WorldWideScience

Sample records for schottky defects

  1. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  2. On the nature of thermal equilibrium point defects in Si: Are the thermal equilibrium point defects in Si crystals Frenkel pairs or Schottky defects?

    Science.gov (United States)

    Suezawa, Masashi; Iijima, Yoshiaki; Yonenaga, Ichiro

    2017-04-01

    Thermal equilibrium point defects (TEPD) are generated as Frenkel pairs or Schottky defects. It is still controversial whether the TEPD in Si are Frenkel or Schottky, which is recalled with the recent experimental finding of their formation energies. After reviews of the Frenkel pair and Schottky defects models, the latter was concluded to be the case since their formation energies determined experimentally are different from each other. This result was applied to calculate the critical ratio of the growth velocity/temperature gradient of the Voronkov model on the grown-in point defects in Si and obtained a different result.

  3. Impact of defect distribution on IrOx/ZnO interface doping and Schottky barriers

    Science.gov (United States)

    Foster, Geoffrey M.; Gao, Hantian; Mackessy, Grace; Hyland, Alana M.; Allen, Martin W.; Wang, Buguo; Look, David C.; Brillson, Leonard J.

    2017-09-01

    We used depth-resolved cathodoluminescence spectroscopy (DRCLS) to measure the nature and spatial distribution of native point defects at Zn- and O-polar ZnO interfaces with iridium oxide (IrOx) and their impact on Schottky barrier formation. IrOx and other metal oxides exhibit higher Schottky barriers than their pure metal counterparts, consistent with wider depletion regions and potentially useful for ohmic contacts to p-type semiconductors. DRCLS with I-V and 1/C2-V barrier height and carrier profile measurements showed high zinc vacancy VZn and CuZn defect densities that compensate free carrier densities, increase depletion widths, and form higher effective barriers than Ir/ZnO contacts. Zn-polar versus O-polar ZnO interfaces with IrOx exhibit 40% higher VZn + CuZn interface segregation and lower carrier densities within a wider depletion region, accounting for the significantly higher (0.89 vs. 0.67 eV) barrier heights. Both the depth of VZn density segregation and the Zn-deficient layer thickness measured microscopically match the depletion width and applied electric fields comparable to spontaneous polarization fields across similar layers displaying analogous defect segregation. These results account for the difference in polarity-dependent segregation due to the electric field-driven diffusion of native defects near ZnO interfaces.

  4. Passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model

    Directory of Open Access Journals (Sweden)

    A. Fattah-alhosseini

    2016-11-01

    Full Text Available The passivity of AISI 321 stainless steel in 0.5 M H2SO4 solution, in the steady-state condition, has been explored using electrochemical impedance spectroscopy (EIS and Mott–Schottky analysis. Based on the Mott–Schottky analysis in conjunction with the point defect model (PDM, it was shown that the calculated donor density decreases exponentially with increasing passive film formation potential. The thickness of the passive film was increased linearly with the formation potential. These observations were consistent with the predictions of the PDM, noting that the point defects within the passive film are metal interstitials, oxygen vacancies, or both.

  5. The role of native point defects and surface chemical reactions in the formation of Schottky barriers and high n-type doping in zinc oxide

    Science.gov (United States)

    Doutt, Daniel R.

    ZnO has received renewed interest in recent years due to its exciting semiconductor properties and remarkable ability to grow nanostructures. As a wide band gap semiconductor, ZnO has many potential future applications including blue/UV light emitters, transparent conductors, biosensors, and electronic nanoscale devices. While the versatility of ZnO is exciting, many hurdles keep it from reaching full device potential. Chief among them are the role of native point defects and impurities in the fabrication of high quality contacts and high, yet controllable, n- and p-type doping. The scope of this work explores the electronic properties of ZnO surfaces and interfaces and the impact of native point defects on Schottky barrier formation and doping. The results presented here use a complement of depth-resolved cathodoluminescence spectroscopy (DRCLS), atomic force microscopy (AFM), Kelvin probe force microscopy (KPFM), and surface photovoltage spectroscopy (SPS) to show that surface treatment and processing plays a significant role in the quality, stability, and efficiency of potential next generation devices. This is evident in our results showing that the Zn-polar surface is more stable and capable of forming higher quality Au Schottky barriers as compared to the O-polar surface. We go on to reveal a significant metal sensitivity and surface polarity dependence that correlates with defects and interface chemistry on ZnO. We've also shown the significant impact of surface preparation and post processing techniques on the optical efficiency and stability of ZnO surfaces. Our measurements reveal that remote oxygen plasma (ROP) processing is capable of decreasing oxygen vacancy related defects (VO-R) on the O-polar surfaces as well as creating new zinc vacancy related (VZn-R) defects on the Zn-polar surface. Furthermore, we have correlated the formation of native point defects with interface chemical reactions and surface morphology on ZnO. With this, we were able to

  6. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    Science.gov (United States)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  7. Improved performance of Schottky diodes on pendeoepitaxial gallium nitride

    Science.gov (United States)

    Zheleva, T.; Derenge, M.; Ewing, D.; Shah, P.; Jones, K.; Lee, U.; Robins, L.

    2008-09-01

    We designed experiments to investigate the role of dislocation density on the performance of Schottky diodes fabricated on a GaN material grown conventionally and by pendeo-epitaxy. Devices of varying geometries were fabricated on low defect density GaN regions grown selectively via pendeo-epitaxy. In addition, corresponding devices were fabricated on the conventional GaN material with a high density of dislocations. Schottky diodes fabricated on pendeo-material showed nearly two orders of magnitude lower leakage current and displayed improved ideality factor, while diodes built on a conventional material displayed nonideal characteristics.

  8. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Indudhar Panduranga [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Shetty, Pramoda Kumara, E-mail: pramod.shetty@manipal.edu [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Mahesha, M.G. [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Petwal, V.C.; Dwivedi, Jishnu [Raja Ramanna Centre for Advanced Technology, Department of Atomic Energy, Government of India, Indore 452012 (India); Choudhary, R.J. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2017-06-15

    Highlights: • Tuning of Schottky barrier height has been achieved by electron beam irradiation at different doses on n-Si wafer prior to the fabrication of Schottky contact. • The XPS analyses have shown irradiation induced defects and the formation of several localized chemical states in Si/SiOx interface that influences the Schottky barrier height. • High ideality factor indicates metal-insulator-semiconductor configuration of the Schottky diode and the inhomogeneous nature of the Schottky barrier height. • The modifications in I–V characteristics have been observed as a function of electron dose. This is caused due to changes in the Schottky diode parameters and different transport mechanisms. - Abstract: The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I–V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (Φ{sub B}), ideality factor (n) and series resistance (R{sub s}). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of Φ{sub B} was observed as a function of EBI dose. The improved n with increased Φ{sub B} is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune

  9. Calculation of the Schottky barrier and current–voltage characteristics of metal–alloy structures based on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V. [North Caucasian Federal University, Institute of Service, Tourism and Design (Branch) (Russian Federation); Bilalov, B. A. [Dagestan State Technical University (Russian Federation); Sigov, A. S. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2016-09-15

    A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.

  10. Electrical degradation of double-Schottky barrier in ZnO varistors

    Directory of Open Access Journals (Sweden)

    Jinliang He

    2016-03-01

    Full Text Available Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  11. Electrical degradation of double-Schottky barrier in ZnO varistors

    Energy Technology Data Exchange (ETDEWEB)

    He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun [The State Key Lab of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  12. The controlled growth of graphene nanowalls on Si for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Quan Zhou

    2017-12-01

    Full Text Available Schottky diode with directly-grown graphene on silicon substrate has advantage of clean junction interface, promising for photodetectors with high-speed and low noise. In this report, we carefully studied the influence of growth parameters on the junction quality and photoresponse of graphene nanowalls (GNWs-based Schottky photodetectors. We found that shorter growth time is critical for lower dark current, but at the same time higher photocurrent. The influence of growth parameters was attributed to the defect density of various growth time, which results in different degrees of surface absorption for H2O/O2 molecules and P-type doping level. Raman characterization and vacuum annealing treatment were carried out to confirm the regulation mechanism. Meanwhile, the release of thermal stress also makes the ideality factor η of thinner sample better than the thicker. Our results are important for the response improvement of photodetectors with graphene-Si schottky junction.

  13. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  14. Point Defects in 2D and 3D Nanomaterials: A Density Functional Theory Exploration

    OpenAIRE

    Li, W. F.

    2017-01-01

    In this thesis, a large number of point defects was studied in both 2D and 3D nanomaterials that are of utmost importance to nanoscience by means of first principles density functional theory calculations. First, we focused on the lead chalcogenide family: PbS, PbSe, and PbTe that are frequently used in quantum dots. Defects including monovacancies, interstitials, Schottky and Frenkel type defects were considered. We found that monovacancies and Schottky defects are more favorable as indicate...

  15. Graphene-GaN Schottky Photodiodes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Integration of graphene as the top metal on GaN Schottky. This will replace platinum, which is 50% transparent at the desired wavelength, with graphene, which has...

  16. Surface Modification on the Sputtering-Deposited ZnO Layer for ZnO-Based Schottky Diode

    Directory of Open Access Journals (Sweden)

    Ren-Hao Chang

    2013-01-01

    Full Text Available We prepare a zinc oxide- (ZnO- based Schottky diode constructed from the transparent cosputtered indium tin oxide- (ITO- ZnO ohmic contact electrode and Ni/Au Schottky metal. After optimizing the ohmic contact property and removing the ion-bombardment damages using dilute HCl etching solution, the dilute hydrogen peroxide (H2O2 and ammonium sulfide (NH42Sx solutions, respectively, are employed to modify the undoped ZnO layer surface. Both of the Schottky barrier heights with the ZnO layer surface treated by these two solutions, evaluated from the current-voltage (I-V and capacitance-voltage (C-V measurements, are remarkably enhanced as compared to the untreated ZnO-based Schottky diode. Through the X-ray photoelectron spectroscopy (XPS and room-temperature photoluminescence (RTPL investigations, the compensation effect as evidence of the increases in the O–H and OZn acceptor defects appearing on the ZnO layer surface after treating by the dilute H2O2 solution is responsible for the improvement of the ZnO-based Schottky diode. By contrast, the enhancement on the Schottky barrier height for the ZnO layer surface treated by using dilute (NH42Sx solution is attributed to both the passivation and compensation effects originating from the formation of the Zn–S chemical bond and VZn acceptors.

  17. Charged particle detection properties of epitaxial 4H-SiC Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nava, F.; Vanni, P. [Modena Univ. (Italy). Ist. di Fisica; Verzellesi, G. [Modena Univ. (Italy). DSI; Castaldini, A.; Cavallini, A.; Polenta, L. [Bologna Univ. (Italy). Dipt. di Fisica; Nipoti, R.; Donolato, C. [Consiglio Nazionale delle Ricerche, Bologna (Italy). Ist. LAMEL

    2001-07-01

    This work presents measurements of the charge-collection properties of 4H-SiC Schottky diodes under alpha radiation and investigates the influence of native and alpha induced defects on the detector performance. The contribution of the diffusion of minority carriers to the charge collection efficiency is pointed out. Values of 500 ns and 95 {mu}s are inferred for the hole and electron lifetime, respectively. (orig.)

  18. Modification of electrical properties of Au/n-type InP Schottky diode with a high-k Ba0.6Sr0.4TiO3 interlayer

    Science.gov (United States)

    Thapaswini, P. Prabhu; Padma, R.; Balaram, N.; Bindu, B.; Rajagopal Reddy, V.

    2016-05-01

    Au/Ba0.6Sr0.4TiO3 (BST)/n-InP metal/insulator/semiconductor (MIS) Schottky diodes have been analyzed by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The surface morphology of the BST films on InP is fairly smooth. The Au/BST/n-InP MIS Schottky diode shows better rectification ratio and low leakage current compared to the conventional Au/n-InP metal-semiconductor (MS) Schottky diode. Higher barrier height is achieved for the MIS Schottky diode compared to the MS Schottky diode. The Norde and Cheung's methods are employed to determine the barrier height, ideality factor and series resistance. The interface state density (NSS) is determined from the forward bias I-V data for both the MS and MIS Schottky diodes. Results reveal that the NSS of the MIS Schottky diode is lower than that of the MS Schottky diode. The Poole-Frenkel emission is found dominating the reverse current in both Au/n-InP MS and Au/BST/n-InP MIS Schottky diodes, indicating the presence of structural defects and trap levels in the dielectric film.

  19. Schottky barrier MOSFET systems and fabrication thereof

    Science.gov (United States)

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  20. Free-standing gallium nitride Schottky diode characteristics and stability in a high-temperature environment

    Science.gov (United States)

    O'Mahony, Donagh; Zimmerman, Walter; Steffen, Sinje; Hilgarth, Just; Maaskant, Pleun; Ginige, Ravin; Lewis, Liam; Lambert, Benoit; Corbett, Brian

    2009-12-01

    Schottky diodes have been fabricated using low-resistivity n-type free-standing GaN substrates with a reduced defect density lowly doped n-type epi-layer and an Ni/Ti/Pt/Au Schottky contact metalization. A thermionic field emission current transport mechanism was identified with a Schottky barrier height of about 0.75 eV and a diode ideality of 1.1 measured at 25 °C, both of which increase with measurement temperature up to 200 °C. The diodes were subjected to long-term testing under forward current (1.3 A cm-2) or reverse voltage (-3.5 V) biased storage at 300 °C in N2 for 466 h and were also monitored under non-biased storage conditions for up to 1000 h at 350 °C and 400 °C in N2 or at 300 °C for 1500 h in air. Except for the non-biased storage test at 400 °C, the diodes show <10% drift in ideality and barrier height during the long-term storage tests. For the 400 °C test, there is a significant increase in both barrier height and ideality over a relatively short storage period (48 h). This to be the first reported study on the long-term stability of Schottky diodes on free-standing GaN and while no catastrophic (e.g. thermal runaway) degradation of any of the diodes was observed, it is proposed that optimized thermal annealing of the Ni-based Schottky contact metalization in the temperature range 350-400 °C is necessary for stable long-term operation at high temperature.

  1. Schottky contacts to In2O3

    Directory of Open Access Journals (Sweden)

    H. von Wenckstern

    2014-04-01

    Full Text Available n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  2. Performance assessment of nanoscale Schottky MOSFET as ...

    Indian Academy of Sciences (India)

    pp. 511–520. Performance assessment of nanoscale Schottky MOSFET as resonant tunnelling device: Non-equilibrium Green's function formalism ... 2School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran. *Corresponding author. E-mail: z.ahangari@iausr.ac.ir. MS received 2 January 2013; ...

  3. Stochastic Cooling with Schottky Band Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, Valeri; /Fermilab

    2005-12-01

    Optimal use of stochastic cooling is essential to maximize the antiproton stacking rate for Tevatron Run II. Good understanding and characterization of the cooling is important for the optimization. The paper is devoted to derivation of the Fokker-Planck equations justified in the case of near or full Schottky base overlap for both longitudinal and transverse coolings.

  4. Schottky contacts to In2O3

    Science.gov (United States)

    von Wenckstern, H.; Splith, D.; Schmidt, F.; Grundmann, M.; Bierwagen, O.; Speck, J. S.

    2014-04-01

    n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  5. Scanning tip measurement for identification of point defects

    Directory of Open Access Journals (Sweden)

    Raineri Vito

    2011-01-01

    Full Text Available Abstract Self-assembled iron-silicide nanostructures were prepared by reactive deposition epitaxy of Fe onto silicon. Capacitance-voltage, current-voltage, and deep level transient spectroscopy (DLTS were used to measure the electrical properties of Au/silicon Schottky junctions. Spreading resistance and scanning probe capacitance microscopy (SCM were applied to measure local electrical properties. Using a preamplifier the sensitivity of DLTS was increased satisfactorily to measure transients of the scanning tip semiconductor junction. In the Fe-deposited area, Fe-related defects dominate the surface layer in about 0.5 μm depth. These defects deteriorated the Schottky junction characteristic. Outside the Fe-deposited area, Fe-related defect concentration was identified in a thin layer near the surface. The defect transients in this area were measured both in macroscopic Schottky junctions and by scanning tip DLTS and were detected by bias modulation frequency dependence in SCM.

  6. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  7. Liaison, Schottky Problem and Invariant Theory

    CERN Document Server

    Alonso, Maria Emilia; Mallavibarrena, Raquel; Sols, Ignacio

    2010-01-01

    This volume is a homage to the memory of the Spanish mathematician Federico Gaeta (1923-2007). Apart from a historical presentation of his life and interaction with the classical Italian school of algebraic geometry, the volume presents surveys and original research papers on the mathematics he studied. Specifically, it is divided into three parts: linkage theory, Schottky problem and invariant theory. On this last topic a hitherto unpublished article by Federico Gaeta is also included.

  8. Schottky Barriers in Bilayer Phosphorene Transistors.

    Science.gov (United States)

    Pan, Yuanyuan; Dan, Yang; Wang, Yangyang; Ye, Meng; Zhang, Han; Quhe, Ruge; Zhang, Xiuying; Li, Jingzhen; Guo, Wanlin; Yang, Li; Lu, Jing

    2017-04-12

    It is unreliable to evaluate the Schottky barrier height (SBH) in monolayer (ML) 2D material field effect transistors (FETs) with strongly interacted electrode from the work function approximation (WFA) because of existence of the Fermi-level pinning. Here, we report the first systematical study of bilayer (BL) phosphorene FETs in contact with a series of metals with a wide work function range (Al, Ag, Cu, Au, Cr, Ti, Ni, and Pd) by using both ab initio electronic band calculations and quantum transport simulation (QTS). Different from only one type of Schottky barrier (SB) identified in the ML phosphorene FETs, two types of SBs are identified in BL phosphorene FETs: the vertical SB between the metallized and the intact phosphorene layer, whose height is determined from the energy band analysis (EBA); the lateral SB between the metallized and the channel BL phosphorene, whose height is determined from the QTS. The vertical SBHs show a better consistency with the lateral SBHs of the ML phosphorene FETs from the QTS compared than that of the popular WFA. Therefore, we develop a better and more general method than the WFA to estimate the lateral SBHs of ML semiconductor transistors with strongly interacted electrodes based on the EBA for its BL counterpart. In terms of the QTS, n-type lateral Schottky contacts are formed between BL phosphorene and Cr, Al, and Cu electrodes with electron SBH of 0.27, 0.31, and 0.32 eV, respectively, while p-type lateral Schottky contacts are formed between BL phosphorene and Pd, Ti, Ni, Ag, and Au electrodes with hole SBH of 0.11, 0.18, 0.19, 0.20, and 0.21 eV, respectively. The theoretical polarity and SBHs are in good agreement with available experiments. Our study provides an insight into the BL phosphorene-metal interfaces that are crucial for designing the BL phosphorene device.

  9. Revised diode equation for Ideal Graphene-Semiconductor Schottky Junction

    OpenAIRE

    Liang, Shi-Jun; Ang, Lay Kee

    2015-01-01

    In this paper we carry out a theoretical and experimental study of the nature of graphene/semiconductor Schottky contact. We present a simple and parameter-free carrier transport model of graphene/semiconductor Schottky contact derived from quantum statistical theory, which is validated by the quantum Landauer theory and first-principle calculations. The proposed model can well explain experimental results for samples of different types of graphene/semiconductor Schottky contact.

  10. Organic modification of metal / semiconductor Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Pinzon, H.A.

    2006-07-10

    In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe-PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic-modified Ag / GaAs Schottky diodes. The device was tested by combining surface-sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current-voltage, capacitance-voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S-GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe-PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I-V measurements. This allows fitting of the I-V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I-V, C-V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe-PTCDI was assessed via C-V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C-V and impedance measurements in the range 1 kHz-1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the

  11. Deforming super Riemann surfaces with gravitinos and super Schottky groups

    Energy Technology Data Exchange (ETDEWEB)

    Playle, Sam [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy)

    2016-12-12

    The (super) Schottky uniformization of compact (super) Riemann surfaces is briefly reviewed. Deformations of super Riemann surface by gravitinos and Beltrami parameters are recast in terms of super Schottky group cohomology. It is checked that the super Schottky group formula for the period matrix of a non-split surface matches its expression in terms of a gravitino and Beltrami parameter on a split surface. The relationship between (super) Schottky groups and the construction of surfaces by gluing pairs of punctures is discussed in an appendix.

  12. Effects of sputtering power Schottky metal layers on rectifying performance of Mo-SiC Schottky contacts

    Science.gov (United States)

    Lee, Seula; Lee, Jinseon; You, Sslimsearom; Kyoung, Sinsu; Kim, Kyung Hwan

    2016-01-01

    In this study, Schottky barrier diodes based on silicon carbide with various levels of Schottky metal layer input power were prepared and characterized. In this structure, molybdenum and aluminum were employed as the Schottky metal and top electrode, respectively. Schottky metal layers were deposited with input power ranging from 30 to 210 W. Schottky metal layers and top electrodes were deposited with a thickness of 3000 Å. The Schottky barrier heights, series resistances, and ideality factor were calculated from current-voltage (I-V) curves obtained using the Cheung-Cheung and Norde methods. All deposition processes were conducted using a facing targets sputtering system. Turn on voltage was minimized when the input power was 90 W, at which point electrical characteristics were observed to have properties superior to those at other levels of input power.

  13. Electrical properties of planar AlGaN/GaN Schottky diodes: Role of 2DEG and analysis of non-idealities

    Science.gov (United States)

    Persano, Anna; Pio, Iolanda; Tasco, Vittorianna; Cuscunà, Massimo; Passaseo, Adriana; Cola, Adriano

    2017-04-01

    A detailed study of the electrical properties of planar AlGaN/GaN Schottky diodes is presented, the focus being on the role of the two dimensional electron gas (2DEG) depletion and the diodes non-idealities in different voltage regimes. The 2DEG depletion behavior is inferred from the analysis of capacitance and current measurements with transition from vertical to lateral diode operation occurring at Vpinch-off = 4 V. In particular, the sub-micrometer depletion width, laterally extending from the edge of the Schottky contact under high reverse voltages, is evaluated on the basis of a simple fringe capacitance model. Current transport mechanisms are discussed, investigating the interrelation between 2DEG, Poole-Frenkel effect, and defects. With regard to defects, the role of dislocations in the AlGaN/GaN diode non-idealities, usually interpreted in terms of Schottky barrier inhomogeneities, is critically addressed. Photocurrent spatial mapping under high reverse voltage points out the not uniform electric field distribution around the Schottky contact and highlights the presence of local photo-conductive paths, likely associated with the dislocations near the edge of the Schottky contact.

  14. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    Science.gov (United States)

    Kim, Hogyoung; Cho, Yunae; Jung, Chan Yeong; Kim, Se Hyun; Kim, Dong-Wook

    2015-12-01

    Using current-voltage (I-V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100-300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm-2 K-2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole-Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample.

  15. Schottky-contact plasmonic rectenna for biosensing

    Science.gov (United States)

    Alavirad, Mohammad; Siadat Mousavi, Saba; Roy, Langis; Berini, Pierre

    2013-10-01

    We propose a plasmonic gold nanodipole array on silicon, forming a Schottky contact thereon, and covered by water. The behavior of this array under normal excitation has been extensively investigated. Trends have been found and confirmed by identification of the mode propagating in nanodipoles and its properties. This device can be used to detect infrared radiation below the bandgap energy of the substrate via internal photoelectric effect (IPE). Also we estimate its responsivity and detection limit. Finally, we assess the potential of the structure for bulk and surface (bio) chemical sensing. Based on modal results an analytical model has been proposed to estimate the sensitivity of the device. Results show a good agreement between numerical and analytical interpretations.

  16. Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts

    KAUST Repository

    Hu, Youfan

    2010-05-31

    A Schottky barrier can be formed at the interface between a metal electrode and a semiconductor. The current passing through the metal-semiconductor contact is mainly controlled by the barrier height and barrier width. In conventional nanodevices, Schottky contacts are usually avoided in order to enhance the contribution made by the nanowires or nanotubes to the detected signal. We present a key idea of using the Schottky contact to achieve supersensitive and fast response nanowire-based nanosensors. We have illustrated this idea on several platforms: UV sensors, biosensors, and gas sensors. The gigantic enhancement in sensitivity of up to 5 orders of magnitude shows that an effective usage of the Schottky contact can be very beneficial to the sensitivity of nanosensors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  18. Study of Reduced Graphene Oxide for Trench Schottky Diode

    Science.gov (United States)

    Samihah Khairir, Nur; Rofei Mat Hussin, Mohd; Nasir, Iskhandar Md; Mukhter Uz-Zaman, A. S. M.; Fazlida Hanim Abdullah, Wan; Sabirin Zoolfakar, Ahmad

    2015-11-01

    This paper presents the study of reduced Graphene Oxide (RGO) for trench Schottky diode by replacing conventional metal layer that forms schottky contact with a nanostructured carbon thin film via Reduced Graphene Oxide (RGO) technique. The RGO was synthesis by chemical exfoliation in which modified Hummer's method was approached. It was then deposited on the trench schottky pattern substrate by pressurized spray coating. The sample was then characterized by FESEM, Raman Spectroscopy and I-V test. The results of FESEM and Raman showed good characteristics and well deposited nanostructures of RGO flakes. The two-point I-V test showed that the samples have a low turn-on voltage and a higher break-down voltage, which is better than the conventional schottky diode used in the market.

  19. Destructive Single-Event Failures in Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Gigliuto, Robert A.; Wilcox, Edward P.; Phan, Anthony M.; Kim, Hak; Chen, Dakai; LaBel, Kenneth A.

    2014-01-01

    This presentation contains test results for destructive failures in DC-DC converters. We have shown that Schottky diodes are susceptible to destructive single-event effects. Future work will be completed to identify parameter that determines diode susceptibility.

  20. Summary of LHC MD:377: Schottky pick-up

    CERN Document Server

    Betz, Michael; Lefevre, Thibaut; CERN. Geneva. ATS Department

    2015-01-01

    The main objective of this MD was to record Schottky spectra under well known machine conditions. In summary, 7 set-points for the chromaticity and 8 for the emittance have been established and Schottky spectra have been recorded for each setting. The data will be used to benchmark and develop different fitting algorithms. This note presents the initial attempt of curve-fitting and discusses its shortcomings.

  1. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    Science.gov (United States)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  2. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S. [U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, Maryland 21005 (United States); Shanholtz, E. R. [ORISE, Belcamp, Maryland 21017 (United States)

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  3. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection

    KAUST Repository

    Shaikh, Parvez Abdul Ajij

    2016-08-16

    Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single crystals. It is found that light illumination can significantly increase the dielectric constant of perovskite junctions by 2300%. Furthermore, such Pt/perovskite junctions are used to fabricate self-biased photodetectors. A photodetectivity of 1.4 × 1010 Jones is obtained at zero bias, which increases to 7.1 × 1011 Jones at a bias of +3 V, and the photodetectivity remains almost constant in a wide range of light intensity. These devices also exhibit fast responses with a rising time of 70 μs and a falling time of 150 μs. As a result of the high crystal quality and low defect density, such single-crystal photodetectors show stable performance after storage in air for over 45 days. Our results suggest that hybrid perovskite single crystals provide a new platform to develop promising optoelectronic applications. © 2016 The Royal Society of Chemistry.

  4. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  5. Recent Progress in Ohmic/Schottky-Contacted ZnO Nanowire Sensors

    National Research Council Canada - National Science Library

    Zhao, Xiaoli; Zhou, Ranran; Hua, Qilin; Dong, Lin; Yu, Ruomeng; Pan, Caofeng

    2015-01-01

      We review the recent progress of zinc oxide (ZnO) nanowire sensors with ohmic-contacted and Schottky-contacted configurations and the enhancement of the performances of Schottky-contacted ZnO NW sensors (SCZNSs...

  6. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu

    2009-12-09

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  7. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  8. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Directory of Open Access Journals (Sweden)

    Hassan Ali

    2016-05-01

    Full Text Available We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  9. Richardson-Schottky transport mechanism in ZnS nanoparticles

    Science.gov (United States)

    Ali, Hassan; Khan, Usman; Rafiq, M. A.; Falak, Attia; Narain, Adeela; Jing, Tang; Xu, Xiulai

    2016-05-01

    We report the synthesis and electrical transport mechanism in ZnS semiconductor nanoparticles. Temperature dependent direct current transport measurements on the compacts of ZnS have been performed to investigate the transport mechanism for temperature ranging from 300 K to 400 K. High frequency dielectric constant has been used to obtain the theoretical values of Richardson-Schottky and Poole-Frenkel barrier lowering coefficients. Experimental value of the barrier lowering coefficient has been calculated from conductance-voltage characteristics. The experimental value of barrier lowering coefficient βexp lies close to the theoretical value of Richardson-Schottky barrier lowering coefficient βth,RS showing Richardson-Schottky emission has been responsible for conduction in ZnS nanoparticles for the temperature range studied.

  10. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  11. Silver-Rutile Schottky Diode Fabricated on Oxidized Titanium Foil

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarpour, Saeedeh; Purahmad, Mohsen, E-mail: s.rahbarpour@ee.kntu.ac.ir, E-mail: m.purahmad@ee.kntu.ac.ir [Electrical Engineering Department, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-15

    The fabrication and characterization of a gas sensing Ag-TiO2 Schottky diode are reported. The fabricated Ag-TiO2-Ti structure, formed by sintering silver nanoparticles on the thermally oxidized titanium foil, demonstrated I-V characteristics of a typical Schottky diode at elevated temperatures up to 500 deg. C. The I-V characteristics of these devices strongly depended on the concentration level of the reducing gas contaminants in the surrounding atmosphere. The samples performed like high-barrier Schottky diodes in clean air, while behaved as ohmic contacts in highly reducing atmospheres. Different concentration levels of the examined alcohol vapours could increase the reverse current of the diodes up to 5 orders of magnitude. The measured electronic features of the device were described via an energy band diagram model.

  12. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  13. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode

    Science.gov (United States)

    Bouzid, Fayçal; Pezzimenti, Fortunato; Dehimi, Lakhdar; Megherbi, Mohamed L.; Della Corte, Francesco G.

    2017-09-01

    In this paper, using a numerical simulator, we investigated the current-voltage characteristics of a Pt/n-GaN thin Schottky diode on the basis of the thermionic emission (TE) theory in the 300 to 500 K temperature range. During the simulations, the effect of different defect states within the n-GaN bulk with different densities and spatial locations is considered. The results show that the diode ideality factor and the threshold voltage decrease with increasing temperature, while at the same time, the zero-bias Schottky barrier height (Φb0) extracted from the forward current density-voltage (J-V) characteristics increases. The observed behaviors of the ideality factor and zero-bias barrier height are analyzed on the basis of spatial barrier height inhomogeneities at the Pt/GaN interface by assuming a Gaussian distribution (GD). The plot of apparent barrier height (Φb,App) as a function of q/2kT gives a straight line, where the mean zero-bias barrier height (\\overline{Φ \\text{b0}}) and the standard deviation (σ0) are 1.48 eV and 0.047 V, respectively. The plot of the modified activation energy against q/kT gives an almost the same value of \\overline{Φ \\text{b0}} and an effective Richardson constant A* of 28.22 A cm-2 K-2, which is very close to the theoretical value for n-type GaN/Pt contacts. As expected, the presence of defect states with different trap energy levels has a noticeable impact on the device electrical characteristics.

  14. Simulation and measurement of the resonant Schottky pickup

    Science.gov (United States)

    Zang, Yong-Dong; Wu, Jun-Xia; Zhao, Tie-Cheng; Zhang, Sheng-Hu; Mao, Rui-Shi; Xu, Hu-Shan; Sun, Zhi-Yu; Ma, Xin-Wen; Tu, Xiao-Lin; Xiao, Guo-Qing; Nolden, F.; Hülsmann, P.; Yu., A. Litvinov; Peschke, C.; Petri, P.; S. Sanjari, M.; Steck, M.

    2011-12-01

    A resonant Schottky pickup with high sensitivity, built by GSI, will be used for nuclear mass and lifetime measurement at CSRe. The basic concepts of Schottky noise signals, a brief introduction of the geometry of the detector, the transient response of the detector, and MAFIA simulated and perturbation measured results of characteristics are presented in this paper. The resonant frequency of the pickup is about 243 MHz and can be slightly changed at a range of 3 MHz. The unloaded quality factor is about 1072 and the shunt impedance is 76 kΩ. The measured results of the characteristics are in agreement with the MAFIA simulations.

  15. Novel palladium germanide schottky contact for high performance schottky barrier ge MOSFETs and characterization of its leakage current mechanism.

    Science.gov (United States)

    Oh, Se-Kyung; Shin, Hong-Sik; Kang, Min-Ho; Lee, Ga-Won; Lee, Hi-Deok

    2012-07-01

    The leakage current mechanism of Palladium (Pd) germanide Schottky contact on n-type Ge-on-Si substrate is analyzed in depth. The electric field dependent analysis shows that the dominant leakage current mechanism is the Poole-Frenkel emission due to the existence of deep level traps in the depletion region of the Pd germanide/n-type Ge Schottky diode. The analysis of the dependence of leakage current on temperature also shows that the Poole-Frenkel emission and generation current are the dominant components below 100 degrees C and that the Schottky emission related to thermionic emission of majority carriers over a potential barrier is the main cause of this dominance at high temperature region.

  16. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-ohmic contacts for high frequency applications

    Science.gov (United States)

    Manohara, Harish M.; Wong, Eric W.; Schlecht, Erich; Hunt, Brian D.; Siegel, Peter H.

    2005-01-01

    We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than 15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10-13 W(square root)xHz.

  17. A nanoscale pn junction in series with tunable Schottky barriers

    Science.gov (United States)

    Aspitarte, Lee; McCulley, Daniel R.; Minot, Ethan D.

    2017-10-01

    PN junctions in nanoscale materials are of interest for a range of technologies including photodetectors, solar cells, and light-emitting diodes. However, Schottky barriers at the interface between metal contacts and the nanomaterial are often unavoidable. The effect of metal-semiconductor interfaces on the behavior of nanoscale diodes must be understood, both to extract the characteristics of the pn junction, and to understand the overall characteristics of the final device. Here, we study the current-voltage characteristics of diodes that are formed in fully suspended carbon nanotubes (CNTs). We utilize tunable Schottky barrier heights at the CNT-metal interface to elucidate the role of the Schottky barriers on the device characteristics. We develop a quantitative model to show how a variety of device characteristics can arise from apparently similar devices. Using our model we extract key parameters of the Schottky barriers and the pn junction, and predict the overall I-V characteristics of the device. Our equivalent circuit model is relevant to a variety of nanomaterial-based diode devices that are currently under investigation.

  18. Silicon Schottky photovoltaic diodes for solar energy conversion

    Science.gov (United States)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  19. Enhanced Plasmonic Light Absorption for Silicon Schottky-Barrier Photodetectors

    DEFF Research Database (Denmark)

    Hashemi, Mahdieh; Farzad, Mahmood Hosseini; Mortensen, N. Asger

    2013-01-01

    is transferred into hot carriers near the Schottky barrier. The proposed broadband photodetector with a bi-grating metallic structure on the silicon substrate enables to absorb 76 % of the infrared light in the metal with a 200-nm bandwidth, while staying insensitive to the incident angle. These results pave...

  20. Electrical Properties of Self-Assembled Nano-Schottky Diodes

    Directory of Open Access Journals (Sweden)

    F. Ruffino

    2008-01-01

    Full Text Available A bottom-up methodology to fabricate a nanostructured material by Au nanoclusters on 6H-SiC surface is illustrated. Furthermore, a methodology to control its structural properties by thermal-induced self-organization of the Au nanoclusters is demonstrated. To this aim, the self-organization kinetic mechanisms of Au nanoclusters on SiC surface were experimentally studied by scanning electron microscopy, atomic force microscopy, Rutherford backscattering spectrometry and theoretically modelled by a ripening process. The fabricated nanostructured materials were used to probe, by local conductive atomic force microscopy analyses, the electrical properties of nano-Schottky contact Au nanocluster/SiC. Strong efforts were dedicated to correlate the structural and electrical characteristics: the main observation was the Schottky barrier height dependence of the nano-Schottky contact on the cluster size. Such behavior was interpreted considering the physics of few electron quantum dots merged with the concepts of ballistic transport and thermoionic emission finding a satisfying agreement between the theoretical prediction and the experimental data. The fabricated Au nanocluster/SiC nanocontact is suggested as a prototype of nano-Schottky diode integrable in complex nanoelectronic circuits.

  1. New Schottky-Pickup for COSY-Jülich

    CERN Document Server

    Mohos, I; Dietrich, J; Klehr, F

    2001-01-01

    A new Schottky-pickup for the Cooler Synchrotron COSY at the Forschungszentrum J?lich was developed, tested and installed. The new pickup with four diagonally arranged plates replaces the two 1 m long Schottky-pickups used until now in COSY. The previous ones were removed mainly to gain space for new installations (e.g. rf-cavity, experimental devices), but also to increase the horizontal aperture. The available space for the new pickup is only 0.8 m. The pickup plates can be combined by means of relays to measure either in the horizontal or in the vertical plane. The pickup can also be used either as a sensitive broadband beam position monitor or as a tuneable narrowband pickup for Schottky-noise analysis with ultahigh sensitivity. A new method for resonant tuning of the Schottky-pickups for transversal measurements was developed. The differentially excited resonant circuitry enhances the sensitivity by about a factor of 30. The pickups are also used for dynamical tune measurements (tune meter) in the accele...

  2. Au/n-InP Schottky diodes using an Al2O3 interfacial layer grown by atomic layer deposition

    Science.gov (United States)

    Kim, Hogyoung; Kim, Min Soo; Yoon, Seung Yu; Choi, Byung Joon

    2017-02-01

    We investigated the effect of an Al2O3 interfacial layer grown by atomic layer deposition on the electrical properties of Au Schottky contacts to n-type InP. Considering barrier inhomogeneity, modified Richardson plots yielded a Richardson constant of 8.4 and 7.5 Acm-2K-2, respectively, for the sample with and without the Al2O3 interlayer (theoretical value of 9.4 Acm-2K-2 for n-type InP). The dominant reverse current flow for the sample with an Al2O3 interlayer was found to be Poole-Frenkel emission. From capacitance-voltage measurements, it was observed that the capacitance for the sample without the Al2O3 interlayer was frequency dependent. Sputter-induced defects as well as structural defects were passivated effectively with an Al2O3 interlayer.

  3. A novel physical parameter extraction approach for Schottky diodes

    Science.gov (United States)

    Wang, Hao; Chen, Xing; Xu, Guang-Hui; Huang, Ka-Ma

    2015-07-01

    Parameter extraction is an important step for circuit simulation methods that are based on physical models of semiconductor devices. A novel physical parameter extraction approach for Schottky diodes is proposed in this paper. By employing a set of analytical formulas, this approach extracts all of the necessary physical parameters of the diode chip in a unique way. It then extracts the package parasitic parameters with a curve-fitting method. To validate the proposed approach, a model HSMS-282c commercial Schottky diode is taken as an example. Its physical parameters are extracted and used to simulate the diode’s electrical characteristics. The simulated results based on the extracted parameters are compared with the measurements and a good agreement is obtained, which verifies the feasibility and accuracy of the proposed approach. Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1230112).

  4. Physical based Schottky barrier diode modeling for THz applications

    DEFF Research Database (Denmark)

    Yan, Lei; Krozer, Viktor; Michaelsen, Rasmus Schandorph

    2013-01-01

    temperature. The effects of barrier height lowering, nonlinear resistance from the EPI layer, and hot electron noise are all included for accurate characterization of the Schottky diode. To verify the diode model, measured I-V and C-V characteristics are compared with the simulation results. Due to the lack......In this work, a physical Schottky barrier diode model is presented. The model is based on physical parameters such as anode area, Ohmic contact area, doping profile from epitaxial (EPI) and substrate (SUB) layers, layer thicknesses, barrier height, specific contact resistance, and device...... of measurement data for noise behaviors, simulated noise temperature is compared with the experimental data found from the open literature....

  5. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  6. Graphene/silicon nanowire Schottky junction for enhanced light harvesting.

    Science.gov (United States)

    Fan, Guifeng; Zhu, Hongwei; Wang, Kunlin; Wei, Jinquan; Li, Xinming; Shu, Qinke; Guo, Ning; Wu, Dehai

    2011-03-01

    Schottky junction solar cells are assembled by directly coating graphene films on n-type silicon nanowire (SiNW) arrays. The graphene/SiNW junction shows enhanced light trapping and faster carrier transport compared to the graphene/planar Si structure. With chemical doping, the SiNW-based solar cells showed energy conversion efficiencies of up to 2.86% at AM1.5 condition, opening a possibility of using graphene/semiconductor nanostructures in photovoltaic application.

  7. Metal-semiconductor Schottky barrier junctions and their applications

    CERN Document Server

    1984-01-01

    The present-day semiconductor technology would be inconceivable without extensive use of Schottky barrier junctions. In spite of an excellent book by Professor E.H. Rhoderick (1978) dealing with the basic principles of metal­ semiconductor contacts and a few recent review articles, the need for a monograph on "Metal-Semiconductor Schottky Barrier Junctions and Their Applications" has long been felt by students, researchers, and technologists. It was in this context that the idea of publishing such a monograph by Mr. Ellis H. Rosenberg, Senior Editor, Plenum Publishing Corporation, was considered very timely. Due to the numerous and varied applications of Schottky barrier junctions, the task of bringing it out, however, looked difficult in the beginning. After discussions at various levels, it was deemed appropriate to include only those typical applications which were extremely rich in R&D and still posed many challenges so that it could be brought out in the stipulated time frame. Keeping in view the la...

  8. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr [Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772 (Korea, Republic of); Park, Hyeong-Ho [Applied Device and Material Lab., Device Technology Division, Korea Advanced Nano Fab Center (KANC), Suwon 443270 (Korea, Republic of)

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  9. Towards substrate engineering of graphene-silicon Schottky diode photodetectors.

    Science.gov (United States)

    Selvi, Hakan; Unsuree, Nawapong; Whittaker, Eric; Halsall, Matthew P; Hill, Ernie W; Thomas, Andrew; Parkinson, Patrick; Echtermeyer, Tim J

    2018-02-01

    Graphene-silicon Schottky diode photodetectors possess beneficial properties such as high responsivities and detectivities, broad spectral wavelength operation and high operating speeds. Various routes and architectures have been employed in the past to fabricate devices. Devices are commonly based on the removal of the silicon-oxide layer on the surface of silicon by wet-etching before deposition of graphene on top of silicon to form the graphene-silicon Schottky junction. In this work, we systematically investigate the influence of the interfacial oxide layer, the fabrication technique employed and the silicon substrate on the light detection capabilities of graphene-silicon Schottky diode photodetectors. The properties of devices are investigated over a broad wavelength range from near-UV to short-/mid-infrared radiation, radiation intensities covering over five orders of magnitude as well as the suitability of devices for high speed operation. Results show that the interfacial layer, depending on the required application, is in fact beneficial to enhance the photodetection properties of such devices. Further, we demonstrate the influence of the silicon substrate on the spectral response and operating speed. Fabricated devices operate over a broad spectral wavelength range from the near-UV to the short-/mid-infrared (thermal) wavelength regime, exhibit high photovoltage responses approaching 106 V W-1 and short rise- and fall-times of tens of nanoseconds.

  10. Microstructural and electrical properties of Al/n-type Si Schottky diodes with Au-CuPc nanocomposite films as interlayer

    Science.gov (United States)

    Reddy, P. R. Sekhar; Janardhanam, V.; Jyothi, I.; Chang, Han-Soo; Lee, Sung-Nam; Lee, Myung Sun; Reddy, V. Rajagopal; Choi, Chel-Jong

    2017-11-01

    Au-CuPc nanocomposite films were prepared by simultaneous evaporation of Au and CuPc with various Au and CuPc concentrations. Microstructural analysis of Au-CuPc films revealed elongated Au cluster formation from isolated Au nanoclusters with increasing Au concentration associated with coalescence of Au clusters. Au-CuPc films with different compositions were employed as interlayer in Al/n-Si Schottky diode. Barrier height and series resistance of the Al/n-Si Schottky diode with Au-CuPc interlayer decreased with increasing Au concentration. This could be associated with the enhancement of electron tunneling between neighboring clusters due to decrease in spacing of Au clusters and formation of conducting paths through the composite material. Interface state density of the Al/n-Si Schottky diode with Au-CuPc interlayer increased with increasing Au concentration. This might be because the inclusion of metal decreases the crystallinity and crystal size of the polymer matrix accompanied by the formation of local defect sites at the places of metal nucleation.

  11. Characterisation of temperature dependent parameters of multi-quantum well (MQW) Ti/Au/n-AlGaAs/n-GaAs/n-AlGaAs Schottky diodes

    Science.gov (United States)

    Filali, Walid; Sengouga, Nouredine; Oussalah, Slimane; Mari, Riaz H.; Jameel, Dler; Al Saqri, Noor Alhuda; Aziz, Mohsin; Taylor, David; Henini, Mohamed

    2017-11-01

    Forward and reverse current-voltage (Isbnd V) of Ti/Au/n-Al0.33Ga0.67As/n-GaAs/n-Al0.33Ga0.67As multi-quantum well (MQW) Schottky diodes were measured over a range of temperatures from 20 to 400 K by a step of 20 K. The Schottky diodes parameters were then extracted from these characteristics. The Cheung method is used for this purpose, assuming a thermionic conduction mechanism. The extracted ideality factor decrease with increasing temperatures. But their values at low temperatures were found to be unrealistic. In order to explain this uncertainty, three assumptions were explored. Firstly an assumed inhomogeneous barrier height gave better parameters especially the Richardson constant but the ideality factor is still unrealistic at low temperatures. Secondly, by using numerical simulation, it was demonstrated that defects including interface states are not responsible for the apparent unrealistic Schottky diode parameters. The third assumption is the tunnelling mechanism through the barrier in the low temperature range. At these lower temperatures, the tunnelling mechanism was more suitable to explain the extracted parameters values.

  12. Defect branes

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Ortin, Tomas; Riccioni, Fabio

    2012-01-01

    We discuss some general properties of "defect branes", i.e. branes of co-dimension two, in (toroidally compactified) IIA/IIB string theory. In particular, we give a full classification of the supersymmetric defect branes in dimensions 3

  13. Effect of temperature on the passive state of Alloy 31 in a LiBr solution: Passivation and Mott-Schottky analysis

    OpenAIRE

    Fernández Domene, Ramón Manuel; Blasco-Tamarit, E.; García-García, D.M.; Garcia-Anton, Jose

    2015-01-01

    The passive behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine (700 g/l) at different temperatures using potentiostatic polarisation and Mott-Schottky analysis. Cation vacancies have been found to be the dominant defect in the passive films formed on Alloy 31. An increase in temperature enhanced the generation of cation vacancies at the film/solution interface and raised the steady-state passive current density. The den...

  14. Modeling of Schottky Barrier Diode Millimeter-Wave Multipliers at Cryogenic Temperatures

    DEFF Research Database (Denmark)

    Johansen, Tom K.; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2015-01-01

    We report on the evaluation of Schottky barrier diode GaAs multipliers at cryogenic temperatures. A GaAs Schottky barrier diode model is developed for theoretical estimation of doubler performance. The model is used to predict efficiency of doublers from room to cryogenic temperatures...

  15. Fullerene-based Schottky-junction organic solar cells: a brief review

    Science.gov (United States)

    Sutty, Sibi; Williams, Graeme; Aziz, Hany

    2014-01-01

    Recent advances in fullerene-based Schottky organic solar cells (OSCs) are presented, with a focus on the current understanding of device physics. Fullerene-based Schottky OSCs attain high open-circuit voltages due to the n-type Schottky junction formed between fullerene and an adjacent high work function anode. Small concentrations of donor material doped into the fullerene matrix serve as efficient exciton dissociation and hole transport agents that can substantially bolster short-circuit currents and fill factors. As a consequence, fullerene-based Schottky OSCs have been demonstrated to provide some of the highest-performance vacuum-deposited small molecule OSCs, with power conversion efficiencies up to 8.1%. Fullerene-based Schottky OSCs constructed using different donor materials and varying cathode buffer layers, as studied by a number of different research groups, are presented. To elucidate the differences between Schottky OSCs and more traditional bulk-heterojunction OSCs, we discuss the photophysics of fullerenes, the role of the donor material, and charge transport in low donor concentration active layers. Fullerene-based Schottky OSCs possess considerable advantages because they can reach high efficiencies with a simple structure using readily available and cost-effective materials. The impact and applicability of the Schottky device architecture on the field of organic photovoltaics at large are discussed.

  16. ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode

    Indian Academy of Sciences (India)

    The – curves in the reverse direction are taken and interpreted via both Schottky and Poole–Frenkel effects. Schottky effect was found to be dominant in the reverse direction. In addition, the capacitance–voltage (–) and conductance–voltage (/–) characteristics of diode were investigated at different frequencies ...

  17. ALD TiO2 thin film as dielectric for Al/p-Si Schottky diode

    Indian Academy of Sciences (India)

    It has potential applications such as cataly- sis, sensors, antireflection coating, solar cells and Schottky diodes (Kadoshima et al 2003; Pakma et al 2008, ... conductor (MIS) Schottky diodes have an important role in the integrated device technology (Pakma et al 2008, 2009,. 2011; Kınacı et al 2012; Sönmezo˘glu and Akın ...

  18. Transformation of polycrystalline tungsten to monocrystalline tungsten W(100) and its potential application in Schottky emitters

    NARCIS (Netherlands)

    Dokania, A.K.; Hendrikx, R.; Kruit, P.

    2009-01-01

    The electron sources in electron microscopes and electron lithography machines often consist of small diameter W(100) wires, etched to form a sharp tip. The electron emission is facilitated by the Schottky effect, thus the name Schottky emitter. The authors are investigating the feasibility of

  19. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  20. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy.

    Science.gov (United States)

    Dong, Hong; Gong, Cheng; Addou, Rafik; McDonnell, Stephen; Azcatl, Angelica; Qin, Xiaoye; Wang, Weichao; Wang, Weihua; Hinkle, Christopher L; Wallace, Robert M

    2017-11-08

    MoS2, as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS2 junction is critical to realizing the potential of MoS2-based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 μm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS2 is detected by XPS characterization, which gives insight into metal contact physics to MoS2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

  1. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  2. Performance Analysis of a Pt/ n-GaN Schottky Barrier UV Detector

    Science.gov (United States)

    Bouzid, F.; Dehimi, L.; Pezzimenti, F.

    2017-11-01

    The electrical and optical characteristics of an n-type gallium nitride (GaN)-based Schottky barrier ultraviolet (UV) detector, where a platinum (Pt) metal layer forms the anode contact, have been evaluated by means of detailed numerical simulations considering a wide range of incident light intensities. By modeling the GaN physical properties, the detector current density-voltage characteristics and spectral responsivity for different (forward and reverse) bias voltages and temperatures are presented, assuming incident optical power ranging from 0.001 W cm-2 to 1 W cm-2. The effect of defect states in the GaN substrate is also investigated. The results show that, at room temperature and under reverse bias voltage of -300 V, the dark current density is in the limit of 2.18 × 10-19 A cm-2. On illumination by a 0.36- μm UV uniform beam with intensity of 1 W cm-2, the photocurrent significantly increased to 2.33 A cm-2 and the detector spectral responsivity reached a maximum value of 0.2 A W-1 at zero bias voltage. Deep acceptor trap states and high temperature strongly affected the spectral responsivity curve in the considered 0.2 μm to 0.4 μm UV spectral range.

  3. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  4. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M. [Department of Electrical Engineering, Arizona State University, Tempe, Arizona 85287-8806 (United States); Koeck, Franz A. M.; Nemanich, Robert J. [Department of Physics, Arizona State University, Tempe, Arizona 85287-8806 (United States)

    2016-06-14

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco{sup ®} Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

  5. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect

    Science.gov (United States)

    Di Bartolomeo, Antonio; Luongo, Giuseppe; Giubileo, Filippo; Funicello, Nicola; Niu, Gang; Schroeder, Thomas; Lisker, Marco; Lupina, Grzegorz

    2017-06-01

    We propose a hybrid device consisting of a graphene/silicon (Gr/Si) Schottky diode in parallel with a Gr/SiO2/Si capacitor for high-performance photodetection. The device, fabricated by transfer of commercial graphene on low-doped n-type Si substrate, achieves a photoresponse as high as 3 \\text{A} {{\\text{W}}-1} and a normalized detectivity higher than 3.5× {{10}12} \\text{cm} \\text{H}{{\\text{z}}1/2} {{\\text{W}}-1} in the visible range. It exhibits a photocurrent exceeding the forward current because photo-generated minority carriers, accumulated at Si/SiO2 interface of the Gr/SiO2/Si capacitor, diffuse to the Gr/Si junction. We show that the same mechanism, when due to thermally generated carriers, although usually neglected or disregarded, causes the increased leakage often measured in Gr/Si heterojunctions. We perform extensive I-V and C-V characterization at different temperatures and we measure a zero-bias Schottky barrier height of 0.52 eV at room temperature, as well as an effective Richardson constant A **  =  4× {{10}-5} \\text{A} \\text{c}{{\\text{m}}-2} {{\\text{K}}-2} and an ideality factor n≈ 3.6 , explained by a thin (<1 nm) oxide layer at the Gr/Si interface.

  6. Admittance of a-Si:H/c-Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Gall, S.; Hirschauer, R.; Braeunig, D. [Hahn-Meitner-Inst., Berlin (Germany). Dept. AT; Kolter, M. [Forschungszentrum Juelich (Germany)

    1996-12-31

    Heterojunction devices, based on hydrogenated amorphous silicon (a-Si:H) and single crystalline silicon (c-Si), are likely candidates for high efficiency solar cells. The authors have measured the admittance (conductance and capacitance) of a-Si:H/c-Si heterostructure Schottky diodes as a function of frequency, temperature and voltage in the dark and under spectral illumination (in the wavelength range between {lambda} = 500nm and {lambda} = 1,200nm). Thus, it is possible to observe the activation/deactivation of trapping-detrapping effects within the a-Si:H layer (near the a-SiH/c-Si interface). They have determined the conduction band offset of the a-Si:H/c-Si heterostructure. The spectral behavior of the admittance is dominated by the absorption of light in the c-Si and the valence band offset of the heterojunction. The authors have also developed an equivalent circuit of the a-Si:H/c-Si heterostructure Schottky diode in the dark, which is capable of describing the measured behavior.

  7. Schottky Barrier Transport for Multiphase Gallium Nitride Nanowire

    Science.gov (United States)

    Hartz, Steven; Xie, Kan; Liu, Zhun; Ayres, Virginia

    2013-03-01

    Our group has shown that gallium nitride nanowires grown by catalyst-free vapor deposition at 850oC have multiple internal crystalline regions that may be zinc blende or wurtzite phase. Stability is enabled by one or more totally coherent (0001)/(111) internal interfaces. Cross-section HRTEM has further demonstrated that, while the transverse nanowire profile appears triangular, it is actually made up of two or more surface orientations corresponding to the multi-phase internal regions. We present results of a transport investigation of these multiphase nanowires within a nanoFET circuit architecture, focusing on injection from the contacts into the nanowires. Experimental results demonstrated that a variety of surface state derived Schottky barriers could be present at the contact-nanowire interfaces. Transport across the Schottky barriers was modeled using a combined thermionic emission-tunnelling approach, leading to information about barrier height, carrier concentrations, and expected temperature behavior. The experimental and theoretical results indicate that with optimal design taking surface and internal structures into account, high current densities can be supported.

  8. Schottky bipolar I-MOS: An I-MOS with Schottky electrodes and an open-base BJT configuration for reduced operating voltage

    Science.gov (United States)

    Kannan, N.; Kumar, M. Jagadesh

    2017-04-01

    In this paper, we have proposed a novel impact ionization MOS (I-MOS) structure, called the Schottky bipolar I-MOS, with Schottky source and drain electrodes and utilizing the open-base bipolar junction transistor (BJT) configuration for achieving reduction in the operating voltage of the I-MOS transistor. We report, using 2-D simulations, a low operating voltage (∼1.1 V) and a low subthreshold swing (∼3.6 mV/Decade). For the corresponding p-i-n I-MOS, the operating voltage is ∼5.5 V. The operating voltage of the Schottky bipolar I-MOS is the lowest reported operating voltage for silicon based I-MOS transistors. The nearly 80% reduction in the operating voltage of the Schottky bipolar I-MOS makes it suitable for applications requiring low operating voltages. The Schottky bipolar I-MOS is also expected to have an improved reliability over the p-i-n I-MOS since high energy carriers, induced by impact ionization near the drain, do not have to pass under the gate region in the channel. The use of Schottky contacts instead of heavily doped source and drain regions and the low channel doping level reduces the required thermal budget for device fabrication. The low operating voltage, low subthreshold swing and possibly improved reliability of the Schottky bipolar I-MOS, makes it a potential solution for applications where steep subthreshold slope transistors are being explored as alternative to the conventional MOS transistor.

  9. Electrical characterization of all-epitaxial Fe/GaN(0001) Schottky tunnel contacts

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Garrido, Sergio; Ubben, Kai U.; Herfort, Jens; Gao Cunxu; Brandt, Oliver [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, D-10117 Berlin (Germany)

    2012-07-16

    We analyze the properties of Fe Schottky contacts prepared in situ on n-type GaN(0001) by molecular beam epitaxy. In particular, we investigate the suitability of these epitaxial Fe layers for electrical spin injection. Current-voltage-temperature measurements demonstrate pure field emission for Fe/GaN:Si Schottky diodes with [Si]=5 Multiplication-Sign 10{sup 18} cm{sup -3}. The Schottky barrier height of the clean, epitaxial Fe/GaN interface is determined by both current-voltage-temperature and capacitance-voltage techniques to be (1.47{+-}0.09)eV.

  10. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  11. Abrupt Schottky Junctions in Al/Ge Nanowire Heterostructures.

    Science.gov (United States)

    Kral, S; Zeiner, C; Stöger-Pollach, M; Bertagnolli, E; den Hertog, M I; Lopez-Haro, M; Robin, E; El Hajraoui, K; Lugstein, A

    2015-07-08

    In this Letter we report on the exploration of axial metal/semiconductor (Al/Ge) nanowire heterostructures with abrupt interfaces. The formation process is enabled by a thermal induced exchange reaction between the vapor-liquid-solid grown Ge nanowire and Al contact pads due to the substantially different diffusion behavior of Ge in Al and vice versa. Temperature-dependent I-V measurements revealed the metallic properties of the crystalline Al nanowire segments with a maximum current carrying capacity of about 0.8 MA/cm(2). Transmission electron microscopy (TEM) characterization has confirmed both the composition and crystalline nature of the pure Al nanowire segments. A very sharp interface between the ⟨111⟩ oriented Ge nanowire and the reacted Al part was observed with a Schottky barrier height of 361 meV. To demonstrate the potential of this approach, a monolithic Al/Ge/Al heterostructure was used to fabricate a novel impact ionization device.

  12. Self assembled silicon nanowire Schottky junction assisted by collagen

    Science.gov (United States)

    Stievenard, Didier; Sahli, Billel; Coffinier, Yannick; Boukherroub, Rabah; Melnyk, Oleg

    2008-03-01

    We present results on self assembled silicon nanowire Schottky junction assisted by collagen fibrous. The collagen is the principle protein of connective human tissues. It presents the double interest to be a low cost biological material with the possibility to be combed as the DNA molecule. First, the collagen was combed on OTS modified surface with gold electrodes. Second, silicon nanowires were grown on silicon substrate by CVD of silane gas (SiH4) at high temperature (500 C) using a vapor-liquid-solid (VLS) process and gold particles as catalysts. In order to increase electrostatic interaction between the collagen and the nanowires, these latters were chemically modified by mercaptopropylmethoxysilane (MPTS), then chemically oxidized. Therefore, the nanowires were transferred from their substrate into water and a drop of it deposited on the surface. Nanowires are only bound to collagen and in particular, in electrode gaps. The formation of spontaneous Schotkty junction is demonstrated by current-voltage characteristics.

  13. Schottky mass- and lifetime-spectrometry of unstable, stored ions

    CERN Document Server

    Bosch, F

    2003-01-01

    GSI is presently the only facility where unstable, highly charged ions far from stability can be produced by in-flight fragmentation and subsequently stored and cooled in an ion storage ring. The mass-to-charge ratio of those stored ions is measured by two complementary methods that have been developed at GSI: Schottky mass-spectrometry, based on the recording of the revolution frequencies of electron-cooled ions, and isochronous mass-spectrometry, applied on short-lived, uncooled ions at the 'transition energy'. Both methods provide a highly efficient, precise and sensitive determination of the nuclear mass of many simultaneously stored ion species. Similarly, the beta lifetimes of stored, unstable nuclei can also be determined. The impact of nuclear masses and lifetimes for both nuclear physics and astrophysics is also addressed.

  14. Diodes Schottky diamant fonctionnant à 200°C

    OpenAIRE

    Monflier, Richard; Isoird, Karine; Cazarré, Alain; Tasselli, Josiane; Servel, Alexandra; ACHARD, Jocelyn; Eon, David

    2015-01-01

    Les caractéristiques courant-tension jusqu'à 200°C de diodes Schottky diamant verticales et pseudo-verticales réalisées dans le cadre du projet DIAMONIX2 sont présentées dans cet article. Sur les différents échantillons testés le taux de fonctionnalité est supérieur à 75%. Pour les diodes verticales la densité de courant atteint 488 A/cm 2 à 200°C, et un courant de fuite < 10-7 A/cm 2 à 50 V. Toutefois, la hauteur de barrière de 1,96 eV et le coefficient d'idéalité de 1,77 sont certainement c...

  15. Diodes Schottky diamant fonctionnant à 200°C

    OpenAIRE

    Monflier, Richard; Isoird, Karine; Cazarre, Alain; Tasselli, Josiane; Servel, Alexandra; ACHARD, Jocelyn; Eon, David; Valdivia Birnbaum, Maria José

    2016-01-01

    International audience; Les caractéristiques courant-tension jusqu'à 200 °C de diodes Schottky diamant verticales et pseudo-verticales réalisées dans le cadre du projet DIAMONIX2 sont présentées dans cet article. Sur les différents échantillons testés le taux de fonctionnalité est supérieur à 75 % et atteint même 100 % pour l'un d'entre eux. Pour les diodes verticales la densité de courant atteint 488 A/cm2 à 200 °C et pour les diodes pseudo-verticales une densité de courant supérieure à 1000...

  16. Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode

    Science.gov (United States)

    Miranda, Felix A.; Meador, Michael A.; Theofylaktos, Onoufrios; Pinto, Nicholas J.; Mueller, Carl H.; Santos-Perez, Javier

    2010-01-01

    This proof-of-concept device consists of a thin film of graphene deposited on an electrodized doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. By virtue of the two-dimensional nature of graphene, this device has extreme sensitivity to different gaseous species, thereby serving as a building block for a volatile species sensor, with the attribute of having reversibility properties. That is, the sensor cycles between active and passive sensing states in response to the presence or absence of the gaseous species.

  17. Chemical stability and defect formation in CaHfO3

    KAUST Repository

    Alay-E-Abbas, Syed Muhammad

    2014-04-01

    Defects in CaHfO3 are investigated by ab initio calculations based on density functional theory. Pristine and anion-deficient CaHfO 3 are found to be insulating, whereas cation-deficient CaHfO 3 is hole-doped. The formation energies of neutral and charged cation and anion vacancies are evaluated to determine the stability in different chemical environments. Moreover, the energies of the partial and full Schottky defect reactions are computed. We show that clustering of anion vacancies in the HfO layers is energetically favorable for sufficiently high defect concentrations and results in metallicity. © 2014 EPLA.

  18. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  19. The properties of transparent TiO2 films for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Sung-Ho Park

    2017-08-01

    Full Text Available In this data, the properties of transparent TiO2 film for Schottky photodetector are presented for the research article, entitled as “High-performing transparent photodetectors based on Schottky contacts” (Patel et al., 2017 [1]. The transparent photoelectric device was demonstrated by using various Schottky metals, such as Cu, Mo and Ni. This article mainly shows the optical transmittance of the Ni-transparent Schottky photodetector, analyzed by the energy dispersive spectroscopy and interfacial TEM images for transparency to observe the interface between NiO and TiO2 film. The observation and analyses clearly show that no pinhole formation in the TiO2 film by Ni diffusion. The rapid thermal process is an effective way to form the quality TiO2 film formation without degradation, such as pinholes (Qiu et al., 2015 [2]. This thermal process may apply to form functional metal oxide layers for solar cells and photodetectors.

  20. Carrier transport in reverse-biased graphene/semiconductor Schottky junctions

    OpenAIRE

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2015-01-01

    Reverse-biased graphene (Gr)/semiconductor Schottky diodes exhibit much enhanced sensitivity for gas sensing. However, carrier transport across the junctions is not fully understood yet. Here, Gr/SiC, Gr/GaAs and Gr/Si Schottky junctions under reverse-bias are investigated by temperature-dependent current-voltage measurements. A reduction in barrier height with increasing reverse-bias is observed for all junctions, suggesting electric-field enhanced thermionic emission. Further analysis of th...

  1. Simulation of a perfect CVD diamond Schottky diode steep forward current–voltage characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Kukushkin, V.A., E-mail: vakuk@appl.sci-nnov.ru [Institute of Applied Physics of the Russian Academy of Science, 46 Ulyanov St., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State University named after N.I. Lobachevsky, 23 Gagarin pr., 603950 Nizhny Novgorod (Russian Federation)

    2016-10-01

    The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current–voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.

  2. Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN ...

    Indian Academy of Sciences (India)

    voltage (C–V) characteristics of. Ru/Pt/n-GaN Schottky diodes in the temperature range 100–420 K. The calculated values of barrier height and ide- ality factor for the Ru/Pt/n-GaN Schottky diode are 0·73 eV and 1·4 at 420 K, 0·18 eV and 4·2 at 100 K ...

  3. Barrier height enhancement of Ni/GaN Schottky diode using Ru based passivation scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashish, E-mail: dr.akmr@gmail.com; Kumar, Mukesh; Singh, R. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kaur, Riajeet [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Joshi, Amish G. [CSIR - National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi - 110 012 (India); Vinayak, Seema [Solid State Physical Laboratory, Timarpur, Delhi 110054 (India)

    2014-03-31

    Wet chemical passivation of n-GaN surface using Ru based solution has been reported. X-ray photoelectron spectroscopy characterization of the GaN surface revealed removal of surface oxides by the introduction of Ru complex species. Ni/n-GaN Schottky barrier diodes were fabricated on passivated GaN and a remarkable improvement in Schottky barrier height from 0.76 eV to 0.92 eV was observed.

  4. Defects and defect processes in nonmetallic solids

    CERN Document Server

    Hayes, W

    2004-01-01

    This extensive survey covers defects in nonmetals, emphasizing point defects and point-defect processes. It encompasses electronic, vibrational, and optical properties of defective solids, plus dislocations and grain boundaries. 1985 edition.

  5. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2017-12-04

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  7. Effect of temperature and post-deposition annealing on Schottky barrier characterization of Bromoindium phthalocyanine/aluminum interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azim-Araghi, M.E.; Sahebi, R., E-mail: ramezan.sahebi@yahoo.com

    2014-01-15

    To investigate DC electrical properties and Schottky barrier characterization between BrInPc/Al interfaces, some thin films of BrInPc in sandwich form were prepared with Al electrodes. J–V characterization showed ohmic behavior at lower voltages upto 0.3 V followed by Schottky emission conduction mechanism at higher voltages. In the Schottky region two different slopes in the plot of ln (J) against V{sup 1/2} were observed and two different values of Schottky barrier height was determined for these regions. To investigate the effect of temperature on Schottky barrier behavior between BrInPc and aluminum interface, we studied the J–V characteristics of devices at the temperature range of 298–373 K. By increasing the temperature, the width of Schottky depletion region decreased and the Schottky barrier height increased, and at temperatures higher than 333 K the dominant conduction mechanism changed to Poole–Frenkel type. For annealed samples at 373 K and 423 K, the Schottky barrier height increased as the result of thermal annealing and increasing annealing temperature. The width of the Schottky depletion region decreased by annealing and increasing the annealing temperature.

  8. Congenital Defects.

    Science.gov (United States)

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  9. Transport mechanisms and interface properties of W/ p-InP Schottky diode at room temperature

    Science.gov (United States)

    Sri Silpa, D.; Sreehith, P.; Rajagopal Reddy, V.; Janardhanam, V.

    2016-04-01

    We have investigated the electrical properties and current transport mechanisms of W/ p-InP Schottky diode using current-voltage ( I- V), capacitance-voltage-frequency ( C- V- f) and conductance-frequency ( G- f) techniques at room temperature. The W/ p-InP Schottky diode exhibits a good rectifying behavior. Measurements show that the Schottky barrier height (SBH) and ideality factor of the W/ p-InP Schottky diode are 0.84 eV ( I- V)/0.98 eV ( C- V) and 1.24, respectively. Also, the SBH and series resistance R s of the diode are extracted by Cheung's functions and the values are in good agreement with each other. Ohmic and space charge-limited conduction mechanisms are found to govern the current flow in the W/ p-InP Schottky diode at low and high forward bias conditions, respectively. Experimental results reveal that the Poole-Frenkel mechanism is found to be dominant in the reverse bias region of W/ p-InP Schottky diode. Further, the interface state density N ss and their relaxation times τ of the W/ p-InP Schottky diode are estimated from the forward bias C- f and G- f characteristics and the values are in the range from 1.95 × 1013 eV-1 cm-2 and 3.38 × 10-5 s at (0.81- E V ) eV to 1.78 × 1013 eV-1 cm-2 and 2.78 × 10-6 s at (0.30- E V ) eV, respectively. Both the N ss and τ show an exponential rise with bias from the top of the valance band toward the mid gap.

  10. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  11. Carrier-transport mechanism of Er-silicide Schottky contacts to strained-silicon-on-insulator and silicon-on-insulator.

    Science.gov (United States)

    Jyothi, I; Janardhanam, V; Kang, Min-Sung; Yun, Hyung-Joong; Lee, Jouhahn; Choi, Chel-Jong

    2014-11-01

    The current-voltage characteristics and the carrier-transport mechanism of the Er-silicide (ErSi1.7) Schottky contacts to strained-silicon-on-insulator (sSOI) and silicon-on-insulator (SOI) were investigated. Barrier heights of 0.74 eV and 0.82 eV were obtained for the sSOI and SOI structures, respectively. The barrier height of the sSOI structure was observed to be lower than that of the SoI structure despite the formation of a Schottky contact using the same metal silicide. The sSOI structure exhibited better rectification and higher current level than the SOI structure, which could be associated with a reduction in the band gap of Si caused by strain. The generation-recombination mechanism was found to be dominant in the forward bias for both structures. Carrier generation along with the Poole-Frenkel mechanism dominated the reverse-biased current in the SOI structure. The saturation tendency of the reverse leakage current in the sSOI structure could be attributed to strain-induced defects at the interface in non-lattice-matched structures.

  12. Alternative current source based Schottky contact with additional electric field

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2017-07-01

    Additional electric field (AEF) in the Schottky contacts (SC) that covered the peripheral contact region wide and the complete contact region narrow (as TMBS diode) SC. Under the influence of AEF is a redistribution of free electrons produced at certain temperatures of the semiconductor, and is formed the space charge region (SCR). As a result of the superposition of the electric fields SCR and AEF occurs the resulting electric field (REF). The REF is distributed along a straight line perpendicular to the contact surface, so that its intensity (and potential) has a minimum value on the metal surface and the maximum value at a great distance from the metal surface deep into the SCR. Under the influence of AEF as a sided force the metal becomes negative pole and semiconductor - positive pole, therefore, SC with AEF becomes an alternative current source (ACS). The Ni-nSi SC with different diameters (20-1000 μm) under the influence of the AEF as sided force have become ACS with electromotive force in the order of 0.1-1.0 mV, which are generated the electric current in the range of 10-9-10-7 A, flowing through the external resistance 1000 Ohm.

  13. Schottky-contact plasmonic dipole rectenna concept for biosensing.

    Science.gov (United States)

    Alavirad, Mohammad; Mousavi, Saba Siadat; Roy, Langis; Berini, Pierre

    2013-02-25

    Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating "hot" carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of -12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

  14. Defect Dominated Charge Transport and Fermi Level Pinning in MoS2/Metal Contacts.

    Science.gov (United States)

    Bampoulis, Pantelis; van Bremen, Rik; Yao, Qirong; Poelsema, Bene; Zandvliet, Harold J W; Sotthewes, Kai

    2017-06-07

    Understanding the electronic contact between molybdenum disulfide (MoS2) and metal electrodes is vital for the realization of future MoS2-based electronic devices. Natural MoS2 has the drawback of a high density of both metal and sulfur defects and impurities. We present evidence that subsurface metal-like defects with a density of ∼10(11) cm(-2) induce negative ionization of the outermost S atom complex. We investigate with high-spatial-resolution surface characterization techniques the effect of these defects on the local conductance of MoS2. Using metal nanocontacts (contact area MoS2 Schottky barrier height as compared to that in the pristine regions. The magnitude of this decrease depends on the contact metal. The decrease of the Schottky barrier height is attributed to strong Fermi level pinning at the defects. Indeed, this is demonstrated in the measured pinning factor, which is equal to ∼0.1 at defect locations and ∼0.3 at pristine regions. Our findings are in good agreement with the theoretically predicted values. These defects provide low-resistance conduction paths in MoS2-based nanodevices and will play a prominent role as the device junction contact area decreases in size.

  15. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Manjari, E-mail: meghagarg142@gmail.com; Kumar, Ashutosh; Singh, R. [Department of Physics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi-110016 (India); Nagarajan, S.; Sopanen, M. [Department of Micro and Nanosciences, Aalto University, P.O. Box 13500, FI-00076, Aalto (Finland)

    2016-01-15

    Current-voltage (I-V) measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu) Schottky diodes fabricated on Gallium Nitride (GaN) epitaxial films. An ideality factor of 1.7 was found at room temperature (RT), which indicated deviation from thermionic emission (TE) mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE) mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS) was used to investigate the plausible reason for observing Schottky barrier height (SBH) that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu{sub 2}O) layer at the interface between Cu and GaN. With Cu{sub 2}O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu{sub 2}O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  16. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  17. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  18. Microwave Annealing for NiSiGe Schottky Junction on SiGe P-Channel

    Directory of Open Access Journals (Sweden)

    Yu-Hsien Lin

    2015-11-01

    Full Text Available In this paper, we demonstrated the shallow NiSiGe Schottky junction on the SiGe P-channel by using low-temperature microwave annealing. The NiSiGe/n-Si Schottky junction was formed for the Si-capped/SiGe multi-layer structure on an n-Si substrate (Si/Si0.57Ge0.43/Si through microwave annealing (MWA ranging from 200 to 470 °C for 150 s in N2 ambient. MWA has the advantage of being diffusion-less during activation, having a low-temperature process, have a lower junction leakage current, and having low sheet resistance (Rs and contact resistivity. In our study, a 20 nm NiSiGe Schottky junction was formed by TEM and XRD analysis at MWA 390 °C. The NiSiGe/n-Si Schottky junction exhibits the highest forward/reverse current (ION/IOFF ratio of ~3 × 105. The low temperature MWA is a very promising thermal process technology for NiSiGe Schottky junction manufacturing.

  19. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    Science.gov (United States)

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  20. Electrical Characterisation of electron beam exposure induced Defects in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Danga, Helga T., E-mail: helga.danga@up.ac.za; Auret, Francois D.; Coelho, Sergio M.M.; Diale, Mmantsae

    2016-01-01

    The defects introduced in epitaxially grown p-type silicon (Si) during electron beam exposure were electrically characterised using deep level transient spectroscopy (DLTS) and high resolution Laplace-DLTS. In this process, Si samples were first exposed to the conditions of electron beam deposition (EBD) without metal deposition. This is called electron beam exposure (EBE) herein. After 50 minutes of EBE, nickel (Ni) Schottky contacts were fabricated using the resistive deposition method. The defect level observed using the Ni contacts had an activation energy of H(0.55). This defect has an activation energy similar to that of the I-defect. The defect level is similar to that of the HB4, a boron related defect. DLTS depth profiling revealed that H(0.55) could be detected up to a depth of 0.8 μm below the junction. We found that exposing the samples to EBD conditions without metal deposition introduced a defect which was not introduced by the EBD method. We also observed that the damage caused by EBE extended deeper into the material compared to that caused by EBD.

  1. Single Ventricle Defects

    Science.gov (United States)

    ... of this information Congenital Heart Defects • Home • About Congenital Heart Defects Introduction Healthy Heart Function Common Types of Heart Defects - Aortic Valve Stenosis (AVS) - Atrial ...

  2. Concentration of constitutional and thermal defects in UAl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Gargano, P.H.; Kniznik, L.; Alonso, P.R.; Forti, M.D. [Gerencia Materiales, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología J. Sabato, CNEA - UNSAM, Av. Gral. Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Rubiolo, G.H., E-mail: rubiolo@cnea.gov.ar [Gerencia Materiales, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650, San Martín, Buenos Aires (Argentina); Instituto de Tecnología J. Sabato, CNEA - UNSAM, Av. Gral. Paz 1499, 1650, San Martín, Buenos Aires (Argentina); CONICET, Av. Rivadavia 1917, 1033, CABA (Argentina)

    2016-09-15

    The point defect structure of intermetallic compound oI20 UAl{sub 4} is investigated using a combination of the statistical mechanical Wagner–Schottky model and first-principles calculations within a projector augmented wave pseudopotential method in conjunction with the generalized gradient approximation. The formation energies of eight point defects were calculated taking into account the four sublattices. The point defect concentrations are calculated as function of temperature and deviation from stoichiometry. Our results show that the aluminum antisite is the constitutional point defect on the Al-rich side. At this off-stoichiometric side the dominant thermal defect is an interbranch defect where four constitutional antisite aluminum atoms are replaced by five uranium vacancies. The point defect effective formation energies are obtained and these results allow us to identify the antistructure bridge mechanism as the most probable for the diffusion for Al atoms in the Al-rich UAl{sub 4} intermetallic compound. - Highlights: • Formation energies of eight point defects in the four sublattices were calculated. • Point defect concentrations were calculated as function of temperature and stoichiometry. • The aluminum antisite is the constitutional point defect on the Al-rich side. • On the Al-rich side, the dominant thermal defect is an interbranch defect. • On the Al-rich side, Al atoms probably diffuse by the antisite bridge mechanism.

  3. On-Chip Power-Combining for High-Power Schottky Diode Based Frequency Multipliers

    Science.gov (United States)

    Siles Perez, Jose Vicente (Inventor); Chattopadhyay, Goutam (Inventor); Lee, Choonsup (Inventor); Schlecht, Erich T. (Inventor); Jung-Kubiak, Cecile D. (Inventor); Mehdi, Imran (Inventor)

    2015-01-01

    A novel MMIC on-chip power-combined frequency multiplier device and a method of fabricating the same, comprising two or more multiplying structures integrated on a single chip, wherein each of the integrated multiplying structures are electrically identical and each of the multiplying structures include one input antenna (E-probe) for receiving an input signal in the millimeter-wave, submillimeter-wave or terahertz frequency range inputted on the chip, a stripline based input matching network electrically connecting the input antennas to two or more Schottky diodes in a balanced configuration, two or more Schottky diodes that are used as nonlinear semiconductor devices to generate harmonics out of the input signal and produce the multiplied output signal, stripline based output matching networks for transmitting the output signal from the Schottky diodes to an output antenna, and an output antenna (E-probe) for transmitting the output signal off the chip into the output waveguide transmission line.

  4. First results from the LHC Schottky Monitor operated with Direct Diode Detection

    CERN Document Server

    Gasior, M

    2012-01-01

    The LHC is equipped with a Schottky diagnostic system based on 4.8 GHz resonant pick-ups. Their signals are processed according to a three-stage down-mixing scheme, working well in most beam conditions. An important exception is the period of energy ramp of proton beams, when the noise floor of the observed beam spectrum increases dramatically and the Schottky sidebands disappear. To study beam spectra in such conditions the signals from the Schottky pick-ups were split and the second half of their power was processed with a copy of the LHC tune measurement electronics, modified for this application. The experimental set-up is based on simple diode detectors followed by signal processing in the kHz range and 24-bit audio ADCs. With such a test system LHC beam spectra were successfully observed. This contribution presents the used hardware and obtained results.

  5. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Mario, Lorenzo [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Turchini, Stefano, E-mail: stefano.turchini@cnr.it [ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Zamborlini, Giovanni; Feyer, Vitaly [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Tian, Lin [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Schneider, Claus M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany); Rubini, Silvia [IOM-CNR, TASC Laboratory, Basovizza 34149, Trieste (Italy); Martelli, Faustino, E-mail: faustino.martelli@cnr.it [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-11-15

    Highlights: • The Schottky barrier at the interface between Cu and GaAs nanowires was measured. • Individual nanowires were investigated by X-ray Photoemission Microscopy. • The Schottky barrier at different positions along the nanowire was evaluated. - Abstract: We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  6. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  7. Improved Schottky contacts to InGaN alloys by a photoelectrochemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yin; Cai, Qing; Chen, Dunjun; Lu, Hai; Zhang, Rong; Zheng, Youdou [Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China); Yang, Lianhong [Department of Physics, Changji College, Changji, 831100 (China); Xue, Junjun [School of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210093 (China)

    2016-04-15

    We report on improved electrical properties of Schottky contacts to InGaN alloys by introducing a photoelectrochemical treatment. The Schottky barrier height determined by a thermionic-field emission model, a dominating forward-current-transport mechanism, increased by 0.15 eV from 1.02 eV for conventional contacts to 1.17 eV for those with photoelectrochemical treatment at room temperature, while the ideality factors is closer to 1 after photoelectrochemical treatment. Furthermore, the reverse leakage mechanism varies from an ohmic transport mechanism at relatively low voltage and space charge-limited current mechanism at relatively high voltage for conventional contacts to Frenkel-Poole emission for improved Schottky contacts, which is attributed to partly removing surface states by the photoelectrochemical treatment. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Recent Progress in Ohmic/Schottky-Contacted ZnO Nanowire Sensors

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhao

    2015-01-01

    Full Text Available We review the recent progress of zinc oxide (ZnO nanowire sensors with ohmic-contacted and Schottky-contacted configurations and the enhancement of the performances of Schottky-contacted ZnO NW sensors (SCZNSs by the piezotronic effect. Comparing with the traditional ohmic-contacted ZnO NW sensors (OCZNSs, the SCZNSs have higher sensitivities and faster responses controlled by the barrier height at the metal-semiconductor (M-S interface. The piezotronic effect was applied to tune the Schottky barrier height (SBH with the strain-induced piezoelectric polarization charges at the interface of the M-S contact. The piezotronic effect can thus improve the detection limitation, sensitivity, and response time of the SCZNSs in different applications, such as UV detection, gas and bio/chemical sensing. These piezotronic-enhanced SCZNSs may find potential applications in human-machine interfacing and flexible electronics skin technologies.

  9. A low-cost fabrication method for sub-millimeter wave GaAs Schottky diode

    Science.gov (United States)

    Jenabi, Sarvenaz; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-10-01

    In this paper, a submillimeter-wave Schottky diode is designed and simulated. Effect of Schottky layer thickness on cut-off frequency is studied. A novel microfabrication process is proposed and implemented. The presented microfabrication process avoids electron-beam (e-beam) lithography which reduces the cost. Also, this process provides more flexibility in selection of design parameters and allows significant reduction in the device parasitic capacitance. A key feature of the process is that the Schottky contact, the air-bridges, and the transmission lines, are fabricated in a single lift-off step. This process relies on a planarization method that is suitable for trenches of 1-10 μm deep and is tolerant to end-point variations. The fabricated diode is measured and results are compared with simulations. A very good agreement between simulation and measurement results are observed.

  10. LARP LHC 4.8 GHz Schottky System Initial Commissioning with Beam

    CERN Document Server

    Pasquinelli, R J; Jones, O R; Jansson, A

    2011-01-01

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place during the spring and summer of 2010. With nominal bunch beam currents of 1011 protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system.

  11. LARP LHC 4.8 GHZ Schottky System Initial Commissioning with Beam

    CERN Document Server

    Pasquinelli, Ralph J.; Jones, O.Rhodri; Caspers, Fritz

    2011-01-01

    The LHC Schottky system consists for four independent 4.8 GHz triple down conversion receivers with associated data acquisition systems. Each system is capable of measuring tune, chromaticity, momentum spread in either horizontal or vertical planes; two systems per beam. The hardware commissioning has taken place from spring through fall of 2010. With nominal bunch beam currents of 1011 protons, the first incoherent Schottky signals were detected and analyzed. This paper will report on these initial commissioning results. A companion paper will report on the data analysis curve fitting and remote control user interface of the system.

  12. Metal contacts in nanocrystalline n-type GaN: Schottky diodes.

    Science.gov (United States)

    Das, S N; Sarangi, S; Sahu, S N; Pal, A K

    2009-04-01

    Contact properties in nanocrystalline n-GaN in thin film form were studied by depositing nanocrystalline films onto aluminium coated fused silica substrates by high pressure sputtering of Si (1 at%) doped GaN target. Schottky diodes were realized with Au, Ni and Pd as top contacts on the nanocrystalline n-GaN films to examine the contact properties of the diodes thus formed. Variation of current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the Schottky diodes were recorded at different temperatures and analyzed in the light of the existing theories.

  13. An improved forward I-V method for nonideal Schottky diodes with high series resistance

    OpenAIRE

    Lien, C.-D.; So, F. C. T.; Nicolet, M. -A.

    1984-01-01

    Two methods are described to obtain the value of the series resistance(R)of a Schottky diode from its forward I-V characteristic. The value of R is then used to plot the curve ln(I) versus V_D (= V - IR)which becomes a straight line even if ln(I) versus V does not. The ideality factor n and the Schottky-barrier height Φ_(B0) of the diode then follow from the standard procedure. The main advantages of the methods are: 1) a linear regression can be used to calculate the value of R, 2) many dat...

  14. Optimized design of 4H-SiC floating junction power Schottky barrier diodes

    Science.gov (United States)

    Hongbin, Pu; Lin, Cao; Zhiming, Chen; Jie, Ren

    2009-04-01

    SiC floating junction Schottky barrier diodes were simulated with software MEDICI 4.0 and their device structures were optimized based on forward and reverse electrical characteristics. Compared with the conventional power Schottky barrier diode, the device structure is featured by a highly doped drift region and embedded floating junction region, which can ensure high breakdown voltage while keeping lower specific on-state resistance, solved the contradiction between forward voltage drop and breakdown voltage. The simulation results show that with optimized structure parameter, the breakdown voltage can reach 4 kV and the specific on-resistance is 8.3 mΩ·cm2.

  15. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect

    Science.gov (United States)

    Liu, L. Z.; Xiong, S. J.; Wu, X. L.

    2016-08-01

    The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.

  16. Monolayer borophene electrode for effective elimination of both the Schottky barrier and strong electric field effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L. Z., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn; Xiong, S. J.; Wu, X. L., E-mail: lzliu@nju.edu.cn, E-mail: hkxlwu@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics and Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China)

    2016-08-08

    The formation of Schottky barriers between 2D semiconductors and traditional metallic electrodes has greatly limited the application of 2D semiconductors in nanoelectronic and optoelectronic devices. In this study, metallic borophene was used as a substitute for the traditional noble metal electrode to contact with the 2D semiconductor. Theoretical calculations demonstrated that no Schottky barrier exists in the borophene/2D semiconductor heterostructure. The contact remains ohmic even with a strong electric field applied. This finding provides a way to construct 2D electronic devices and sensors with greatly enhanced performance.

  17. Schottky contact barrier height enhancement on p-type silicon by wet chemical etching

    Science.gov (United States)

    Adegboyega, G. A.; Poggi, A.; Susi, E.; Castaldini, A.; Cavallini, A.

    1989-04-01

    A wet chemical etch preceding the usual cleaning process has been found to yield Schottky barriers of high values on p-type silicon. This procedure produces a passivated surface layer which has resulted in Al/0-Si Schottky diodes with barrier height of 0.75 eV and ideality factor of 1.15. Measurements have confirmed the presence of electrically active donor-like states in this surface layer. The origin of the donor states is explained in terms of the deactivation of the boron acceptor by the formation of H + B - pairs.

  18. An Ultra-Wideband Schottky Diode Based Envelope Detector for 2.5 Gbps signals

    DEFF Research Database (Denmark)

    Cimoli, Bruno; Valdecasa, Guillermo Silva; Granja, Angel Blanco

    2016-01-01

    In this paper an ultra-wideband (UWB) Schottky diode based envelope detector is reported. The detector consists of an input matching network, a Schottky diode and wideband output filtering network. The output network is tailored to demodulate ultra-wideband amplitude shift keying (ASK) signals up...... to 2.5 Gbps at 6-9 GHz carrier frequency. The detector uses microstrip and surface-mount device (SMD) components and it is fabricated on a Rogers 6002 substrate. Experimental results show error free transmissions up to 2.5 Gbps at an input power level of -11 dBm. The highest measured conversion gain...

  19. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  20. Simulation of electrical characteristics of GaN vertical Schottky diodes

    Science.gov (United States)

    Łukasiak, Lidia; Jasiński, Jakub; Jakubowski, Andrzej

    2016-12-01

    Reverse current of GaN vertical Schottky diodes is simulated using Silvaco ATLAS to optimize the geometry for the best performance. Several physical quantities and phenomena, such as carrier mobility and tunneling mechanism are studied to select the most realistic models. Breakdown voltage is qualitatively estimated based on the maximum electric field in the structure.

  1. CMOS Application of Schottky Source/Drain SOI MOSFET with Shallow Doped Extension

    Science.gov (United States)

    Matsumoto, Sumie; Nishisaka, Mika; Asano, Tanemasa

    2004-04-01

    The silicon-on-insulator metal-oxide-semiconductor field-effect transistor (SOI MOSFET) whose source/drain is composed of Schottky contacts and a shallow-doped extension is investigated. It is demonstrated that the incorporation of the shallow-doped extension into the Schottky source/drain can increase the current drive and reduce the leakage current under reverse bias for both n-channel and p-channel devices. The shallow doping is performed by implanting Sb for n-channel devices, and BF2 or Ga for p-channel devices. The effect of Schottky contacts on the floating body effect (FBE) is investigated by analyzing the lateral bipolar characteristics of these devices. By employing the shallow-doped extension, a complementary MOS (CMOS) of the Schottky source/drain can be fabricated using single metal (cobalt, in this work) silicide. The stability of CMOS operation with the proposed devices under a high supply voltage is demonstrated by comparing it with a conventional pn-junction SOI MOSFET. It is also demonstrated from the characteristics of the CMOS-inverter ring oscillator that the proposed device operates at speeds as high as or even higher than that of the conventional SOI MOSFET.

  2. 5.2% efficient PbS nanocrystal Schottky solar cells

    NARCIS (Netherlands)

    Piliego, Claudia; Protesescu, Loredana; Bisri, Satria Zulkarnaen; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2013-01-01

    The impact of post-synthetic treatments of nanocrystals (NCs) on the performance of Schottky solar cells, where the active PbS nanocrystal layer is sandwiched directly between two electrodes, is investigated. By monitoring the amount of ligands on the surface of the nanocrystals through Fourier

  3. Thermally Stable Silver Nanowires-Embedding Metal Oxide for Schottky Junction Solar Cells.

    Science.gov (United States)

    Kim, Hong-Sik; Patel, Malkeshkumar; Park, Hyeong-Ho; Ray, Abhijit; Jeong, Chaehwan; Kim, Joondong

    2016-04-06

    Thermally stable silver nanowires (AgNWs)-embedding metal oxide was applied for Schottky junction solar cells without an intentional doping process in Si. A large scale (100 mm(2)) Schottky solar cell showed a power conversion efficiency of 6.1% under standard illumination, and 8.3% under diffused illumination conditions which is the highest efficiency for AgNWs-involved Schottky junction Si solar cells. Indium-tin-oxide (ITO)-capped AgNWs showed excellent thermal stability with no deformation at 500 °C. The top ITO layer grew in a cylindrical shape along the AgNWs, forming a teardrop shape. The design of ITO/AgNWs/ITO layers is optically beneficial because the AgNWs generate plasmonic photons, due to the AgNWs. Electrical investigations were performed by Mott-Schottky and impedance spectroscopy to reveal the formation of a single space charge region at the interface between Si and AgNWs-embedding ITO layer. We propose a route to design the thermally stable AgNWs for photoelectric device applications with investigation of the optical and electrical aspects.

  4. Schottky barrier height of MnSb/GaAs(111)B contacts : Influence of interface structure

    NARCIS (Netherlands)

    Manago, T; Miyanishi, S; Akinaga, H; Van Roy, W; Roelfsema, RFB; Sato, T; Tamura, E; Yuasa, S

    2000-01-01

    The Schottky barrier height (SBH) of MnSb(0001)/n-GaAs(111)B diodes was investigated in terms of current-voltage characteristics for three different GaAs surfaces, GaAs (root 19x root 19), GaAs (2x2), and sulfur passivated GaAs. We observed that the SBH and the ideality factor changed significantly

  5. A high-speed Schottky detector for ultra-wideband communications

    DEFF Research Database (Denmark)

    Valdecasa, Guillermo Silva; Cimoli, Bruno; Blanco Granja, Ángel

    2017-01-01

    This letter reviews the design procedure of a high‐speed Schottky video detector for high‐data‐rate communications within the ultra‐wideband (UWB) frequencies. The classic design approach for video detectors is extended with a mixer‐like analysis, which results in a more detailed assessment...

  6. Electron Waveguide Y-branch Switches Controlled by Pt/GaAs Schottky Gates

    Science.gov (United States)

    Forsberg, E.; Hieke, K.

    Electron waveguide Y-branch switches have been fabricated in a GaAs/AlGaAs heterostructure. These are controlled by Pt/GaAs Schottky contacts, which were realized by an in-situ electrochemical process. In this paper we describe the fabrication process as well as present results from conductance measurements in the fabricated devices.

  7. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    Science.gov (United States)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  8. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping

    DEFF Research Database (Denmark)

    Jin, Chengjun; Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    Using ab initio calculations we investigate the energy level alignment at the graphene/MoS2 heterostructure and the use of electron doping as a strategy to lower the Schottky barrier and achieve a low-resistance Ohmic contact. For the neutral heterostructure, density functional theory (DFT...... concentration is shown to be mainly governed by the electrostatic potential resulting from the doping charge....

  9. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  10. The Effect of Bilayer Graphene Nanoribbon Geometry on Schottky-Barrier Diode Performance

    Directory of Open Access Journals (Sweden)

    Meisam Rahmani

    2013-01-01

    Full Text Available Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking and metal (AA stacking layers. To this end, an analytical model joint with numerical solution of carrier concentration for bilayer graphene nanoribbon in the degenerate and nondegenerate regimes is presented. Moreover, to determine the proposed diode performance, the carrier concentration model is adopted to derive the current-voltage characteristic of the device. The simulated results indicate a strong bilayer graphene nanoribbon geometry and temperature dependence of current-voltage characteristic showing that the forward current of the diode rises by increasing of width. In addition, the lower value of turn-on voltage appears as the more temperature increases. Finally, comparative study indicates that the proposed diode has a better performance compared to the silicon schottky diode, graphene nanoribbon homo-junction contact, and graphene-silicon schottky diode in terms of electrical parameters such as turn-on voltage and forward current.

  11. Summer Student Report 2014: Schottky component qualification and RF filter characterization

    CERN Document Server

    Egidos Plaja, Nuria

    2014-01-01

    This Summer Student project has been developed in BE-BI-QP department under the supervision of Manfred Wendt. Main goals of the task to be performed are the following: 1)\tFilter characterization: the student will get familiar with the Vector Network Analizer (VNA), S-parameter measurement and PSPICE modelling of low-pass filters. 2)\tFilter response matching: an algorithm to compare and classify filter responses into best-matching pairs will be developed. 3)\tSchottky monitor filter qualification: S-parameter and time domain measurements will be carried out with filters related to Schottky monitor and results will be benchmarked. 4)\tSchottky monitor amplifier measurement: noise figure and gain at a given frequency will be measured for a set of Low Noise Amplifiers related to Schottky monitor. -1dB compression point and 3rd order interception point will be measured too for education purposes. For the development of this project, the student will get familiar with RF measure devices (VNA, VSA), theoretical concep...

  12. Effect of mechanical stress on current-voltage characteristics of thin film polycrystalline diamond Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G.; Charlson, E.M.; Charlson, E.J.; Stacy, T.; Meese, J.M. (Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States)); Popovici, G.; Prelas, M. (Department of Nuclear Engineering, University of Missouri, Columbia, Missouri 65211 (United States))

    1993-02-15

    Schottky diodes utilized for mechanical stress effect studies were fabricated using aluminum contacts to polycrystalline diamond thin films grown by a hot-filament-assisted chemical vapor deposition process. Compressive stress was found to have a large effect on the forward biased current-voltage characteristics of the diode, whereas the effect on the reverse biased characteristics was relatively small. This stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects that dominated the diode current-voltage characteristics in the small and large bias regions, respectively. At a large constant forward bias current, a good linear relationship between output voltage and applied force was observed for force of less than 10 N, as predicted by the piezoresistance effect. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. Compared to either silicon or germanium junction diodes and tunnel diodes, polycrystalline diamond Schottky diodes not only are very stress sensitive but also have good linearity. This study shows polycrystalline diamond Schottky diodes have potential as mechanical sensors.

  13. Quasi-Schottky-Barrier UTBB SOI MOSFET for Low-Power Robust SRAMs

    DEFF Research Database (Denmark)

    Ghanatian, Hamdam; Hosseini, Seyed Ebrahim; Zeinali, Behzad

    2017-01-01

    This paper presents a low-power robust static random access memory (SRAM) using a novel quasi-Schottky-barrier ultrathin body and ultrathin buried oxide (UTBB) silicon-on-insulator (SOI) device. In the proposed device, the drain terminal is highly doped and a metallic source terminal is used. Giv...

  14. Summary of Schottky barrier height data on epitaxially grown n-and p-GaAs

    CSIR Research Space (South Africa)

    Myburg, G

    1998-07-18

    Full Text Available The Schottky barrier height values, as determined by the current–voltage and capacitance–voltage techniques, of 43 metals which were fabricated by following the same cleaning procedure and using the same high-quality organ metallic vapour phase...

  15. Thin-film GaN Schottky diodes formed by epitaxial lift-off

    Science.gov (United States)

    Wang, Jingshan; Youtsey, Chris; McCarthy, Robert; Reddy, Rekha; Allen, Noah; Guido, Louis; Xie, Jinqiao; Beam, Edward; Fay, Patrick

    2017-04-01

    The performance of thin-film GaN Schottky diodes fabricated using a large-area epitaxial lift-off (ELO) process is reported in this work. Comparison of the device characteristics before and after lift-off processing reveals that the Schottky barrier height remains unchanged by the liftoff processing and is consistent with expectations based on metal-semiconductor work function differences, with a barrier height of approximately 1 eV obtained for Ni/Au contacts on n- GaN. However, the leakage current in both reverse and low-forward-bias regimes is found to improve significantly after ELO processing. Likewise, the ideality factor of the Schottky diodes also improves after ELO processing, decreasing from n = 1.12-1.18 before ELO to n = 1.04-1.10 after ELO. A possible explanation for the performance improvement obtained for Schottky diodes after substrate removal by ELO processing is the elimination of leakage paths consisting of vertical leakage along threading dislocations coupled with lateral conduction through the underlying n+ buffer layer that is removed in the ELO process. Epitaxial liftoff with GaN may enable significant improvement in device performance and economics for GaN-based electronics and optoelectronics.

  16. Multiple Schottky Barrier-Limited Field-Effect Transistors on a Single Silicon Nanowire with an Intrinsic Doping Gradient.

    Science.gov (United States)

    Barreda, Jorge L; Keiper, Timothy D; Zhang, Mei; Xiong, Peng

    2017-04-05

    In comparison to conventional (channel-limited) field-effect transistors (FETs), Schottky barrier-limited FETs possess some unique characteristics which make them attractive candidates for some electronic and sensing applications. Consequently, modulation of the nano Schottky barrier at a metal-semiconductor interface promises higher performance for chemical and biomolecular sensor applications when compared to conventional FETs with ohmic contacts. However, the fabrication and optimization of devices with a combination of ideal ohmic and Schottky contacts as the source and drain, respectively, present many challenges. We address this issue by utilizing Si nanowires (NWs) synthesized by a chemical vapor deposition process which yields a pronounced doping gradient along the length of the NWs. Devices with a series of metal contacts on a single Si NW are fabricated in a single lithography and metallization process. The graded doping profile of the NW is manifested in monotonic increases in the channel and junction resistances and variation of the nature of the contacts from ohmic to Schottky of increasing effective barrier height along the NW. Hence multiple single Schottky junction-limited FETs with extreme asymmetry and high reproducibility are obtained on an individual NW. A definitive correlation between increasing Schottky barrier height and enhanced gate modulation is revealed. Having access to systematically varying Schottky barrier contacts on the same NW device provides an ideal platform for identifying optimal device characteristics for sensing and electronic applications.

  17. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  18. Analysis of high reverse currents of 4H-SiC Schottky-barrier diodes

    Science.gov (United States)

    Okino, Hiroyuki; Kameshiro, Norifumi; Konishi, Kumiko; Shima, Akio; Yamada, Ren-ichi

    2017-12-01

    Nickel (Ni), titanium (Ti), and molybdenum (Mo) 4H-silicon carbide Schottky-barrier diodes (SiC SBDs) were fabricated and used to investigate the relation between forward and reverse currents. Temperature dependence of reverse current follows a theory that includes tunneling in regard to thermionic emission, namely, temperature dependence is weak at low temperature but strong at high temperatures. On the other hand, the reverse currents of the Ni and Mo SBDs are higher than their respective currents calculated from their Schottky barrier heights (SBHs), whereas the reverse current of the Ti SBD agrees well with that calculated from its SBH. The cause of the high reverse currents was investigated from the viewpoints of low barrier patch, Gaussian distribution of barrier height (GD), thin surface barrier, and electron effective mass. The high reverse current of the Ni and Mo SBDs can be explained not in terms of a low-barrier patch, GD, or thin surface barrier but in terms of small effective masses. Investigation of crystal structures at the Schottky interface revealed a large lattice mismatch between the metals (Ni, Ti, or Mo) and SiC for the Ni and Mo SBDs. The small effective mass is possibly attributed to the large lattice mismatch, which might generate transition layers at the Schottky interface. It is concluded from these results that the lattice constant as well as the work function is an important factor in selecting the metal species as the Schottky metal for wide band-gap SBDs, for which tunneling current dominates reverse current.

  19. Neural Tube Defects

    Science.gov (United States)

    ... vitamin, before and during pregnancy prevents most neural tube defects. Neural tube defects are usually diagnosed before the infant is ... or imaging tests. There is no cure for neural tube defects. The nerve damage and loss of function ...

  20. Extended defects in Germanium

    CERN Document Server

    Osgood, R M

    2008-01-01

    Intends to provide a fundamental understanding of the extended-defect formation during Ge materials and device processing, providing ways to distinguish harmful from less detrimental defects and should point out ways for defect engineering and control.

  1. Extraction of the Schottky parameters in metal-semiconductor-metal diodes from a single current-voltage measurement

    OpenAIRE

    Nouchi, Ryo

    2014-01-01

    In order to develop a method to extract the parameters of the two inherent Schottky contacts from a single current-voltage (I-V) characteristic curve, the I-V characteristics of metal-semiconductor-metal (MSM) diodes with asymmetric Schottky barrier heights are theoretically investigated using the thermionic emission model. The MSM diode structure is commonly used because an additional MS interface is required for the electrical characterization of MS diodes. A finite charge-injection barrier...

  2. Defects and gettering of impurities in silicon

    Science.gov (United States)

    Plekhanov, Pavel Sergeyevich

    2000-10-01

    Processes of formation of extended defects in silicon and the role of impurities in them, as well as the gettering of impurities from precipitated state, the electrical activity of impurity precipitates and their impact on performance of solar cells are considered in the thesis. The nucleation and growth of voids and vacancy-type dislocation loops during Si crystal growth under Si vacancy supersaturation conditions have been numerically modeled. The two processes are treated in conjunction with each other. Based on the competition between them, the Si vacancy formation enthalpy range and the void nucleation temperature are determined. The role of oxygen in the formation of voids in Si has been considered, and the mathematical description of the process has been formulated. It is shown that experimentally observed composite void-oxide defects are likely to nucleate first as simple oxide precipitates and later to develop into voids with their surfaces covered by the oxide layer. Physical and numerical modeling of impurity gettering from multicrystalline Si for solar cell fabrication has been carried out using Fe as a model impurity. A variable temperature gettering process is modeled and predicted to provide high gettering efficiency and short gettering times. A quantitative model of the electrical activity of metallic precipitates in Si has been developed. An emphasis is made on the properties of the Schottky junction at the precipitate-Si interface as well as the carrier diffusion and drift in the Si space charge region. Carrier recombination rate is found to be primarily determined by the thermionic emission charge transport process across the Schottky junction rather than the surface recombination process. It is shown that the precipitates can have a very large minority carrier capture cross-section. The above-mentioned model of the process of impurity gettering from Si by an Al layer has been combined with a solar cell device model. This provides a way of

  3. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  4. The effect of high temperatures on the electrical characteristics of Au/n-GaAs Schottky diodes

    Science.gov (United States)

    Tunhuma, S. M.; Auret, F. D.; Legodi, M. J.; Diale, M.

    2016-01-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of Au/n-GaAs Schottky diodes have been measured over a wide temperature range, 80-480 K. The diodes were rectifying throughout the range and showed good thermal stability. Room temperature values for the ideality factor, I-V barrier height and C-V barrier height were found to be n=1.10, ϕIV=0.85 eV and ϕCV=0.96 eV, respectively. ϕIV increases and n decreases with an increase in temperature. We investigated the effect of elevated temperatures on the barrier height and ideality factor by measuring the diodes at a high temperature (annealing mode) then immediately afterwards measuring at room temperature (post annealing mode). The measurements indicate I-V characteristics that degrade permanently above 300 K. Permanent changes to the C-V characteristics were observed only above 400 K. We also noted a discrepancy in the C-V barrier height and carrier concentration between 340 and 400 K, which we attribute to the influence of the EL2 defect (positioned 0.83 eV below the conduction band minima) on the free carrier density. Consequently, we were able to fit the ϕCV versus temperature curve into two regions with temperature coefficients -6.9×10-4 eV/K and -2.2×10-4 eV/K above and below 400 K.

  5. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  6. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Xu, Ke, E-mail: kxu2006@sinano.ac.cn; Wang, Jianfeng; Ren, Guoqiang [Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123 (China); Suzhou Nanowin Science and Technology Co., Ltd., Suzhou 215123 (China)

    2014-01-07

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure.

  7. Analysis of the active layer in SI GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, A.; Cavallini, A.; Polenta, L. [Bologna Univ. (Italy). Dipt. di Fisica]|[INFM, Bologna (Italy); Canali, C. [INFM and Dipartimento di Scienze dell`Ingegneria, Universita` di Modena, Via Campi 213/B, Modena (Italy); Nava, F. [INFN and Dipartimento di Fisica, Universita` di Modena, Via Campi 213/A, Modena (Italy)

    1998-06-01

    The behavior of the active region width W of semi-insulating gallium arsenide Schottky diodes versus reverse biasing has been investigated by optical beam induced current and surface potential techniques. It has been found that at low applied voltages, W follows the square root law peculiar to a Schottky barrier while, for a bias higher than 20 V, the active layer increases linearly with the voltage applied. To go deeper into this matter, the spatial distribution of the electric field has been analyzed in a wide range of bias voltages and it has been observed that at high voltages a plateau occurs, followed by a linear decrease down to a quasi-zero value. In terms of space charge distribution this means that there is a box-shaped space charge region moving towards the ohmic contact at increasing bias. (orig.) 21 refs.

  8. High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics

    Directory of Open Access Journals (Sweden)

    Young Ki Hong

    2016-05-01

    Full Text Available Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS2 thin-film transistor (TFT, which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS2 TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS2 and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  9. A Silicon Nanocrystal Schottky Junction Solar Cell produced from Colloidal Silicon Nanocrystals

    Directory of Open Access Journals (Sweden)

    Liu Chin-Yi

    2010-01-01

    Full Text Available Abstract Solution-processed semiconductors are seen as a promising route to reducing the cost of the photovoltaic device manufacture. We are reporting a single-layer Schottky photovoltaic device that was fabricated by spin-coating intrinsic silicon nanocrystals (Si NCs from colloidal suspension. The thin-film formation process was based on Si NCs without any ligand attachment, exchange, or removal reactions. The Schottky junction device showed a photovoltaic response with a power conversion efficiency of 0.02%, a fill factor of 0.26, short circuit-current density of 0.148 mA/cm2, and open-circuit voltage of 0.51 V.

  10. On-Chip Power-Combining for High-Power Schottky Diode-Based Frequency Multipliers

    Science.gov (United States)

    Chattopadhyay, Goutam; Mehdi, Imran; Schlecht, Erich T.; Lee, Choonsup; Siles, Jose V.; Maestrini, Alain E.; Thomas, Bertrand; Jung, Cecile D.

    2013-01-01

    A 1.6-THz power-combined Schottky frequency tripler was designed to handle approximately 30 mW input power. The design of Schottky-based triplers at this frequency range is mainly constrained by the shrinkage of the waveguide dimensions with frequency and the minimum diode mesa sizes, which limits the maximum number of diodes that can be placed on the chip to no more than two. Hence, multiple-chip power-combined schemes become necessary to increase the power-handling capabilities of high-frequency multipliers. The design presented here overcomes difficulties by performing the power-combining directly on-chip. Four E-probes are located at a single input waveguide in order to equally pump four multiplying structures (featuring two diodes each). The produced output power is then recombined at the output using the same concept.

  11. An improved forward I-V method for nonideal Schottky diodes with high series resistance

    Science.gov (United States)

    Lien, C.-D.; So, F. C. T.; Nicolet, M.-A.

    1984-01-01

    Two methods are described to obtain the value of the series resistance (R) of a Schottky diode from its forward I-V characteristic. The value of R is then used to plot the curve ln(I) versus V sub D (= V - IR) which becomes a straight line even if ln(I) versus V does not. The ideality factor n and the Schottky-barrier height of the diode then follow from the standard procedure. The main advantages of the methods are: (1) a linear regression can be used to calculate the value of R; (2) many data points are used over the whole data range, which raises the accuracy of the results, and (3) the validity of constant R assumption can be checked by the linearity of the ln (I) versus V sub D curve. The methods are illustrated on the experimental data of a real diode.

  12. Model and observations of Schottky-noise suppression in a cold heavy-ion beam.

    Science.gov (United States)

    Danared, H; Källberg, A; Rensfelt, K-G; Simonsson, A

    2002-04-29

    Some years ago it was found at GSI in Darmstadt that the momentum spread of electron-cooled beams of highly charged ions dropped abruptly to very low values when the particle number decreased to 10 000 or less. This has been interpreted as an ordering of the ions, such that they line up after one another in the ring. We report observations of similar transitions at CRYRING, including an accompanying drop in Schottky-noise power. We also introduce a model of the ordered beam from which the Schottky-noise power can be calculated numerically. The good agreement between the model calculation and the experimental data is seen as evidence for a spatial ordering of the ions.

  13. Schottky Photodiode Fabricated from Hydrogen-Peroxide-Treated ZnO Nanowires

    Science.gov (United States)

    Lee, Hsin-Yen; Wu, Bin-Kun; Chern, Ming-Yau

    2013-05-01

    An effective, transparent solar-blind Schottky ultraviolet (UV) sensor made of zinc oxide (ZnO) nanowires (NWs) was fabricated by chemical vapor deposition (CVD). Indium-tin oxide (ITO) thin films were deposited by radio frequency (RF) sputtering as Schottky contacts, where the hydrogen peroxide (H2O2) treatment of ZnO NWs played a key role in the rectifying effect. The photodiode showed a fitted barrier height of 0.89 eV, an ideality factor of 1.82, and a rectification behavior of up to three orders of magnitude at a voltage bias between -1 and +1 V. Photoresponse measurement proved a reliable device in the UV region.

  14. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  15. Operation regimes and electrical transport of steep slope Schottky Si-FinFETs

    Science.gov (United States)

    Jeon, Dae-Young; Zhang, Jian; Trommer, Jens; Park, So Jeong; Gaillardon, Pierre-Emmanuel; De Micheli, Giovanni; Mikolajick, Thomas; Weber, Walter M.

    2017-02-01

    In the quest for energy efficient circuits, considerable focus has been given to steep slope and polarity-controllable devices, targeting low supply voltages and reduction of transistor count. The recently proposed concept of the three-independent gated Si-FinFETs with Schottky-barriers (SBs) has proven to bring both functionalities even in a single device. However, the complex combination of transport properties including Schottky emission and weak impact ionization as well as the body effect makes the design of such devices challenging. In this work, we perform a deep electrical characterization analysis to visualize and decouple the different operation regimes and electrical properties of the SB Si-FinFETs using a graphical transport map. From these, we give important guidelines for the design of future devices.

  16. Fabrication of polymer Schottky diode with Al-PANI/MWCNT-Au structure

    Directory of Open Access Journals (Sweden)

    A Hajibadali

    2014-11-01

    Full Text Available In this research, Schottky diode with Al-PANI/MWCNT-Au structure was fabricated using spin coating of composite polymer and physical vapor deposition of metals. For this purpose, a thin layer of gold was coated on glass and then composite of polyaniline/multi-walled carbon nanotube was synthesized and spin-coated on gold layer. Finally, a thin layer of aluminum was coated on polymer layer. The current-voltage characteristics of diode were studied and found that I-V curve is nonlinear and nonsymmetrical, showing rectifying behavior. I-V characteristics plotted on a logarithmic scale for Schottky diode showed two distinct power law regions. At lower voltages, the mechanism follows Ohm’s Law and at higher voltages, the mechanism is consistent with space charge limited conduction (SCLC emission. The parameters extracted from I-V characteristics were also calculated.

  17. Schottky barrier height tuning using P+ DSS for NMOS contact resistance reduction

    Science.gov (United States)

    Khaja, Fareen Adeni; Rao, K. V.; Ni, Chi-Nung; Muthukrishnan, Shankar; Lei, Jianxin; Darlark, Andrew; Peidous, Igor; Brand, Adam; Henry, Todd; Variam, Naushad

    2012-11-01

    Nickel silicide (NiSi) contacts are adopted in advanced CMOS technology nodes as they demonstrate several benefits such as low resistivity, low Si consumption and formation temperature. But a disadvantage of NiSi contacts is that they exhibit high electron Schottky barrier height (SBH), which results in high contact resistance (Rc) and reduces the NMOS drive current. To reduce SBH for NMOS, we used phosphorous (P) ion implantation into NiPt silicide with optimized anneal in order to form dopant segregated Schottky (DSS). Electrical characterization was performed using test structures such as Transmission Line Model, Cross-Bridge Kelvin Resistor, Van der Pauw and diodes to extract Rc and understand the effects of P+ DSS on ΦBn tuning. Material characterization was performed using SIMS, SEM and TEM analysis. We report ˜45% reduction in Rc over reference sample by optimizing ion implantation and anneal conditions (spike RTA, milli-second laser anneals (DSA)).

  18. Congenital Heart Defects

    Science.gov (United States)

    ... of the heart. It is present at birth. Congenital heart defects are the most common type of birth defect. The defects can involve the ... and heart transplants. The treatment depends on the type of the defect, how ... and general health. NIH: National Heart, Lung, and Blood Institute

  19. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  20. Schottky contact formation on polar and non-polar AlN

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Pramod; Bryan, Isaac; Bryan, Zachary; Tweedie, James; Kirste, Ronny; Collazo, Ramon; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States)

    2014-11-21

    The interfaces of m- and c-plane AlN with metals of different work functions and electro-negativities were characterized and the Schottky barrier heights were measured. The Schottky barrier height was determined by measuring the valence band maximum (VBM) with respect to the Fermi level at the surface (interface) before (after) metallization. VBM determination included accurate modeling and curve fitting of density of states at the valence band edge with the XPS data. The experimental behavior of the barrier heights could not be explained by the Schottky-Mott model and was modeled using InterFace-Induced Gap States (IFIGS). A slope parameter (S{sub X}) was used to incorporate the density of surface states and is a measure of Fermi level pinning. The experimental barriers followed theoretical predictions with a barrier height at the surface Fermi level (Charge neutrality level (CNL)) of ∼2.1 eV (∼2.7 eV) on m-plane (c-plane) and S{sub X} ∼ 0.36 eV/Miedema unit. Slope parameter much lower than 0.86 implied a surface/interface states dominated behavior with significant Fermi level pinning and the measured barrier heights were close to the CNL. Titanium and zirconium provided the lowest barriers (1.6 eV) with gold providing the highest (2.3 eV) among the metals analyzed on m-plane. It was consistently found that barrier heights decreased from metal polar to non-polar surfaces, in general, due to an increasing CNL. The data indicated that charged IFIGS compensate spontaneous polarization charge. These barrier height and slope parameter measurements provided essential information for designing Schottky diodes and other contact-based devices on AlN.

  1. 5.2% efficient PbS nanocrystal Schottky solar cells

    OpenAIRE

    Piliego, Claudia; Protesescu, Loredana; Bisri, Satria Zulkarnaen; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2013-01-01

    The impact of post-synthetic treatments of nanocrystals (NCs) on the performance of Schottky solar cells, where the active PbS nanocrystal layer is sandwiched directly between two electrodes, is investigated. By monitoring the amount of ligands on the surface of the nanocrystals through Fourier Transform Infrared (FTIR) measurements, we find that optimized processing conditions can lead to high current density and thus to an increase in overall efficiency. Our devices reach an efficiency of 5...

  2. Sputtered Gold as an Effective Schottky Gate for Strained Si/SiGe Nanostructures

    Science.gov (United States)

    Scott, Gavin; Xiao, Ming; Croke, Ed; Yablonovitch, Eli; Jiang, Hongwen

    2007-03-01

    Metallization of Schottky surface gates by sputtering Au on strained Si/SiGe heterojunctions enables the depletion of the two dimensional electron gas (2DEG) at a relatively small voltage while maintaining an extremely low level of leakage current. A fabrication process has been developed to enable the formation of sub-micron Au electrodes sputtered onto Si/SiGe without the need of a wetting layer.

  3. Theory of photoexcited and thermionic emission across a two-dimensional graphene-semiconductor Schottky junction

    OpenAIRE

    Trushin, Maxim

    2017-01-01

    We find that intrinsic graphene provides efficient photocarrier transport across a two-dimensional graphene-semiconductor Schottky junction as a linear response to monochromatic light with excitation energy well below the semiconductor bandgap. The operation mechanism relies both on zero-bias photoexcited and thermionic emission contributing to photoresponsivity, enabled by the extended photocarrier thermalization time in intrinsic graphene. The photoresponsivity rapidly increases with excita...

  4. Schottky-Gated Probe-Free ZnO Nanowire Biosensor

    KAUST Repository

    Yeh, Ping-Hung

    2009-12-28

    (Figure Presented) A nanowire-based nanosensor for detecting biologically and chemically charged molecules that is probe-free and highly sensitive is demonstrated. The device relies on the nonsymmetrical Schottky contact under reverse bias (see figure) and is much more sensitive than the device based on the symmetric ohmic contact. This approach serves as a guideline for designing more practical chemical and biochemical sensors. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  5. Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell

    OpenAIRE

    Francesco Dell’Olio; Michele Palmitessa; Caterina Ciminelli

    2016-01-01

    A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and t...

  6. 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta; hide

    2012-01-01

    GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.

  7. Reducing the Schottky barrier between few-layer MoTe2 and gold

    Science.gov (United States)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  8. A novel nanoscaled Schottky barrier based transmission gate and its digital circuit applications

    Science.gov (United States)

    Kumar, Sunil; Loan, Sajad A.; Alamoud, Abdulrahman M.

    2017-04-01

    In this work we propose and simulate a compact nanoscaled transmission gate (TG) employing a single Schottky barrier based transistor in the transmission path and a single transistor based Sajad-Sunil-Schottky (SSS) device as an inverter. Therefore, just two transistors are employed to realize a complete transmission gate which normally consumes four transistors in the conventional technology. The transistors used to realize the transmission path and the SSS inverter in the proposed TG are the double gate Schottky barrier devices, employing stacks of two metal silicides, platinum silicide (PtSi) and erbium silicide (ErSi). It has been observed that the realization of the TG gate by the proposed technology has resulted into a compact structure, with reduced component count, junctions, interconnections and regions in comparison to the conventional technology. The further focus of this work is on the application part of the proposed technology. So for the first time, the proposed technology has been used to realize various combinational circuits, like a two input AND gate, a 2:1 multiplexer and a two input XOR circuits. It has been observed that the transistor count has got reduced by half in a TG, two input AND gate, 2:1 multiplexer and in a two input XOR gate. Therefore, a significant reduction in transistor count and area requirement can be achieved by using the proposed technology. The proposed technology can be also used to perform the compact realization of other combinational and sequential circuitry in future.

  9. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    Science.gov (United States)

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo1-xWxSe2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo0.5W0.5Se2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe2 and WSe2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo0.5W0.5Se2 devices. Furthermore, we showed that Mo0.5W0.5Se2-based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  10. Schottky diode based on WS2 crossed with PEDOT/PSSA

    Science.gov (United States)

    Ortiz, Deliris; Pinto, Nicholas; Naylor, Carl; Johnson, A. T. Charlie

    An easy technique to fabricate a Schottky diode with WS2 and PEDOT-PSSA under ambient conditions is presented. WS2 is an air stable transition metal dichalcogenide semiconductor. When connected as a field effect transistor, WS2 exhibited n-type behavior with a charge mobility of ~7cm2/V-s on SiO2. PEDOT/PSSA is a conducting polymer that can be electro-spun to form fibers with a conductivity of ~1 S/cm. In this work we fabricated a Schottky diode by crossing a CVD grown monolayer WS2 crystal with a single electro-spun PEDOT/PSSA fiber. The resulting diode characteristics were analyzed assuming the standard thermionic emission model of a Schottky junction. Analysis of the results includes the ideality parameter of 4.75, diode rectification ratio ~10, and a turn on voltage of 1.4V. Efforts to investigate if these parameters are tunable with a back gate will also be presented. This work was supported by NSF-DMR-1523463 and NSF DMR RUI-1360772. ATJ acknowledges support from EFRI 2DARE EFMA-1542879.

  11. Schottky junctions studied using Korringa-Kohn-Rostoker nonequilibrium Green's function method

    Science.gov (United States)

    Akai, Hisazumi; Ogura, Masako

    A scheme that combines the non-equilibrium Green's function method with the Korringa-Kohn-Rostoker (KKR) Green's function method is proposed. The method is different from many previous attempts in that it uses the exact Green's function whose spectrum is not bound within a finite energy range, and hence, provides sound basis for quantitative discussions. The scheme is applied to the Schottky junctions composed of an Al/GaN/Al trilayer. Schottky contacts formed in metal/semiconductor junctions play an important role in semiconductor devices and integrated circuits. They have been intensively investigated for several decades not only for possible application to electronic devices but also for gaining a fundamental understanding of the Schottky barrier formation. Our results show that the Schottly barrier is formed between an undoped GaN and Al interface. The transport property of this system under various finite bias voltages is calculated. It is shown that the asymmetric behavior of electron transport against the direction of bias voltage occurs in this system, confirming the feature of rectification. The present study was partly supported by Grant-in-Aid No. 22104012, MEXT, Japan, the Alexander von Humboldt Foundation, and by the Elements Strategy Initiative Project under the auspice of MEXT, Japan.

  12. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage

    Directory of Open Access Journals (Sweden)

    Sangeeta Singh

    2016-03-01

    Full Text Available In this paper, we have investigated a novel Schottky tunneling source impact ionization MOSFET (STS-IMOS to lower the breakdown voltage of conventional impact ionization MOS (IMOS and developed an analytical model for the same. In STS-IMOS there is an accumulative effect of both impact ionization and source induced barrier tunneling. The silicide source offers very low parasitic resistance, the outcome of which is an increment in voltage drop across the intrinsic region for the same applied bias. This reduces operating voltage and hence, it exhibits a significant reduction in both breakdown and threshold voltage. STS-IMOS shows high immunity against hot electron damage. As a result of this the device reliability increases magnificently. The analytical model for impact ionization current (Iii is developed based on the integration of ionization integral (M. Similarly, to get Schottky tunneling current (ITun expression, Wentzel–Kramers–Brillouin (WKB approximation is employed. Analytical models for threshold voltage and subthreshold slope is optimized against Schottky barrier height (ϕB variation. The expression for the drain current is computed as a function of gate-to-drain bias via integral expression. It is validated by comparing it with the technology computer-aided design (TCAD simulation results as well. In essence, this analytical framework provides the physical background for better understanding of STS-IMOS and its performance estimation.

  13. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  14. Barrier controlled carrier trapping of extended defects in CdZnTe detector

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Rongrong [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Jie, Wanqi, E-mail: jwq@nwpu.edu.cn [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Xu, Yadong [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Yu, Hui; Zha, Gangqiang; Wang, Tao; Ren, Jie [State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2015-09-11

    Transient current techniques using alpha particle source were utilized to study the influence of extended defects on the electron drift time and the detector performance of CdZnTe crystals. Different from the case of trapping through isolated point defect, a barrier controlled trapping model was used to explain the mechanism of carrier trapping at the extended defects. The effect of extended defects on the photoconductance was studied by laser beam induced transient current (LBIC) measurement. The results demonstrate that the Schottky-type depletion space charge region is induced at the vicinity of the extended defects, which further distorts the internal electric field distribution and affects the carrier trajectory in CdZnTe crystals. The relationship between the electron drift time and detector performance has been established. - Highlights: • The barrier controlled trapping model was developed around extended defects. • Electron mobility and E-field distribution were distorted by space charge depletion region. • Extended defects act as a recombination-activated region. • The relationships between extended defects and detector performance were established.

  15. Tight-binding analysis of current oscillation in nanoscale In0.53Ga0.47As Schottky MOSFET

    Science.gov (United States)

    Ahangari, Zahra; Fathipour, Morteza

    2013-11-01

    A comprehensive study of band structure effect on the quantum transport of nanoscale In0.53Ga0.47As Schottky MOSFET for the implementation of III-V MOSFET with low source/drain series resistance is presented. Rigorous treatment of the full band structure in ultra-thin body MOSFET is employed using sp3d5s* tight-binding approach. Strong transverse confinement increases the energy of subbands and, indeed, the effective Schottky barrier height. Due to enhanced Schottky barriers and at low drain voltages, a double barrier gate modulated potential well is created along the channel that results in source-to-drain confinement of states. As tunnelling is the main current component in this device, longitudinal confinement induces drain current oscillation at low temperatures. Important factors that may affect current oscillation are demonstrated. Current oscillation that alters the normal performance of the device is investigated in nanowire Schottky MOSFET, as well. Additional quantum confinement in nanowire Schottky MOSFET provides higher effective Schottky barrier height than the double gate structure. Accordingly, the drain current oscillation is more apparent in nanowire Schottky MOSFET than in the double gate device and is gradually smoothed out as the gate length shrinks down in ultra-scaled structure. Effect of diffusive scattering on the quantum transport of the device is investigated, too. What is prominent in our result is that the drain current oscillations degrade as the channel mobility is decreased. The results in this paper are paving a way to elucidate the feasibility of this device in the nanoscale regime.

  16. Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors

    Science.gov (United States)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2017-12-01

    In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.

  17. Birth Defects (For Parents)

    Science.gov (United States)

    ... mother has certain infections (such as toxoplasmosis ) during pregnancy, her baby can have a birth defect. Other conditions that cause defects include rubella and chickenpox (varicella). Fortunately, many people get vaccinated ...

  18. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  19. Investigation of the electrical parameters of Ag/p-TlGaSeS/C Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Qasrawi, A.F., E-mail: aqasrawi@atilim.edu.tr [Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara (Turkey); Department of Physics, Arab-American University, Jenin, West Bank, Palestine (Country Unknown); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey)

    2012-07-25

    Highlights: Black-Right-Pointing-Pointer Ag/p-TlGaSeS/C Schottky devices are designed and characterized. Black-Right-Pointing-Pointer The device ideality factor and barrier heights are 1.2 and 0.74 eV, respectively. Black-Right-Pointing-Pointer It displayed wide and narrow RF bands at 13.200 and 62.517 kHz, respectively. Black-Right-Pointing-Pointer The relative Q values are found to be 1.4 and of 6.3 Multiplication-Sign 10{sup 4}, respectively. - Abstract: p-type TlGaSeS single crystal was used to fabricate a Schottky device. Silver and carbon metals were used as the Ohmic and Schottky contacts, respectively. The device which displayed wide RF band at 13.200 and narrow band at 62.517 kHz with Q value of 1.4 and of 6.3 Multiplication-Sign 10{sup 4}, respectively, is characterized by means of current (I)-voltage (V), capacitance (C)-voltage characteristics as well as capacitance-frequency (f) characteristics. The device series resistance, ideality factor and barrier height are determined from the I-V curve as 35.8 M{Omega}, 1.2 and 0.74 eV, respectively. The apparent acceptor density and the build in voltage of the device increased with increasing ac signal frequency. The high Q value, observed at 62.517 kHz, indicated a much lower rate of energy loss relative to the stored energy of the device. The energy loss (Q{sup -1}) is much less than 0.001% of the stored value. The device was tested and found to remain at the same mode of resonance for several hours. It never switched or ceased unless it was tuned off.

  20. Improved designs of Si-based quantum wells and Schottky diodes for IR detection

    Energy Technology Data Exchange (ETDEWEB)

    Moeen, M., E-mail: moeen@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Kolahdouz, M. [School of Electrical and Computer Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Salemi, A.; Abedin, A.; Östling, M. [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden); Radamson, H.H., E-mail: rad@kth.se [School of Information and Communication Technology, KTH Royal Institute of Technology, Stockholm, 16640, Kista (Sweden)

    2016-08-31

    Novel structures of intrinsic or carbon-doped multi quantum wells (MQWs) and intrinsic or carbon-doped Si Schottky diodes (SD), individually or in combination, have been manufactured to detect the infrared (IR) radiation. The carbon concentration in the structures was 5 × 10{sup 20} cm{sup −3} and the MQWs are located in the active part of the IR detector. A Schottky diode was designed and formed as one of the contacts (based on NiSi(C)/TiW) to MQWs where on the other side the structure had an Ohmic contact. The thermal response of the detectors is expressed in terms of temperature coefficient of resistance (TCR) and the quality of the electrical signal is quantified by the signal-to-noise ratio. The noise measurements provide the K{sub 1/f} parameter which is obtained from the power spectrum density. An excellent value of TCR = − 6%/K and K{sub 1/f} = 4.7 × 10{sup −14} was measured for the detectors which consist of the MQWs in series with the SD. These outstanding electrical results indicate a good opportunity to manufacture low cost Si-based IR detectors in the near future. - Highlights: • SiGe (C)/Si(C) multi quantum wells (MQWs) are evaluated to detect IR radiation. • Schottky diodes (SDs), individually or in series with MQWs are also fabricated. • Detectors consisted of MQWs in series with SD show excellent thermal sensing. • The noise values are also extremely low for MQWs in series with SD.

  1. 670 GHz Schottky Diode Based Subharmonic Mixer with CPW Circuits and 70 GHz IF

    Science.gov (United States)

    Chattopadhyay, Goutam (Inventor); Schlecht, Erich T. (Inventor); Lee, Choonsup (Inventor); Lin, Robert H. (Inventor); Gill, John J. (Inventor); Sin, Seth (Inventor); Mehdi, Imran (Inventor)

    2014-01-01

    A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.

  2. Analysis of Heavy Ion Irradiation Induced Thermal Damage in SiC Schottky Diodes

    Science.gov (United States)

    Abbate, C.; Busatto, G.; Cova, P.; Delmonte, N.; Giuliani, F.; Iannuzzo, F.; Sanseverino, A.; Velardi, F.

    2015-02-01

    A study is presented aimed at describing phenomena involved in Single Event Burnout induced by heavy ion irradiation in SiC Schottky diodes. On the basis of experimental data obtained for 79Br irradiation at different energies, electro-thermal FEM is used to demonstrate that the failure is caused by a strong local increase of the semiconductor temperature. With respect to previous studies the temperature dependent thermal material properties were added. The critical ion energy calculated by this model is in agreement with literature experimental results. The substrate doping dependence of the SEE robustness was analyzed, proving the effectiveness of the developed model for device technological improvements.

  3. Schottky barrier enhancement on n-InP solar cell applications

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1994-01-01

    It is demonstrated that the Schottky barrier height on n-type InP can be enhanced to values close to the energy bandgap (1.35 eV) by employing a AuZnCr metallization. The process is simple and requires only mild and fast annealing sequences with temperatures not exceeding 500°C. Also, no critical...... epitaxial growth step of junctions is needed, making the process fairly cheap. Thus, prospects for an efficient and simple solar cell device structure for space application purposes based on highly radiant-resistant InP are greatly improved...

  4. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    Science.gov (United States)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  5. Catalytic-Metal/PdO(sub x)/SiC Schottky-Diode Gas Sensors

    Science.gov (United States)

    Hunter, Gary W.; Xu, Jennifer C.; Lukco, Dorothy

    2006-01-01

    Miniaturized hydrogen- and hydrocarbon-gas sensors, heretofore often consisting of Schottky diodes based on catalytic metal in contact with SiC, can be improved by incorporating palladium oxide (PdOx, where 0 less than or equal to x less than or equal to 1) between the catalytic metal and the SiC. In prior such sensors in which the catalytic metal was the alloy PdCr, diffusion and the consequent formation of oxides and silicides of Pd and Cr during operation at high temperature were observed to cause loss of sensitivity. However, it was also observed that any PdOx layers that formed and remained at PdCr/SiC interfaces acted as barriers to diffusion, preventing further deterioration by preventing the subsequent formation of metal silicides. In the present improvement, the lesson learned from these observations is applied by placing PdOx at the catalytic metal/SiC interfaces in a controlled and uniform manner to form stable diffusion barriers that prevent formation of metal silicides. A major advantage of PdOx over other candidate diffusion-barrier materials is that PdOx is a highly stable oxide that can be incorporated into gas sensor structures by use of deposition techniques that are standard in the semiconductor industry. The PdOx layer can be used in a gas sensor structure for improved sensor stability, while maintaining sensitivity. For example, in proof-of-concept experiments, Pt/PdOx/SiC Schottky-diode gas sensors were fabricated and tested. The fabrication process included controlled sputter deposition of PdOx to a thickness of 50 Angstroms on a 400-m-thick SiC substrate, followed by deposition of Pt to a thickness of 450 Angstroms on the PdOx. The SiC substrate (400 microns in thickness) was patterned with photoresist and a Schottky-diode photomask. A lift-off process completed the definition of the Schottky-diode pattern. The sensors were tested by measuring changes in forward currents at a bias potential of 1 V during exposure to H2 in N2 at temperatures

  6. High performance trench MOS barrier Schottky diode with high-k gate oxide

    Science.gov (United States)

    Zhai, Dong-Yuan; Zhu, Jun; Zhao, Yi; Cai, Yin-Fei; Shi, Yi; Zheng, You-Liao

    2015-07-01

    A novel trench MOS barrier Schottky diode (TMBS) device with a high-k material introduced into the gate insulator is reported, which is named high-k TMBS. By simulation with Medici, it is found that the high-k TMBS can have 19.8% lower leakage current while maintaining the same breakdown voltage and forward turn-on voltage compared with the conventional regular trench TMBS. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00607), the National Natural Science Foundation of China (Grant Nos. 61106089 and 61376097), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR14F040001).

  7. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN LHC

    CERN Document Server

    Pasquinelli, Ralph J

    2011-01-01

    A means for non-invasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  8. Plasmonic silicon Schottky photodetectors: the physics behind graphene enhanced internal photoemission

    DEFF Research Database (Denmark)

    Levy, Uriel; Grajower, Meir; Gonçalves, P. A. D.

    2017-01-01

    a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor......Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene (∼πα=2.3%). Here we propose...

  9. Surface plasma-enhanced internal photoemission in gallium arsenide Schottky diodes.

    Science.gov (United States)

    Torosian, K M; Karakashian, A S; Teng, Y Y

    1987-07-01

    An aluminum on n-type gallium arsenide Schottky diode with a prism coupler on the front face was illuminated by a p-polarized Nd:YAG laser to excite the surface plasma resonance in the aluminum barrier contact. The internal photoemission current and reflectance were measured simultaneously as a function of the angle of incidence. The excitation of the surface plasma resonance was observed by a dip in the reflectance which occurred at the same angle as a peak in the photoemission current. These effects disappeared in the case of s-polarization. Enhancement in the photoemission current by as much as a factor of 3 was obtained.

  10. Anomalous Schottky Specific Heat and Structural Distortion in Ferromagnetic PrAl2

    Science.gov (United States)

    Pathak, Arjun K.; Paudyal, D.; Mudryk, Y.; Gschneidner, K. A., Jr.; Pecharsky, V. K.

    2013-05-01

    Unique from other rare earth dialuminides, PrAl2 undergoes a cubic to tetragonal distortion below T=30K in a zero magnetic field, but the system recovers its cubic symmetry upon the application of an external magnetic field of 10 kOe via a lifting of the 4f crystal field splitting. The nuclear Schottky specific heat in PrAl2 is anomalously high compared to that of pure Pr metal. First principles calculations reveal that the 4f crystal field splitting in the tetragonally distorted phase of PrAl2 underpins the observed unusual low temperature phenomena.

  11. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Ralph J. Pasquinelli

    2011-07-01

    Full Text Available A means for noninvasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  12. Electrical characteristics and interfacial reactions of rapidly annealed Pt/Ru Schottky contacts on n-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.N.K.; Rajagopal Reddy, V. [Department of Physics, Sri Venkateswara University, Tirupati (India); Choi, C.J. [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju (Korea, Republic of)

    2011-07-15

    The electrical properties and interfacial reactions of Pt/Ru Schottky contacts on n-type gallium nitride (GaN) have been investigated as a function of annealing temperature. The calculated Schottky barrier height (SBH) of the as-deposited Pt/Ru Schottky contact is found to be 0.69 eV current-voltage (I-V) and 0.76 eV capacitance-voltage (C-V). Experimental results showed that the SBHs are increased on increasing the annealing temperature. When the contact is annealed at 600 C, a maximum barrier height is obtained and the corresponding values are 0.87 eV (I-V) and 0.99 eV (C-V). The Norde method was also employed to extract the barrier height of Pt/Ru Schottky contacts and the values are 0.70 and 0.86 eV for the samples as-deposited and annealed at 600 C, which are in good agreement with those obtained from the I-V measurement. Shifts of the surface Fermi level are measured with the change in position of the Ga 2p core level peak. Based on the X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) studies, the formation of gallide phases at the Ru/Pt/n-GaN interface could be the reason for the increase in SBH at elevated temperatures. Atomic force microscopy (AFM) results showed that the surface morphology of the Pt/Ru Schottky contact did not change significantly even after annealing at 600 C. These results point out that a Pt/Ru Schottky contact may be a suitable candidate for the fabrication of GaN-based high-temperature device applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. On holographic defect entropy

    Energy Technology Data Exchange (ETDEWEB)

    Estes, John [Blackett Laboratory, Imperial College,London SW7 2AZ (United Kingdom); Jensen, Kristan [Department of Physics and Astronomy, University of Victoria,Victoria, BC V8W 3P6 (Canada); C.N. Yang Institute for Theoretical Physics, SUNY Stony Brook,Stony Brook, NY 11794-3840 (United States); O’Bannon, Andy [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Road, Oxford OX1 3NP (United Kingdom); Tsatis, Efstratios [8 Kotylaiou Street, Athens 11364 (Greece); Wrase, Timm [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94305 (United States)

    2014-05-19

    We study a number of (3+1)- and (2+1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3+1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1+1)-dimensional field theories generalizes to higher dimensions.

  14. On holographic defect entropy

    Science.gov (United States)

    Estes, John; Jensen, Kristan; O'Bannon, Andy; Tsatis, Efstratios; Wrase, Timm

    2014-05-01

    We study a number of (3 + 1)- and (2 + 1)-dimensional defect and boundary conformal field theories holographically dual to supergravity theories. In all cases the defects or boundaries are planar, and the defects are codimension-one. Using holography, we compute the entanglement entropy of a (hemi-)spherical region centered on the defect (boundary). We define defect and boundary entropies from the entanglement entropy by an appropriate background subtraction. For some (3 + 1)-dimensional theories we find evidence that the defect/boundary entropy changes monotonically under certain renormalization group flows triggered by operators localized at the defect or boundary. This provides evidence that the g-theorem of (1 + 1)-dimensional field theories generalizes to higher dimensions.

  15. Barrier height determination on Schottky contacts formed at the back contact-semiconductor interface of degraded solar cells

    Science.gov (United States)

    Misiakos, K.; Lathrop, J. W.

    1984-01-01

    A method is described of determining an equivalent circuit for solar cells which have degraded as a result of the formation of a rectifying Schottky barrier at the back contact. An excellent fit of experimental data has been achieved using SCEPTRE with an equivalent circuit derived from the shape of the measured current voltage characteristics. One key parameter of the Schottky barrier diode, the reverse saturation current, can be used to determine the barrier potential. The barrier potential increases as the cell is stressed with 0.5 volts being a typical experimentally determined value for a degraded cell.

  16. Mg doping of InGaN layers grown by PA-MBE for the fabrication of Schottky barrier photodiodes

    OpenAIRE

    Pereiro, J. (James); Redondo-Cubero, A; Fernandez-Garrido, S.; Rivera, C; Navarro, A.; Muñoz, E; Calleja, E; Gago, R.; Pereiro, Juan

    2010-01-01

    ABSTRACT This work reports on the fabrication of Schottky barrier based Mg-doped (In, Ga)N layers for fluorescence applications. Mg acceptors are used in order to compensate surface and bulk donors that prevent the fabrication of Schottky contacts on unintentionally doped (In, Ga)N layers. Rectifying properties of the contacts exhibited a major improvement when (In, Ga)N:Mg is used. The electrical and optical measurements of the layers showed a hole concentration up to 3?10 19 holes/cm 3 w...

  17. Electric Field Penetration in Au/Nb:SrTiO3 Schottky Junctions Probed by Bias-Dependent Internal Photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Hikita, Y.

    2011-08-15

    Electric field penetration into the metallic side of a Schottky junction is in principle a universal phenomenon, the magnitude of which increases with the semiconductor permittivity. Here, we quantitatively probe this effect using bias-dependent internal photoemission spectroscopy at the Schottky junction between a large dielectric permittivity semiconductor SrTiO{sub 3} and gold. A clear linear reduction of the barrier height with increasing interface electric field was observed, highlighting the importance of field penetration into the gold. The interfacial permittivity of SrTiO{sub 3} at the interface is reduced from the bulk value, reflecting intrinsic suppression at the interface.

  18. Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping

    Science.gov (United States)

    Ho, Szuheng; Yu, Hyeonggeun; So, Franky

    2017-11-01

    Amorphous InGaZnO (a-IGZO) is promising for transparent electronics due to its high carrier mobility and optical transparency. However, most metal/a-IGZO junctions are ohmic due to the Fermi-level pinning at the interface, restricting their device applications. Here, we report that indium-tin oxide/a-IGZO Schottky diodes can be formed by gradient oxygen doping in the a-IGZO layer that would otherwise form an ohmic contact. Making use of back-to-back a-IGZO Schottky junctions, a transparent IGZO permeable metal-base transistor is also demonstrated with a high common-base gain.

  19. Evaluation of Polarization Effects of e(-) Collection Schottky CdTe Medipix3RX Hybrid Pixel Detector

    OpenAIRE

    Astromskas, V; Gimenez, EN; Lohstroh, A; Tartoni, N

    2016-01-01

    This paper focuses on the evaluation of operational conditions such as temperature, exposure time and flux on the polarization of a Schottky electron collection CdTe detector. A Schottky e- collection CdTe Medipix3RX hybrid pixel detector was developed as a part of the CALIPSO-HIZPAD2 EU project. The 128 ×128 pixel matrix and 0.75 mm thick CdTe sensor bump-bonded to Medipix3RX readout chips enabled the study of the polarization effects. Single and quad module Medipix3RX chips were used which ...

  20. A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy

    Science.gov (United States)

    Yi, Ya; Wu, Changming; Liu, Hongchao; Zeng, Jiali; He, Hongtao; Wang, Jiannong

    2015-09-01

    Schottky contacts, formed at metal/semiconductor interfaces, always have a large impact on the performance of field-effect transistors (FETs). Here, we report the experimental studies of Schottky contacts in two-dimensional (2D) transition metal dichalcogenide (TMDC) FET devices. We use scanning photocurrent microscopy (SPCM) to directly probe the spatial distribution of the in-plane lateral Schottky depletion regions at the metal/2D-TMDC interfaces. The laser incident position dependent and the gate voltage tunable polarity and magnitude of the short-circuit photocurrent reveal the existence of the in-plane Schottky depletion region laterally extending away from the metal contact edges along the channel. This lateral depletion region length is estimated to be around several microns and can be effectively tuned by the gate and drain-source biases. Our results solidify the importance of lateral Schottky depletion regions in the photoresponse of 2D TMDC optoelectronic devices.Schottky contacts, formed at metal/semiconductor interfaces, always have a large impact on the performance of field-effect transistors (FETs). Here, we report the experimental studies of Schottky contacts in two-dimensional (2D) transition metal dichalcogenide (TMDC) FET devices. We use scanning photocurrent microscopy (SPCM) to directly probe the spatial distribution of the in-plane lateral Schottky depletion regions at the metal/2D-TMDC interfaces. The laser incident position dependent and the gate voltage tunable polarity and magnitude of the short-circuit photocurrent reveal the existence of the in-plane Schottky depletion region laterally extending away from the metal contact edges along the channel. This lateral depletion region length is estimated to be around several microns and can be effectively tuned by the gate and drain-source biases. Our results solidify the importance of lateral Schottky depletion regions in the photoresponse of 2D TMDC optoelectronic devices. Electronic

  1. Genital and Urinary Tract Defects

    Science.gov (United States)

    ... conditions > Genital and urinary tract defects Genital and urinary tract defects E-mail to a friend Please fill ... and extra fluids. What problems can genital and urinary tract defects cause? Genital and urinary tract defects affect ...

  2. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Li, Zhi-Peng; Wang, Jiu-Zhen; Kong, Wei-Yu; Wu, Guo-An; Zheng, Yu-Zhen; Zhao, Yuan-Wei; Yao, En-Xu; Zhuang, Nai-Xi; Luo, Lin-Bao

    2016-12-01

    In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibility in a wide range of switching frequencies (50-5400 Hz). The on-off ratio, responsivity, and detectivity of the device were estimated to be 1 × 102, 209 mAW-1 and 4.87 × 1010 cm Hz1/2 W-1, respectively. What is more, other device parameters including linear performance θ and linear dynamic range (LDR) were calculated to be 0.99 and 58.8 dB, respectively, which were relatively better than other carbon nanotube based devices. The totality of the above study signifies that the present SLG-CNTF Schottky junction broadband nano-photodetector may have promising application in future nano-optoelectronic devices and systems.

  3. New type of Schottky diode-based Cu-Al-Mn-Cr shape memory material films

    Science.gov (United States)

    Aksu Canbay, C.; Dere, A.; Mensah-Darkwa, Kwadwo; Al-Ghamdi, Ahmed; Karagoz Genç, Z.; Gupta, R. K.; Yakuphanoglu, F.

    2016-07-01

    Cr-doped CuAlMn shape memory alloys were produced by arc melting method. The effects of Cr content on microstructure and transformation parameters of were investigated. The alloys were characterized by X-ray analysis, optical microscope observations and differential scanning calorimetry measurements. The grain size of the alloys was decreased by the addition of Cr into CuAlMn alloy system. The martensite transformation temperature was shifted both the lower temperature and higher temperature with the addition of chromium. This change was explained on the basis of the change in the thermodynamics such as enthalpy, entropy and activation energy values. The obtained results indicate that the phase transformation temperatures of the CuAlMn alloy system can be controlled by addition of Cr. We fabricated a Schottky barrier diode and observed that ideality factor and barrier height increase with increasing temperature. The diodes exhibited a thermal sensor behavior. This indicates that Schottky diode-based Cu-Al-Mn-Cr shape memory material films can be used as a sensor in high-temperature measurement applications.

  4. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    Science.gov (United States)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  5. Analysis of current transport properties in nonpolar a-plane ZnO-based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Haeri; Kim, Dongwook [Ewha Womans University, Seoul (Korea, Republic of)

    2014-09-15

    Using current-voltage (I - V) measurements, we investigated the temperature-dependent transport properties in Ag/nonpolar a-plane ZnO Schottky diodes. The bias-dependent ideality factors were altered by the different temperatures and showed a hump at lower temperatures. The series resistance of the diode depended on the temperatures, which was related to the number of free carriers contributing to the series resistance. For high forward bias, the slope m obtained from the lnI - lnV curves decreased with increasing temperature, assuring the space-charge-limited-current (SCLC) model controlled by an exponential distribution of traps. The reverse-biased current transport was associated with the Schottky effect, with a thermally-assisted tunneling for lower voltages and the Poole-Frenkel effect for higher voltages. The density of localized states (N{sub t}) was obtained by applying the theory of SCLC transport, which yielded a N{sub t} value of 8.32 x 10{sup 11} eV{sup -1}cm{sup -3}.

  6. Modeling and fabrication of 4H-SiC Schottky junction

    Science.gov (United States)

    Martychowiec, A.; Pedryc, A.; Kociubiński, A.

    2017-08-01

    The rapidly growing demand for electronic devices requires using of alternative semiconductor materials, which could replace conventional silicon. Silicon carbide has been proposed for these harsh environment applications (high temperature, high voltage, high power conditions) because of its wide bandgap, its high temperature operation ability, its excellent thermal and chemical stability, and its high breakdown electric field strength. The Schottky barrier diode (SBD) is known as one of the best refined SiC devices. This paper presents prepared model, simulations and description of technology of 4H-SiC Schottky junction as well as characterization of fabricated structures. The future aim of the application of the structures is an optical detection of an ultraviolet radiation. The model section contains a comparison of two different solutions of SBD's construction. Simulations - as a crucial process of designing electronic devices - have been performed using the ATLAS device of Silvaco TCAD software. As a final result the paper shows I-V characteristics of fabricated diodes.

  7. Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band.

    Science.gov (United States)

    Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel

    2012-12-17

    We experimentally demonstrate an on-chip compact and simple to fabricate silicon Schottky photodetector for telecom wavelengths operating on the basis of internal photoemission process. The device is realized using CMOS compatible approach of local-oxidation of silicon, which enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. The photodetector demonstrates enhanced internal responsivity of 12.5mA/W for operation wavelength of 1.55µm corresponding to an internal quantum efficiency of 1%, about two orders of magnitude higher than our previously demonstrated results [22]. We attribute this improved detection efficiency to the presence of surface roughness at the boundary between the materials forming the Schottky contact. The combination of enhanced quantum efficiency together with a simple fabrication process provides a promising platform for the realization of all silicon photodetectors and their integration with other nanophotonic and nanoplasmonic structures towards the construction of monolithic silicon opto-electronic circuitry on-chip.

  8. Locally oxidized silicon surface-plasmon Schottky detector for telecom regime.

    Science.gov (United States)

    Goykhman, Ilya; Desiatov, Boris; Khurgin, Jacob; Shappir, Joseph; Levy, Uriel

    2011-06-08

    We experimentally demonstrate an on-chip nanoscale silicon surface-plasmon Schottky photodetector based on internal photoemission process and operating at telecom wavelengths. The device is fabricated using a self-aligned approach of local-oxidation of silicon (LOCOS) on silicon on insulator substrate, which provides compatibility with standard complementary metal-oxide semiconductor technology and enables the realization of the photodetector and low-loss bus photonic waveguide at the same fabrication step. Additionally, LOCOS technique allows avoiding lateral misalignment between the silicon surface and the metal layer to form a nanoscale Schottky contact. The fabricated devices showed enhanced detection capability for shorter wavelengths that is attributed to increased probability of the internal photoemission process. We found the responsivity of the nanodetector to be 0.25 and 13.3 mA/W for incident optical wavelengths of 1.55 and 1.31 μm, respectively. The presented device can be integrated with other nanophotonic and nanoplasmonic structures for the realization of monolithic opto-electronic circuitry on-chip.

  9. Phase-Defined van der Waals Schottky Junctions with Significantly Enhanced Thermoelectric Properties.

    Science.gov (United States)

    Wang, Qiaoming; Yang, Liangliang; Zhou, Shengwen; Ye, Xianjun; Wang, Zhe; Zhu, Wenguang; McCluskey, Matthew D; Gu, Yi

    2017-07-06

    We demonstrate a van der Waals Schottky junction defined by crystalline phases of multilayer In 2 Se 3 . Besides ideal diode behaviors and the gate-tunable current rectification, the thermoelectric power is significantly enhanced in these junctions by more than three orders of magnitude compared with single-phase multilayer In 2 Se 3 , with the thermoelectric figure-of-merit approaching ∼1 at room temperature. Our results suggest that these significantly improved thermoelectric properties are not due to the 2D quantum confinement effects but instead are a consequence of the Schottky barrier at the junction interface, which leads to hot carrier transport and shifts the balance between thermally and field-driven currents. This "bulk" effect extends the advantages of van der Waals materials beyond the few-layer limit. Adopting such an approach of using energy barriers between van der Waals materials, where the interface states are minimal, is expected to enhance the thermoelectric performance in other 2D materials as well.

  10. GaAs detectors with an ultra-thin Schottky contact for spectrometry of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Chernykh, S.V., E-mail: chsv_84@mail.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Chernykh, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Didenko, S.I.; Baryshnikov, F.M. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Burtebayev, N. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan); Britvich, G.I. [Institute of High Energy Physics, Protvino, Moscow region (Russian Federation); Chubenko, A.P. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Guly, V.G.; Glybin, Yu.N. [LLC “SNIIP Plus”, Moscow (Russian Federation); Zholdybayev, T.K.; Burtebayeva, J.T.; Nassurlla, M. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-02-11

    For the first time, samples of particle detectors based on high-purity GaAs epilayers with an active area of 25 and 80 mm{sup 2} and an ultra-thin Pt Schottky barrier were fabricated for use in the spectrometry of charged particles and their operating characteristics were studied. The obtained FWHM of 14.2 (for 25 mm{sup 2} detector) and 15.5 keV (for 80 mm{sup 2} detector) on the 5.499 MeV line of {sup 238}Pu is at the level of silicon spectrometric detectors. It was found that the main component that determines the energy resolution of the detector is a fluctuation in the number of collected electron–hole pairs. This allows us to state that the obtained energy resolution is close to the limit for VPE GaAs. - Highlights: • VPE GaAs particle detectors with an active area of 25 and 80 mm{sup 2} were fabricated. • 120 Å ultra-thin Pt Schottky barrier was used as a rectifying contact. • The obtained FWHM of 14.2 keV ({sup 238}Pu) is at the level of Si spectrometric detectors. • Various components of the total energy resolution were analyzed. • It was shown that obtained energy resolution is close to its limit for VPE GaAs.

  11. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole

    Science.gov (United States)

    Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei

    2017-03-01

    The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.

  12. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Directory of Open Access Journals (Sweden)

    Zhang Teng-Fei

    2016-11-01

    Full Text Available In this study, we present a simple ultraviolet (UV light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  13. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes.

    Science.gov (United States)

    Shen, Jun; Liu, Xiangzhi; Song, Xuefen; Li, Xinming; Wang, Jun; Zhou, Quan; Luo, Shi; Feng, Wenlin; Wei, Xingzhan; Lu, Shirong; Feng, Shuanglong; Du, Chunlei; Wang, Yuefeng; Shi, Haofei; Wei, Dapeng

    2017-05-11

    Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, photodetectors are fabricated using directly grown graphene nanowalls (GNWs) as electrodes. Due to the metal-free growth process, GNWs-Si heterojunctions with an ultralow measured current noise of 3.1 fA Hz-1/2 are obtained, and the as-prepared photodetectors demonstrate specific detectivities of 5.88 × 1013 cm Hz1/2 W-1 and 2.27 × 1014 cm Hz1/2 W-1 based on the measured and calculated noise current, respectively, under ambient conditions. These are among the highest reported values for planar silicon Schottky photodetectors. In addition, an on/off ratio of 2 × 107, time response of 40 μs, cut-off frequency of 8.5 kHz and responsivity of 0.52 A W-1 are simultaneously realized. The ultralow current noise is attributed to the excellent junction quality with a barrier height of 0.69 eV and an ideal factor of 1.18. Furthermore, obvious infrared photoresponse is observed in blackbody tests, and potential applications based on the photo-thermionic effect are discussed.

  14. Temperature-dependent Schottky barrier in high-performance organic solar cells

    Science.gov (United States)

    Li, Hui; He, Dan; Zhou, Qing; Mao, Peng; Cao, Jiamin; Ding, Liming; Wang, Jizheng

    2017-01-01

    Organic solar cells (OSCs) have attracted great attention in the past 30 years, and the power conversion efficiency (PCE) now reaches around 10%, largely owning to the rapid material developments. Meanwhile with the progress in the device performance, more and more interests are turning to understanding the fundamental physics inside the OSCs. In the conventional bulk-heterojunction architecture, only recently it is realized that the blend/cathode Schottky junction serves as the fundamental diode for the photovoltaic function. However, few researches have focused on such junctions, and their physical properties are far from being well-understood. In this paper based on PThBDTP:PC71BM blend, we fabricated OSCs with PCE exceeding 10%, and investigated temperature-dependent behaviors of the junction diodes by various characterization including current-voltage, capacitance-voltage and impedance measurements between 70 to 290 K. We found the Schottky barrier height exhibits large inhomogeneity, which can be described by two sets of Gaussian distributions. PMID:28071700

  15. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  16. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He

    2014-08-11

    Recently, two-dimensional materials such as molybdenum disulphide (MoS 2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V.s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics.

  17. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Science.gov (United States)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua; Jin, Jidong; Du, Lulu; Xin, Qian; Song, Aimin

    2015-08-01

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10-9 was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10-5. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 1015 eV-1 cm-2. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  18. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  19. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes.

    Science.gov (United States)

    Lee, Young Keun; Choi, Hongkyw; Lee, Hyunsoo; Lee, Changhwan; Choi, Jin Sik; Choi, Choon-Gi; Hwang, Euyheon; Park, Jeong Young

    2016-06-08

    Carrier multiplication (i.e. generation of multiple electron-hole pairs from a single high-energy electron, CM) in graphene has been extensively studied both theoretically and experimentally, but direct application of hot carrier multiplication in graphene has not been reported. Here, taking advantage of efficient CM in graphene, we fabricated graphene/TiO2 Schottky nanodiodes and found CM-driven enhancement of quantum efficiency. The unusual photocurrent behavior was observed and directly compared with Fowler's law for photoemission on metals. The Fowler's law exponent for the graphene-based nanodiode is almost twice that of a thin gold film based diode; the graphene-based nanodiode also has a weak dependence on light intensity-both are significant evidence for CM in graphene. Furthermore, doping in graphene significantly modifies the quantum efficiency by changing the Schottky barrier. The CM phenomenon observed on the graphene/TiO2 nanodiodes can lead to intriguing applications of viable graphene-based light harvesting.

  20. Large-area silicon nanowire Schottky junction photodetector with tunable absorption and low junction capacitance

    Science.gov (United States)

    Hackett, L. P.; Seyedi, M. A.; Fiorentino, M.; Beausoleil, R. G.

    2017-06-01

    Silicon photodetectors for operation in the near-infrared with a sufficient responsivity and high-speed operation are currently needed as scalable, CMOS compatible components for photonic and communication applications. Photodetectors based on semiconductor nanowire structures with dielectric planarization enable larger active optical areas and higher operating speeds than planar devices due to reduced junction capacitance and enhanced absorption. Here, we report on the fabrication and characterization of a silicon nanowire photodetector with dielectric infilling and a transparent indium tin oxide (ITO) Schottky contact. Optical simulations show that the absorbed power can be confined at the top of the nanowire array, enabling efficient operation in the near-infrared. This is despite the relatively low absorption coefficient for silicon in this wavelength range in addition to the design of the nanowire array to have a low fill factor compared to the bulk material in order to minimize the junction capacitance. The responsivity of this device is  >0.3 A W-1 at a reverse bias of 2 V and the junction capacitance is 8  ±  2 nF cm-2, which are respectively comparable and lower than the values expected for a planar silicon Schottky junction photodetector with a similar active area.

  1. Defect processes in Be12X (X = Ti, Mo, V, W)

    Science.gov (United States)

    Jackson, M. L.; Burr, P. A.; Grimes, R. W.

    2017-08-01

    The stability of intrinsic point defects in Be12X intermetallics (where X  =  Ti, V, Mo or W) are predicted using density functional theory simulations and discussed with respect to fusion energy applications. Schottky disorder is found to be the lowest energy complete disorder process, closely matched by Be Frenkel disorder in the cases of Be12V and Be12Ti. Antitisite and X Frenkel disorder are of significantly higher energy. Small clusters of point defects including Be divacancies, Be di-interstitials and accommodation of the X species on two Be sites were considered. Some di-interstitial, divacancy and X2Be combinations exhibit negative binding enthalpy (i.e. clustering is favourable), although this is orientationally dependent. None of the Be12X intermetallics are predicted to exhibit significant non-stoichiometry, ruling out non-stoichiometry as a mechanism for accommodating Be depletion due to neutron transmutation.

  2. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  3. Hole density and acceptor-type defects in MBE-grown GaSb1-x  Bi x

    Science.gov (United States)

    Segercrantz, N.; Slotte, J.; Makkonen, I.; Tuomisto, F.; Sandall, I. C.; Ashwin, M. J.; Veal, T. D.

    2017-07-01

    We study acceptor-type defects in \\text{GaS}{{\\text{b}}1-x} \\text{B}{{\\text{i}}x} grown by molecular beam epitaxy. The hole density of the \\text{GaS}{{\\text{b}}1-x} \\text{B}{{\\text{i}}x} layers, from capacitance-voltage measurements of Schottky diodes, is higher than that of the binary alloys and increases linearly up to 1019 \\text{c}{{\\text{m}}-3} with the Bi content. Positron annihilation spectroscopy and ab initio calculations show that both Ga vacancies and Ga antisites contribute to the hole density and that the proportion of the two acceptor-type defects vary in the layers. The modification of the band gap due to Bi incorporation as well as the growth parameters are suggested to affect the concentrations of acceptor-type defects.

  4. Ultra-wideband balanced schottky envelope detector for data communication with high bitrate to carrier frequency ratio

    DEFF Research Database (Denmark)

    Granja, Angel Blanco; Cimoli, Bruno; Rodriguez, Sebastian

    2017-01-01

    filter that rejects the second harmonic spurious from the Schottky diode and a bias tee that selects the optimum rectification point. The manufactured prototype is able to demodulate error free a 4 Gbps amplitude shift keying (ASK) signal at 4 GHz carrier frequency, leading to a record bitrate...

  5. MoB/g-C3 N4 Interface Materials as a Schottky Catalyst to Boost Hydrogen Evolution.

    Science.gov (United States)

    Zhuang, Zechao; Li, Yong; Li, Zilan; Lv, Fan; Lang, Zhiquan; Zhao, Kangning; Zhou, Liang; Moskaleva, Lyudmila; Guo, Shaojun; Mai, Liqiang

    2018-01-08

    Proton adsorption on metallic catalysts is a prerequisite for efficient hydrogen evolution reaction (HER). However, tuning proton adsorption without perturbing metallicity remains a challenge. A Schottky catalyst based on metal-semiconductor junction principles is presented. With metallic MoB, the introduction of n-type semiconductive g-C3 N4 induces a vigorous charge transfer across the MoB/g-C3 N4 Schottky junction, and increases the local electron density in MoB surface, confirmed by multiple spectroscopic techniques. This Schottky catalyst exhibits a superior HER activity with a low Tafel slope of 46 mV dec-1 and a high exchange current density of 17 μA cm-2 , which is far better than that of pristine MoB. First-principle calculations reveal that the Schottky contact dramatically lowers the kinetic barriers of both proton adsorption and reduction coordinates, therefore benefiting surface hydrogen generation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Wavelength-dependent visible light response in vertically aligned nanohelical TiO2-based Schottky diodes

    Science.gov (United States)

    Kwon, Hyunah; Sung, Ji Ho; Lee, Yuna; Jo, Moon-Ho; Kim, Jong Kyu

    2018-01-01

    Enhancements in photocatalytic performance under visible light have been reported by noble metal functionalization on nanostructured TiO2; however, the non-uniform and discrete distribution of metal nanoparticles on the TiO2 surface makes it difficult to directly clarify the optical and electrical mechanisms. Here, we investigate the light absorption and the charge separation at the metal/TiO2 Schottky junctions by using a unique device architecture with an array of TiO2 nanohelixes (NHs) forming Schottky junctions both with Au-top and Pt-bottom electrodes. Wavelength-dependent photocurrent measurements through the Pt/TiO2 NHs/Au structures revealed that the origin of the visible light absorption and the separation of photogenerated carriers is the internal photoemission at the metal/nanostructured TiO2 Schottky junctions. In addition, a huge persistent photoconductivity was observed by the time-dependent photocurrent measurement, implying a long lifetime of the photogenerated carriers before recombination. We believe that the results help one to understand the role of metal functionalization on TiO2 and hence to enhance the photocatalytic efficiency by utilizing appropriately designed Schottky junctions.

  7. Local irradiation effects of one-dimensional ZnO based self-powered asymmetric Schottky barrier UV photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaxue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Qi, Junjie, E-mail: junjieqi@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Biswas, Chandan [Department of Electrical Engineering, University of California Los Angeles, California 90095 (United States); Li, Feng; Zhang, Kui; Li, Xin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-09-15

    A self-powered metal-semiconductor-metal (MSM) UV photodetector was successfully fabricated based on Ag/ZnO/Au structure with asymmetric Schottky barriers. This exhibits excellent performance compared to many previous studies. Very high photo-to-dark current ratio (approximately 10{sup 5}–10{sup 6}) was demonstrated without applying any external bias, and very fast switching time of less than 30 ms was observed during the investigation. Opposite photocurrent direction was generated by irradiating different Schottky diodes in the fabricated photodetector. Furthermore, the device performance was optimized by largely irradiating both the ZnO microwire (MW) junctions. Schottky barrier effect theory and O{sub 2} adsorption–desorption theories were used to investigate the phenomenon. The device has potential applications in self-powered UV detection field and can be used as electrical power source for electronic, optoelectronic and mechanical devices. - Highlights: • A self-powered Schottky barrier UV photodetector based on 1-D ZnO is fabricated. • For the first time we investigate the local irradiation effects of UV detector. • Irradiating both the junctions and ZnO can optimize the performance of the device.

  8. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    Science.gov (United States)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  9. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    Science.gov (United States)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  10. Determination of the laterally homogeneous barrier height of palladium Schottky barrier diodes on n-Ge (111)

    CSIR Research Space (South Africa)

    Chawanda, A

    2011-05-01

    Full Text Available .5×1015 cm-3. The Pd Schottky contacts were fabricated by vacuum resistive evaporation. The electrical analysis of the contacts was investigated by means of current–voltage (I–V) and capacitance–voltage (C–V) measurements at a temperature of 296 K...

  11. Temperature-dependent electrical parameters and current transport mechanisms of Ru/Ti/ n-InP Schottky diodes

    Science.gov (United States)

    Munikrishna Reddy, Y.; Padmasuvarna, R.; Lakshmi Narasappa, T.; Padma, R.; Rajagopal Reddy, V.

    2015-11-01

    The temperature-dependent electrical properties of Ru/Ti/ n-InP Schottky diodes have been investigated in the temperature range of 120 to 400 K. The estimated barrier heights for the Ru/Ti/ n-InP Schottky barrier diode from the I- V and C- V characteristics vary from 0.24 to 0.73 eV ( I- V) and 0.94 to 0.74 eV ( C- V) and the ideality factor ( n) from 4.65 to 1.80 in the temperature range of 120-400 K. It has been observed that the ideality factor decreases while the barrier height increases with the increase in temperature. The barrier height ( Φ b), ideality factor ( n) and series resistance ( R s) of the Ru/Ti/ n-InP Schottky diode have been also determined using Cheung's and Norde methods. The discrepancy between the barrier heights obtained from the I- V and C- V characteristics is discussed. The interface state densities ( N ss) extracted for the Ru/Ti/ n-InP Schottky diode are in the range of 6.75 × 1013 eV-1 cm-2 ( E c —0.23 eV)-1.09 × 1014 eV-1 cm-2 ( E c —0.17 eV) at 120 K and 1.67 × 1013 eV-1 cm-2 ( E c —0.75 eV)-5.02 × 1013 eV-1 cm-2 ( E c —0.59 eV) at 400 K. It is observed that the interface state density ( N ss) decreases with increase in temperature. Results reveal that the conduction current is dominated by Poole-Frenkel emission in the temperature range from 120 to 320 K and by Schottky emission above 360 K.

  12. High sensitivity Schottky junction diode based on monolithically grown aligned polypyrrole nanofibers: Broad range detection of m-dihydroxybenzene.

    Science.gov (United States)

    Ameen, Sadia; Akhtar, M Shaheer; Seo, Hyung-Kee; Shin, Hyung Shik

    2015-07-30

    Aligned p-type polypyrrole (PPy) nanofibers (NFs) thin film was grown on n-type silicon (100) substrate by an electrochemical technique to fabricate Schottky junction diode for the efficient detection of m-dihydroxybenzene chemical. The highly dense and well aligned PPy NFs with the average diameter (∼150-200 nm) were grown on n-type Si substrate. The formation of aligned PPy NFs was confirmed by elucidating the structural, compositional and the optical properties. The electrochemical behavior of the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode was evaluated by cyclovoltametry (CV) and current (I)-voltage (V) measurements with the variation of m-dihydroxybenzene concentration in the phosphate buffer solution (PBS). The fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode exhibited the rectifying behavior of I-V curve with the addition of m-dihydroxybenzene chemical, while a weak rectifying I-V behavior was observed without m-dihydroxybenzene chemical. This non-linear I-V behavior suggested the formation of Schottky barrier at the interface of Pt layer and p-aligned PPy NFs/n-silicon thin film layer. By analyzing the I-V characteristics, the fabricated Pt/p-aligned PPy NFs/n-silicon Schottky junction diode displayed reasonably high sensitivity ∼23.67 μAmM(-1)cm(-2), good detection limit of ∼1.51 mM with correlation coefficient (R) of ∼0.9966 and short response time (10 s). Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Annealing effects on electrical, structural, and surface morphological properties of Ir/n-InGaN Schottky structures

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Rajagopal; Padma, R.; Reddy, M.S.P. [Department of Physics, Sri Venkateswara University, Tirupati (India); Choi, C.J. [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju (Korea, Republic of)

    2012-10-15

    The effects of thermal annealing on electrical and structural characteristics of iridium (Ir) Schottky contacts to n-type InGaN have been studied using current-voltage (I-V), capacitance-voltage (C-V), secondary ion mass spectrometer (SIMS), and X-ray diffraction (XRD) measurements. Measurements showed that the Schottky barrier height (SBH) of as-deposited sample is 0.79 eV (I-V) and 1.07 eV (C-V). It is observed that the barrier height increases to 0.85 eV (I-V) and 1.21 eV (C-V) after annealing at 300 C for 1 min in N{sub 2} ambient. However, it is found that the SBH slightly decreases when the contacts are annealed at 400 and 500 C and the corresponding values are 0.84 eV (I-V), 1.17 eV (C-V) for 400 C and 0.80 eV (I-V), 1.11 eV (C-V) for 500 C, respectively. Using Cheung's functions, the barrier height ({Phi}{sub b}), ideality factor (n), and series resistance (R{sub s}) are also calculated. From the above results, it is clear that the optimum annealing temperature for Ir Schottky contact is 300 C. SIMS and XRD results shows that the formation of gallide phases at Ir/n-InGaN interfaces could be the reason for variation in the SBHs upon annealing at elevated temperatures. Atomic force microscopy (AFM) results show that the overall surface morphology of Ir Schottky contacts on n-InGaN stays reasonably smooth. These results make Ir Schottky contacts attractive for high-temperature device applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  15. The TiO(2) nanoparticle effect on the performance of a conducting polymer Schottky diode.

    Science.gov (United States)

    Yoo, K H; Kang, K S; Chen, Y; Han, K J; Kim, Jaehwan

    2008-12-17

    Among the conjugate polymers, poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) has been paid a great deal of attention for various application fields. The absorption intensity of the whole UV-visible range increases linearly, as the concentration of PEDOT:PSS increases. When a small amount of TiO(2) nanoparticles are dispersed in the PEDOT:PSS solution, the absorption in the visible range normally increases, but the UV range absorption (TiO(2) absorption area) is greatly depressed as the concentration of PEDOT:PSS increases. Various weight ratios of TiO(2) nanoparticles in PEDOT:PSS were prepared. The TiO(2)/PEDOT:PSS solution was spin-coated onto the Al electrode and thermally treated to remove water molecules and densify the film. These thermal processes generated nanocracks and nanoholes on the surface of the TiO(2)/PEDOT:PSS film. As the heating temperature increased, wider and longer nanocracks were generated. These nanocracks and nanoholes can be removed by subsequent coating and heating processes. Schottky diodes were fabricated using four different concentrations of TiO(2)-PEDOT:PSS solution. The forward current increased nearly two orders of magnitude by doping approximately 1% of TiO(2) nanoparticles in PEDOT:PSS. Increasing the TiO(2) nanoparticles in the PEDOT:PSS matrix, the forward current was continuously enhanced. The enhancement of forward current is nearly four orders of magnitude with respect to the pristine PEDOT:PSS Schottky diode. The possible conduction mechanisms were examined by using various plotting and curve-fitting methods including a space-charge-limited conduction mechanism [Ln(J) versus Ln(V)], Schottky emission mechanism [Ln(J) versus E(1/2)], and Poole-Frenkel emission mechanism [Ln(J/V) versus E(1/2)]. The plot of Ln(J) versus Ln(V) shows a linear relationship, implying that the major conduction mechanism is SCLC. As the concentration of TiO(2) increased, the conduction mechanism slightly detracted from the

  16. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    Science.gov (United States)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  17. Heterodimensional Schottky contacts to modulation-doped heterojunction with application to photodetection

    Science.gov (United States)

    Seddik, Amro Anwar

    The growing technological demand for high speed and compact integrated electronics and Optics is a pressing challenge. Speed and compactness necessitate low power consumption semiconductors with high transport mobility carriers, with potential of ultra large-scale integration of electronic and Optoelectronics circuitry. One avenue to fulfill these requirements is to utilize reduced dimensionality where carriers are spatially confined to less than three-dimensions, causing their energy levels to become quantized and their transport favorably affected. With recent progress in semiconductor growth and processing technologies low dimensionality has become practically realizable, this makes the study of contact properties to these systems increasingly important. In this work we study the contact between a low- dimensional semiconductor structure and a three- dimensional metal and the application of such a contact in photodetection. We theoretically derive the thermionic emission current for Schottky contact to two-dimensional and one-dimensional structures. The derivation underscores the discrete nature of low-dimensional structures and shows that the thermionic emission current is reduced by a factor exponentially proportional to the first quantized energy level. We also propose and formulate, for the first time, a physical phenomenon in two-dimensional structures created by modulation doping of a heterojunction, which is the effect of the cloud of electrons in the small bandgap material on the thermionic emission current. We have named this the electron- electron cloud effect; we show that this interaction increases the effective Schottky barrier height in a fashion counter to the image force lowering mechanism. In order to realize Schottky contact to low-dimensional structures, we have fabricated a novel Heterojunction Metal-Semiconductor-Metal (HMSM) photodetector. Experimental characterization and the general trends of the behavior of the HMSM devices are presented

  18. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  19. Large area, low capacitance, GaAs nanowire photodetector with a transparent Schottky collecting junction

    Energy Technology Data Exchange (ETDEWEB)

    Seyedi, M. A., E-mail: seyedi@usc.edu; Yao, M.; O' Brien, J.; Dapkus, P. D. [Center for Energy Nanoscience, University of Southern California, Los Angeles, California 90089 (United States); Wang, S. Y. [Center for Energy Nanoscience, University of Southern California, Los Angeles, California 90089 (United States); Nanostructured Energy Conversion Technology and Research (NECTAR), Advanced Studies Laboratories, University of California, Santa Cruz, California 95064, USA and NASA Ames Research Center, Moffett Field, California 94035 (United States)

    2013-12-16

    We present experimental results on a GaAs/Indium-Tin-Oxide Schottky-like heterojunction photodetector based on a nanowire device geometry. By distributing the active detecting area over an array of nanowires, it is possible to achieve large area detection with low capacitance. Devices with bare GaAs and passivated AlGaAs/GaAs nanowires are fabricated to compare the responsivity with and without surface passivation. We are able to achieve responsivity of >0.5A/W and Signal-Noise-Ratio in excess of 7 dB for 2 V applied reverse bias with passivated nanowire devices. Capacitance-voltage measurement yields <5 nF/cm{sup 2}, which shows a strong possibility for high-speed applications with a broad area device.

  20. Carbon nanotube and CdSe nanobelt Schottky junction solar cells.

    Science.gov (United States)

    Zhang, Luhui; Jia, Yi; Wang, Shanshan; Li, Zhen; Ji, Chunyan; Wei, Jinquan; Zhu, Hongwei; Wang, Kunlin; Wu, Dehai; Shi, Enzheng; Fang, Ying; Cao, Anyuan

    2010-09-08

    Developing nanostructure junctions is a general and effective way for making photovoltaics. We report Schottky junction solar cells by coating carbon nanotube films on individual CdSe nanobelts with open-circuit voltages of 0.5 to 0.6 V and modest power-conversion efficiencies (0.45-0.72%) under AM 1.5G, 100 mW/cm(2) light condition. In our planar device structure, the CdSe nanobelt serves as a flat substrate to sustain a network of nanotubes, while the nanotube film forms Shottky junction with the underlying nanobelt at their interface and also makes a transparent electrode for the device. The nanotube-on-nanobelt solar cells can work either in front (nanotube side) or back (nanobelt side) illumination with stable performance in air. Our results demonstrate a promising way to develop large-area solar cells based on thin films of carbon nanotubes and semiconducting nanostructures.

  1. Untersuchung eines breitbandigen Koaxial-Hohlleiterübergangs für einen Schottky-Strahldiagnosedetektor

    CERN Document Server

    Ehret, M; Wendt, M

    In der vorliegenden Arbeit wurde ein Koaxial-Hohlleiterübergang im Mikrowellenbereich (4.8 GHz) untersucht und verbessert. Diese Kopplung ist eine der Schlüsselstellen des sogenannten „Schottky-Detektors“. Dieser Detektor befindet sich innerhalb des Teilchenbeschleunigers des Large Hadron Colliders am CERN. Während der Arbeit wurden verschiedene Untersuchungen am Detektor durchgeführt und anhand der ermittelten Ergebnisse eine veränderte Kopplerstruktur entwickelt. Diese Struktur wurde zuerst anhand von verschiedenen Modellen in einer elektromagnetischen Feldsimulation überprüft und mit Hilfe verschiedener Algorithmen verifiziert. Im nächsten Schritt wurde ein Testaufbau entwickelt, mit dem eine Überprüfung und eine abschließende Betrachtung der Ergebnisse möglich war. Es konnte gezeigt werden, dass mit der neu entwickelten Struktur die Kopplereigenschaften wesentlich verbessert und die Zielvorgaben sogar deutlich übertroffen wurden.

  2. Effect of cooling on the efficiency of Schottky varactor frequency multipliers at millimeter waves

    Science.gov (United States)

    Louhi, Jyrki; Raiesanen, Antti; Erickson, Neal

    1992-01-01

    The efficiency of the Schottky diode multiplier can be increased by cooling the diode to 77 K. The main reason for better efficiency is the increased mobility of the free carriers. Because of that the series resistance decreases and a few dB higher efficiency can be expected at low input power levels. At high output frequencies and at high power levels, the current saturation decreases the efficiency of the multiplication. When the diode is cooled the maximum current of the diode increases and much more output power can be expected. There are also slight changes in the I-V characteristic and in the diode junction capacitance, but they have a negligible effect on the efficiency of the multiplier.

  3. Upgrade of the LHC Schottky Monitor, Operational Experience and First Results

    CERN Document Server

    Betz, Michael; Lefèvre, Thibaut; Wendt, Manfred

    2016-01-01

    The LHC Schottky system allows the measurement of beam parameters such as tune and chromaticity in an entirely non-invasive way by extracting information from the statistical fluctuations in the incoherent motion of particles. The system was commissioned in 2011 and provided satisfactory beam-parameter measurements during LHC run 1 for lead-ions. However, for protons its usability was substantially limited due to strong interfering signals originating from the coherent motion of the particle bunch. The system has recently been upgraded with optimized travelling-wave pick-ups and an improved 4.8~GHz microwave signal path, with the front-end and the triple down-mixing chain optimized to reduce coherent signals. Design and operational aspects for the complete system are shown and the results from measurements with LHC beams in Run II are presented and discussed.

  4. Hard X-ray detection with a gallium phosphide Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Owens, Alan [Science Payload and Advanced Concepts Office, ESA/ESTEC, Postbus 299, 2200AG Noordwijk (Netherlands)], E-mail: aowens@rssd.esa.int; Andersson, S.; Hartog, R. den; Quarati, F. [Science Payload and Advanced Concepts Office, ESA/ESTEC, Postbus 299, 2200AG Noordwijk (Netherlands); Webb, A.; Welter, E. [HASYLAB at DESY, Notkestrasse 85, D-22607 Hamburg (Germany)

    2007-11-01

    We report on the detection of hard X-rays using a GaP Schottky diode at the HASYLAB synchrotron radiation research facility. Exposure to alpha particles from an {sup 214}Am source showed that the device was spectroscopic at room temperature with a FWHM energy resolution of 3.5% at 5.5 MeV. It was also found to be responsive to X-rays in the range 11-100 keV. Although individual energies are not spectrally resolved there is a proportionality of response to increasing X-ray energy. A two-dimensional scan of the sensitive area using a 30x30 {mu}m{sup 2} 30 keV pencil beam showed the spatial response of the detector to be uniform at the few percent level, consistent with statistics.

  5. Review and test of methods for determination of the Schottky diode parameters

    Science.gov (United States)

    Olikh, O. Ya.

    2015-07-01

    This paper deals with the extraction of the Schottky diode parameters from a current-voltage characteristic. 10 analytical methods, 2 numerical methods, and 4 evolutionary algorithms of the series resistance, barrier height, and ideality factor determination are reviewed. The accuracy of the methods is quantified using a wide range of both ideal and noisy synthetic data. In addition, the influencing factors of the parameters extraction accuracy are estimated. The adaptive procedure, which improves the precision of analytical Gromov's method, is suggested. The use of Lambert W function has been shown to reduce the error of parameter extraction by numerical method. Finally, all methods are applied to experimental data. The most reliable and preferred methods are chosen.

  6. Photovoltaic characterization of graphene/silicon Schottky junctions from local and macroscopic perspectives

    Science.gov (United States)

    Hájková, Zdeňka; Ledinský, Martin; Vetushka, Aliaksei; Stuchlík, Jiří; Müller, Martin; Fejfar, Antonín; Bouša, Milan; Kalbáč, Martin; Frank, Otakar

    2017-05-01

    We present Schottky junction solar cell composed of graphene transferred onto hydrogenated amorphous and microcrystalline silicon, a low-cost alternative to well-explored crystalline silicon. We demonstrated sample with open-circuit voltage of 445 mV, a remarkable value for undoped graphene-based solar cell. Photovoltaic characteristics of this sample remained stable over 11 months and could be further improved by doping. The graphene/silicon junctions were characterized by current-voltage curves obtained locally by conductive atomic force microscopy (C-AFM) and macroscopically by standard solar simulator. Very good correlation between both independent measurements proved C-AFM as highly useful tool for photovoltaic characterization on nano- and micrometer scale.

  7. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission

    Directory of Open Access Journals (Sweden)

    Uriel Levy

    2017-02-01

    Full Text Available Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene ( ∼ π α = 2.3 % . Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.

  8. Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Francesco Dell’Olio

    2016-10-01

    Full Text Available A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and to act as anti-reflection coating. A silicon dioxide ultrathin layer interposed between the n-Si and the graphene increases the open-circuit voltage of the cell. The solar cell optimization has been achieved through a mathematical model, which has been validated by using experimental data reported in literature. The new flexible photovoltaic device can be integrated in a wide range of microsystems powered by solar energy.

  9. An X-band Schottky diode mixer in SiGe technology with tunable Marchand balun

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld M.

    2017-01-01

    In this paper, we propose a double balanced mixer with a tunable Marchand balun. The circuit is designed in a SiGe BiCMOS process using Schottky diodes. The tunability of the Marchand balun is used to enhance critical parameters for double balanced mixers. The local oscillator-IF isolation can...... be changed from –51 to –60.5 dB by tuning. Similarly, the IIP2 can be improved from 41.3 to 48.7 dBm at 11 GHz, while the input referred 1-dB compression point is kept constant at 8 dBm. The tuning have no influence on conversion loss, which remains at 8.8 dB at a LO power level of 11 dBm at the center...

  10. Ultraviolet Schottky detector based on epitaxial ZnO thin film

    Science.gov (United States)

    Jiang, Dayong; Zhang, Jiying; Lu, Youming; Liu, Kewei; Zhao, Dongxu; Zhang, Zhenzhong; Shen, Dezhen; Fan, Xiwu

    2008-05-01

    In this paper, we have prepared Schottky type ZnO metal-semiconductor-metal (MSM) ultraviolet (UV) detector. The structural, electrical, and optical measurements were carried out. The detector exhibited a peak responsivity of 0.337 A/W at 360 nm and the dark current was about 1 nA under 3 V bias. An ultraviolet-visible rejection ratio was obtained about more than four orders of magnitude from the fabricated detector. The 10-90% rise and fall time were 20 ns and 250 ns, respectively. We proposed that the detector had shown a gain, which was attributed to the trapping of hole carriers at the semiconductor-metal interface.

  11. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhong L [Marietta, GA; Xu, Sheng [Atlanta, GA

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  12. Controlled Defects of Fluorine-incorporated ZnO Nanorods for Photovoltaic Enhancement.

    Science.gov (United States)

    Lee, Hock Beng; Ginting, Riski Titian; Tan, Sin Tee; Tan, Chun Hui; Alshanableh, Abdelelah; Oleiwi, Hind Fadhil; Yap, Chi Chin; Jumali, Mohd Hafizuddin Hj; Yahaya, Muhammad

    2016-09-02

    Anion passivation effect on metal-oxide nano-architecture offers a highly controllable platform for improving charge selectivity and extraction, with direct relevance to their implementation in hybrid solar cells. In current work, we demonstrated the incorporation of fluorine (F) as an anion dopant to address the defect-rich nature of ZnO nanorods (ZNR) and improve the feasibility of its role as electron acceptor. The detailed morphology evolution and defect engineering on ZNR were studied as a function of F-doping concentration (x). Specifically, the rod-shaped arrays of ZnO were transformed into taper-shaped arrays at high x. A hypsochromic shift was observed in optical energy band gap due to the Burstein-Moss effect. A substantial suppression on intrinsic defects in ZnO lattice directly epitomized the novel role of fluorine as an oxygen defect quencher. The results show that 10-FZNR/P3HT device exhibited two-fold higher power conversion efficiency than the pristine ZNR/P3HT device, primarily due to the reduced Schottky defects and charge transfer barrier. Essentially, the reported findings yielded insights on the functions of fluorine on (i) surface -OH passivation, (ii) oxygen vacancies (Vo) occupation and (iii) lattice oxygen substitution, thereby enhancing the photo-physical processes, carrier mobility and concentration of FZNR based device.

  13. Electrical characterization of defects introduced in n-Ge during electron beam deposition or exposure

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, S. M. M.; Auret, F. D.; Janse van Rensburg, P. J.; Nel, J. M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield, 0028 (South Africa)

    2013-11-07

    Schottky barrier diodes prepared by electron beam deposition (EBD) on Sb-doped n-type Ge were characterized using deep level transient spectroscopy (DLTS). Pt EBD diodes manufactured with forming gas in the chamber had two defects, E{sub 0.28} and E{sub 0.31}, which were not previously observed after EBD. By shielding the samples mechanically during EBD, superior diodes were produced with no measureable deep levels, establishing that energetic ions created in the electron beam path were responsible for the majority of defects observed in the unshielded sample. Ge samples that were first exposed to the conditions of EBD, without metal deposition (called electron beam exposure herein), introduced a number of new defects not seen after EBD with only the E-center being common to both processes. Substantial differences were noted when these DLTS spectra were compared to those obtained using diodes irradiated by MeV electrons or alpha particles indicating that very different defect creation mechanisms are at play when too little energy is available to form Frenkel pairs. These observations suggest that when EBD ions and energetic particles collide with the sample surface, inducing intrinsic non-localised lattice excitations, they modify defects deeper in the semiconductor thus rendering them observable.

  14. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)]. E-mail: ars.iitkgp@gmail.com; Chattopadhyay, S. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India); School of Electrical, Electronics and Computer Engineering, University of Newcastle, Newcastle upon Tyne (United Kingdom); Bose, C. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700032 (India); Maiti, C.K. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)

    2005-12-05

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region.

  15. A high performance charge plasma PN-Schottky collector transistor on silicon-on-insulator

    Science.gov (United States)

    Loan, Sajad A.; Bashir, Faisal; Rafat, M.; Alamoud, Abdul Rehman M.; Abbasi, Shuja A.

    2014-09-01

    In this paper, we propose a new high performance PN-Schottky collector (PN-SC) lateral bipolar junction transistor (BJT) on silicon-on-insulator (SOI). The proposed device addresses the problem of poor speed of conventional lateral PNP-BJT device by using a Schottky collector. Further, it does not use the conventional ways of ion implantation/diffusion to realize n and p type doped region. However, it uses metal electrodes of different work functions to create n and p type charge plasma in an undoped silicon film. The simulation study of the proposed lateral PN-SC bipolar charge plasma transistor on SOI (PN-SC-BCPT) device has shown a significant improvement in current gain (β), cutoff frequency (f T) and switching performance in comparison to conventional PNP-BJT and PNP-bipolar charge plasma transistor (PNP-BCPT) devices. A significantly high β is obtained in the proposed PN-SC-BCPT (˜2100) in comparison to PNP-BCPT (˜1450) and the conventional BJT (˜9) devices, respectively. It has been observed that there is 89.56% and 153.5% increase in f T for the proposed PN-SC-BCPT device (2.18 GHz) in comparison to conventional PNP-BJT (1.15 GHz) and PNP-BCPT (0.86 GHz) devices, respectively. Further, reductions of 24.6% and 15.4% in switching ON-delay and 66% and 30.76% in switching OFF-delay have been achieved in the proposed device based inverters in comparison to PNP-BCPT and the conventional BJT devices based inverters, respectively. Furthermore, the proposed device does not face doping related issues and the requirement of high temperature processing is absent.

  16. Electrical and noise properties of proton irradiated 4H-SiC Schottky diodes

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2018-01-01

    The current voltage characteristics and the low-frequency noise in high voltage 4H-SiC junction barrier Schottky diodes irradiated with high energy (15 MeV) protons were studied at different temperatures and irradiation doses Φ from 3 × 1012 cm-2 to 1 × 1014 cm-2. Irradiation led to the increase of the base resistance and the appearance of slow relaxation processes at small, V ≤ 0.2 V, and at rather high, V ≥ 2 V, forward voltages. The characteristic times of these relaxation processes ranged from ˜1 μs to 103 s. The exponential part of the current-voltage characteristic was only weakly affected by irradiation. The temperature dependence of the base resistance changed exponentially with temperature with activation energy Ea ˜ 0.6 eV, indicating that the Z1/2 level plays a dominant role in this process. The temperature increase also led to the increase of the ideality factor from 1.05 at 25 °C to 1.1 at 172 °C. At elevated temperatures and high forward voltages V > 2-4 V, the current voltage characteristics tend to be super-linear. It is concluded that at high voltages, the space charge limited current of majority carriers (electrons) and hole injection from the p-n regions play an important role in the formation of the current voltage characteristic. The frequency dependences of noise spectral density S of proton irradiated Schottky diodes have the unusual form of S ˜ 1/f 0.5.

  17. Optimal indium-gallium-nitride Schottky-barrier thin-film solar cells

    Science.gov (United States)

    Anderson, Tom H.; Lakhtakia, Akhlesh; Monk, Peter B.

    2017-08-01

    A two-dimensional model was developed to simulate the optoelectronic characteristics of indium-gallium-nitride (InξGa1-ξN), thin-film, Schottky-barrier-junction solar cells. The solar cell comprises a window designed to reduce the reflection of incident light, Schottky-barrier and ohmic front electrodes, an n-doped InξGa1-ξN wafer, and a metallic periodically corrugated back-reflector (PCBR). The ratio of indium to gallium in the wafer varies periodically in the thickness direction, and thus the optical and electrical constitutive properties of the alloy also vary periodically. This material nonhomogeneity could be physically achieved by varying the fractional composition of indium and gallium during deposition. Empirical models for indium nitride and gallium nitride, combined with Vegard's law, were used to calculate the optical and electrical constitutive properties of the alloy. The periodic nonhomogeneity aids charge separation and, in conjunction with the PCBR, enables incident light to couple to multiple surface plasmon-polariton waves and waveguide modes. The profile of the resulting chargecarrier-generation rate when the solar cell is illuminated by the AM1.5G spectrum was calculated using the rigorous coupled-wave approach. The steady-state drift-diffusion equations were solved using COMSOL, which employs finite-element methods, to calculate the current density as a function of the voltage. Mid-band Shockley- Read-Hall, Auger, and radiative recombination rates were taken to be the dominant methods of recombination. The model was used to study the effects of the solar-cell geometry and the shape of the periodic material nonhomogeneity on efficiency. The solar-cell efficiency was optimized using the differential evolution algorithm.

  18. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation)

    Science.gov (United States)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun

    2017-02-01

    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  19. Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions

    Science.gov (United States)

    Gao, Zhiwei; Jin, Weifeng; Zhou, Yu; Dai, Yu; Yu, Bin; Liu, Chu; Xu, Wanjin; Li, Yanping; Peng, Hailin; Liu, Zhongfan; Dai, Lun

    2013-05-01

    Flexible and transparent electronic and optoelectronic devices have attracted more and more research interest due to their potential applications in developing portable, wearable, low-cost, and implantable devices. We have fabricated and studied high-performance flexible and transparent CdSe nanobelt (NB)/graphene Schottky junction self-powered photovoltaic detectors for the first time. Under 633 nm light illumination, typical photosensitivity and responsivity of the devices are about 1.2 × 105 and 8.7 A W-1, respectively. Under 3500 Hz switching frequency, the response and recovery times of them are about 70 and 137 μs, respectively, which, to the best of our knowledge, are the best reported values for nanomaterial based Schottky junction photodetectors up to date. The detailed properties of the photodetectors, such as the influences of incident light wavelength and light intensity on the external quantum efficiency and speed, are also investigated. Detailed discussions are made in order to understand the observed phenomena. Our work demonstrates that the self-powered flexible and transparent CdSe NB/graphene Schottky junction photovoltaic detectors have a bright application prospect.Flexible and transparent electronic and optoelectronic devices have attracted more and more research interest due to their potential applications in developing portable, wearable, low-cost, and implantable devices. We have fabricated and studied high-performance flexible and transparent CdSe nanobelt (NB)/graphene Schottky junction self-powered photovoltaic detectors for the first time. Under 633 nm light illumination, typical photosensitivity and responsivity of the devices are about 1.2 × 105 and 8.7 A W-1, respectively. Under 3500 Hz switching frequency, the response and recovery times of them are about 70 and 137 μs, respectively, which, to the best of our knowledge, are the best reported values for nanomaterial based Schottky junction photodetectors up to date. The detailed

  20. Atrioventricular Canal Defect

    Science.gov (United States)

    ... tract infections. Atrioventricular canal defect can cause recurrent bouts of lung infections. Heart failure. Untreated, atrioventricular canal ... Leaky heart valves Narrowing of the heart valves Abnormal heart rhythm Breathing difficulties associated with lung damage ...

  1. Ventricular Septal Defect (VSD)

    Science.gov (United States)

    ... before getting pregnant. If you have a family history of heart defects or other genetic disorders, consider talking with a genetic counselor before getting pregnant. By Mayo Clinic Staff . Mayo Clinic Footer Legal Conditions and Terms ...

  2. Repairing Nanoparticle Surface Defects

    NARCIS (Netherlands)

    Marino, Emanuele; Kodger, Thomas E.; Crisp, R.W.; Timmerman, Dolf; MacArthur, Katherine E.; Heggen, Marc; Schall, Peter

    2017-01-01

    Solar devices based on semiconductor nanoparticles require the use of conductive ligands; however, replacing the native, insulating ligands with conductive metal chalcogenide complexes introduces structural defects within the crystalline nanostructure that act as traps for charge carriers. We

  3. Neural tube defects

    Directory of Open Access Journals (Sweden)

    M.E. Marshall

    1981-09-01

    Full Text Available Neural tube defects refer to any defect in the morphogenesis of the neural tube, the most common types being spina bifida and anencephaly. Spina bifida has been recognised in skeletons found in north-eastern Morocco and estimated to have an age of almost 12 000 years. It was also known to the ancient Greek and Arabian physicians who thought that the bony defect was due to the tumour. The term spina bifida was first used by Professor Nicolai Tulp of Amsterdam in 1652. Many other terms have been used to describe this defect, but spina bifida remains the most useful general term, as it describes the separation of the vertebral elements in the midline.

  4. Endocardial cushion defect

    Science.gov (United States)

    ... Philadelphia, PA: Elsevier; 2016:chap 426. Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK. Atrioventricular septal defect. In: Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK, eds. Kirklin/Barratt- ...

  5. Defects in materials

    Energy Technology Data Exchange (ETDEWEB)

    Bristowe, P.D. (MIT, Cambridge, MA (US)); Epperson, J.E.; Griffith, J.E. (Argonne National Lab., Argonne, IL (US)); Griffith, J.E. (AT and T Bell Lab., Murray Hill, NJ (US)); Liliental-Weber, Z. (Lawrence Berkeley Lab., Berkeley, CA (US))

    1991-01-01

    This volume represents the proceedings of the Fourth International Symposium held by MRS on the Characterization of Defects in Materials. Like its predecessors, the symposium was designed to be broad in scope and cover the structure and properties of all types of defects in all classes of materials. To a large extent this goal was achieved since papers were presented describing investigations on point, line, and planar defects (including surfaces) in metals, alloys, polymers, ceramics, amorphous materials, semiconductors, superconductors, composites and intercalated fibers. The wide variety of systems studied clearly reflects the importance of defects in materials science. While experimental investigations still dominated the symposium, a significant fraction of contributions focused on theory and simulation. This book contains 142 of the 206 papers presented in both oral and poster sessions representing contributions from fourteen different countries.

  6. Nondestructive imaging of buried interfaces in SiC and GaN Schottky contacts using scanning internal photoemission microscopy

    Science.gov (United States)

    Shiojima, Kenji; Yamamoto, Shingo; Kihara, Yuhei; Mishima, Tomoyoshi

    2015-04-01

    We demonstrate a nondestructive characterization of buried interfaces in metal/wide-bandgap semiconductor contacts by using scanning internal photoemission microscopy. For Ni/n-SiC contacts annealed at temperatures above 400 °C, a reduction of the Schottky barrier height owing to partial interfacial reaction was visualized. In Au/Ni/n-GaN contacts, upon annealing at 400 °C, thermal degradation from a scratch on the dot was observed. Forward current-voltage curves were reproduced by lowering the Schottky barrier height and the area of the reacted regions by using this method. The present imaging method exploits its nondestructive highly sensitive extinction for characterizing the contacts formed on wide-gap materials.

  7. Single-Event Effect Testing of the Cree C4D40120D Commercial 1200V Silicon Carbide Schottky Diode

    Science.gov (United States)

    Lauenstein, J.-M.; Casey, M. C.; Wilcox, E. P.; Kim, Hak; Topper, A. D.

    2014-01-01

    This study was undertaken to determine the single event effect (SEE) susceptibility of the commercial silicon carbide 1200V Schottky diode manufactured by Cree, Inc. Heavy-ion testing was conducted at the Texas A&M University Cyclotron Single Event Effects Test Facility (TAMU). Its purpose was to evaluate this device as a candidate for use in the Solar-Electric Propulsion flight project.

  8. High detectivity visible-blind SiF4 grown epitaxial graphene/SiC Schottky contact bipolar phototransistor

    Science.gov (United States)

    Chava, Venkata S. N.; Barker, Bobby G.; Balachandran, Anusha; Khan, Asif; Simin, G.; Greytak, Andrew B.; Chandrashekhar, M. V. S.

    2017-12-01

    We report the performance of a bipolar epitaxial graphene (EG)/p-SiC/n+-SiC UV phototransistor fabricated with a Schottky (EG)/SiC junction grown using a SiF4 precursor. The phototransistor showed responsivity as high as 25 A/W at 250 nm in the Schottky emitter (SE) mode. The Schottky collector (SC) mode showed a responsivity of 17 A/W at 270 nm with a visible rejection (270 nm:400 nm)>103. The fastest response was seen in the SC-mode, with 10 ms turn-on and 47 ms turn-off, with a noise equivalent power of 2.3 fW at 20 Hz and a specific detectivity of 4.4 × 1013 Jones. The high responsivity is due to internal gain from bipolar action. We observe additional avalanche gain from the device periphery in the SC-mode by scanning photocurrent microscopy but not in the SE-mode. This high-performance visible-blind photodetector is attractive for advanced applications such as flame detection.

  9. CdSe Nanowire-Based Flexible Devices: Schottky Diodes, Metal-Semiconductor Field-Effect Transistors, and Inverters.

    Science.gov (United States)

    Jin, Weifeng; Zhang, Kun; Gao, Zhiwei; Li, Yanping; Yao, Li; Wang, Yilun; Dai, Lun

    2015-06-24

    Novel CdSe nanowire (NW)-based flexible devices, including Schottky diodes, metal-semiconductor field-effect transistors (MESFETs), and inverters, have been fabricated and investigated. The turn-on voltage of a typical Schottky diode is about 0.7 V, and the rectification ratio is larger than 1 × 10(7). The threshold voltage, on/off current ratio, subthreshold swing, and peak transconductance of a typical MESFET are about -0.3 V, 4 × 10(5), 78 mV/dec, and 2.7 μS, respectively. The inverter, constructed with two MESFETs, exhibits clear inverting behavior with the gain to be about 28, 34, and 38, at the supply voltages (V(DD)) of 3, 5, and 7 V, respectively. The inverter also shows good dynamic behavior. The rising and falling times of the output signals are about 0.18 and 0.09 ms, respectively, under 1000 Hz square wave signals input. The performances of the flexible devices are stable and reliable under different bending conditions. Our work demonstrates these flexible NW-based Schottky diodes, MESFETs, and inverters are promising candidate components for future portable transparent nanoelectronic devices.

  10. Improvement of diode parameters in Al/n-Si Schottky diodes with Coronene interlayer using variation of the illumination intensity

    Science.gov (United States)

    Pakma, Osman; Çavdar, Şükrü; Koralay, Haluk; Tuğluoğlu, Nihat; Faruk Yüksel, Ömer

    2017-12-01

    In present work, Coronene thin films on Si wafer have been deposited by the spin coating method. It has been ultimately produced Al/Coronene/n-Si/In Schottky diode. Current-voltage (I-V) measurements have been used to determine the effect of illumination intensity in the Schottky diodes. The barrier height (ΦB) values increased as ideality factor (n) values decreased with a increase in illumination intensity. The ΦB values have been found to be 0.697 and 0.755 eV at dark and 100 mW/cm2, respectively. The n values have been found to be 2.81 and 2.07 at dark and 100 mW/cm2, respectively. Additionally, the series resistance (Rs) values from modified Norde method and interface state density (Nss) values using current-voltage measurements have been determined. The values of Rs have been found to be 1924 and 5094 Ω at dark and 100 mW/cm2, respectively. The values of Nss have been found to be 4.76 × 1012 and 3.15 × 1012 eV-1 cm-2 at dark and 100 mW/cm2, respectively. The diode parameters are improved by applying the variation of illumination intensity to the formed Schottky diodes.

  11. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    Science.gov (United States)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  12. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  13. Fabrication and characterization of magnetically tunable metal-semiconductor schottky diode using barium hexaferrite thin film on gold

    Science.gov (United States)

    Kaur, Jotinder; Sharma, Vinay; Sharma, Vipul; Veerakumar, V.; Kuanr, Bijoy K.

    2016-05-01

    Barium Hexaferrite (BaM) is an extensively studied magnetic material due to its potential device application. In this paper, we study Schottky junction diodes fabricated using gold and BaM and demonstrate the function of a spintronic device. Gold (50 nm)/silicon substrate was used to grow the BaM thin films (100-150 nm) using pulsed laser deposition. I-V characteristics were measured on the Au/BaM structure sweeping the voltage from ±5 volts. The forward and reverse bias current-voltage curves show diode like rectifying characteristics. The threshold voltage decreases while the output current increases with increase in the applied external magnetic field showing that the I-V characteristics of the BaM based Schottky junction diodes can be tuned by external magnetic field. It is also demonstrated that, the fabricated Schottky diode can be used as a half-wave rectifier, which could operate at high frequencies in the range of 1 MHz compared to the regular p-n junction diodes, which rectify below 10 kHz. In addition, it is found that above 1 MHz, Au/BaM diode can work as a rectifier as well as a capacitor filter, making the average (dc) voltage much larger.

  14. Structural, morphological, optical and electrical properties of Schottky diodes based on CBD deposited ZnO:Cu nanorods

    Science.gov (United States)

    Mwankemwa, Benard S.; Legodi, Matshisa J.; Mlambo, Mbuso; Nel, Jackie M.; Diale, Mmantsae

    2017-07-01

    Undoped and copper doped zinc oxide (ZnO) nanorods have been synthesized by a simple chemical bath deposition (CBD) method at a temperature of 90 °C. Structural, morphological, optical and electrical properties of the synthesized ZnO nanorods were found to be dependent on the Cu doping percentage. X-ray diffraction (XRD) patterns revealed strong diffraction peaks of hexagonal wurtzite of ZnO, and no impurity phases from metallic zinc or copper. Scanning electron microscopy (SEM) images showed changes in diameter and shape of nanorods, where by those doped with 2 at.% and 3 at.% aggregated and became compact. Selected area electron diffraction (SAED) patterns indicates high quality, single crystalline wurtzite structure ZnO and intensities of bright spots varied with copper doping concentration. UV-visible absorption peaks of ZnO red shifted with increasing copper doping concentration. Raman studies demonstrated among others, strong and sharp E2 (low) and E2 (high) optical phonon peaks confirming crystal structure of ZnO. Current-voltage measurements based on the gold/ZnO nanorods/ITO showed good rectifying behavior of the Schottky diode. The predicted Schottky barrier height of 0.60 eV was obtained which is not far from the theoretical Schottky-Mott value of 0.80 eV.

  15. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors.

    Science.gov (United States)

    Nie, Biao; Hu, Ji-Gang; Luo, Lin-Bao; Xie, Chao; Zeng, Long-Hui; Lv, Peng; Li, Fang-Ze; Jie, Jian-Sheng; Feng, Mei; Wu, Chun-Yan; Yu, Yong-Qiang; Yu, Shu-Hong

    2013-09-09

    A new Schottky junction ultraviolet photodetector (UVPD) is fabricated by coating a free-standing ZnO nanorod (ZnONR) array with a layer of transparent monolayer graphene (MLG) film. The single-crystalline [0001]-oriented ZnONR array has a length of about 8-11 μm, and a diameter of 100∼600 nm. Finite element method (FEM) simulation results show that this novel nanostructure array/MLG heterojunction can trap UV photons effectively within the ZnONRs. By studying the I-V characteristics in the temperature range of 80-300 K, the barrier heights of the MLG film/ZnONR array Schottky barrier are estimated at different temperatures. Interestingly, the heterojunction diode with typical rectifying characteristics exhibits a high sensitivity to UV light illumination and a quick response of millisecond rise time/fall times with excellent reproducibility, whereas it is weakly sensitive to visible light irradiation. It is also observed that this UV photodetector (PD) is capable of monitoring a fast switching light with a frequency as high as 2250 Hz. The generality of the above results suggest that this MLG film/ZnONR array Schottky junction UVPD will have potential application in future optoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure

    Energy Technology Data Exchange (ETDEWEB)

    Padma, R.; Balaram, N.; Reddy, I. Neelakanta; Reddy, V. Rajagopal, E-mail: reddy_vrg@rediffmail.com

    2016-07-01

    The Au/Fe-doped ZnO/n-InP metal/interlayer/semiconductor (MIS) Schottky structure is fabricated with Fe-doped ZnO nanostructure (NS) as an interlayer. The field emission scanning electron microscopy and atomic force microscopy results demonstrated that the surface morphology of the Fe−ZnO NS on n-InP is fairly smooth. The x-ray diffraction results reveal that the average grain size of the Fe−ZnO film is 12.35 nm. The electrical properties of the Au/n-InP metal-semiconductor (MS) and Au/Fe−ZnO NS/n-InP MIS Schottky structures are investigated by current-voltage and capacitance-voltage measurements at room temperature. The Au/Fe−ZnO NS/n-InP MIS Schottky structure has good rectifying ratio with low-leakage current compared to the Au/n-InP MS structure. The barrier height obtained for the MIS structure is higher than those of MS Schottky structure because of the modification of the effective barrier height by the Fe−ZnO NS interlayer. Further, the barrier height, ideality factor and series resistance are determined for the MS and MIS Schottky structures using Norde and Cheung's functions and compared to each other. The estimated interface state density of MIS Schottky structure is lower than that of MS Schottky structure. Experimental results revealed that the Poole-Frenkel emission is the dominant conduction mechanism in the lower bias region whereas Schottky emission is the dominant in the higher bias region for both the Au/n-InP MS and Au/Fe−ZnO NS/n-InP MIS Schottky structures. - Highlights: • Barrier height of Au/n-InP Schottky diode was modified by Fe−ZnO nanostructure interlayer. • MIS structure has a good rectification ratio compared to the MS structure. • The interface state density of MIS structure is lower than that of MS structure. • Poole-Frenkel mechanism is found to dominate in both MS and MIS structure.

  17. Norwegian Pitched Roof Defects

    Directory of Open Access Journals (Sweden)

    Lars Gullbrekken

    2016-06-01

    Full Text Available The building constructions investigated in this work are pitched wooden roofs with exterior vertical drainpipes and wooden load-bearing system. The aim of this research is to further investigate the building defects of pitched wooden roofs and obtain an overview of typical roof defects. The work involves an analysis of the building defect archive from the research institute SINTEF Building and Infrastructure. The findings from the SINTEF archive show that moisture is a dominant exposure factor, especially in roof constructions. In pitched wooden roofs, more than half of the defects are caused by deficiencies in design, materials, or workmanship, where these deficiencies allow moisture from precipitation or indoor moisture into the structure. Hence, it is important to increase the focus on robust and durable solutions to avoid defects both from exterior and interior moisture sources in pitched wooden roofs. Proper design of interior ventilation and vapour retarders seem to be the main ways to control entry from interior moisture sources into attic and roof spaces.

  18. Ventricular septal defect.

    Science.gov (United States)

    Giboney, G S

    1983-05-01

    This article has discussed the ventricular septal defect, its occurrence, physiology, and therapy, and nursing concerns. The VSD, a communication allowing left-to-right shunting of blood at the ventricular level, is the most common congenital heart defect. Surgical correction is often required for large defects before the age of 12 months, and primary correction is now considered standard procedure. Small defects usually close spontaneously, and moderate defects are closely monitored for signs indicating the need for surgical intervention. Nursing care begins with child and family assessment and evaluation of the strengths and weaknesses of the family system. The child's developmental level is a major consideration in formulating interventions for his benefit. Play therapy is a useful vehicle in relating to the child in a nonthreatening manner preoperatively and in allowing the child to work through his hospitalization postoperatively. Maintaining the physical integrity of a child just out of the operating room is a challenge. Continuing support of the family system is a significant aspect of nursing's responsibility toward child and family. Discharge planning and intervention strive to prepare the family for the transition from hospital to home both physically and emotionally.

  19. Investigation of Defects Origin in p-Type Si for Solar Applications

    Science.gov (United States)

    Gwóźdź, Katarzyna; Placzek-Popko, Ewa; Mikosza, Maciej; Zielony, Eunika; Pietruszka, Rafal; Kopalko, Krzysztof; Godlewski, Marek

    2017-07-01

    In order to improve the efficiency of a solar cell based on silicon, one must find a compromise between its price and crystalline quality. That is precisely why the knowledge of defects present in the material is of primary importance. This paper studies the defects in commercially available cheap Schottky titanium/gold silicon wafers. The electrical properties of the diodes were defined by using current-voltage and capacitance-voltage measurements. Low series resistance and ideality factor are proofs of the good quality of the sample. The concentration of the acceptors is in accordance with the manufacturer's specifications. Deep level transient spectroscopy measurements were used to identify the defects. Three hole traps were found with activation energies equal to 0.093 eV, 0.379 eV, and 0.535 eV. Comparing the values with the available literature, the defects were determined as connected to the presence of iron interstitials in the silicon. The quality of the silicon wafer seems good enough to use it as a substrate for the solar cell heterojunctions.

  20. DEFECTS SIMULATION OF ROLLING STRIP

    OpenAIRE

    Rudolf Mišičko; Tibor Kvačkaj; Martin Vlado; Lucia Gulová; Miloslav Lupták; Jana Bidulská

    2009-01-01

    The defects in the continuous casting slabs can be developed or kept down in principle by rolling technology, especially depend to sort, size and distribution of primary defects, as well as used of rolling parameters. Scope of the article is on observation behavior artificial surface and undersurface defects (scores) without filler (surface defects) and filling by oxides and casting powder (subsurface defects). First phase of hot rolling process have been done by software simulation DEFORM 3D...

  1. Scanning electron microscope automatic defect classification of process induced defects

    Science.gov (United States)

    Wolfe, Scott; McGarvey, Steve

    2017-03-01

    With the integration of high speed Scanning Electron Microscope (SEM) based Automated Defect Redetection (ADR) in both high volume semiconductor manufacturing and Research and Development (R and D), the need for reliable SEM Automated Defect Classification (ADC) has grown tremendously in the past few years. In many high volume manufacturing facilities and R and D operations, defect inspection is performed on EBeam (EB), Bright Field (BF) or Dark Field (DF) defect inspection equipment. A comma separated value (CSV) file is created by both the patterned and non-patterned defect inspection tools. The defect inspection result file contains a list of the inspection anomalies detected during the inspection tools' examination of each structure, or the examination of an entire wafers surface for non-patterned applications. This file is imported into the Defect Review Scanning Electron Microscope (DRSEM). Following the defect inspection result file import, the DRSEM automatically moves the wafer to each defect coordinate and performs ADR. During ADR the DRSEM operates in a reference mode, capturing a SEM image at the exact position of the anomalies coordinates and capturing a SEM image of a reference location in the center of the wafer. A Defect reference image is created based on the Reference image minus the Defect image. The exact coordinates of the defect is calculated based on the calculated defect position and the anomalies stage coordinate calculated when the high magnification SEM defect image is captured. The captured SEM image is processed through either DRSEM ADC binning, exporting to a Yield Analysis System (YAS), or a combination of both. Process Engineers, Yield Analysis Engineers or Failure Analysis Engineers will manually review the captured images to insure that either the YAS defect binning is accurately classifying the defects or that the DRSEM defect binning is accurately classifying the defects. This paper is an exploration of the feasibility of the

  2. Non-invasively improving the Schottky barriers of metal-MoS2 interfaces: effects of atomic vacancies in a BN buffer layer.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Liu, Siyang; Liu, Zhengtang

    2017-08-09

    Using first-principles calculations within density functional theory, vacancies in the BN buffer layer have been predicted to improve the Schottky barrier of the metal-MoS2 interface without deteriorating the intrinsic properties of the MoS2 layer. Here, the effects of concentrations, sizes and types of vacancies on the contact properties of metal/BN-MoS2 sandwich interfaces are comparatively studied. The results show that vacancies in the BN buffer layer not only don't deteriorate the charge scatterings and electronic properties of the MoS2 layer at the metal/BN-MoS2 interface, but also improve the charge density and contact resistance between the metal surface and the BN layer. Although these vacancies have a negligible influence on the Fermi level pinning effect of the metal/BN-MoS2 interface, both N-vacancies and B-vacancies significantly change the position of the Fermi level of the metal/BN-MoS2 interface and then tune the Schottky barriers. Moreover, the Schottky barriers of metal/BN-MoS2 interfaces can decrease at first with the increasing concentrations and sizes of vacancies. When the concentration of vacancies increases to 4%, the Schottky barriers of metal/BN-MoS2 interfaces can reduce to the minimum value. The lowest n-type and p-type Schottky barriers of Au/BN-MoS2 and Pt/BN-MoS2 interfaces can reduce to -0.16 and 0.28 eV, respectively. However, the Schottky barriers are deteriorated when the sizes and concentrations of vacancies continue to increase because vacancies with large sizes and concentrations obviously change the interfacial structures of metal/BN-MoS2 interfaces and disarrange the directions of interface dipoles. The predictions in this work provide a non-invasive method to achieve high performance metal-MoS2 interfaces with low Schottky barriers.

  3. On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37°C: A trial of the point defect model.

    Science.gov (United States)

    Ansari, Ghazaleh; Fattah-Alhosseini, Arash

    2017-06-01

    The effects of sever plastic deformation through multi-pass accumulative roll bonding on the passive and semiconducting behavior of pure titanium is evaluated in Ringer's physiological solution at 37°C in the present paper. Produced results by polarization plots and electrochemical impedance spectroscopy measurements revealed a significant advance in the passive response of the nano-grained sample compared to that of the annealed pure titanium. Also, Mott-Schottky test results of the nano-grained pure titanium represented a lower donor density and reduced flat-band potential in the formed passive film in comparison with the annealed sample. Moreover, based on the Mott-Schottky analysis in conjunction with the point defect model, it was suggested that with increase in formation potential, the calculated donor density of both annealed and nano-grained samples decreases exponentially and the thickness of the passive film linearly increases. These observations were consistent with the point defect model predictions, considering that the point defects within the passive film are metal interstitials, oxygen vacancies, or both. From the viewpoint of passive and semiconducting behavior, nano-grained pure titanium appeared to be more suitable for implant applications in simulate human body environment compared to annealed pure titanium. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. GaN-based Schottky barrier ultraviolet photodetectors with graded doping on patterned sapphire substrates

    Science.gov (United States)

    Mou, Wenjie; Zhao, Linna; Chen, Leilei; Yan, Dawei; Ma, Huarong; Yang, Guofeng; Gu, Xiaofeng

    2017-07-01

    In this paper, we demonstrate high performance GaN-based Schottky-barrier ultraviolet (UV) photodetectors with graded doping prepared on patterned sapphire substrates. The fabricated devices exhibit an extremely low dark current density of ∼1.3 × 10-8 A/cm2 under -5 V bias, a large UV-to-visible light rejection ratio of ∼4.2 × 103, and a peak external quantum efficiency of ∼50.7% at zero bias. Even in the deeper 250-360 nm range, the average external quantum efficiency still remains ∼40%. From the transient response characteristics, the average rising and falling time constants are estimated ∼115 μs and 120 μs, respectively, showing a good electrical and thermal reliability. The specific detectivities D∗, limited by the thermal equilibrium noise and the low-frequency 1/f noise, are derived ∼5.5 × 1013 cm Hz1/2/W (at 0 V) and ∼2.68 × 1010 cm Hz1/2 W-1 (at -5 V), respectively.

  5. Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions

    Science.gov (United States)

    Har-Lavan, Rotem; Yaffe, Omer; Joshi, Pranav; Kazaz, Roy; Cohen, Hagai; Cahen, David

    2012-03-01

    We report near-perfect transfer of the electrical properties of oxide-free Si surface, modified by a molecular monolayer, to the interface of a junction made with that modified Si surface. Such behavior is highly unusual for a covalent, narrow bandgap semiconductor, such as Si. Short, ambient atmosphere, room temperature treatment of oxide-free Si(100) in hydroquinone (HQ)/alkyl alcohol solutions, fully passivates the Si surface, while allowing controlled change of the resulting surface potential. The junctions formed, upon contacting such surfaces with Hg, a metal that does not chemically interact with Si, follow the Schottky-Mott model for metal-semiconductor junctions closer than ever for Si-based junctions. Two examples of such ideal behavior are demonstrated: a) Tuning the molecular surface dipole over 400 mV, with only negligible band bending, by changing the alkyl chain length. Because of the excellent passivation this yields junctions with Hg with barrier heights that follow the change in the Si effective electron affinity nearly ideally. b) HQ/ methanol passivation of Si is accompanied by a large surface dipole, which suffices, as interface dipole, to drive the Si into strong inversion as shown experimentally via its photovoltaic effect. With only ˜0.3 nm molecular interlayer between the metal and the Si, our results proves that it is passivation and prevention of metal-semiconductor interactions that allow ideal metal-semiconductor junction behavior, rather than an insulating transport barrier.

  6. Outstanding gas sensing performance of CuO-CNTs nanocomposite based on asymmetrical schottky junctions

    Science.gov (United States)

    Zhao, Yiming; Ikram, Muhammad; Zhang, Jiawei; Kan, Kan; Wu, Hongyuan; Song, Wanzhen; Li, Li; Shi, Keying

    2018-01-01

    To fabricate a high-performance material for sensor devices at room temperature and further improve the synthetic approach of sensing materials, one dimensional (1D) CuO-CNTs nanocomposites were prepared with CNTs and CuO nanorods (NRs) via a facile reflux method. The 1D composite with the molar ratio of CuO and CNTs at 2.4:1 displays excellent gas sensing performance, i.e. the lowest detectable limit of 970 ppb and the short response time of 6 s-97.0 ppm NO2 at room temperature. In the 1D composite, the CNTs part provides a channel to enable effective and fast carrier transport, while the CuO NRs fabricates an asymmetrical schottky contact at the interface between the composites and the Au electrode. The advantage of the synergy of CNTs and CuO which possesses superior conductivity benefits the sensing of our 1D CuO-CNTs composite by providing affluent electrons.

  7. Unbiased continuous wave terahertz photomixer emitters with dis-similar Schottky barriers.

    Science.gov (United States)

    Mohammad-Zamani, Mohammad Javad; Moravvej-Farshi, Mohammad Kazem; Neshat, Mohammad

    2015-07-27

    We are introducing a new bias free CW terahertz photomixer emitter array. Each emitter consists of an asymmetric metal-semiconductor-metal (MSM) that is made of two side by side dis-similar Schottky contacts, on a thin layer of low temperature grown (LTG) GaAs, with barrier heights of difference (ΔΦ(B)) and a finite lateral spacing (s). Simulations show that when an appropriately designed structure is irradiated by two coherent optical beams of different center wavelengths, whose frequency difference (∆f) falls in a desired THz band, the built-in field between the two dis-similar potential barriers can accelerate the photogenerated carriers that are modulated by ∆ω, making each pitch in the array to act as a CW THz emitter, effectively. We also show the permissible values of s and ΔΦ(B) pairs, for which the strengths of the built-in electric field maxima fall below that of the critical of 50 V/μm- i.e., the breakdown limit for the LTG-GaAs layer. Moreover, we calculate the THz radiation power per emitter in an array. Among many potential applications for these bias free THz emitters their use in endoscopic imaging without a need for hazardous external biasing circuitry that reduces the patient health risk, could be the most important one. A hybrid numerical simulation method is used to design an optimum emitter pitch, radiating at 0.5 THz.

  8. Self-assembled H-aggregation induced high performance poly (3-hexylthiophene) Schottky diode

    Science.gov (United States)

    Chaudhary, Vivek; Pandey, Rajiv K.; Prakash, Rajiv; Singh, Arun Kumar

    2017-12-01

    The investigation of size confinement and chain orientation within the microstructure of a polymer thin film is very important for electronic device applications and fundamental research. Here, we present single step methodology for the synthesis of solution-processable poly (3-hexylthiophene) (P3HT) nanofibers via a self-assembly process. The formation of P3HT nanofibers is confirmed by atomic force microscopy. The synthesized nanofibers are characterized by UV-visible absorption, photoluminescence, and Raman spectroscopy. The aggregation type of self-assembled P3HT is studied by both UV-visible absorbance and photoluminescence spectroscopy. The exciton bandwidth in polymer films is calculated by following the Spano's H-aggregate model and found to be 28 meV. Raman spectroscopy is used to identify the various stretching modes present in nanofibers. The structural investigation using grazing angle X-ray diffraction of nanofibers reveals the presence of alkyl chain ordering. We have fabricated organic Schottky diodes with P3HT nanofibers on indium tin oxide (ITO) coated glass with configuration Al/P3HT/ITO, and current density-voltage characteristics are subsequently used for extracting the electronic parameters of the device. We have also discussed the charge transport mechanism at the metal/polymer interface.

  9. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes

    Directory of Open Access Journals (Sweden)

    Semih Gorduk

    2017-01-01

    Full Text Available New metal-free and metallophthalocyanine compounds (Zn, Co, Ni, and Cu were synthesized using 2-hydroxymethyl-1,4-benzodioxan and 4-nitrophthalonitrile compounds. All newly synthesized compounds were characterized by elemental analysis, FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, and GC-MS techniques. The applications of synthesized compounds in Schottky barrier diodes were investigated. Ag/Pc/p–Si structures were fabricated and charge transport mechanism in these devices was investigated using dc technique. It was observed from the analysis of the experimental results that the charge transport can be described by Ohmic conduction at low values of the reverse bias. On the other hand, the voltage dependence of the measured current for high values of the applied reverse bias indicated that space charge limited conduction is the dominant mechanism responsible for dc conduction. From the observed voltage dependence of the current density under forward bias conditions, it has been concluded that the charge transport is dominated by Poole-Frenkel emission.

  10. Exploring New Mechanisms for Effective Antimicrobial Materials: Electric Contact-Killing Based on Multiple Schottky Barriers.

    Science.gov (United States)

    de Lucas-Gil, Eva; Reinosa, Julián J; Neuhaus, Kerstin; Vera-Londono, Liliana; Martín-González, Marisol; Fernández, José F; Rubio-Marcos, Fernando

    2017-08-09

    The increasing threat of multidrug-resistance organisms is a cause for worldwide concern. Progressively microorganisms become resistant to commonly used antibiotics, which are a healthcare challenge. Thus, the discovery of new antimicrobial agents or new mechanisms different from those used is necessary. Here, we report an effective and selective antimicrobial activity of microstructured ZnO (Ms-ZnO) agent through the design of a novel star-shaped morphology, resulting in modulation of surface charge orientation. Specifically, we find that Ms-ZnO particles are composed of platelet stacked structure, which generates multiple Schottky barriers due to the misalignment of crystallographic orientations. We also demonstrated that this effect allows negative charge accumulation in localized regions of the structure to act as "charged domain walls", thereby improving the antimicrobial effectiveness by electric discharging effect. We use a combination of field emission scanning electron microscopy (FE-SEM), SEM-cathodoluminescence imaging, and Kelvin probe force microscopy (KPFM) to determine that the antimicrobial activity is a result of microbial membrane physical damage caused by direct contact with the Ms-ZnO agent. It is important to point out that Ms-ZnO does not use the photocatalysis or the Zn 2+ released as the main antimicrobial mechanism, so consequently this material would show low toxicity and robust stability. This approach opens new possibilities to understand both the physical interactions role as main antimicrobial mechanisms and insight into the coupled role of hierarchical morphologies and surface functionality on the antimicrobial activity.

  11. Structuring a TiO2-based photonic crystal photocatalyst with Schottky junction for efficient photocatalysis.

    Science.gov (United States)

    Chen, Huan; Chen, Shuo; Quan, Xie; Zhang, Yaobin

    2010-01-01

    Facile and effective approaches were developed to fabricate the inverse TiO2/Pt opals Schottky structures on the Ti substrate. The as-prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance UV-vis spectra (DRS), respectively. The results indicate that these samples were of ordered network, which was built by the Pt skeleton frame and the outer TiO2 layer. The TiO2 layer was identified as anatase with the preferential orientation of (101) plane. The experiments of short-circuit photocurrent (SCPC) and photocatalytic degradation of phenol were also conducted under the UV irradiation in order to evaluate the photoactivity of the samples. By tuning the red edge of photonic stop-band overlapping the absorption maximum of anatase (at 360 nm), both the UV absorption and the carrier separation of the samples were improved. The kinetic constant using the optimal inverse TiO2/Pt opals (0.992 h(-1)) was about 1.5 times as great as that of the disordered inverse TiO2/Pt opals (TiO2/Pt-mix) and was 3.3 times as great as that of pristine TiO2 nanocrystalline film (TiO2-nc) on Ti substrate.

  12. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Optimization of chemical structure of Schottky-type selection diode for crossbar resistive memory.

    Science.gov (United States)

    Kim, Gun Hwan; Lee, Jong Ho; Jeon, Woojin; Song, Seul Ji; Seok, Jun Yeong; Yoon, Jung Ho; Yoon, Kyung Jean; Park, Tae Joo; Hwang, Cheol Seong

    2012-10-24

    The electrical performances of Pt/TiO(2)/Ti/Pt stacked Schottky-type diode (SD) was systematically examined, and this performance is dependent on the chemical structures of the each layer and their interfaces. The Ti layers containing a tolerable amount of oxygen showed metallic electrical conduction characteristics, which was confirmed by sheet resistance measurement with elevating the temperature, transmission line measurement (TLM), and Auger electron spectroscopy (AES) analysis. However, the chemical structure of SD stack and resulting electrical properties were crucially affected by the dissolved oxygen concentration in the Ti layers. The lower oxidation potential of the Ti layer with initially higher oxygen concentration suppressed the oxygen deficiency of the overlying TiO(2) layer induced by consumption of the oxygen from TiO(2) layer. This structure results in the lower reverse current of SDs without significant degradation of forward-state current. Conductive atomic force microscopy (CAFM) analysis showed the current conduction through the local conduction paths in the presented SDs, which guarantees a sufficient forward-current density as a selection device for highly integrated crossbar array resistive memory.

  14. 4H-SiC Schottky diode arrays for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Chan, H.K. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Gohil, T. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Vassilevski, K.V.; Wright, N.G.; Horsfall, A.B. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Barnett, A.M. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2016-12-21

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm{sup 2} at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  15. Effects of oxide layers and metals on photoelectric and optical properties of Schottky barrier photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, W.F. [College of Engineering, Al Isra' University, P.O. Box 22 and 33, Al Isra University Post Office, Amman 11622 (Jordan); Abou Hajar, A. [College of Engineering, Aleppo University, Aleppo (Syrian Arab Republic); Saleh, A.N. [College of Engineering, Mosul University, Mosul (Iraq)

    2006-08-15

    Recently, a lot of attention has been paid to Schottky barrier photo detectors due to their promising properties and easy of fabrication. Many samples of SB devices prepared by thermal deposition under high vacuum are studied in this research. Different types and thicknesses of oxides were deposited on silicon substrate. Metals of different types and thicknesses were deposited on top of oxides. Variation of photogenerated current, responsivity, quantum efficiency and detectivity as a function of incident light wavelength were measured. It was found that the shape of the curves has two maxima, one was around 500nm and the other was around 700nm. Ni (100)-SiO{sub 2}-Si structure shows the maximum responsivity at 550nm and it is equal to 400mA/W. When comparison was made between devices of different metals, the nickel layer device showed high responsivity at visible region while the aluminum layer device showed high responsivity at near infrared region. Finally, the aluminum layer device showed detectivity higher than nickel layer device. The maximum detectivity of aluminum device was 6.4x10{sup 10}cm/HzW. (author)

  16. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells.

    Science.gov (United States)

    Song, Yi; Li, Xinming; Mackin, Charles; Zhang, Xu; Fang, Wenjing; Palacios, Tomás; Zhu, Hongwei; Kong, Jing

    2015-03-11

    The advent of chemical vapor deposition (CVD) grown graphene has allowed researchers to investigate large area graphene/n-silicon Schottky barrier solar cells. Using chemically doped graphene, efficiencies of nearly 10% can be achieved for devices without antireflective coatings. However, many devices reported in past literature often exhibit a distinctive s-shaped kink in the measured I/V curves under illumination resulting in poor fill factor. This behavior is especially prevalent for devices with pristine (not chemically doped) graphene but can be seen in some cases for doped graphene as well. In this work, we show that the native oxide on the silicon presents a transport barrier for photogenerated holes and causes recombination current, which is responsible for causing the kink. We experimentally verify our hypothesis and propose a simple semiconductor physics model that qualitatively captures the effect. Furthermore, we offer an additional optimization to graphene/n-silicon devices: by choosing the optimal oxide thickness, we can increase the efficiency of our devices to 12.4% after chemical doping and to a new record of 15.6% after applying an antireflective coating.

  17. Ambient organic molecular passivation of Si yields near-ideal, Schottky-Mott limited, junctions

    Directory of Open Access Journals (Sweden)

    Rotem Har-Lavan

    2012-03-01

    Full Text Available We report near-perfect transfer of the electrical properties of oxide-free Si surface, modified by a molecular monolayer, to the interface of a junction made with that modified Si surface. Such behavior is highly unusual for a covalent, narrow bandgap semiconductor, such as Si. Short, ambient atmosphere, room temperature treatment of oxide-free Si(100 in hydroquinone (HQ/alkyl alcohol solutions, fully passivates the Si surface, while allowing controlled change of the resulting surface potential. The junctions formed, upon contacting such surfaces with Hg, a metal that does not chemically interact with Si, follow the Schottky-Mott model for metal-semiconductor junctions closer than ever for Si-based junctions. Two examples of such ideal behavior are demonstrated: a Tuning the molecular surface dipole over 400 mV, with only negligible band bending, by changing the alkyl chain length. Because of the excellent passivation this yields junctions with Hg with barrier heights that follow the change in the Si effective electron affinity nearly ideally. b HQ/ methanol passivation of Si is accompanied by a large surface dipole, which suffices, as interface dipole, to drive the Si into strong inversion as shown experimentally via its photovoltaic effect. With only ∼0.3 nm molecular interlayer between the metal and the Si, our results proves that it is passivation and prevention of metal-semiconductor interactions that allow ideal metal-semiconductor junction behavior, rather than an insulating transport barrier.

  18. Formation and modification of Schottky barriers at the PZT/Pt interface

    Science.gov (United States)

    Chen, Feng; Schafranek, Robert; Wu, Wenbin; Klein, Andreas

    2009-11-01

    A determination of the Schottky barrier height at the interface between ferroelectric Pb(Zr,Ti)O3 thin films and Pt by photoelectron spectroscopy is presented. Stepwise Pt deposition was performed in situ onto a contamination-free Pb(Zr,Ti)O3 thin film surface. The substrate surface is reduced in the course of Pt deposition as evident from the observation of metallic Pb. The Fermi level is found at EF - EVB = 1.6 ± 0.1 eV above the valence band maximum of the as-prepared interface. Annealing of the sample in an oxygen pressure of 0.1 and 1 Pa strongly reduces the amount of metallic Pb and leads to a reduction in the Fermi level position at the interface to EF - EVB = 1.1 ± 0.1 eV. Storage in vacuum at room temperature strongly reduces the interface leading to a significantly higher Fermi level position (EF - EVB = 2.2 ± 0.1 eV). The reduction is attributed to the presence of hydrogen in the residual gas. The change in barrier height might be a severe issue for stable device operation with Pt contacts even at ambient temperatures.

  19. Design of a silicon RCE Schottky photodetector working at 1.55 {mu}m

    Energy Technology Data Exchange (ETDEWEB)

    Casalino, M. [Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche, Via P. Castellino, 80131 Naples (Italy); Universita degli studi ' Mediterranea' di Reggio Calabria, Localita Feo di Vito, 89060 Reggio Calabria (Italy); Sirleto, L. [Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche, Via P. Castellino, 80131 Naples (Italy)]. E-mail: luigi.sirleto@imm.cnr.it; Moretti, L. [Universita degli studi ' Mediterranea' di Reggio Calabria, Localita Feo di Vito, 89060 Reggio Calabria (Italy); Della Corte, F. [Universita degli studi ' Mediterranea' di Reggio Calabria, Localita Feo di Vito, 89060 Reggio Calabria (Italy); Rendina, I. [Istituto per la Microelettronica e Microsistemi (IMM), Consiglio Nazionale delle Ricerche, Via P. Castellino, 80131 Naples (Italy)

    2006-12-15

    In this paper, the design of a resonant cavity-enhanced (RCE) Schottky photodetector, based on internal photoemission effect and working at 1.55 {mu}m, is presented. In order to estimate the theoretical quantum efficiency we take the advantage of analytical formulation of the internal photoemission effect (Fowler theory), and its extension for thin films, while for the optical analysis of device a numerical method, based on the transfer matrix method, has been implemented. Finally, we complete our design calculating bandwidth and bandwidth-efficiency product. Our numerical results prove that a quantum efficiency of 0.1% is obtained at resonant wavelength (1.55 {mu}m) with a very thin absorbing metal layer (30 nm). Theoretical values of 100 GHz and 100 MHz were obtained, respectively, for the carrier-transit time limited 3-dB bandwidth and bandwidth-efficiency. The proposed photodetector can work at room temperature and its fabrication is completely compatible with standard silicon technology.

  20. Ambipolarity reduction in DMG asymmetric vacuum dielectric Schottky Barrier GAA MOSFET to improve hot carrier reliability

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-11-01

    An explicit surface potential and subthreshold current model for novel Dual Metal Gate (DMG) Asymmetric Vacuum (AV) as gate dielectric Schottky Barrier (SB) Cylindrical Gate All Around (CGAA) MOSFET with the incorporation of localized charges (Nf) is developed to provide excellent immunity against threshold voltage (Vth) degradation due to hot carriers. Hot carrier induced Localized Charges (LC) either positive or negative leads to degrade the threshold of the device. The major advantage of the proposed DMG-AV-SB-CGAA MOSFET is that it mitigates the ambipolar behavior thus offering very good on current to off current ratio; and also reduces the electron temperature which leads to less hot carrier generation thus lesser degradation in Vth and improved Hot Carrier reliability. The surface potential is determined for three different regions by solving 1-D Poisson's and 2-D Laplace equation through separation of variable method to facilitate an optimal model for calculating the subthreshold drain current from Si-SiO2 interface boundary. The developed model results are in good agreement with that of ATLAS-TCAD simulation.

  1. Quantum computing with defects.

    Science.gov (United States)

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  2. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    11] A detailed review article of defects in semiconductor nanostructures is currently under preparation. [12] V Ranjan and Vijay A Singh, J. Appl. Phys. 89, 6415 (2001). [13] V Ranjan, R K Pandey, Manoj K Harbola and Vijay A Singh, Phys. Rev.

  3. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Nirwal, Varun Singh, E-mail: varun.nirwal30@gmail.com; Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India)

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  4. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  5. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  6. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  7. First principle study on the electronic properties and Schottky contact of graphene adsorbed on MoS2 monolayer under applied out-plane strain

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Nguyen, Chuong V.

    2018-02-01

    In the present work, electronic properties and Schottky contact of graphene adsorbed on the MoS2 monolayer under applied out-plane strain are studied using density functional theory calculations. Our calculations show that weak van derpp Waals interactions between graphene and monolayer MoS2 are dominated at the interlayer distance of 3.34 Å and the binding energy per C atom of - 25.1 meV. A narrow band gap of 3.6 meV has opened in G/MoS2 heterointerface, and it can be modulated by the out-plane strain. Furthermore, the Schottky barrier and Schottky contact types in the G/MoS2 heterointerface can be controlled by the out-plane strain. At the equilibrium state (d = 3.34 Å), the intrinsic electronic structure of G/MoS2 heterointerface is well preserved and forms an n-type Schottky barrier of 0.49 eV. When the interlayer distance decreases, the transition from n-type to p-type Schottky contact occurs at d = 2.74 Å. Our studies promote the application of ultrathin G/MoS2 heterointerface in the next-generation nanoelectronic and photonic devices such as van-der-Waals-based field effect transistors.

  8. Properties of a previously unobserved donor-related electrically active defect in Ge induced by alpha particle irradiation

    Science.gov (United States)

    Barnard, Abraham W.; Meyer, Walter E.; Auret, F. Danie

    2017-09-01

    Alpha particle irradiation was used to study the radiation-induced defects in n-type germanium (Ge). Investigation of the well-known antimony (Sb)-vacancy complex (commonly known as the E-center) in Ge, with an activation energy of 0.37 eV (E0.37), has led to the discovery of another defect with a DLTS signature virtually indistinguishable from the E-center, but with different annealing characteristics. We shall refer to this new defect as the E-prime. Although the two defects are easily distinguishable by annealing, the DLTS signal produced by the E-center and E-prime were not distinguishable through conventional deep level transient spectroscopy (DLTS). Separation of the two peaks was only possible through the use of low noise equipment in conjunction with high resolution Laplace-DLTS. The activation energy of the Sb-vacancy and the E-prime was determined to be 0.370 ± 0.005 eV and 0.375 ± 0.005 eV. Depth profiles showed uniform distributions of both defects below the Schottky junction.

  9. Reconstructions of eyelid defects

    Directory of Open Access Journals (Sweden)

    Nirmala Subramanian

    2011-01-01

    Full Text Available Eyelids are the protective mechanism of the eyes. The upper and lower eyelids have been formed for their specific functions by Nature. The eyelid defects are encountered in congenital anomalies, trauma, and postexcision for neoplasm. The reconstructions should be based on both functional and cosmetic aspects. The knowledge of the basic anatomy of the lids is a must. There are different techniques for reconstructing the upper eyelid, lower eyelid, and medial and lateral canthal areas. Many a times, the defects involve more than one area. For the reconstruction of the lid, the lining should be similar to the conjunctiva, a cover by skin and the middle layer to give firmness and support. It is important to understand the availability of various tissues for reconstruction. One layer should have the vascularity to support the other layer which can be a graft. A proper plan and execution of it is very important.

  10. Localized defects in ophthalmic lenses.

    Science.gov (United States)

    Stroud, J S

    1989-03-01

    Ophthalmic lenses made from glass, hard resin, and polycarbonate are inspected with a shadowgraph to determine the nature, frequency, and severity of localized defects, including power aberrations. The most common localized defects are scratches and pits left by incomplete polishing and localized power aberrations caused by variations in the thickness of scratch-resistant coatings. Localized defects are more likely in polycarbonate lenses than in glass or hard resin lenses. The compliance of lenses with standards that limit localized defects is discussed.

  11. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...... the trapped state iri the defect. The annihilation characteristics (e.g., the lifetime of the positron) can be measured and provide information about the nature of the defect (e.g., size, density, morphology). The technique is sensitive to both defect size (in the range from monovacancies up to cavities...

  12. Defect mapping system

    Science.gov (United States)

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  13. Optimized hydrogen sensing characteristic of Pd/ZnO nanoparticles based Schottky diode on glass substrate

    Science.gov (United States)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H  +  H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.

  14. Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes

    Science.gov (United States)

    Yang, Jiancheng; Ahn, Shihyun; Ren, F.; Khanna, Rohit; Bevlin, Kristen; Geerpuram, Dwarakanath; Pearton, S. J.; Kuramata, A.

    2017-04-01

    Bulk, single-crystal Ga2O3 was etched in BCl3/Ar inductively coupled plasmas as a function of ion impact energy. For pure Ar, the etch rate (R) was found to increase with ion energy (E) as predicted from a model of ion enhanced sputtering by a collision-cascade process, R ∝(E0.5 - ETH0.5), where the threshold energy for Ga2O3, ETH, was experimentally determined to be ˜75 eV. When BCl3 was added, the complexity of the ion energy distribution precluded, obtaining an equivalent threshold. Electrically active damage introduced during etching was quantified using Schottky barrier height and diode ideality factor measurements obtained by evaporating Ni/Au rectifying contacts through stencil masks onto the etched surfaces. For low etch rate conditions (˜120 Å min-1) at low powers (150 W of the 2 MHz ICP source power and 15 W rf of 13.56 MHz chuck power), there was only a small decrease in reverse breakdown voltage (˜6%), while the barrier height decreased from 1.2 eV to 1.01 eV and the ideality factor increased from 1.00 to 1.06. Under higher etch rate (˜700 Å min-1) and power (400 W ICP and 200 W rf) conditions, the damage was more significant, with the reverse breakdown voltage decreasing by ˜35%, the barrier height was reduced to 0.86 eV, and the ideality factor increased to 1.2. This shows that there is a trade-off between the etch rate and near-surface damage.

  15. An ultra-thin Schottky diode as a transmission particle detector for biological microbeams

    Science.gov (United States)

    Harken, Andrew; Randers-Pehrson, Gerhard; Attinger, Daniel; Brenner, David J.

    2013-01-01

    We fabricated ultrathin metal-semiconductor Schottky diodes for use as transmission particle detectors in the biological microbeam at Columbia University’s Radiological Research Accelerator Facility (RARAF). The RARAF microbeam can deliver a precise dose of ionizing radiation in cell nuclei with sub-micron precision. To ensure an accurate delivery of charged particles, the facility currently uses a commercial charged-particle detector placed after the sample. We present here a transmission detector that will be placed between the particle accelerator and the biological specimen, allowing the irradiation of samples that would otherwise block radiation from reaching a detector behind the sample. Four detectors were fabricated with co-planar gold and aluminum electrodes thermally evaporated onto etched n-type crystalline silicon substrates, with device thicknesses ranging from 8.5 μm – 13.5 μm. We show coincident detections and pulse-height distributions of charged particles in both the transmission detector and the commercial detector above it. Detections are demonstrated at a range of operating conditions, including incoming particle type, count rate, and beam location on the detectors. The 13.5 μm detector is shown to work best to detect 2.7 MeV protons (H+), and the 8.5 μm detector is shown to work best to detect 5.4 MeV alpha particles (4He++). The development of a transmission detector enables a range of new experiments to take place at RARAF on radiation-stopping samples such as thick tissues, targets that need immersion microscopy, and integrated microfluidic devices for handling larger quantities of cells and small organisms. PMID:24058378

  16. Barrier height of Pt–In[sub x]Ga[sub 1−x]N (0≤x≤0.5) nanowire Schottky diodes

    KAUST Repository

    Guo, Wei

    2011-01-01

    The barrier height of Schottky diodes made on Inx Ga 1-x N nanowires have been determined from capacitance-voltage measurements. The nanowires were grown undoped on n-type (001) silicon substrates by plasma-assisted molecular beam epitaxy. The length, diameter and density of the nanowires are ∼1 μm, 20 nm, and 1× 1011 cm-2. The Schottky contact was made on the top surface of the nanowires with Pt after planarizing with parylene. The measured barrier height B varies from 1.4 eV (GaN) to 0.44 eV (In0.5 Ga0.5 N) and agrees well with the ideal barrier heights in the Schottky limit. © 2011 American Institute of Physics.

  17. Dependence of the Photocurrent of a Schottky-Barrier Solar Cell on the Back Surface Recombination Velocity and Suggestion for a Structure with Improved Performance

    Directory of Open Access Journals (Sweden)

    Avigyan Chatterjee

    2015-01-01

    Full Text Available Though Schottky-barrier solar cells have been studied extensively previously, not much work has been done recently on these cells, because of the fact that conventional p-n junction silicon solar cells have much higher efficiency and have attracted the attention of most of the researchers. However, the Schottky-barrier solar cells have the advantage of simple and economical fabrication process. In this paper, the effect of back surface recombination velocity on the minority carrier distribution and the spectral response of a Schottky-barrier silicon solar cell have been investigated and, based on this study, a new design of the cell with a back surface field has been suggested, which is expected to give much improved performance.

  18. A low knee voltage and high breakdown voltage of 4H-SiC TSBS employing poly-Si/Ni Schottky scheme

    Science.gov (United States)

    Kim, Dong Young; Seok, Ogyun; Park, Himchan; Bahng, Wook; Kim, Hyoung Woo; Park, Ki Cheol

    2018-02-01

    We report a low knee voltage and high breakdown voltage 4H-SiC TSBS employing poly-Si/Ni dual Schottky contacts. A knee voltage was significantly improved from 0.75 to 0.48 V by utilizing an alternative low work-function material of poly-Si as an anode electrode. Also, reverse breakdown voltage was successfully improved from 901 to 1154 V due to a shrunk low-work-function Schottky region by a proposed self-align etching process between poly-Si and SiC. SiC TSBS with poly-Si/Ni dual Schottky scheme is a suitable structure for high-efficiency rectification and high-voltage blocking operation.

  19. Effects of Annealing on Electrical Characteristics and Current Transport Mechanisms of the Y/ p-GaN Schottky Diode

    Science.gov (United States)

    Reddy, V. Rajagopal; Asha, B.; Choi, Chel-Jong

    2016-07-01

    This study investigates the effects of annealing on the electrical properties and current transport mechanism of Y/ p-GaN Schottky barrier diodes (SBDs). We found no significant change in the surface morphology of the Y Schottky contacts during the annealing process. The Schottky barrier height (SBH) of the as-deposited Y/ p-GaN SBD was estimated to be 0.95 eV ( I- V)/1.19 eV ( C- V). The SBH increased upon annealing at 400°C and 500°C, and then decreased slightly with annealing at 600°C. Thus the maximum SBH of the Y/ p-GaN SBD was achieved at 500°C, with values of 1.01 eV ( I- V)/1.29 eV ( C- V). In addition, the SBH values were estimated by Cheung's, Norde, and Ψs- V plots and were found to be in good agreement with one another. Series resistance ( R S) values were also calculated by I- V, Cheung's, and Norde functions at different annealing temperatures, with results showing a decrease in the interface state density of the SBD with annealing at 500°C, followed by a slight increase upon annealing at 600°C. The forward-bias current transport mechanism of SBD was investigated by the log I-log V plot at different annealing temperatures. Our investigations revealed that the Poole-Frenkel emission mechanism dominated the reverse leakage current in Y/ p-GaN SBD at all annealing temperatures.

  20. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, A., E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Coelho, S.M.M.; Auret, F.D.; Mtangi, W. [Department of Physics, University of Pretoria, 0002 (South Africa); Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Nel, J.M.; Diale, M. [Department of Physics, University of Pretoria, 0002 (South Africa)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Ir/n-Ge (1 0 0) Schottky diodes were characterized using I-V, C-V and SEM techniques under various annealing conditions. Black-Right-Pointing-Pointer The variation of the electrical and structural properties can be due to effects phase transformation during annealing. Black-Right-Pointing-Pointer Thermal stability of these diodes is maintained up to 500 Degree-Sign C anneal. Black-Right-Pointing-Pointer SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current-voltage (I-V) and capacitance-voltage (C-V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 Degree-Sign C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C.

  1. The effects of localized tail states on charge transport mechanisms in amorphous zinc tin oxide Schottky diodes

    Science.gov (United States)

    Son, Youngbae; Peterson, Rebecca L.

    2017-12-01

    Temperature-dependent current–voltage measurements were performed on vertical Schottky diodes made with solution-processed amorphous zinc tin oxide (a-ZTO) semiconductor and palladium rectifying contacts. Above 260 K, forward bias electron transport occurs via thermionic emission over an inhomogeneous, voltage-dependent Schottky barrier with {\\bar{φ }}b0 = 0.72 eV, σ 0 = 0.12 eV, and A* = 44 A cm‑2 K‑2, where {\\bar{φ }}b0 and {σ }0 are the mean potential barrier and its standard deviation at zero bias, respectively, and A* is Richardson’s constant. For large currents, the series ohmic resistance of the bulk semiconductor dominates. At temperatures below 260 K, less carriers are excited from localized states below the conduction band edge, and space-charge-limited current (SCLC) dominates. The exponential tail density of states parameters extracted for a-ZTO are g tc = 1.34 × 1019 cm‑3 eV‑1 and kT t = 26 meV. The intermediate tail state density in a-ZTO, less than that of amorphous silicon and greater than that of amorphous indium gallium zinc oxide, allows for experimental observation of a temperature-dependent transition of bulk charge transport mechanisms in strong forward bias from semiconductor-like ohmic conduction near room temperature to insulator-like SCLC at lower temperatures. In reverse bias, the same tail states lead to modified Poole–Frenkel emission, reducing the leakage current. The frequency response of a half-wave rectifier and diode impedance spectroscopy confirm that the Schottky diode cut-off frequency is above 1 MHz.

  2. Internal photoemission for photovoltaic using p-type Schottky barrier: Band structure dependence and theoretical efficiency limits

    Science.gov (United States)

    Shih, Ko-Han; Chang, Yin-Jung

    2018-01-01

    Solar energy conversion via internal photoemission (IPE) across a planar p-type Schottky junction is quantified for aluminum (Al) and copper (Cu) in the framework of direct transitions with non-constant matrix elements. Transition probabilities and k-resolved group velocities are obtained based on pseudo-wavefunction expansions and realistic band structures using the pseudopotential method. The k-resolved number of direct transitions, hole photocurrent density, quantum yield (QY), and the power conversion efficiency (PCE) under AM1.5G solar irradiance are subsequently calculated and analyzed. For Al, the parabolic and "parallel-band" effect along the U-W-K path significantly enhances the transition rate with final energies of holes mainly within 1.41 eV below the Fermi energy. For Cu, d-state hot holes mostly generated near the upper edge of 3d bands dominate the hole photocurrent and are weekly (strongly) dependent on the barrier height (metal film thickness). Hot holes produced in the 4s band behave just oppositely to their d-state counterparts. Non-constant matrix elements are shown to be necessary for calculations of transitions due to time-harmonic perturbation in Cu. Compared with Cu, Al-based IPE in p-type Schottky shows the highest PCE (QY) up to about 0.2673% (5.2410%) at ΦB = 0.95 eV (0.5 eV) and a film thickness of 11 nm (20 nm). It is predicted that metals with relatively dispersionless d bands (such as Cu) in most cases do not outperform metals with photon-accessible parallel bands (such as Al) in photon energy conversion using a planar p-type Schottky junction.

  3. Sub-bandgap response of graphene/SiC Schottky emitter bipolar phototransistor examined by scanning photocurrent microscopy

    Science.gov (United States)

    Barker, Bobby G., Jr.; Chava, Venkata Surya N.; Daniels, Kevin M.; Chandrashekhar, M. V. S.; Greytak, Andrew B.

    2018-01-01

    Graphene layers grown epitaxially on SiC substrates are attractive for a variety of sensing and optoelectronic applications because the graphene acts as a transparent, conductive, and chemically responsive layer that is mated to a wide-bandgap semiconductor with large breakdown voltage. Recent advances in control of epitaxial growth and doping of SiC epilayers have increased the range of electronic device architectures that are accessible with this system. In particular, a recently-introduced Schottky-emitter bipolar phototransistor (SEPT) based on an epitaxial graphene (EG) emitter grown on a p-SiC base epilayer has been found to exhibit a maximum common emitter current gain of 113 and a UV responsivity of 7.1 A W‑1. The behavior of this device, formed on an n +-SiC substrate that serves as the collector, was attributed to a very large minority carrier injection efficiency at the EG/p-SiC Schottky contact. This large minority carrier injection efficiency is in turn related to the large built-in potential found at a EG/p-SiC Schottky junction. The high performance of this device makes it critically important to analyze the sub bandgap visible response of the device, which provides information on impurity states and polytype inclusions in the crystal. Here, we employ scanning photocurrent microscopy (SPCM) with sub-bandgap light as well as a variety of other techniques to clearly demonstrate a localized response based on the graphene transparent electrode and an approximately 1000-fold difference in responsivity between 365 nm and 444 nm excitation. A stacking fault propagating from the substrate/epilayer interface, assigned as a single layer of the 8H-SiC polytype within the 4H-SiC matrix, is found to locally increase the photocurrent substantially. The discovery of this polytype heterojunction opens the potential for further development of heteropolytype devices based on the SEPT architecture.

  4. Improved reverse recovery characteristics of inAlN/GaN schottky barrier diode using a SOI substrate

    Science.gov (United States)

    Chiu, Hsien-Chin; Peng, Li-Yi; Wang, Hsiang-Chun; Kao, Hsuan-Ling; Wang, Hou-Yu; Chyi, Jen-Inn

    2017-10-01

    The low-frequency noise (LFN) and reverse recovery charge characteristics of a six-inch InAlN/AlN/GaN Schottky barrier diode (SBD) on the Si-on-insulator (SOI) substrate were demonstrated and investigated for the first time. Raman spectroscopy indicated that using SOI wafers lowered epitaxial stress. According to the DC and LFN measurements at temperatures ranging from 300 to 450 K, the InAlN/GaN SBD on the SOI substrate showed improved forward and reverse currents and achieved a lower reverse recovery charge, compared with a conventional device.

  5. A fast-neutron detection detector based on fission material and large sensitive 4H silicon carbide Schottky diode detector

    Science.gov (United States)

    Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping

    2017-12-01

    Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.

  6. High Density Schottky Barrier Infrared Charge-Coupled Device (IRCCD) Sensors For Short Wavelength Infrared (SWIR) Applications At Intermediate Temperature

    Science.gov (United States)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-11-01

    Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  7. Manufacturing technology program for high burnout silicon Schottky-barrier mixer diodes for Navy air-to-air avionics

    Science.gov (United States)

    Anand, Y.; Ellis, S.

    1982-02-01

    This report describes the establishment of low cost semiconductor processes to manufacture low-barrier-height high-burnout X-band silicon Schottky barrier diodes in production quantities. These devices are thermal-compression-bonded in a rugged low-cost pill (ODS-119) package. They exhibit an overall low noise figure of 7.0 dB (single side band) at 0.5 mW of local oscillator power level and RF burnout of 12 watts (tau = 1 microsec and 1000 Hz rep. rate). Reliability and ruggedness of the design has been demonstrated by tests taken from MIL.S 19500 F.

  8. Effect of gating and pressure on the electronic transport properties of crossed nanotube junctions: formation of a Schottky barrier

    Energy Technology Data Exchange (ETDEWEB)

    Havu, P; Hashemi, M J; Kaukonen, M; Nieminen, R M [Department of Applied Physics, Aalto University, PO Box 11100, FI-00076 Aalto (Finland); Seppaelae, E T [Nokia Research Center, Itaemerenkatu 11-13, FI-00180 Helsinki (Finland)

    2011-03-23

    The electronic transport properties of crossed carbon nanotube junctions are investigated using ab initio methods. The optimal atomic structures and the intertube distances of the junctions are obtained using van der Waals corrected density functional theory. The effect of gating on the intertube conductance of the junctions is explored, showing the charge accumulation to the nanotube contact and the charge depletion region at the metal-semiconductor Schottky contact. Finally, it is shown how the conductance of the junctions under the gate voltage is affected by pressure applied to the nanotube film. (fast track communication)

  9. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong

    2013-09-26

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  10. Calculation of the intrinsic spectral density of current fluctuations in nanometric Schottky-barrier diodes at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F.Z. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria)], E-mail: fati_zo_mahi2002@yahoo.fr; Helmaoui, A. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria); Varani, L. [Institut d' Electronique du Sud (CNRS UMR 5214), Universite Montpellier II, 34095 Montpellier (France); Shiktorov, P.; Starikov, E.; Gruzhinskis, V. [Semiconductor Physics Institute, 01108 Vilnius (Lithuania)

    2008-10-01

    An analytical model for the noise spectrum of nanometric Schottky-barrier diodes (SBD) is developed. The calculated frequency dependence of the spectral density of current fluctuations exhibits resonances in the terahertz domain which are discussed and analyzed as functions of the length of the diode, free carrier concentration, length of the depletion region and applied voltage. A good agreement obtained with direct Monte Carlo simulations of GaAs SBDs operating from barrier-limited to flat-band conditions fully validates the proposed approach.

  11. Structural, electrical, and surface morphological characteristics of rapidly annealed Pt/Ti Schottky contacts to n-type InP

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Rajagopal; Reddy, D. Subba; Naik, S. Sankar [Department of Physics, Sri Venkateswara University, Tirupati (India); Choi, C.J. [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju (Korea, Republic of)

    2011-10-15

    We have investigated the electrical and structural properties of Pt/Ti metallization scheme on n-type InP as a function of annealing temperature using current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES), and X-ray diffraction (XRD) measurements. Measurements showed that barrier height of as-deposited Pt/Ti Schottky contact is 0.62 eV (I-V) and 0.76 eV (C-V). Experimental results indicate that high-quality Schottky contact with barrier height and ideality factor of 0.66 eV (I-V), 0.80 eV (C-V), and 1.14 can be achieved after annealing at 400 C for 1 min in N{sub 2} atmosphere. Further, it is observed that the barrier height slightly decreases to 0.55 eV (I-V) and 0.71 eV (C-V) after annealing at 500 C. Norde method is also employed to calculate the barrier height of Pt/Ti Schottky contacts. The obtained values are in good agreement with those obtained by I-V measurements. These results indicate that the optimum annealing temperature for the Pt/Ti Schottky contact is 400 C. According to AES and XRD analysis, the formation of indium phases at the Pt/Ti/n-InP interface could be the reason for the increase of Schottky barrier height (SBH) after annealing at 400 C. Results also showed the formation of phosphide phases at the interface. This may be the reason for the decrease in the barrier height after annealing at 500 C. The AFM results showed that the overall surface morphology of Pt/Ti Schottky contact is reasonably smooth. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Vertical and In-Plane Current Devices Using NbS2/n-MoS2van der Waals Schottky Junction and Graphene Contact.

    Science.gov (United States)

    Shin, Hyung Gon; Yoon, Hyong Seo; Kim, Jin Sung; Kim, Minju; Lim, June Yeong; Yu, Sanghyuck; Park, Ji Hoon; Yi, Yeonjin; Kim, Taekyeong; Jun, Seong Chan; Im, Seongil

    2018-02-08

    A van der Waals (vdW) Schottky junction between two-dimensional (2D) transition metal dichalcogenides (TMDs) is introduced here for both vertical and in-plane current devices: Schottky diodes and metal semiconductor field-effect transistors (MESFETs). The Schottky barrier between conducting NbS 2 and semiconducting n-MoS 2 appeared to be as large as ∼0.5 eV due to their work-function difference. While the Schottky diode shows an ideality factor of 1.8-4.0 with an on-to-off current ratio of 10 3 -10 5 , Schottky-effect MESFET displays little gate hysteresis and an ideal subthreshold swing of 60-80 mV/dec due to low-density traps at the vdW interface. All MESFETs operate with a low threshold gate voltage of -0.5 ∼ -1 V, exhibiting easy saturation. It was also found that the device mobility is significantly dependent on the condition of source/drain (S/D) contact for n-channel MoS 2 . The highest room temperature mobility in MESFET reaches to approximately more than 800 cm 2 /V s with graphene S/D contact. The NbS 2 /n-MoS 2 MESFET with graphene was successfully integrated into an organic piezoelectric touch sensor circuit with green OLED indicator, exploiting its predictable small threshold voltage, while NbS 2 /n-MoS 2 Schottky diodes with graphene were applied to extract doping concentrations in MoS 2 channel.

  13. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  14. Topological defect lasers

    CERN Document Server

    Knitter, Sebastian; Xiong, Wen; Guy, Mikhael I; Solomon, Glenn S; Cao, Hui

    2014-01-01

    We demonstrate topological defect lasers in a GaAs membrane with embedded InAs quantum dots. By introducing a disclination to a square-lattice of elliptical air holes, we obtain spatially confined optical resonances with high quality factor. Such resonances support powerflow vortices, and lase upon optical excitation of quantum dots, embedded in the structure. The spatially inhomogeneous variation of the unit cell orientation adds another dimension to the control of a lasing mode, enabling the manipulation of its field pattern and energy flow landscape.

  15. Importance of elastic finite-size effects: Neutral defects in ionic compounds

    Science.gov (United States)

    Burr, P. A.; Cooper, M. W. D.

    2017-09-01

    Small system sizes are a well-known source of error in density functional theory (DFT) calculations, yet computational constraints frequently dictate the use of small supercells, often as small as 96 atoms in oxides and compound semiconductors. In ionic compounds, electrostatic finite-size effects have been well characterized, but self-interaction of charge-neutral defects is often discounted or assumed to follow an asymptotic behavior and thus easily corrected with linear elastic theory. Here we show that elastic effects are also important in the description of defects in ionic compounds and can lead to qualitatively incorrect conclusions if inadequately small supercells are used; moreover, the spurious self-interaction does not follow the behavior predicted by linear elastic theory. Considering the exemplar cases of metal oxides with fluorite structure, we show that numerous previous studies, employing 96-atom supercells, misidentify the ground-state structure of (charge-neutral) Schottky defects. We show that the error is eliminated by employing larger cells (324, 768, and 1500 atoms), and careful analysis determines that elastic, not electrostatic, effects are responsible. The spurious self-interaction was also observed in nonoxide ionic compounds irrespective of the computational method used, thereby resolving long-standing discrepancies between DFT and force-field methods, previously attributed to the level of theory. The surprising magnitude of the elastic effects is a cautionary tale for defect calculations in ionic materials, particularly when employing computationally expensive methods (e.g., hybrid functionals) or when modeling large defect clusters. We propose two computationally practicable methods to test the magnitude of the elastic self-interaction in any ionic system. In commonly studied oxides, where electrostatic effects would be expected to be dominant, it is the elastic effects that dictate the need for larger supercells: greater than 96 atoms.

  16. Planar heterostructures of single-layer transition metal dichalcogenides: Composite structures, Schottky junctions, tunneling barriers, and half metals

    Science.gov (United States)

    Aras, Mehmet; Kılıç, ćetin; Ciraci, S.

    2017-02-01

    Planar composite structures formed from the stripes of transition metal dichalcogenides joined commensurately along their zigzag or armchair edges can attain different states in a two-dimensional (2D), single-layer, such as a half metal, 2D or one-dimensional (1D) nonmagnetic metal and semiconductor. Widening of stripes induces metal-insulator transition through the confinements of electronic states to adjacent stripes, that results in the metal-semiconductor junction with a well-defined band lineup. Linear bending of the band edges of the semiconductor to form a Schottky barrier at the boundary between the metal and semiconductor is revealed. Unexpectedly, strictly 1D metallic states develop in a 2D system along the boundaries between stripes, which pins the Fermi level. Through the δ doping of a narrow metallic stripe one attains a nanowire in the 2D semiconducting sheet or narrow band semiconductor. A diverse combination of constituent stripes in either periodically repeating or finite-size heterostructures can acquire critical fundamental features and offer device capacities, such as Schottky junctions, nanocapacitors, resonant tunneling double barriers, and spin valves. These predictions are obtained from first-principles calculations performed in the framework of density functional theory.

  17. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    Science.gov (United States)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm‑2 eV‑1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  18. Mg doping of InGaN layers grown by PA-MBE for the fabrication of Schottky barrier photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Pereiro, J; Redondo-Cubero, A; Fernandez-Garrido, S; Rivera, C; Navarro, A; Munoz, E; Calleja, E [Instituto de Sistemas Optoelectronicos y MicrotecnologIa, Universidad Politecnica de Madrid, E-28040 Madrid (Spain); Gago, R, E-mail: jpereiro@die.upm.e [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones CientIficas, E-28049 Madrid (Spain)

    2010-08-25

    This work reports on the fabrication of Schottky barrier based Mg-doped (In,Ga)N layers for fluorescence applications. Mg acceptors are used in order to compensate surface and bulk donors that prevent the fabrication of Schottky contacts on unintentionally doped (In,Ga)N layers grown by plasma-assisted molecular beam epitaxy (PA-MBE). Rectifying properties of the contacts exhibited a major improvement when (In,Ga)N : Mg was used. The electrical and optical measurements of the layers showed a hole concentration of up to 3 x 10{sup 19} holes cm{sup -3} with a Mg acceptor activation energy of {approx}60 meV. Back-illuminated photodiodes fabricated on 800 nm thick Mg-doped In{sub 0.18}Ga{sub 0.82}N layers exhibited a band pass photo-response with a rejection ratio >10{sup 2} between 420 and 470 nm and peak responsivities of 87 mA W{sup -1} at {approx}470 nm. The suitability of these photodiodes for fluorescence measurements was demonstrated.

  19. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.

    Science.gov (United States)

    Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei

    2015-09-16

    The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.

  20. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.

    Science.gov (United States)

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    2015-09-04

    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ∼100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ∼450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (10(5)-10(7)), steep subthreshold slope (V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (∼0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  1. Formation of Schottky-type metal/SrTiO{sub 3} junctions and their resistive properties

    Energy Technology Data Exchange (ETDEWEB)

    Stoecker, Hartmut; Zschornak, Matthias [Technische Universitaet Dresden, Institut fuer Strukturphysik, Dresden (Germany); TU Bergakademie Freiberg, Institut fuer Experimentelle Physik, Freiberg (Germany); Seibt, Juliane; Hanzig, Florian; Wintz, Susi; Abendroth, Barbara; Meyer, Dirk C. [TU Bergakademie Freiberg, Institut fuer Experimentelle Physik, Freiberg (Germany); Kortus, Jens [TU Bergakademie Freiberg, Institut fuer Theoretische Physik, Freiberg (Germany)

    2010-08-15

    Motivated by the successful use of strontium titanate with different doping metals for memory cells on the basis of resistive switching and the recent findings on the major importance of oxygen vacancy redistribution in this compound, the present work shows the possibility of a non-volatile resistance change memory based on vacancy-doped SrTiO{sub 3}. The formation of corresponding metal/SrTiO{sub 3-{delta}} junctions ({delta}>0) in an electric field will be discussed as well as the switching between ohmic and Schottky-type contact behavior. A notable hysteresis in the current-voltage characteristics is used to carry out Write, Read, and Erase operations exemplifying the memory cell properties of such junctions. But whereas the electric field-induced formation of Schottky-type junctions is explainable by oxygen vacancy redistribution, the resistive switching needs to be discussed in terms of vacancies serving as electron trap states at the metal/oxide interface. (orig.)

  2. Estimation of the Necessary Bandwidth of the ELENA Longitudinal Schottky Pick-ups for Operation with Unbunched Beams

    CERN Document Server

    Federmann, S

    2013-01-01

    Schottky measurements are an important element of beam diagnostics. In the recently approved ELENA ring, a dedicated Schottky pick-up for longitudinal measurements is foreseen. This pick-up will be implemented by adapting the AD design which consists of two low-noise beam current transformers — one to cover a high frequency range (0.25 – 30MHz) and the other to cover a low frequency range (0.02 – 3MHz). It is of particular interest as to whether these designs can be used with only a change to the geometry, or if modifications are necessary to cope with the different requirements in ELENA. One important question is whether the frequency range covered by the pick-ups is sufficient. Therefore it is of particular interest to determine the necessary bandwidth for operation in ELENA. The present note is dedicated to this task using the scenario of unbunched beam operation, since in this case the signals are very weak and thus challenge the performance of the pick-up.

  3. Frequency and voltage dependent electrical responses of poly(triarylamine thin film-based organic Schottky diode

    Directory of Open Access Journals (Sweden)

    Mohamad Khairul Anuar

    2017-01-01

    Full Text Available A metal-organic-metal (MOM type Schottky diode based on poly (triarylamine (PTAA thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f and capacitance-voltage (C-V-f characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit. Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz but decreases at high frequency (1 – 10 kHz. The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV−1cm−2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC signal.

  4. Frequency and voltage dependent electrical responses of poly(triarylamine) thin film-based organic Schottky diode

    Science.gov (United States)

    Anuar Mohamad, Khairul; Tak Hoh, Hang; Alias, Afishah; Ghosh, Bablu Kumar; Fukuda, Hisashi

    2017-11-01

    A metal-organic-metal (MOM) type Schottky diode based on poly (triarylamine) (PTAA) thin films has been fabricated by using the spin coating method. Investigation of the frequency dependent conductance-voltage (G-V-f) and capacitance-voltage (C-V-f) characteristics of the ITO/PTAA/Al MOM type diode were carried out in the frequency range from 12 Hz to 100 kHz using an LCR meter at room temperature. The frequency and bias voltage dependent electrical response were determined by admittance-based measured method in terms of an equivalent circuit model of the parallel combination of resistance and capacitance (RC circuit). Investigation revealed that the conductance is frequency and a bias voltage dependent in which conductance continuous increase as the increasing frequency, respectively. Meanwhile, the capacitance is dependent on frequency up to a certain value of frequency (100 Hz) but decreases at high frequency (1 - 10 kHz). The interface state density in the Schottky diode was determined from G-V and C-V characteristics. The interface state density has values almost constant of 2.8 x 1012 eV-1cm-2 with slightly decrease by increasing frequencies. Consequently, both series resistance and interface trap density were found to decrease with increasing frequency. The frequency dependence of the electrical responses is attributed the distribution density of interface states that could follow the alternating current (AC) signal.

  5. Optical and carrier transport properties of graphene oxide based crystalline-Si/organic Schottky junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Khatri, I.; Tang, Z.; Hiate, T.; Liu, Q.; Ishikawa, R.; Ueno, K.; Shirai, H. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan)

    2013-12-21

    We investigated the graphene oxide (GO) based n-type crystalline silicon (c-Si)/conductive poly(ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) Schottky junction devices with optical characterization and carrier transport measurement techniques. The optical transmittance in the UV region decreased markedly for the films with increasing the concentration of GO whereas it increased markedly in the visible-infrared regions. Spectroscopic ellipsometry revealed that the ordinary and extraordinary index of refraction increased with increasing the concentration of GO. The hole mobility also increased from 1.14 for pristine film to 1.85 cm{sup 2}/V s for the 12–15 wt. % GO modified film with no significant increases of carrier concentration. The highest conductivity was found for a 15 wt. % GO modified PEDOT:PSS film: the c-Si/PEDOT:PSS:GO device using this sample exhibited a relatively high power conversion efficiency of 11.04%. In addition, the insertion of a 2–3 nm-thick GO thin layer at the c-Si/PEDOT:PSS interface suppressed the carrier recombination efficiency of dark electron and photo-generated hole at the anode, resulting in the increased photovoltaic performance. This study indicates that the GO can be good candidates for hole transporting layer of c-Si/PEDOT:PSS Schottky junction solar cell.

  6. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  7. GaN schottky barrier MOSFET using transparent source/drain electrodes for UV-optoelectronic integration

    Science.gov (United States)

    Jung, Byung-Kwon; Lee, Chang-Ju; Kim, Tae-Hyeon; Kim, Dong-Seok; Lee, Myoung-Bok; Lee, Jung-Hee; Hahm, Sung-Ho

    2012-07-01

    We fabricated a normally-off mode n-channel schottky barrier metal oxide semiconductor field effect transistor (SB-MOSFET) with transparent electrodes (ITO, IZO) as source/drain (S/D) contact on a highly resistive GaN layer grown on silicon substrate. Fabricated SB-MOSFET with ITO S/D exhibited as high as 40 mA/mm of maximum drain current and a 12 mS/mm of maximum transconductance with the threshold voltage of 4.2 V, which is far better than that of SB-MOSFET with IZO S/D. The normalized off-current was as low as 10 nA/mm. The UV-visible extinction ratio of a MOSFET type UV-sensor was measured over 130 for VDS = 5 V. ITO was proved as a promising schottky barrier material for GaN MOSFET source and drain not only for the electronic but UV-sensing applications better than IZO for this purpose.

  8. Ambipolar MoS2 Transistors by Nanoscale Tailoring of Schottky Barrier Using Oxygen Plasma Functionalization.

    Science.gov (United States)

    Giannazzo, Filippo; Fisichella, Gabriele; Greco, Giuseppe; Di Franco, Salvatore; Deretzis, Ioannis; La Magna, Antonino; Bongiorno, Corrado; Nicotra, Giuseppe; Spinella, Corrado; Scopelliti, Michelangelo; Pignataro, Bruno; Agnello, Simonpietro; Roccaforte, Fabrizio

    2017-07-12

    One of the main challenges to exploit molybdenum disulfide (MoS2) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS2 FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS2 surface can be tailored at nanoscale using soft O2 plasma treatments. The morphological, chemical, and electrical modifications of MoS2 surface under different plasma conditions were investigated by several microscopic and spectroscopic characterization techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), conductive AFM (CAFM), aberration-corrected scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). Nanoscale current-voltage mapping by CAFM showed that the SBH maps can be conveniently tuned starting from a narrow SBH distribution (from 0.2 to 0.3 eV) in the case of pristine MoS2 to a broader distribution (from 0.2 to 0.8 eV) after 600 s O2 plasma treatment, which allows both electron and hole injection. This lateral inhomogeneity in the electrical properties was associated with variations of the incorporated oxygen concentration in the MoS2 multilayer surface, as shown by STEM/EELS analyses and confirmed by ab initio density functional theory (DFT) calculations. Back-gated multilayer MoS2 FETs, fabricated by self-aligned deposition of source/drain contacts in the O2 plasma functionalized areas, exhibit ambipolar current transport with on/off current ratio Ion/Ioff ≈ 10(3) and field-effect mobilities of 11.5 and 7.2 cm(2) V(-1) s(-1) for electrons and holes, respectively. The electrical behavior of these novel ambipolar devices is discussed in terms of the peculiar current injection mechanisms in the O2 plasma

  9. Dielectric dipole mitigated Schottky barrier height tuning for contact resistance reduction

    Science.gov (United States)

    Coss, Brian E.

    Contact resistance is increasingly becoming an impediment to continued performance enhancement by scaling for traditional complementary metal oxide semiconductor field effect transistors (CMOSFETS). Solutions to this problem are wanting, and with decreasing con- tact area, demands on the contact properties are escalating. With ever-decreasing contact areas, specific contact resistivity has to be reduced below 1 O-mum2 to 0.1 O-mum 2 in the next 10--15 years. With dopant densities in the source and drain regions nearing the limits of solid solubility, the most likely solution will involve reducing the Schottky barrier height (phi SBH) to near zero. This dissertation focuses on a novel approach to reducing the phiSBH, with the goal of reducing specific contact resistivity. The presence of dipoles at certain oxide interfaces has been revealed by recent research into gate stack scaling. The goal is to utilize these dipoles in a contact, in order to controllably adjust the phi SBH, moving it from its pinned position near the middle of the gap closer to the conduction and/or the valence band edges. To this end, several successful experiments have been conducted. To test the feasibility of controllably adjusting the phiSBH several diodes were fabricated with tantalum nitride (TaN) metal contact and various oxide dipole layers. The ability to adjust the phiSBH to near the conduction and valence band edges is demonstrated, and improved electrical resistance compared with the standard contact metal, NiSi, is demonstrated on n-Si (Chapter 4). Deeper understanding of the dipole formation process, as well as the scalability and maximum phiSBH tuning is explored in extremely thin AlOx/SiO 2 layers using diodes with TaN metal contacts by varying deposition process techniques and parameters. The best layers are found to be extremely thin, but also with large dipole magnitudes, as evidenced by the changes in the phiSBH (Chapter 5). Applications to a real device are explored using a

  10. Multilocular developmental salivary gland defect

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Soo [Dept. of Oral and Maxillofacial Radiology and Oral Biology Research Institute, School of Dentistry, Chosun University, Gwangju (Korea, Republic of)

    2012-09-15

    Developmental salivary gland defect is a bone depression on the lingual surface of the mandible containing salivary gland or fatty soft tissue. The most common location is within the submandibular gland fossa and often close to the inferior border of the mandible. This defect is asymptomatic and generally discovered only incidentally during radiographic examination of the area. This defect also appears as a well-defined, corticated, unilocular radiolucency below the mandibular canal. Although it is not uncommon for this defect to appear as a round or ovoid radiolucency, multilocular radiolucency of these defects is relatively rare. This report presents a case of a developmental salivary gland defect with multilocular radiolucency in a male patient.

  11. Topological defects in extended inflation

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, E.J. (Department of Physics, University of Sussex, Brighton BN1 9QH (United Kingdom)); Kolb, E.W. (NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, IL (USA) Department of Astronomy and Astrophysics, Enrico Fermi Institute, The University of Chicago, Chicago, IL (USA)); Liddle, A.R. (Astronomy Centre, Department of Physics, University of Sussex, Brighton (United Kingdom))

    1990-10-15

    We consider the production of topological defects, especially cosmic strings, in extended-inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of the bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings.

  12. Topological defects in extended inflation

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, E.J. (Sussex Univ., Brighton (UK). Dept. of Physics); Kolb, E.W. (Fermi National Accelerator Lab., Batavia, IL (USA) Chicago Univ., IL (USA). Enrico Fermi Inst.); Liddle, A.R. (Sussex Univ., Brighton (UK). Astronomy Centre)

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs.

  13. Tailoring spin defects in diamond

    OpenAIRE

    F?varo de Oliveira, Felipe; Antonov, Denis; Wang, Ya; Neumann, Philipp; Momenzadeh, Seyed Ali; H?u?ermann, Timo; Pasquarelli, Alberto; Denisenko, Andrej; Wrachtrup, J?rg

    2017-01-01

    Atomic-size spin defects in solids are unique quantum systems. Most applications require nanometer positioning accuracy, which is typically achieved by low energy ion implantation. So far, a drawback of this technique is the significant residual implantation-induced damage to the lattice, which strongly degrades the performance of spins in quantum applications. In this letter we show that the charge state of implantation-induced defects drastically influences the formation of lattice defects ...

  14. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  15. Answer to comments on “Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition”

    Science.gov (United States)

    Chen, Leifeng; He, Hong

    2017-04-01

    Here, we reply to comments by Valentic et al. on our paper published in Electrochimica Acta (2014, 130: 279). They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell. We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices, not Au nanoparticles (film)/n-Si Schottky barrier devices. During the doping process, most of the Au nanopatricles covered the surfaces of the graphene. Schottky barriers between doped graphene and n-Si dominate the total cells properties. Through doping, by adjusting and tailoring the Fermi level of the graphene, the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell. They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles. But for our fabricated devices, we know that an oxide layer covered the Si surface, which makes it difficult for the Au ions to diffuse into the Si layer, due to the continuous growth of SiO{}2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.

  16. Real-time 2.5 Gbit/s ultra-wideband transmission using a Schottky diode-based envelope detector

    DEFF Research Database (Denmark)

    Rommel, Simon; Cimoli, Bruno; Valdecasa, Guillermo Silva

    2017-01-01

    An experimental demonstration of 2.5 Gbit/s real-time ultra-wideband transmission is presented, using a Schottky diode-based envelope detector fabricated ad-hoc using microstrip technology on a Rogers6002 substrate and surface-mount components. Real-time transmission with a BER below FEC threshold...

  17. Temperature dependent electrical characterisation of Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS Schottky diodes

    Directory of Open Access Journals (Sweden)

    Arjun Shetty

    2015-09-01

    Full Text Available This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS Schottky diode characteristics by the introduction of a layer of HfO2 (5 nm between the metal and semiconductor interface. The resulting Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V, increase in barrier height (0.52 eV to 0.63eV and a reduction in ideality factor (2.1 to 1.3 as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE. The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN and metal-insulator-semiconductor (Pt/HfO2/n-GaN Schottky diodes were fabricated. To gain further understanding of the Pt/HfO2/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV and the ideality factor decreased (3.6 to 1.2 with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  18. Dislocation-assisted tunnelling of charge carriers across the Schottky barrier on the hydride vapour phase epitaxy grown GaN

    Science.gov (United States)

    Chatterjee, Abhishek; Khamari, Shailesh K.; Dixit, V. K.; Oak, S. M.; Sharma, T. K.

    2015-11-01

    Barrier height and Ideality factor of Ni/n-GaN Schottky diodes are measured by performing temperature dependent current-voltage measurements. The measured value of barrier height is found to be much smaller than the theoretically calculated Schottky-Mott barrier height for the Ni/n-GaN diodes. Furthermore, a high value of ideality factor (>2) is measured at low temperatures. In order to understand these results, we need to consider a double Gaussian distribution of barrier height where the two components are related to the thermionic emission and thermionic filed emission mediated by dislocation-assisted tunnelling of carriers across the Schottky barrier. Thermionic emission is seen to dominate at temperatures higher than 170 K while the dislocation-assisted tunnelling dominates at low temperatures. The value of characteristic tunnelling energy measured from the forward bias current-voltage curves also confirms the dominance of dislocation-assisted tunnelling at low temperatures which is strongly corroborated by the Hall measurements. However, the value of characteristic tunnelling energy for high temperature range cannot be supported by the Hall results. This discrepancy can be eliminated by invoking a two layer model to analyse the Hall data which confirms that the charged dislocations, which reach the sample surface from the layer-substrate interface, provide an alternate path for the transport of carriers. The dislocation-assisted tunnelling of carriers governs the values of Schottky diode parameters at low temperature and the same is responsible for the observed inhomogeneity in the values of barrier height. The present analysis is applicable wherever the charge transport characteristics are severely affected by the presence of a degenerate layer at GaN-Sapphire interface and dislocations lines pierce the Schottky junction to facilitate the tunnelling of carriers.

  19. a 530-590 GHZ Schottky Heterodyne Receiver for High-Resolution Molecular Spectroscopy with Lille's Fast-Scan Fully Solid-State DDS Spectrometer

    Science.gov (United States)

    Pienkina, A.; Margulès, L.; Motiyenko, R. A.; Wiedner, Martina C.; Maestrini, Alain; Defrance, Fabien

    2017-06-01

    Laboratory spectroscopy, especially at THz and mm-wave ranges require the advances in instrumentation techniques to provide high resolution of the recorded spectra with precise frequency measurement that facilitates the mathematical treatment. We report the first implementation of a Schottky heterodyne receiver, operating at room temperature and covering the range between 530 and 590 GHz, for molecular laboratory spectroscopy. A 530-590 GHz non-cryogenic Schottky solid-state receiver was designed at LERMA, Observatoire de Paris and fabricated in partnership with LPN- CNRS (Laboratoire de Photonique et de Nanostructures), and was initially developed for ESA Jupiter Icy Moons Explorer (JUICE), intended to observe Jupiter and its icy moon atmospheres. It is based on a sub-harmonic Schottky diode mixer, designed and fabricated at LERMA-LPN, pumped by a Local Oscillator (LO), consisting of a frequency Amplifier/Multiplier chains (AMCs) from RPG (Radiometer Physics GmBh). The performance of the receiver was demonstrated by absorption spectroscopy of CH_3CH_2CN with Lille's fast-scan DDS spectrometer. A series of test measurements showed the receiver's good sensitivity, stability and frequency accuracy comparable to those of 4K QMC bolometers, thus making room-temperature Schottky receiver a competitive alternative to 4K QMC bolometers to laboratory spectroscopy applications. We will present the first results with such a combination of a compact room temperature Schottky heterodyne receiver and a fast-scan DDS spectrometer. J. Treuttel, L. Gatilova, A. Maestrini et al., 2016, IEEE Trans. Terahertz Science and Tech., 6, 148-155. This work was funded by the French ANR under the Contract No. ANR-13-BS05-0008-02 IMOLABS.

  20. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    Science.gov (United States)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  1. Schottky effect in the i -Zn-Ag-Sc-Tm icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant

    Science.gov (United States)

    Jazbec, S.; Kashimoto, S.; Koželj, P.; Vrtnik, S.; Jagodič, M.; Jagličić, Z.; Dolinšek, J.

    2016-02-01

    The analysis of low-temperature specific heat of rare-earth (RE)-containing quasicrystals and periodic approximants and consequent interpretation of their electronic properties in the T →0 limit is frequently hampered by the Schottky effect, where crystalline electric fields lift the degeneracy of the RE-ion Hund's rule ground state and introduce additional contribution to the specific heat. In this paper we study the low-temperature specific heat of a thulium-containing i -Zn-Ag-Sc-Tm icosahedral quasicrystal and its 1/1 Zn-Sc-Tm approximant, both being classified as "Schottky" systems. We have derived the crystal-field Hamiltonian for pentagonal symmetry of the crystalline electric field, pertinent to the class of Tsai-type icosahedral quasicrystals and their approximants, where the RE ions are located on fivefold axes of the icosahedral atomic cluster. Using the leading term of this Hamiltonian, we have calculated analytically the Schottky specific heat in the presence of an external magnetic field and made comparison to the experimental specific heat of the investigated quasicrystal and approximant. When the low-temperature specific heat C is analyzed in a C /T versus T2 scale (as it is customarily done for metallic specimens), the Schottky specific heat yields an upturn in the T →0 limit that cannot be easily distinguished from a similar upturn produced by the electron-electron interactions in exchange-enhanced systems and strongly correlated systems. Our results show that extraction of the electronic properties of RE-containing quasicrystals from their low-temperature specific heat may be uncertain in the presence of the Schottky effect.

  2. Space mapping and defect correction

    NARCIS (Netherlands)

    Echeverría, D.; Hemker, P.W.

    2005-01-01

    In this paper we show that space-mapping optimization can be understood in the framework of defect correction. Then, space-mapping algorithms can be seen as special cases of defect correction iteration. In order to analyze the properties of space mapping and the space-mapping function, we introduce

  3. Congenital heart defect corrective surgeries

    Science.gov (United States)

    ... born with one or more heart defects has congenital heart disease . Surgery is needed if the defect could harm the child's long term health or well-being. Description There are many types of pediatric heart surgery . Patent ductus arteriosus (PDA) ...

  4. Congenital Heart Defects (For Parents)

    Science.gov (United States)

    ... and related health problems. Common Heart Defects Common types of congenital heart defects, which can affect any part of the heart ... circulation. Echocardiograms are the primary tool for diagnosing congenital ... is a specialized type of ultrasound that allows diagnosis of heart problems ...

  5. Toward Intelligent Software Defect Detection

    Science.gov (United States)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  6. Holographic Chern-Simons defects

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Mitsutoshi [Department of Physics and Astronomy, University of Kentucky,Lexington, KY 40506 (United States); Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Melby-Thompson, Charles M. [Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Meyer, René [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York 11794-3800 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan); Sugimoto, Shigeki [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),The University of Tokyo Institutes for Advanced Study (UTIAS),The University of Tokyo, Kashiwanoha, Kashiwa, 277-8583 (Japan)

    2016-06-28

    We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  7. Built-in potential and validity of the Mott-Schottky analysis in organic bulk heterojunction solar cells

    Science.gov (United States)

    Mingebach, M.; Deibel, C.; Dyakonov, V.

    2011-10-01

    We investigated poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61 butyric acid methyl ester bulk heterojunction (BHJ) solar cells by means of pulsed photocurrent, temperature dependent current-voltage, and capacitance-voltage measurements. We show that a direct transfer of Mott-Schottky (MS) analysis from inorganic devices to organic BHJ solar cells is not generally appropriate to determine the built-in potential, since the resulting potential depends on the active layer thickness. Pulsed photocurrent measurements enabled us to directly study the case of quasi-flat bands (QFB) in the bulk of the solar cell. It is well below the built-in potential and differs by diffusion-induced band-bending at the contacts. In contrast to MS analysis, the corresponding potential is independent on the active layer thickness and therefore a better measure for flat band conditions in the bulk of a BHJ solar cell as compared to MS analysis.

  8. Effect of high energy electron irradiation on low frequency noise in 4H-SiC Schottky diodes

    Science.gov (United States)

    Kozlovski, V. V.; Lebedev, A. A.; Levinshtein, M. E.; Rumyantsev, S. L.; Palmour, J. W.

    2017-03-01

    The low-frequency noise in high voltage Ni/4H-SiC Schottky diodes irradiated with high energy (0.9 MeV) electrons was studied in the frequency range from 1 Hz to 50 kHz, temperature interval 295-410 K, and irradiation dose Φ from 0.2 × 1016 cm-2 to 7 × 1016 cm-2. The noise amplitude was found monotonically increasing with the irradiation dose. With the irradiation dose increase, the noise spectra on the linear part of the current voltage characteristic transform from the 1/f noise to the generation recombination noise of at least two trap levels. One of these levels can be classified as Z1/2 with the capture cross section determined from the noise measurements to be ˜10-15 cm2.

  9. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner.

    Science.gov (United States)

    Han, Sang-Pil; Ko, Hyunsung; Park, Jeong-Woo; Kim, Namje; Yoon, Young-Jong; Shin, Jun-Hwan; Kim, Dae Yong; Lee, Dong Hun; Park, Kyung Hyun

    2013-11-04

    We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiN(x) layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated.

  10. Combination of conductive filaments and Schottky behavior in multifunctional Sn1-xCuxO2-δ memristor

    Science.gov (United States)

    Mei, Fang; Shen, Hui; Li, Yang; Li, Liben; Zang, Guozhong; Zhou, Min; Ti, Ruixia; Yang, Dianyuan; Huang, Fengzhen; Lu, Xiaomei; Zhu, Jinsong

    2017-10-01

    Resistive switching behaviors of SnO2 films are largely improved by Cu acceptor doping. At a suitable Cu2+ concentration, a high ON/OFF resistance ratio (104), good endurance (104) and long retention (104 s) are achieved in the Cu/SnO2:Cu/Pt sandwich structure with the modulation of carriers and oxygen vacancies. As a memristor, the resistive switching can be triggered by one pulse or a train of pulses, and the latter mode could simulate the long-term potentiation of biological synapses. Moreover, the multi-resistance states during the reset process demonstrate a combination of abrupt and incremental resistive switching. The peculiar conductive behavior of the devices is considered to result from the cooperation of conductive filaments and Schottky barrier, with the oxygen vacancies serving as the bridge. These studies are significant for higher density storage and cognitive computing in future.

  11. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  12. Fabrication and characterization of well-aligned zinc oxide nanowire arrays and their realizations in Schottky-device applications

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Kin Mun; Grote, Fabian; Sun, Hui; Lei, Yong [Institute of Materials Physics, Center for Nanotechnology, University of Muenster (Germany); Wen, Liaoyong; Fang, Yaoguo [Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 201800 (China)

    2011-07-01

    Highly ordered arrays of vertical zinc oxide (ZnO) nanowires (NWs) or nanopores were fabricated in our group by first thermal evaporating a thin film of gold on the ultrathin alumina membrane (UTAM). The UTAM was then utilized as a substrate for the growth of the ordered arrays using a chemical vapour deposition (CVD) process. Alternatively, a modified CVD process was also used to fabricate ultra-long ZnO NWs with the length of the nanowire exceeding 100 micrometres. Subsequently, densely packed arrays of ZnO NWs Schottky diodes were synthesized by transferring the long NWs on a substrate using a dry contact printing method and the electrical contacts were made on the NWs with a photolithographic process. The interesting electrical properties of the ZnO NWs, diodes or other metal oxide NWs such as the field emission, electron transport and piezoelectric properties were characterized by current-voltage or by other appropriate measurements.

  13. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    Science.gov (United States)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  14. Nonconsecutive Pars Interarticularis Defects.

    Science.gov (United States)

    Elgafy, Hossein; Hart, Ryan C; Tanios, Mina

    2015-12-01

    Lumbar spondylolysis is a well-recognized condition occurring in adolescents because of repetitive overuse in sports. Nonconsecutive spondylolysis involving the lumbar spine is rare. In contrast to single-level pars defects that respond well to conservative treatment, there is no consensus about the management of multiple-level pars fractures; a few reports indicated that conservative management is successful, and the majority acknowledged that surgery is often required. The current study presents a rare case of pars fracture involving nonconsecutive segments and discusses the management options. In this case report, we review the patient's history, clinical examination, radiologic findings, and management, as well as the relevant literature. An 18-year-old man presented to the clinic with worsening lower back pain related to nonconsecutive pars fractures at L2 and L5. After 6 months of conservative management, diagnostic computed tomography-guided pars block was used to localize the symptomatic level at L2, which was treated surgically; the L5 asymptomatic pars fracture did not require surgery. At the last follow-up 2 years after surgery, the patient was playing baseball and basketball, and denied any back pain. This article reports a case of rare nonconsecutive pars fractures. Conservative management for at least 6 months is recommended. Successful management depends on the choice of appropriate treatment for each level. Single-photon emission computed tomography scan, and computed tomography-guided pars block are valuable preoperative tools to identify the symptomatic level in such a case.

  15. Temperature dependence of current-and capacitance-voltage characteristics of an Au/4H-SiC Schottky diode

    Science.gov (United States)

    Gülnahar, Murat

    2014-12-01

    In this study, the current-voltage (I-V) and capacitance-voltage (C-V) measurements of an Au/4H-SiC Schottky diode are characterized as a function of the temperature in 50-300 K temperature range. The experimental parameters such as ideality factor and apparent barrier height presents to be strongly temperature dependent, that is, the ideality factor increases and the apparent barrier height decreases with decreasing temperature, whereas the barrier height values increase with the temperature for C-V data. Likewise, the Richardson plot deviates at low temperatures. These anomaly behaviors observed for Au/4H-SiC are attributed to Schottky barrier inhomogeneities. The barrier anomaly which relates to interface of Au/4H-SiC is also confirmed by the C-V measurements versus the frequency measured in 300 K and it is interpreted by both Tung's lateral inhomogeneity model and multi-Gaussian distribution approach. The values of the weighting coefficients, standard deviations and mean barrier height are calculated for each distribution region of Au/4H-SiC using the multi-Gaussian distribution approach. In addition, the total effective area of the patches NAe is obtained at separate temperatures and as a result, it is expressed that the low barrier regions influence meaningfully to the current transport at the junction. The homogeneous barrier height value is calculated from the correlation between the ideality factor and barrier height and it is noted that the values of standard deviation from ideality factor versus q/3kT curve are in close agreement with the values obtained from the barrier height versus q/2kT variation. As a result, it can be concluded that the temperature dependent electrical characteristics of Au/4H-SiC can be successfully commented on the basis of the thermionic emission theory with both models.

  16. Evaluation of Polarization Effects of e- Collection Schottky CdTe Medipix3RX Hybrid Pixel Detector

    Science.gov (United States)

    Astromskas, Vytautas; Gimenez, Eva N.; Lohstroh, Annika; Tartoni, Nicola

    2016-02-01

    This paper focuses on the evaluation of operational conditions such as temperature, exposure time and flux on the polarization of a Schottky electron collection CdTe detector. A Schottky e- collection CdTe Medipix3RX hybrid pixel detector was developed as a part of the CALIPSO-HIZPAD2 EU project. The 128 ×128 pixel matrix and 0.75 mm thick CdTe sensor bump-bonded to Medipix3RX readout chips enabled the study of the polarization effects. Single and quad module Medipix3RX chips were used which had 128 ×128 and 256 ×256 pixel matrices, respectively. This study reports the sensor-level and pixel-level polarization effects of the detector obtained from a laboratory X-ray source. We report that the sensor-level polarization is highly dependent on temperature, flux and exposure time. Furthermore, the study of pixel-level polarization effects led to identification of a new type of pixel behaviour that is characterised by three distinct phases and, thus, named “tri-phase” (3-P) pixels. The 3-P pixels were the dominant cause of degradation of the flat-field image uniformity under high flux operation. A new method of identifying the optimum operational conditions that utilises a criterion related to the 3-P pixels is proposed. A generated optimum operational conditions chart under the new method is reported. The criterion is used for bias voltage reset depolarization of the detector. The method successfully represented the dependency of polarization on temperature, flux and exposure time and was reproducible for multiple sensors. Operating the detector under the 3-P pixel criterion resulted in the total efficiency not falling below 95%.

  17. Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure

    Science.gov (United States)

    Saha, B.; Sarkar, K.; Bera, A.; Deb, K.; Thapa, R.

    2017-10-01

    Delocalization of charge carriers through formation of native defects in NiO, to achieve a good metal oxide hole transport layer was attemted in this work and thus a heterojunction of p-type NiO and n-type FTO have been prepared through sol-gel process on FTO coated glass substrate. The synthesis process was stimulated by imparting large number of OH- sites during nucleation of Ni(OH)2 on FTO, so that during oxidation through annealing Ni vacancies are introduced. The structural properties as observed from X-ray diffraction measurement indicate formation of well crystalline NiO nanoparticles. Uniform distribution of NiO nanoparticles has been observed in the images obtained from scanning electron microscope. The occurrence of p-type conductivity in the NiO film was stimulated through the formation of delocalized defect carriers originated from crystal defects like vacancies or interstitials in the lattice. Ni vacancy creates shallow levels with respect to the valance band maxima and they readily produce holes. Thus a native p-type conductivity of NiO originates from Ni vacancies. NiO was thus obtained as an auspicious hole transport medium, which creates an expedient heterojunction at the interface with FTO. Excellent rectifying behavior was observed in the electrical J-V plot obtained from the prepared heterojunction. The results are explained from the band energy diagram of the NiO/FTO heterojunction. Remarkable photoresponse has been observed in the reverse characteristics of the heterojunction caused by photon generated electron hole pairs.

  18. Biomaterials in periodontal osseous defects

    Science.gov (United States)

    Lal, Nand; Dixit, Jaya

    2012-01-01

    Introduction Osseous defects in periodontal diseases require osseous grafts and guided tissue regeneration (GTR) using barrier membranes. The present study was undertaken with the objectives to clinically evaluate the osteogenic potential of hydroxyapatite (HA), cissus quadrangularis (CQ), and oxidized cellulose membrane (OCM) and compare with normal bone healing. Materials and Methods Twenty subjects with periodontitis in the age group ranging from 20 years to 40 years were selected from our outpatient department on the basis of presence of deep periodontal pockets, clinical probing depth ≥5 mm, vertical osseous defects obvious on radiograph and two- or three-walled involvement seen on surgical exposure. Infrabony defects were randomly divided into four groups on the basis of treatment to be executed, such that each group comprised 5 defects. Group I was control, II received HA, III received CQ and IV received OCM. Probing depth and attachment level were measured at regular months after surgery. Defects were re-exposed using crevicular incisions at 6 months. Results There was gradual reduction in the mean probing pocket depth in all groups, but highly significant in the site treated with HA. Gain in attachment level was higher in sites treated with HA, 3.2 mm at 6 months. Conclusion Hydroxyapatite and OCM showed good reduction in pocket depth, attachment level gain and osseous defect fill. Further study should be conducted by using a combination of HA and OCM in periodontal osseous defects with growth factors and stem cells. PMID:25756030

  19. 2010 Defects in Semiconductors GRC

    Energy Technology Data Exchange (ETDEWEB)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  20. DEFECTS SIMULATION OF ROLLING STRIP

    Directory of Open Access Journals (Sweden)

    Rudolf Mišičko

    2009-06-01

    Full Text Available The defects in the continuous casting slabs can be developed or kept down in principle by rolling technology, especially depend to sort, size and distribution of primary defects, as well as used of rolling parameters. Scope of the article is on observation behavior artificial surface and undersurface defects (scores without filler (surface defects and filling by oxides and casting powder (subsurface defects. First phase of hot rolling process have been done by software simulation DEFORM 3D setting to the limited condition for samples with surface defects. Samples of material with low-carbon steel of sizes h x b x l have been chosen and the surface defects shape „U” and „V” of scores have been injected artificially by software. The process of rolling have been simulated on the deformation temperatures 1200°C and 900°C, whereas on the both of this deformation temperatures have been applied amount of deformation 10 and 50 %. With respect to the process of computer simulation, it is not possible to truthful real oxidation condition (physical – chemical process during heat of metal, in the second phase of our investigation have been observed influence of oxides and casting powders inside the scores for a defect behavior in plastic deformation process (hot and cold rolling process in laboratory condition. The basic material was STN steel class 11 375, cladding material was steel on the bases C-Mn-Nb-V. Scores have been filled by scales to get from the heating temperatures (1100°C a 1250°C, varied types of casting powders, if you like mixture of scale and casting powders in the rate 1:4. The joint of the basic and cladding material have been done by peripheral welded joint. Experiment results from both phases are pointed on the evolution of original typology defects in rolling process.

  1. Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

    Directory of Open Access Journals (Sweden)

    Masao Kaneko

    2011-02-01

    Full Text Available The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction was also proved by Mott–Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at −0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN6]4− and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN6]4−. That is, the TiO2 nanosurface responds to [Fe(CN6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN6]4− around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (Efb lies near the redox potential of the iron complex.

  2. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al0.27GaN0.73(∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO2, SO2, and HCHO gases exhibit high sensitivity (0.88-1.88 ppm-1), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  3. Epidemiology of neural tube defects

    National Research Council Canada - National Science Library

    Seidahmed, Mohammed Z; Abdelbasit, Omar B; Shaheed, Meeralebbae M; Alhussein, Khalid A; Miqdad, Abeer M; Khalil, Mohamed I; Al-Enazy, Naif M; Salih, Mustafa A

    2014-01-01

    To find the prevalence of neural tube defects (NTDs), and compare the findings with local and international data, and highlight the important role of folic acid supplementation and flour fortification with folic acid in preventing NTDs...

  4. Birth Defects Data and Statistics

    Science.gov (United States)

    ... Submit" /> Information For… Media Policy Makers Data & Statistics Recommend on Facebook Tweet Share Compartir On This ... and critical. Read below for the latest national statistics on the occurrence of birth defects in the ...

  5. Birth Defects Research and Tracking

    Science.gov (United States)

    ... Network provides the prevalence of these defects and publishes updated data every year. The Tracking Network’s Data ... type="submit" value="Submit" /> Information For… Media Policy Makers File Formats Help: How do I view ...

  6. Low quantum defect laser performance

    Science.gov (United States)

    Bowman, Steven R.

    2017-01-01

    Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.

  7. Observation of silicon carbide Schottky barrier diode under applied reverse bias using atomic force microscopy/Kelvin probe force microscopy/scanning capacitance force microscopy

    Science.gov (United States)

    Uruma, Takeshi; Satoh, Nobuo; Yamamoto, Hidekazu

    2017-08-01

    We have observed a commercial silicon-carbide Schottky barrier diode (SiC-SBD) using our novel analysis system, in which atomic force microscopy (AFM) is combined with both Kelvin probe force microscopy (KFM; for surface-potential measurement) and scanning capacitance force microscopy (SCFM; for differential-capacitance measurement). The results obtained for the SiC-SBD under an applied reverse bias indicate both the scan area in the sample and a peak value of the SCFM signal in the region where the existence of trapped electrons is deduced from the KFM analysis. Thus, our measurement system can be used to examine commercial power devices; however, novel polishing procedures are required in order to investigate the Schottky contact region.

  8. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  9. Influence of Schottky contact on the C-V and J-V characteristics of HTM-free perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Huang Y.

    2017-01-01

    Full Text Available The influence of the Schottky contact is studied for hole transport material (HTM free CH3NH3PbI3 perovskite solar cells (PSCs, by using drift-diffusion and small signal models. The basic current-voltage and capacitance-voltage characteristics are simulated in reasonable agreement with experimental data. The build in potential of the finite CH3NH3PbI3 layer is extracted from a Mott-Schottky capacitance analysis. Furthermore, hole collector conductors with work-functions of more than 5.5 eV are proposed as solutions for high efficiency HTM-free CH3NH3PbI3 PSCs.

  10. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  11. Semi-insulating GaAs-based Schottky contacts in the role of detectors of ionising radiation: An effect of the interface treatment

    CERN Document Server

    Ivanco, J; Darmo, J; Krempasky, M; Besse, I; Senderak, R

    1999-01-01

    It is generally agreed that the substrate material quality plays a key role in the performance of back-to-back detectors of ionising radiation based on semi-insulating (SI) material. The aim of this paper is to evaluate usually overlooked problem, namely the influence of the Schottky contact preparation on detector performance. We report on different approaches to modify and control the quality of the metal/SI GaAs interface via a treatment of the SI-GaAs surface by means of low-temperature hydrogen plasma and wet etching. The measured electrical and detecting properties of such structures display a strong dependence on the history and the way the GaAs surface is treated prior to the metal evaporation. We point out, therefore, that the semiconductor surface treatment before the Schottky metallization plays a role of comparable importance to the influence of the SI-GaAs substrate properties on detector performances. (author)

  12. Electroluminescence from a forward-biased Schottky barrier diode on modulation Si {delta}-doped GaAs/InGaAs/AlGaAs heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Adam; Witczak, P.; Twardowski, A.; Baranowski, J. M.

    2001-06-18

    Electroluminescence (EL) from a forward-biased Schottky barrier diode on modulation Si {delta}-doped pseudomorphic GaAs/InGaAs/AlGaAs heterostructure with high mobility electron gas is investigated in this work. It has been found that the EL from the InGaAs quantum well can be observed at temperatures up to 90 K. The EL line shape depends on the current density, which reflects the filling of the InGaAs channel with electrons. The total integrated EL intensity depends linearly on the current density. We propose that hole diffusion from an inversion layer at the Schottky barrier is responsible for the observed optical recombination with electrons in the InGaAs quantum well. {copyright} 2001 American Institute of Physics.

  13. Junction characteristics of ITO/PANI-ZnS/Ag and ITO/PANI-CdS/Ag Schottky diodes: a comparative study

    Science.gov (United States)

    Dey, S. K.; Baglari, S.; Sarkar, D.

    2016-01-01

    Schottky junctions are constructed by depositing PANI-ZnS and PANI-CdS nanocomposite thin films on ITO electrodes. Current-voltage ( I- V) measurements of these systems are performed as a function of temperature in the range of 313-363 K. These junctions show Schottky diode nature. Various parameters, such as saturation current ( I 0), ideality factor ( n), barrier height ( ∅ 0) and series resistance ( R S), are calculated from diode characteristics relations. These parameters show strong temperature dependence. The values of I 0 and ∅ increase with increasing temperature, whereas the values of n and R S show decreasing trend. A Richardson plot of the data shows nonlinear behaviour with Richardson constant 76 and 45 A cm-2 K-2 for PANI-ZnS and PANI-CdS nanocomposite thin films, respectively.

  14. Modélisation compacte des transistors à nanotube de carbone à contacts Schottky et application aux circuits numériques

    OpenAIRE

    Najari, Montassar

    2010-01-01

    This PhD work presents a computationally efficient physics-based compact model for the Schottky barrier (SB) carbon nanotube field-effect transistor (CNTFET). This compact model includes a new analytical formulation of the channel charge, taking into account the influence of the source and drain SBs. Compact model simulation results (I–V characteristic and channel density of charge) as well as Monte Carlo simulation results, which are provided by a recent work, will be given and compared to e...

  15. Using Mott-Schottky Equation for Studing the Influence of Impurities in Niobium on the Properties of Anodic Niobium Films

    Science.gov (United States)

    Skatkov, L.; Gomozov, V.; Tulskiy, G.; Senkevich, I.; Deribo, S.

    2017-08-01

    The aim of this work analysis of additive influence in niobium on formation of defects in anodic layers Nb2O5. It was shown that occurrence in niobium of minor amount of metal admixtures, which generate in electric field cations with a charge equal to the charge of oxygen vacancies, causes an increase in defect concentration in anodic niobium pentoxide (ANP).

  16. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  17. Reverse blocking characteristics and mechanisms in Schottky-drain AlGaN/GaN HEMT with a drain field plate and floating field plates

    Science.gov (United States)

    Wei, Mao; Wei-Bo, She; Cui, Yang; Jin-Feng, Zhang; Xue-Feng, Zheng; Chong, Wang; Yue, Hao

    2016-01-01

    In this paper, a novel AlGaN/GaN HEMT with a Schottky drain and a compound field plate (SD-CFP HEMT) is presented for the purpose of better reverse blocking capability. The compound field plate (CFP) consists of a drain field plate (DFP) and several floating field plates (FFPs). The physical mechanisms of the CFP to improve the reverse breakdown voltage and to modulate the distributions of channel electric field and potential are investigated by two-dimensional numerical simulations with Silvaco-ATLAS. Compared with the HEMT with a Schottky drain (SD HEMT) and the HEMT with a Schottky drain and a DFP (SD-FP HEMT), the superiorities of SD-CFP HEMT lie in the continuous improvement of the reverse breakdown voltage by increasing the number of FFPs and in the same fabrication procedure as the SD-FP HEMT. Two useful optimization laws for the SD-CFP HEMTs are found and extracted from simulation results. The relationship between the number of the FFPs and the reverse breakdown voltage as well as the FP efficiency in SD-CFP HEMTs are discussed. The results in this paper demonstrate a great potential of CFP for enhancing the reverse blocking ability in AlGaN/GaN HEMT and may be of great value and significance in the design and actual manufacture of SD-CFP HEMTs. Project supported by the National Natural Science Foundation of China (Grant Nos. 61204085, 61334002, 61306017, 61474091, 61574112, and 61574110).

  18. Active and fast charge-state switching of single NV centres in diamond by in-plane Al-Schottky junctions

    Directory of Open Access Journals (Sweden)

    Christoph Schreyvogel

    2016-11-01

    Full Text Available In this paper, we demonstrate an active and fast control of the charge state and hence of the optical and electronic properties of single and near-surface nitrogen-vacancy centres (NV centres in diamond. This active manipulation is achieved by using a two-dimensional Schottky-diode structure from diamond, i.e., by using aluminium as Schottky contact on a hydrogen terminated diamond surface. By changing the applied potential on the Schottky contact, we are able to actively switch single NV centres between all three charge states NV+, NV0 and NV− on a timescale of 10 to 100 ns, corresponding to a switching frequency of 10–100 MHz. This switching frequency is much higher than the hyperfine interaction frequency between an electron spin (of NV− and a nuclear spin (of 15N or 13C for example of 2.66 kHz. This high-frequency charge state switching with a planar diode structure would open the door for many quantum optical applications such as a quantum computer with single NVs for quantum information processing as well as single 13C atoms for long-lifetime storage of quantum information. Furthermore, a control of spectral emission properties of single NVs as a single photon emitters – embedded in photonic structures for example – can be realized which would be vital for quantum communication and cryptography.

  19. Flicker noise comparison of direct conversion mixers using Schottky and HBT dioderings in SiGe:C BiCMOS technology

    DEFF Research Database (Denmark)

    Michaelsen, Rasmus Schandorph; Johansen, Tom Keinicke; Tamborg, Kjeld

    2015-01-01

    In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing on a...... circuit demonstrates a 1/f noise corner frequency around 10 kHz.......In this paper, we present flicker noise measurements of two X-band direct conversion mixers implemented in a SiGe:C BiCMOS technology. Both mixers use a ring structure with either Schottky diodes or diode-connected HBTs for double balanced operation. The mixers are packaged in a metal casing...... on an Arlon 25N substrate to shield the sensitive noise measurement. Conversion loss measurements of both mixers is performed both for on-wafer and packaged versions. The experimental results shows that the Schottky diode mixer exhibits a 1/f noise corner frequency of 250 kHz, while the diode connected HBT...

  20. A high-sensitive ultraviolet photodetector composed of double-layered TiO{sub 2} nanostructure and Au nanoparticles film based on Schottky junction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huan; Qin, Pei [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Yi, Guobin, E-mail: ygb702@163.com [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zu, Xihong [School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006 (China); Zhang, Li, E-mail: zhangli2368@126.com [School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 (China); Hong, Wei; Chen, Xudong [School of Chemistry and Chemical Engineering, Sun Yat-Sen (Zhongshan) University, Guangzhou, 510275 (China)

    2017-06-15

    In this study, a Schottky-type ultraviolet (UV) photodetector based on double-layered nanostructured TiO{sub 2}/Au films was fabricated. Double-layered titanium dioxide (TiO{sub 2}) nanostructures composed of one layer of TiO{sub 2} nano-flowers on one layer of TiO{sub 2} nanorods on fluorine-doped tin oxide (FTO) pre-coated glass substrates were synthesized via a convenient hydrothermal method using titanium butoxide and hydrochloric acid as the starting precursor, without involving the use of any other surfactants and catalysts. A granular-shaped thin-layer of Au film using vacuum sputter coating technique was subsequently deposited on TiO{sub 2} for the formation of Schottky-type photodetector. The as-fabricated Schottky device showed various photocurrent responses when irradiated with different wavelength of UV light. This suggests that the newly-developed photodetectors have promising potential for identifying different UV light wavelengths. - Highlights: • A novel double-layered TiO{sub 2} nanostructure was synthesized by a simple method. • An UV photodetector composed of TiO{sub 2} and Au was designed and fabricated. • The preparation method of TiO{sub 2}/Au UV photodetector was simple and convenient. • The UV photodetector based on TiO{sub 2}/Au showed excellent sensitivity to UV light.

  1. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic Latin-Small-Letter-Dotless-I nterlayer

    Energy Technology Data Exchange (ETDEWEB)

    Guellue, Oe. [Batman University, Faculty of Sciences and Arts, Department of Physics, Batman (Turkey); Aydogan, S., E-mail: saydogan@atauni.edu.tr [Atatuerk University, Faculty of Sciences, Department of Physics, 25240-Erzurum (Turkey); Tueruet, A. [Atatuerk University, Faculty of Sciences, Department of Physics, 25240-Erzurum (Turkey)

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal-semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current-voltage (I-V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I-V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 {mu}A and 240 mV, respectively.

  2. Temperature dependent forward current-voltage characteristics of Ni/Au Schottky contacts on AlGaN/GaN heterostructures described by a two diodes model

    Science.gov (United States)

    Greco, Giuseppe; Giannazzo, Filippo; Roccaforte, Fabrizio

    2017-01-01

    This paper reports on the temperature dependence of Ni/Au Schottky contacts on AlGaN/GaN heterostructures. The electrical properties of the Schottky barrier were monitored by means of forward current-voltage (I-V) measurements, while capacitance-voltage measurements were used to determine the properties of the two dimensional electron gas. The forward I-V characteristics of Schottky diodes revealed a strong deviation from the ideal behavior, which could not be explained by a standard thermionic emission model. Thus, the Ni/AlGaN/GaN system has been described by a "two diode model," considering the presence of a second barrier height at the AlGaN/GaN heterojunction. Following this approach, the anomalous I-V curves could be explained and the value of the flat-band barrier height (at zero-electric field) could be correctly determined, thus resulting in good agreement with literature data based on photoemission measurements.

  3. Barrier height modification and mechanism of carrier transport in Ni/in situ grown Si3N4/n-GaN Schottky contacts

    Science.gov (United States)

    Karpov, S. Y.; Zakheim, D. A.; Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Brunkov, P. N.; Lundina, E. Y.; Tsatsulnikov, A. F.

    2018-02-01

    In situ growth of an ultra-thin (up to 2.5 nm) Si3N4 film on the top of n-GaN is shown to reduce remarkably the height of the barrier formed by deposition of Ni-based Schottky contact. The reduction is interpreted in terms of polarization dipole induced at the Si3N4/n-GaN interface and Fermi level pinning at the Ni/Si3N4 interface. Detailed study of temperature-dependent current-voltage characteristics enables identification of the electron transport mechanism in such Schottky diodes under forward bias: thermal/field electron emission over the barrier formed in n-GaN followed by tunneling through the Si3N4 film. At reverse bias and room temperature, the charge transfer is likely controlled by Poole-Frenkel ionization of deep traps in n-GaN. Tunneling exponents at forward and reverse biases and the height of the Ni/Si3N4 Schottky barrier are evaluated experimentally and compared with theoretical predictions.

  4. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  5. Schottky-barrier heights of single-crystal NiSi2 on Si(111): The effect of a surface p-n junction

    Science.gov (United States)

    Tung, R. T.; Ng, K. K.; Gibson, J. M.; Levi, A. F. J.

    1986-05-01

    Current-voltage, capacitance-voltage, and activation-energy measurements obtained for epitaxial nickel silicides grown on Si(111) have exposed the importance of the temperature used to flash-evaporate oxide off the surface prior to metal deposition. Near-ideal behavior is found for Schottky barriers grown on substrates cleaned at ~820 °C in ultrahigh vacuum. The Fermi-level positions at the interfaces of single-crystal type-A and type-B NiSi2 are shown to differ by greater than 100 meV. Transmission electron microscopy demonstrated the epitaxial perfection of these silicide layers. At a cleaning temperature of 1050 °C, the apparent Schottky-barrier heights increased substantially for substrates with a doping concentration of ND less than approximately 1015 cm-3. This increase is due to the conversion of the n-type semiconductor surface region to p type during the 1050 °C anneal. The presence of this p-n junction results in a high apparent Schottky-barrier height (>~0.75 eV) which no longer bears an immediate relationship to the interface Fermi-level position. Recent discrepancies reported by different groups concerning the barrier heights of NiSi2 on Si(111) are attributed to this effect.

  6. Low Contact Resistivity with Low Silicide/p+-Silicon Schottky Barrier for High-Performance p-Channel Metal-Oxide-Silicon Field Effect Transistors

    Science.gov (United States)

    Tanaka, Hiroaki; Isogai, Tatsunori; Goto, Tetsuya; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro

    2010-04-01

    A current drivability improvement of p-channel metal-oxide-silicon field effect transistors (MOSFETs) is necessary for the performance enhancement of complementary metal-oxide-semiconductor (CMOS) circuits. In this paper, we present the key technology for fabricating indispensable CMOS circuits with a small Schottky barrier height and a low contact resistance for p-type silicon using Pd2Si. We fabricated a Pd2Si gate Schottky barrier diode and a Kelvin pattern on silicon. The measured Schottky barrier height is 0.29 eV for p-type silicon. We also realized a very low contact resistivity of 3.7 ×10-9 Ω cm2 for the p+ region of silicon. The p-channel MOSFET with Pd2Si source/drain contacts realized a good characteristic, that is, a small off current. The technology developed in this work involves silicide formation for source/drain contacts of p-channel MOSFETs, which is expected to realize the performance enhancement of MOSFETs.

  7. Positron lifetime calculation for defects and defect clusters in graphite

    CERN Document Server

    Onitsuka, T; Takenaka, M; Tsukuda, N; Kuramoto, E

    2000-01-01

    Calculations of positron lifetime have been made for vacancy type defects in graphite and compared with experimental results. Defect structures were obtained in a model graphite lattice after including relaxation of whole lattice as determined by the molecular dynamics method, where the interatomic potential given by Pablo Andribet, Dominguez-Vazguez, Mari Carmen Perez-Martin, Alonso, Jimenez-Rodriguez [Nucl. Instrum. and Meth. 115 (1996) 501] was used. For the defect structures obtained via lattice relaxation positron lifetime was calculated under the so-called atomic superposition method. Positron lifetimes 204 and 222 ps were obtained for the graphite matrix and a single vacancy, respectively, which can be compared with the experimental results 208 and 233 ps. For planar vacancy clusters, e.g., vacancy loops, lifetime calculation was also made and indicated that lifetime increases with the number of vacancies in a cluster. This is consistent with the experimental result in the region of higher annealing te...

  8. Simulation study of a new InGaN p-layer free Schottky based solar cell

    Science.gov (United States)

    Adaine, Abdoulwahab; Ould Saad Hamady, Sidi; Fressengeas, Nicolas

    2016-08-01

    On the road towards next generation high efficiency solar cells, the ternary Indium Gallium Nitride (InGaN) alloy is a good passenger since it allows to cover the whole solar spectrum through the change in its Indium composition. The choice of the main structure of the InGaN solar cell is however crucial. Obtaining a high efficiency requires to improve the light absorption and the photogenerated carriers collection that depend on the layers parameters, including the Indium composition, p- and n-doping, device geometry … Unfortunately, one of the main drawbacks of InGaN is linked to its p-type doping, which is very difficult to realize since it involves complex technological processes that are difficult to master and that highly impact the layer quality. In this paper, the InGaN p-n junction (PN) and p-i-n junction (PIN) based solar cells are numerically studied using the most realistic models, and optimized through mathematically rigorous multivariate optimization approaches. This analysis evidences optimal efficiencies of 17.8% and 19.0% for the PN and PIN structures. It also leads to propose, analyze and optimize p-layer free InGaN Schottky-Based Solar Cells (SBSC): the Schottky structure and a new MIN structure for which the optimal efficiencies are shown to be a little higher than for the conventional structures: respectively 18.2% and 19.8%. The tolerance that is allowed on each parameter for each of the proposed cells has been studied. The new MIN structure is shown to exhibit the widest tolerances on the layers thicknesses and dopings. In addition to its being p-layer free, this is another advantage of the MIN structure since it implies its better reliability. Therefore, these new InGaN SBSC are shown to be alternatives to the conventional structures that allow removing the p-type doping of InGaN while giving photovoltaic (PV) performances at least comparable to the standard multilayers PN or PIN structures.

  9. Defects in conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Billò, Marco [Dipartimento di Fisica, Università di Torino, and Istituto Nazionale di Fisica Nucleare - sezione di Torino,Via P. Giuria 1 I-10125 Torino (Italy); Gonçalves, Vasco [Centro de Física do Porto,Departamento de Física e Astronomia Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); ICTP South American Institute for Fundamental Research Instituto de Física Teórica,UNESP - University Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Lauria, Edoardo [Institute for Theoretical Physics, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Meineri, Marco [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Scuola Normale Superiore, and Istituto Nazionale di Fisica Nucleare - sezione di Pisa,Piazza dei Cavalieri 7 I-56126 Pisa (Italy)

    2016-04-15

    We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point functions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.

  10. Atomistic stimulation of defective oxides

    CERN Document Server

    Minervini, L

    2000-01-01

    defect processes. The predominant intrinsic disorder reaction and the mechanism by which excess oxygen is accommodated are established. Furthermore, the most favourable migration mechanism and pathway for oxygen ions is predicted. Chapters 7 and 8 investigate pyrochlore oxides. These materials are candidates for solid oxide fuel cell components and as actinide host phases. Such applications require a detailed understanding of the defect processes. The defect energies, displayed as contour maps, are able to account for structure stability and, given an appropriate partial charge potential model, to accurately determine the oxygen positional parameter. In particular, the dependence of the positional parameter on intrinsic disorder is predicted. It is demonstrated, by radiation damage experiments, that these results are able to predict the radiation performance of pyrochlore oxides. Atomistic simulation calculations based on energy minimization techniques and classical pair potentials are used to study several i...

  11. Theory of Defects in Semiconductors

    CERN Document Server

    Drabold, David A

    2007-01-01

    Semiconductor science and technology is the art of defect engineering. The theoretical modeling of defects has improved dramatically over the past decade. These tools are now applied to a wide range of materials issues: quantum dots, buckyballs, spintronics, interfaces, amorphous systems, and many others. This volume presents a coherent and detailed description of the field, and brings together leaders in theoretical research. Today's state-of-the-art, as well as tomorrow’s tools, are discussed: the supercell-pseudopotential method, the GW formalism,Quantum Monte Carlo, learn-on-the-fly molecular dynamics, finite-temperature treatments, etc. A wealth of applications are included, from point defects to wafer bonding or the propagation of dislocation.

  12. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode

    Science.gov (United States)

    Li, Lian-Bi; Chen, Zhi-Ming; Ren, Zhan-Qiang; Gao, Zhan-Jun

    2013-09-01

    The energy-band structure and non-ultraviolet photoelectric properties of a Ni/n-Si/N+-SiC isotype heterostructure Schottky photodiode are simulated by using Silvaco-Atlas. There are energy offsets in the conduction and valance band of the heterojunction, which are about 0.09 eV and 1.79 eV, respectively. The non-UV photodiode with this structure is fabricated on a 6H-SiC(0001) substrate. J—V measurements indicate that the device has good rectifying behavior with a rectification ratio up to 200 at 5 V, and the turn-on voltage is about 0.7 V. Under non-ultraviolet illumination of 0.6 W/cm2, the device demonstrates a significant photoelectric response with a photocurrent density of 2.9 mA/cm2 and an open-circuit voltage of 63.0 mV. Non-ultraviolet operation of the SiC-based photoelectric device is initially realized.

  13. Schottky Diode Applications of the Fast Green FCF Organic Material and the Analyze of Solar Cell Characteristics

    Science.gov (United States)

    Çaldiran, Z.; Aydoğan, Ş.; İncekara, Ü.

    2016-05-01

    In this study, a device applications of organic material Fast Green FCF (C37H34N2Na2O10S3Na2) has been investigated. After chemical cleaning process of boron doped H-Si crystals, Al metal was coated on the one surface of crystals by thermal evaporation and fast green organic materials were coated on other surface of crystals with spin coating method (coating parameters; 800 rpm for 60 s). Finally, Ni metal was coated on Fast Green by sputtering and we obtained the Ni/Fast Green FCF/n-Si/Al Schottky type diode. And then we calculated the basic diode parameters of device with current-voltage (I-V) and capacitance- voltage (C-V) measurements at the room temperature. We calculated the ideality factory (n), barrier height (Φb) of rectifing contact from I-V measurements using thermionic emission methods. Furthermore, we calculated ideality factory (n), barrier height (Φb) and series resistance (Rs) of device using Cheung and Norde functions too. The diffusion potential, barrier height, Fermi energy level and donor concentration have been determined from the linear 1/C2-V curves at reverse bias, at room temperature and various frequencies. Besides we measured the current-voltage (I-V) at under light and analyzed the characteristics of the solar cell device.

  14. A Sheath Collision Model with Thermionic Electron Emission and the Schottky Correction Factor for Work Function of Wall Material

    CERN Document Server

    Pekker, Leonid

    2015-01-01

    This paper proposes a model that expands Godyak's collisional sheath model to the case of hot electrodes (anode or cathode) with thermionic electron emission. In the model, the electrodes are assumed to be made from refractory metals and, consequently, the erosion of the electrodes is small and can be neglected. In the frame of two temperature thermal plasma modeling, this model allows self-consistent calculation of the sheath potential drop, the Schottky correction factor for the work function of the wall material, the thermionic electron current density, and the heat fluxes of the charged particles from the plasma to the wall. The model is applied to the cathode spot at the tungsten cathode in argon. It is shown that the Shottky correction factor plays a crucial role in modeling high-intensity arcs. It is demonstrated that a virtual cathode can be formed in the atmospheric pressure argon plasma at the cathode surface temperature of 4785 K if the cathode current density is sufficiently small. The heat flux t...

  15. The effect of annealing temperature on the electrical characterization of Co/n type GaP Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Orak, İ., E-mail: ikramorak@gmail.com [Vocational School of Health Services, Bingöl University, 12000 Bingöl (Turkey); Ejderha, K. [Vocational School of Technical Sciences, Bingöl University, 12000 Bingöl (Turkey); Sönmez, E. [Department of Physics, Kazim Karabekir Education Faculty, Atatürk University, Erzurum 25240 (Turkey); Alanyalıoğlu, M. [Faculty of Science, Department of Chemistry, 25240 Erzurum (Turkey); Turut, A. [Faculty of Sciences, Department of Engineering Physics, Istanbul Medeniyet University, 34730 Istanbul (Turkey)

    2015-01-15

    The Co/n-GaP nano-Schottky diodes have been fabricated to investigate effect of annealing temperature on the characteristics of the device. DC Magnetron sputtering technique has been used for Co metallic contact. The samples have been annealed for three minutes at 400 °C and 600 °C. XRD analyzes of the devices subjected to thermal annealing process have been investigated. Surface images have been taken with atomic force microscopy (AFM) in order to examine the morphology of the surface of the metal layer before and after the annealing the sample. The current–voltage (I–V) measurements taken at room temperature have shown that the ideality factor and series resistance decrease with the increasing annealing temperature. The ideality factor was found to be 1.02 for sample annealed at 400 °C. Before and after annealing, depending on the temperature measurement, the capacitance–frequency (C–f), and conductance–frequency (G–f) have been measured, and graphs have been plotted.

  16. Submillimeter wave GaAs Schottky diode application based study and optimization for 0.1-1.5 THz

    Science.gov (United States)

    Jenabi, Sarvenaz; Malekabadi, Ali; Deslandes, Dominic; Boone, Francois; Charlebois, Serge A.

    2017-08-01

    In this paper, a design and optimization method for submillimeter-wave Schottky diode is proposed. Parasitic capacitance is significantly reduced to under 20% of the total capacitance of the diode. The parasitic capacitance value is measured to be 0.6 fF for 1 μm anode radius which increased the cut-off frequency to 1.5 THz. A corresponding microfabrication process that provides higher degrees of freedom for the anode diameter, air-bridge dimensions and distance to the substrate is introduced and implemented. The DC and RF measurements are provided and compared with the simulations. In order to provide a better understanding of the diode behavior, the limiting factors of the cut-off frequency for different applications are studied and compared. For the mixer/multiplier mode, an improved and expanded formulation for calculation of the cut-off frequency is introduced. It is shown that the usable voltage bias range (with acceptable cut-off frequency) is limited by the exponential reduction of junction resistance, Rj , in mixer/multiplier mode.

  17. Analytical model of threshold voltage degradation due to localized charges in gate material engineered Schottky barrier cylindrical GAA MOSFETs

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2016-10-01

    The threshold voltage degradation due to the hot carrier induced localized charges (LC) is a major reliability concern for nanoscale Schottky barrier (SB) cylindrical gate all around (GAA) metal-oxide-semiconductor field-effect transistors (MOSFETs). The degradation physics of gate material engineered (GME)-SB-GAA MOSFETs due to LC is still unexplored. An explicit threshold voltage degradation model for GME-SB-GAA-MOSFETs with the incorporation of localized charges (N it) is developed. To accurately model the threshold voltage the minimum channel carrier density has been taken into account. The model renders how +/- LC affects the device subthreshold performance. One-dimensional (1D) Poisson’s and 2D Laplace equations have been solved for two different regions (fresh and damaged) with two different gate metal work-functions. LCs are considered at the drain side with low gate metal work-function as N it is more vulnerable towards the drain. For the reduction of carrier mobility degradation, a lightly doped channel has been considered. The proposed model also includes the effect of barrier height lowering at the metal-semiconductor interface. The developed model results have been verified using numerical simulation data obtained by the ATLAS-3D device simulator and excellent agreement is observed between analytical and simulation results.

  18. Hybrid functional and quasiparticle calculations of the Schottky barrier height at TiN/HfO2 interface

    Science.gov (United States)

    Oh, Young Jun; Lee, Alex Taekyung; Noh, Hyeon-Kyun; Chang, K. J.

    2014-03-01

    In high-k/metal gate transistors, it is important to control the metal work function such that it should be close to the valence and conduction band edges of Si in p- and n-channel devices, respectively. The Schottky barrier height (SBH) is affected by composition of metal gate, impurity, and deposition process. In theoretical studies, using the local density functional approximation, the SBH is severely underestimated because of the underestimation of the dielectric band gap. In this work, we perform both hybrid functional and quasiparticle calculations to improve the band gap and effective work function in TiN/HfO2 interface. We consider two types of TiN/HfO2 interface structures, which consist of either Ti-O or N-Hf interface bonds. Depending on the type of interface bonds, the SBH differs by 0.36 eV. In the many-body perturbation theory, the GW0 approach, which employs the self-consistent Green's function and the full frequency-dependent dielectric function, greatly improves the agreement of the SBH with experiments. We discuss the effects of the self-consistency and the plasmon-pole approximation on the SBH. On the other hand, with the hybrid functional, the SBH is overestimated due to the larger downward shift of the valence band edge of HfO2.

  19. Screening Tests for Birth Defects

    Science.gov (United States)

    ... Rate Combined first-trimester screening Blood test for PAPP-A and hCG, plus an ultrasound exam Down syndrome ... tube defects 81% Integrated screening Blood test for PAPP-A and an ultrasound exam in the first trimester, ...

  20. Space Mapping and Defect Correction

    NARCIS (Netherlands)

    D. Echeverria (David); D.J.P. Lahaye (Domenico); P.W. Hemker (Piet); W.H.A. Schilders (Wil); H.A. van der Vorst (Henk); J. Rommes

    2008-01-01

    textabstractIn this chapter we present the principles of the space-mapping iteration techniques for the efficient solution of optimization problems. We also show how space-mapping optimization can be understood in the framework of defect correction. We observe the difference between the solution

  1. Space mapping and defect correction

    NARCIS (Netherlands)

    Echeverría, D.; Lahaye, D.; Hemker, P.W.; Schilders, W.H.A.; van der Vorst, H.A.; Rommes, J.

    2008-01-01

    In this chapter we present the principles of the space-mapping iteration techniques for the efficient solution of optimization problems. We also show how space-mapping optimization can be understood in the framework of defect correction. We observe the difference between the solution of the

  2. Delamination initiated by a defect

    DEFF Research Database (Denmark)

    Biel, Anders; Toftegaard, Helmuth Langmaack

    2016-01-01

    Composite materials in wind turbines are mainly joined with adhesives. Adhesive joining is preferable since it distributes the stresses over a larger area. This study shows how a defect can influence the fracture behaviour of adhesively joined composite. Repeated experiments are performed using...

  3. Delamination initiated by a defect

    Science.gov (United States)

    Biel, A.; Toftegaard, H.

    2016-07-01

    Composite materials in wind turbines are mainly joined with adhesives. Adhesive joining is preferable since it distributes the stresses over a larger area. This study shows how a defect can influence the fracture behaviour of adhesively joined composite. Repeated experiments are performed using double cantilever beam specimens loaded with bending moments. The specimens consist of two 8 mm thick GFRP-laminates which are joined by a 3 mm thick epoxy adhesive. A thin foil close to one of the laminates is used to start the crack. For some of the specimens a defect is created by an initial load-unload operation. During this operation, a clamp is used in order to prevent crack propagation in the main direction. For the specimens without defect, the crack propagates in the middle of the adhesive layer. For the specimens with defect, the crack directly deviates into the laminate. After about 25 mm propagation in the laminate, the crack returns to the adhesive. Compared to the adhesive the fracture energy for the laminate is significantly higher.

  4. Ocular defects in cerebral palsy

    OpenAIRE

    Katoch Sabita; Devi Anjana; Kulkarni Prajakta

    2007-01-01

    There is a high prevalence of ocular defects in children with developmental disabilities. This study evaluated visual disability in a group of 200 cerebral palsy (CP) patients and found that 68% of the children had significant visual morbidity. These findings emphasize the need for an early ocular examination in patients with CP.

  5. Ocular defects in cerebral palsy

    Directory of Open Access Journals (Sweden)

    Katoch Sabita

    2007-01-01

    Full Text Available There is a high prevalence of ocular defects in children with developmental disabilities. This study evaluated visual disability in a group of 200 cerebral palsy (CP patients and found that 68% of the children had significant visual morbidity. These findings emphasize the need for an early ocular examination in patients with CP.

  6. Ocular defects in cerebral palsy.

    Science.gov (United States)

    Katoch, Sabita; Devi, Anjana; Kulkarni, Prajakta

    2007-01-01

    There is a high prevalence of ocular defects in children with developmental disabilities. This study evaluated visual disability in a group of 200 cerebral palsy (CP) patients and found that 68% of the children had significant visual morbidity. These findings emphasize the need for an early ocular examination in patients with CP.

  7. Vitamins and neural tube defects

    OpenAIRE

    Harris, Rodney

    1988-01-01

    The use of vitamin supplements by women around the time of conception was examined and compared in those having babies with neural tube defects, those with still births or some other type of malformation, and in women who had normal babies.

  8. Defect branes as Alice strings

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Takashi [Theoretical Biology Laboratory, RIKEN,Wako 351-0198 (Japan); Sakatani, Yuho [Department of Physics and Astronomy,Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-03-25

    There exist various defect-brane backgrounds in supergravity theories which arise as the low energy limit of string theories. These backgrounds typically have non-trivial monodromies, and if we move a charged probe around the center of a defect, its charge will be changed by the action of the monodromy. During the process, the charge conservation law seems to be violated. In this paper, to resolve this puzzle, we examine a dynamics of the charge changing process and show that the missing charge of the probe is transferred to the background. We then explicitly construct the resultant background after the charge transfer process by utilizing dualities. This background has the same monodromy as the original defect brane, but has an additional charge which does not have any localized source. In the literature, such a charge without localized source is known to appear in the presence of Alice strings. We argue that defect branes can in fact be regarded as a realization of Alice strings in string theory and examine the charge transfer process from that perspective.

  9. Atrial Septal Defect (For Parents)

    Science.gov (United States)

    ... location, and severity of the defect. Very small ASDs might not need any treatment. In other cases, the cardiologist may recommend follow-up visits for observation. Usually, though, if an ASD hasn't closed on its own by the ...

  10. Birth defects surveillance·

    African Journals Online (AJOL)

    1989-07-01

    Jul 1, 1989 ... number of population- and hospital-based birth defect surveil- lance systems in operation throughout the ... on the PMNS summary sheet are classified according to anatomical systems rather than specific ... taxonomy; they were then coded in the Department of Com- munity Health. The coding system used ...

  11. Building defects in Danish construction: project characteristics influencing the occurrence of defects at handover

    DEFF Research Database (Denmark)

    Schultz, Casper Siebken; Jørgensen, Kirsten; Bonke, Sten

    2015-01-01

    about correlations between project characteristics and the extent of defects measured at handover. Results show statistically significant differences between building projects characterized by no or few defects compared with building projects with many and/ or serious defects. Determining...

  12. A new class of integrable defects

    Energy Technology Data Exchange (ETDEWEB)

    Corrigan, E; Zambon, C [Department of Mathematical Sciences, Durham University, Durham DH1 3LE (United Kingdom)], E-mail: edward.corrigan@durham.ac.uk, E-mail: cristina.zambon@durham.ac.uk

    2009-11-27

    An alternative Lagrangian definition of an integrable defect is provided and analysed. The new approach is sufficiently broad to allow a description of defects within the Tzitzeica model, which was not possible in previous approaches, and may be generalizable. New, two-parameter, sine-Gordon defects are also described, which have characteristics resembling a pair of 'fused' defects of a previously considered type. The relationship between these defects and Baecklund transformations is described and a Hamiltonian description of integrable defects is proposed.

  13. Casting defects analysis by the Pareto method

    Directory of Open Access Journals (Sweden)

    B. Borowiecki

    2011-07-01

    Full Text Available On the basis of receive results formed of diagram Pareto Lorenz. On the basis of receive graph it affirmed, that for 70% general number casting defects answered 3 defects (9 contribution – 100% defects. For 70% general number defects of influence it has three type of causes: sand holes, porosity and slaginclusions. Thedefects show that it is necessary to take up construction gatingsystem. The remaining 8 causes have been concerned only 25%, with general number of casting defects. Analysis of receive results permit to determine of direction of correct actions in order to eliminate or to limit the most defects.

  14. A rare type of Gerbode defect.

    Science.gov (United States)

    Panduranga, Prashanth; Mukhaini, Mohammed

    2011-07-01

    A Gerbode defect is a left ventricle to right atrial communication. The type I defect (direct, acquired) results in a direct shunt through the atrioventricular part of membranous septum, while a type II (indirect, congenital) defect results in an indirect shunt through a perimembranous ventricular septal defect (VSD) and a defect in the septal tricuspid valve leaflet. We report a rare type of Gerbode defect wherein a small perimembranous VSD is completely covered by an elongated sail-like anterior tricuspid leaflet forming an aneurysm and directing the shunt into right atrium. © 2011, Wiley Periodicals, Inc.

  15. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    Science.gov (United States)

    Iwamoto, Naoya; Azarov, Alexander; Ohshima, Takeshi; Moe, Anne Marie M.; Svensson, Bengt G.

    2015-07-01

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 1015 cm-3 range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ˜1014 cm-3). Schottky barrier diodes fabricated on substrates annealed at 1400-1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  16. When Your Baby Has a Birth Defect

    Science.gov (United States)

    ... bifida, and lung problems. These procedures can be controversial, though, because they sometimes cause premature labor. And ... Teens For Kids For Parents MORE ON THIS TOPIC Birth Defects Congenital Heart Defects Cleft Lip and ...

  17. Radiation-resistant photostructure for Schottky diode based on Cr/In2Hg3Te6

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2016-05-01

    Full Text Available Ge, Si, InGaAs, GaInAsP photodiodes are used as optical radiation receivers and function in a spectral range of transparency of quartz fiberglass. For the optical systems operated in the increased radioactivity the photodetectors' application on In2Hg3Te6 crystal base characterized by a photosensitivity in the spectral range of 0,5-1,6 mm and also by increased radiation resistance to alpha, beta and gamma radiation is most acceptable. Schottky photodiode structure was designed on the base of this semiconductor formed by a modified floating zone recrystallization technique where the sedimentation effect was leveled. It consists of n-In2Hg3Te6 substrate and deposited by cathode sputtering Cr barrier layer of thickness within a range 10-11 nm choice of Cr is determined by its optimal optical, electric and adhesive features in high quality radiation-resistant photodiode structures manufacturing. Indium and nichrome are used as ohmic contacts. The barrier structures have the contact area of 1,13 mm2 with photo response of 0,6-1,6 mm at the maximal sensitivity 0,43 A/W on the wavelength l,55 mm. Reverse dark current of these structures do not exceed 4 mA at the bias of 1 V (T=295 K, and the potential barrier height is equal to 0,41 eV. The tests of radiation resistance of these structures demonstrated their ability to function at doses of 2⋅108 rem without evident parameters changes. This allows using them in practical aims in the conditions of high radiation.

  18. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  19. [Craniofacial prostheses for facial defects].

    Science.gov (United States)

    Federspil, P A

    2010-06-01

    Craniofacial prostheses (or epitheses) are artificial substitutes for facial defects. Today, prostheses made of silicone are state-of-the-art. They may be fixed anatomically (to already existing structures), mechanically (to spectacle frames), chemically (using adhesives), or surgically (to osseointegrated titanium implants). With the existing extraoral implant systems, prostheses may be securely anchored to the bone regardless of size and location of the defect. The classic atraumatic surgical technique has remained an unchanged prerequisite for successful implantation by avoidance of any heat trauma to the bone. This review outlines the indications and contra-indications as well as advantages and disadvantages of craniofacial prostheses and their retention methods in various facial regions. It summarizes the basic principles of extraoral implantology in respect to implant positioning and the management of children and radiated patients.

  20. Cooperation and Defection in Ghetto

    Science.gov (United States)

    Kułakowski, Krzysztof

    We consider ghetto as a community of people ruled against their will by an external power. Members of the community feel that their laws are broken. However, attempts to leave ghetto makes their situation worse. We discuss the relation of the ghetto inhabitants to the ruling power in context of their needs, organized according to the Maslow hierarchy. Decisions how to satisfy successive needs are undertaken in cooperation with or defection the ruling power. This issue allows to construct the tree of decisions and to adopt the pruning technique from the game theory. Dynamics of decisions can be described within the formalism of fundamental equations. The result is that the strategy of defection is stabilized by the estimated payoff.

  1. Packing defects into ordered structures

    DEFF Research Database (Denmark)

    Bechstein, R.; Kristoffersen, Henrik Høgh; Vilhelmsen, L.B.

    2012-01-01

    We have studied vicinal TiO2(110) surfaces by high-resolution scanning tunneling microscopy and density functional theory calculations. On TiO2 surfaces characterized by a high density of ⟨11̅ 1⟩ steps, scanning tunneling microscopy reveals a high density of oxygen-deficient strandlike adstructures....... With the help of density functional theory calculations we develop a complete structural model for the entire strand and demonstrate these adstructures to be more stable than an equivalent amount of bulk defects such as Ti interstitials. We argue that strands can form particularly easy on stepped surfaces...... because building material is available at step sites. The strands on TiO2(110) represent point defects that are densely packed into ordered adstructures....

  2. Correlation functions on conical defects

    CERN Document Server

    Smolkin, Michael

    2015-01-01

    We explore the new technique developed recently in \\cite{Rosenhaus:2014woa} and suggest a correspondence between the $N$-point correlation functions on spacetime with conical defects and the $(N+1)$-point correlation functions in regular Minkowski spacetime. This correspondence suggests a new systematic way to evaluate the correlation functions on spacetimes with conical defects. We check the correspondence for the expectation value of a scalar operator and of the energy momentum tensor in a conformal field theory and obtain the exact agreement with the earlier derivations for cosmic string spacetime. We then use this correspondence and do the computations for a generic scalar operator and a conserved vector current. For generic unitary field theory we compute the expectation value of the energy momentum tensor using the known spectral representation of the $2$-point correlators of stress-energy tensor in Minkowski spacetime.

  3. Estimation of power dissipation of a 4H-SiC Schottky barrier diode with a linearly graded doping profile in the drift region

    Directory of Open Access Journals (Sweden)

    Rajneesh Talwar

    2009-09-01

    Full Text Available The aim of this paper is to establish the importance of a linearly graded profile in the drift region of a 4H-SiC Schottky barrier diode (SBD. The power dissipation of the device is found to be considerably lower at any given current density as compared to its value obtained for a uniformly doped drift region. The corresponding values of breakdown voltages obtained are similar to those obtained with uniformly doped wafers of 4H-SiC.

  4. Mass measurement of cooled neutron-deficient bismuth projectile fragments with time-resolved Schottky mass spectrometry at the FRS-ESR facility

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, Yu.A.; Geissel, H. [Giessen Univ. (Germany); Radon, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (DE)] [and others

    2005-06-01

    Masses of 582 neutron-deficient nuclides (30{<=}Z{<=}85) were measured with time-resolved Schottky mass spectrometry at the FRS-ESR facility at GSI, 117 were used for calibration. The masses of 71 nuclides were obtained for the first time. A typical mass accuracy of 30 {mu}u was achieved. These data have entered the latest atomic mass evaluation. The mass determination of about 140 additional nuclides was possible via known energies (Q-values) of {alpha}-, {beta}-, or proton decays. The obtained results are compared with the results of other measurements. (orig.)

  5. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    OpenAIRE

    Tanujjal Bora; Htet H. Kyaw; Soumik Sarkar; Samir K. Pal; Joydeep Dutta

    2011-01-01

    Zinc oxide (ZnO) nanorods decorated with gold (Au) nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC). The picosecond-resolved, time-correlated single-photon-count (TCSPC) spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption...

  6. Radioactive fallout and neural tube defects

    African Journals Online (AJOL)

    Nejat Akar

    2015-07-10

    Jul 10, 2015 ... Neural tube defects;. Anencephaly;. Spina bifida. Abstract Possible link between radioactivity and the occurrence of neural tube defects is a long lasting debate ... Neural tube defects, are one of the common congenital mal- formations ... ent cities of Turkey (˙Izmir/Aegean Region; Trabzon/Black Sea region ...

  7. (AJST) MULTIPLE DEFECT DISTRIBUTIONS ON WEIBULL ...

    African Journals Online (AJOL)

    Partially concurrent defect distributions in material. For a group of specimens or components from which all specimens contain one defect distribution but only a fraction contain the other, the group is said to contain. 'partially concurrent' defect distributions. The mathematics of partially concurrent distributions is best.

  8. 7 CFR 51.1565 - Internal defects.

    Science.gov (United States)

    2010-01-01

    .... Internal Black Spot When the spot(s) are darker than the official color chip (POT-CC-2) after removing 5 percent of the total weight of the potato When the spot(s) are darker than the official color chip (POT-CC... Standards for Grades of Potatoes 1 Definitions § 51.1565 Internal defects. Internal defects are defects...

  9. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...

  10. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    Science.gov (United States)

    Byrappa, Shayan M.

    been recognizing BPDs as deformation induced defects which have led to the development of strategies to reduce stress imperative for the motion of BPDs to levels below critical resolved shear stress. This in turn has provided an opportunity for last five years to resolve important defect interactions in the crystals with one of them being the operation of single-ended Frank Read source for the first time in SiC. [4] Failure analysis of SiC bipolar devices using SWBXT and correlation with defect density has been studied to determine how the defect density affect breakdown voltage of high power junction diodes. It was observed that the screw dislocation density unlike in failure analysis studies performed previously did not affect the breakdown voltage for these Junction Barrier Schottky (JBS) rectifiers. The defects that were detrimental were the triangular defects, stacking faults and micropipes in bipolar devices observed on 4H-SiC patterned wafers.

  11. Selecting the best defect reduction methodology

    Energy Technology Data Exchange (ETDEWEB)

    Hinckley, C.M. [Sandia National Labs., Albuquerque, NM (United States); Barkan, P. [Stanford Univ., CA (United States)

    1994-04-01

    Defect rates less than 10 parts per million, unimaginable a few years ago, have become the standard of world-class quality. To reduce defects, companies are aggressively implementing various quality methodologies, such as Statistical Quality Control Motorola`s Six Sigma, or Shingo`s poka-yok. Although each quality methodology reduces defects, selection has been based on an intuitive sense without understanding their relative effectiveness in each application. A missing link in developing superior defect reduction strategies has been a lack of a general defect model that clarifies the unique focus of each method. Toward the goal of efficient defect reduction, we have developed an event tree which addresses a broad spectrum of quality factors and two defect sources, namely, error and variation. The Quality Control Tree (QCT) predictions are more consistent with production experience than obtained by the other methodologies considered independently. The QCT demonstrates that world-class defect rates cannot be achieved through focusing on a single defect source or quality control factor, a common weakness of many methodologies. We have shown that the most efficient defect reduction strategy depend on the relative strengths and weaknesses of each organization. The QCT can help each organization identify the most promising defect reduction opportunities for achieving its goals.

  12. Definition of defect size from ultrasonic inspection.

    Science.gov (United States)

    Bennet, S. B.; Peterson, R. G.

    1971-01-01

    Attempt to obtain a set of relationships between testing parameters defining the range of defect size that can be associated with a given echo amplitude and defect depth. These relationships allow the user to find the largest defect that will return a signal equal to that from a flat hole of known diameter and depth, and the signal amplitude ratio between worst case and flat hole defects of equal diameter. The variation of the data with defect and testing parameters is shown. The results are obtained analytically, with laboratory corroboration, by calculation of the echo amplitude of the defect shape yielding the smallest return signal, a sphere, and the echo amplitude of the defect shape yielding the largest return signal, a flat hole.

  13. Progressive self-learning photomask defect classification

    Science.gov (United States)

    Lynn, Eric C.; Chen, Shih-Ying; Hsu, Tyng-Hao; Hung, Chang-Cheng; Lin, Chin-Hsiang

    2002-07-01

    Following mask inspection, mask-defect classification is a process of reviewing and classifying each captured defect according to prior-defined printability rules. With the current hardware configuration in manufacturing environments, this review and classification process is a mandatory manual task. For cases with a relatively small number of captured defects, defect classification itself does not put too much burden to operators or engineers. With a moderate increase of defects, it would however, become a time-consuming process and prolong the total mask-making cycle time. Should too many nuisance defects be caught under a given detection sensitivity, engineers would generally loosed the detection sensitivity in order to reduce the number of nuisance defects. By doing that however, there exists potential threat of missing real defects. The present study describes a 'progressive self-learning' (PSL) algorithm for defect classification to relieve loading from operators or engineers and further accelerate defect review/classification process. Basically, the PSL algorithm involves with image extraction, digitization, alignment and matching. One key concept of this PSL algorithm is that there is not any pre-stored defect library in the first place of a particular run. In turn, a defect library is 'progressively' built during the initial stage of defect review and classification at each run. The merit of this design can be realized by its flexibility. An additional benefit is that all defect images are stored and suitable for network transfer. The C language is adopted to implement the present algorithm to avoid the porting issue, so as not bound to a particular machine. Assessment of the PSL algorithm is examined in terms of efficiency and the accurate rate.

  14. RF-to-DC Characteristics of Direct Irradiated On-Chip Gallium Arsenide Schottky Diode and Antenna for Application in Proximity Communication System

    Directory of Open Access Journals (Sweden)

    Farahiyah Mustafa

    2014-02-01

    Full Text Available We report the RF-to-DC characteristics of the integrated AlGaAs/GaAs Schottky diode and antenna under the direct injection and irradiation condition. The conversion efficiency up to 80% under direct injection of 1 GHz signal to the diode was achieved. It was found that the reduction of series resistance and parallel connection of diode and load tend to lead to the improvement of RF-to-DC conversion efficiency. Under direct irradiation from antenna-to-antenna method, the output voltage of 35 mV was still obtainable for the distance of 8 cm between both antennas in spite of large mismatch in the resonant frequency between the diode and the connected antenna. Higher output voltage in volt range is expected to be achievable for the well-matching condition. The proposed on-chip AlGaAs/GaAs HEMT Schottky diode and antenna seems to be a promising candidate to be used for application in proximity communication system as a wireless low power source as well as a highly sensitive RF detector.

  15. Surface morphological, electrical and transport properties of rapidly annealed double layers Ru/Cr Schottky structure on n-type InP

    Science.gov (United States)

    Shanthi Latha, K.; Rajagopal Reddy, V.

    2017-07-01

    The electrical and transport properties of a fabricated bilayer Ru/Cr/ n-InP Schottky diode (SD) have been investigated at different annealing temperatures. Atomic force microscopy results have showed that the overall surface morphology of the Ru/Cr/ n-InP SD is fairly smooth at elevated temperatures. High barrier height is achieved for the diode annealed at 300 °C compared to the as-deposited, annealed at 200 and 400 °C diodes. The series resistance and shunt resistance of the Ru/Cr/ n-InP SD are estimated by current-voltage method at different annealing temperatures. The barrier heights and series resistance are also determined by Cheung's and modified Norde functions. The interface state density of the Ru/Cr/ n-InP SD is found to be decreased after annealing at 300 °C and then slightly increased upon annealing at 400 °C. The difference between barrier heights obtained from current-voltage and capacitance-voltage is also discussed. Experimental results have showed that the Poole-Frenkel emission is found to be dominant in the lower bias region whereas Schottky emission is dominant in the higher bias region for the Ru/Cr/ n-InP SDs irrespective of annealing temperatures.

  16. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Science.gov (United States)

    Bora, Tanujjal; Kyaw, Htet H; Sarkar, Soumik; Pal, Samir K

    2011-01-01

    Summary Zinc oxide (ZnO) nanorods decorated with gold (Au) nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC). The picosecond-resolved, time-correlated single-photon-count (TCSPC) spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE) of 6.49% for small-area (0.1 cm2) ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2), ~130% enhancement in PCE (from 0.50% to 1.16%) was achieved after incorporation of the Au nanoparticles into the ZnO nanorods. PMID:22043457

  17. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2011-10-01

    Full Text Available Zinc oxide (ZnO nanorods decorated with gold (Au nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC. The picosecond-resolved, time-correlated single-photon-count (TCSPC spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE of 6.49% for small-area (0.1 cm2 ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2, ~130% enhancement in PCE (from 0.50% to 1.16% was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  18. Sub-microsecond x-ray imaging using hole-collecting Schottky type CdTe with charge-integrating pixel array detectors

    Science.gov (United States)

    Becker, J.; Tate, M. W.; Shanks, K. S.; Philipp, H. T.; Weiss, J. T.; Purohit, P.; Chamberlain, D.; Gruner, S. M.

    2017-06-01

    CdTe is increasingly being used as the x-ray sensing material in imaging pixel array detectors for x-rays, generally above 20 keV, where silicon sensors become unacceptably transparent. Unfortunately CdTe suffers from polarization, which can alter the response of the material over time and with accumulated dose. Most prior studies used long integration times or CdTe that was not of the hole-collecting Schottky type. We investigated the temporal response of hole-collecting Schottky type CdTe sensors on timescales ranging from tens of nanoseconds to several seconds. We found that the material shows signal persistence on the timescale of hundreds of milliseconds attributed to the detrapping of a shallow trap, and additional persistence on sub-microsecond timescales after polarization. The results show that this type of CdTe can be used for time resolved studies down to approximately 100 ns. However quantitative interpretation of the signal requires careful attention to bias voltages, polarization and exposure history.

  19. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  20. Impacts of growth orientation and N incorporation on the interface-states and the electrical characteristics of Cu/GaAsN Schottky barrier diodes

    Science.gov (United States)

    Dong, Chen; Han, Xiuxun; Li, Jian; Gao, Xin; Ohshita, Yoshio

    2017-12-01

    The frequency dependent capacitance-voltage (C-V) and conductance-voltage (G/ω-V) characteristics of Schottky barrier diodes (SBDs) with Cu contacts on Si doped GaAsN epilayers with (100) and (311)A/B orientations have been investigated in the frequency range from 20 kHz to 1 MHz at room temperature. C, G/ω and the deduced series resistance (Rs) show strong dependences on the applied frequency in the forward bias region, which is closely correlated to the frequency-dependent response of interface states (Nss). In GaAsN SBDs with all three growth orientations, the increasing N composition is found to increase the peak value of capacitance and enhance its dependence on frequency, which thus implies a general rule that increasing N incorporation causes an increase in Nss. The increasing extent of Nss due to N incorporation, however, differs a lot for different growth orientations as analyzed by using Hill-Coleman method. It is revealed that (311)B is the promising growth orientation to suppress the Nss generation over a wider N composition range in GaAsN Schottky devices. The reduced formation probability of non-substitutional N due to the efficient N incorporation on the (311)B plane is considered to be responsible for the observations.

  1. Simulation design of high reverse blocking high-K/low-K compound passivation AlGaN/GaN Schottky barrier diode with gated edge termination

    Science.gov (United States)

    Bai, Zhiyuan; Du, Jiangfeng; Xin, Qi; Li, Ruonan; Yu, Qi

    2017-11-01

    In this paper, a novel high-K/low-K compound passivation AlGaN/GaN Schottky Barrier Diode (CPG-SBD) is proposed to improve the off-state characteristics of AlGaN/GaN schottky barrier diode with gated edge termination (GET-SBD) by adding low-K blocks in to the high-K passivation layer. The reverse leakage current of CPG-SBD can be reduced to 1.6 nA/mm by reducing the thickness of high-K dielectric under GET region to 5 nm, while the forward voltage and on-state resistance keep 1 V and 3.8 Ω mm, respectively. Breakdown voltage of CPG-SBDs can be improved by inducing discontinuity of the electric field at the high-K/low-K interface. The breakdown voltage of the optimized CPG-SBD with 4 blocks of low-K can reach 1084 V with anode to cathode distance of 5 μm yielding a high FOM of 5.9 GW/cm2. From the C-V simulation results, CPG-SBDs induce no parasitic capacitance by comparison of the GET-SBDs.

  2. Reconstruction of Peripelvic Oncologic Defects.

    Science.gov (United States)

    Weichman, Katie E; Matros, Evan; Disa, Joseph J

    2017-10-01

    After studying this article, the participant should be able to: 1. Understand the anatomy of the peripelvic area. 2. Understand the advantages and disadvantages of performing peripelvic reconstruction in patients undergoing oncologic resection. 3. Select the appropriate local, pedicled, or free-flap reconstruction based on the location of the defect and donor-site characteristics. Peripelvic reconstruction most commonly occurs in the setting of oncologic ablative surgery. The peripelvic area contains several distinct reconstructive regions, including vagina, vulva, penis, and scrotum. Each area provides unique reconstructive considerations. In addition, prior or future radiation therapy or chemotherapy along with cancer cachexia can increase the complexity of reconstruction.

  3. Developmental defects of the lungs

    Energy Technology Data Exchange (ETDEWEB)

    DaCosta, H.; Pathak, A.; Noronha, O.; Dalal, S.; Shah, K.; Merchant, S.

    1981-06-01

    Poor lung development was first noted on scintigraphy using sup(99m)Tc-phytate in 32 children. They had all been referred for a hepatosplenic scan but the initial circulatory phase of the radiopharmaceutical was also recorded as a routine procedure. In 3 patients it revealed aplasia of an entire lung; bilateral pulmonary hypolplasia was observed in 14 of 16 patients with diaphragmatic herniae. Six patients with congenital heart enlargement showed a poorly developed ipsilateral lung; 5 of 6 patients with dextrocardia without an intracardiac defect had a larger left lung compared with the right lung; both pulmonary beds appeared equal in a patient with mesocardia.

  4. Schottky barrier height control at epitaxial NiAl/GaAs(001) interfaces by means of variable bandgap interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, S.A.

    1992-11-01

    Recent developments in the use of interlayers to tailor the Schottky barrier height (SBH) at a metal/GaAs interface are discussed. The goal has been to gain control of band bending in the interfacial region by modifying both the interface Fermi energy and the charge density in the depletion region. The approach has been to grow both the interlayer and the metal overlayer under ultrahigh vacuum conditions by molecular beam epitaxy, and then to determine the chemistry of interface formation, structure, and band bending by x-ray photoelectron spectroscopy and diffraction and by low-energy electron diffraction. The interface Fermi energy can be changed from the usual midgap value of 0.7--0.8 eV relative to the band edge by the use of epitaxial transition metal aluminide (TMA) overlayers such as NiAl. The unique chemistry of interface formation between this intermetallic compound and GaAs pins the Fermi level {approximately}0.3--0.4 eV above the valence band maximum, and results in a SBH of {approximately}1 eV. The SBH can be increased to {approximately}1.2 eV by the use of a wide bandgap interlayer such as AlAs. The charge density in the depletion region can be changed by growing an n{sup +}-type group IV interlayer between the TMA overlayer and GaAs substrate. Charge transfer from the interlayer to an n-type substrate reduces the space charge density, and thereby lowers the band bending and, thus, the SBH to {approximately}0.5 eV. The use of these interlayers then produces a range of SBH values of {approximately}0.7 eV, which is a significant improvement over the rather narrow range of 0.1--0.2 eV that results from conventional metallizations. The fundamental interface science that underpins these results is discussed, and an application to complementary digital GaAs circuit design that may significantly reduce gate leakage is given.

  5. Schottky barrier height control at epitaxial NiAl/GaAs(001) interfaces by means of variable bandgap interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, S.A.

    1992-11-01

    Recent developments in the use of interlayers to tailor the Schottky barrier height (SBH) at a metal/GaAs interface are discussed. The goal has been to gain control of band bending in the interfacial region by modifying both the interface Fermi energy and the charge density in the depletion region. The approach has been to grow both the interlayer and the metal overlayer under ultrahigh vacuum conditions by molecular beam epitaxy, and then to determine the chemistry of interface formation, structure, and band bending by x-ray photoelectron spectroscopy and diffraction and by low-energy electron diffraction. The interface Fermi energy can be changed from the usual midgap value of 0.7--0.8 eV relative to the band edge by the use of epitaxial transition metal aluminide (TMA) overlayers such as NiAl. The unique chemistry of interface formation between this intermetallic compound and GaAs pins the Fermi level [approximately]0.3--0.4 eV above the valence band maximum, and results in a SBH of [approximately]1 eV. The SBH can be increased to [approximately]1.2 eV by the use of a wide bandgap interlayer such as AlAs. The charge density in the depletion region can be changed by growing an n[sup +]-type group IV interlayer between the TMA overlayer and GaAs substrate. Charge transfer from the interlayer to an n-type substrate reduces the space charge density, and thereby lowers the band bending and, thus, the SBH to [approximately]0.5 eV. The use of these interlayers then produces a range of SBH values of [approximately]0.7 eV, which is a significant improvement over the rather narrow range of 0.1--0.2 eV that results from conventional metallizations. The fundamental interface science that underpins these results is discussed, and an application to complementary digital GaAs circuit design that may significantly reduce gate leakage is given.

  6. Congenital heart defects in Kabuki syndrome.

    Science.gov (United States)

    Yuan, Shi-Min

    2013-01-01

    Kabuki syndrome (KS) is an entity of multiple congenital malformations with mental retardation with undetermined etiology. Congenital heart defects are one of the clinical manifestations of KS with insufficient elucidations. Literature of congenital heart defects associated with KS was comprehensively retrieved, collected and reviewed. The clinical features of the congenital heart defects in the patients with KS were summarized. Congenital heart defects were one of the clinical manifestations of KS with 90.6% of the patients being diagnosed prenatally or at an early age. Left-sided obstructions/aortic dilation and septal defects were the fi rst two types of anomalies, accounting up to 46.1% and 32.9%, respectively. The most common congenital heart defects were coarctation of the aorta, and atrial and ventricular septal defects. Fifteen (19.7%) patients received surgical repair of congenital heart defects at a mean age of 0.8 ± 1.3 years. Congenital heart defects are one of the clinical manifestations of KS with 90.6% of the patients being diagnosed prenatally or at an early age. About 20% of the patients warranted surgical repair of the heart defects. Patients with KS require close follow-up in terms of their etiology, clinical presentations and long-term prognosis.

  7. Hydrogen Production on Ag-Pd/TiO2 Bimetallic Catalysts: Is there a Combined Effect of Surface Plasmon Resonance with Schottky Mechanism on the Photo-Catalytic Activity?

    KAUST Repository

    Nadeem, Muhammad A.

    2017-03-28

    Despite many observations that plasmonics can enhance photocatalytic reactions, their relative role in the overall reaction rate is not thoroughly investigated. Here we report that silver nanoparticles contribution in the reaction rate by its plasmonic effect is negligible when compared to that of Pd (Schottky effect). To conduct the study a series of Ag−Pd/TiO2 catalysts have been prepared, characterized and tested for H2 production from water in the presence of an organic sacrificial agent. Pd was chosen as a standard high work function metal needed for the Schottky junction to pump away electrons from the conduction band of the semiconductor and Ag (whose work function is ca. 1 eV lower than that of Pd) for its high plasmonic resonance response at the edge of the bandgap of TiO2. While H2 production rates showed linear dependency on plasmonic response of Ag in the Pd−Ag series, the system performed less than that of pure Pd. In other words, the plasmonic contribution of Ag in the Ag−Pd/TiO2 catalyst for hydrogen production, while confirmed using different excitation energies, is small. Therefore, the “possible” synergistic effect of plasmonic (in the case of Ag) and Schottky-mechanism (in the case of Pd) is minor when compared to that of Schottky-effect alone.

  8. Little string origin of surface defects

    Science.gov (United States)

    Haouzi, Nathan; Schmid, Christian

    2017-05-01

    We derive a large class of codimension-two defects of 4d \\mathcal{N}=4 Super Yang-Mills (SYM) theory from the (2, 0) little string. The origin of the little string is type IIB theory compactified on an ADE singularity. The defects are D-branes wrapping the 2-cycles of the singularity. We use this construction to make contact with the description of SYM defects due to Gukov and Witten [1]. Furthermore, we provide a geometric perspective on the nilpotent orbit classification of codimension-two defects, and the connection to ADE-type Toda CFT. The only data needed to specify the defects is a set of weights of the algebra obeying certain constraints, which we give explicitly. We highlight the differences between the defect classification in the little string theory and its (2 , 0) CFT limit.

  9. Topological defects in cholesteric liquid crystal shells.

    Science.gov (United States)

    Darmon, Alexandre; Benzaquen, Michael; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-11-23

    We investigate experimentally and numerically the defect configurations emerging when a cholesteric liquid crystal is confined to a spherical shell. We uncover a rich scenario of defect configurations, some of them non-existent in nematic shells, where new types of defects are stabilized by the helical ordering of the liquid crystal. In contrast to nematic shells, here defects are not simple singular points or lines, but have a large structured core. Specifically, we observe five different types of cholesteric shells. We study the statistical distribution of the different types of shells as a function of the two relevant geometrical dimensionless parameters of the system. By playing with these parameters, we are able to induce transitions between different types of shells. These transitions involve interesting topological transformations in which the defects recombine to form new structures. Surprisingly, the defects do not approach each other by taking the shorter distance route (geodesic), but by following intricate paths.

  10. Agricultural Compounds in Water and Birth Defects.

    Science.gov (United States)

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  11. Welding defects at friction stir welding

    Directory of Open Access Journals (Sweden)

    P. Podržaj

    2015-04-01

    Full Text Available The paper presents an overview of different types of defects at friction stir welding. In order to explain the reasons for their occurrence a short theoretical background of the process is given first. The main emphasis is on the parameters that influence the process. An energy supply based division of defects into three disjoint groups was used. The occurring defects are demonstrated on various materials.

  12. Effects of mass defect in atomic clocks

    Science.gov (United States)

    Taichenachev, A. V.; Yudin, V. I.

    2018-01-01

    We consider some implications of the mass defect on the frequency of atomic transitions. We have found that some well-known frequency shifts (such as gravitational and quadratic Doppler shifts) can be interpreted as consequences of the mass defect, i.e., without the need for the concept of time dilation used in special and general relativity theories. Moreover, we show that the inclusion of the mass defect leads to previously unknown shifts for clocks based on trapped ions..

  13. Phosphorous–vacancy–oxygen defects in silicon

    KAUST Repository

    Wang, Hao

    2013-07-30

    Electronic structure calculations employing the hybrid functional approach are used to gain fundamental insight in the interaction of phosphorous with oxygen interstitials and vacancies in silicon. It recently has been proposed, based on a binding energy analysis, that phosphorous–vacancy–oxygen defects may form. In the present study we investigate the stability of this defect as a function of the Fermi energy for the possible charge states. Spin polarization is found to be essential for the charge neutral defect.

  14. Detection of Surface Defects on Compact Discs

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2007-01-01

    Online detection of surface defects on optical discs is of high importance for the accommodation schemes handling these defects. These surface defects introduce fault components to the position measurements of focus and radial tracking positions. The respective controllers will accordingly try to...... in order to inspect the importance and consequences of the size of the detection delay, from which it can be seen that focus and radial position errors increase significantly due to the fault as the detection delay increases....

  15. Defect interactions within a group of subcascades

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    The evolution of the defect distributions within high energy cascades that contain multiple subcascades is studied as a function of temperature for cascades in copper. Low energy cascades generated with molecular dynamics are placed in close proximity to simulate the arrangement of subcascades within a high energy event, then the ALSOME code follows the evolution of the cascade damage during short term annealing. The intersubcascade defect interactions during the annealing stage are found to be minimal. However, no conclusions regarding effects of subcascades on defect production should be drawn until intersubcascade defect interactions during the quenching stage are examined.

  16. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    -principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...... shallow defect levels and are thus predicted to be defect-tolerant. Interestingly, all the defect sensitive TMDs have valence and conduction bands with a very similar orbital composition. This indicates a bonding/antibonding nature of the gap, which in turn suggests that dangling bonds will fall inside...

  17. Multimode model based defect characterization in composites

    Science.gov (United States)

    Roberts, R.; Holland, S.; Gregory, E.

    2016-02-01

    A newly-initiated research program for model-based defect characterization in CFRP composites is summarized. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing delamination and porosity. Forward predictions of measurement response are presented, as well as examples of model-based inversion of measured data for the estimation of defect parameters.

  18. Defect reduction through Lean methodology

    Science.gov (United States)

    Purdy, Kathleen; Kindt, Louis; Densmore, Jim; Benson, Craig; Zhou, Nancy; Leonard, John; Whiteside, Cynthia; Nolan, Robert; Shanks, David

    2010-09-01

    Lean manufacturing is a systematic method of identifying and eliminating waste. Use of Lean manufacturing techniques at the IBM photomask manufacturing facility has increased efficiency and productivity of the photomask process. Tools, such as, value stream mapping, 5S and structured problem solving are widely used today. In this paper we describe a step-by-step Lean technique used to systematically decrease defects resulting in reduced material costs, inspection costs and cycle time. The method used consists of an 8-step approach commonly referred to as the 8D problem solving process. This process allowed us to identify both prominent issues as well as more subtle problems requiring in depth investigation. The methodology used is flexible and can be applied to numerous situations. Advantages to Lean methodology are also discussed.

  19. CHARGEd with neural crest defects.

    Science.gov (United States)

    Pauli, Silke; Bajpai, Ruchi; Borchers, Annette

    2017-10-30

    Neural crest cells are highly migratory pluripotent cells that give rise to diverse derivatives including cartilage, bone, smooth muscle, pigment, and endocrine cells as well as neurons and glia. Abnormalities in neural crest-derived tissues contribute to the etiology of CHARGE syndrome, a complex malformation disorder that encompasses clinical symptoms like coloboma, heart defects, atresia of the choanae, retarded growth and development, genital hypoplasia, ear anomalies, and deafness. Mutations in the chromodomain helicase DNA-binding protein 7 (CHD7) gene are causative of CHARGE syndrome and loss-of-function data in different model systems have firmly established a role of CHD7 in neural crest development. Here, we will summarize our current understanding of the function of CHD7 in neural crest development and discuss possible links of CHARGE syndrome to other developmental disorders. © 2017 Wiley Periodicals, Inc.

  20. Higher dimensional defects in cosmology

    Science.gov (United States)

    Ramadhan, Handhika Satrio

    Extra dimensions seem to be an important ingredient for unification of gravity with quantum field theory. Our best candidate of quantum gravity, superstring theory, requires ten-dimensional space-time for mathematical consistency. However, since our world appears four-dimensional there must be a mechanism that "hides" extra dimensions so that we do not experience them at low energy scale. There are several methods in literature for concealing extra dimensions from our naked eye. In this thesis we only focus on two of them: braneworld scenario and flux compactification, both of which require the existence of the bulk fields. This thesis investigates the role topological defects can play as bulk fields in higher-dimensional cosmology with different asymptotic topology. The first part deals with the non-singular braneworld: Skyrme branes and its higher dimensional generalizations. We show how these defects regularize the naked singularity around the core while at the same time approach the same flat-asymptotic behavior as the known thin-wall solutions. The second part is devoted to study an exotic transition, tunneling to (and from) nothing, in a landscape where the space-time vacua are direct products of X4 x S2 , with X4 can be: anti-de Sitter ( AdS4), Minkowski (M4), or de Sitter (dS4). The tunneling is mediated by instanton solutions, via bubble nucleation. The bubble wall is smooth and magnetically-charged, and we show that this can be accomplished by having solitonic brane possessing magnetic charge, i.e., magnetic-monopole branes.