strands may offer an effective way to acquire resistance to citrus canker disease.

  12. Generalized Sturmian Solutions for Many-Particle Schrödinger Equations

    DEFF Research Database (Denmark)

    Avery, John; Avery, James Emil

    2004-01-01

    The generalized Sturmian method for obtaining solutions to the many-particle Schrodinger equation is reviewed. The method makes use of basis functions that are solutions of an approximate Schrodinger equation with a weighted zeroth-order potential. The weighting factors are especially chosen so...

  13. Quantum field theory in flat Robertson-Walker space-time functional Schrodinger picture

    International Nuclear Information System (INIS)

    Pi, S.Y.

    1990-01-01

    Quantum field theory in Robertson-Walker space-time is intrinsically time-dependent and the functional Schrodinger picture provides a useful description. This paper discusses free and self-interacting bosonic quantum field theories: Schrodinger picture quantization, time-dependent Gaussian approximations based on variational principles describing time evolution of pure and mixed states, and renormalizability of the Schrodinger picture. The technique introduced can be used to study various dynamical questions in early universe processes

  14. On a quaternionic generalisation of the Riccati differential equation

    OpenAIRE

    Kravchenko, Viktor; Kravchenko, Vladislav; Williams, Benjamin

    2001-01-01

    A quaternionic partial differential equation is shown to be a generalisation of the Riccati ordinary differential equation and its relationship with the Schrodinger equation is established. Various approaches to the problem of finding particular solutions are explored, and the generalisations of two theorems of Euler on the Riccati differential equation, which correspond to the quaternionic equation, are given.

  15. An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions

    International Nuclear Information System (INIS)

    Li Hong-Min; Li Yu-Qi; Chen Yong

    2014-01-01

    An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)

  16. The NLS-Based Nonlinear Grey Multivariate Model for Forecasting Pollutant Emissions in China

    Directory of Open Access Journals (Sweden)

    Ling-Ling Pei

    2018-03-01

    Full Text Available The relationship between pollutant discharge and economic growth has been a major research focus in environmental economics. To accurately estimate the nonlinear change law of China’s pollutant discharge with economic growth, this study establishes a transformed nonlinear grey multivariable (TNGM (1, N model based on the nonlinear least square (NLS method. The Gauss–Seidel iterative algorithm was used to solve the parameters of the TNGM (1, N model based on the NLS basic principle. This algorithm improves the precision of the model by continuous iteration and constantly approximating the optimal regression coefficient of the nonlinear model. In our empirical analysis, the traditional grey multivariate model GM (1, N and the NLS-based TNGM (1, N models were respectively adopted to forecast and analyze the relationship among wastewater discharge per capita (WDPC, and per capita emissions of SO2 and dust, alongside GDP per capita in China during the period 1996–2015. Results indicated that the NLS algorithm is able to effectively help the grey multivariable model identify the nonlinear relationship between pollutant discharge and economic growth. The results show that the NLS-based TNGM (1, N model presents greater precision when forecasting WDPC, SO2 emissions and dust emissions per capita, compared to the traditional GM (1, N model; WDPC indicates a growing tendency aligned with the growth of GDP, while the per capita emissions of SO2 and dust reduce accordingly.

  17. The Development of a Consumer Input Program for the National Library Service for the Blind and Physically Handicapped (NLS/BPH) and Network Libraries. Final Report.

    Science.gov (United States)

    Cavenaugh, David

    This document presents a review of the current consumer relations activites of the National Library Service (NLS) for the Blind and Physically Handicapped of the Library of Congress, and an overall plan to improve NLS receipt of user suggestions, comments, opinions, or complaints through libraries which form the nationwide NLS distribution system.…

  18. The discrete symmetry of the N=2 supersymmetric modified NLS hierarchy

    International Nuclear Information System (INIS)

    Sorin, A.

    1996-01-01

    A few new N=2 superintegrable mappings in the (1|2) superspace are proposed and their origin is analyzed. Using one of them, acting like the discrete symmetry transformation of the N=2 supersymmetric modified NLS hierarchy, the recursion operator and Hamiltonian structures of the hierarchy are constructed

  19. Finite energy wave signals of extremal amplitude in the spatial NLS-dynamics

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Andonowati, A.

    2006-01-01

    With the aim to find extremal properties of extreme waves, we consider waves of maximal crest (and wave) height in the model of the spatial NLS-dynamics. Using the two motion invariants momentum and Hamiltonian as constraints, we show that so-called cornered solitons provide the maximal crest

  20. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  1. Multiple roles for nuclear localization signal (NLS, aa 442-472) of receptor interacting protein 3 (RIP3)

    International Nuclear Information System (INIS)

    Li Mei; Feng Shanshan; Wu Mian

    2008-01-01

    RIP3, a Ser/Thr kinase of RIP (Receptor Interacting Protein) family, is recruited to the TNFR1 signaling complex through RIP and has been shown to mediate apoptosis induction and NF-κB activation. RIP3 is a nucleocytoplasmic shuttling protein and its unconventional nuclear localization signal (NLS, 442-472 aa) is sufficient to trigger apoptosis in the nucleus. In this study, we demonstrate that this NLS exhibits several other roles besides apoptotic function. Firstly, this NLS was found to be required for both RIP3-induced apoptosis and RIP3-mediated NF-κB activation. Next, similar to RHIM motif (RIP homotypic interaction motif), NLS of RIP3 was found to be involved in RIP3-RIP interaction. Furthermore, this NLS was found to be both sufficient and necessary for RIP3 self-association. Our primary data also showed that RIP3 might form a homodimer within cells, and its apoptotic activity may not be required for this dimerization, rather the intactness of NLS determines RIP3-induced apoptosis, since a point mutation at amino acid residue 452 (Ile to Ala) within NLS greatly reduced its apoptotic ability, despite that RIP3 point mutant RIP3/I452A is able to dimerize with wild type RIP3 or itself

  2. Generalization of the Dirac’s Equation and Sea

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Newton's second law is motion equation in classic mechanics that does not say anything about the nature of force. The equivalent formulations and their extensions such as Lagrangian and Hamiltonian do not explain about mechanism of converting Potential energy to Kinetic energy and Vice versa....... In quantum mechanics, Schrodinger equation is similar to Newton's second law in classic mechanics. Quantum mechanics is also extension of Newtonian mechanics to atomic and subatomic scales and relativistic mechanics is extension of Newtonian mechanics to high velocities near to velocity of light too....... Schrodinger equation is not a relativistic equation, because it is not invariant under Lorentz transformations. Dirac expanded The Schrodinger equation by presenting Dirac Sea and founded relativistic quantum mechanics. In this paper by reconsidering the Dirac Sea and his equation, the structure of photon...

  3. Global Well-Posedness for Cubic NLS with Nonlinear Damping

    KAUST Repository

    Antonelli, Paolo

    2010-11-04

    We study the Cauchy problem for the cubic nonlinear Schrödinger equation, perturbed by (higher order) dissipative nonlinearities. We prove global in-time existence of solutions for general initial data in the energy space. In particular we treat the energy-critical case of a quintic dissipation in three space dimensions. © Taylor & Francis Group, LLC.

  4. Symbolic-computation study of the perturbed nonlinear Schrodinger model in inhomogeneous optical fibers

    International Nuclear Information System (INIS)

    Tian Bo; Gao Yitian

    2005-01-01

    A realistic, inhomogeneous fiber in the optical communication systems can be described by the perturbed nonlinear Schrodinger model (also named as the normalized nonlinear Schrodinger model with periodically varying coefficients, dispersion managed nonlinear Schrodinger model or nonlinear Schrodinger model with variable coefficients). Hereby, we extend to this model a direct method, perform symbolic computation and obtain two families of the exact, analytic bright-solitonic solutions, with or without the chirp respectively. The parameters addressed include the shape of the bright soliton, soliton amplitude, inverse width of the soliton, chirp, frequency, center of the soliton and center of the phase of the soliton. Of optical and physical interests, we discuss some previously-published special cases of our solutions. Those solutions could help the future studies on the optical communication systems. ms

  5. Construction of two-dimensional Schrodinger operator with given scattering amplitude at fixed energy

    International Nuclear Information System (INIS)

    Novikov, R.G.

    1986-01-01

    The classical necessary properties of the scattering amplitude (reciprocity and unitarity) are, provided its L 2 norm is small, sufficient for the existence of a two-dimensional Schrodinger operator with the given scattering amplitude at fixed energy

  6. Semiclassical limit and well-posedness of nonlinear Schrodinger-Poisson systems

    Directory of Open Access Journals (Sweden)

    Hailiang Li

    2003-09-01

    Full Text Available This paper concerns the well-posedness and semiclassical limit of nonlinear Schrodinger-Poisson systems. We show the local well-posedness and the existence of semiclassical limit of the two models for initial data with Sobolev regularity, before shocks appear in the limit system. We establish the existence of a global solution and show the time-asymptotic behavior of a classical solutions of Schrodinger-Poisson system for a fixed re-scaled Planck constant.

  7. Remarks on the spectral theory for the multiparticle-type Schrodinger operator

    International Nuclear Information System (INIS)

    Yafaev, D.R.

    1985-01-01

    Mourre's method is used to prove the limiting absorption principle for the multiparticle Schrodinger operator under the same assumptions on the pair potentials as in the two-particle problem. It is shown that at high energies this principle is valid under wider conditions than on the whole spectral axis. The scattering theory for a Schrodinger operator whose potential decays at infinity in an essentially anisotropic manner is constructed in analogy with the three-particle problem

  8. Solution of the time-dependent Schrodinger equation for highly symmetric potentials

    Czech Academy of Sciences Publication Activity Database

    Schmidt, B.; Kaprálová-Žďánská, Petra Ruth

    2000-01-01

    Roč. 127, 2-3 (2000), s. 290-308 ISSN 0010-4655 Institutional research plan: CEZ:AV0Z4040901 Keywords : DISCRETE VARIABLE REPRESENTATIONS * FILTER DIAGONALIZATION * MOLECULAR-DYNAMICS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.090, year: 2000

  9. Solution of the schrodinger equation in one dimension by simple method for a simple step potential

    International Nuclear Information System (INIS)

    Ertik, H.

    2005-01-01

    The coefficients of the transmission and reflection for the simple-step barrier potential were calculated by a simple method. Their values were entirely different from those often encountered in the literature. Especially in the case that the total energy is equal to the barrier potential, the value of 0,20 for the reflection coefficient was obtained whereas this is zero in the literature. This may be considered as an interesting point

  10. Solutions of the Schrodinger Equation Using Approximate Nucleon-Nucleon and Lambda-Nucleon Potentials.

    Science.gov (United States)

    Banerjee, S. N.; Chakraborty, S. N.

    1980-01-01

    Presents the outline of an approach related to the teaching of the chapter on bound and scattering states in a short-range potential, which forms a standard part of an undergraduate quantum mechanics course or nuclear physics course. (HM)

  11. General, Interactive Computer Program for the Solution of the Schrodinger Equation

    Science.gov (United States)

    Griffin, Donald C.; McGhie, James B.

    1973-01-01

    Discusses an interactive computer algorithm which allows beginning students to solve one- and three-dimensional quantum problems. Included is an example of the Thomas-Fermi-Dirac central field approximation. (CC)

  12. Schrodinger Equation Solutions that Lead to the Solution for the Hydrogen Atom

    Science.gov (United States)

    Newhouse, Paul F.; McGill, K.C.

    2004-01-01

    Two exercises that would provide beginning quantum theory students with an introduction to more advanced quantum mechanical treatments, especially the hydrogen atom are given. The exercises are stepwise in difficulty, leading naturally to the full hydrogen atom development and greatly extend the pedagogy of most multidimensional Cartesian systems…

  13. Spike-layer solutions to nonlinear fractional Schrodinger equations with almost optimal nonlinearities

    Directory of Open Access Journals (Sweden)

    Jinmyoung Seok

    2015-07-01

    Full Text Available In this article, we are interested in singularly perturbed nonlinear elliptic problems involving a fractional Laplacian. Under a class of nonlinearity which is believed to be almost optimal, we construct a positive solution which exhibits multiple spikes near any given local minimum components of an exterior potential of the problem.

  14. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2017-01-01

    Roč. 96, č. 1 (2017), č. článku 012127. ISSN 2469-9926 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-Hermitian * PT symmetric * bound states Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 2.925, year: 2016

  15. AKNS hierarchy, Darboux transformation and conservation laws of the 1D nonautonomous nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhao Dun; Zhang Yujuan; Lou Weiwei; Luo Honggang

    2011-01-01

    By constructing nonisospectral Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy, we investigate the nonautonomous nonlinear Schroedinger (NLS) equations which have been used to describe the Feshbach resonance management in matter-wave solitons in Bose-Einstein condensate and the dispersion and nonlinearity managements for optical solitons. It is found that these equations are some special cases of a new integrable model of nonlocal nonautonomous NLS equations. Based on the Lax pairs, the Darboux transformation and conservation laws are explored. It is shown that the local external potentials would break down the classical infinite number of conservation laws. The result indicates that the integrability of the nonautonomous NLS systems may be nontrivial in comparison to the conventional concept of integrability in the canonical case.

  16. Allowable graphs of the nonlinear Schrödinger equation and their ...

    Indian Academy of Sciences (India)

    Bich Nguyen

    2017-11-20

    Nov 20, 2017 ... Non-linear Schrödinger equation; graphs; characteristic polynomial; .... Allowable graphs of the NLS and their applications. 795 ...... nonlinear Schroödinger equation, J. Algebra Appl. 16 (2017) 37 pp., https://doi.org/10.1142/.

  17. Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations

    International Nuclear Information System (INIS)

    Basak, S.; Chowdhury, A.R.

    1987-01-01

    The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way

  18. On Solutions for Linear and Nonlinear Schrödinger Equations with Variable Coefficients: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Gabriel Amador

    2016-05-01

    Full Text Available In this work, after reviewing two different ways to solve Riccati systems, we are able to present an extensive list of families of integrable nonlinear Schrödinger (NLS equations with variable coefficients. Using Riccati equations and similarity transformations, we are able to reduce them to the standard NLS models. Consequently, we can construct bright-, dark- and Peregrine-type soliton solutions for NLS with variable coefficients. As an important application of solutions for the Riccati equation with parameters, by means of computer algebra systems, it is shown that the parameters change the dynamics of the solutions. Finally, we test numerical approximations for the inhomogeneous paraxial wave equation by the Crank-Nicolson scheme with analytical solutions found using Riccati systems. These solutions include oscillating laser beams and Laguerre and Gaussian beams.

  19. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  20. Classification of homoclinic rogue wave solutions of the nonlinear Schrödinger equation

    Science.gov (United States)

    Osborne, A. R.

    2014-01-01

    Certain homoclinic solutions of the nonlinear Schrödinger (NLS) equation, with spatially periodic boundary conditions, are the most common unstable wave packets associated with the phenomenon of oceanic rogue waves. Indeed the homoclinic solutions due to Akhmediev, Peregrine and Kuznetsov-Ma are almost exclusively used in scientific and engineering applications. Herein I investigate an infinite number of other homoclinic solutions of NLS and show that they reduce to the above three classical homoclinic solutions for particular spectral values in the periodic inverse scattering transform. Furthermore, I discuss another infinity of solutions to the NLS equation that are not classifiable as homoclinic solutions. These latter are the genus-2N theta function solutions of the NLS equation: they are the most general unstable spectral solutions for periodic boundary conditions. I further describe how the homoclinic solutions of the NLS equation, for N = 1, can be derived directly from the theta functions in a particular limit. The solutions I address herein are actual spectral components in the nonlinear Fourier transform theory for the NLS equation: The periodic inverse scattering transform. The main purpose of this paper is to discuss a broader class of rogue wave packets1 for ship design, as defined in the Extreme Seas program. The spirit of this research came from D. Faulkner (2000) who many years ago suggested that ship design procedures, in order to take rogue waves into account, should progress beyond the use of simple sine waves. 1An overview of other work in the field of rogue waves is given elsewhere: Osborne 2010, 2012 and 2013. See the books by Olagnon and colleagues 2000, 2004 and 2008 for the Brest meetings. The books by Kharif et al. (2008) and Pelinovsky et al. (2010) are excellent references.

  1. Darboux–Bäcklund transformations, dressing & impurities in multi-component NLS

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Panagiota, E-mail: p.adamopoulou@hw.ac.uk [Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Doikou, Anastasia, E-mail: a.doikou@hw.ac.uk [Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Papamikos, Georgios, E-mail: g.papamikos@reading.ac.uk [Department of Mathematics and Statistics, University of Reading, Reading RG6 6AX (United Kingdom)

    2017-05-15

    We consider the discrete and continuous vector non-linear Schrödinger (NLS) model. We focus on the case where space-like local discontinuities are present, and we are primarily interested in the time evolution on the defect point. This in turn yields the time part of a typical Darboux–Bäcklund transformation. Within this spirit we then explicitly work out the generic Bäcklund transformation and the dressing associated to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and integral representation respectively.

  2. Relaxation parameter estimation and comparison of NLS and LLS methods for DCE MRI in the cervix

    DEFF Research Database (Denmark)

    Mariager, Christian; Kallehauge, Jesper; Tanderup, Kari

    Dynamic Contrast Enhanced (DCE) MRI is a promising tool for tumor treatment planning. However, prior knowledge of the T1 value within each tumor voxel is needed to utilize this technique. Therefore, a T1 relaxation measurement is performed before the DCE experiment to establish a baseline, before...... any injection of contrast agent. This T1 relaxation measurement is often performed using a variable flip angle spoiled gradient recalled echo (SPGR) sequence. T1 can then be estimated using either a linear least squares (LLS) or a non-linear least squares (NLS) fitting algorithm....

  3. Darboux–Bäcklund transformations, dressing & impurities in multi-component NLS

    International Nuclear Information System (INIS)

    Adamopoulou, Panagiota; Doikou, Anastasia; Papamikos, Georgios

    2017-01-01

    We consider the discrete and continuous vector non-linear Schrödinger (NLS) model. We focus on the case where space-like local discontinuities are present, and we are primarily interested in the time evolution on the defect point. This in turn yields the time part of a typical Darboux–Bäcklund transformation. Within this spirit we then explicitly work out the generic Bäcklund transformation and the dressing associated to both discrete and continuous spectrum, i.e. the Darboux transformation is expressed in the matrix and integral representation respectively.

  4. Non-accretive Schrodinger operators and exponential decay of their eigenfunctions

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Raymond, N.; Royer, J.; Siegl, Petr

    2017-01-01

    Roč. 221, č. 2 (2017), s. 779-802 ISSN 0021-2172 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : non-self-adjoint electromagnetic Schrodinger operators * Dirichlet realisation * Agmon-type exponential decay Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.796, year: 2016

  5. Spectral analysis of a class of Schrodinger operators exhibiting a parameter-dependent spectral transition

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel; Khrabustovskyi, A.; Tater, Miloš

    2016-01-01

    Roč. 49, č. 16 (2016), s. 165302 ISSN 1751-8113 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operator * eigenvalue estimates * spectral transition Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016

  6. Solitary excitations in discrete two-dimensional nonlinear Schrodinger models with dispersive dipole-dipole interactions

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Johansson, M.

    1998-01-01

    The dynamics of discrete two-dimensional nonlinear Schrodinger models with long-range dispersive interactions is investigated. In particular, we focus on the cases where the dispersion arises from a dipole-dipole interaction, assuming the dipole moments at each lattice site to be aligned either...

  7. On the bound states of Schrodinger operators with -interactions on conical surfaces

    Czech Academy of Sciences Publication Activity Database

    Lotoreichik, Vladimir; Ourmieres-Bonafos, T.

    2016-01-01

    Roč. 41, č. 6 (2016), s. 999-1028 ISSN 0360-5302 Institutional support: RVO:61389005 Keywords : conical and hyperconical surfaces * delta-interaction * existence of bound states * Schrodinger operator * spectral asymptotics Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  8. Localized excitations in discrete nonlinear Schrodinger systems: Effects of nonlocal dispersive interactions and noise

    DEFF Research Database (Denmark)

    Rasmussen, Kim; Christiansen, Peter Leth; Johansson, Magnus

    1998-01-01

    A one-dimensional discrete nonlinear Schrodinger (DNLS) model with the power dependence, r(-s) on the distance r, of dispersive interactions is proposed. The stationary states of the system are studied both analytically and numerically. Two kinds of trial functions, exp-like and sech-like are exp...

  9. Uniform decay for a local dissipative Klein-Gordon-Schrodinger type system

    Directory of Open Access Journals (Sweden)

    Marilena N. Poulou

    2012-10-01

    Full Text Available In this article, we consider a nonlinear Klein-Gordon-Schrodinger type system in $mathbb{R}^n$, where the nonlinear term exists and the damping term is effective. We prove the existence and uniqueness of a global solution and its exponential decay. The result is achieved by using the multiplier technique.

  10. Construction of wave operator for two-dimensional Klein-Gordon-Schrodinger systems with Yukawa coupling

    Directory of Open Access Journals (Sweden)

    Kai Tsuruta

    2013-05-01

    Full Text Available We prove the existence of the wave operator for the Klein-Gordon-Schrodinger system with Yukawa coupling. This non-linearity type is below Strichartz scaling, and therefore classic perturbation methods will fail in any Strichartz space. Instead, we follow the "first iteration method" to handle these critical non-linearities.

  11. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models

    International Nuclear Information System (INIS)

    Baron, H.E.; Zakrzewski, W.J.

    2016-01-01

    We investigate the validity of collective coordinate approximations to the scattering of two solitons in several classes of (1+1) dimensional field theory models. We consider models which are deformations of the sine-Gordon (SG) or the nonlinear Schrödinger (NLS) model which posses soliton solutions (which are topological (SG) or non-topological (NLS)). Our deformations preserve their topology (SG), but change their integrability properties, either completely or partially (models become ‘quasi-integrable’). As the collective coordinate approximation does not allow for the radiation of energy out of a system we look, in some detail, at how the approximation fares in models which are ‘quasi-integrable’ and therefore have asymptotically conserved charges (i.e. charges Q(t) for which Q(t→−∞)=Q(t→∞)). We find that our collective coordinate approximation, based on geodesic motion etc, works amazingly well in all cases where it is expected to work. This is true for the physical properties of the solitons and even for their quasi-conserved (or not) charges. The only time the approximation is not very reliable (and even then the qualitative features are reasonable, but some details are not reproduced well) involves the processes when the solitons come very close together (within one width of each other) during their scattering.

  12. On localization in the discrete nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1993-01-01

    For some values of the grid resolution, depending on the nonlinearity, the discrete nonlinear Schrodinger equation with arbitrary power nonlinearity can be approximated by the corresponding continuum version of the equation. When the discretization becomes too coarse, the discrete equation exhibits...

  13. Reduction of the equation for lower hybrid waves in a plasma to a nonlinear Schroedinger equation

    Science.gov (United States)

    Karney, C. F. F.

    1977-01-01

    Equations describing the nonlinear propagation of waves in an anisotropic plasma are rarely exactly soluble. However it is often possible to make approximations that reduce the exact equations into a simpler equation. The use of MACSYMA to make such approximations, and so reduce the equation describing lower hybrid waves into the nonlinear Schrodinger equation which is soluble by the inverse scattering method is demonstrated. MACSYMA is used at several stages in the calculation only because there is a natural division between calculations that are easiest done by hand, and those that are easiest done by machine.

  14. XMM-Newton observation of the NLS1 galaxy Ark 564. I. Spectral analysis of the time-average spectrum

    NARCIS (Netherlands)

    Papadakis, I.E.; Brinkmann, W.; Page, M.J.; McHardy, I.; Uttley, P.

    2007-01-01

    Context: .We present the results from the spectral analysis of the time-average spectrum of the Narrow Line Seyfert 1 (NLS1) galaxy Ark 564 from a ~100 ks XMM-Newton observation. Aims: .Our aim is to characterize accurately the shape of the time-average, X-ray continuum spectrum of the source and

  15. The Library of Congress: Evaluation of the NLS/BPH Braille and Audio Magazine Program. Final Project Report.

    Science.gov (United States)

    Bosma and Associates International, Seattle, WA.

    This final report presents an independent formative and summative evaluation of the National Library Services for the Blind and Physically Handicapped (NLS/BPH) braille and audio magazine program. In this program, 77 magazines are distributed directly to subscribers, with 43 magazines available on audio flexible discs and 34 magazines available in…

  16. Equivalence of the Weyl, Coulomb, unitary, and covariant gauges in the functional Schrodinger picture

    International Nuclear Information System (INIS)

    Namgung, W.

    1991-01-01

    The well known requirement that physical theories should be gauge independent is not so apparent in the actual calculation of gauge theories, especially in the perturbative approach. In this paper the authors show that the Weyl, Coulomb, and unitary gauges of the scalar QED are manifestly equivalent in the context of the functional Schrodinger picture. Further, the three gauge conditions are shown equivalent to the covariant gauge in the way that they correspond to some specific cases of the latter

  17. Spectral Theory for Schrodinger Operators with delta-Interactions Supported on Curves in R-3

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Frank, R. L.; Kuhn, C.; Lotoreichik, Vladimir; Rohleder, J.

    2017-01-01

    Roč. 18, č. 4 (2017), s. 1305-1347 ISSN 1424-0637 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : spectral theory * scattering theory * self-adjoint Schrodinger operators Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.599, year: 2016

  18. On $L^p$ Estimates for the Time-Dependent Schrodinger Operator on $L^2$

    CERN Document Server

    Mortad, M H

    2006-01-01

    Let L denote the time-dependent Schrodinger operator in n space variables. We consider a variety of Lebesgue norms for functions u on R^{n+1}, and prove or disprove estimates for such norms of u in terms of the L^2-norms of u and Lu. The results have implications for self-adjo intness of operators of the form L+V where V is a multiplication operator. The proofs are based mainly on the Strichartz-type inequalities.

  19. Approximation of Schrodinger operators with delta-interactions supported on hypersurfaces

    Czech Academy of Sciences Publication Activity Database

    Behrndt, J.; Exner, Pavel; Holzmann, M.; Lotoreichik, Vladimir

    2017-01-01

    Roč. 290, 8-9 (2017), s. 1215-1248 ISSN 0025-584X R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Schrodinger operators * delta-interactions supported on hypersurfaces * approximation by scaled regular potentials * norm resolvent convergence * spectral convergence Subject RIV: BE - Theoretical Physics OBOR OECD: Pure mathematics Impact factor: 0.742, year: 2016

  20. Nonlinear Schroedinger equation with U(p,q) isotopical group

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The properties of the nonlinear Schroedinger equation (NLS) with U(1,1) isogroup are considered in detail. This example illustrates the essential difference between the system and the well-known ''vector'' NLS, i.e. the large set of allowed boundary conditions on the fields that leads to a rich set of solutions of the system. Four types of boundary conditions and related soliton solutions are considered. The Bohr-Sommerfeld quantization allows to interpret them in terms of ''drops'' and ''bubbles'' as bound states of a large number of constituent bosons subject to the thermodynamical relations for gas mixtures. The U(1,1) system under the vanishing boundary conditions may be considered as continuous analog of the Hubbard model and therefore the paper is concluded by studying the inverse scattering equations for this case [ru

  1. Cycle O(CY1991) NLS trade studies and analyses report. Book 2, part 2: Propulsion

    Science.gov (United States)

    Cronin, R.; Werner, M.; Bonson, S.; Spring, R.; Houston, R.

    1992-01-01

    This report documents the propulsion system tasks performed in support of the National Launch System (NLS) Cycle O preliminary design activities. The report includes trades and analyses covering the following subjects: (1) Maximum Tank Stretch Study; (2) No LOX Bleed Performance Analysis; (3) LOX Bleed Trade Study; (4) LO2 Tank Pressure Limits; (5) LOX Tank Pressurization System Using Helium; (6) Space Transportation Main Engine (STME) Heat Exchanger Performance; (7) LH2 Passive Recirculation Performance Analysis; (8) LH2 Bleed/Recirculation Study; (9) LH2 Tank Pressure Limits; and (10) LH2 Pressurization System. For each trade study an executive summary and a detailed trade study are provided. For the convenience of the reader, a separate section containing a compilation of only the executive summaries is also provided.

  2. An approach to rogue waves through the cnoidal equation

    Science.gov (United States)

    Lechuga, Antonio

    2014-05-01

    Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.

  3. Conservative, unconditionally stable discretization methods for Hamiltonian equations, applied to wave motion in lattice equations modeling protein molecules

    Science.gov (United States)

    LeMesurier, Brenton

    2012-01-01

    A new approach is described for generating exactly energy-momentum conserving time discretizations for a wide class of Hamiltonian systems of DEs with quadratic momenta, including mechanical systems with central forces; it is well-suited in particular to the large systems that arise in both spatial discretizations of nonlinear wave equations and lattice equations such as the Davydov System modeling energetic pulse propagation in protein molecules. The method is unconditionally stable, making it well-suited to equations of broadly “Discrete NLS form”, including many arising in nonlinear optics. Key features of the resulting discretizations are exact conservation of both the Hamiltonian and quadratic conserved quantities related to continuous linear symmetries, preservation of time reversal symmetry, unconditional stability, and respecting the linearity of certain terms. The last feature allows a simple, efficient iterative solution of the resulting nonlinear algebraic systems that retain unconditional stability, avoiding the need for full Newton-type solvers. One distinction from earlier work on conservative discretizations is a new and more straightforward nearly canonical procedure for constructing the discretizations, based on a “discrete gradient calculus with product rule” that mimics the essential properties of partial derivatives. This numerical method is then used to study the Davydov system, revealing that previously conjectured continuum limit approximations by NLS do not hold, but that sech-like pulses related to NLS solitons can nevertheless sometimes arise.

  4. Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays

    Science.gov (United States)

    Ma, Li-Yuan; Ji, Jia-Liang; Xu, Zong-Wei; Zhu, Zuo-Nong

    2018-03-01

    We study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term. Project supported by the National Natural Science Foundation of China (Grant Nos. 11671255 and 11701510), the Ministry of Economy and Competitiveness of Spain (Grant No. MTM2016-80276-P (AEI/FEDER, EU)), and the China Postdoctoral Science Foundation (Grant No. 2017M621964).

  5. The damped wave equation with unbounded damping

    Czech Academy of Sciences Publication Activity Database

    Freitas, P.; Siegl, Petr; Tretter, C.

    2018-01-01

    Roč. 264, č. 12 (2018), s. 7023-7054 ISSN 0022-0396 Institutional support: RVO:61389005 Keywords : damped wave equation * unbounded damping * essential spectrum * quadratic operator funciton with unbounded coefficients * Schrodinger operators with complex potentials Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.988, year: 2016

  6. Hydrogen equation in spaces of arbitrary dimensions

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2015-01-01

    We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z / r. This was not done in a number of relatively recent papers (see [1] and references therein). Therefore, some results obtained in [1] seem to be doubtful. Several required considerations in the area are mentioned. (paper)

  7. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    Energy Technology Data Exchange (ETDEWEB)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  8. Positive ground state solutions to Schrodinger-Poisson systems with a negative non-local term

    Directory of Open Access Journals (Sweden)

    Yan-Ping Gao

    2015-04-01

    Full Text Available In this article, we study the Schrodinger-Poisson system $$\\displaylines{ -\\Delta u+u-\\lambda K(x\\phi(xu=a(x|u|^{p-1}u, \\quad x\\in\\mathbb{R}^3, \\cr -\\Delta\\phi=K(xu^{2},\\quad x\\in\\mathbb{R}^3, }$$ with $p\\in(1,5$. Assume that $a:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ and $K:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ are nonnegative functions and satisfy suitable assumptions, but not requiring any symmetry property on them, we prove the existence of a positive ground state solution resolved by the variational methods.

  9. The Davey-Stewartson Equation on the Half-Plane

    Science.gov (United States)

    Fokas, A. S.

    2009-08-01

    The Davey-Stewartson (DS) equation is a nonlinear integrable evolution equation in two spatial dimensions. It provides a multidimensional generalisation of the celebrated nonlinear Schrödinger (NLS) equation and it appears in several physical situations. The implementation of the Inverse Scattering Transform (IST) to the solution of the initial-value problem of the NLS was presented in 1972, whereas the analogous problem for the DS equation was solved in 1983. These results are based on the formulation and solution of certain classical problems in complex analysis, namely of a Riemann Hilbert problem (RH) and of either a d-bar or a non-local RH problem respectively. A method for solving the mathematically more complicated but physically more relevant case of boundary-value problems for evolution equations in one spatial dimension, like the NLS, was finally presented in 1997, after interjecting several novel ideas to the panoply of the IST methodology. Here, this method is further extended so that it can be applied to evolution equations in two spatial dimensions, like the DS equation. This novel extension involves several new steps, including the formulation of a d-bar problem for a sectionally non-analytic function, i.e. for a function which has different non-analytic representations in different domains of the complex plane. This, in addition to the computation of a d-bar derivative, also requires the computation of the relevant jumps across the different domains. This latter step has certain similarities (but is more complicated) with the corresponding step for those initial-value problems in two dimensions which can be solved via a non-local RH problem, like KPI.

  10. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Science.gov (United States)

    Andrews, Joel F.; Sykora, Landon J.; Barik-Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington’s, Parkinson’s diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S). PMID:22504047

  11. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    International Nuclear Information System (INIS)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna; Barik, Sailen; Shevde, Lalita A.; Samant, Rajeev S.

    2012-01-01

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  12. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  13. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Joel F.; Sykora, Landon J.; Barik Letostak, Tiasha; Menezes, Mitchell E.; Mitra, Aparna [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Barik, Sailen [Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science, Cleveland State University, Cleveland, OH (United States); Shevde, Lalita A. [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States); Samant, Rajeev S., E-mail: rsamant@usouthal.edu [Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL (United States)

    2012-06-10

    HSP40 family member MRJ (DNAJB6) has been in the spot light for its relevance to Huntington's, Parkinson's diseases, limb-girdle muscular dystrophy, placental development, neural stem cells, cell cycle and malignancies such as breast cancer and melanoma. This gene has two spliced variants coding for 2 distinct proteins with significant homology. However, MRJ(L) (large variant) is predominantly localized to the nucleus whereas MRJ(S) (small variant) is predominantly cytoplasmic. Interestingly MRJ(S) translocates to the nucleus in response to heat shock. The classical heat shock proteins respond to crises (stress) by increasing the number of molecules, usually by transcriptional up-regulation. Our studies imply that a quick increase in the molar concentration of MRJ in the nuclear compartment is a novel method by which MRJ responds to stress. We found that MRJ(S) shows NLS (nuclear localization signal) independent nuclear localization in response to heat shock and hypoxia. The specificity of this response is realized due to lack of such response by MRJ(S) when challenged by other stressors, such as some cytokines or UV light. Deletion analysis has allowed us to narrow down on a 20 amino acid stretch at the C-terminal region of MRJ(S) as a potential stress sensing region. Functional studies indicated that constitutive nuclear localization of MRJ(S) promoted attributes of malignancy such as proliferation and invasiveness overall indicating distinct phenotypic characteristics of nuclear MRJ(S).

  14. Dynamics of partial differential equations

    CERN Document Server

    Wayne, C Eugene

    2015-01-01

    This book contains two review articles on the dynamics of partial differential equations that deal with closely related topics but can be read independently. Wayne reviews recent results on the global dynamics of the two-dimensional Navier-Stokes equations. This system exhibits stable vortex solutions: the topic of Wayne's contribution is how solutions that start from arbitrary initial conditions evolve towards stable vortices. Weinstein considers the dynamics of localized states in nonlinear Schrodinger and Gross-Pitaevskii equations that describe many optical and quantum systems. In this contribution, Weinstein reviews recent bifurcations results of solitary waves, their linear and nonlinear stability properties, and results about radiation damping where waves lose energy through radiation.   The articles, written independently, are combined into one volume to showcase the tools of dynamical systems theory at work in explaining qualitative phenomena associated with two classes of partial differential equ...

  15. Local well-posedness for a higher order nonlinear Schrodinger equation in Sobolev spaces of negative indices

    Directory of Open Access Journals (Sweden)

    Xavier Carvajal

    2004-01-01

    Full Text Available We prove that the initial value problem associated with $$ partial_tu+ialpha partial^2_x u+Beta partial^3_x u +igamma|u|^2u = 0, quad x,t in mathbb{R}, $$ is locally well-posed in $H^s$ for $s>-1/4$.

  16. PT symmetric models in more dimensions and solvable square-well versions of their angular Schrodinger equations

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2003-01-01

    Roč. 36, č. 28 (2003), s. 7825-7838 ISSN 0305-4470 R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z1048901 Keywords : non-Hermitian Hamiltonians * quantum-mechanics Subject RIV: BE - Theoretical Physics Impact factor: 1.357, year: 2003

  17. 'Parity effect' based generation of Schrodinger cat like states in high-Q microcavity

    International Nuclear Information System (INIS)

    Napoli, A.; Messina, A.

    1999-01-01

    It has been very recently shown that the dynamics of a two-level atom coupled to a bimodal degenerate cavity field by two-photon processes, is characterized by an interesting nonclassical dynamical behavior christened ''parity effect''. This effect consists in the fact that if the cavity field is prepared leaving one mode in its vacuum state and exciting the other one in a generic linear combination of even number states only, or odd number states only, then there exists an appropriate intensity-dependent interval of time after which the bimodal cavity exhibits macroscopically different parity-dependent quantum features. We show that this nonclassical effect is at the origin of the possibility of generating Schrodinger cat like states of the bimodal field appropriately selecting its initial conditions

  18. Computation of Nonlinear Backscattering Using a High-Order Numerical Method

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2001-01-01

    The nonlinear Schrodinger equation (NLS) is the standard model for propagation of intense laser beams in Kerr media. The NLS is derived from the nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. In this study we use a fourth-order finite-difference method supplemented by special two-way artificial boundary conditions (ABCs) to solve the NLH as a boundary value problem. Our numerical methodology allows for a direct comparison of the NLH and NLS models and for an accurate quantitative assessment of the backscattered signal.

  19. The Schroedinger equation for central power law potentials and the classical theory of ordinary linear differential equations of the second order

    International Nuclear Information System (INIS)

    Lima, M.L.; Mignaco, J.A.

    1985-01-01

    It is shown that the rational power law potentials in the two-body radial Schrodinger equations admit a systematic treatment available from the classical theory of ordinary linear differential equations of the second order. The resulting potentials come into families evolved from equations having a fixed number of elementary regular singularities. As a consequence, relations are found and discussed among the several potentials in a family. (Author) [pt

  20. A Masterpiece in a New Genre: The Rhetorical Negotiation of Two Audiences in Schrodinger's "What Is Life?"

    Science.gov (United States)

    Ceccarelli, Leah

    1994-01-01

    Argues that, by identifying physicist Erwin Schrodinger's book "What is Life?" as inspirational community-forming discourse, it is possible to recognize the rhetorical artistry of his negotiation between two audiences. Notes that the book builds common ground, applies productive ambiguity at a key point of collision, and skillfully…

  1. On the absence of resonances for Schrodinger operators with non-trapping potentials in the classical limit

    International Nuclear Information System (INIS)

    Klein, M.

    1985-01-01

    We provide bounds on resolvents of dilated Schrodinger operators via exterior scaling. This depends crucially on a non-trapping condition on the potential which has a clear interpretation in classical mechanics. These bounds are a powerful tool to prove absence of resonances due to the tail of the potential in the shape resonance problem

  2. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    International Nuclear Information System (INIS)

    Alvarez-Estrada, R.F.

    1979-01-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly

  3. A partial solution for Feynman's problem: A new derivation of the Weyl equation

    Directory of Open Access Journals (Sweden)

    Atsushi Inoue

    2000-07-01

    Full Text Available Associating classical mechanics to a system of partial differential equations, we give a procedure for Feynman-type quantization of a "Schrodinger-type equation with spin." Mathematically, we construct a "good parametrix" for the Weyl equation with an external electromagnetic field. Main ingredients are (i a new interpretation of the matrix structure using superanalysis and (ii another interpretation of the method of characteristics as a quantization procedure of Feynman type.

  4. Geometry, Heat Equation and Path Integrals on the Poincare Upper Half-Plane

    OpenAIRE

    Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University

    1988-01-01

    Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation ∂f/∂t=Δ_Hf is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrodinger equation is also valid for our case.

  5. Identification of a novel NLS of herpes simplex virus type 1 (HSV-1) VP19C and its nuclear localization is required for efficient production of HSV-1.

    Science.gov (United States)

    Li, You; Zhao, Lei; Wang, Shuai; Xing, Junji; Zheng, Chunfu

    2012-09-01

    Herpes simplex virus type 1 (HSV-1) triplex is a complex of three protein subunits, consisting of two copies of VP23 and one copy of VP19C. Here, we identified a non-classical NLS of VP19C between aa 50 and 61, and the nuclear import of VP19C was mediated by RanGTP and importin β1-, but not importin α5-, dependent pathway. Additionally, recombinant virus harbouring this NLS mutation (NLSm) replicates less efficiently as wild-type. These data strongly suggested that the nuclear import of VP19C is required for efficient HSV-1 production.

  6. Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit

    International Nuclear Information System (INIS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2015-01-01

    Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form V(|ϕ| 2 ). We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrodinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c → +∞. (paper)

  7. Chaotic synchronization of symbolic information in the discrete nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pando L, C.L.

    2003-08-01

    We have studied the discrete nonlinear Schrodinger equation (DNLSE) with on-site defects and periodic boundary conditions. When the array dynamics becomes chaotic, the otherwise quasiperiodic amplitude correlations between the oscillators are destroyed. However, we show that synchronization of symbolic information of suitable amplitude signals is possible in this hamiltonian system. (author)

  8. Discrete Localized States and Localization Dynamics in Discrete Nonlinear Schrödinger Equations

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yu.B.; Mezentsev, V.K.

    1996-01-01

    Dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity is taken into account. Stability properties of the stationary solutions...

  9. Classification of kink type solutions to the extended derivative nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Wyller, J.; Fla, T.; Juul Rasmussen, J.

    1998-01-01

    The Raman Extended Derivative Non Linear Schrodinger (R-EDNLS) equation which models single mode propagation in optical fibers, is shown to possess travelling and stationary kink envelope solutions of monotonic and oscillatory type. These structures have been called optical shocks in analogy...

  10. The Hardy inequality and the heat equation with magnetic field in any dimension

    Czech Academy of Sciences Publication Activity Database

    Cazacu, C.; Krejčiřík, David

    2016-01-01

    Roč. 41, č. 7 (2016), s. 1056-1088 ISSN 0360-5302 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Aharonov-Bohm magnetic field * Hardy inequality * heat equation * large time behaviour of solutions * magnetic Schrodinger operator Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  11. Randomly forced CGL equation stationary measures and the inviscid limit

    CERN Document Server

    Kuksin, S

    2003-01-01

    We study a complex Ginzburg-Landau (CGL) equation perturbed by a random force which is white in time and smooth in the space variable~$x$. Assuming that $\\dim x\\le4$, we prove that this equation has a unique solution and discuss its asymptotic in time properties. Next we consider the case when the random force is proportional to the square root of the viscosity and study the behaviour of stationary solutions as the viscosity goes to zero. We show that, under this limit, a subsequence of solutions in question converges to a nontrivial stationary process formed by global strong solutions of the nonlinear Schr\\"odinger equation.

  12. Multiple soliton production and the Korteweg-de Vries equation.

    Science.gov (United States)

    Hershkowitz, N.; Romesser, T.; Montgomery, D.

    1972-01-01

    Compressive square-wave pulses are launched in a double-plasma device. Their evolution is interpreted according to the Korteweg-de Vries description of Washimi and Taniuti. Square-wave pulses are an excitation for which an explicit solution of the Schrodinger equation permits an analytical prediction of the number and amplitude of emergent solitons. Bursts of energetic particles (pseudowaves) appear above excitation voltages greater than an electron thermal energy, and may be mistaken for solitons.

  13. The quadratic-form identity for constructing Hamiltonian structures of the NLS-MKdV hierarchy and multi-component Levi hierarchy

    International Nuclear Information System (INIS)

    Dong Huanhe; Wang Xiangrong

    2008-01-01

    The trace identity is extended to the quadratic-form identity. The Hamiltonian structures of the NLS-MKdV hierarchy, and integrable coupling of multi-component Levi hierarchy are obtained by the quadratic-form identity. The method can be used to produce the Hamiltonian structures of the other integrable couplings or multi-component hierarchies

  14. On the quantum inverse problem for a new type of nonlinear Schroedinger equation for Alfven waves in plasma

    International Nuclear Information System (INIS)

    Sen, S.; Roy Chowdhury, A.

    1989-06-01

    The nonlinear Alfven waves are governed by the Vector Derivative nonlinear Schroedinger (VDNLS) equation, which for parallel or quasi parallel propagation reduces to the Derivative Nonlinear Schroedinger (DNLS) equation for the circularly polarized waves. We have formulated the Quantum Inverse problem for a new type of Nonlinear Schroedinger Equation which has many properties similar to the usual NLS problem but the structure of classical and quantum R matrix are distinctly different. The commutation rules of the scattering data are obtained and the Algebraic Bethe Ansatz is formulated to derive the eigenvalue equation for the energy of the excited states. 10 refs

  15. Topological characteristics of the spectrum of the Schrodinger operator in a magnetic field and in a weak potential

    International Nuclear Information System (INIS)

    Lyskova, A.S.

    1986-01-01

    This paper studies the two-dimensional Schrodinger operator H in a periodic magnetic field B(x,y) and in an electric field with periodic potential V(x,y). It is assumed that the functions B(x,y) and V(x,y) are periodic with respect to some lattice in R 2 and that the m agnetic flux through a unit cell is an integral number. The operator H is represented as a direct integral over the two-dimensional torus of the reciprocal lattice of elliptic self-adjoint operators H /sub p1/, /sub p2/ which possess a discrete spectrum lambda /sub j/ (p 1 ,p 2 ), j = 0,1,2.... On the basis of an exactly integrable case - the Schrodinger operator in a constant magnetic field - perturbation theory is used to investigate the typical dispersion laws lambda /sub j/ (p 1 ,p 2 ) and establish their topological characteristics (quantum numbers). A theorem is proved: In the general case, the Schrodinger operator has a coutable number of dispersion laws with arbitrary quantum numbers in no way related to one another or to thflux of the external magnetic field

  16. Low-mode truncation methods in the sine-Gordon equation

    International Nuclear Information System (INIS)

    Xiong Chuyu.

    1991-01-01

    In this dissertation, the author studies the chaotic and coherent motions (i.e., low-dimensional chaotic attractor) in some near integrable partial differential equations, particularly the sine-Gordon equation and the nonlinear Schroedinger equation. In order to study the motions, he uses low mode truncation methods to reduce these partial differential equations to some truncated models (low-dimensional ordinary differential equations). By applying many methods available to low-dimensional ordinary differential equations, he can understand the low-dimensional chaotic attractor of PDE's much better. However, there are two important questions one needs to answer: (1) How many modes is good enough for the low mode truncated models to capture the dynamics uniformly? (2) Is the chaotic attractor in a low mode truncated model close to the chaotic attractor in the original PDE? And how close is? He has developed two groups of powerful methods to help to answer these two questions. They are the computation methods of continuation and local bifurcation, and local Lyapunov exponents and Lyapunov exponents. Using these methods, he concludes that the 2N-nls ODE is a good model for the sine-Gordon equation and the nonlinear Schroedinger equation provided one chooses a 'good' basis and uses 'enough' modes (where 'enough' depends on the parameters of the system but is small for the parameter studied here). Therefore, one can use 2N-nls ODE to study the chaos of PDE's in more depth

  17. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  18. Fractional analysis for nonlinear electrical transmission line and nonlinear Schroedinger equations with incomplete sub-equation

    Science.gov (United States)

    Fendzi-Donfack, Emmanuel; Nguenang, Jean Pierre; Nana, Laurent

    2018-02-01

    We use the fractional complex transform with the modified Riemann-Liouville derivative operator to establish the exact and generalized solutions of two fractional partial differential equations. We determine the solutions of fractional nonlinear electrical transmission lines (NETL) and the perturbed nonlinear Schroedinger (NLS) equation with the Kerr law nonlinearity term. The solutions are obtained for the parameters in the range (0<α≤1) of the derivative operator and we found the traditional solutions for the limiting case of α =1. We show that according to the modified Riemann-Liouville derivative, the solutions found can describe physical systems with memory effect, transient effects in electrical systems and nonlinear transmission lines, and other systems such as optical fiber.

  19. The Maxwell-Lorentz Model for optical Pulses

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Brio, Moysey

    2007-01-01

    Dynamics of optical pulses, especially of ultra short femtosecond pulses, are of great technological and theoretical interest. The dynamics of optical pulses is usually studied using the nonlinear Schrodinger (NLS) equation model. While such approach works surprisingly well for description of pulse...

  20. Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates are cytotoxic to human acute myeloid leukemia (AML) cells displaying the CD123"+/CD131"− phenotype of leukemia stem cells

    International Nuclear Information System (INIS)

    Gao, Catherine; Leyton, Jeffrey V.; Schimmer, Aaron D.; Minden, Mark; Reilly, Raymond M.

    2016-01-01

    Chimeric IgG_1 monoclonal antibody CSL360 recognizes the CD123"+/CD131"− phenotype expressed by leukemic stem cells (LSC). Auger electron-emitting "1"1"1In-DTPA-NLS-CSL360 radioimmunoconjugates incorporating nuclear translocation sequence (NLS) peptides bound specifically to Raji cells transfected with CD123 and exhibited a K_D of 11 nmols/L in a competition receptor-binding assay using CD123-transfected CHO cells. "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and transported to the nucleus of human AML-5 myeloid leukemia cells. The clonogenic survival of AML-5 cells was reduced by "1"1"1In-DTPA-NLS-CSL360 up to 3.7-fold. Isotype control "1"1"1In-DTPA-chIgG_1 was 2-fold less cytotoxic, and unlabeled CSL360, DTPA-NLS-CSL360 or free "1"1"1In acetate did not decrease cell survival. These results are promising for further evaluation of "1"1"1In-DTPA-NLS-CSL360 for Auger electron radioimmunotherapy of AML targeting the critical LSC subpopulation. - Highlights: • "1"1"1In-DTPA-NLS-CSL360 the CD123"+/CD131"− phenotype of leukemic stem cells (LSC). • "1"1"1In-DTPA-NLS-CSL360 was bound, internalized and imported into the nucleus of AML-5 leukemia cells. • "1"1"1In-DTPA-NLS-CSL360 reduced the clonogenic survival of AML-5 leukemia cells by 4-fold.

  1. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  2. New exact travelling wave solutions for the generalized nonlinear Schroedinger equation with a source

    International Nuclear Information System (INIS)

    Abdou, M.A.

    2008-01-01

    The generalized F-expansion method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for the generalized nonlinear Schrodinger equation with a source. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in physics

  3. On the stability of soliton solution in NLS-type general field model

    International Nuclear Information System (INIS)

    Chakrabarti, S.; Nayyar, A.H.

    1982-08-01

    A model incorporating the nonlinear Schroedinger equation and its generalizations is considered and the stability of its periodic-in-time solutions under the restriction of a fixed charge Q is analysed. It is shown that the necessary condition for the stability is given by the inequality deltaQ/deltaν<0, where ν is the parameter of periodicity of the solution in time. In particular, one specific class of Lagrangians is considered and, in addition, the sufficient conditions for the stability of the soliton solutions are also determined. This study thus examines both the necessary and the sufficient conditions for the stability of the solutions of nonlinear Schroedinger equation and some of its generalizations. (author)

  4. The analytical evolution of NLS solitons due to the numerical discretization error

    Science.gov (United States)

    Hoseini, S. M.; Marchant, T. R.

    2011-12-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank-Nicolson scheme and a scheme, due to Taha [1], based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t^{-{1\\over 2}}, which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank-Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found.

  5. The analytical evolution of NLS solitons due to the numerical discretization error

    International Nuclear Information System (INIS)

    Hoseini, S M; Marchant, T R

    2011-01-01

    Soliton perturbation theory is used to obtain analytical solutions describing solitary wave tails or shelves, due to numerical discretization error, for soliton solutions of the nonlinear Schrödinger equation. Two important implicit numerical schemes for the nonlinear Schrödinger equation, with second-order temporal and spatial discretization errors, are considered. These are the Crank–Nicolson scheme and a scheme, due to Taha, based on the inverse scattering transform. The first-order correction for the solitary wave tail, or shelf, is in integral form and an explicit expression is found for large time. The shelf decays slowly, at a rate of t -1/2 , which is characteristic of the nonlinear Schrödinger equation. Singularity theory, usually used for combustion problems, is applied to the explicit large-time expression for the solitary wave tail. Analytical results are then obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks. It is found that three different types of tail occur for the Crank–Nicolson and Taha schemes and that the Taha scheme exhibits some unusual symmetry properties, as the tails for left and right moving solitary waves are different. Optimal choices of the discretization parameters for the numerical schemes are also found, which minimize the amplitude of the solitary wave tail. The analytical solutions are compared with numerical simulations, and an excellent comparison is found. (paper)

  6. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-03-14

    Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein) as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  7. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: novel insights into the regulation of Rev nuclear import.

    LENUS (Irish Health Repository)

    Gu, Lili

    2011-01-01

    The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS) by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s) predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised.

  8. Intermolecular masking of the HIV-1 Rev NLS by the cellular protein HIC: Novel insights into the regulation of Rev nuclear import

    Directory of Open Access Journals (Sweden)

    Sheehy Noreen

    2011-03-01

    Full Text Available Abstract Background The HIV-1 regulatory protein Rev, which is essential for viral replication, mediates the nuclear export of unspliced viral transcripts. Rev nuclear function requires active nucleocytoplasmic shuttling, and Rev nuclear import is mediated by the recognition of its Nuclear Localisation Signal (NLS by multiple import factors, which include transportin and importin β. However, it remains unclear which nuclear import pathway(s predominate in vivo, and the cellular environment that modulates Rev nucleocytoplasmic shuttling remains to be characterised. Results In our study, we have identified the cellular protein HIC (Human I-mfa domain-Containing protein as a novel interactor of HIV-1 Rev. We demonstrate that HIC selectively interferes with Rev NLS interaction with importin β and impedes its nuclear import and function, but does not affect Rev nuclear import mediated by transportin. Hence, the molecular determinants mediating Rev-NLS recognition by importin β and transportin appear to be distinct. Furthermore, we have employed HIC and M9 M, a peptide specifically designed to inhibit the transportin-mediated nuclear import pathway, to characterise Rev nuclear import pathways within different cellular environments. Remarkably, we could show that in 293T, HeLa, COS7, Jurkat, U937, THP-1 and CEM cells, Rev nuclear import is cell type specific and alternatively mediated by transportin or importin β, in a mutually exclusive fashion. Conclusions Rev cytoplasmic sequestration by HIC may represent a novel mechanism for the control of Rev function. These studies highlight that the multivalent nature of the Rev NLS for different import receptors enables Rev to adapt its nuclear trafficking strategy.

  9. On the representation of contextual probabilistic dynamics in the complex Hilbert space: Linear and nonlinear evolutions, Schrodinger dynamics

    International Nuclear Information System (INIS)

    Khrennikov, A.

    2005-01-01

    We constructed the representation of contextual probabilistic dynamics in the complex Hilbert space. Thus dynamics of the wave function can be considered as Hilbert space projection of realistic dynamics in a pre space. The basic condition for representing the pre space-dynamics is the law of statistical conservation of energy-conservation of probabilities. The construction of the dynamical representation is an important step in the development of contextual statistical viewpoint of quantum processes. But the contextual statistical model is essentially more general than the quantum one. Therefore in general the Hilbert space projection of the pre space dynamics can be nonlinear and even irreversible (but it is always unitary). There were found conditions of linearity and reversibility of the Hilbert space dynamical projection. We also found conditions for the conventional Schrodinger dynamics (including time-dependent Hamiltonians). We remark that in general even the Schrodinger dynamics is based just on the statistical conservation of energy; for individual systems the law of conservation of energy can be violated (at least in our theoretical model)

  10. Importin alpha binding and nuclear localization of PARP-2 is dependent on lysine 36, which is located within a predicted classical NLS

    Directory of Open Access Journals (Sweden)

    Valovka Taras

    2008-07-01

    Full Text Available Abstract Background The enzymes responsible for the synthesis of poly-ADP-ribose are named poly-ADP-ribose polymerases (PARP. PARP-2 is a nuclear protein, which regulates a variety of cellular functions that are mainly controlled by protein-protein interactions. A previously described non-conventional bipartite nuclear localization sequence (NLS lies in the amino-terminal DNA binding domain of PARP-2 between amino acids 1–69; however, this targeting sequence has not been experimentally examined or validated. Results Using a site-directed mutagenesis approach, we found that lysines 19 and 20, located within a previously described bipartite NLS, are not required for nuclear localization of PARP-2. In contrast, lysine 36, which is located within a predicted classical monopartite NLS, was required for PARP-2 nuclear localization. While wild type PARP-2 interacted with importin α3 and to a very weak extent with importin α1 and importin α5, the mutant PARP-2 (K36R did not interact with importin α3, providing a molecular explanation why PARP-2 (K36R is not targeted to the nucleus. Conclusion Our results provide strong evidence that lysine 36 of PARP-2 is a critical residue for proper nuclear targeting of PARP-2 and consequently for the execution of its biological functions.

  11. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  12. Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials

    Science.gov (United States)

    Antonelli, Paolo; Michelangeli, Alessandro; Scandone, Raffaele

    2018-04-01

    We prove the existence of weak solutions in the space of energy for a class of nonlinear Schrödinger equations in the presence of a external, rough, time-dependent magnetic potential. Under our assumptions, it is not possible to study the problem by means of usual arguments like resolvent techniques or Fourier integral operators, for example. We use a parabolic regularisation, and we solve the approximating Cauchy problem. This is achieved by obtaining suitable smoothing estimates for the dissipative evolution. The total mass and energy bounds allow to extend the solution globally in time. We then infer sufficient compactness properties in order to produce a global-in-time finite energy weak solution to our original problem.

  13. Aplicación de la ecuacion de Schrodinger en heteroestructuras semiconductoras de baja dimensionalidad

    Directory of Open Access Journals (Sweden)

    Francis Armando Segovia

    2013-09-01

    Full Text Available The research presented in the following paper concerns condensed matter areas in the field of semiconductor physics. This research uses the basic principles of quantum mechanics, particularly effective mass approximation. The aim of this paper is to determine the energies of ground state as well as the energies of electron-hole transition when a semiconductor heterostructure GaAs-Ga1-xAlxAs is immersed in a barrier of Ga1-yAlyAs, by applying hydrostatic pressure. The methodology proposed in the present work analytically solves Schrödinger’s second-order differential equation to find solutions and allow determining the corresponding differential equation together with the energies of transition in the ground state. This is accomplished through the application of hydrostatic pressure. The main results were obtained using software package Mathematica 5.0. Results indicate a regime of strong confinement for small widths of the potential well in semiconductor heterostructures, where the confinement potential lessens with pressure for the charge-carrier function (electron-hole. However, the findings demonstrate that, in the regime of weak confinement, the effects of hydrostatic pressure on the heights of the barrier are more significant, and there is also a reduction in carrier energies.

  14. A method of solving simple harmonic oscillator Schroedinger equation

    Science.gov (United States)

    Maury, Juan Carlos F.

    1995-01-01

    A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.

  15. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  16. Generalized Robin Boundary Conditions, Robin-to-Dirichlet Maps, and Krein-Type Resolvent Formulas for Schr\\"odinger Operators on Bounded Lipschitz Domains

    OpenAIRE

    Gesztesy, Fritz; Mitrea, Marius

    2008-01-01

    We study generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schr\\"odinger operators on bounded Lipschitz domains in $\\bbR^n$, $n\\ge 2$. We also discuss the case of bounded $C^{1,r}$-domains, $(1/2)

  17. Existence and smoothness of solutions to second initial boundary value problems for Schrodinger systems in cylinders with non-smooth bases

    Directory of Open Access Journals (Sweden)

    Nguyen Manh Hung

    2008-03-01

    Full Text Available In this paper, we consider the second initial boundary value problem for strongly general Schrodinger systems in both the finite and the infinite cylinders $Q_T, 0

  18. Stability analysis of the soliton solutions for the generalized quintic derivative nonlinear Schrödinger equation

    Directory of Open Access Journals (Sweden)

    Chen Yue

    Full Text Available The propagation of hydrodynamic wave packets and media with negative refractive index is studied in a quintic derivative nonlinear Schrödinger (DNLS equation. The quintic DNLS equation describe the wave propagation on a discrete electrical transmission line. We obtain a Lagrangian and the invariant variational principle for quintic DNLS equation. By using a class of ordinary differential equation, we found four types of exact solutions of the quintic DNLS equation, which are kink-type solitary wave solution, antikink-type solitary wave solution, sinusoidal solitary wave solution, bell-type solitary wave solution. By applying the modulation instability to discuss stability analysis of the obtained solutions. Modulation instabilities of continuous waves and localized solutions on a zero background have been investigated. Keywords: Quintic derivative NLS equation, Solitary wave solutions, Mathematical physics methods, 2000 MR Subject Classification: 35G20, 35Q53, 37K10, 49S05, 76A60

  19. Breather management in the derivative nonlinear Schrödinger equation with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar); Malomed, Boris A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Huang, Tingwen [Texas A& M University at Qatar, P.O. Box 23874 Doha (Qatar)

    2015-04-15

    We investigate breather solutions of the generalized derivative nonlinear Schrödinger (DNLS) equation with variable coefficients, which is used in the description of femtosecond optical pulses in inhomogeneous media. The solutions are constructed by means of the similarity transformation, which reduces a particular form of the generalized DNLS equation into the standard one, with constant coefficients. Examples of bright and dark breathers of different orders, that ride on finite backgrounds and may be related to rogue waves, are presented. - Highlights: • Exact solutions of a generalized derivative NLS equation are obtained. • The solutions are produced by means of a transformation to the usual integrable equation. • The validity of the solutions is verified by comparing them to numerical counterparts. • Stability of the solutions is checked by means of direct simulations. • The model applies to the propagation of ultrashort pulses in optical media.

  20. Envelope compact and solitary pattern structures for the GNLS(m,n,p,q) equations

    International Nuclear Information System (INIS)

    Yan Zhenya

    2006-01-01

    In this Letter, to further understand the role of nonlinear dispersion in the generalized nonlinear Schrodinger equation, we introduce and study the generalized nonlinear Schrodinger equation with nonlinear dispersion (called GNLS(m,n,p,q) equation): iu t +a(u vertical bar u vertical bar n-1 ) xx +bu vertical bar u vertical bar m-1 +ic(u vertical bar u vertical bar p-1 ) xxx +id(u vertical bar u vertical bar q-1 ) x =0. Some new envelope compacton solutions and solitary pattern solutions of GNLS(m,n,p,q) equation are obtained via the gauge transformation and some direct ansatze. In particular, it is shown that GNLS(m,n,p,q) equation with linear dispersion gives rise to envelope compactons and solitary patterns, which implies that nonlinear dispersion is not necessary condition for GNLS(m,n,p,q) equation to admit envelope compactons and solitary patterns. Moreover, some unusually local conservation laws are presented for GNLS + (n,n,n,n) equation and GNLS - (n,n,n,n) equation, respectively

  1. Influenza A H3N2 subtype virus NS1 protein targets into the nucleus and binds primarily via its C-terminal NLS2/NoLS to nucleolin and fibrillarin

    Science.gov (United States)

    2012-01-01

    Background Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. Results Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. Conclusion NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin. PMID:22909121

  2. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  3. Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: a comparative study with protamine and lipofectamine.

    Science.gov (United States)

    Nematollahi, Mohammad Hadi; Torkzadeh-Mahanai, Masoud; Pardakhty, Abbas; Ebrahimi Meimand, Hossein Ali; Asadikaram, Gholamreza

    2017-10-28

    Non-viral gene delivery methods are considered due to safety and simplicity in human gene therapy. Since the use of cationic peptide and niosome represent a promising approach for gene delivery purposes we used recombinant fusion protein and cationic niosome as a gene carrier. A multi-domain fusion protein including nuclear localization motif (NLS) and two DNA-binding (Mu) domains, namely NLS-Mu-Mu (NMM) has been designed, cloned and expressed in E. coli DE3 strain. Afterward, the interested protein was purified by affinity chromatography. Binary vectors based on protein/DNA and ternary vectors based on protein/DNA/niosome were prepared. Protamine was used as a control. DNA condensing properties of NMM and protamine were evaluated by various experiments. Furthermore, we examined cytotoxicity, hemolysis and transfection potential of the binary and ternary complexes in HEK293T and MCF-7 cell lines. Protamine and Lipofectamine™2000 were used as positive controls, correspondingly. The recombinant NMM was expressed and purified successfully and DNA was condensed efficiently at charge ratios that were not harmful to cells. Peptidoplexes showed transfection efficiency (TE) but ternary complexes had higher TE. Additionally, NMM ternary complex was more efficient compared to protamine ternary vectors. Our results showed that niosomal ternary vector of NMM is a promising non-viral gene carrier to achieve an effective and safe carrier system for gene therapy.

  4. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  5. Lectures on exponential decay of solutions of second-order elliptic equations bounds on eigenfunctions of n-body schrodinger operations (MN-29)

    CERN Document Server

    Agmon, Shmuel

    2014-01-01

    Mathematical Notes, 29 Originally published in 1983. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

  6. One-dimensional Schrodinger equation with non-analytic potential V(x) = -g(2) exp (- vertical bar x vertical bar) and its exact Bessel-function solvability

    Czech Academy of Sciences Publication Activity Database

    Sasaki, R.; Znojil, Miloslav

    2016-01-01

    Roč. 49, č. 44 (2016), č. článku 445303. ISSN 1751-8113 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : non-analytic potentials * bound states * reflection and transmission * exactly solvable * orthogonality theorems * associated Hamiltonians * supersymmetry Subject RIV: BE - Theoretical Physics Impact factor: 1.857, year: 2016

  7. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 111In-NLS-7G3 radioimmunoconjugates

    International Nuclear Information System (INIS)

    Zereshkian, Arman; Leyton, Jeffrey V.; Cai, Zhongli; Bergstrom, Dane; Weinfeld, Michael; Reilly, Raymond M.

    2014-01-01

    Introduction: Leukemia stem cells (LSCs) are believed to be responsible for initiating and propagating acute myeloid leukemia (AML) and for causing relapse after treatment. Radioimmunotherapy (RIT) targeting these cells may improve the treatment of AML, but is limited by the low density of target epitopes. Our objective was to study a human polynucleotide kinase/phosphatase (hPNKP) inhibitor that interferes with DNA repair as a radiosensitizer for the Auger electron RIT agent, 111 In-NLS-7G3, which recognizes the CD123 + /CD131 - phenotype uniquely displayed by LSCs. Methods: The surviving fraction (SF) of CD123 + /CD131 - AML-5 cells exposed to 111 In-NLS-7G3 (33–266 nmols/L; 0.74 MBq/μg) or to γ-radiation (0.25-5 Gy) was determined by clonogenic assays. The effect of A12B4C3 (25 μmols/L) combined with 111 In-NLS-7G3 (16–66 nmols/L) or with γ-radiation (0.25–2 Gy) on the SF of AML-5 cells was assessed. The density of DNA double-strand breaks (DSBs) in the nucleus was measured using the γ-H2AX assay. Cellular dosimetry was estimated based on the subcellular distribution of 111 In-NLS-7G3 measured by cell fractionation. Results: Binding of 111 In-NLS-7G3 to AML-5 cells was reduced by 2.2-fold in the presence of an excess (1 μM) of unlabeled NLS-7G3, demonstrating specific binding to the CD123 + /CD131 - epitope. 111 In-NLS-7G3 reduced the SF of AML-5 cells from 86.1 ± 11.0% at 33 nmols/L to 10.5 ± 3.6% at 266 nmols/L. Unlabeled NLS-7G3 had no significant effect on the SF. Treatment of AML-5 cells with γ-radiation reduced the SF from 98.9 ± 14.9% at 0.25 Gy to 0.03 ± 0.1% at 5 Gy. A12B4C3 combined with 111 In-NLS-7G3 (16–66 nmols/L) enhanced the cytotoxicity up to 1.7-fold compared to treatment with radioimmunoconjugates alone and was associated with a 1.6-fold increase in DNA DSBs in the nucleus. A12B4C3 enhanced the cytotoxicity of γ-radiation (0.25–0.5 Gy) on AML-5 cells by up to 1.5-fold, and DNA DSBs were increased by 1.7-fold. Exposure to

  8. Modeling ultrashort electromagnetic pulses with a generalized Kadomtsev-Petviashvili equation

    Science.gov (United States)

    Hofstrand, A.; Moloney, J. V.

    2018-03-01

    In this paper we derive a properly scaled model for the nonlinear propagation of intense, ultrashort, mid-infrared electromagnetic pulses (10-100 femtoseconds) through an arbitrary dispersive medium. The derivation results in a generalized Kadomtsev-Petviashvili (gKP) equation. In contrast to envelope-based models such as the Nonlinear Schrödinger (NLS) equation, the gKP equation describes the dynamics of the field's actual carrier wave. It is important to resolve these dynamics when modeling ultrashort pulses. We proceed by giving an original proof of sufficient conditions on the initial pulse for a singularity to form in the field after a finite propagation distance. The model is then numerically simulated in 2D using a spectral-solver with initial data and physical parameters highlighting our theoretical results.

  9. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    Science.gov (United States)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  10. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  11. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  12. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  13. Backscattering and Nonparaxiality Arrest Collapse of Damped Nonlinear Waves

    Science.gov (United States)

    Fibich, G.; Ilan, B.; Tsynkov, S.

    2002-01-01

    The critical nonlinear Schrodinger equation (NLS) models the propagation of intense laser light in Kerr media. This equation is derived from the more comprehensive nonlinear Helmholtz equation (NLH) by employing the paraxial approximation and neglecting the backscattered waves. It is known that if the input power of the laser beam (i.e., L(sub 2) norm of the initial solution) is sufficiently high, then the NLS model predicts that the beam will self-focus to a point (i.e.. collapse) at a finite propagation distance. Mathematically, this behavior corresponds to the formation of a singularity in the solution of the NLS. A key question which has been open for many years is whether the solution to the NLH, i.e., the 'parent' equation, may nonetheless exist and remain regular everywhere, in particular for those initial conditions (input powers) that lead to blowup in the NLS. In the current study, we address this question by introducing linear damping into both models and subsequently comparing the numerical solutions of the damped NLH (boundary-value problem) with the corresponding solutions of the damped NLS (initial-value problem). Linear damping is introduced in much the same way as done when analyzing the classical constant-coefficient Helmholtz equation using the limiting absorption principle. Numerically, we have found that it provides a very efficient tool for controlling the solutions of both the NLH and NHS. In particular, we have been able to identify initial conditions for which the NLS solution does become singular. whereas the NLH solution still remains regular everywhere. We believe that our finding of a larger domain of existence for the NLH than that for the NLS is accounted for by precisely those mechanisms, that have been neglected when deriving the NLS from the NLH, i.e., nonparaxiality and backscattering.

  14. Spectrum of the linearized operator for the Ginzburg-Landau equation

    Directory of Open Access Journals (Sweden)

    Tai-Chia Lin

    2000-06-01

    Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.

  15. Persistence of solutions to nonlinear evolution equations in weighted Sobolev spaces

    Directory of Open Access Journals (Sweden)

    Xavier Carvajal Paredes

    2010-11-01

    Full Text Available In this article, we prove that the initial value problem associated with the Korteweg-de Vries equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq 2heta ge 2$ and the initial value problem associated with the nonlinear Schrodinger equation is well-posed in weighted Sobolev spaces $mathcal{X}^{s,heta}$, for $s geq heta geq 1$. Persistence property has been proved by approximation of the solutions and using a priori estimates.

  16. Schrodinger handbag model

    CERN Document Server

    Bell, J S

    1977-01-01

    The excitation of a nonrelativistic composite system, by a weakly interacting probe, is considered in the style of the properly covariant parton model. It is hoped in particular thereby to illuminated the handbag approximation. It is found that even for a confining potential such an approximation can sensibly be defined, and then describes correctly the poorly resolved deep inelastic scattering. The approximation is significantly improved (subasymptotically) by the suppression of the off-mass-shell displacement of the initial parton. (5 refs).

  17. Schrodinger's cat versus Darwin

    OpenAIRE

    Silagadze, Z. K.

    2009-01-01

    Sun Wu-k'ung, an immortal Monkey-King of Chaos learns modern physics from the Patriarch Bodhi and questions the Darwinian evolution. He finds that the modern physics indicates towards the intelligent design as a vastly more probably origin of humans than the random evolution by mutations and natural selection.

  18. Schrodinger's Uncertainty Principle?

    Indian Academy of Sciences (India)

    Research Institute,· mainly on applications of optical and statistical ... serves to be better known in the classroom. Let us recall the basic algebraic steps in the text book proof. We consider the wave function (which has a free real parameter a) (x + iap)1jJ == x1jJ(x) + ia( -in81jJ/8x) == 4>( x), The hat sign over x and p reminds ...

  19. The soliton solution of BBGKY quantum kinetic equations chain for different type particles system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Avazov, U.; Hassan, T.

    2006-12-01

    In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations

  20. Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Jing Hu

    2016-05-01

    Full Text Available To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD and a bifunctional R11 (RGD-NLS, which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100–280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18. More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector.

  1. (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect

    International Nuclear Information System (INIS)

    Li Jin-Yuan; Fang Nian-Qiao; Yuan Xiao-Bo; Zhang Ji; Xue Yu-Long; Wang Xue-Mu

    2016-01-01

    In the past few decades, the (1+1)-dimensional nonlinear Schrödinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrödinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given. (paper)

  2. Numerical Simulations of Light Bullets, Using The Full Vector, Time Dependent, Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1995-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.

  3. On modelling adiabatic N-soliton interactions and perturbations. Effects of external potentials

    International Nuclear Information System (INIS)

    Gerdjikov, V.; Baizakov, B.

    2005-01-01

    We analyze several perturbed versions of the complex Toda chain (CTC) in an attempt to describe the adiabatic N-soliton train interactions of the perturbed nonlinear Schrodinger equation (NLS). Particular types of perturbations, including quadratic and periodic external potentials are treated by both analytical and numerical means. We show that the perturbed CTC model provides a good description for the N-soliton interactions in the presence of a weak external potential. (authors)

  4. Paradoxical effects of Auger electron-emitting 111In-DTPA-NLS-CSL360 radioimmunoconjugates on hCD45+ cells in the bone marrow and spleen of leukemia-engrafted NOD/SCID or NRG mice

    International Nuclear Information System (INIS)

    Bergstrom, Dane; Leyton, Jeffrey V.; Zereshkian, Arman; Chan, Conrad; Cai, Zhongli; Reilly, Raymond M.

    2016-01-01

    Introduction: 111 In-DTPA-NLS-CSL360 radioimmunoconjugates (RIC) recognize the overexpression of the interleukin-3 receptor α-subchain (CD123) relative to the β-subchain (CD131) on leukemia stem cells (LSC). Our aim was to study Auger electron radioimmunotherapy (RIT) of acute myeloid leukemia (AML) with 111 In-DTPA-NLS-CSL360 in non-obese diabetic severe combined immunodeficiency (NOD/SCID) mice or NOD-Rag1 null IL2rγ null (NRG) mice engrafted with CD123 + human AML-5 cells. Methods: The toxicity of three doses of 111 In-DTPA-NLS-CSL360 (3.3–4.8 MBq; 11–15 μg each) injected i.v. every two weeks was studied in non-engrafted NOD/SCID or NRG mice pre-treated with 200 cGy of γ-radiation required for AML engraftment. Engraftment efficiency of (1–5) × 10 6 cells AML-5 cells inoculated i.v. into NOD/SCID or NRG mice was assessed by flow cytometric analysis for human CD45 + (hCD45 + ) cells in the bone marrow (BM) and spleen. AML-5 engrafted mice were treated with two or three doses (3.7 MBq; 10 μg each) every two weeks of 111 In-DTPA-NLS-CSL360, non-specific 111 In-DTPA-NLS-hIgG, unlabeled CSL360 (10 μg) or normal saline. The percentage of hCD45 + cells in the BM and spleen were measured at one week after completion of treatment. Results: 111 In-DTPA-NLS-CSL360 in combination with 200 cGy of γ-radiation caused an initial transient decrease in body weight in NOD/SCID but not in NRG mice. There were no hematological, liver or kidney toxicities. The spleen exhibited 13-fold lower engraftment efficiency than the BM in NOD/SCID mice inoculated with 1 × 10 6 cells but both organs were highly (>85%) engrafted in NRG mice. Unexpectedly, 111 In-DTPA-NLS-CSL360 or non-specific 111 In-DTPA-NLS-hIgG caused a paradoxical 1.5-fold increase (P < 0.0001) in the proportion of hCD45 + cells in the BM of NOD/SCID mice compared to normal saline treated mice. 111 In-DTPA-NLS-CSL360 reduced hCD45 + cells in the spleen by 3.0-fold compared to 111 In-DTPA-NLS-hIgG (P = 0

  5. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  6. ¹¹¹In-Bn-DTPA-nimotuzumab with/without modification with nuclear translocation sequence (NLS) peptides: an Auger electron-emitting radioimmunotherapeutic agent for EGFR-positive and trastuzumab (Herceptin)-resistant breast cancer.

    Science.gov (United States)

    Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M

    2012-08-01

    Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger

  7. Lower bound on the spectrum of the Schr\\"odinger operator in the plane with delta-potential supported by a curve

    OpenAIRE

    Lobanov, Igor; Lotoreichik, Vladimir; Popov, Igor

    2009-01-01

    We consider the Schr\\"odinger operator in the plane with delta-potential supported by a curve. For the cases of an infinite curve and a finite loop we give estimates on the lower bound of the spectrum expressed explicitly through the strength of the interaction and a parameter which characterizes geometry of the curve. Going further we cut the curve into finite number of pieces and estimate the bottom of the spectrum using the parameters for the pieces. As an application of the elaborated the...

  8. Inverse scattering transform for the vector nonlinear Schroedinger equation with nonvanishing boundary conditions

    International Nuclear Information System (INIS)

    Prinari, Barbara; Ablowitz, Mark J.; Biondini, Gino

    2006-01-01

    The inverse scattering transform for the vector defocusing nonlinear Schroedinger (NLS) equation with nonvanishing boundary values at infinity is constructed. The direct scattering problem is formulated on a two-sheeted covering of the complex plane. Two out of the six Jost eigenfunctions, however, do not admit an analytic extension on either sheet of the Riemann surface. Therefore, a suitable modification of both the direct and the inverse problem formulations is necessary. On the direct side, this is accomplished by constructing two additional analytic eigenfunctions which are expressed in terms of the adjoint eigenfunctions. The discrete spectrum, bound states and symmetries of the direct problem are then discussed. In the most general situation, a discrete eigenvalue corresponds to a quartet of zeros (poles) of certain scattering data. The inverse scattering problem is formulated in terms of a generalized Riemann-Hilbert (RH) problem in the upper/lower half planes of a suitable uniformization variable. Special soliton solutions are constructed from the poles in the RH problem, and include dark-dark soliton solutions, which have dark solitonic behavior in both components, as well as dark-bright soliton solutions, which have one dark and one bright component. The linear limit is obtained from the RH problem and is shown to correspond to the Fourier transform solution obtained from the linearized vector NLS system

  9. Excitation of multiphase waves of the nonlinear Schroedinger equation by capture into resonances

    International Nuclear Information System (INIS)

    Friedland, L.; Shagalov, A.G.

    2005-01-01

    A method for adiabatic excitation and control of multiphase (N-band) waves of the periodic nonlinear Schroedinger (NLS) equation is developed. The approach is based on capturing the system into successive resonances with external, small amplitude plane waves having slowly varying frequencies. The excitation proceeds from zero and develops in stages, as an (N+1)-band (N=0,1,2,...), growing amplitude wave is formed in the (N+1)th stage from an N-band solution excited in the preceding stage. The method is illustrated in simulations, where the excited multiphase waves are analyzed via the spectral approach of the inverse scattering transform method. The theory of excitation of 0- and 1-band NLS solutions by capture into resonances is developed on the basis of a weakly nonlinear version of Whitham's averaged variational principle. The phenomenon of thresholds on the driving amplitudes for capture into successive resonances and the stability of driven, phase-locked solutions in these cases are discussed

  10. Well-posedness and ill-posedness of the fifth-order modified KdV equation

    Directory of Open Access Journals (Sweden)

    Soonsik Kwon

    2008-01-01

    Full Text Available We consider the initial value problem of the fifth-order modified KdV equation on the Sobolev spaces. $$displaylines{ partial_t u - partial_x^5u + c_1partial_x^3(u^3 + c_2upartial_x upartial_x^2 u + c_3uupartial_x^3 u =0cr u(x,0= u_0(x }$$ where $u:mathbb{R}imesmathbb{R} o mathbb{R} $ and $c_j$'s are real. We show the local well-posedness in $H^s(mathbb{R}$ for $sgeq 3/4$ via the contraction principle on $X^{s,b}$ space. Also, we show that the solution map from data to the solutions fails to be uniformly continuous below $H^{3/4}(mathbb{R}$. The counter example is obtained by approximating the fifth order mKdV equation by the cubic NLS equation.

  11. Localization of Daucus carota NMCP1 to the nuclear periphery: the role of the N-terminal region and an NLS-linked sequence motif, RYNLRR, in the tail domain

    Directory of Open Access Journals (Sweden)

    Yuta eKimura

    2014-02-01

    Full Text Available Recent ultrastructural studies revealed that a structure similar to the vertebrate nuclear lamina exists in the nuclei of higher plants. However, plant genomes lack genes for lamins and intermediate-type filament proteins, and this suggests that plant-specific nuclear coiled-coil proteins make up the lamina-like structure in plants. NMCP1 is a protein, first identified in Daucus carota cells, that localizes exclusively to the nuclear periphery in interphase cells. It has a tripartite structure comprised of head, rod, and tail domains, and includes putative nuclear localization signal (NLS motifs. We identified the functional NLS of DcNMCP1 (carrot NMCP1 and determined the protein regions required for localizing to the nuclear periphery using EGFP-fused constructs transiently expressed in Apium graveolens epidermal cells. Transcription was driven under a CaMV35S promoter, and the genes were introduced into the epidermal cells by a DNA-coated microprojectile delivery system. Of the NLS motifs, KRRRK and RRHK in the tail domain were highly functional for nuclear localization. Addition of the N-terminal 141 amino acids from DcNMCP1 shifted the localization of a region including these NLSs from the entire nucleus to the nuclear periphery. Using this same construct, the replacement of amino acids in RRHK or its preceding sequence, YNL, with alanine residues abolished localization to the nuclear periphery, while replacement of KRRRK did not affect localization. The sequence R/Q/HYNLRR/H, including YNL and the first part of the sequence of RRHK, is evolutionarily conserved in a subclass of NMCP1 sequences from many plant species. These results show that NMCP1 localizes to the nuclear periphery by a combined action of a sequence composed of R/Q/HYNLRR/H, NLS, and the N-terminal region including the head and a portion of the rod domain, suggesting that more than one binding site is implicated in localization of NMCP1.

  12. A modified phase-fitted and amplification-fitted Runge-Kutta-Nyström method for the numerical solution of the radial Schrödinger equation

    OpenAIRE

    Papadopoulos , D. F.; Anastassi , Z. A.; Simos , T. E.

    2010-01-01

    Abstract A new Runge-Kutta-Nystrom method, with phase-lag and amplification error of order infinity, for the numerical solution of the Schrodinger equation is developed in this paper. The new method is based on the Runge-Kutta-Nystrom method with fourth algebraic order, developed by Dormand, El-Mikkawy and Prince. Numerical illustrations indicate that the new method is much more efficient than other methods derived for the same purpose. phone: +30-210-9421510 (Simos, T. E.) ...

  13. Angular distribution of scission neutrons studied with time-dependent Schrödinger equation

    Science.gov (United States)

    Wada, Takahiro; Asano, Tomomasa; Carjan, Nicolae

    2018-03-01

    We investigate the angular distribution of scission neutrons taking account of the effects of fission fragments. The time evolution of the wave function of the scission neutron is obtained by integrating the time-dependent Schrodinger equation numerically. The effects of the fission fragments are taken into account by means of the optical potentials. The angular distribution is strongly modified by the presence of the fragments. In the case of asymmetric fission, it is found that the heavy fragment has stronger effects. Dependence on the initial distribution and on the properties of fission fragments is discussed. We also discuss on the treatment of the boundary to avoid artificial reflections

  14. Solution of D dimensional Dirac equation for hyperbolic tangent potential using NU method and its application in material properties

    Energy Technology Data Exchange (ETDEWEB)

    Suparmi, A., E-mail: soeparmi@staff.uns.ac.id; Cari, C., E-mail: cari@staff.uns.ac.id; Pratiwi, B. N., E-mail: namakubetanurpratiwi@gmail.com [Physics Department, Faculty of Mathematics and Science, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta 57126 (Indonesia); Deta, U. A. [Physics Department, Faculty of Science and Mathematics Education and Teacher Training, Surabaya State University, Surabaya (Indonesia)

    2016-02-08

    The analytical solution of D-dimensional Dirac equation for hyperbolic tangent potential is investigated using Nikiforov-Uvarov method. In the case of spin symmetry the D dimensional Dirac equation reduces to the D dimensional Schrodinger equation. The D dimensional relativistic energy spectra are obtained from D dimensional relativistic energy eigen value equation by using Mat Lab software. The corresponding D dimensional radial wave functions are formulated in the form of generalized Jacobi polynomials. The thermodynamically properties of materials are generated from the non-relativistic energy eigen-values in the classical limit. In the non-relativistic limit, the relativistic energy equation reduces to the non-relativistic energy. The thermal quantities of the system, partition function and specific heat, are expressed in terms of error function and imaginary error function which are numerically calculated using Mat Lab software.

  15. Stability analysis of embedded solitons in the generalized third-order nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Pelinovsky, Dmitry E.; Yang Jianke

    2005-01-01

    We study the generalized third-order nonlinear Schroedinger (NLS) equation which admits a one-parameter family of single-hump embedded solitons. Analyzing the spectrum of the linearization operator near the embedded soliton, we show that there exists a resonance pole in the left half-plane of the spectral parameter, which explains linear stability, rather than nonlinear semistability, of embedded solitons. Using exponentially weighted spaces, we approximate the resonance pole both analytically and numerically. We confirm in a near-integrable asymptotic limit that the resonance pole gives precisely the linear decay rate of parameters of the embedded soliton. Using conserved quantities, we qualitatively characterize the stable dynamics of embedded solitons

  16. Introduction to quantum mechanics Schrödinger equation and path integral

    CERN Document Server

    Müller-Kirsten, H J W

    2012-01-01

    This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrodinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions. In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introdu...

  17. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  18. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  19. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations

    International Nuclear Information System (INIS)

    Anco, Stephen C

    2006-01-01

    Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from group-invariant flows of non-stretching curves in constant-curvature manifolds and Lie-group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming from a covariantly constant frame, and higher order counterparts generated by an underlying vector mKdV recursion operator. In the Lie-group case, the hierarchy comprises a group-invariant analogue of the vector NLS equation coming from a left-invariant frame, along with higher order counterparts generated by a recursion operator that is like a square root of the mKdV one. The corresponding respective curve flows are found to be given by geometric nonlinear PDEs, specifically mKdV and group-invariant analogues of Schroedinger maps. In all cases the hierarchies also contain variants of vector sine-Gordon equations arising from the kernel of the respective recursion operators. The geometric PDEs that describe the corresponding curve flows are shown to be wave maps

  20. Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations

    Energy Technology Data Exchange (ETDEWEB)

    Anco, Stephen C [Department of Mathematics, Brock University, St Catharines, ON (Canada)

    2006-03-03

    Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from group-invariant flows of non-stretching curves in constant-curvature manifolds and Lie-group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming from a covariantly constant frame, and higher order counterparts generated by an underlying vector mKdV recursion operator. In the Lie-group case, the hierarchy comprises a group-invariant analogue of the vector NLS equation coming from a left-invariant frame, along with higher order counterparts generated by a recursion operator that is like a square root of the mKdV one. The corresponding respective curve flows are found to be given by geometric nonlinear PDEs, specifically mKdV and group-invariant analogues of Schroedinger maps. In all cases the hierarchies also contain variants of vector sine-Gordon equations arising from the kernel of the respective recursion operators. The geometric PDEs that describe the corresponding curve flows are shown to be wave maps.

  1. The Schroedinger-Newton equation as model of self-gravitating quantum systems

    International Nuclear Information System (INIS)

    Grossardt, Andre

    2013-01-01

    The Schroedinger-Newton equation (SN equation) describes a quantummechanical one-particle-system with gravitational self-interaction and might play a role answering the question if gravity must be quantised. As non-relativistic limit of semi-classical gravity, it provides testable predictions of the effects that classical gravity has on genuinely quantum mechanical systems in the mass regime between a few thousand proton masses and the Planck mass, which is experimentally unexplored. In this thesis I subsume the mathematical properties of the SN equation and justify it as a physical model. I will give a short outline of the controversial debate around semi-classical gravity as a fundamental theory, along with the idea of the SN equation as a model of quantum state reduction. Subsequently, I will respond to frequent objections against nonlinear Schrodinger equations. I will show how the SN equation can be obtained from Einstein's General Relativity coupled to either a KleinGordon or a Dirac equation, in the same sense as the linear Schroedinger equation can be derived in flat Minkowski space-time. The equation is, to this effect, a non-relativistic approximation of the semi-classical Einstein equations. Additionally, I will discuss, first by means of analytic estimations and later numerically, in which parameter range effects of gravitational selfinteraction - e.g. in molecular-interferometry experiments - should be expected. Besides the one-particle SN equation I will provide justification for a modified equation describing the centre-of-mass wave-function of a many-particle system. Furthermore, for this modified equation, I will examine, numerically, the consequences for experiments. Although one arrives at the conclusion that no effects of the SN equation can be expected for masses up to six or seven orders of magnitude above those considered in contemporary molecular interferometry experiments, tests of the equation, for example in satellite experiments, seem

  2. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance

    Directory of Open Access Journals (Sweden)

    Pengcheng HAN

    2017-12-01

    Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

  3. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  4. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2011-01-01

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

  5. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  6. Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Keefe, L.R.

    1984-01-01

    The bifurcation structure of even, spatially periodic solutions to the time-dependent Ginzburg-Landau equation is investigated analytically and numerically. A rich variety of behavior, including limit cycles, two-tori, period-doubling sequences, and strange attractors are found to exist in the phase space of the solutions constructed from spatial Fourier modes. Beginning with unstable perturbations to the spatially homogeneous Stokes solution, changes in solution behavior are examined as the perturbing wavenumber q is varied in the range 0.6 to 1.3. Solution bifurcations as q changes are often found to be associated with symmetry making or breaking changes in the structure of attractors in phase space. Two distinct mirror image attractors are found to coexist for many values of q. Chaotic motion is found for two ranges of q Lyapunov exponents of the solutions and the Lyapunov dimension of the corresponding attractors are calculated for the larger of these regions. Poincare sections of the attractors within this chaotic range are consistent with the dimension calculation and also reveal a bifurcation structure within the chaos which broadly resembles that found in one-dimensional quadratic maps. The integrability of the Ginzburg-Landau equation is also examined. It is demonstrated that the equation does not possess the Painleve property, except for a special case of the coefficients which corresponds to the integrable non-linear Schroedinger (NLS) equation

  7. Soliton Resolution for the Derivative Nonlinear Schrödinger Equation

    Science.gov (United States)

    Jenkins, Robert; Liu, Jiaqi; Perry, Peter; Sulem, Catherine

    2018-05-01

    We study the derivative nonlinear Schrödinger equation for generic initial data in a weighted Sobolev space that can support bright solitons (but exclude spectral singularities). Drawing on previous well-posedness results, we give a full description of the long-time behavior of the solutions in the form of a finite sum of localized solitons and a dispersive component. At leading order and in space-time cones, the solution has the form of a multi-soliton whose parameters are slightly modified from their initial values by soliton-soliton and soliton-radiation interactions. Our analysis provides an explicit expression for the correction dispersive term. We use the nonlinear steepest descent method of Deift and Zhou (Commun Pure Appl Math 56:1029-1077, 2003) revisited by the {\\overline{partial}} -analysis of McLaughlin and Miller (IMRP Int Math Res Pap 48673:1-77, 2006) and Dieng and McLaughlin (Long-time asymptotics for the NLS equation via dbar methods. Preprint, arXiv:0805.2807, 2008), and complemented by the recent work of Borghese et al. (Ann Inst Henri Poincaré Anal Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.08.006, 2017) on soliton resolution for the focusing nonlinear Schrödinger equation. Our results imply that N-soliton solutions of the derivative nonlinear Schrödinger equation are asymptotically stable.

  8. Dynamics in discrete two-dimensional nonlinear Schrödinger equations in the presence of point defects

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Gaididei, Yuri Borisovich; Rasmussen, Kim

    1996-01-01

    The dynamics of two-dimensional discrete structures is studied in the framework of the generalized two-dimensional discrete nonlinear Schrodinger equation. The nonlinear coupling in the form of the Ablowitz-Ladik nonlinearity and point impurities is taken into account. The stability properties...... of the stationary solutions are examined. The essential importance of the existence of stable immobile solitons in the two-dimensional dynamics of the traveling pulses is demonstrated. The typical scenario of the two-dimensional quasicollapse of a moving intense pulse represents the formation of standing trapped...... narrow spikes. The influence of the point impurities on this dynamics is also investigated....

  9. Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Juul Rasmussen, J.; Shagalov, A.G.

    2001-01-01

    The dynamics of soliton and quasisoliton solutions of the cubic third-order nonlinear Schrodinger equation is studied. Regular solitons exist due to a balance between the nonlinear terms and (linear) third-order dispersion; they are not important at small alpha (3) (alpha (3) is the coefficient...... in the third derivative term) and vanish at alpha3 -->0. The most essential, at small alpha (3), is a quasisoliton emitting resonant radiation (resonantly radiating soliton). Its relationship with the other (steady) quasisoliton, called embedded soliton, is studied analytically and also in numerical...

  10. Optical analogues of the Newton-Schrödinger equation and boson star evolution.

    Science.gov (United States)

    Roger, Thomas; Maitland, Calum; Wilson, Kali; Westerberg, Niclas; Vocke, David; Wright, Ewan M; Faccio, Daniele

    2016-11-14

    Many gravitational phenomena that lie at the core of our understanding of the Universe have not yet been directly observed. An example in this sense is the boson star that has been proposed as an alternative to some compact objects currently interpreted as being black holes. In the weak field limit, these stars are governed by the Newton-Schrodinger equation. Here we present an optical system that, under appropriate conditions, identically reproduces such equation in two dimensions. A rotating boson star is experimentally and numerically modelled by an optical beam propagating through a medium with a positive thermal nonlinearity and is shown to oscillate in time while also stable up to relatively high densities. For higher densities, instabilities lead to an apparent breakup of the star, yet coherence across the whole structure is maintained. These results show that optical analogues can be used to shed new light on inaccessible gravitational objects.

  11. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  12. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  13. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  14. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  15. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  16. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  17. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  18. Nuclear structure information studied through Dirac equation with deformed mean fields

    International Nuclear Information System (INIS)

    Dudek, J.

    2000-01-01

    Complete text of publication follows. Relativistic mean-field theory provides a formal expression for the Dirac equation for the nucleonic motion in an atomic nucleus. The 'potentials' within such a formalism are given in terms of the meson fields, the latter obtained through a coupled system of equations of the Klein-Grodon type. Usually the whole system is being solved by using a Hartree approximation by employing an iterative selfonsistent algorithms. On a more phenomenological level one can parametrize the potentials that enter into a Dirac equation rather than obtain the selfconsistently; such a simplification was suggested some time ago by the Munich group. We introduce a Woods-Saxon type parametrisation and verify by a non-linear search routine what are the 'best fit potential parameters' that reproduce the single particle excitations in the double-magic spherical nuclei as well as the band-head properties in some hundreds of deformed nuclei. Next, by introducing a low-energy reduction of the Dirac equation, one may obtain in a natural way a Pauli Schrodinger type equation with a position dependent effective mass. The role of the corresponding term in a description of single particle energies of the nucleons is illustrated and the implications for the cranking equation are discussed in some detail. (author)

  19. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  20. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  1. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  2. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  3. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  4. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  5. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  6. Fragmentation of Nimotuzumab for Preparation of 125I-F(ab’2-Nimotuzumab as a Precursor for Preparing 125I-F(ab’2-Nimotuzumab-NLS Radiopharmaceutical for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    R.D. Haryuni

    2014-04-01

    Full Text Available Nimotuzumab is an anticancer agent which belongs to the inhibitor group of Epidermal Growth Factor Receptor (EGFR. This monoclonal antibody has a relatively high molecular weight which makes slow penetration on tumor cell, as concequence, it is less attractive in imaging kinetics, and potentially elicits antibodies respons. Therefore in this study nimotuzumab was fragmented to form bivalent antibody [F(ab’2] and then labeled with 125I to form 125I-F(ab’2-nimotuzumab which can be used further as a precursor for preparing 125I-F(ab’2-nimotuzumab-NLS (NLS = nuclear localizing sequences radiopharmaceutical for radioimmunotherapy. The aims of this study were to obtain characteristics of 125I-F(ab’2-nimotuzumab by comparing with the 125I labeled-intact nimotuzumab (125I-nimotuzumab. This study was initiated by purifying nimotuzumab by mean of dialysis. The purified nimotuzumab was then fragmented by using pepsin. The F(ab'2-nimotuzumab formed was then purified from its by-products which formed in fragmentation process by using a PD-10 column (consisted Sephadex G25. The intact nimotuzumab and its F(ab’2 fragment were then labeled with the 125I to form 125I-nimotuzumab and 125I-F(ab’2-nimotuzumab. The radiochemical purity are 98.27 % and 93.24 % ,respectively. Stability test results show that, both of 125I-nimotuzumab and 125I-F(ab’2-nimotuzumab more stable at 4 °C than at room temperature storage and 37 °C

  7. Fragmentation of Nimotuzumab for Preparation of 125I-F(ab’)2-Nimotuzumab as a Precursor for Preparing 125I-F(ab’)2-Nimotuzumab-NLS Radiopharmaceutical for Cancer Therapy

    International Nuclear Information System (INIS)

    Haryuni, R.D.; Bahtiar, A.; Soenarjo, S.; Harahap, Y.; Mutalib, A.; Ramli, M.; Hermanto, S.; Ardiyatno, C.N.; Susilo, V.Y.; Haffid, D.

    2014-01-01

    Nimotuzumab is an anticancer agent which belongs to the inhibitor group of Epidermal Growth Factor Receptor (EGFR). This monoclonal antibody has a relatively high molecular weight which slows penetration on tumor cells, making it less attractive in imaging kinetics and potentially elicits antibodies responses. Therefore, in this study nimotuzumab was fragmented to form a bivalent antibody [F(ab’) 2 ] and then labeled with 125 I to form 125 I-F(ab’) 2 -nimotuzumab which can be used further as a precursor for preparing 125 I-F(ab’) 2 -nimotuzumab-NLS (NLS = nuclear localization sequence) radiopharmaceutical for radioimmunotherapy. The aims of this study was to obtain characteristics of 125 I-F(ab’) 2 -nimotuzumab by comparing with the 125 I labeled-intact nimotuzumab ( 125 I-nimotuzumab). This study was initiated by purifying nimotuzumab by mean of dialysis. The purified nimotuzumab was then fragmented by using pepsin. The F(ab') 2 -nimotuzumab formed was then purified from its by-products which formed in fragmentation process by using a PD-10 column (consisted Sephadex G25). The intact nimotuzumab and its F(ab’)2 fragment were then labeled with the 125 I to form 125 I-nimotuzumab and 125 I-F(ab’) 2 -nimotuzumab. The radiochemical purity are 98.27 % and 93.24 %, respectively. Stability test results show that, both 125 I-nimotuzumab and 125 I-F(ab’) 2 -nimotuzumab are more stable at 4 °C than at room temperature storage and 37 °C. (author)

  8. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  9. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  10. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  11. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  12. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  13. The harmonic oscillator and the position dependent mass Schroedinger equation: isospectral partners and factorization operators

    International Nuclear Information System (INIS)

    Morales, J.; Ovando, G.; Pena, J. J.

    2010-01-01

    One of the most important scientific contributions of Professor Marcos Moshinsky has been his study on the harmonic oscillator in quantum theory vis a vis the standard Schroedinger equation with constant mass [1]. However, a simple description of the motion of a particle interacting with an external environment such as happen in compositionally graded alloys consist of replacing the mass by the so-called effective mass that is in general variable and dependent on position. Therefore, honoring in memoriam Marcos Moshinsky, in this work we consider the position-dependent mass Schrodinger equations (PDMSE) for the harmonic oscillator potential model as former potential as well as with equi-spaced spectrum solutions, i.e. harmonic oscillator isospectral partners. To that purpose, the point canonical transformation method to convert a general second order differential equation (DE), of Sturm-Liouville type, into a Schroedinger-like standard equation is applied to the PDMSE. In that case, the former potential associated to the PDMSE and the potential involved in the Schroedinger-like standard equation are related through a Riccati-type relationship that includes the equivalent of the Witten superpotential to determine the exactly solvable positions-dependent mass distribution (PDMD)m(x). Even though the proposed approach is exemplified with the harmonic oscillator potential, the procedure is general and can be straightforwardly applied to other DEs.

  14. Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations

    Science.gov (United States)

    Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)

    1994-01-01

    This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America

  15. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  16. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  17. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  18. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  19. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  20. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  1. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  2. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  3. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  4. Noncommutativity into Dirac Equation with mass dependent on the position

    International Nuclear Information System (INIS)

    Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva

    2013-01-01

    Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)

  5. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  6. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  7. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  8. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  9. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  10. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  11. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  12. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  13. Energy Conservation in Optical Fibers With Distributed Brick-Walls Filters

    Science.gov (United States)

    Garcia, Javier; Ghozlan, Hassan; Kramer, Gerhard

    2018-05-01

    A band-pass filtering scheme is proposed to mitigate spectral broadening and channel coupling in the Nonlinear Schr\\"odinger (NLS) fiber optic channel. The scheme is modeled by modifying the NLS Equation to include an attenuation profile with multiple brick-wall filters centered at different frequencies. It is shown that this brick-walls profile conserves the total in-band energy of the launch signal. Furthermore, energy fluctuations between the filtered channels are characterized, and conditions on the channel spacings are derived that ensure energy conservation in each channel. The maximum spectral efficiency of such a system is derived, and a constructive rule for achieving it using Sidon sequences is provided.

  14. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  15. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  16. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  17. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  18. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  19. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  20. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  1. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  2. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  3. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  4. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  5. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  6. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  9. A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation

    Science.gov (United States)

    Başhan, Ali; Uçar, Yusuf; Murat Yağmurlu, N.; Esen, Alaattin

    2018-01-01

    In the present paper, a Crank-Nicolson-differential quadrature method (CN-DQM) based on utilizing quintic B-splines as a tool has been carried out to obtain the numerical solutions for the nonlinear Schrödinger (NLS) equation. For this purpose, first of all, the Schrödinger equation has been converted into coupled real value differential equations and then they have been discretized using both the forward difference formula and the Crank-Nicolson method. After that, Rubin and Graves linearization techniques have been utilized and the differential quadrature method has been applied to obtain an algebraic equation system. Next, in order to be able to test the efficiency of the newly applied method, the error norms, L2 and L_{∞}, as well as the two lowest invariants, I1 and I2, have been computed. Besides those, the relative changes in those invariants have been presented. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. This comparison clearly indicates that the currently utilized method, namely CN-DQM, is an effective and efficient numerical scheme and allows us to propose to solve a wide range of nonlinear equations.

  10. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  11. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  12. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  13. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  14. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  15. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  16. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  17. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  18. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  19. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  20. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  1. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  2. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  3. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  4. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  5. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  6. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  7. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.

  8. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  9. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  10. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  11. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  12. ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...

    African Journals Online (AJOL)

    Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.

  13. dimensional Fokas equation

    Indian Academy of Sciences (India)

    However, one can associate the term with any solution of nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent form, (ii) is localized ... In the past several decades, many methods have been proposed for solving nonlinear PDEs, such as ... space–time fractional derivative form of eq. (1) and ...

  14. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  15. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  16. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  17. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  18. Balancing Chemical Equations.

    Science.gov (United States)

    Savoy, L. G.

    1988-01-01

    Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)

  19. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  20. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  1. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  2. Methods for Equating Mental Tests.

    Science.gov (United States)

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  3. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  4. The propagation of nonlinear rayleigh waves in layered elastic half-space

    International Nuclear Information System (INIS)

    Ahmetolan, S.

    2004-01-01

    In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used

  5. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  6. Energy master equation

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1995-01-01

    energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk model—the energy master equation...... (EME)—is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...

  7. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  8. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  9. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  10. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  11. Equations of multiparticle dynamics

    International Nuclear Information System (INIS)

    Chao, A.W.

    1987-01-01

    The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions

  12. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  13. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  14. Fun with Differential Equations

    Indian Academy of Sciences (India)

    IAS Admin

    tion of ® with ¼=2. One can use the uniqueness of solutions of differential equations to prove the addition formulae for sin(t1 +t2), etc. But instead of continuing with this thought process, let us do something more interesting. Now we shall consider another system. Fix 0 < < 1. I am looking for three real-valued functions x(t), ...

  15. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  16. Information Equation of State

    Directory of Open Access Journals (Sweden)

    M. Paul Gough

    2008-07-01

    Full Text Available Landauer’s principle is applied to information in the universe. Once stars began forming there was a constant information energy density as the increasing proportion of matter at high stellar temperatures exactly compensated for the expanding universe. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10 > z > 0.8, over one half of cosmic time. A reasonable universe information bit content of only 1087 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem. In answering the ‘Why now?’ question we wonder ‘What next?’ as we expect the information equation of state to tend towards w = 0 in the future.c

  17. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  18. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  19. FMTLxLyLz DIMENSIONAL EQUAT DIMENSIONAL EQUATION ...

    African Journals Online (AJOL)

    eobe

    plant made of 12mm thick steel plate was used in de steel plate ... water treatment plant. ... ameters affecting filtration processes were used to derive an equation usin ..... system. However, in deriving the equation onl terms are incorporated.

  20. Reduction operators of Burgers equation.

    Science.gov (United States)

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  1. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  2. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  3. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  4. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  5. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  6. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  7. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  8. dimensional Jaulent–Miodek equations

    Indian Academy of Sciences (India)

    (2+1)-dimensional Jaulent–Miodek equation; the first integral method; kinks; ... and effective method for solving nonlinear partial differential equations which can ... of the method employed and exact kink and soliton solutions are constructed ...

  9. Equationally Noetherian property of Ershov algebras

    OpenAIRE

    Dvorzhetskiy, Yuriy

    2014-01-01

    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  10. The Dirac equation

    International Nuclear Information System (INIS)

    Thaller, B.

    1992-01-01

    This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics

  11. Cryostatic stability equation

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1976-01-01

    Although criteria for cryostatic stability of superconducting magnets cooled by pool boiling of liquid helium have been widely discussed the same cannot be said for magnets cooled by natural convection or forced flow boiling in channels. Boiling in narrow channels is shown to be qualitatively superior to pool boiling because the recovery heat flux equals the breakaway flux for narrow channels, whereas the two are markedly different in pool boiling. A second advantage of channel boiling is that it is well understood and calculable; pool peak nucleate boiling heat flux has been adequately measured only for boiling from the top of an immersed heated body. Peak boiling from the bottom is much less and (probably) depends strongly on the extent of the bottom surface. Equations are presented by which one can calculate the critical boiling heat flux for parallel wall vertical channels subject to either natural convection or forced flow boiling, with one or both walls heated. The one-heated-wall forced flow equation is discussed with regard to design of a spiral wound solenoid (pancake magnet) having a slippery insulating tape between the windings

  12. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  13. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  14. On the F-equation

    International Nuclear Information System (INIS)

    Kalinowski, M.W.; Szymanowski, L.

    1982-03-01

    A generalization of the Truesdell F-equations is proposed and some solutions to them - generalized Fox F-functions - are found. It is also shown that a non-linear difference-differential equation, which does not belong to the Truesdell class, nevertheless may be transformed into the standard F-equation. (author)

  15. On the Saha Ionization Equation

    Indian Academy of Sciences (India)

    Abstract. We revisit the Saha Ionization Equation in order to highlightthe rich interdisciplinary content of the equation thatstraddles distinct areas of spectroscopy, thermodynamics andchemical reactions. In a self-contained discussion, relegatedto an appendix, we delve further into the hidden message ofthe equation in terms ...

  16. Differential equations extended to superspace

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, Leon, Guanajuato (Mexico); Rosu, H.C. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.P. 3-74, Tangamanga, San Luis Potosi (Mexico)

    2003-07-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  17. Reduction of infinite dimensional equations

    Directory of Open Access Journals (Sweden)

    Zhongding Li

    2006-02-01

    Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.

  18. Differential equations extended to superspace

    International Nuclear Information System (INIS)

    Torres, J.; Rosu, H.C.

    2003-01-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  19. On the helix equation

    Directory of Open Access Journals (Sweden)

    Taouil Hajer

    2012-08-01

    Full Text Available This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω of the helix equation egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,oonumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω where Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω is a dynamical system on a measurable space (Ω, ℱ. More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined by Φ, are investigated. Ce papier est consacré aux hélices, c’est-à-dire les solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω de l’équation fonctionnelle egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,o onumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω où Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω est un système dynamique défini sur un espace mesurable (Ω, ℱ. Plus présisément, nous déterminons d’abord les hélices dominées puis nous caractérisons les hélices non différentiables. Dans ce dernier cas, l’hélice de Wiener joue un rôle important. Nous précisons aussi quelques relations des hélices avec les cocycles définis par Φ.

  20. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  1. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  2. Alternatives to the Dirac equation

    International Nuclear Information System (INIS)

    Girvin, S.M.; Brownstein, K.R.

    1975-01-01

    Recent work by Biedenharn, Han, and van Dam (BHvD) has questioned the uniqueness of the Dirac equation. BHvD have obtained a two-component equation as an alternate to the Dirac equation. Although they later show their alternative to be unitarily equivalent to the Dirac equation, certain physical differences were claimed. BHvD attribute the existence of this alternate equation to the fact that their factorizing matrices were position-dependent. To investigate this, we factor the Klein-Gordon equation in spherical coordinates allowing the factorizing matrices to depend arbitrarily upon theta and phi. It is shown that despite this additional freedom, and without involving any relativistic covariance, the conventional four-component Dirac equation is the only possibility

  3. Wave Partial Differential Equation

    OpenAIRE

    Szöllös, Alexandr

    2009-01-01

    Práce se zabývá diferenciálními rovnicemi, jejich využitím při analýze     vedení, experimenty s vedením a možnou akcelerací výpočtu v GPU  s využitím prostředí nVidia CUDA. This work deals with diffrential equations, with the possibility     of using them for analysis of the line and the possibility     of accelerating the computations in GPU using nVidia CUDA. C

  4. Λ scattering equations

    Science.gov (United States)

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  5. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  6. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  7. The Langevin equation

    Science.gov (United States)

    Pomeau, Yves; Piasecki, Jarosław

    2017-11-01

    The existence of atoms has been long predicted by philosophers and scientists. The development of thermodynamics and of the statistical interpretation of its concepts at the end of the nineteenth century and in the early years of the twentieth century made it possible to bridge the gap of scales between the macroscopic world and the world of atoms. Einstein and Smoluchowski showed in 1905 and 1906 that the Brownian motion of particles of measurable size is a manifestation of the motion of atoms in fluids. Their derivation was completely different from each other. Langevin showed in 1908 how to put in a coherent framework the subtle effect of the randomness of the atomic world, responsible for the fluctuating force driving the motion of the Brownian particle and the viscosity of the "macroscopic" flow taking place around the same Brownian particle. Whereas viscous forces were already well understood at this time, the "Langevin" force appears there for the first time: it represents the fluctuating part of the interaction between the Brownian particle and the surrounding fluid. We discuss the derivation by Einstein and Smoluchowski as well as a previous paper by Sutherland on the diffusion coefficient of large spheres. Next we present Langevin's short note and explain the fundamental splitting into a random force and a macroscopic viscous force. This brings us to discuss various points, like the kind of constraints on Langevin-like equations. We insist in particular on the one arising from the time-reversal symmetry of the equilibrium fluctuations. Moreover, we discuss another constraint, raised first by Lorentz, which implies that, if the Brownian particle is not very heavy, the viscous force cannot be taken as the standard Stokes drag on an object moving at uniform speed. Lastly, we examine the so-called Langevin-Heisenberg and/or Langevin-Schrödinger equation used in quantum mechanics.

  8. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  9. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  10. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  11. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  12. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  13. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  14. JWL Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-15

    The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.

  15. Gauge-invariant flow equation

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  16. The generalized Airy diffusion equation

    Directory of Open Access Journals (Sweden)

    Frank M. Cholewinski

    2003-08-01

    Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.

  17. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  18. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  19. On matrix fractional differential equations

    OpenAIRE

    Adem Kılıçman; Wasan Ajeel Ahmood

    2017-01-01

    The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...

  20. Electronic representation of wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Veigend, Petr; Kunovský, Jiří, E-mail: kunovsky@fit.vutbr.cz; Kocina, Filip; Nečasová, Gabriela; Valenta, Václav [University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic); Šátek, Václav [IT4Innovations, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic)

    2016-06-08

    The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.