WorldWideScience

Sample records for schottky barrier heights

  1. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  2. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  3. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Li, L

    2017-01-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS 2 to fabricate Schottky junctions. These junctions exhibit rectifying current–voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions. (paper)

  4. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  5. Process for preparing schottky diode contacts with predetermined barrier heights

    Science.gov (United States)

    Chang, Y. Austin; Jan, Chia-Hong; Chen, Chia-Ping

    1996-01-01

    A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

  6. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    OpenAIRE

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2015-01-01

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer graphene onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decr...

  7. The physics and chemistry of the Schottky barrier height

    International Nuclear Information System (INIS)

    Tung, Raymond T.

    2014-01-01

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface

  8. The effects of temperature on Schottky diode barrier height and evidence of multiple barrier

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1994-07-01

    Experimental study of Capacitance-Voltage-Temperature (C-V-T) plots, Current-Voltage-Temperature (I-V-T) characteristics have been undertaken in order to determine the height of the Schottky barrier. The results of the barrier height obtained by the above two methods were found to differ as well as vary with temperature change. In view of this discrepancy in barrier height values, two further experiments were performed: one on activation energy (I-T) plots and the other on pulsed (I-V-T) characteristics, and the results were found to show a similar trend. The Schottky diode studied was a 30CP040. (author). 23 refs, 9 figs, 3 tabs

  9. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    Science.gov (United States)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  10. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  11. Barrier Height Variation in Ni-Based AlGaN/GaN Schottky Diodes

    NARCIS (Netherlands)

    Hajlasz, Marcin; Donkers, Johan J.T.M.; Pandey, Saurabh; Hurkx, Fred; Hueting, Raymond J.E.; Gravesteijn, Dirk J.

    2017-01-01

    In this paper, we have investigated Ni-based AlGaN/GaN Schottky diodes comprising capping layers with silicon-Technology-compatible metals such as TiN, TiW, TiWN, and combinations thereof. The observed change in Schottky barrier height of a Ni and Ni/TiW/TiWN/TiW contact can be explained by stress

  12. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    Science.gov (United States)

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  13. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Hudy, L J; Li, L; Li, C H

    2015-01-01

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current–voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions. (paper)

  14. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Indudhar Panduranga [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Shetty, Pramoda Kumara, E-mail: pramod.shetty@manipal.edu [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Mahesha, M.G. [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Petwal, V.C.; Dwivedi, Jishnu [Raja Ramanna Centre for Advanced Technology, Department of Atomic Energy, Government of India, Indore 452012 (India); Choudhary, R.J. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2017-06-15

    Highlights: • Tuning of Schottky barrier height has been achieved by electron beam irradiation at different doses on n-Si wafer prior to the fabrication of Schottky contact. • The XPS analyses have shown irradiation induced defects and the formation of several localized chemical states in Si/SiOx interface that influences the Schottky barrier height. • High ideality factor indicates metal-insulator-semiconductor configuration of the Schottky diode and the inhomogeneous nature of the Schottky barrier height. • The modifications in I–V characteristics have been observed as a function of electron dose. This is caused due to changes in the Schottky diode parameters and different transport mechanisms. - Abstract: The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I–V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (Φ{sub B}), ideality factor (n) and series resistance (R{sub s}). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of Φ{sub B} was observed as a function of EBI dose. The improved n with increased Φ{sub B} is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune

  15. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M.; Mahmood, K.; Rabia, S.; BM, S.; Shahid, M. Y.; Hasan, M. A.

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 - 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Fap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Fap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(ds) (0.02 V) at zero bais. (author)

  16. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Rabia, S; M, Samaa B; Shahid, M Y; Hasan, M A

    2014-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 – 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Φ ap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Φ ap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(δ s ) (0.02 V) at zero bais

  17. Spatially inhomogeneous barrier height in graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant; Rajput, Shivani; Li, Lian

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. In this study, graphene Schottky junctions are fabricated by transferring CVD monolayer graphene on mechanically exfoliated MoS2 multilayers. The forward bias current-voltage characteristics are measured in the temperature range of 210-300 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature. Such behavior is attributed to Schottky barrier inhomogeneities possibly due to graphene ripples and ridges at the junction interface as suggested by atomic force microscopy. Assuming a Gaussian distribution of the barrier height, mean barrier of 0.97+/-0.10 eV is found for the graphene MoS2 junction. Our findings provide significant insight on the barrier height inhomogeneities in graphene/two dimensional semiconductor Schottky junctions. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award No. DEFG02-07ER46228.

  18. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction.

    Science.gov (United States)

    Rajput, S; Chen, M X; Liu, Y; Li, Y Y; Weinert, M; Li, L

    2013-01-01

    When graphene is interfaced with a semiconductor, a Schottky contact forms with rectifying properties. Graphene, however, is also susceptible to the formation of ripples upon making contact with another material. Here we report intrinsic ripple- and electric field-induced effects at the graphene semiconductor Schottky junction, by comparing chemical vapour-deposited graphene transferred on semiconductor surfaces of opposite polarization-the hydrogen-terminated silicon and carbon faces of hexagonal silicon carbide. Using scanning tunnelling microscopy/spectroscopy and first-principles calculations, we show the formation of a narrow Schottky dipole barrier approximately 10 Å wide, which facilitates the observed effective electric field control of the Schottky barrier height. We further find atomic-scale spatial fluctuations in the Schottky barrier that directly follow the undulation of ripples on both graphene-silicon carbide junctions. These findings reveal fundamental properties of the graphene/semiconductor Schottky junction-a key component of vertical graphene devices that offer functionalities unattainable in planar device architecture.

  19. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    Science.gov (United States)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.

  20. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    Science.gov (United States)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  1. Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

    International Nuclear Information System (INIS)

    Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan

    2010-01-01

    This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Effect of the ion bombardment on the apparent barrier height in GaAs Schottky junctions

    International Nuclear Information System (INIS)

    Horvath, Zs. J.

    1994-01-01

    The bombardment of the semiconductor with different particles often results in the change of the doping concentration at the semiconductor surface. In this paper the effects of this near-interface concentration change on the apparent and real Schottky barrier heights are discussed. Experimental results obtained in GaAs Schottky junctions prepared on ion-bombarded semiconductor surfaces are analysed, and it is shown that their electrical characteristics are strongly influenced by the near-interface concentration change due to the ion bombardment. (author). 36 refs., 2 figs

  3. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Anugrah, Yoska; Robbins, Matthew C.; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455 (United States); Crowell, Paul A. [School of Physics and Astronomy, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455 (United States)

    2015-03-09

    Phosphorene, the 2D analogue of black phosphorus, is a promising material for studying spin transport due to its low spin-orbit coupling and its ½ nuclear spin, which could allow the study of hyperfine effects. In this work, the properties of permalloy (Py) and cobalt (Co) contacts to few-layer phosphorene are presented. The Schottky barrier height was extracted and determined as a function of gate bias. Flat-band barrier heights, relative to the valence band edge, of 110 meV and 200 meV were determined for Py and Co, respectively. These results are important for future studies of spin transport in phosphorene.

  4. Very low Schottky barrier height at carbon nanotube and silicon carbide interface

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Suzuki, Kazuma; Shibuya, Megumi; Lee, Chih-Yu [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Masuda, Yoshiho; Tomatsu, Naoya; Norimatsu, Wataru; Kusunoki, Michiko [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Kawarada, Hiroshi [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-03-23

    Electrical contacts to silicon carbide with low contact resistivity and high current durability are crucial for future SiC power devices, especially miniaturized vertical-type devices. A carbon nanotube (CNT) forest formed by silicon carbide (SiC) decomposition is a densely packed forest, and is ideal for use as a heat-dissipative ohmic contact in SiC power transistors. The contact resistivity and Schottky barrier height in a Ti/CNT/SiC system with various SiC dopant concentrations were evaluated in this study. Contact resistivity was evaluated in relation to contact area. The Schottky barrier height was calculated from the contact resistivity. As a result, the Ti/CNT/SiC contact resistivity at a dopant concentration of 3 × 10{sup 18 }cm{sup −3} was estimated to be ∼1.3 × 10{sup −4} Ω cm{sup 2} and the Schottky barrier height of the CNT/SiC contact was in the range of 0.40–0.45 eV. The resistivity is relatively low for SiC contacts, showing that CNTs have the potential to be a good ohmic contact material for SiC power electronic devices.

  5. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    Science.gov (United States)

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  6. Formation and Schottky barrier height of Au contacts to CuInSe2

    International Nuclear Information System (INIS)

    Nelson, A.J.; Gebhard, S.; Kazmerski, L.L.; Colavita, E.; Engelhardt, M.; Hoechst, H.

    1991-01-01

    Synchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the Au/CuInSe 2 interface. Au overlayers were deposited in steps on single-crystal p and n-type CuInSe 2 at ambient temperature. Reflection high-energy electron diffraction analysis before and during growth of the Au overlayers indicated that the Au overlayer was amorphous. Photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the In 4d and Se 3d core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the Au/CuInSe 2 Schottky barrier height

  7. Electrical characteristics of schottky barriers on 4H-SiC: The effects of barrier height nonuniformity

    Science.gov (United States)

    Skromme, B. J.; Luckowski, E.; Moore, K.; Bhatnagar, M.; Weitzel, C. E.; Gehoski, T.; Ganser, D.

    2000-03-01

    Electrical properties, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, have been measured on a large number of Ti, Ni, and Pt-based Schottky barrier diodes on 4H-SiC epilayers. Various nonideal behaviors are frequently observed, including ideality factors greater than one, anomalously low I-V barrier heights, and excess leakage currents at low forward bias and in reverse bias. The nonidealities are highly nonuniform across individual wafers and from wafer to wafer. We find a pronounced linear correlation between I-V barrier height and ideality factor for each metal, while C-V barrier heights remain constant. Electron beam induced current (EBIC) imaging strongly suggests that the nonidealities result from localized low barrier height patches. These patches are related to discrete crystal defects, which become visible as recombination centers in the EBIC images. Alternative explanations involving generation-recombination current, uniform interfacial layers, and effects related to the periphery are ruled out.

  8. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  9. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  10. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    OpenAIRE

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe2 vdW interface is ...

  11. Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction

    Science.gov (United States)

    Berahim, A. N.; Zaharudin, M. Z.; Ani, M. H.; Arifin, S. K.

    2018-01-01

    The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

  12. The role of deep level traps in barrier height of 4H-SiC Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, G., E-mail: gzaremba@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Adamus, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Jung, W.; Kaminska, E.; Borysiewicz, M.A.; Korwin-Mikke, K. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2012-09-01

    This paper presents a discussion about the influence of deep level defects on the height of Ni-Si based Schottky barriers to 4H-SiC. The defects were characterized by deep level transient spectroscopy (DLTS) in a wide range of temperatures (78-750 K). The numerical simulation of barrier height value as a function of dominant defect concentration was carried out to estimate concentration, necessary to 'pin' Fermi level and thus significantly influence the barrier height. From comparison of the results of simulation with barrier height values obtained by capacitance-voltage (C-V) measurements it seems that dominant defect in measured concentration has a very small impact on the barrier height and on the increase of reverse current.

  13. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy.

    Science.gov (United States)

    Dong, Hong; Gong, Cheng; Addou, Rafik; McDonnell, Stephen; Azcatl, Angelica; Qin, Xiaoye; Wang, Weichao; Wang, Weihua; Hinkle, Christopher L; Wallace, Robert M

    2017-11-08

    MoS 2 , as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS 2 junction is critical to realizing the potential of MoS 2 -based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS 2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 μm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS 2 is detected by XPS characterization, which gives insight into metal contact physics to MoS 2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

  14. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    International Nuclear Information System (INIS)

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe 2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe 2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe 2 vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10 5 . These results point to the potential high performance of the graphene/MoSe 2 vdW heterostructure for electronics applications

  15. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors

    Science.gov (United States)

    Chang, Hsun-Ming; Fan, Kai-Lin; Charnas, Adam; Ye, Peide D.; Lin, Yu-Ming; Wu, Chih-I.; Wu, Chao-Hsin

    2018-04-01

    Compared to graphene and MoS2, studies on metal contacts to black phosphorus (BP) transistors are still immature. In this work, we present the experimental analysis of titanium contacts on BP based upon the theory of thermionic emssion. The Schottky barrier height (SBH) is extracted by thermionic emission methods to analyze the properties of Ti-BP contact. To examine the results, the band gap of BP is extracted followed by theoretical band alignment by Schottky-Mott rule. However, an underestimated SBH is found due to the hysteresis in electrical results. Hence, a modified SBH extraction for contact resistance that avoids the effects of hysteresis is proposed and demonstrated, showing a more accurate SBH that agrees well with theoretical value and results of transmission electron microscopy and energy-dispersive x-ray spectroscopy.

  16. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    International Nuclear Information System (INIS)

    Li Gui-fang; Hu Jing; Lv Hui; Cui Zhijun; Hou Xiaowei; Liu Shibin; Du Yongqian

    2016-01-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co 2 MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co 2 MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. (paper)

  17. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  18. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    Science.gov (United States)

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I - V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  19. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    Directory of Open Access Journals (Sweden)

    Ivan Shtepliuk

    2016-11-01

    Full Text Available A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  20. Barrier height and interface effect of Pt-n-GaN and Pd-n-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Khan, M.R.H.; Saha, S.L.; Sawaki, N.

    1999-01-01

    Schottky barriers on n-type GaN films by Pt and Pd are fabricated and characterized. A thin Pt or Pd layer is deposited on n-GaN layers to form Schottky contacts in a vacuum below 1x10/sup -6/ Torr. The area of all diodes is 3.46 x 10-4 cm/sup 2/. Several samples of Pt-n GaN and Pd-n GaN were studied. The ideality factor of Pt-n-GaN diode is 1.26 and of Pd-n-GaN is 1.17. The breakdown voltage of Pt-n-GaN and Pd-n-GaN diodes is 21 V and 26 V respectively. In both the cases the leakage current varies between 1x10-9 A and 5x 10-9 A. The Schottky barrier heights (phi/sub B/ ) of Pt-GaN diode is been determined to be 1.02 eV by current voltage (I-V) and 1.07 eV by capacitance (C-V) measurements Also, phi/sub B/ of Pd-GaN diode is determined to be 0.91 eV by I-V and 0.98 eV, by C-V measurements. The departure of the values of the ideality factor is considered to be due to spatial inhomogeneities at the meal semiconductor interface. The difference in the values of phi/sub B/ determined by I-V and C-V measurements is attributed to the deformation of the spatial barrier distribution. (author)

  1. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  2. Barrier height of Pt–In[sub x]Ga[sub 1−x]N (0≤x≤0.5) nanowire Schottky diodes

    KAUST Repository

    Guo, Wei; Banerjee, Animesh; Zhang, Meng; Bhattacharya, Pallab

    2011-01-01

    The barrier height of Schottky diodes made on Inx Ga 1-x N nanowires have been determined from capacitance-voltage measurements. The nanowires were grown undoped on n-type (001) silicon substrates by plasma-assisted molecular beam epitaxy. The length, diameter and density of the nanowires are ∼1 μm, 20 nm, and 1× 1011 cm-2. The Schottky contact was made on the top surface of the nanowires with Pt after planarizing with parylene. The measured barrier height B varies from 1.4 eV (GaN) to 0.44 eV (In0.5 Ga0.5 N) and agrees well with the ideal barrier heights in the Schottky limit. © 2011 American Institute of Physics.

  3. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    Science.gov (United States)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  4. Determination of Schottky barrier heights and Fermi-level unpinning at the graphene/n-type Si interfaces by X-ray photoelectron spectroscopy and Kelvin probe

    International Nuclear Information System (INIS)

    Lin, Yow-Jon; Zeng, Jian-Jhou

    2014-01-01

    Highlights: • The interface characteristics of graphene/n-type Si devices are measured. • The actual work function of graphene is examined with the Kelvin probe. • An analysis is conducted according to the Schottky–Mott limit. • The Fermi energy level at the graphene/n-type Si interfaces is unpinned. • The Schottky barrier value is dependent on the work function of graphene. - Abstract: The interface characteristics of graphene/n-type Si samples using X-ray photoelectron spectroscopy (XPS) measurements are investigated. XPS makes it possible to extract a reliable Schottky barrier value. For graphene/n-type Si samples with (without) sulfide treatment, the Schottky barrier height is 0.86 (0.78) eV. The Schottky barrier height was increased from 0.78 to 0.86 eV, indicating that sulfide treatment is effective in passivating the surface of Si (owing to the formation of Si–S bonds). To determine the Fermi-level pinning/unpinning at the graphene/n-type Si interfaces with sulfide treatment, an analysis is conducted according to the Schottky–Mott limit and the actual work function of graphene is examined with the Kelvin probe. It is shown that the Fermi energy level is unpinned and the Schottky barrier value is dependent on the work function of graphene. Investigation of graphene/n-type Si interfaces is important, and providing the other technique for surface potential control is possible

  5. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  6. Determination of the laterally homogeneous barrier height of palladium Schottky barrier diodes on n-Ge (111)

    CSIR Research Space (South Africa)

    Chawanda, A

    2011-05-01

    Full Text Available The authors have studied the experimental linear relationship between barrier heights and ideality factors for palladium (Pd) on bulk-grown (1 1 1) Sb-doped n-type germanium (Ge) metal-semiconductor structures with a doping density of about 2...

  7. Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface

    Science.gov (United States)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-01

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.

  8. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  9. Distribution of barrier heights in Au/porous GaAs Schottky diodes from current-voltage-temperature measurements

    International Nuclear Information System (INIS)

    Harrabi, Z.; Jomni, S.; Beji, L.; Bouazizi, A.

    2010-01-01

    In this work, we have studied the electrical characteristics of the Au/porous GaAs/p-GaAs diodes as a function of temperature. The (I-V)-T characteristics are analysed on the basis of thermionic emission (TE). The temperature behaviour of the barrier height potential and the ideality factor demonstrate that the current transport is controlled by the thermionic emission mechanism (TE) with Gaussian distribution of the barrier height potential. The Gaussian distribution of barrier height potential is due to barrier inhomogeneity, which is suggested to be caused by the presence of the porous GaAs interfacial layer. The experimental (I-V)-T characteristics of the Au/porous GaAs/p-GaAs heterostructure demonstrate the presence of a two Gaussian distributions having a mean barrier height potential Φ b0 -bar of about 0.67 and 0.54 V and standard deviations σ s 2 of about 8.4x10 -3 and 4.2x10 -3 V, respectively. Using the obtained standard deviation, the obtained Richardson constant value is in accordance with the well documented value (79.2 A cm -2 K -2 ) of p-type GaAs and the mean barrier height Φ b0 -bar is closed to the band gap of GaAs. The obtained values prove that the I-V-T characteristics of Au/porous GaAs/p-GaAs heterostructure are governed by the TE mechanism theory with two Gaussian distributions of barrier heights.

  10. Tuning of Schottky Barrier Height at NiSi/Si Contact by Combining Dual Implantation of Boron and Aluminum and Microwave Annealing

    Directory of Open Access Journals (Sweden)

    Feng Sun

    2018-03-01

    Full Text Available Dopant-segregated source/drain contacts in a p-channel Schottky-barrier metal-oxide semiconductor field-effect transistor (SB-MOSFET require further hole Schottky barrier height (SBH regulation toward sub-0.1 eV levels to improve their competitiveness with conventional field-effect transistors. Because of the solubility limits of dopants in silicon, the requirements for effective hole SBH reduction with dopant segregation cannot be satisfied using mono-implantation. In this study, we demonstrate a potential solution for further SBH tuning by implementing the dual implantation of boron (B and aluminum (Al in combination with microwave annealing (MWA. By using such a method, not only has the lowest hole SBH ever with 0.07 eV in NiSi/n-Si contacts been realized, but also the annealing duration of MWA was sharply reduced to 60 s. Moreover, we investigated the SBH tuning mechanisms of the dual-implanted diodes with microwave annealing, including the dopant segregation, activation effect, and dual-barrier tuning effect of Al. With the selection of appropriate implantation conditions, the dual implantation of B and Al combined with the MWA technique shows promise for the fabrication of future p-channel SB-MOSFETs with a lower thermal budget.

  11. The distribution of the barrier height in Al–TiW–Pd2Si/n-Si Schottky diodes from I–V–T measurements

    International Nuclear Information System (INIS)

    Dökme, Ilbilge; Altındal, Şemsettin; Afandiyeva, Izzet M

    2008-01-01

    The forward and reverse bias current–voltage (I–V) characteristics of Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes (SBDs) were measured in the temperature range of 300–400 K. The estimated zero-bias barrier height Φ B0 and the ideality factor n assuming thermionic emission (TE) theory show a strong temperature dependence. While n decreases, Φ B0 increases with increasing temperature. The Richardson plot is found to be linear in the temperature range measured, but the activation energy value of 0.378 eV and the Richardson constant (A*) value of 15.51 A cm −2 K −2 obtained in this plot are much lower than the known values. Such behavior is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution of barrier heights (BHs) due to BH inhomogeneities that prevail at the interface. Also, the Φ B0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and Φ B0 = 0.535 eV and σ 0 = 0.069 V for the mean BH and zero-bias standard deviation, respectively, have been obtained from this plot. Thus, the modified ln(I 0 /T 2 ) − q 2 σ 2 0 /2k 2 T 2 versus q/kT plot gives Φ B0 and A* as 0.510 eV and 121.96 A cm −2 K −2 , respectively. This value of the Richardson constant 121.96 A cm −2 K −2 is very close to the theoretical value of 120 A K −2 cm −2 for n-type Si. Hence, it has been concluded that the temperature dependence of the forward I–V characteristics of the Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes can be successfully explained on the basis of a thermionic emission mechanism with a Gaussian distribution of the BHs

  12. Piezotronically modified double Schottky barriers in ZnO varistors.

    Science.gov (United States)

    Raidl, Nadine; Supancic, Peter; Danzer, Robert; Hofstätter, Michael

    2015-03-25

    Double Schottky barriers in ZnO are modified piezotronically by the application of mechanical stresses. New effects such as the enhancement of the potential barrier height and the increase or decrease of the natural barrier asymmetry are presented. Also, an extended model for the piezotronic modification of double Schottky barriers is given. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of B doping on the carrier transport mechanism and barrier height of graphene/ZnO Schottky contact

    Science.gov (United States)

    Li, Yapeng; Li, Yingfeng; Zhang, Jianhua; Tong, Ting; Ye, Wei

    2018-03-01

    The ZnO films were fabricated on the surface of n-Si(1 1 1) substrate using the sol-gel method, and the graphene was then transferred to its surface for the fabrication of the graphene/ZnO Schottky contact. The results showed that ZnO films presented a strong (0 0 2) preferred direction, and that the particle sizes on the surface decreased as the doping concentration of B ions increased. The electrical properties of the graphene/ZnO Schottky contact were measured by using current-voltage measurements. It was found that the graphene/ZnO Schottky contact showed a fine rectification behavior when the doping concentration of B ions was increased. However, when the doping concentration of the B ions increased to 0.15 mol l-1, the leakage current increased and rectification behavior weakened. This was due to the Fermi level pinning caused by the presence of the O vacancy at the interface of the graphene/ZnO Schottky contact.

  14. Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Lin, Yow-Jon; Lin, Jian-Huang

    2014-01-01

    Highlights: • The current–voltage characteristics of graphene/n-type Si devices were measured. • The ideality factor increases with the decrease measurement temperatures. • Such behavior is attributed to Schottky barrier inhomogeneities. • Both Schottky barrier inhomogeneity and the T 0 effect are affected by annealing. • Stoichiometry of SiO x has a noticeable effect on the inhomogeneous barriers. - Abstract: The current–voltage characteristics of graphene/n-type Si (n-Si) Schottky diodes with and without annealing were measured in the temperature range of −120 to 30 °C and analyzed on the basis of thermionic emission theory. It is found that the barrier height decreases and the ideality factor increases with the decrease measurement temperatures. Such behavior is attributed to Schottky barrier inhomogeneities. It is shown that both the barrier height and the ideality factor can be tuned by changing the annealing temperature. Through the analysis, it can be suspected that a SiO x layer at the graphene/n-Si interfaces influences the electronic conduction through the device and stoichiometry of SiO x is affected by annealing treatment. In addition, both Schottky barrier inhomogeneity and the T 0 effect are affected by annealing treatment, implying that stoichiometry of SiO x has a noticeable effect on the inhomogeneous barriers of graphene/n-Si Schottky diodes

  15. Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Atxabal, Ainhoa; Ribeiro, Mário; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country (Spain); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country (Spain)

    2015-11-02

    We show the operation of a Cu/Al{sub 2}O{sub 3}/Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 ± 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ∼2 × 10{sup −13} A, an ON/OFF ratio of ∼10{sup 5}, and an equivalent subthreshold swing of ∼96 mV/dec at low temperatures, which are suitable values for potential high frequency devices.

  16. Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy

    International Nuclear Information System (INIS)

    Parui, Subir; Atxabal, Ainhoa; Ribeiro, Mário; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2015-01-01

    We show the operation of a Cu/Al 2 O 3 /Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 ± 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ∼2 × 10 −13  A, an ON/OFF ratio of ∼10 5 , and an equivalent subthreshold swing of ∼96 mV/dec at low temperatures, which are suitable values for potential high frequency devices

  17. Schottky Barriers in Bilayer Phosphorene Transistors.

    Science.gov (United States)

    Pan, Yuanyuan; Dan, Yang; Wang, Yangyang; Ye, Meng; Zhang, Han; Quhe, Ruge; Zhang, Xiuying; Li, Jingzhen; Guo, Wanlin; Yang, Li; Lu, Jing

    2017-04-12

    It is unreliable to evaluate the Schottky barrier height (SBH) in monolayer (ML) 2D material field effect transistors (FETs) with strongly interacted electrode from the work function approximation (WFA) because of existence of the Fermi-level pinning. Here, we report the first systematical study of bilayer (BL) phosphorene FETs in contact with a series of metals with a wide work function range (Al, Ag, Cu, Au, Cr, Ti, Ni, and Pd) by using both ab initio electronic band calculations and quantum transport simulation (QTS). Different from only one type of Schottky barrier (SB) identified in the ML phosphorene FETs, two types of SBs are identified in BL phosphorene FETs: the vertical SB between the metallized and the intact phosphorene layer, whose height is determined from the energy band analysis (EBA); the lateral SB between the metallized and the channel BL phosphorene, whose height is determined from the QTS. The vertical SBHs show a better consistency with the lateral SBHs of the ML phosphorene FETs from the QTS compared than that of the popular WFA. Therefore, we develop a better and more general method than the WFA to estimate the lateral SBHs of ML semiconductor transistors with strongly interacted electrodes based on the EBA for its BL counterpart. In terms of the QTS, n-type lateral Schottky contacts are formed between BL phosphorene and Cr, Al, and Cu electrodes with electron SBH of 0.27, 0.31, and 0.32 eV, respectively, while p-type lateral Schottky contacts are formed between BL phosphorene and Pd, Ti, Ni, Ag, and Au electrodes with hole SBH of 0.11, 0.18, 0.19, 0.20, and 0.21 eV, respectively. The theoretical polarity and SBHs are in good agreement with available experiments. Our study provides an insight into the BL phosphorene-metal interfaces that are crucial for designing the BL phosphorene device.

  18. Atomic nature of the Schottky barrier height formation of the Ag/GaAs(001)-2 × 4 interface: An in-situ synchrotron radiation photoemission study

    International Nuclear Information System (INIS)

    Cheng, Chiu-Ping; Chen, Wan-Sin; Lin, Keng-Yung; Wei, Guo-Jhen; Cheng, Yi-Ting; Lin, Yen-Hsun; Wan, Hsien-Wen; Pi, Tun-Wen; Tung, Raymond T.; Kwo, Jueinai; Hong, Minghwei

    2017-01-01

    Highlights: • The interaction of Ag on a p-type α2 GaAs(001)-2 × 4 surface has been studied. • The dipole formation mechanism of the Ag/GaAs(001)-2 × 4 interface is proposed. • Determination of the SBH prior to metal formation is found. • Inadequacy of the metal-induced gap-state model for explaining the SBH is evident. - Abstract: The Interface of Ag with p-type α2 GaAs(001)-2 × 4 has been studied to further understand the formation mechanism of the Schottky barrier height (SBH). In the initial phase of Ag deposition, high-resolution core-level data show that Ag adatoms effectively passivate the surface As-As dimers without breaking them apart. The Ag(+)-As(−) dipoles are thus generated with a maximal potential energy of 0.26 eV; a SBH of 0.38 eV was measured. Greater Ag coverage causes elemental segregation of As/Ga atoms, reversing the direction of the net dipole. The band bending effect near the interface shows a downward shift of 0.08 eV, and the final SBH is similar to the value as measured at the initial Ag deposition. Both parameters are secured at 0.25 Å of Ag thickness prior to the observation of metallic behavior of Ag. Inadequacy of the metal-induced gap-state model for explaining SBH is evident.

  19. Atomic nature of the Schottky barrier height formation of the Ag/GaAs(001)-2 × 4 interface: An in-situ synchrotron radiation photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chiu-Ping, E-mail: cpcheng@mail.ncyu.edu.tw [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Chen, Wan-Sin [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC (China); Lin, Keng-Yung [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China); Wei, Guo-Jhen; Cheng, Yi-Ting [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Lin, Yen-Hsun; Wan, Hsien-Wen [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China); Pi, Tun-Wen, E-mail: pi@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC (China); Tung, Raymond T. [Department of Physics, Brooklyn College, CUNY, NY 11210 (United States); Kwo, Jueinai, E-mail: raynien@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC (China); Hong, Minghwei, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China)

    2017-01-30

    Highlights: • The interaction of Ag on a p-type α2 GaAs(001)-2 × 4 surface has been studied. • The dipole formation mechanism of the Ag/GaAs(001)-2 × 4 interface is proposed. • Determination of the SBH prior to metal formation is found. • Inadequacy of the metal-induced gap-state model for explaining the SBH is evident. - Abstract: The Interface of Ag with p-type α2 GaAs(001)-2 × 4 has been studied to further understand the formation mechanism of the Schottky barrier height (SBH). In the initial phase of Ag deposition, high-resolution core-level data show that Ag adatoms effectively passivate the surface As-As dimers without breaking them apart. The Ag(+)-As(−) dipoles are thus generated with a maximal potential energy of 0.26 eV; a SBH of 0.38 eV was measured. Greater Ag coverage causes elemental segregation of As/Ga atoms, reversing the direction of the net dipole. The band bending effect near the interface shows a downward shift of 0.08 eV, and the final SBH is similar to the value as measured at the initial Ag deposition. Both parameters are secured at 0.25 Å of Ag thickness prior to the observation of metallic behavior of Ag. Inadequacy of the metal-induced gap-state model for explaining SBH is evident.

  20. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  1. Schottky barrier MOSFET systems and fabrication thereof

    Science.gov (United States)

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  2. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  3. Study of 4H-SiC junction barrier Schottky diode using field guard ring termination

    International Nuclear Information System (INIS)

    Feng-Ping, Chen; Yu-Ming, Zhang; Hong-Liang, Lü; Yi-Men, Zhang; Jian-Hua, Huang

    2010-01-01

    This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  5. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui; Xu, Ke; Wang, Jianfeng; Ren, Guoqiang

    2014-01-01

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure

  6. Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN ...

    Indian Academy of Sciences (India)

    Pt/Ru Schottky rectifiers; n-type GaN; temperature–dependent electrical properties; inhomogeneous barrier heights .... a 2 μm thick Si-doped GaN films which were grown by .... ted values of ap using (9) for two Gaussian distributions of bar-.

  7. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    Science.gov (United States)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  8. External electric field effects on Schottky barrier at Gd3N@C80/Au interface

    Science.gov (United States)

    Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong

    2017-08-01

    The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.

  9. Prediction of barrier inhomogeneities and carrier transport in Ni-silicided Schottky diode

    International Nuclear Information System (INIS)

    Saha, A.R.; Dimitriu, C.B.; Horsfall, A.B.; Chattopadhyay, S.; Wright, N.G.; O'Neill, A.G.; Maiti, C.K.

    2006-01-01

    Based on Quantum Mechanical (QM) carrier transport and the effects of interface states, a theoretical model has been developed to predict the anomalous current-voltage (I-V) characteristics of a non-ideal Ni-silicided Schottky diode at low temperatures. Physical parameters such as barrier height, ideality factor, series resistance and effective Richardson constant of a silicided Schottky diode were extracted from forward I-V characteristics and are subsequently used for the simulation of both forward and reverse I-V characteristics using a QM transport model in which the effects of interface state and bias dependent barrier reduction are incorporated. The present analysis indicates that the effects of barrier inhomogeneity caused by incomplete silicide formation at the junction and the interface states may change the conventional current transport process, leading to anomalous forward and reverse I-V characteristics for the Ni-silicided Schottky diode

  10. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Mario, Lorenzo [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Turchini, Stefano, E-mail: stefano.turchini@cnr.it [ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Zamborlini, Giovanni; Feyer, Vitaly [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Tian, Lin [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Schneider, Claus M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany); Rubini, Silvia [IOM-CNR, TASC Laboratory, Basovizza 34149, Trieste (Italy); Martelli, Faustino, E-mail: faustino.martelli@cnr.it [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-11-15

    Highlights: • The Schottky barrier at the interface between Cu and GaAs nanowires was measured. • Individual nanowires were investigated by X-ray Photoemission Microscopy. • The Schottky barrier at different positions along the nanowire was evaluated. - Abstract: We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  11. Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films

    Directory of Open Access Journals (Sweden)

    F. Schipani

    2012-09-01

    Full Text Available The oxygen adsorption effects on the Schottky barriers height measurements for thick films gas sensors prepared with undoped nanometric SnO2 particles were studied. From electrical measurements, the characteristics of the intergranular potential barriers developed at intergrains were deduced. It is shown that the determination of effective activation energies from conduction vs. 1/temperature curves is not generally a correct manner to estimate barrier heights. This is due to gas adsorption/desorption during the heating and cooling processes, the assumption of emission over the barrier as the dominant conduction mechanism, and the possible oxygen diffusion into or out of the grains.

  12. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    Science.gov (United States)

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  13. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  14. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    Science.gov (United States)

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  15. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  16. Calculation of the Schottky barrier and current–voltage characteristics of metal–alloy structures based on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V. [North Caucasian Federal University, Institute of Service, Tourism and Design (Branch) (Russian Federation); Bilalov, B. A. [Dagestan State Technical University (Russian Federation); Sigov, A. S. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2016-09-15

    A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.

  17. Effect of annealing temperature on electrical properties of Au/polyvinyl alcohol/n-InP Schottky barrier structure

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Reddy, M. Siva Pratap; Kumar, A. Ashok; Choi, Chel-Jong

    2012-01-01

    In the present work, thin film of polyvinyl alcohol (PVA) is fabricated on n-type InP substrate as an interfacial layer for electronic modification of Au/n-InP Schottky contact. The electrical characteristics of Au/PVA/n-InP Schottky diode are determined at annealing temperature in the range of 100–300 °C by current–voltage (I-V) and capacitance–voltage (C-V) methods. The Schottky barrier height and ideality factor (n) values of the as-deposited Au/PVA/n-InP diode are obtained at room temperature as 0.66 eV (I-V), 0.82 eV (C-V) and 1.32, respectively. Upon annealing at 200 °C in nitrogen atmosphere for 1 min, the barrier height value increases to 0.81 eV (I-V), 0.99 eV (C-V) and ideality factor decreases to 1.18. When the contact is annealed at 300 °C, the barrier height value decreases to 0.77 eV (I-V), 0.96 eV (C-V) and ideality factor increases to 1.22. It is observed that the interfacial layer of PVA increases the barrier height by the influence of the space charge region of the Au/n-InP Schottky junction. The discrepancy between Schottky barrier heights calculated from I-V and C-V measurements is also explained. Further, Cheung's functions are used to extract the series resistance of Au/PVA/n-InP Schottky diode. The interface state density as determined by Terman's method is found to be 1.04 × 10 12 and 0.59 × 10 12 cm −2 eV −1 for the as-deposited and 200 °C annealed Au/PVA/n-InP Schottky diodes. Finally, it is seen that the Schottky diode parameters changed with increase in the annealing temperature. - Highlights: ► Electrical properties of Au/polyvinyl alcohol (PVA)/n-InP structure have been studied. ► The Au/PVA/n-InP Schottky structure showed a good rectifying behavior. ► A maximum barrier height is obtained when the contact is annealed at 200 °C. ► Interface state density found to be 0.59 × 10 12 cm −2 eV −1 for 200 °C annealed contact. ► Significant effect of interface state density and series resistance on electrical

  18. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Science.gov (United States)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  19. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    Science.gov (United States)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  20. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  1. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  2. Characteristics of Al/p-AgGaTe2 polycrystalline thin film Schottky barrier diode

    International Nuclear Information System (INIS)

    Patel, S.S.; Patel, B.H.; Patel, T.S.

    2008-01-01

    An Al/p-AgGaTe 2 polycrystalline thin film schottky barrier diode have been prepared by flash-evaporation of p-AgGaTe 2 onto a pre-deposited film of aluminium. The current-voltage, capacitance-voltage and photoresponse of the diode have been investigated. The important physical parameter such as barrier height of the fabricated diode was derived from these measurements. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

    Science.gov (United States)

    Bera, Swades Ranjan; Saha, Satyajit

    2018-04-01

    CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.

  4. Metal-semiconductor Schottky barrier junctions and their applications

    CERN Document Server

    1984-01-01

    The present-day semiconductor technology would be inconceivable without extensive use of Schottky barrier junctions. In spite of an excellent book by Professor E.H. Rhoderick (1978) dealing with the basic principles of metal­ semiconductor contacts and a few recent review articles, the need for a monograph on "Metal-Semiconductor Schottky Barrier Junctions and Their Applications" has long been felt by students, researchers, and technologists. It was in this context that the idea of publishing such a monograph by Mr. Ellis H. Rosenberg, Senior Editor, Plenum Publishing Corporation, was considered very timely. Due to the numerous and varied applications of Schottky barrier junctions, the task of bringing it out, however, looked difficult in the beginning. After discussions at various levels, it was deemed appropriate to include only those typical applications which were extremely rich in R&D and still posed many challenges so that it could be brought out in the stipulated time frame. Keeping in view the la...

  5. Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors

    International Nuclear Information System (INIS)

    De-Gang, Zhao; Shuang, Zhang; Wen-Bao, Liu; De-Sheng, Jiang; Jian-Jun, Zhu; Zong-Shun, Liu; Hui, Wang; Shu-Ming, Zhang; Hui, Yang; Xiao-Peng, Hao; Long, Wei

    2010-01-01

    The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

    Science.gov (United States)

    Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi

    2018-04-01

    A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.

  7. Simulation studies of current transport in metal-insulator-semiconductor Schottky barrier diodes

    International Nuclear Information System (INIS)

    Chand, Subhash; Bala, Saroj

    2007-01-01

    The current-voltage characteristics of Schottky diodes with an interfacial insulator layer are analysed by numerical simulation. The current-voltage data of the metal-insulator-semiconductor Schottky diode are simulated using thermionic emission diffusion (TED) equation taking into account an interfacial layer parameter. The calculated current-voltage data are fitted into ideal TED equation to see the apparent effect of interfacial layer parameters on current transport. Results obtained from the simulation studies shows that with mere presence of an interfacial layer at the metal-semiconductor interface the Schottky contact behave as an ideal diode of apparently high barrier height (BH), but with same ideality factor and series resistance as considered for a pure Schottky contact without an interfacial layer. This apparent BH decreases linearly with decreasing temperature. The effects giving rise to high ideality factor in metal-insulator-semiconductor diode are analysed. Reasons for observed temperature dependence of ideality factor in experimentally fabricated metal-insulator-semiconductor diodes are analysed and possible mechanisms are discussed

  8. Reducing the Schottky barrier between few-layer MoTe2 and gold

    Science.gov (United States)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  9. A charge-based model of Junction Barrier Schottky rectifiers

    Science.gov (United States)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  10. Analysis of Schottky Barrier Parameters and Current Transport Properties of V/p-Type GaN Schottky Junction at Low Temperatures

    Science.gov (United States)

    Asha, B.; Harsha, Cirandur Sri; Padma, R.; Rajagopal Reddy, V.

    2018-05-01

    The electrical characteristics of a V/p-GaN Schottky junction have been investigated by current-voltage (I-V) and capacitance-voltage (C-V) characteristics under the assumption of the thermionic emission (TE) theory in the temperature range of 120-280 K with steps of 40 K. The zero-bias barrier height (ΦB0), ideality factor (n), flat-band barrier height (ΦBF) and series resistance (R S) values were evaluated and were found to be strongly temperature dependent. The results revealed that the ΦB0 values increase, whereas n, ΦFB and R S values decrease, with increasing temperature. Using the conventional Richardson plot, the mean barrier height (0.39 eV) and Richardson constant (8.10 × 10-10 Acm-2 K-2) were attained. The barrier height inhomogeneities were demonstrated by assuming a Gaussian distribution function. The interface state density (N SS) values were found to decrease with increasing temperature. The reverse leakage current mechanism of the V/p-GaN Schottky junction was found to be governed by Poole-Frenkel emission at all temperatures.

  11. Schottky barrier enhancement on n-InP solar cell applications

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1994-01-01

    It is demonstrated that the Schottky barrier height on n-type InP can be enhanced to values close to the energy bandgap (1.35 eV) by employing a AuZnCr metallization. The process is simple and requires only mild and fast annealing sequences with temperatures not exceeding 500°C. Also, no critical...... epitaxial growth step of junctions is needed, making the process fairly cheap. Thus, prospects for an efficient and simple solar cell device structure for space application purposes based on highly radiant-resistant InP are greatly improved...

  12. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  13. Measurements of Effective Schottky Barrier in Inverse Extraordinary Optoconductance Structures

    Science.gov (United States)

    Tran, L. C.; Werner, F. M.; Solin, S. A.; Gilbertson, Adam; Cohen, L. F.

    2013-03-01

    Individually addressable optical sensors with dimensions as low as 250nm, fabricated from metal semiconductor hybrid structures (MSH) of AuTi-GaAs Schottky interfaces, display a transition from resistance decreasing with intensity in micron-scale sensors (Extraordinary Optoconductance, EOC) to resistance increasing with intensity in nano-scale sensors (Inverse Extraordinary Optoconductance I-EOC). I-EOC is attributed to a ballistic to diffusive crossover with the introduction of photo-induced carriers and gives rise to resistance changes of up to 9462% in 250nm devices. We characterize the photo-dependence of the effective Schottky barrier in EOC/I-EOC structures by the open circuit voltage and reverse bias resistance. Under illumination by a 5 mW, 632.8 nm HeNe laser, the barrier is negligible and the Ti-GaAs interface becomes Ohmic. Comparing the behavior of two devices, one with leads exposed, another with leads covered by an opaque epoxy, the variation in Voc with the position of the laser can be attributed to a photovoltaic effect of the lead metal and bulk GaAs. The resistance is unaffected by the photovoltaic offset of the leads, as indicated by the radial symmetry of 2-D resistance maps obtained by rastering a laser across EOC/IEOC devices. SAS has a financial interest in PixelEXX, a start-up company whose mission is to market imaging arrays.

  14. Graphene barristor, a triode device with a gate-controlled Schottky barrier.

    Science.gov (United States)

    Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam

    2012-06-01

    Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

  15. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Erdoğan, Erman, E-mail: e.erdogan@alparslan.edu.tr [Department of Physics, Faculty of Art and Science, Muş Alparslan University, Muş 49250 (Turkey); Kundakçı, Mutlu [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10{sup −5} mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  16. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  17. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Qingyun

    2013-01-01

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  18. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong

    2013-09-26

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  19. Schottky barrier CdTe(Cl) detectors for planetary missions

    International Nuclear Information System (INIS)

    Eisen, Yosef; Floyd, Samuel

    2002-01-01

    Schottky barrier cadmium telluride (CdTe) radiation detectors of dimensions 2mm x 2mm x 1mm and segmented monolithic 3cm x 3 cm x 1mm are under study at GSFC for future NASA planetary instruments. These instruments will perform x-ray fluorescence spectrometry of the surface and monitor the solar x-ray flux spectrum, the excitation source for the characteristic x-rays emitted from the planetary body. The Near Earth Asteroid Rendezvous (NEAR) mission is the most recent example of such a remote sensing technique. Its x-ray fluorescence detectors were gas proportional counters with a back up Si PIN solar monitor. Analysis of NEAR data has shown the necessity to develop a solar x-ray detector with efficiency extending to 30keV. Proportional counters and Si diodes have low sensitivity above 9keV. Our 2mm x 2mm x 1mm CdTe operating at -30 degree sign C possesses an energy resolution of 250eV FWHM for 55Fe with unit efficiency to up to 30keV. This is an excellent candidate for a solar monitor. Another ramification of the NEAR data is a need to develop a large area detector system, 20-30 cm2, with cosmic ray charged particle rejection, for measuring the characteristic radiation. A 3cm x 3cm x 1mm Schottky CdTe segmented monolithic detector is under investigation for this purpose. A tiling of 2-3 such detectors will result in the desired area. The favorable characteristics of Schottky CdTe detectors, the system design complexities when using CdTe and its adaptation to future missions will be discussed

  20. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    Science.gov (United States)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  1. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    Science.gov (United States)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  2. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  3. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Liu Yebing; Hu Rui; Yang Yuqing; Wang Guanquan; Luo Shunzhong; Liu Ning

    2012-01-01

    An Au–Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p–n junction. The results show that the Schottky diode had a higher I sc and harder radiation tolerance but lower V oc than the p–n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. - Highlights: ► The Schottky diode was used as the converter of the betavoltaic battery. ► The radiation damage of converter was accelerated by using alpha particles. ► The Schottky diode has higher radiation resistance than that of the p–n junction. ► The Schottky diode could still be a promising converter of the betavoltaic battery.

  4. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole

    Science.gov (United States)

    Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei

    2017-03-01

    The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.

  5. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  6. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    Science.gov (United States)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  7. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    Science.gov (United States)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  8. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  9. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  10. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    Science.gov (United States)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  11. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer

    International Nuclear Information System (INIS)

    Güllü, Ö.; Aydoğan, S.; Türüt, A.

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal–semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current–voltage (I–V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I–V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 μA and 240 mV, respectively.

  12. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    Science.gov (United States)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  13. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  14. Determination of the characteristics of a Schottky barrier formed by latent finger mark corrosion of brass

    International Nuclear Information System (INIS)

    Bond, J W

    2009-01-01

    The ideality factor (η) and barrier height (φ B ) for a metal-copper(I) oxide rectifying contact formed by the latent finger mark corrosion of α phase brass have been determined from forward bias I/V characteristics in the range 0.4 V ≤ V ≤ 0.55 V. Rectifying contacts formed from the finger mark deposits of different people gave η = 1.5-1.6 ± 0.1 and φ B = 0.49-0.52 ± 0.04 V. A Mott-Schottky plot of capacitance-voltage measurements in reverse bias gave the built in potential ψ bi = 0.4 ± 0.1 V, the gradient of the plot confirming the conductivity of the finger mark corrosion as p type. X-ray photoelectron spectroscopy spectra of the corrosion showed that Cu(I), Cu(II) and Zn(II) can co-exist on the surface, the Cu(I) : Cu(II) and Zn : Cu ratios determining whether a rectifying contact is formed. Initial findings suggest that when the concentration of Cu(I) dominates the Cu(I) : Cu(II) ratio (approximately 6 : 1), or when Cu(II) is absent, a rectifying contact can be formed subject to the Zn : Cu ratio being approximately 1 : 3. As the surface concentration of zinc increases, the rectifying contact is degraded until the concentration of zinc approaches that of copper when no evidence of a Schottky barrier is observed and the contact appears ohmic.

  15. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    Science.gov (United States)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  16. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode

    OpenAIRE

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-01-01

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28?eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increa...

  17. The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode

    Science.gov (United States)

    Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.

    We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

  18. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    Science.gov (United States)

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  19. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    Science.gov (United States)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  20. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    International Nuclear Information System (INIS)

    Zheng Liu; Zhang Feng; Liu Sheng-Bei; Dong Lin; Liu Xing-Fang; Liu Bin; Yan Guo-Guo; Wang Lei; Zhao Wan-Shun; Sun Guo-Sheng; He Zhi; Fan Zhong-Chao; Yang Fu-Hua

    2013-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm 2 with a total active area of 2.46 × 10 −3 cm 2 . Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10 −5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. ON current enhancement of nanowire Schottky barrier tunnel field effect transistors

    Science.gov (United States)

    Takei, Kohei; Hashimoto, Shuichiro; Sun, Jing; Zhang, Xu; Asada, Shuhei; Xu, Taiyu; Matsukawa, Takashi; Masahara, Meishoku; Watanabe, Takanobu

    2016-04-01

    Silicon nanowire Schottky barrier tunnel field effect transistors (NW-SBTFETs) are promising structures for high performance devices. In this study, we fabricated NW-SBTFETs to investigate the effect of nanowire structure on the device characteristics. The NW-SBTFETs were operated with a backgate bias, and the experimental results demonstrate that the ON current density is enhanced by narrowing the width of the nanowire. We confirmed using the Fowler-Nordheim plot that the drain current in the ON state mainly comprises the quantum tunneling component through the Schottky barrier. Comparison with a technology computer aided design (TCAD) simulation revealed that the enhancement is attributed to the electric field concentration at the corners of cross-section of the NW. The study findings suggest an effective approach to securing the ON current by Schottky barrier width modulation.

  2. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Davids, P.S.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas75083 (United States)

    1998-04-01

    We present device model calculations of the current{endash}voltage (I{endash}V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I{endash}V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I{endash}V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited. {copyright} {ital 1998 American Institute of Physics.}

  3. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Science.gov (United States)

    Campbell, I. H.; Davids, P. S.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1998-04-01

    We present device model calculations of the current-voltage (I-V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I-V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I-V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited.

  4. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    Science.gov (United States)

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  5. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  6. Effects of the TiO2 high-k insulator material on the electrical characteristics of GaAs based Schottky barrier diodes

    Science.gov (United States)

    Zellag, S.; Dehimi, L.; Asar, T.; Saadoune, A.; Fritah, A.; Özçelik, S.

    2018-01-01

    The effects of the TiO2 high-k insulator material on Au/n-GaAs/Ti/Au Schottky barrier diodes have been studied by means of the numerical simulation and experimental results at room temperature. The Atlas-Silvaco-TCAD numerical simulator has been used to explain the behavior of different physical phenomena of Schottky diode. The experimental values of ideality factor, barrier height, and series resistance have been determined by using the various techniques such as Cheung's method, forward bias ln I- V and reverse capacitance-voltage behaviors. The experimental ideality factor and barrier height values have been found to be 4.14 and 0.585 eV for Au/n-GaAs/Ti/Au Schottky barrier diode and 4.00 and 0.548 eV for that structure with 16 nm thick TiO2 film and 3.92, 0.556 eV with 100 nm thick TiO2 film. The diodes show a non-ideal current-voltage behavior that of the ideality factor so far from unity. The extraction of N ss interface distribution profile as a function of E c -E ss is made using forward-bias I- V measurement by considering the bias dependence of ideality factor, the effective barrier height, and series resistance for Schottky barrier diodes. The N ss calculated values with consideration of the series resistance are lower than the calculated ones without series resistance. The current-voltage results of diodes reveal an abnormal increase in leakage current with an increase in thickness of high-k interfacial insulator layer. However, the simulation agrees in general with the experimental results.

  7. Effect of Barrier Metal Based on Titanium or Molybdenum in Characteristics of 4H-SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    M. Ben Karoui

    2014-05-01

    Full Text Available The electrical properties were extracted by I-V and C-V analysis, performed from 10 K to 450 K. When the annealing temperature varied to 400 °C, the Schottky barrier height (SBH increased from 0.85 Ev to 1.20 eV in Ti/4H-SiC whereas in the Mo/4H-SiC the SBH varied from 1.04 eV to 1.10 eV. Deformation of J-V-T characteristics was observed in two types of devices when the temperature decreases from 300 K to 10 K. The electrical properties and the stability of the devices have been correlated to the fabrication processes and to the metal/semiconductor interfaces. Mo-based contacts show better behaviour in forward polarization when compared to the Ti-based Schottky contacts, with ideality factors close to the unity even after the annealing process. However, Mo-based contacts show leakage currents higher than that measured on the more optimized Ti-based Schottky.

  8. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced

  9. Development of high performance Schottky barrier diode and its application to plasma diagnostics

    International Nuclear Information System (INIS)

    Fujita, Junji; Kawahata, Kazuo; Okajima, Shigeki

    1993-10-01

    At the conclusion of the Supporting Collaboration Research on 'Development of High Performance Detectors in the Far Infrared Range' carried out from FY1990 to FY1992, the results of developing Schottky barrier diode and its application to plasma diagnostics are summarized. Some remarks as well as technical know-how for the correct use of diodes are also described. (author)

  10. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Yatskiv, Roman

    2013-01-01

    Roč. 28, č. 4 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Colloidal graphite * Epitaxial growth * Schottky barrier diodes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  11. Measurement of barrier height of Pd on diamond (100) surface by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.N. [Institute of Wide Band Gap Semiconductors, Xi' an Jiaotong University, Xi' an 710049 (China); Nation Key Laboratory of ASIC, HSRI, Shijiazhuang 050051 (China); Liu, J.W. [International Center for Young Scientists, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 3050044 (Japan); Zhang, J.W.; Wang, X.L.; Wang, W.; Liu, Z.C. [Institute of Wide Band Gap Semiconductors, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, H.X., E-mail: hxwangcn@mail.xjtu.edu.cn [Institute of Wide Band Gap Semiconductors, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    Highlights: • Metal-semiconductor contacts of Pd/hydrogen-terminated diamond and Pd/oxygen-terminated diamond have been investigated by XPS measurements. • The barrier height for Pd/hydrogen-terminated diamond (ohmic contact) has been measured to be −0.27 eV. • The barrier height for Pd/oxygen-terminated diamond (Schottky contact) has been measured to be 1.73 eV. - Abstract: Barrier height (Φ{sub BH}) values for Pd/hydrogen-terminated diamond (H-diamond) and Pd/oxygen-terminated diamond (O-diamond) have been investigated by X-ray photoelectron spectroscopy technique. H-diamond and O-diamond have been formed on the same diamond (100) layer grown by microwave plasma-enhanced chemical vapor deposition,on which Pd layers have been evaporated. The Φ{sub BH} values for Pd/H-diamond and Pd/O-diamond are determined to be −0.27 eV and 1.73 eV, respectively. It indicates that Pd is a suitable metal for ohmic and Schottky contacts on H-diamond and O-diamond, respectively. The experimental Φ{sub BH} values are in good agreement with the theoretical calculation results.

  12. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping

    DEFF Research Database (Denmark)

    Jin, Chengjun; Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    ) with a generalized gradient approximation predicts a Schottky barrier height of 0.18 eV, whereas the G0W0 method increases this value to 0.60 eV. While the DFT band gap of MoS2 does not change when the heterostructure is formed, the G0W0 gap is reduced by 0.30 eV as a result of the enhanced screening by the graphene...... layer. In contrast to the case of metal substrates, where the band alignment is governed by Pauli repulsion-induced interface dipoles, the graphene/MoS2 heterostructure shows only a negligible interface dipole. As a consequence, the band alignment at the neutral heterostructure is not changed when...... the two layers are brought into contact. We systematically follow the band alignment as a function of doping concentration and find that the Fermi level of the graphene crosses the MoS2 conduction band at a doping concentration of around 1012 cm–2. The variation of the energy levels with doping...

  13. Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides

    Science.gov (United States)

    Lu, Haichang; Guo, Yuzheng; Robertson, John

    2016-08-01

    The Schottky Barrier Heights (SBH) of metal layers on top of monolayer hexagonal X-nitrides (X = B, Al, Ga, and h-XN) are calculated using supercells and density functional theory so as to understand the chemical trends of contact formation on graphene and the 2D layered semiconductors such as the transition metal dichalcogenides. The Fermi level pinning factor S of SBHs on h-BN is calculated to be nearly 1, indicating no pinning. For h-AlN and h-GaN, the calculated pinning factor is about 0.63, less than for h-BN. We attribute this to the formation of stronger, chemisorptive bonds between the nitrides and the contact metal layer. Generally, the h-BN layer remains in a planar sp2 geometry and has weak physisorptive bonds to the metals, whereas h-AlN and h-GaN buckle out of their planar geometry which enables them to form the chemisorptive bonds to the metals.

  14. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    Science.gov (United States)

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB.

  15. Demonstration of a 4H SiC betavoltaic nuclear battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Qiao Dayong; Yuan Weizheng; Gao Peng; Yao Xianwang; Zang Bo; Zhang Lin; Guo Hui; Zhang Hongjian

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm 2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm 2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device. (authors)

  16. Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode

    International Nuclear Information System (INIS)

    Da-Yong, Qiao; Wei-Zheng, Yuan; Peng, Gao; Xian-Wang, Yao; Bo, Zang; Lin, Zhang; Hui, Guo; Hong-Jian, Zhang

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm 2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm 2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device

  17. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    Science.gov (United States)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  18. Physics of Schottky-barrier change by segregation and structural disorder at metal/Si interfaces: First-principles study

    International Nuclear Information System (INIS)

    Nakayama, T.; Kobinata, K.

    2012-01-01

    Schottky-barrier changes by the segregation and structural disorder are studied using the first-principles calculations and adopting Au/Si interface. The Schottky barrier for electrons simply decreases as increasing the valency of segregated atoms from II to VI families, which variation is shown closely related to how the Si atoms are terminated at the interface. On the other hand, the structural disorders (defects) prefer to locate near the interface and the Schottky barrier for hole carriers does not change in cases of Si vacancy and Au substitution, while it increases in cases of Si and Au interstitials reflecting the appearance of Si dangling bonds.

  19. Operation and scalability of dopant-segregated Schottky barrier MOSFETs with recessed channels

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Hsia, Jui-Kai

    2013-01-01

    Recessed channels were used in scaled dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to control the severe short-channel effect. The physical operation and device scalability of the DS-SBMOS resulting from the presence of recessed channels and associated gate-corners are elucidated. The coupling of Schottky and gate-corner barriers has a key function in determining the on–off switching and drain current. The gate-corner barriers divide the channel into three regions for protection from the drain penetration field. To prevent resistive degradations in the drive current, an alternative asymmetric recessed channel (ARC) without a source-side gate-corner is proposed to simultaneously optimize both the short-channel effect and drive current in the scaled DS-SBMOS. By employing the proposed ARC architecture, the DS-SBMOS devices can be successfully scaled down, making them promising candidates for next-generation CMOS devices. (paper)

  20. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    Science.gov (United States)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  1. An all-carbon vdW heterojunction composed of penta-graphene and graphene: Tuning the Schottky barrier by electrostatic gating or nitrogen doping

    Science.gov (United States)

    Guo, Yaguang; Wang, Fancy Qian; Wang, Qian

    2017-08-01

    The non-zero band gap together with other unique properties endows penta-graphene with potential for device applications. Here, we study the performance of penta-graphene as the channel material contacting with graphene to form a van der Waals heterostructure. Based on first-principles calculations, we show that the intrinsic properties of penta-graphene are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The stacked system forms an n-type Schottky barrier (Φe) at the vertical interface, while a negative band bending occurs at the lateral interface in a current-in-plane model. From the device point of view, we further demonstrate that a low-Φe or an Ohmic contact can be realized by applying an external electric field or doping graphene with nitrogen atoms. This allows the control of the Schottky barrier height, which is essential in fabricating penta-graphene-based nanotransistors.

  2. Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag14+ ions

    International Nuclear Information System (INIS)

    Kumar, Ashish; Kumar, Tanuj; Kanjilal, D.; Hähnel, A.; Singh, R.

    2014-01-01

    Ni/GaN Schottky barrier diodes were irradiated with 200 MeV Ag ions up to fluence of 1 × 10 11 ions/cm 2 at the substrate temperature of 80 K. Post-irradiation current-voltage measurements showed that the ideality factor, n increased and the reverse leakage current, I R decreased with increase in fluence. But Schottky barrier height, ϕ b increased only marginally with increase in ion fluence. In situ resistivity measurements showed orders of magnitude increase in resistivity of GaN epitaxial film with irradiation fluence. Cross-sectional transmission electron microscopy images revealed the presence of defect clusters in bulk GaN after irradiation

  3. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    International Nuclear Information System (INIS)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions

  4. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  5. Electrical degradation of double-Schottky barrier in ZnO varistors

    Energy Technology Data Exchange (ETDEWEB)

    He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun [The State Key Lab of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  6. 63Ni schottky barrier nuclear battery of 4H-SiC

    International Nuclear Information System (INIS)

    Xiao-Ying Li; Yong Ren; Xue-Jiao Chen; Da-Yong Qiao; Wei-Zheng Yuan

    2011-01-01

    The design, fabrication, and testing of a 4H-SiC Schottky betavoltaic nuclear battery based on MEMS fabrication technology are presented in this paper. It uses a Schottky diode with an active area of 3.14 mm 2 to collect the charge from a 4 mCi/cm 2 63 Ni source. Some of the critical steps in process integration for fabricating silicon carbide-based Schottky diode were addressed. A prototype of this battery was fabricated and tested under the illumination of the 63 Ni source with an activity of 0.12 mCi. An open circuit voltage (V OC ) of 0.27 V and a short circuit current density (J SC ) of 25.57 nA/cm 2 are measured. The maximum output power density (P max ) of 4.08 nW/cm 2 and power conversion efficiency (η) of 1.01% is obtained. The performance of this battery is expected to be significantly improved by using larger activity and optimizing the design and processing technology of the battery. By achieving comparable performance with previously constructed p-n or p-i-n junction energy conversion structures, the Schottky barrier diode proves to be a feasible approach to achieve practical betavoltaics. (author)

  7. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2{prime}-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM{close_quote}s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM{close_quote}s on the Ag surface potential. {ital Ab} {ital initio} Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. {copyright} {ital 1996 The American Physical Society.}

  8. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    International Nuclear Information System (INIS)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L.; Barashkov, N.N.; Ferraris, J.P.

    1996-01-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM close-quote s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM close-quote s on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. copyright 1996 The American Physical Society

  9. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy, 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM's) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM's on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices.

  10. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    Science.gov (United States)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation

  11. Internal photoemission for photovoltaic using p-type Schottky barrier: Band structure dependence and theoretical efficiency limits

    Science.gov (United States)

    Shih, Ko-Han; Chang, Yin-Jung

    2018-01-01

    Solar energy conversion via internal photoemission (IPE) across a planar p-type Schottky junction is quantified for aluminum (Al) and copper (Cu) in the framework of direct transitions with non-constant matrix elements. Transition probabilities and k-resolved group velocities are obtained based on pseudo-wavefunction expansions and realistic band structures using the pseudopotential method. The k-resolved number of direct transitions, hole photocurrent density, quantum yield (QY), and the power conversion efficiency (PCE) under AM1.5G solar irradiance are subsequently calculated and analyzed. For Al, the parabolic and "parallel-band" effect along the U-W-K path significantly enhances the transition rate with final energies of holes mainly within 1.41 eV below the Fermi energy. For Cu, d-state hot holes mostly generated near the upper edge of 3d bands dominate the hole photocurrent and are weekly (strongly) dependent on the barrier height (metal film thickness). Hot holes produced in the 4s band behave just oppositely to their d-state counterparts. Non-constant matrix elements are shown to be necessary for calculations of transitions due to time-harmonic perturbation in Cu. Compared with Cu, Al-based IPE in p-type Schottky shows the highest PCE (QY) up to about 0.2673% (5.2410%) at ΦB = 0.95 eV (0.5 eV) and a film thickness of 11 nm (20 nm). It is predicted that metals with relatively dispersionless d bands (such as Cu) in most cases do not outperform metals with photon-accessible parallel bands (such as Al) in photon energy conversion using a planar p-type Schottky junction.

  12. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Science.gov (United States)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  13. Oxygen–induced barrier height changes in aluminium – amorphous ...

    African Journals Online (AJOL)

    The results show that the application of voltage causes charge exchange between the surface states and the semiconductor leading to a change in the height of the potential barrier for electrons passing from aluminium into the a-Se films. The empirically determined values of barrier height of Al/a-Se diodes with thin and ...

  14. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    Science.gov (United States)

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  15. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    Science.gov (United States)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  16. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  17. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode

    International Nuclear Information System (INIS)

    Chen Fengping; Zhang Yuming; Lue Hongliang; Zhang Yimen; Guo Hui; Guo Xin

    2011-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent P-type ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively. Furthermore, the P-type ohmic contact is studied in this work. (semiconductor devices)

  18. Microstructure, electrical, and optical properties of evaporated PtSi/p-Si(100) Schottky barriers as high quantum efficient infrared detectors

    International Nuclear Information System (INIS)

    Wu Jihhuah; Chang Rongsen; Horng Gwoji

    2004-01-01

    The effects of the microstructure and the electrical and optical properties on the formation at highly efficient infrared PtSi Schottky barrier detectors (SBD) have been studied in detail. Two- to twelve-nanometer-thick PtSi films were grown by evaporation at temperature ranging from 350 to 550 deg. C. The electron diffraction patterns indicate the existence of both the (11-bar0) and (12-bar1) orientations when PtSi films formed at 350 deg. C. However, the diffraction patterns show only the (12-bar1) orientation when the PtSi films are formed at 450 deg. C or above. The electrical barrier height of the Schottky barrier detector that formed at 350 deg. C was about 20 meV higher than that formed at 450 deg. C or above. The grain size and the film thickness had a negligible effect on the electrical barrier height. However, the optical performance was strongly dependent on the film thickness and the growth conditions. The 350 deg. C PtSi film showed increased quantum efficiency as the film thickness decreased. The optimal thickness that provided the highest responsivity was 2 nm. On the other hand, the optimal thickness shifted to 8 nm for PtSi film formed at 450 deg. C or above. These results indicate that the quantum efficiency of a detector can be improved if the PtSi film has an orientation at (12-bar1), a larger grain size, and an optimal film thickness

  19. Effect of barrier height on friction behavior of the semiconductors silicon and gallium arsenide in contact with pure metals

    Science.gov (United States)

    Mishina, H.; Buckley, D. H.

    1984-01-01

    Friction experiments were conducted for the semiconductors silicon and gallium arsenide in contact with pure metals. Polycrystalline titanium, tantalum, nickel, palladium, and platinum were made to contact a single crystal silicon (111) surface. Indium, nickel, copper, and silver were made to contact a single crystal gallium arsenide (100) surface. Sliding was conducted both in room air and in a vacuum of 10 to the minus 9th power torr. The friction of semiconductors in contact with metals depended on a Schottky barrier height formed at the metal semiconductor interface. Metals with a higher barrier height on semiconductors gave lower friction. The effect of the barrier height on friction behavior for argon sputtered cleaned surfaces in vacuum was more specific than that for the surfaces containing films in room air. With a silicon surface sliding on titanium, many silicon particles back transferred. In contrast, a large quantity of indium transferred to the gallium arsenide surface.

  20. Potential barrier heights at metal on oxygen-terminated diamond interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Muret, P., E-mail: pierre.muret@neel.cnrs.fr; Traoré, A.; Maréchal, A.; Eon, D. [Inst. NEEL, Univ. Grenoble Alpes, F-38042 Grenoble, France and CNRS, Inst. NEEL, F-38042 Grenoble (France); Pernot, J. [Univ. Grenoble Alpes, Inst. NEEL, F-38042 Grenoble, (France); CNRS, Inst. NEEL, F-38042 Grenoble, (France); Institut Universitaire de France, 103 Boulevard Saint-Michel, F-75005 Paris (France); Pinero, J. C.; Villar, M. P.; Araujo, D., E-mail: daniel.araujo@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, 11510 Puerto Real (Cádiz) (Spain)

    2015-11-28

    Electrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO{sub 2} deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprised of a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on an Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that by Tung [Phys. Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones, (b) annealed at 350 °C, (c) annealed at 450 °C with the characteristic barrier heights of 2.2–2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients that are able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.

  1. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    Science.gov (United States)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  2. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    Science.gov (United States)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  3. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    International Nuclear Information System (INIS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-01-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm 2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm −2 of Nickle-63 ( 63 Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure. - Highlights: • Silicon parameters were studied in betavoltaic batteries. • Studied betavoltaic batteries include p-n and Schottky barrier structures. • The p-n structure has higher conversion efficiency.

  4. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    Science.gov (United States)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  5. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    Science.gov (United States)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  6. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He

    2014-08-11

    Recently, two-dimensional materials such as molybdenum disulphide (MoS 2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V.s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics.

  7. Modeling of 4H—SiC multi-floating-junction Schottky barrier diode

    International Nuclear Information System (INIS)

    Hong-Bin, Pu; Lin, Cao; Zhi-Ming, Chen; Jie, Ren; Ya-Gong, Nan

    2010-01-01

    This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H—SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 mΩ·cm 2 and breakdown voltage increases 422 V with an additional floating junction for the given structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions

    Science.gov (United States)

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5–20 cm2/V·s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V·s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics. PMID:25109609

  9. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    Science.gov (United States)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  10. A planar Al-Si Schottky barrier metal–oxide–semiconductor field effect transistor operated at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Purches, W. E. [School of Physics, UNSW, Sydney 2052 (Australia); Rossi, A.; Zhao, R. [School of Electrical Engineering and Telecommunications, UNSW, Sydney 2052 (Australia); Kafanov, S.; Duty, T. L. [School of Physics, UNSW, Sydney 2052 (Australia); Centre for Engineered Quantum Systems (EQuS), School of Physics, UNSW, Sydney 2052 (Australia); Dzurak, A. S. [School of Electrical Engineering and Telecommunications, UNSW, Sydney 2052 (Australia); Australian Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), UNSW, Sydney 2052 (Australia); Rogge, S.; Tettamanzi, G. C., E-mail: g.tettamanzi@unsw.edu.au [School of Physics, UNSW, Sydney 2052 (Australia); Australian Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), UNSW, Sydney 2052 (Australia)

    2015-08-10

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  11. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    OpenAIRE

    Fangming Jin; Zisheng Su; Bei Chu; Pengfei Cheng; Junbo Wang; Haifeng Zhao; Yuan Gao; Xingwu Yan; Wenlian Li

    2016-01-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59?mA/cm2, an open-circuit voltage (Voc) of 1.06?V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5?G solar illumination at 100?mW/cm2. Device performance was substantiall...

  12. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  13. Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts

    International Nuclear Information System (INIS)

    Mamor, M

    2009-01-01

    The barrier heights (BH) of various metals including Pd, Pt and Ni on n-type GaN (M/n-GaN) have been measured in the temperature range 80-400 K with using a current-voltage (I-V) technique. The temperature dependence of the I-V characteristics of M/n-GaN have shown non-ideal behaviors and indicate the presence of a non-uniform distribution of surface gap states, resulting from the residual defects in the as grown GaN. The surface gap states density N ss , as well as its temperature dependence were obtained from the bias and temperature dependence of the ideality factor n(V,T) and the barrier height Φ Bn (V,T). Further, a dependence of zero-bias BH Φ 0Bn on the metal work function (Φ m ) with an interface parameter coefficient of proportionality of 0.47 is found. This result indicates that the Fermi level at the M/n-GaN interface is unpinned. Additionally, the presence of lateral inhomogeneities of the BH, with two Gaussian distributions of the BH values is seen. However, the non-homogeneous SBH is found to be correlated to the surface gap states density, in that Φ 0Bn becomes smaller with increasing N ss . These findings suggest that the lateral inhomogeneity of the SBH is connected to the non-uniform distribution of the density of surface gap states at metal/GaN which is attributed to the presence of native defects in the as grown GaN. Deep level transient spectroscopy confirms the presence of native defects with discrete energy levels at GaN and provides support to this interpretation.

  14. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Auret, F.D. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ{sub b} vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ{sub b,mean} assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact.

  15. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    International Nuclear Information System (INIS)

    Venter, A.; Murape, D.M.; Botha, J.R.; Auret, F.D.

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ b vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ b,mean assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact

  16. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  17. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  18. Characterization of the inhomogeneous barrier distribution in a Pt/(100β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Directory of Open Access Journals (Sweden)

    Guangzhong Jian

    2018-01-01

    Full Text Available β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current–voltage and capacitance–voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A·cm−2·K−2, which is close to the theoretical value of 41.11 A·cm−2·K−2. The differences between the barrier heights determined using the capacitance–voltage and current–voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  19. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

    Science.gov (United States)

    Kumar, Manoj; Pratap, Yogesh; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-12-01

    In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The I ON/I OFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

  20. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    Science.gov (United States)

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  1. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  2. Field plate engineering for GaN-based Schottky barrier diodes

    International Nuclear Information System (INIS)

    Lei Yong; Shi Hongbiao; Lu Hai; Chen Dunjun; Zhang Rong; Zheng Youdou

    2013-01-01

    The practical design of GaN-based Schottky barrier diodes (SBDs) incorporating a field plate (FP) structure necessitates an understanding of their working mechanism and optimization criteria. In this work, the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters. By comparing three representative dielectric materials (SiO 2 , Si 3 N 4 and Al 2 O 3 ) selected for fabricating FPs, it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications. (semiconductor devices)

  3. A simulation study of 6H-SiC Schottky barrier source/drain MOSFET

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Yimen; Zhang Yuming; Tang Xiaoyan

    2003-01-01

    A novel SiC metal-oxide-semiconductor field-effect transistor (SiC SBSD-MOSFET) with Schottky barrier contacts for source and drain is presented in this paper. This kind of device gives a fabrication advantage of avoiding the steps of ion implantation and annealing at high temperatures of the conventional SiC MOSFET. Also it has no problems of crystal damage caused by ion implantation and low activation rate of implanted atoms. The operational mechanism of this device is analyzed and its characteristics are comparable to the conventional SiC MOSFET from the simulation with MEDICI. The effects of different metal workfunctions, oxide thickness, and gate length on the device performance are discussed

  4. Schottky barrier diode embedded AlGaN/GaN switching transistor

    International Nuclear Information System (INIS)

    Park, Bong-Ryeol; Lee, Jung-Yeon; Lee, Jae-Gil; Lee, Dong-Myung; Cha, Ho-Young; Kim, Moon-Kyung

    2013-01-01

    We developed a Schottky barrier diode (SBD) embedded AlGaN/GaN switching transistor to allow negative current flow during off-state condition. An SBD was embedded in a recessed normally-off AlGaN/GaN-on-Si metal-oxide-semiconductor heterostructure field-effect transistor (MOSHFET). The fabricated device exhibited normally-off characteristics with a gate threshold voltage of 2.8 V, a diode turn-on voltage of 1.2 V, and a breakdown voltage of 849 V for the anode-to-drain distance of 8 µm. An on-resistance of 2.66 mΩcm 2 was achieved at a gate voltage of 16 V in the forward transistor mode. Eliminating the need for an external diode, the SBD embedded switching transistor has advantages of significant reduction in parasitic inductance and chip area. (paper)

  5. Barrier heights, polarization switching, and electrical fatigue in Pb(Zr,Ti)O3 ceramics with different electrodes

    Science.gov (United States)

    Chen, Feng; Schafranek, Robert; Wachau, André; Zhukov, Sergey; Glaum, Julia; Granzow, Torsten; von Seggern, Heinz; Klein, Andreas

    2010-11-01

    The influence of Pt, tin-doped In2O3, and RuO2 electrodes on the electrical fatigue of bulk ceramic Pb(Zr,Ti)O3 (PZT) has been studied. Schottky barrier heights at the ferroelectric/electrode interfaces vary by more than one electronvolt for different electrode materials and do not depend on crystallographic orientation of the interface. Despite different barrier heights, hysteresis loops of polarization, strain, permittivity, and piezoelectric constant and the switching kinetics are identical for all electrodes. A 20% reduction in polarization after 106 bipolar cycles is observed for all the samples. In contrast to PZT thin films, the loss of remanent polarization with bipolar switching cycles does not significantly depend on the electrode material.

  6. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    International Nuclear Information System (INIS)

    Saha, A.R.; Chattopadhyay, S.; Bose, C.; Maiti, C.K.

    2005-01-01

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region

  7. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)]. E-mail: ars.iitkgp@gmail.com; Chattopadhyay, S. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India); School of Electrical, Electronics and Computer Engineering, University of Newcastle, Newcastle upon Tyne (United Kingdom); Bose, C. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700032 (India); Maiti, C.K. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)

    2005-12-05

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region.

  8. Local irradiation effects of one-dimensional ZnO based self-powered asymmetric Schottky barrier UV photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaxue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Qi, Junjie, E-mail: junjieqi@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Biswas, Chandan [Department of Electrical Engineering, University of California Los Angeles, California 90095 (United States); Li, Feng; Zhang, Kui; Li, Xin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-09-15

    A self-powered metal-semiconductor-metal (MSM) UV photodetector was successfully fabricated based on Ag/ZnO/Au structure with asymmetric Schottky barriers. This exhibits excellent performance compared to many previous studies. Very high photo-to-dark current ratio (approximately 10{sup 5}–10{sup 6}) was demonstrated without applying any external bias, and very fast switching time of less than 30 ms was observed during the investigation. Opposite photocurrent direction was generated by irradiating different Schottky diodes in the fabricated photodetector. Furthermore, the device performance was optimized by largely irradiating both the ZnO microwire (MW) junctions. Schottky barrier effect theory and O{sub 2} adsorption–desorption theories were used to investigate the phenomenon. The device has potential applications in self-powered UV detection field and can be used as electrical power source for electronic, optoelectronic and mechanical devices. - Highlights: • A self-powered Schottky barrier UV photodetector based on 1-D ZnO is fabricated. • For the first time we investigate the local irradiation effects of UV detector. • Irradiating both the junctions and ZnO can optimize the performance of the device.

  9. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  10. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character.

  11. Optimal Height Calculation and Modelling of Noise Barrier

    Directory of Open Access Journals (Sweden)

    Raimondas Grubliauskas

    2011-04-01

    Full Text Available Transport is one of the main sources of noise having a particularly strong negative impact on the environment. In the city, one of the best methods to reduce the spread of noise in residential areas is a noise barrier. The article presents noise reduction barrier adaptation with empirical formulas calculating and modelling noise distribution. The simulation of noise dispersion has been performed applying the CadnaA program that allows modelling the noise levels of various developments under changing conditions. Calculation and simulation is obtained by assessing the level of noise reduction using the same variables. The investigation results are presented as noise distribution isolines. The selection of a different height of noise barriers are the results calculated at the heights of 1, 4 and 15 meters. The level of noise reduction at the maximum overlap of data, calculation and simulation has reached about 10%.Article in Lithuanian

  12. A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2018-01-01

    The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use...... with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model...... is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I--V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I--V --T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance...

  13. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2018-01-01

    Full Text Available In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V, a low reverse leakage current density (≤72 μA/mm2@100 V, and a Schottky barrier height of 1.074 eV.

  14. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Science.gov (United States)

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  15. On electrical and interfacial properties of iron and platinum Schottky barrier diodes on (111) n-type Si0.65Ge0.35

    Science.gov (United States)

    Hamri, D.; Teffahi, A.; Djeghlouf, A.; Chalabi, D.; Saidane, A.

    2018-04-01

    Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G/ω-V-f) characteristics of Molecular Beam Epitaxy (MBE)-deposited Fe/n-Si0.65Ge0.35 (FM1) and Pt/n-Si0.65Ge0.35(PM2) (111) orientated Schottky barrier diodes (SBDs) have been investigated at room-temperature. Barrier height (ΦB0), ideality factor (n) and series resistance (RS) were extracted. Dominant current conduction mechanisms were determined. They revealed that Poole-Frenkel-type conduction mechanism dominated reverse current. Differences in shunt resistance confirmed the difference found in leakage current. Under forward bias, quasi-ohmic conduction is found at low voltage regions and space charge-limited conduction (SCLC) at higher voltage regions for both SBDs. Density of interface states (NSS) indicated a difference in interface reactivity. Distribution profiles of series resistance (RS) with bias gives a peak in depletion region at low-frequencies that disappears with increasing frequencies. These results show that interface states density and series resistance of Schottky diodes are important parameters that strongly influence electrical properties of FM1 and PM2 structures.

  16. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    Science.gov (United States)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  17. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    Science.gov (United States)

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  18. Planar InP-based Schottky barrier diodes for terahertz applications

    International Nuclear Information System (INIS)

    Zhou Jingtao; Yang Chengyue; Ge Ji; Jin Zhi

    2013-01-01

    Based on characteristics such as low barrier and high electron mobility of lattice matched In 0.53 Ga 0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω; and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits. (semiconductor devices)

  19. Observation of Van Hove Singularities and Temperature Dependence of Electrical Characteristics in Suspended Carbon Nanotube Schottky Barrier Transistors

    Science.gov (United States)

    Zhang, Jian; Liu, Siyu; Nshimiyimana, Jean Pierre; Deng, Ya; Hu, Xiao; Chi, Xiannian; Wu, Pei; Liu, Jia; Chu, Weiguo; Sun, Lianfeng

    2018-06-01

    A Van Hove singularity (VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.

  20. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-01

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  1. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-17

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  2. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    Science.gov (United States)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  3. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  4. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    Science.gov (United States)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  5. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes

    Directory of Open Access Journals (Sweden)

    Semih Gorduk

    2017-01-01

    Full Text Available New metal-free and metallophthalocyanine compounds (Zn, Co, Ni, and Cu were synthesized using 2-hydroxymethyl-1,4-benzodioxan and 4-nitrophthalonitrile compounds. All newly synthesized compounds were characterized by elemental analysis, FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, and GC-MS techniques. The applications of synthesized compounds in Schottky barrier diodes were investigated. Ag/Pc/p–Si structures were fabricated and charge transport mechanism in these devices was investigated using dc technique. It was observed from the analysis of the experimental results that the charge transport can be described by Ohmic conduction at low values of the reverse bias. On the other hand, the voltage dependence of the measured current for high values of the applied reverse bias indicated that space charge limited conduction is the dominant mechanism responsible for dc conduction. From the observed voltage dependence of the current density under forward bias conditions, it has been concluded that the charge transport is dominated by Poole-Frenkel emission.

  6. Junction barrier Schottky rectifier with an improved P-well region

    International Nuclear Information System (INIS)

    Wang Ying; Li Ting; Cao Fei; Shao Lei; Chen Yu-Xian

    2012-01-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the V F —I R trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10 −8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P + grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier. (interdisciplinary physics and related areas of science and technology)

  7. Ambipolarity reduction in DMG asymmetric vacuum dielectric Schottky Barrier GAA MOSFET to improve hot carrier reliability

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-11-01

    An explicit surface potential and subthreshold current model for novel Dual Metal Gate (DMG) Asymmetric Vacuum (AV) as gate dielectric Schottky Barrier (SB) Cylindrical Gate All Around (CGAA) MOSFET with the incorporation of localized charges (Nf) is developed to provide excellent immunity against threshold voltage (Vth) degradation due to hot carriers. Hot carrier induced Localized Charges (LC) either positive or negative leads to degrade the threshold of the device. The major advantage of the proposed DMG-AV-SB-CGAA MOSFET is that it mitigates the ambipolar behavior thus offering very good on current to off current ratio; and also reduces the electron temperature which leads to less hot carrier generation thus lesser degradation in Vth and improved Hot Carrier reliability. The surface potential is determined for three different regions by solving 1-D Poisson's and 2-D Laplace equation through separation of variable method to facilitate an optimal model for calculating the subthreshold drain current from Si-SiO2 interface boundary. The developed model results are in good agreement with that of ATLAS-TCAD simulation.

  8. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  9. Calculation of the intrinsic spectral density of current fluctuations in nanometric Schottky-barrier diodes at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F.Z. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria)], E-mail: fati_zo_mahi2002@yahoo.fr; Helmaoui, A. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria); Varani, L. [Institut d' Electronique du Sud (CNRS UMR 5214), Universite Montpellier II, 34095 Montpellier (France); Shiktorov, P.; Starikov, E.; Gruzhinskis, V. [Semiconductor Physics Institute, 01108 Vilnius (Lithuania)

    2008-10-01

    An analytical model for the noise spectrum of nanometric Schottky-barrier diodes (SBD) is developed. The calculated frequency dependence of the spectral density of current fluctuations exhibits resonances in the terahertz domain which are discussed and analyzed as functions of the length of the diode, free carrier concentration, length of the depletion region and applied voltage. A good agreement obtained with direct Monte Carlo simulations of GaAs SBDs operating from barrier-limited to flat-band conditions fully validates the proposed approach.

  10. Defect-driven inhomogeneities in Ni /4H-SiC Schottky barriers

    Science.gov (United States)

    Tumakha, S.; Ewing, D. J.; Porter, L. M.; Wahab, Q.; Ma, X.; Sudharshan, T. S.; Brillson, L. J.

    2005-12-01

    Nanoscale depth-resolved cathodoluminescence spectroscopy (DRCLS) of Ni diode arrays on 4H-SiC epitaxial wafers reveals a striking correspondence between deep level defects and electrical transport measurements on a diode-by-diode basis. Current-voltage measurements display both ideal and nonideal diode characteristics due to multiple barriers within individual contacts. Near-interface DRCLS demonstrates the presence of three discrete midgap defect levels with 2.2, 2.45, and 2.65eV emission energies whose concentrations vary on a submicron scale among and within individual diodes, correlating with barrier inhomogeneity. These results also suggest that SiC native defect levels can account for the maximum range of n-type barrier heights.

  11. Apparent Barrier Height in Scanning Tunneling Microscopy Revisited

    DEFF Research Database (Denmark)

    Olesen, L.; Brandbyge, Mads; Sørensen, Mads Reinholdt

    1996-01-01

    The apparent barrier height phi(ap), that is, the rate of change of the logarithm of the conductance with tip-sample separation in a scanning tunneling microscope (STM), has been measured for Ni, Pt, and Au single crystal surfaces. The results show that phi(ap) is constant until point contact...... is reached rather than decreasing at small tunneling gap distances, as previously reported. The findings for phi(ap) can be accounted for theoretically by including the relaxations of the tip-surface junction in an STM due to the strong adhesive forces at close proximity. These relaxation effects are shown...

  12. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    Science.gov (United States)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  13. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    International Nuclear Information System (INIS)

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  14. Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts

    KAUST Repository

    Hu, Youfan

    2010-05-31

    A Schottky barrier can be formed at the interface between a metal electrode and a semiconductor. The current passing through the metal-semiconductor contact is mainly controlled by the barrier height and barrier width. In conventional nanodevices, Schottky contacts are usually avoided in order to enhance the contribution made by the nanowires or nanotubes to the detected signal. We present a key idea of using the Schottky contact to achieve supersensitive and fast response nanowire-based nanosensors. We have illustrated this idea on several platforms: UV sensors, biosensors, and gas sensors. The gigantic enhancement in sensitivity of up to 5 orders of magnitude shows that an effective usage of the Schottky contact can be very beneficial to the sensitivity of nanosensors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Flexible IGZO Schottky diodes on paper

    Science.gov (United States)

    Kaczmarski, Jakub; Borysiewicz, Michał A.; Piskorski, Krzysztof; Wzorek, Marek; Kozubal, Maciej; Kamińska, Eliana

    2018-01-01

    With the development of novel device applications, e.g. in the field of robust and recyclable paper electronics, came an increased demand for the understanding and control of IGZO Schottky contact properties. In this work, a fabrication and characterization of flexible Ru-Si-O/IGZO Schottky barriers on paper is presented. It is found that an oxygen-rich atomic composition and microstructure of Ru-Si-O containing randomly oriented Ru inclusions with diameter of 3-5 nm embedded in an amorphous SiO2 matrix are effective in preventing interfacial reactions in the contact region, allowing to avoid pre-treatment of the semiconductor surface and fabricate reliable diodes at room temperature characterized by Schottky barrier height and ideality factor equal 0.79 eV and 2.13, respectively.

  16. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides

    Science.gov (United States)

    Fan, Zhi-Qiang; Jiang, Xiang-Wei; Luo, Jun-Wei; Jiao, Li-Ying; Huang, Ru; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As Moore's law approaches its end, two-dimensional (2D) materials are intensely studied for their potentials as one of the "More than Moore' (MM) devices. However, the ultimate performance limits and the optimal design parameters for such devices are still unknown. One common problem for the 2D-material-based device is the relative weak on-current. In this study, two-dimensional Schottky-barrier field-effect transistors (SBFETs) consisting of in-plane heterojunctions of 1T metallic-phase and 2H semiconducting-phase transition-metal dichalcogenides (TMDs) are studied following the recent experimental synthesis of such devices at a much larger scale. Our ab initio simulation reveals the ultimate performance limits of such devices and offers suggestions for better TMD materials. Our study shows that the Schottky-barrier heights (SBHs) of the in-plane 1T/2H contacts are smaller than the SBHs of out-of-plane contacts, and the contact coupling is also stronger in the in-plane contact. Due to the atomic thickness of the monolayer TMD, the average subthreshold swing of the in-plane TMD-SBFETs is found to be close to the limit of 60 mV/dec, and smaller than that of the out-of-plane TMD-SBFET device. Different TMDs are considered and it is found that the in-plane WT e2-SBFET provides the best performance and can satisfy the performance requirement of the sub-10-nm high-performance transistor outlined by the International Technology Roadmap for Semiconductors, and thus could be developed into a viable sub-10-nm MM device in the future.

  17. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    International Nuclear Information System (INIS)

    Chawanda, A.; Coelho, S.M.M.; Auret, F.D.; Mtangi, W.; Nyamhere, C.; Nel, J.M.; Diale, M.

    2012-01-01

    Highlights: ► Ir/n-Ge (1 0 0) Schottky diodes were characterized using I–V, C–V and SEM techniques under various annealing conditions. ► The variation of the electrical and structural properties can be due to effects phase transformation during annealing. ► Thermal stability of these diodes is maintained up to 500 °C anneal. ► SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 °C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current–voltage (I–V) and capacitance–voltage (C–V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 °C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 °C.

  18. Semi-insulating GaAs and Au Schottky barrier photodetectors for near-infrared detection (1280 nm)

    Science.gov (United States)

    Nusir, A. I.; Makableh, Y. F.; Manasreh, O.

    2015-08-01

    Schottky barriers formed between metal (Au) and semiconductor (GaAs) can be used to detect photons with energy lower than the bandgap of the semiconductor. In this study, photodetectors based on Schottky barriers were fabricated and characterized for the detection of light at wavelength of 1280 nm. The device structure consists of three gold fingers with 1.75 mm long and separated by 0.95 mm, creating an E shape while the middle finger is disconnected from the outer frame. When the device is biased, electric field is stretched between the middle finger and the two outermost electrodes. The device was characterized by measuring the current-voltage (I-V) curve at room temperature. This showed low dark current on the order of 10-10 A, while the photocurrent was higher than the dark current by four orders of magnitude. The detectivity of the device at room temperature was extracted from the I-V curve and estimated to be on the order of 5.3x1010 cm.Hz0.5/W at 5 V. The step response of the device was measured from time-resolved photocurrent curve at 5 V bias with multiple on/off cycles. From which the average recovery time was estimated to be 0.63 second when the photocurrent decreases by four orders of magnitude, and the average rise time was measured to be 0.897 second. Furthermore, the spectral response spectrum of the device exhibits a strong peak close to the optical communication wavelength (~1.3 μm), which is attributed to the internal photoemission of electrons above the Schottky barrier formed between Au and GaAs.

  19. Investigation of Schottky-Barrier carbon nanotube field-effect transistor by an efficient semi-classical numerical modeling

    International Nuclear Information System (INIS)

    Chen Changxin; Zhang Wei; Zhao Bo; Zhang Yafei

    2009-01-01

    An efficient semi-classical numerical modeling approach has been developed to simulate the coaxial Schottky-barrier carbon nanotube field-effect transistor (SB-CNTFET). In the modeling, the electrostatic potential of the CNT is obtained by self-consistently solving the analytic expression of CNT carrier distribution and the cylindrical Poisson equation, which significantly enhances the computational efficiency and simultaneously present a result in good agreement to that obtained from the non-equilibrium Green's function (NEGF) formalism based on the first principle. With this method, the effects of the CNT diameter, power supply voltage, thickness and dielectric constant of gate insulator on the device performance are investigated.

  20. Measurements of Schottky barrier at the low-k SiOC:H/Cu interface using vacuum ultraviolet photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Pei, D.; Zheng, H.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Lin, Y.-H.; Fung, H.-S.; Chen, C.-C. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-12-07

    The band alignment between copper interconnects and their low-k interlayer dielectrics is critical to understanding the fundamental mechanisms involved in electrical leakage in low-k/Cu interconnects. In this work, vacuum-ultraviolet (VUV) photoemission spectroscopy is utilized to determine the potential of the Schottky barrier present at low-k a-SiOC:H/Cu interfaces. By examining the photoemission spectra before and after VUV exposure of a low-k a-SiOC:H (k = 3.3) thin film fabricated by plasma-enhanced chemical-vapor deposition on a polished Cu substrate, it was found that photons with energies of 4.9 eV or greater can deplete accumulated charge in a-SiOC:H films, while VUV photons with energies of 4.7 eV or less, did not have this effect. These critical values were identified to relate the electric potential of the interface barrier between the a-SiOC:H and the Cu layers. Using this method, the Schottky barrier at the low-k a-SiOC:H (k = 3.3)/Cu interface was determined to be 4.8 ± 0.1 eV.

  1. Adaptive jump barrier height in Monte Carlo configuration kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Martin; Pfeiler, Wolfgang; Pueschl, Wolfgang [Dynamics of Condensed Systems, Faculty of Physics, University of Vienna, Strudlhofgasse 4, A-1090 Wien (Austria); Vogtenhuber, Doris [Computational Materials Science, Faculty of Physics, University of Vienna, Sensengasse 8, A-1090 Wien (Austria)

    2008-07-01

    In usual MC simulations of configuration kinetics atom jump probabilities are calculated from energies of the initial and/or final bound states of the moving atom, leaving aside the exact energy of the intermediate saddle point state. This energy may however be critically influenced by the local atomic environment. We propose a strategy to explicitly take account of this influence. The basis is ab initio calculation of representative jump paths in the framework of the nudged elastic band method. From these results, an influence function is derived which modifies the energy of the saddle point and therefore the effective jump barrier height as calculated from the initial and final states according to a cluster expansion scheme. The overall effect is demonstrated on the NiAl system.

  2. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV

    Science.gov (United States)

    Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.

    2017-10-01

    We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.

  3. High-temperature current conduction through three kinds of Schottky diodes

    International Nuclear Information System (INIS)

    Fei, Li; Xiao-Ling, Zhang; Yi, Duan; Xue-Song, Xie; Chang-Zhi, Lü

    2009-01-01

    Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I–V–T measurements ranging from 300 to 523 K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelling and so on. The most remarkable finding in the present paper is that these three kinds of Schottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Schottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AlGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  4. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  5. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    Science.gov (United States)

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.

  6. Carbon nanotube Schottky diode: an atomic perspective

    International Nuclear Information System (INIS)

    Bai, P; Li, E; Kurniawan, O; Koh, W S; Lam, K T

    2008-01-01

    The electron transport properties of semiconducting carbon nanotube (SCNT) Schottky diodes are investigated with atomic models using density functional theory and the non-equilibrium Green's function method. We model the SCNT Schottky diode as a SCNT embedded in the metal electrode, which resembles the experimental set-up. Our study reveals that the rectification behaviour of the diode is mainly due to the asymmetric electron transmission function distribution in the conduction and valence bands and can be improved by changing metal-SCNT contact geometries. The threshold voltage of the diode depends on the electron Schottky barrier height which can be tuned by altering the diameter of the SCNT. Contrary to the traditional perception, the metal-SCNT contact region exhibits better conductivity than the other parts of the diode

  7. High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics

    Directory of Open Access Journals (Sweden)

    Young Ki Hong

    2016-05-01

    Full Text Available Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS2 thin-film transistor (TFT, which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS2 TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS2 and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  8. High performance and transparent multilayer MoS{sub 2} transistors: Tuning Schottky barrier characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Young Ki; Kwon, Junyeon; Hong, Seongin; Song, Won Geun; Liu, Na; Omkaram, Inturu; Kim, Sunkook, E-mail: kimskcnt@gmail.com, E-mail: ohms@keti.re.kr [Multi-Functional Bio/Nano Lab., Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Yoo, Geonwook; Yoo, Byungwook; Oh, Min Suk, E-mail: kimskcnt@gmail.com, E-mail: ohms@keti.re.kr [Display Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Ju, Sanghyun [Department of Physics, Kyonggi University, Suwon, Gyeonggi-Do 443-760 (Korea, Republic of)

    2016-05-15

    Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS{sub 2}) thin-film transistor (TFT), which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS{sub 2} TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS{sub 2} and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  9. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    Science.gov (United States)

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  10. Towards a barrier height benchmark set for biologically relevant systems.

    Science.gov (United States)

    Kromann, Jimmy C; Christensen, Anders S; Cui, Qiang; Jensen, Jan H

    2016-01-01

    We have collected computed barrier heights and reaction energies (and associated model structures) for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p)[LANL2DZ]//B3LYP/6-31G(d,p) level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs) observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10-15 kcal/mol), while DFTB results in a MAD that is significantly lower (6 kcal/mol). The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4-5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p). For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and improve the data set

  11. Towards a barrier height benchmark set for biologically relevant systems

    Directory of Open Access Journals (Sweden)

    Jimmy C. Kromann

    2016-05-01

    Full Text Available We have collected computed barrier heights and reaction energies (and associated model structures for five enzymes from studies published by Himo and co-workers. Using this data, obtained at the B3LYP/6- 311+G(2d,2p[LANL2DZ]//B3LYP/6-31G(d,p level of theory, we then benchmark PM6, PM7, PM7-TS, and DFTB3 and discuss the influence of system size, bulk solvation, and geometry re-optimization on the error. The mean absolute differences (MADs observed for these five enzyme model systems are similar to those observed for PM6 and PM7 for smaller systems (10–15 kcal/mol, while DFTB results in a MAD that is significantly lower (6 kcal/mol. The MADs for PMx and DFTB3 are each dominated by large errors for a single system and if the system is disregarded the MADs fall to 4–5 kcal/mol. Overall, results for the condensed phase are neither more or less accurate relative to B3LYP than those in the gas phase. With the exception of PM7-TS, the MAD for small and large structural models are very similar, with a maximum deviation of 3 kcal/mol for PM6. Geometry optimization with PM6 shows that for one system this method predicts a different mechanism compared to B3LYP/6-31G(d,p. For the remaining systems, geometry optimization of the large structural model increases the MAD relative to single points, by 2.5 and 1.8 kcal/mol for barriers and reaction energies. For the small structural model, the corresponding MADs decrease by 0.4 and 1.2 kcal/mol, respectively. However, despite these small changes, significant changes in the structures are observed for some systems, such as proton transfer and hydrogen bonding rearrangements. The paper represents the first step in the process of creating a benchmark set of barriers computed for systems that are relatively large and representative of enzymatic reactions, a considerable challenge for any one research group but possible through a concerted effort by the community. We end by outlining steps needed to expand and

  12. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, A., E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Coelho, S.M.M.; Auret, F.D.; Mtangi, W. [Department of Physics, University of Pretoria, 0002 (South Africa); Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Nel, J.M.; Diale, M. [Department of Physics, University of Pretoria, 0002 (South Africa)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Ir/n-Ge (1 0 0) Schottky diodes were characterized using I-V, C-V and SEM techniques under various annealing conditions. Black-Right-Pointing-Pointer The variation of the electrical and structural properties can be due to effects phase transformation during annealing. Black-Right-Pointing-Pointer Thermal stability of these diodes is maintained up to 500 Degree-Sign C anneal. Black-Right-Pointing-Pointer SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current-voltage (I-V) and capacitance-voltage (C-V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 Degree-Sign C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C.

  13. Summary of Schottky barrier height data on epitaxially grown n-and p-GaAs

    CSIR Research Space (South Africa)

    Myburg, G

    1998-07-18

    Full Text Available –Mott theory, if all 43 metals are taken into account. Similar results were obtained if the metal work function was replaced by the Pauling or Miedema electro negativities. In contrast with this, if only a selected group of metals is chosen and more...

  14. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    Science.gov (United States)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  15. Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates

    International Nuclear Information System (INIS)

    Jung, Seung-Min; Cho, Won-Ju; Jung, Jong-Wan

    2012-01-01

    Polycrystalline-silicon (poly-Si) Schottky-barrier thin-film transistors (SB-TFTs) with Pt-silicided source /drain junctions were fabricated on glass substrates, and the electrical characteristics were examined. The amorphous silicon films on glass substrates were converted into high-quality poly-Si by using excimer laser annealing (ELA) and solid phase crystallization (SPC) methods. The crystallinity of poly-Si was analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The silicidation process was optimized by measuring the electrical characteristics of the Pt-silicided Schottky diodes. The performances of Pt-silicided SB-TFTs using poly-Si films on glass substrates and crystallized by using ELA and SPC were demonstrated. The SB-TFTs using the ELA poly-Si film demonstrated better electrical performances such as higher mobility (22.4 cm 2 /Vs) and on/off current ratio (3 x 10 6 ) and lower subthreshold swing value (120 mV/dec) than the SPC poly-Si films.

  16. Graphite based Schottky diodes formed semiconducting substrates

    Science.gov (United States)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  17. Barrier Parameters and Current Transport Characteristics of Ti/ p-InP Schottky Junction Modified Using Orange G (OG) Organic Interlayer

    Science.gov (United States)

    Sreenu, K.; Venkata Prasad, C.; Rajagopal Reddy, V.

    2017-10-01

    A Ti/Orange G/ p-InP metal/interlayer/semiconductor (MIS) junction has been prepared with Orange G (OG) organic layer by electron beam evaporation and spin coating processes. The electrical properties of Ti/ p-InP metal/semiconductor (MS) and Ti/OG/ p-InP MIS junctions have been analyzed based on current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics. The MIS junction exhibited higher rectifying behavior than the MS junction. The higher barrier height (BH) of the MIS junction compared with the MS junction indicates effective modification by the OG layer. Also, the BH, ideality factor, shunt resistance, and series resistance were extracted based on the I- V characteristic, Cheung's and Norde's methods, and the ΨS- V plot. The BH evaluated by Cheung's and Norde's methods and the ΨS- V plot was shown to be similar, confirming the reliability and validity of the methods applied. The extracted interface state density ( N SS) of the MIS junction was less than for the MS junction, revealing that the OG organic layer reduced the N SS value. Analysis demonstrated that, in the lower bias region, the reverse current conduction mechanism was dominated by Poole-Frenkel emission for both the MS and MIS junction. Meanwhile, in the higher bias region, Schottky emission governed the reverse current conduction mechanism. The results suggest that such OG layers have potential for use in high-quality electronic devices.

  18. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    Science.gov (United States)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  19. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    Science.gov (United States)

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  20. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  1. Schottky contacts to polar and nonpolar n-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Hanbat National University, Daejeon (Korea, Republic of); Phark, Soohyon [Max-Planck-Institut fur Mikrostrukturphysik, Halle (Germany); Song, Keunman [Korea Advanced Nano Fab Center, Suwon (Korea, Republic of); Kim, Dongwook [Ewha Woman' s University, Seoul (Korea, Republic of)

    2012-01-15

    Using the current-voltage measurements, we observed the barrier heights of c-plane GaN in Pt and Au Schottky contacts to be higher than those of a-plane GaN. However, the barrier height of c-plane GaN was lower than that of a-plane GaN in the Ti Schottky contacts. The N/Ga ratio calculated by integrating the X-ray photoelectron spectroscopy (XPS) spectra of Ga 3d and N 1s core levels showed that c-plane GaN induced more Ga vacancies near the interface than a-plane GaN in the Ti Schottky contacts, reducing the effective barrier height through an enhancement of the tunneling probability.

  2. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    OpenAIRE

    H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; B. GRUZZA; J. M. BLUET; C. BRU-CHEVALLIER

    2014-01-01

    The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semicondu...

  3. The parametrization of Coulomb barrier heights and positions using the double folding model

    International Nuclear Information System (INIS)

    Qu, W.W.; Zhang, G.L.; Le, X.Y.

    2011-01-01

    The Coulomb barrier heights and positions are systematically shown with mass numbers and charge radii of the interacting nuclei. The nuclear potential is calculated by using the double folding model with the density-dependence nucleon-nucleon interaction (CDM3Y6). The pocket formulas are obtained for the Coulomb barrier heights and positions by analyzing several hundreds of heavy-ion systems with mass numbers from light nuclei to heavy nuclei. The parameterized formulas can reproduce the calculated barrier heights and positions by using the double folding model within the accuracy of ±1%. Moreover, the results are agreeable with the experimental data. The relation between the barrier height and the barrier position is also studied.

  4. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    International Nuclear Information System (INIS)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk; Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee; Kim, Keun-Soo

    2015-01-01

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10 15 cm -3 , respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10 -6 mA/cm -2 at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  5. Schottky contacts to In2O3

    Directory of Open Access Journals (Sweden)

    H. von Wenckstern

    2014-04-01

    Full Text Available n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  6. Conduction mechanism in electron beam irradiated Al/n-Si Schottky diode

    International Nuclear Information System (INIS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M.G.; Petwal, V.C.

    2016-01-01

    In the high energy physics experiments, silicon based diodes are used to fabricate radiation detector to detect the charged particles. The Schottky barrier diodes have been studied extensively to understand the behavior of metal semiconductor interface, since such interfaces have been utilized as typical contacts in silicon devices. Because of surface states, interfacial layer, microscopic clusters of metal-semiconductor phases and other effects, it is difficult to fabricate junctions with barriers near the ideal values predicted from the work functions of the two isolated materials, therefore measured barrier heights are used in the device design. In this work, the Al/n-Si Schottky contacts are employed to study the diode parameters (Schottky barrier height and ideality factor), where the Schottky contacts were fabricated on electron beam irradiated silicon wafers. The interface behavior between electron irradiated Si wafer and post metal deposition is so far not reported. This method could be an alternative way to tailor the Schottky barrier height (SBH) without subjecting semiconductor sample to pre chemical and/or post heat treatments during fabrication

  7. Power Conversion Efficiency of AlGaAs/GaAs Schottky Diode for Low-Power On-Chip Rectenna Device Application

    International Nuclear Information System (INIS)

    Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Osman, Mohd Nizam

    2011-01-01

    A Schottky diode has been designed and fabricated on n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences of Schottky barrier height from theoretical value are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are well rectified by the fabricated Schottky diodes and stable DC output voltage is obtained. Power conversion efficiency up to 50% is obtained at 1 GHz with series connection between diode and load. The fabricated the n-AlGaAs/GaAs Schottky diode provide conduit for breakthrough designs for ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  8. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  9. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    Science.gov (United States)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  10. Electrical properties of Au/perylene-monoimide/p-Si Schottky diode

    International Nuclear Information System (INIS)

    Yüksel, Ö.F.; Tuğluoğlu, N.; Gülveren, B.; Şafak, H.; Kuş, M.

    2013-01-01

    Graphical abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. An emphasis is placed on how electrical and interface characteristics like current–voltage (I–V) variation, ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of Au/PMI/p-Si diode structure change with the temperatures between 100 and 300 K. The temperature dependence of barrier height shows that the Schottky barrier height is inhomogeneous in nature at the interface. Such inhomogeneous behavior was explained on the basis of thermionic emission mechanism by assuming the existence of a Gaussian distribution of barrier heights. -- Highlights: •An Au/perylene-monoimide (PMI)/p-Si Schottky diode having an organic interlayer has been fabricated. •I–V characteristics have been investigated over a wide temperature range 100–300 K. •C–V measurements have been analyzed at room temperature. -- Abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. We have investigated how electrical and interface characteristics like current–voltage characteristics (I–V), ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of diode change with temperature over a wide range of 100–300 K. Detailed analysis on the electrical properties of structure is performed by assuming the standard thermionic emission (TE) model. Possible mechanisms such as image force lowering, generation–recombination processes and interface states which cause deviations of n values from the unity have been discussed. Cheung–Cheung method is also employed to analysis the current–voltage characteristics and a good agreement is observed between the results. It is shown that the electronic properties of Schottky diode are very sensitive to the modification of perylene-monoimide (PMI) interlayer organic material and also to the temperature. The ideality factor was found to decrease and the barrier

  11. Barrier height inhomogeneity in electrical transport characteristics of InGaN/GaN heterostructure interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roul, Basanta [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Mukundan, Shruti; Chandan, Greeshma; Mohan, Lokesh; Krupanidhi, S. B., E-mail: sbk@mrc.iisc.ernet.in [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India)

    2015-03-15

    We have grown InGaN/GaN heterostructures using plasma-assisted molecular beam epitaxy and studied the temperature dependent electrical transport characteristics. The barrier height (φ{sub b}) and the ideally factor (η) estimated using thermionic emission model were found to be temperature dependent. The conventional Richardson plot of ln(J{sub s}/T{sup 2}) versus 1/kT showed two temperature regions (region-I: 400–500 K and region-II: 200–350 K) and it provides Richardson constants (A{sup ∗}) which are much lower than the theoretical value of GaN. The observed variation in the barrier height and the presence of two temperature regions were attributed to spatial barrier inhomogeneities at the heterojunction interface and was explained by assuming a double Gaussian distribution of barrier heights with mean barrier height values 1.61 and 1.21 eV with standard deviation (σ{sub s}{sup 2}) of 0.044 and 0.022 V, respectively. The modified Richardson plot of ln(J{sub s}/T{sup 2}) − (q{sup 2}σ{sub s}{sup 2}/2k{sup 2}T{sup 2}) versus 1/kT for two temperature regions gave mean barrier height values as 1.61 eV and 1.22 eV with Richardson constants (A{sup ∗}) values 25.5 Acm{sup −2}K{sup −2} and 43.9 Acm{sup −2}K{sup −2}, respectively, which are very close to the theoretical value. The observed barrier height inhomogeneities were interpreted on the basis of the existence of a double Gaussian distribution of barrier heights at the interface.

  12. A novel δ-doped partially insulated dopant-segregated Schottky barrier SOI MOSFET for analog/RF applications

    International Nuclear Information System (INIS)

    Patil, Ganesh C; Qureshi, S

    2011-01-01

    In this paper, a comparative analysis of single-gate dopant-segregated Schottky barrier (DSSB) SOI MOSFET and raised source/drain ultrathin-body SOI MOSFET (RSD UTB) has been carried out to explore the thermal efficiency, scalability and analog/RF performance of these devices. A novel p-type δ-doped partially insulated DSSB SOI MOSFET (DSSB Pi-OX-δ) has been proposed to reduce the self-heating effect and to improve the high-frequency performance of DSSB SOI MOSFET over RSD UTB. The improved analog/RF figures of merit such as transconductance, transconductance generation factor, unity-gain frequency, maximum oscillation frequency, short-circuit current gain and unilateral power gain in DSSB Pi-OX-δ MOSFET show the suitability of this device for analog/RF applications. The reduced drain-induced barrier lowering, subthreshold swing and parasitic capacitances also make this device highly scalable. By using mixed-mode simulation capability of MEDICI simulator a cascode amplifier has been implemented using all the structures (RSD UTB, DSSB SOI and DSSB Pi-OX-δ MOSFETs). The results of this implementation show that the gain-bandwidth product in the case of DSSB Pi-OX-δ MOSFET has improved by 50% as compared to RSD UTB and by 20% as compared to DSSB SOI MOSFET. The detailed fabrication flow of DSSB Pi-OX-δ MOSFET has been proposed which shows that with the bare minimum of steps the performance of DSSB SOI MOSFET can be improved significantly in comparison to RSD UTB

  13. Analytical model for the TeraHertz current noise in nanometric Schottky-barrier diodes and heterostructure barrier varactors

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F Z; Helmaoui, A [Physics of Semiconductor Devices Laboratory (LPDS), University of Bechar (Algeria); Varani, L [Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier (France); Shiktorov, P; Starikov, E; Gruzhinskis, V, E-mail: fati_zo_mahi2002@yahoo.f [Semiconductor Physics Institute, Vilnius (Lithuania)

    2009-11-15

    In this paper we propose an analytical model for the calculation of the spectral density of current fluctuations in Heterostructure-barrier varactors . The structures of the calculated spectra are analyzed in terms of physical processes useful to optimize the device parameters for the extraction of the high-order harmonics.

  14. Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, Takuya; Noda, Takeshi; Sakuma, Yoshiki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, Hiroyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2015-01-12

    We observe lateral currents induced in an n-AlGaAs/GaAs heterojunction channel of Hall bar geometry, when an asymmetric position of the Schottky metal gate is locally irradiated by a near-infrared laser beam. When the left side of the Schottky gate is illuminated with the laser, the lateral current flows from left to right in the two dimensional electron gas (2DEG) channel. In contrast, the right side illumination leads to the current from right to left. The magnitude of the lateral current is almost linearly dependent on the beam position, the current reaching its maximum for the beam at the edge of the Schottky gate. The experimental findings are well explained by a theory based on the current-continuity equation, where the lateral current in the 2DEG channel is driven by the photocurrent which vertically flows from the 2DEG to the Schottky gate.

  15. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu

    2009-12-09

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  16. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu; Yeh, Ping-Hung; Lu, Shih-Yuan; Wang, Zhong Lin

    2009-01-01

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  17. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni{sub 2}Si formation and the resulting barrier height changes

    Energy Technology Data Exchange (ETDEWEB)

    Tengeler, Sven, E-mail: stengeler@surface.tu-darmstadt.de [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Kaiser, Bernhard [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Chaussende, Didier [Univ. Grenoble Alpes, CNRS, LMGP, F-38000 Grenoble (France); Jaegermann, Wolfram [Institute of Material Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2017-04-01

    Highlights: • Schottky behavior (Φ{sub B} = 0.41 eV) and Fermi level pining were found pre annealing. • Ni{sub 2}Si formation was confirmed for 5 min at 850 °C. • 3C/Ni{sub 2}Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni{sub 2}Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni{sub 2}Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  18. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni_2Si formation and the resulting barrier height changes

    International Nuclear Information System (INIS)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-01-01

    Highlights: • Schottky behavior (Φ_B = 0.41 eV) and Fermi level pining were found pre annealing. • Ni_2Si formation was confirmed for 5 min at 850 °C. • 3C/Ni_2Si Fermi level alignment is responsible for ohmic contact behavior. • Wet chemical etching (Si–OH/C–H termination) does not impair Ni_2Si formation. - Abstract: The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni_2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  19. (001) 3C SiC/Ni contact interface: In situ XPS observation of annealing induced Ni2Si formation and the resulting barrier height changes

    Science.gov (United States)

    Tengeler, Sven; Kaiser, Bernhard; Chaussende, Didier; Jaegermann, Wolfram

    2017-04-01

    The electronic states of the (001) 3C SiC/Ni interface prior and post annealing are investigated via an in situ XPS interface experiment, allowing direct observation of the induced band bending and the transformation from Schottky to ohmic behaviour for the first time. A single domain (001) 3C SiC sample was prepared via wet chemical etching. Nickel was deposited on the sample in multiple in situ deposition steps via RF sputtering, allowing observation of the 3C SiC/Ni interface formation. Over the course of the experiments, an upward band bending of 0.35 eV was observed, along with defect induced Fermi level pinning. This indicates a Schottky type contact behaviour with a barrier height of 0.41 eV. The subsequent annealing at 850 °C for 5 min resulted in the formation of a Ni2Si layer and a reversal of the band bending to 0.06 eV downward. Thus explaining the ohmic contact behaviour frequently reported for annealed n-type 3C SiC/Ni contacts.

  20. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Temperature dependence of the current in Schottky-barrier source-gated transistors

    Science.gov (United States)

    Sporea, R. A.; Overy, M.; Shannon, J. M.; Silva, S. R. P.

    2015-05-01

    The temperature dependence of the drain current is an important parameter in thin-film transistors. In this paper, we propose that in source-gated transistors (SGTs), this temperature dependence can be controlled and tuned by varying the length of the source electrode. SGTs comprise a reverse biased potential barrier at the source which controls the current. As a result, a large activation energy for the drain current may be present which, although useful in specific temperature sensing applications, is in general deleterious in many circuit functions. With support from numerical simulations with Silvaco Atlas, we describe how increasing the length of the source electrode can be used to reduce the activation energy of SGT drain current, while maintaining the defining characteristics of SGTs: low saturation voltage, high output impedance in saturation, and tolerance to geometry variations. In this study, we apply the dual current injection modes to obtain drain currents with high and low activation energies and propose mechanisms for their exploitation in future large-area integrated circuit designs.

  2. Experimental investigation of terahertz quantum cascade laser with variable barrier heights

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Aiting; Vijayraghavan, Karun; Belkin, Mikhail A., E-mail: mbelkin@ece.utexas.edu [Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78758 (United States); Matyas, Alpar; Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Wasilewski, Zbig R. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G (Canada)

    2014-04-28

    We report an experimental study of terahertz quantum cascade lasers with variable barrier heights based on the Al{sub x}Ga{sub 1–x}As/GaAs material system. Two new designs are developed based on semiclassical ensemble Monte Carlo simulations using state-of-the-art Al{sub 0.15}Ga{sub 0.85}As/GaAs three-quantum-well resonant phonon depopulation active region design as a reference. The new designs achieved maximum lasing temperatures of 188 K and 172 K, as compared to the maximum lasing temperature of 191 K for the reference structure. These results demonstrate that terahertz quantum cascade laser designs with variable barrier heights provide a viable alternative to the traditional active region designs with fixed barrier composition. Additional design space offered by using variable barriers may lead to future improvements in the terahertz quantum cascade laser performance.

  3. Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height

    International Nuclear Information System (INIS)

    Leal, F F; Ferreira, S C; Ferreira, S O

    2011-01-01

    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using an ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in the absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (facetted) surfaces and a global roughness exponent α > 1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of the step barrier. (fast track communication)

  4. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-02-01

    Full Text Available Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al/DNA/silicon (Si rectifying junctions using their current-voltage (I-V characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0 was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min. These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.

  5. Electrical characterization of Au/ZnO/Si Schottky contact

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Faisal, M; Hasan, M A

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements have been performed on Au/ZnO/Si Schottky barrier diode in the range 150 – 400K. The room temperature values for ideality factor and barrier height found to be 2.68 and 0.68 eV respectively. From the temperature dependence of I–V, the ideality factor was observed to decrease with increasing temperature and barrier height increased with increasing temperature. The observed barrier height trend was disagreeing with the negative temperature coefficient for semiconductor. A deep defect with activation energy 0.57 eV below the conduction band was observed using the saturation current plot and deep level transient spectroscopy.

  6. X-ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs(001) c (4 x 4) interface

    International Nuclear Information System (INIS)

    Yokotsuka, T.; Narusawa, T.; Uchida, Y.; Nakashima, H.

    1987-01-01

    Schottky barrier formation and thermal stability of the LaB 6 /GaAs(001) c (4 x 4) interface were investigated by x-ray photoelectron spectroscopy. Results show an excellent thermal stability without any appreciable interface reactions such as interdiffusion. Band bending induced by LaB 6 deposition is found to depend on the evaporation condition. However, the Fermi level pinning position does not change due to heat treatments between 300 and 700 0 C. This indicates that LaB 6 is a promising gate material for GaAs integrated circuits

  7. Estimation of power dissipation of a 4H-SiC Schottky barrier diode with a linearly graded doping profile in the drift region

    Directory of Open Access Journals (Sweden)

    Rajneesh Talwar

    2009-09-01

    Full Text Available The aim of this paper is to establish the importance of a linearly graded profile in the drift region of a 4H-SiC Schottky barrier diode (SBD. The power dissipation of the device is found to be considerably lower at any given current density as compared to its value obtained for a uniformly doped drift region. The corresponding values of breakdown voltages obtained are similar to those obtained with uniformly doped wafers of 4H-SiC.

  8. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    Science.gov (United States)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  9. Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Feng Zhi-Hong; Gu Guo-Dong; Dun Shao-Bo; Yin Jia-Yun; Han Ting-Ting; Cai Shu-Jun; Lin Zhao-Jun

    2014-01-01

    Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current—voltage and capacitance—voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an AlGaN/GaN diode by self-consistently solving Schrödinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostructure results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an AlGaN/GaN diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Investigation of Schottky Barriers

    Science.gov (United States)

    1989-12-01

    W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su and P. W. Chye , Phys. Rev. Lett. 44, 420 (1980); W. E. Spicer, P. W. Chye , P. R. Skeath, C. Y. Su and...Kahn, D. G. Kilday, and G. Margaritondo, J. Vac. Sci. Technol. B5, 987 (1987). 8. R. Cao, K. Miyano, T. Kendelewicz, K. K. Chin , I. Lindau, and W. E

  11. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2011-10-01

    Full Text Available Zinc oxide (ZnO nanorods decorated with gold (Au nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC. The picosecond-resolved, time-correlated single-photon-count (TCSPC spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE of 6.49% for small-area (0.1 cm2 ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2, ~130% enhancement in PCE (from 0.50% to 1.16% was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  12. Influence of interface inhomogeneities in thin-film Schottky diodes

    Science.gov (United States)

    Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin

    2017-11-01

    The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.

  13. Current-voltage temperature characteristics of Au/n-Ge (1 0 0) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, Albert, E-mail: albert.chawanda@up.ac.za [Midlands State University, Bag 9055 Gweru (Zimbabwe); University of Pretoria, 0002 Pretoria (South Africa); Mtangi, Wilbert; Auret, Francois D; Nel, Jacqueline [University of Pretoria, 0002 Pretoria (South Africa); Nyamhere, Cloud [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Diale, Mmantsae [University of Pretoria, 0002 Pretoria (South Africa)

    2012-05-15

    The variation in electrical characteristics of Au/n-Ge (1 0 0) Schottky contacts have been systematically investigated as a function of temperature using current-voltage (I-V) measurements in the temperature range 140-300 K. The I-V characteristics of the diodes indicate very strong temperature dependence. While the ideality factor n decreases, the zero-bias Schottky barrier height (SBH) ({Phi}{sub B}) increases with the increasing temperature. The I-V characteristics are analyzed using the thermionic emission (TE) model and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities at the metal-semiconductor interface. The zero-bias barrier height {Phi}{sub B} vs. 1/2 kT plot has been used to show the evidence of a Gaussian distribution of barrier heights and values of {Phi}{sub B}=0.615 eV and standard deviation {sigma}{sub s0}=0.0858 eV for the mean barrier height and zero-bias standard deviation have been obtained from this plot, respectively. The Richardson constant and the mean barrier height from the modified Richardson plot were obtained as 1.37 A cm{sup -2} K{sup -2} and 0.639 eV, respectively. This Richardson constant is much smaller than the reported of 50 A cm{sup -2} K{sup -2}. This may be due to greater inhomogeneities at the interface.

  14. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    Science.gov (United States)

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  15. The nature of electrical interaction of Schottky contacts

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2011-01-01

    Electrical interaction between metal-semiconductor contacts combined in a diode matrix with a Schottky barrier manifests itself in an appreciable variation in their surface potentials and static current-volt-characteristics. The necessary condition for appearance of electrical interaction between such contacts consists in the presence of a peripheral electric field (a halo) around them; this field propagates to a fairly large distances ( i,j ), concentration of doping impurities in the semiconductor N D , and physical nature of a metal-semiconductor system with a Schottky barrier (with the barrier height φ b ). It is established that bringing the contacts closer leads to a relative decrease in the threshold value of the “dead” zone in the forward current-voltage characteristics, an increase in the effective height of the barrier, and an insignificant increase in the nonideality factor. An increase in the total area of contacts (a total electric charge in the space charge region) in the matrix brings about an increase in the threshold value of the “dead” zone, a relative decrease in the effective barrier height, and an insignificant increase in the ideality factor.

  16. Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes

    Science.gov (United States)

    Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.

  17. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    Science.gov (United States)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  18. Exponential dependence of potential barrier height on biased voltages of inorganic/organic static induction transistor

    International Nuclear Information System (INIS)

    Zhang Yong; Yang Jianhong; Cai Xueyuan; Wang Zaixing

    2010-01-01

    The exponential dependence of the potential barrier height φ c on the biased voltages of the inorganic/organic static induction transistor (SIT/OSIT) through a normalized approach in the low-current regime is presented. It shows a more accurate description than the linear expression of the potential barrier height. Through the verification of the numerical calculated and experimental results, the exponential dependence of φ c on the applied biases can be used to derive the I-V characteristics. For both SIT and OSIT, the calculated results, using the presented relationship, are agreeable with the experimental results. Compared to the previous linear relationship, the exponential description of φ c can contribute effectively to reduce the error between the theoretical and experimental results of the I-V characteristics. (semiconductor devices)

  19. Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode

    International Nuclear Information System (INIS)

    Wang Yongshun; Rui Li; Adnan Ghaffar; Wang Zaixing; Liu Chunjuan

    2015-01-01

    In order to improve the reverse voltage capacity and low junction temperature characteristics of the traditional silicon-based Schottky diode, a Schottky diode with high reverse voltage capacity and high junction temperature was fabricated using ion implantation, NiPt60 sputtering, silicide-forming and other major technologies on an N-type silicon epitaxial layer of 10.6–11.4 μm and (2.2–2.4) × 10 15 cm −3 doping concentration. The measurement results show that the junction temperature of the Schottky diode fabricated can reach 175 °C, that is 50 °C higher than that of the traditional one; the reverse voltage capacity V R can reach 112 V, that is 80 V higher than that of the traditional one; the leakage current is only 2 μA and the forward conduction voltage drop is V F = 0.71 V at forward current I F = 3 A. (semiconductor devices)

  20. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    Science.gov (United States)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  1. Barrier widths, barrier heights, and the origins of anomalous kinetic H/D isotope effects

    International Nuclear Information System (INIS)

    Wolfe, S.; Hoz, Shmaryahu; Kim, Chankyung; Yang, Kiyull

    1990-01-01

    Proton transfer between MeO - and HOMe has been studied using ab initio molecular orbital theory. At the highest level employed (MP2/6-31+G(d)//6-31G(d)+ZPE), -ΔH 298 and -ΔG 298 for the formation of the ion-molecule complex MeO - hor-ellipsis HOMe from the separated reactants are 26.3 and 15.2 kcal/mol, respectively. At the 6-31G(d)//6-31G(d) level of theory, the (MeO-H-OMe) - transition structure is 2.19 kcal/mol higher in energy than the ion-molecule complex (ΔE double-dagger = 2.19), but this barrier disappears when zero-point energies are taken into account. The performance of AM1 on this system is quantitatively different (-ΔH 298 = 13.3; -ΔG 298 = 6.9; ΔE double-dagger = 4.91; k H /k D = 5.13, increasing to 5.79 when quantum mechanical tunneling is invoked) but appears to be acceptable for the research envisaged in the title. The effect of an enforced separation of the heavy atoms upon proton transfer barriers and isotope effects (which simulates steric effects) has been studied briefly at the 6-31G(d) level and in some detail using AM1

  2. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    H. MAZARI

    2014-05-01

    Full Text Available The current-voltage (I-V characteristics of Pt/(n.u.d-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.

  3. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    Science.gov (United States)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  4. Photosensitive thin-film In/p-Pb{sub x}Sn{sub 1-x}S Schottky barriers: Fabrication and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gremenok, V. F., E-mail: gremenok@ifttp.bas-net.by [Scientific-Practical Center of the National Academy of Sciences of Belarus State Scientific and Production Association (Belarus); Rud' , V. Yu., E-mail: rudvas.spb@gmail.com [St. Petersburg State Polytechnic University (Russian Federation); Rud' , Yu. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Bashkirov, S. A.; Ivanov, V. A. [Scientific-Practical Center of the National Academy of Sciences of Belarus State Scientific and Production Association (Belarus)

    2011-08-15

    Thin Pb{sub x}Sn{sub 1-x}S films are obtained by the 'hot-wall' method at substrate temperatures of 210-330 Degree-Sign C. The microstructure, composition, morphology, and electrical characteristics of films are investigated. On the basis of the obtained films, photosensitive In/p-Pb{sub x}Sn{sub 1-x}S Schottky barriers are fabricated for the first time. The photosensivity spectra of these structures are investigated, and the character of interband transitions and the band-gap values are determined from them. The conclusion is drawn that Pb{sub x}Sn{sub 1-x}S thin polycrystalline films may be used in solar-energy converters.

  5. Built-in potential shift and Schottky-barrier narrowing in organic solar cells with UV-sensitive electron transport layers.

    Science.gov (United States)

    Li, Cheng; Credgington, Dan; Ko, Doo-Hyun; Rong, Zhuxia; Wang, Jianpu; Greenham, Neil C

    2014-06-28

    The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.

  6. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al2O3 interlayers

    International Nuclear Information System (INIS)

    Chauhan, Lalit; Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A.; Hughes, G.

    2015-01-01

    The effect of inserting ultra-thin atomic layer deposited Al 2 O 3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al 2 O 3 /p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al 2 O 3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al 2 O 3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al 2 O 3 /n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface

  7. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al{sub 2}O{sub 3} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012 (India); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2015-08-31

    The effect of inserting ultra-thin atomic layer deposited Al{sub 2}O{sub 3} dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al{sub 2}O{sub 3}/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al{sub 2}O{sub 3} interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al{sub 2}O{sub 3} interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al{sub 2}O{sub 3}/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface.

  8. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  9. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  10. Barrier heights of plutonium isotopes from (n,n'f)-thresholds

    International Nuclear Information System (INIS)

    Knitter, H.-H.; Budtz-Joergensen, C.

    1983-01-01

    The neutron induced second chance fission cross section for the isotopes 238 Pu, 239 Pu, 240 Pu, 241 Pu, 242 Pu and 244 Pu are studied in the region of the threshold using a simple model. Numerical values are obtained for the inner fission barrier heights of the mentioned isotopes and of the nuclear temperatures governing the neutron evaporation process at incident neutron energies around the second chance fission threshold. The comparisons of the present parameters with those obtained by other methods give hints to possible insufficiencies of experimental cross section data in the region of the second chance fission threshold. (Auth.)

  11. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  12. Determination of the fission barrier height in fission of heavy radioactive beams induced by the (d,p)-transfer

    CERN Multimedia

    A theoretical framework is described, allowing to determine the fission barrier height using the observed cross sections of fission induced by the (d,p)-transfer with accuracy, which is not achievable in another type of low-energy fission of neutron-deficient nuclei, the $\\beta$-delayed fission. The primary goal is to directly determine the fission barrier height of proton-rich fissile nuclei, preferably using the radio-active beams of isotopes of odd elements, and thus confirm or exclude the low values of fission barrier heights, typically extracted using statistical calculations in the compound nucleus reactions at higher excitation energies. Calculated fission cross sections in transfer reactions of the radioactive beams show sufficient sensitivity to fission barrier height. In the probable case that fission rates will be high enough, mass asymmetry of fission fragments can be determined. Results will be relevant for nuclear astrophysics and for production of super-heavy nuclei. Transfer induced fission of...

  13. Communication: An accurate calculation of the S1 C2H2 cis-trans isomerization barrier height

    International Nuclear Information System (INIS)

    Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2016-01-01

    A high level ab initio calculation of the cis-trans isomerization barrier height in the first excited singlet electronic state of acetylene is found to agree very well with a recent experimental determination.

  14. Influence of thermal stress on the relative permittivity of the AlGaN barrier layer in an AlGaN/GaN heterostructure Schottky contacts

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Lin Zhao-Jun; Zhang Yu; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Chen Hong; Wang Zhan-Guo

    2011-01-01

    Ni Schottky contacts on AlGaN/GaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N 2 ambience at 600 °C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 °C, 600 °C, 700 °C, and 800 °C). With the measured current—voltage (I—V) and capacitance—voltage (C—V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the AlGaN barrier layer was related to the piezoelectric and the spontaneous polarization of the AlGaN barrier layer. The relative permittivity was in proportion to the strain of the AlGaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the AlGaN barrier totally relaxed (after 18 h at 600 °C in the current study), and then the relative permittivity was almost a constant with the increased thermal stress time. When the sample was treated at 800 °C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the AlGaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of AlGaN/GaN heterostructure devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    International Nuclear Information System (INIS)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv

    2013-01-01

    We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device

  16. Research on the electrical characteristics of the Pt/CdS Schottky diode

    Science.gov (United States)

    Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng

    2013-08-01

    With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.

  17. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  18. High performance Schottky diodes based on indium-gallium-zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China)

    2016-07-15

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in the rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.

  19. Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states

    International Nuclear Information System (INIS)

    Wang, Junjie; Feng, Simin; Rhodes, Daniel; Balicas, Luis; Nguyen, Minh An T.; Watanabe, K.; Taniguchi, T.; Mallouk, Thomas E.; Terrones, Mauricio; Zhu, J.

    2015-01-01

    Two key subjects stand out in the pursuit of semiconductor research: material quality and contact technology. The fledging field of atomically thin transition metal dichalcogenides (TMDCs) faces a number of challenges in both efforts. This work attempts to establish a connection between the two by examining the gate-dependent conductance of few-layer (1-5L) WSe 2 field effect devices. Measurements and modeling of the subgap regime reveal Schottky barrier transistor behavior. We show that transmission through the contact barrier is dominated by thermionic field emission (TFE) at room temperature, despite the lack of intentional doping. The TFE process arises due to a large number of subgap impurity states, the presence of which also leads to high mobility edge carrier densities. The density of states of such impurity states is self-consistently determined to be approximately 1–2 × 10 13 /cm 2 /eV in our devices. We demonstrate that substrate is unlikely to be a major source of the impurity states and suspect that lattice defects within the material itself are primarily responsible. Our experiments provide key information to advance the quality and understanding of TMDC materials and electrical devices

  20. Gate-modulated conductance of few-layer WSe{sub 2} field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junjie; Feng, Simin [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Rhodes, Daniel; Balicas, Luis [National High Magnetic Field Lab, Florida State University, Tallahassee, Florida 32310 (United States); Nguyen, Minh An T. [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Watanabe, K.; Taniguchi, T. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Mallouk, Thomas E. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Terrones, Mauricio [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zhu, J., E-mail: jzhu@phys.psu.edu [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-04-13

    Two key subjects stand out in the pursuit of semiconductor research: material quality and contact technology. The fledging field of atomically thin transition metal dichalcogenides (TMDCs) faces a number of challenges in both efforts. This work attempts to establish a connection between the two by examining the gate-dependent conductance of few-layer (1-5L) WSe{sub 2} field effect devices. Measurements and modeling of the subgap regime reveal Schottky barrier transistor behavior. We show that transmission through the contact barrier is dominated by thermionic field emission (TFE) at room temperature, despite the lack of intentional doping. The TFE process arises due to a large number of subgap impurity states, the presence of which also leads to high mobility edge carrier densities. The density of states of such impurity states is self-consistently determined to be approximately 1–2 × 10{sup 13}/cm{sup 2}/eV in our devices. We demonstrate that substrate is unlikely to be a major source of the impurity states and suspect that lattice defects within the material itself are primarily responsible. Our experiments provide key information to advance the quality and understanding of TMDC materials and electrical devices.

  1. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure

    Energy Technology Data Exchange (ETDEWEB)

    Padma, R.; Balaram, N.; Reddy, I. Neelakanta; Reddy, V. Rajagopal, E-mail: reddy_vrg@rediffmail.com

    2016-07-01

    The Au/Fe-doped ZnO/n-InP metal/interlayer/semiconductor (MIS) Schottky structure is fabricated with Fe-doped ZnO nanostructure (NS) as an interlayer. The field emission scanning electron microscopy and atomic force microscopy results demonstrated that the surface morphology of the Fe−ZnO NS on n-InP is fairly smooth. The x-ray diffraction results reveal that the average grain size of the Fe−ZnO film is 12.35 nm. The electrical properties of the Au/n-InP metal-semiconductor (MS) and Au/Fe−ZnO NS/n-InP MIS Schottky structures are investigated by current-voltage and capacitance-voltage measurements at room temperature. The Au/Fe−ZnO NS/n-InP MIS Schottky structure has good rectifying ratio with low-leakage current compared to the Au/n-InP MS structure. The barrier height obtained for the MIS structure is higher than those of MS Schottky structure because of the modification of the effective barrier height by the Fe−ZnO NS interlayer. Further, the barrier height, ideality factor and series resistance are determined for the MS and MIS Schottky structures using Norde and Cheung's functions and compared to each other. The estimated interface state density of MIS Schottky structure is lower than that of MS Schottky structure. Experimental results revealed that the Poole-Frenkel emission is the dominant conduction mechanism in the lower bias region whereas Schottky emission is the dominant in the higher bias region for both the Au/n-InP MS and Au/Fe−ZnO NS/n-InP MIS Schottky structures. - Highlights: • Barrier height of Au/n-InP Schottky diode was modified by Fe−ZnO nanostructure interlayer. • MIS structure has a good rectification ratio compared to the MS structure. • The interface state density of MIS structure is lower than that of MS structure. • Poole-Frenkel mechanism is found to dominate in both MS and MIS structure.

  2. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  3. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    Science.gov (United States)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  4. Pulse-height response of silicon surface-barrier detectors to high-energy heavy ions

    International Nuclear Information System (INIS)

    Smith, G.D.

    1973-01-01

    The pulse-height defect (PHD) of high-energy heavy ions in silicon surface-barrier detectors can be divided into three components: (1) energy loss in the gold-surface layer, (2) a nuclear-stopping defect, and (3) a defect due to recombination of electron-hole pairs in the plasma created by the heavy ion. The plasma recombination portion of the PHD was the subject of this study using the variation of the PHD with (1) the angle of incidence of incoming heavy ions, and (2) changes in the detector bias. The Tandem Van de Graaff accelerator at Argonne National Laboratory was used to produce scattered beam ions ( 32 S, 35 Cl) and heavy target recoils (Ni, Cu, 98 Mo, Ag, Au) at sufficient energies to produce a significant recombination defect. The results confirm the existence of a recombination zone at the front surface of these detectors and the significance of plasma recombination as a portion of the pulse-height defect. (Diss. Abstr. Int., B)

  5. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation

    Directory of Open Access Journals (Sweden)

    Moonsang Lee

    2018-06-01

    Full Text Available We investigate the electrical characteristics of Schottky contacts for an Au/hydride vapor phase epitaxy (HVPE a-plane GaN template grown via in situ GaN nanodot formation. Although the Schottky diodes present excellent rectifying characteristics, their Schottky barrier height and ideality factor are highly dependent upon temperature variation. The relationship between the barrier height, ideality factor, and conventional Richardson plot reveals that the Schottky diodes exhibit an inhomogeneous barrier height, attributed to the interface states between the metal and a-plane GaN film and to point defects within the a-plane GaN layers grown via in situ nanodot formation. Also, we confirm that the current transport mechanism of HVPE a-plane GaN Schottky diodes grown via in situ nanodot formation prefers a thermionic field emission model rather than a thermionic emission (TE one, implying that Poole–Frenkel emission dominates the conduction mechanism over the entire range of measured temperatures. The deep-level transient spectroscopy (DLTS results prove the presence of noninteracting point-defect-assisted tunneling, which plays an important role in the transport mechanism. These electrical characteristics indicate that this method possesses a great throughput advantage for various applications, compared with Schottky contact to a-plane GaN grown using other methods. We expect that HVPE a-plane GaN Schottky diodes supported by in situ nanodot formation will open further opportunities for the development of nonpolar GaN-based high-performance devices.

  6. Schottky junction interfacial properties at high temperature: A case of AgNWs embedded metal oxide/p-Si

    Science.gov (United States)

    Mahala, Pramila; Patel, Malkeshkumar; Gupta, Navneet; Kim, Joondong; Lee, Byung Ha

    2018-05-01

    Studying the performance limiting parameters of the Schottky device is an urgent issue, which are addressed herein by thermally stable silver nanowire (AgNW) embedded metal oxide/p-Si Schottky device. Temperature and bias dependent junction interfacial properties of AgNW-ITO/Si Schottky photoelectric device are reported. The current-voltage-temperature (I-V-T), capacitance-voltage-temperature (C-V-T) and impedance analysis have been carried out in the high-temperature region. The ideality factor and barrier height of Schottky junction are assessed using I-V-T characteristics and thermionic emission, to reveal the decrease of ideality factor and increase of barrier height by the increasing of temperature. The extracted values of laterally homogeneous Schottky (ϕb) and ideality factor (n) are approximately 0.73 eV and 1.58, respectively. Series resistance (Rs) assessed using Cheung's method and found that it decreases with the increase of temperature. A linear response of Rs of AgNW-ITO/Si Schottky junction is observed with respect to change in forward bias, i.e. dRS/dV from 0 to 0.7 V is in the range of 36.12-36.43 Ω with a rate of 1.44 Ω/V. Impedance spectroscopy is used to study the effect of bias voltage and temperature on intrinsic Schottky properties which are responsible for photoconversion efficiency. These systematic analyses are useful for the AgNWs-embedding Si solar cells or photoelectrochemical cells.

  7. Effect of the periphery of metal-semiconductor contacts with Schottky barriers on their static current-voltage characteristic

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2010-01-01

    Kelvin probe atomic-force microscopy of the electrostatic surface potential of gold Schottky contacts on n-GaAs showed that there is an extended transition area (halo) (tens of micrometers) around contacts in which the surface potential varies from the n-GaAs free surface potential to the gold contact surface potential. The contact potential and its distribution in the surrounding halo are controlled by the contact structure. The study of spreading currents showed that there is a high-conductance area (periphery) around the contact perimeter due to strong electric fields of the halo, which causes leakage currents. The conductivity of the main contact area is caused by 100- to 200-nm local areas with higher and lower conducting abilities. Mesa formation around contacts causes a decrease in the work function, a decrease in the halo extent and electric field strength, which is accompanied by spreading and decreasing of the peripheral area conductance. This results in disappearance of leakage currents and a decrease in the ideality index. In contrast, protection of the peripheral area by a SiO 2 insulating film 0.5 μm thick increases the work function, which is accompanied by the formation of potential lobes around the contact in two mutually perpendicular crystallographic directions. A stronger penetration of halo electric fields into the contact area results in an increase in the ideality index and disappearance of high-conductance peripheral area and leakage currents. The difference between the electrical properties of the periphery, gold grains, and their boundaries controls the contact switching mechanism when applying forward or reverse biases.

  8. Barrier height enhancement of metal/semiconductor contact by an enzyme biofilm interlayer

    Science.gov (United States)

    Ocak, Yusuf Selim; Gul Guven, Reyhan; Tombak, Ahmet; Kilicoglu, Tahsin; Guven, Kemal; Dogru, Mehmet

    2013-06-01

    A metal/interlayer/semiconductor (Al/enzyme/p-Si) MIS device was fabricated using α-amylase enzyme as a thin biofilm interlayer. It was observed that the device showed an excellent rectifying behavior and the barrier height value of 0.78 eV for Al/α-amylase/p-Si was meaningfully larger than the one of 0.58 eV for conventional Al/p-Si metal/semiconductor (MS) contact. Enhancement of the interfacial potential barrier of Al/p-Si MS diode was realized using enzyme interlayer by influencing the space charge region of Si semiconductor. The electrical properties of the structure were executed by the help of current-voltage and capacitance-voltage measurements. The photovoltaic properties of the structure were executed under a solar simulator with AM1.5 global filter between 40 and 100 mW/cm2 illumination conditions. It was also reported that the α-amylase enzyme produced from Bacillus licheniformis had a 3.65 eV band gap value obtained from optical method.

  9. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    Science.gov (United States)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  10. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    Science.gov (United States)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  11. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  12. Effect of a gate buffer layer on the performance of a 4H-SiC Schottky barrier field-effect transistor

    International Nuclear Information System (INIS)

    Zhang Xianjun; Yang Yintang; Chai Changchun; Duan Baoxing; Song Kun; Chen Bin

    2012-01-01

    A lower doped layer is inserted between the gate and channel layer and its effect on the performance of a 4H-SiC Schottky barrier field-effect transistor (MESFET) is investigated. The dependences of the drain current and small signal parameters on this inserted gate-buffer layer are obtained by solving one-dimensional (1-D) and two-dimensional (2-D) Poisson's equations. The drain current and small signal parameters of the 4H-SiC MESFET with a gate-buffer layer thickness of 0.15 μm are calculated and the breakdown characteristics are simulated. The results show that the current is increased by increasing the thickness of the gate-buffer layer; the breakdown voltage is 160 V, compared with 125 V for the conventional 4H-SiC MESFET; the cutoff frequency is 27 GHz, which is higher than 20 GHz of the conventional structure due to the lower doped gate-buffer layer. (semiconductor devices)

  13. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  14. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    Science.gov (United States)

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Interfacial barrier height modification of indium tin oxide/a-Si:H(p) via control of density of interstitial oxygen for silicon heterojunction solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Shihyun; Kim, Sunbo; Dao, Vinh Ai; Lee, Seungho; Iftiquar, S.M. [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College, Ulsan, 680-749 (Korea, Republic of); Hussain, Shahzada Qamar [Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Park, Hyeongsik; Lee, Jaehyeong [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Lee, Youngseok [Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Cho, Jaehyun [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Kim, Sangho [Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of)

    2013-11-01

    An indium tin oxide (ITO) film with low carrier concentration (n), high mobility (μ) and high work function (Φ{sub ITO}) is a beneficial material for the front electrode in heterojunction silicon (HJ) solar cells due to its low free-carrier absorption in the near-infrared wavelength and low Schottky barrier height at the ITO/emitter-layer front contact. This low free-carrier absorption as well as the low Schottky barrier height increase the open-circuit voltage (V{sub oc}) and the short-circuit current density (J{sub sc}), which in turn increases the overall cell efficiency (η). Hence, ITO films with lower n, higher μ and higher Φ{sub ITO} were prepared by controlling the density of the interstitial oxygen [O{sub i}] in the films and used as anti-reflection electrodes in HJ solar cells. With increasing [O{sub i}] in the ITO, the preferential orientation of the (222) crystalline plane became more dominant. The Φ{sub ITO} and μ increased from 4.87 eV and 38.9 cm{sup 2} V{sup −1} s{sup −1} to 5.04 eV and 48.79 cm{sup 2} V{sup −1} s{sup −1}, respectively, whereas n decreased from 4.7 × 10{sup 20} cm{sup −3} to 2.8 × 10{sup 20} cm{sup −3}. We attribute these changes to the chemisorbed oxygen into the ITO films, while the decrease of n is due to the ability of interstitial oxygen to capture electron, and the increase of μ is due to the reduction in free-carrier scattering. These ITO films were used to fabricate HJ solar cells. As [O{sub i}] in the ITO film increased, the device performance improved and the best cell performance was obtained with V{sub oc} of 714 mV, J{sub sc} 34.79 mA/cm{sup 2} and η of 17.82%. By computer simulation, we found that the higher Φ{sub ITO} and μ but lower n were responsible for the enhanced cell performance. The cell performance, however, deteriorated due to poor film properties when [O{sub i}] exceeded concentration limit from 3.2 × 10{sup 20} cm{sup −3}. - Highlights: • The carrier concentration (n) decreases

  16. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules.

    Science.gov (United States)

    Gruden, Maja; Andjeklović, Ljubica; Jissy, Akkarapattiakal Kuriappan; Stepanović, Stepan; Zlatar, Matija; Cui, Qiang; Elstner, Marcus

    2017-09-30

    Density Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies. The encouraging results for the diverse sets of reactions studied here suggest that DFTB models, especially the most recent third-order version (DFTB3/3OB augmented with dispersion correction), in most cases provide satisfactory description of organic chemical reactions with accuracy almost comparable to popular DFT methods with large basis sets, although larger errors are also seen for certain cases. Therefore, DFTB models can be effective for mechanistic analysis (e.g., transition state search) of large (bio)molecules, especially when coupled with single point energy calculations at higher levels of theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Characterization and Modeling I(V of the Gate Schottky Structures HEMTs Ni/Au/AlInN/GaN

    Directory of Open Access Journals (Sweden)

    N. Benyahya

    2014-05-01

    Full Text Available In this paper, we have studied the Schottky contact of Ni/Au/AlInN/GaN HEMTs. The current–voltage Igs (Vgs of Ni/Au/AlInN/GaN structures were investigated at room temperature. The electrical parameters such as ideality factor (2.3, barrier height (0.72 eV and series resistance (33 W were evaluated from I(V data, the threshold voltage (-2.42 V, the 2D gas density (1.35 ´ 1013 cm-2 and barrier height (0.94 eV were evaluated from C(V data.

  18. Fabrication and characterization of n-AlGaAs/ GaAs Schottky diode for rectennas device application

    International Nuclear Information System (INIS)

    Norfarariyanti Parimon; Abdul Manaf Hashim; Farahiyah Mustafa

    2009-01-01

    Full text: Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectennas device application. Rectennas is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current?voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectennas device application. (author)

  19. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  20. Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures

    International Nuclear Information System (INIS)

    Das, Subhashis; Majumdar, Shubhankar; Kumar, Rahul; Ghosh, Saptarsi; Biswas, Dhrubes

    2016-01-01

    An AlGaN/GaN heterostructure based metal–semiconductor–metal symmetrically bi-directional Schottky diode sensor structure has been employed to investigate acetone sensing and to analyze thermodynamics of acetone adsorption at low temperatures. The AlGaN/GaN heterostructure has been grown by plasma-assisted molecular beam epitaxy on Si (111). Schottky diode parameters at different temperatures and acetone concentrations have been extracted from I–V characteristics. Sensitivity and change in Schottky barrier height have been studied. Optimum operating temperature has been established. Coverage of acetone adsorption sites at the AlGaN surface and the effective equilibrium rate constant of acetone adsorption have been explored to determine the endothermic nature of acetone adsorption enthalpy.

  1. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    International Nuclear Information System (INIS)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul; Osman, Mohd Nizam

    2011-01-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  2. Design of 340 GHz 2× and 4× Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-05-01

    Full Text Available This paper presents the design of terahertz 2× and 4× sub-harmonic down-mixers using Schottky Barrier Diodes fabricated in standard 0.13 μm SiGe BiCMOS technology. The 340 GHz sub-harmonic mixers (SHMs are designed based on anti-parallel-diode-pairs (APDPs. With the 2nd and 4th harmonic, local oscillator (LO frequencies of 170 GHz and 85 GHz are used to pump the two 340 GHz SHMs. With LO power of 7 dBm, the 2× SHM exhibits a conversion loss of 34.5–37 dB in the lower band (320–340 GHz and 35.5–41 dB in the upper band (340–360 GHz; with LO power of 9 dBm, the 4× SHM exhibits a conversion loss of 39–43 dB in the lower band (320–340 GHz and 40–48 dB in the upper band (340–360 GHz. The measured input 1-dB conversion gain compression point for the 2× and 4× SHMs are −8 dBm and −10 dBm at 325 GHz, respectively. The simulated LO-IF (intermediate frequency isolation of the 2× SHM is 21.5 dB, and the measured LO-IF isolation of the 4× SHM is 32 dB. The chip areas of the 2× and 4× SHMs are 330 μm × 580 μm and 550 μm × 610 μm, respectively, including the testing pads.

  3. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  4. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  5. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    Science.gov (United States)

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  6. Irradiation effects on electrical properties of DNA solution/Al Schottky diodes

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Iwamoto, Mitsumasa

    2018-04-01

    Deoxyribonucleic acid (DNA) has emerged as one of the most exciting organic material and as such extensively studied as a smart electronic material since the last few decades. DNA molecules have been reported to be utilized in the fabrication of small-scaled sensors and devices. In this current work, the effect of alpha radiation on the electrical properties of an Al/DNA/Al device using DNA solution was studied. It was observed that the carrier transport was governed by electrical interface properties at the Al-DNA interface. Current ( I)-voltage ( V) curves were analyzed by employing the interface limited Schottky current equations, i.e., conventional and Cheung and Cheung's models. Schottky parameters such as ideality factor, barrier height and series resistance were also determined. The extracted barrier height of the Schottky contact before and after radiation was calculated as 0.7845, 0.7877, 0.7948 and 0.7874 eV for the non-radiated, 12, 24 and 36 mGy, respectively. Series resistance of the structure was found to decline with the increase in the irradiation, which was due to the increase in the free radical root effects in charge carriers in the DNA solution. Results pertaining to the electronic profiles obtained in this work may provide a better understanding for the development of precise and rapid radiation sensors using DNA solution.

  7. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  8. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  9. Determination of the barrier height for acetyl radical dissociation from acetyl chloride photodissociation at 235 nm using velocity map imaging.

    Science.gov (United States)

    Tang, Xiaonan; Ratliff, Britni J; FitzPatrick, Benjamin L; Butler, Laurie J

    2008-12-18

    This work uses velocity map imaging to determine the barrier height for acetyl radical, CH3CO, dissociation to CH3 + CO. Photodissociation of acetyl chloride at 235 nm generates acetyl radicals with an internal energy distribution spanning this barrier. We determine the velocity and internal energy distribution of all nascent acetyl radicals, stable and unstable, by measuring the velocities of the Cl(2P3/2) and Cl(2P1/2) cofragments. These Cl cofragments are detected with 2 + 1 resonance-enhanced multiphoton ionization (REMPI) in a spin-orbit branching ratio Cl(2P3/2):Cl(2P1/2) of 3.3 +/- 0.2. Using 157 nm photoionization, we then detect the recoil velocities of the energetically stable acetyl radicals. The radicals and momentum matched Cl atoms evidence parallel angular distributions. Comparison of the total recoil translational energy distribution P(E(T)) for all radicals to that obtained from the detection of stable radicals yields an onset for dissociation at a translational energy of 25.0 +/- 0.4 kcal/mol. From this onset we can calculate the barrier height for CH3CO --> CH3 + CO, but this relies on prior determinations of the C-Cl bond energy of acetyl chloride. Using an experimental bond dissociation energy of 83.4 +/- 0.2 kcal/mol yields a dissociation barrier of 14.2 +/- 0.5 kcal/mol. Our data evidence that a portion of the acetyl radicals formed with total internal energy above the barrier are stable due to the partitioning of energy into rotation during the C-Cl bond fission of the precursor. Thus, the internal energy onset for dissociation is not as sharp as was assumed in prior determinations of the barrier. The experimentally determined onset is compared with that predicted from electronic structure calculations at the G3//B3LYP and CCSD(T) levels of theory.

  10. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  11. Thermal stability of TaN Schottky contacts on n-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.R.; Kim, D-W.; Meidia, H.; Mahajan, S

    2003-02-07

    The thermal stability and electrical characteristics of tantalum-nitrogen alloy Schottky contacts on n-GaN were investigated. Non-stoichiometric {delta}-phase (40 atomic percent nitrogen) tantalum nitride contacts exhibited good electrical properties up to an annealing temperature of 600 deg. C. However, they degrade rapidly above this temperature due to outward diffusion of Ga and presumably nitrogen into the {delta}-phase tantalum nitride. It is surmised that excess Ta reacts with N at the GaN surface, freeing Ga which then diffuses into the TaN layer. Stoichiometric TaN Schottky contacts were stable at temperatures as high as 800 deg. C and had far superior electrical performance. This stems from the thermodynamic stability of the stoichiometric TaN/GaN interface. {delta}-phase TaN had I-V and C-V barrier heights of 0.55 eV and 0.8 eV respectively. On the other hand, TaN had an I-V barrier height near 0.7 eV and a C-V barrier height near 1.2 eV. The ideality factors for both {delta}-phase TaN and TaN were above 1.8 at all annealing temperatures, suggesting tunneling contributes significantly to current transport.

  12. A graphene barristor using nitrogen profile controlled ZnO Schottky contacts.

    Science.gov (United States)

    Hwang, Hyeon Jun; Chang, Kyoung Eun; Yoo, Won Beom; Shim, Chang Hoo; Lee, Sang Kyung; Yang, Jin Ho; Kim, So-Young; Lee, Yongsu; Cho, Chunhum; Lee, Byoung Hun

    2017-02-16

    We have successfully demonstrated a graphene-ZnO:N Schottky barristor. The barrier height between graphene and ZnO:N could be modulated by a buried gate electrode in the range of 0.5-0.73 eV, and an on-off ratio of up to 10 7 was achieved. By using a nitrogen-doped ZnO film as a Schottky contact material, the stability problem of previously reported graphene barristors could be greatly alleviated and a facile route to build a top-down processed graphene barristor was realized with a very low heat cycle. This device will be instrumental when implementing logic functions in systems requiring high-performance logic devices fabricated with a low temperature fabrication process such as back-end integrated logic devices or flexible devices on soft substrates.

  13. Contribution to the study of rectification at the metal-semiconductor contact: analysis of aging in silicon Schottky diodes

    International Nuclear Information System (INIS)

    Ponpon, J.-P.

    1979-01-01

    The formation of the barrier height and the aging of metal-semiconductor contacts during exposure to air have been studied. The evolution of the electrical characteristics, especially the barrier height, of silicon Schottky diodes results from the diffusion of oxygen through the electrode and its accumulation at the interface. The diffusion coefficient of oxygen has been deduced for each metal used. In a first step the oxygen neutralize a fixed positive charge which remains at the semiconductor surface after etching; then, as silicon is oxidized, a MIS device is formed. Similar results have been obtained in the case of germanium, while no aging appears with cadmium telluride. In this case the barrier height seems to be determined by chemical reactions at the interface [fr

  14. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    Science.gov (United States)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  15. Annealing effects on structural and electrical properties of Ru/Au on n-GaN Schottky contacts

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Rao, P. Koteswara; Ramesh, C.K.

    2007-01-01

    Thermal annealing effects on electrical and structural properties of Ru/Au Schottky contact to n-type GaN (n d = 4.07 x 10 17 cm -3 ) have been investigated using current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES) and X-ray diffraction (XRD). The Schottky barrier height of the as-deposited sample was found to be 0.75 eV (I-V) and 0.93 eV (C-V), respectively. It is noted that the barrier height increased when the contact was annealed at 300 deg. C and slightly decreased upon annealing at temperatures of 400 deg. C and 500 deg. C. The extracted Schottky barrier heights are 0.99 eV (I-V), 1.34 eV (C-V) for 300 deg. C, 0.88 eV (I-V), 1.20 eV (C-V) for 400 deg. C and 0.72 eV (I-V), 1.08 eV (C-V) for 500 deg. C annealed contacts, respectively. Further it is observed that annealing results in the improvement of electrical properties of Ru/Au Schottky contacts. Based on Auger electron spectroscopy and X-ray diffraction studies, the formation of gallide phases at the Ru/Au/n-GaN interface could be the reason for the improvement of electrical characteristics upon annealing at elevated temperatures

  16. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  17. Evaluation of Schottky and MgO-based tunnelling diodes with different ferromagnets for spin injection in n-Si

    International Nuclear Information System (INIS)

    Uhrmann, T; Dimopoulos, T; Brueckl, H; Kovacs, A; Kohn, A; Weyers, S; Paschen, U; Smoliner, J

    2009-01-01

    In this work we present the electrical properties of sputter-deposited ferromagnetic (FM) Schottky diodes and MgO-based tunnelling diodes to n-doped (0 0 1) silicon. The effective Schottky barrier height (SBH) has been evaluated as a function of the FM electrode (Co 70 Fe 30 , Co 40 Fe 40 B 20 and Ni 80 Fe 20 ), the silicon doping density (10 15 to 10 18 cm -3 ), the MgO tunnelling barrier thickness (0, 1.5 and 2.5 nm) and post-deposition annealing up to 400 0 C. The ideality factors of the Schottky diodes are close to unity, indicating transport by thermionic emission and the absence of an interfacial oxide layer, which is confirmed by transmission electron microscopy. The effective SBH is found to be approximately 0.65 eV, independent of the FM material and decreasing with increasing doping density. The changes induced by high temperature annealing at the current-voltage characteristic of the Schottky diodes depend strongly on the FM electrode. The effective SBH for the tunnelling diodes is as low as 0.3 eV, which suggests a high density of oxide and interface traps. It is again independent of the FM electrode, decreasing with increasing doping density and annealing temperature. The inclusion of MgO leads to higher thermal stability of the tunnelling diodes. The measured contact resistance values are discussed with respect to the conductivity mismatch for spin injection and detection.

  18. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    International Nuclear Information System (INIS)

    Kim, Hogyoung; Jung, Chan Yeong; Hyun Kim, Se; Cho, Yunae; Kim, Dong-Wook

    2015-01-01

    Using current–voltage (I–V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100–300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm −2 K −2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole–Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample. (paper)

  19. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    OpenAIRE

    Alvarez, Jose; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/Photoluminescence (PL) imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced ...

  20. Gamma-Ray Irradiation Effects on the Characteristics of New Material P Type 6H-SiC Ni-Schottky Diodes (Application For Nuclear Fuel Facilities)

    International Nuclear Information System (INIS)

    U-Sudjadi; T-Ohshima, N. Iwamoto; S-Hishiki; N-Iwamoto, K. Kawano

    2007-01-01

    Effects of gamma-ray irradiation on electrical characteristics of new material p type 6H-SiC Ni-Schottky diodes were investigated. Ni Schottky diodes fabricated on p type 6H-SiC epi-layer were irradiated with gamma-rays at RT. The electrical characteristics of the diodes were evaluated before and after irradiation. The value of the on-resistance does not change up to 1 MGy, and the value increases with increasing absorbed dose above 1 MGy. For n factor, no significant increase is observed below 500 kGy, however, the value increases above 500 kGy. Schottky Barrier Height (SBH) decreases with increasing absorbed dose. Leakage current tends to increase due to irradiation. (author)

  1. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  2. Estimates of fission barrier heights for neutron-deficient Po to Ra nuclei produced in fusion reactions

    Directory of Open Access Journals (Sweden)

    Sagaidak Roman

    2017-01-01

    Full Text Available The cross section data for fission and evaporation residue production in fusion reactions leading to nuclei from Po to Ra have been considered in a systematic way in the framework of the conventional barrier-passing (fusion model coupled with the statistical model. The cross section data obtained in very asymmetric projectile-target combinations can be described within these models rather well with the adjusted model parameters. In particular, one can scale and fix the macroscopic (liquid-drop fission barrier heights (FBHs for nuclei involved in the de-excitation of compound nuclei produced in the reactions. The macroscopic FBHs for nuclei from Po to Ra have been derived in the framework of such analysis and compared with the predictions of various theoretical models.

  3. A sensitivity-based approach to optimize the surface treatment of a low-height tramway noise barrier

    Science.gov (United States)

    Jolibois, Alexandre

    Transportation noise has become a main nuisance in urban areas, in the industrialized world and across the world, to the point that according to the World Health Organization 65% of the European population is exposed to excessive noise and 20% to night-time levels that may harm their health. There is therefore a need to find new ways to mitigate transportation noise in urban areas. In this work, a possible device to achieve this goal is studied: a low-height noise barrier. It consists of a barrier typically less than one meter high placed close to the source, designed to decrease significantly the noise level for nearby pedestrians and cyclists. A numerical method which optimizes the surface treatment of a low-height barrier in order to increase its insertion loss is presented. Tramway noise barriers are especially studied since the noise sources are in this case close to the ground and would be attenuated more by the barrier. The acoustic behavior of the surface treatment is modeled via its admittance. It can be itself described by a few parameters (flow resistivity, geometrical dimensions...), which can then be optimized. It is proposed to couple porous layers and micro-perforated panel (MPP) resonators in order to take advantage of their different acoustic properties. Moreover, the optimization is achieved using a sensitivity-based method, since in this framework the gradient of the attenuation can be evaluated accurately and efficiently. Several shapes are considered: half-cylinder, quarter-cylinder, straight wall, T-shape and square shape. In the case of a half-cylindrical geometry, a semi-analytical solution for the sound field in terms of a series of cylindrical waves is derived, which simplifies the sensitivity calculation and optimization process. The boundary element method (BEM) is used to evaluate the attenuation for the remaining shapes, and in this case the sensitivity is evaluated using the adjoint state approach. For all considered geometries, it is

  4. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  5. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage

    Directory of Open Access Journals (Sweden)

    Sangeeta Singh

    2016-03-01

    Full Text Available In this paper, we have investigated a novel Schottky tunneling source impact ionization MOSFET (STS-IMOS to lower the breakdown voltage of conventional impact ionization MOS (IMOS and developed an analytical model for the same. In STS-IMOS there is an accumulative effect of both impact ionization and source induced barrier tunneling. The silicide source offers very low parasitic resistance, the outcome of which is an increment in voltage drop across the intrinsic region for the same applied bias. This reduces operating voltage and hence, it exhibits a significant reduction in both breakdown and threshold voltage. STS-IMOS shows high immunity against hot electron damage. As a result of this the device reliability increases magnificently. The analytical model for impact ionization current (Iii is developed based on the integration of ionization integral (M. Similarly, to get Schottky tunneling current (ITun expression, Wentzel–Kramers–Brillouin (WKB approximation is employed. Analytical models for threshold voltage and subthreshold slope is optimized against Schottky barrier height (ϕB variation. The expression for the drain current is computed as a function of gate-to-drain bias via integral expression. It is validated by comparing it with the technology computer-aided design (TCAD simulation results as well. In essence, this analytical framework provides the physical background for better understanding of STS-IMOS and its performance estimation.

  6. Characterization of a SiC MIS Schottky diode as RBS particle detector

    Science.gov (United States)

    Kaufmann, I. R.; Pick, A. C.; Pereira, M. B.; Boudinov, H. I.

    2018-02-01

    A 4H-SiC Schottky diode was investigated as a particle detector for Rutherford Backscattering Spectroscopy (RBS) experiment. The device was fabricated on a commercial 4H-SiC epitaxial n-type layer grown onto a 4H-SiC n+ type substrate wafer doped with nitrogen. Hafnium oxide with thickness of 1 nm was deposited by Atomic Layer Deposition and 10 nm of Ni were deposited by sputtering to form the Ni/HfO2/4H-SiC MIS Schottky structure. Current-Voltage curves with variable temperature were measured to extract the real Schottky Barrier Height (0.32 V) and ideality factor values (1.15). Reverse current and Capacitance-Voltage measurements were performed on the 4H-SiC detector and compared to a commercial Si barrier detector acquired from ORTEC. RBS data for four alpha energies (1, 1.5, 2 and 2.5 MeV) were collected from an Au/Si sample using the fabricated SiC and the commercial Si detectors simultaneously. The energy resolution for the fabricated detector was estimated to be between 75 and 80 keV.

  7. Correlation between morphological defects, electron beam-induced current imaging, and the electrical properties of 4H-SiC Schottky diodes

    International Nuclear Information System (INIS)

    Wang, Y.; Ali, G.N.; Mikhov, M.K.; Vaidyanathan, V.; Skromme, B.J.; Raghothamachar, B.; Dudley, M.

    2005-01-01

    Defects in SiC degrade the electrical properties and yield of devices made from this material. This article examines morphological defects in 4H-SiC and defects visible in electron beam-induced current (EBIC) images and their effects on the electrical characteristics of Schottky diodes. Optical Nomarski microscopy and atomic force microscopy were used to observe the morphological defects, which are classified into 26 types based on appearance alone. Forward and reverse current-voltage characteristics were used to extract barrier heights, ideality factors, and breakdown voltages. Barrier heights decrease about linearly with increasing ideality factor, which is explained by discrete patches of low barrier height within the main contact. Barrier height, ideality, and breakdown voltage all degrade with increasing device diameter, suggesting that discrete defects are responsible. Electroluminescence was observed under reverse bias from microplasmas associated with defects containing micropipes. EBIC measurements reveal several types of features corresponding to recombination centers. The density of dark spots observed by EBIC correlates strongly with ideality factor and barrier height. Most morphological defects do not affect the reverse characteristics when no micropipes are present, but lower the barrier height and worsen the ideality factor. However, certain multiple-tailed defects, irregularly shaped defects and triangular defects with 3C inclusions substantially degrade both breakdown voltage and barrier height, and account for most of the bad devices that do not contain micropipes. Micropipes in these wafers are also frequently found to be of Type II, which do not run parallel to the c axis

  8. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect

    Science.gov (United States)

    Di Bartolomeo, Antonio; Luongo, Giuseppe; Giubileo, Filippo; Funicello, Nicola; Niu, Gang; Schroeder, Thomas; Lisker, Marco; Lupina, Grzegorz

    2017-06-01

    We propose a hybrid device consisting of a graphene/silicon (Gr/Si) Schottky diode in parallel with a Gr/SiO2/Si capacitor for high-performance photodetection. The device, fabricated by transfer of commercial graphene on low-doped n-type Si substrate, achieves a photoresponse as high as 3 \\text{A} {{\\text{W}}-1} and a normalized detectivity higher than 3.5× {{10}12} \\text{cm} \\text{H}{{\\text{z}}1/2} {{\\text{W}}-1} in the visible range. It exhibits a photocurrent exceeding the forward current because photo-generated minority carriers, accumulated at Si/SiO2 interface of the Gr/SiO2/Si capacitor, diffuse to the Gr/Si junction. We show that the same mechanism, when due to thermally generated carriers, although usually neglected or disregarded, causes the increased leakage often measured in Gr/Si heterojunctions. We perform extensive I-V and C-V characterization at different temperatures and we measure a zero-bias Schottky barrier height of 0.52 eV at room temperature, as well as an effective Richardson constant A **  =  4× {{10}-5} \\text{A} \\text{c}{{\\text{m}}-2} {{\\text{K}}-2} and an ideality factor n≈ 3.6 , explained by a thin (<1 nm) oxide layer at the Gr/Si interface.

  9. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    Science.gov (United States)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  10. Barrier inhomogeneities at vertically stacked graphene-based heterostructures.

    Science.gov (United States)

    Lin, Yen-Fu; Li, Wenwu; Li, Song-Lin; Xu, Yong; Aparecido-Ferreira, Alex; Komatsu, Katsuyoshi; Sun, Huabin; Nakaharai, Shu; Tsukagoshi, Kazuhito

    2014-01-21

    The integration of graphene and other atomically flat, two-dimensional materials has attracted much interest and been materialized very recently. An in-depth understanding of transport mechanisms in such heterostructures is essential. In this study, vertically stacked graphene-based heterostructure transistors were manufactured to elucidate the mechanism of electron injection at the interface. The temperature dependence of the electrical characteristics was investigated from 300 to 90 K. In a careful analysis of current-voltage characteristics, an unusual decrease in the effective Schottky barrier height and increase in the ideality factor were observed with decreasing temperature. A model of thermionic emission with a Gaussian distribution of barriers was able to precisely interpret the conduction mechanism. Furthermore, mapping of the effective Schottky barrier height is unmasked as a function of temperature and gate voltage. The results offer significant insight for the development of future layer-integration technology based on graphene-based heterostructures.

  11. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    International Nuclear Information System (INIS)

    Alvarez, J; Boutchich, M; Kleider, J P; Teraji, T; Koide, Y

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5–6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm −1 ). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current–voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices. (paper)

  12. Temperature dependence of the Schottky-barrier heights of n-type semiconductors in the temperature range of 7 to 300 K

    International Nuclear Information System (INIS)

    Chen, T.P.; Lee, T.C.; Fung, S.; Beling, C.D.

    1994-01-01

    In this note we present the results of the temperature dependence of the SBH in Au/n-Si, Ag/n-GaAs, and Au/n-GaAs in the temperature range of 7 to 300 K from our internal photoemission measurements. (orig.)

  13. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    Science.gov (United States)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  14. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  15. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  16. Influence of He-ion irradiation on the characteristics of Pd/n-Si{sub 0.90}Ge{sub 0.10}/Si Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mamor, M; Sellai, A; Bouziane, K; Harthi, S H Al; Busaidi, M Al; Gard, F S [Physics Department, Sultan Qaboos University, PO Box 36 Muscat 123, Sultanate of (Oman)

    2007-03-07

    Current-voltage (I-V) and capacitance-voltage (C-V) characteristics of He-ion irradiated Pd/n-Si{sub 09}Ge{sub 0.10} Schottky contacts have been measured in the temperature range from 100 to 300 K. Schottky barrier properties such as the Schottky barrier height ({phi}{sub bn}) and ideality factor (n) have been studied as a function of temperature. The degree to which their characteristics deviated from the ideal case increased as the temperature decreased. A decrease in {phi}{sub bn} and an increase in n with decreasing temperature are observed. Additionally, linear dependence between the so-called temperature factor T{sub 0} and temperature as well as between {phi}{sub bn} and n are shown. This type of strong temperature dependence indicates the presence of a large degree of lateral inhomogeneities of the barrier height, resulting from the He-ion irradiation induced defects and traps which produce a variation in the number of free carriers. The presence of electrically active defects introduced by He-ion irradiation at and below the Si{sub 0.90}Ge{sub 0.10} surface support this interpretation.

  17. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  18. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing

    Science.gov (United States)

    So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.

    2016-04-01

    A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.

  19. Electrical characterization of CdTe pixel detectors with Al Schottky anode

    International Nuclear Information System (INIS)

    Turturici, A.A.; Abbene, L.; Gerardi, G.; Principato, F.

    2014-01-01

    Pixelated Schottky Al/p-CdTe/Pt detectors are very attractive devices for high-resolution X-ray spectroscopic imaging, even though they suffer from bias-induced time instability (polarization). In this work, we present the results of the electrical characterization of a (4×4) pixelated Schottky Al/p-CdTe/Pt detector. Current–voltage (I–V) characteristics and current transients were investigated at different temperatures. The results show deep levels that play a dominant role in the charge transport mechanism. The conduction mechanism is dominated by the space charge limited current (SCLC) both under forward bias and at high reverse bias. Schottky barrier height of the Al/CdTe contact was estimated by using the thermionic-field emission model at low reverse bias voltages. Activation energy of the deep levels was measured through the analysis of the reverse current transients at different temperatures. Finally, we employed an analytical method to determine the density and the energy distribution of the traps from SCLC current–voltage characteristics

  20. Electrical characteristics of {sup 60}Co {gamma}-ray irradiated MIS Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2006-11-15

    In order to interpret the effect of {sup 60}Co {gamma}-ray irradiation dose on the electrical characteristics of MIS Schottky diodes, they were stressed with a zero bias at 1 MHz in dark and room temperature during {gamma}-ray irradiation and the total dose range was 0-450 kGy. The effect of {gamma}-ray exposure on the electrical characteristics of MIS Schottky diodes has been investigated using C-V and G/{omega}-V measurements at room temperature. Experimental results show that {gamma}-ray irradiation induces a decrease in the barrier height {phi} {sub B} and series resistance R {sub s}, decreasing with increasing dose rate. Also, the acceptor concentration N {sub A} increases with increasing radiation dose. The C-V characteristics prove that there is a reaction for extra recombination centers in case of MIS Schottky diodes exposed to {gamma}-ray radiation. Furthermore, the density of interface states N {sub ss} by Hill-Coleman method increases with increasing radiation dose. Experimental results indicate that the interface-trap formation at high irradiation dose is reduced due to positive charge build-up in the Si/SiO{sub 2} interface (due to the trapping of holes) that reduces the flow rate of subsequent holes and protons from the bulk of the insulator to the Si/SiO{sub 2} interface.

  1. Fabrication and electrical properties of organic-on-inorganic Schottky devices

    International Nuclear Information System (INIS)

    Guellue, Oe; Biber, M; Tueruet, A; Cankaya, M

    2008-01-01

    In this paper, we fabricated an Al/new fuchsin/p-Si organic-inorganic (OI) Schottky diode structure by direct evaporation of an organic compound solution on a p-Si semiconductor wafer. A direct optical band gap energy value of the new fuchsin organic film on a glass substrate was obtained as 1.95 eV. Current-voltage (I-V) and capacitance-voltage (C-V) measurements of the OI device were carried out at room temperature. From the I-V characteristics, it was seen that the Al/new fuchsin/p-Si contacts showed good rectifying behavior. An ideality factor value of 1.47 and a barrier height (BH) value of 0.75 eV for the Al/new fuchsin/p-Si contact were determined from the forward bias I-V characteristics. A barrier height value of 0.78 eV was obtained from the capacitance-voltage (C-V) characteristics. It has been seen that the BH value of 0.75 eV obtained for the Al/new fuchsin/p-Si contact is significantly larger than that of conventional Al/p-Si Schottky metal-semiconductor (MS) diodes. Thus, modification of the interfacial potential barrier for Al/p-Si diodes has been achieved using a thin interlayer of the new fuchsin organic semiconductor; this has been ascribed to the fact that the new fuchsin interlayer increases the effective barrier height because of the interface dipole induced by passivation of the organic layer

  2. Measurement and statistical analysis of single-molecule current-voltage characteristics, transition voltage spectroscopy, and tunneling barrier height.

    Science.gov (United States)

    Guo, Shaoyin; Hihath, Joshua; Díez-Pérez, Ismael; Tao, Nongjian

    2011-11-30

    We report on the measurement and statistical study of thousands of current-voltage characteristics and transition voltage spectra (TVS) of single-molecule junctions with different contact geometries that are rapidly acquired using a new break junction method at room temperature. This capability allows one to obtain current-voltage, conductance voltage, and transition voltage histograms, thus adding a new dimension to the previous conductance histogram analysis at a fixed low-bias voltage for single molecules. This method confirms the low-bias conductance values of alkanedithiols and biphenyldithiol reported in literature. However, at high biases the current shows large nonlinearity and asymmetry, and TVS allows for the determination of a critically important parameter, the tunneling barrier height or energy level alignment between the molecule and the electrodes of single-molecule junctions. The energy level alignment is found to depend on the molecule and also on the contact geometry, revealing the role of contact geometry in both the contact resistance and energy level alignment of a molecular junction. Detailed statistical analysis further reveals that, despite the dependence of the energy level alignment on contact geometry, the variation in single-molecule conductance is primarily due to contact resistance rather than variations in the energy level alignment.

  3. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  4. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  5. 1.5-V-threshold-voltage Schottky barrier normally-off AlGaN/GaN high-electron-mobility transistors with f T/f max of 41/125 GHz

    Science.gov (United States)

    Hou, Bin; Ma, Xiaohua; Yang, Ling; Zhu, Jiejie; Zhu, Qing; Chen, Lixiang; Mi, Minhan; Zhang, Hengshuang; Zhang, Meng; Zhang, Peng; Zhou, Xiaowei; Hao, Yue

    2017-07-01

    In this paper, a normally-off AlGaN/GaN high-electron-mobility transistors (HEMT) fabricated using inductively coupled plasma (ICP) CF4 plasma recessing and an implantation technique is reported. A gate-to-channel distance of ˜10 nm and an equivalent negative fluorine sheet charge density of -1.21 × 1013 cm-2 extracted using a simple threshold voltage (V th) analytical model result in a high V th of 1.5 V, a peak transconductance of 356 mS/mm, and a subthreshold slope of 133 mV/decade. A small degradation of channel mobility leads to a high RF performance with f T/f max of 41/125 GHz, resulting in a record high f T × L g product of 10.66 GHz·µm among Schottky barrier AlGaN/GaN normally-off HEMTs with V th exceeding 1 V, to the best of our knowledge.

  6. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  7. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    Science.gov (United States)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  8. Accurate surface potential determination in Schottky diodes by the use of a correlated current and capacitance voltage measurements. Application to n-InP

    International Nuclear Information System (INIS)

    Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Srour, Hussein

    2011-01-01

    Based on current voltage (I—V g ) and capacitance voltage (C—V g ) measurements, a reliable procedure is proposed to determine the effective surface potential V d (V g ) in Schottky diodes. In the framework of thermionic emission, our analysis includes both the effect of the series resistance and the ideality factor, even voltage dependent. This technique is applied to n-type indium phosphide (n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C—V g measurements. The study clearly shows that the depletion width and the flat band barrier height deduced from C—V g , which are important parameters directly related to the surface potential in the semiconductor, should be estimated within our approach to obtain more reliable information. (semiconductor devices)

  9. Optical and electrical characterization of AlGaN based Schottky photodiodes after annealing at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ngoepe, PNM, E-mail: phuti.ngoepe@up.ac.za; Meyer, WE; Diale, M; Auret, FD; Schalkwyk, L van

    2014-04-15

    In this study a comparison is made between the optical and electrical properties of Ni/Au and Ni/Ir/Au Schottky photodiodes based on Al{sub 0.35}Ga{sub 0.65}N. The effects of inserting Ir between Ni and Au are of particular interest. The comparison in the properties is done after annealing the photodiodes at different temperatures in an argon gas ambient. The reverse current decreased with annealing temperature up to 400 °C for the Ni/Au Schottky photodiode and up to 500 °C for the Ni/Ir/Au photodiode. The Schottky barrier heights increased with increasing annealing temperature. The responsivity of the Ni/Au photodiode was higher than that of the Ni/Ir/Au photodiode. The transmission of the Ni/Au metal layer improved with increasing annealing temperature up to 500 °C and the best transmission of the Ni/Ir/Au metal layer was after 400 °C annealing.

  10. An efficient approach to characterizing and calculating carrier loss due to heating and barrier height variation in vertical-cavity surface-emitting lasers

    International Nuclear Information System (INIS)

    Jian, Wu; Summers, H. D.

    2010-01-01

    It is important to determine quantitatively the internal carrier loss arising from heating and barrier height variation in a vertical-cavity surface-emitting quantum well laser (VCSEL). However, it is generally difficult to realize this goal using purely theoretical formulas due to difficulty in deriving the parameters relating to the quantum well structure. In this paper, we describe an efficient approach to characterizing and calculating the carrier loss due to the heating and the barrier height change in the VCSEL. In the method, the thermal carrier loss mechanism is combined with gain measurement and calculation. The carrier loss is re-characterized in a calculable form by constructing the threshold current and gain detuning-related loss current using the measured gain data and then substituting them for the quantum well-related parameters in the formula. The result can be expressed as a product of an exponential weight factor linked to the barrier height change and the difference between the threshold current and gain detuning-related loss current. The gain variation at cavity frequency due to thermal carrier loss and gain detuning processes is measured by using an AlInGaAs–AlGaAs VCSEL structure. This work provides a useful approach to analysing threshold and loss properties of the VCSEL, particularly, gain offset design for high temperature operation of VCSELs. (classical areas of phenomenology)

  11. Silicon Schottky photovoltaic diodes for solar energy conversion

    Science.gov (United States)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  12. SCHOTTKY MEASUREMENTS DURING RHIC 2000

    International Nuclear Information System (INIS)

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; HAMMONS, L.; KESSELMAN, M.; LEE, R.; MEYER, A.; SIKORA, R.

    2001-01-01

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements

  13. Experimental and numerical investigation of contact-area-limited doping for top-contact pentacene thin-film transistors with Schottky contact.

    Science.gov (United States)

    Noda, Kei; Wada, Yasuo; Toyabe, Toru

    2015-10-28

    Effects of contact-area-limited doping for pentacene thin-film transistors with a bottom-gate, top-contact configuration were investigated. The increase in the drain current and the effective field-effect mobility was achieved by preparing hole-doped layers underneath the gold contact electrodes by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), confirmed by using a thin-film organic transistor advanced simulator (TOTAS) incorporating Schottky contact with a thermionic field emission (TFE) model. Although the simulated electrical characteristics fit the experimental results well only in the linear regime of the transistor operation, the barrier height for hole injection and the gate-voltage-dependent hole mobility in the pentacene transistors were evaluated with the aid of the device simulation. This experimental data analysis with the simulation indicates that the highly-doped semiconducting layers prepared in the contact regions can enhance the charge carrier injection into the active semiconductor layer and concurrent trap filling in the transistor channel, caused by the mitigation of a Schottky energy barrier. This study suggests that both the contact-area-limited doping and the device simulation dealing with Schottky contact are indispensable in designing and developing high-performance organic thin-film transistors.

  14. Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction.

    Science.gov (United States)

    Vabbina, PhaniKiran; Choudhary, Nitin; Chowdhury, Al-Amin; Sinha, Raju; Karabiyik, Mustafa; Das, Santanu; Choi, Wonbong; Pala, Nezih

    2015-07-22

    Two dimensional (2D) Molybdenum disulfide (MoS2) has evolved as a promising material for next generation optoelectronic devices owing to its unique electrical and optical properties, such as band gap modulation, high optical absorption, and increased luminescence quantum yield. The 2D MoS2 photodetectors reported in the literature have presented low responsivity compared to silicon based photodetectors. In this study, we assembled atomically thin p-type MoS2 with graphene to form a MoS2/graphene Schottky photodetector where photo generated holes travel from graphene to MoS2 over the Schottky barrier under illumination. We found that the p-type MoS2 forms a Schottky junction with graphene with a barrier height of 139 meV, which results in high photocurrent and wide spectral range of detection with wavelength selectivity. The fabricated photodetector showed excellent photosensitivity with a maximum photo responsivity of 1.26 AW(-1) and a noise equivalent power of 7.8 × 10(-12) W/√Hz at 1440 nm.

  15. Optical and Electrical Properties of Al/(p)Bi2S3 Schottky Junction

    International Nuclear Information System (INIS)

    Kachari, T.; Wary, G.; Rahman, A.

    2010-01-01

    Thin film Al/(p)Bi 2 S 3 Schottky junctions were prepared by vacuum evaporation under pressure 10 -6 Torr. The p-type Bi 2 S 3 thin films with acceptor concentration (3.36-7.33)x10 16 /cm 3 were obtained by evaporating 'In' along with Bi 2 S 3 powder and then annealing the films at 453K for 5 hours. Different junction-parameters such as ideality factor, barrier height, effective Richardson's constant, short-circuit current, etc. were determined from I-V characteristics. The junctions exhibited rectifying I-V characteristics and also photovoltaic effect. Ideality factor was found to decrease with the increase of temperature. Proper doping, annealing, and hydrogenation are necessary to reduce the series resistance so as to achieve high carrier efficiency. More works are being carried out in this direction.

  16. Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes

    International Nuclear Information System (INIS)

    Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.

    2014-01-01

    This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area

  17. Analysis of Reverse-Bias Leakage Current Mechanisms in Metal/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    P. Pipinys

    2010-01-01

    Full Text Available Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K using for calculation the effective mass of 0.222 me. and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy are also explicable in the framework of the PhAT model.

  18. High-temperature Schottky diode characteristics of bulk ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre; Tuezemen, S; Kilic, Bayram; Coskun, C [Department of Physics, Faculty of Arts and Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2007-05-16

    Current-voltage (I-V) measurements of Ag/n-ZnO have been carried out at temperatures of 200-500 K in order to understand the temperature dependence of the diode characteristics. Forward-bias I-V analysis results in a Schottky barrier height of 0.82 eV and an ideality factor of 1.55 at room temperature. The barrier height of 0.74 eV and Richardson constant of 0.248 A K{sup -2} cm{sup -2} were also calculated from the Richardson plot, which shows nearly linear characteristics in the temperature range 240-440 K. From the nk{sub b}T/q versus k{sub b}T/q graph, where n is ideality factor, k{sub b} the Boltzmann constant, T the temperature and q the electronic charge we deduce that thermionic field emission (TFE) is dominant in the charge transport mechanism. At higher sample temperatures (>440 K), a trap-assisted tunnelling mechanism is proposed due to the existence of a deep donor situated at E{sub c}-0.62 eV with 3.3 x 10{sup -15} cm{sup 2} capture cross section observed by both deep-level transient spectroscopy (DLTS) and lnI{sub 0} versus 1/k{sub b}T plots. The ideality factor almost remains constant in the temperature range 240-400 K, which shows the stability of the Schottky contact in this temperature range.

  19. Ellipsometric study and application of rubrene thin film in organic Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Deng, Jinxiang, E-mail: jdeng@bjut.edu.cn; Gao, Hongli; Yang, Qianqian; Kong, Le; Cui, Min; Zhang, Zijia

    2016-12-01

    Highlights: • The optical constants of rubrene were studied by ellipsometry spectroscopic. • The α reveals direct allowed transition with corresponding energy 2.21 eV. • A Schottky diodes based on rubrene were fabricated. • The basic device parameters were determined by the I–V measurement. - Abstract: Rubrene thin film was deposited by thermal evaporation technique under high vacuum (∼10{sup −4} Pa). The film surface morphology was characterized by atomic force microscopy (AFM). Ellipsometric studies on rubrene thin film were presented for understanding its growth and optical characteristics by the Classical-Oscillator model. The analysis of the absorption coefficient (α) revealed the direct allowed transition with corresponding energy 2.21 eV of the rubrene film. In order to exploring the rubrene applications, Al/rubrene/ITO Schottky diode was fabricated. The basic device parameters, barrier height and ideality factor were determined by the I–V measurement. The log(I)–log(V) characteristic indicated three distinct regions. These regions followed ohmic conduction, TCL conduction and SCLC conduction mechanisms.

  20. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Directory of Open Access Journals (Sweden)

    Zhang Teng-Fei

    2016-11-01

    Full Text Available In this study, we present a simple ultraviolet (UV light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  1. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    Science.gov (United States)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  2. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes.

    Science.gov (United States)

    Shen, Jun; Liu, Xiangzhi; Song, Xuefen; Li, Xinming; Wang, Jun; Zhou, Quan; Luo, Shi; Feng, Wenlin; Wei, Xingzhan; Lu, Shirong; Feng, Shuanglong; Du, Chunlei; Wang, Yuefeng; Shi, Haofei; Wei, Dapeng

    2017-05-11

    Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, photodetectors are fabricated using directly grown graphene nanowalls (GNWs) as electrodes. Due to the metal-free growth process, GNWs-Si heterojunctions with an ultralow measured current noise of 3.1 fA Hz -1/2 are obtained, and the as-prepared photodetectors demonstrate specific detectivities of 5.88 × 10 13 cm Hz 1/2 W -1 and 2.27 × 10 14 cm Hz 1/2 W -1 based on the measured and calculated noise current, respectively, under ambient conditions. These are among the highest reported values for planar silicon Schottky photodetectors. In addition, an on/off ratio of 2 × 10 7 , time response of 40 μs, cut-off frequency of 8.5 kHz and responsivity of 0.52 A W -1 are simultaneously realized. The ultralow current noise is attributed to the excellent junction quality with a barrier height of 0.69 eV and an ideal factor of 1.18. Furthermore, obvious infrared photoresponse is observed in blackbody tests, and potential applications based on the photo-thermionic effect are discussed.

  3. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  4. Current Transport Mechanisms and Capacitance Characteristic in the InN/InP Schottky Structures

    Directory of Open Access Journals (Sweden)

    K. AMEUR

    2014-05-01

    Full Text Available In this work, electrical characterization of the current-voltage and capacitance- voltage curves for the Metal/InN/InP Schottky structures are investigated. We have studied electrically thin InN films realized by the nitridation of InP (100 substrates using a Glow Discharge Source (GDS in ultra high vacuum. The I (V curves have exhibited anomalous two-step (kink forward bias behaviour; a suitable fit was only obtained by using a model of two discrete diodes in parallel. Thus, we have calculated, using I(V and C(V curves of Hg/InN/InP Schottky structures, the ideality factor n, the saturation current Is, the barrier height jB, the series resistance Rs, the doping concentration Nd and the diffusion voltage Vd. We have also presented the band diagram of this heterojunction which indicates the presence of a channel formed by holes at the interface InN/InP which explain by the presence of two-dimensional electron gas (2-DEG and this was noticed in the presentation of characteristics C(V.

  5. Towards a converged barrier height for the entrance channel transition state of the N( 2D) + CH 4 reaction and its implication for the chemistry in Titan's atmosphere

    Science.gov (United States)

    Ouk, Chanda-Malis; Zvereva-Loëte, Natalia; Bussery-Honvault, Béatrice

    2011-10-01

    The N( 2D) + CH 4 reaction appears to be a key reaction for the chemistry of Titan's atmosphere, opening the door to nitrile formation as recently observed by the Cassini-Huygens mission. Faced to the controversy concerning the existence or not of a potential barrier for this reaction, we have carried out accurate ab initio calculations by means of multi-state multi-reference configuration interaction (MS-MR-SDCI) method. These calculations have been partially corrected for the size-consistency errors (SCE) by Davidson, Pople or AQCC corrections. We suggest a barrier height of 3.86 ± 0.84 kJ/mol, including ZPE, for the entrance transition state, in good agreement with the experimental value. Its implication in Titan's atmopsheric chemistry is discussed.

  6. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  7. Development of Schottky diode detectors at Research Institute of Electrical Communication, Tohoku University

    International Nuclear Information System (INIS)

    Mizuno, K.; Ono, S.; Suzuki, T.; Daiku, Y.

    1982-01-01

    Schottky diode detectors are widely used as fast, sensitive submillimeter detectors in plasma physics, radio astronomy, frequency standards and so on. In this paper, the research on submillimeter Schottky diodes at Tohoku University is described. A brief description is given on the theoretical examination of diode parameters for video detection in design and on the fabrication of n/n + GaAs Schottky diode chips. Antennas for Schottky barrier diodes are discussed. Three types of antenna structures have been proposed, and used for whisker-contacted Schottky diodes so far. These are compared with each other for their frequency response and gain. The bicone type antenna is promising because of its larger frequency response, but the optimum design for this type of antenna has not yet sufficiently been obtained. As the application of Schottky barrier diodes, the intensity modulation of submillimeter laser and a quasi-optically coupled harmonic mixer have been studied. The modulation degree of about 4 % for HCN laser output has been so far obtained at the maximum modulation frequency of 2 GHz. Since 1976, a quasi-optically coupled harmonic mixer has been used with a Schottky diode in harmonic mixing between microwaves, millimeter waves, and submillimeter waves. (Wakatsuki, Y.)

  8. Improved Pt/Au and W/Pt/Au Schottky contacts on n-type ZnO using ozone cleaning

    International Nuclear Information System (INIS)

    Ip, K.; Gila, B.P.; Onstine, A.H.; Lambers, E.S.; Heo, Y.W.; Baik, K.H.; Norton, D.P.; Pearton, S.J.; Kim, S.; LaRoche, J.R; Ren, F.

    2004-01-01

    UV-ozone cleaning prior to metal deposition of either e-beam Pt contacts or sputtered W contacts on n-type single-crystal ZnO is found to significantly improve their rectifying characteristics. Pt contacts deposited directly on the as-received ZnO surface are Ohmic but show rectifying behavior with ozone cleaning. The Schottky barrier height of these Pt contacts was 0.70 eV, with ideality factor of 1.5 and a saturation current density of 6.2x10 -6 A cm -2 . In contrast, the as-deposited W contacts are Ohmic, independent of the use of ozone cleaning. Postdeposition annealing at 700 deg. C produces rectifying behavior with Schottky barrier heights of 0.45 eV for control samples and 0.49 eV for those cleaned with ozone exposure. The improvement in rectifying properties of both the Pt and W contacts is related to removal of surface carbon contamination from the ZnO

  9. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  10. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  11. Step edge influence on barrier height and contact area in vertical heterojunctions between epitaxial graphene and n-type 4H-SiC

    International Nuclear Information System (INIS)

    Tadjer, M. J.; Nyakiti, L. O.; Robinson, Z.; Anderson, T. J.; Myers-Ward, R. L.; Wheeler, V. D.; Eddy, C. R.; Gaskill, D. K.; Koehler, A. D.; Hobart, K. D.; Kub, F. J.

    2014-01-01

    Vertical rectifying contacts of epitaxial graphene grown by Si sublimation on the Si-face of 4H-SiC epilayers were investigated. Forward bias preferential conduction through the step edges was correlated by linear current density normalization. This phenomenon was observed on samples with 2.7–5.8 monolayers of epitaxial graphene as determined by X-ray photoelectron spectroscopy. A modified Richardson plot was implemented to extract the barrier height (0.81 eV at 290 K, 0.99 eV at 30 K) and the electrically dominant SiC step length of a Ti/Al contact overlapping a known region of approximately 0.52 μm wide SiC terraces

  12. Electrical Characterization of Graphite/InP Schottky Diodes by I-V-T and C-V Methods

    Science.gov (United States)

    Tiagulskyi, Stanislav; Yatskiv, Roman; Grym, Jan

    2018-02-01

    A rectifying junction was prepared by casting a drop of colloidal graphite on the surface of an InP substrate. The electrophysical properties of graphite/InP junctions were investigated in a wide temperature range. Temperature-dependent I-V characteristics of the graphite/InP junctions are explained by the thermionic emission mechanism. The Schottky barrier height (SBH) and the ideality factor were found to be 0.9 eV and 1.47, respectively. The large value of the SBH and its weak temperature dependence are explained by lateral homogeneity of the junction, which is related to the structure of the graphite layer. The moderate disagreement between the current-voltage and capacitance-voltage measurements is attributed to the formation of interfacial native oxide film on the InP surface.

  13. A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density

    Science.gov (United States)

    Jin, Jidong; Zhang, Jiawei; Shaw, Andrew; Kudina, Valeriya N.; Mitrovic, Ivona Z.; Wrench, Jacqueline S.; Chalker, Paul R.; Balocco, Claudio; Song, Aimin; Hall, Steve

    2018-02-01

    Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17  ×  107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13  ×  1012 cm-2 eV-1, and the noise is dominated by the mechanism of a random walk of electrons at the PtO x /ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.

  14. Dislocation reduction in nitride-based Schottky diodes by using multiple MgxNy/GaN nucleation layers

    International Nuclear Information System (INIS)

    Lee, K.H.; Chang, P.C.; Chang, S.J.; Su, Y.K.; Wang, Y.C.; Yu, C.L.; Kuo, C.H.

    2010-01-01

    We present the characteristics of nitride-based Schottky diodes with a single low-temperature (LT) GaN nucleation layer and multiple Mg x N y /GaN nucleation layers. With multiple Mg x N y /GaN nucleation layers, it was found that reverse leakage current became smaller by six orders of magnitude than that with a conventional LT GaN nucleation layer. This result might be attributed to the significant reduction of threading dislocations (TDs) and TD-related surface states. From the double crystal X-ray diffraction and photoluminescence analyses, it was found that the introduction of multiple Mg x N y /GaN nucleation layers could be able to effectively reduce the edge-type TDs. Furthermore, it was also found that effective Schottky barrier height (Φ B ) increased from 1.07 to 1.15 eV with the insertion of the multiple Mg x N y /GaN nucleation layers.

  15. 60Co gamma irradiation effects on the the capacitance and conductance characteristics of Au/PMI/n-Si Schottky diodes

    Science.gov (United States)

    Tuğluoğlu, N.; Karadeniz, S.; Yüksel, Ö. F.; Şafak, H.; Kuş, M.

    2015-08-01

    In this work, the perylene-monoimide/n-Si (100) Schottky structures have been fabricated by spin coating process. We have studied the capacitance-voltage ( C- V) and conductance-voltage ( G- V) characteristics of the Au/perylene-monoimide/n-Si diodes at 500 kHz before and after 60Co γ-ray irradiation. The effects of 60Co γ -ray irradiation on the electrical characteristics of a perylene-monoimide/n-Si Schottky diode have been investigated. A decrease both in the capacitance and conductance has been observed after 60Co γ -ray irradiation. This has been attributed to a decrease in the net ionized dopant concentration that occurred as a result of 60Co γ-ray irradiation. Some contact parameters such as barrier height (Φ B ) interface state density ( N ss ) and series resistance ( R s ) have been calculated from the C- V and G- V characteristics of the diode before and after irradiation. It has been observed that the Φ B and N ss values are decreased after the applied radiation, while the R s value is increased.

  16. Hydrogen peroxide treatment on ZnO substrates to investigate the characteristics of Pt and Pt oxide Schottky contacts

    International Nuclear Information System (INIS)

    Tsai, Chia-Hung; Hung, Chen-I; Yang, Cheng-Fu; Houng, Mau-Phon

    2010-01-01

    We utilize hydrogen peroxide (H 2 O 2 ) treatment on (0 0 0 1) ZnO substrates to investigate the characteristics of Pt and Pt oxide Schottky contacts (SCs). X-ray rocking curves show the mosaicity structure becomes larger after H 2 O 2 treatment. Photoluminescence (PL) spectra show the yellow-orange emission peaking at ∼576-580 nm with respect to deep level of oxygen interstitials introduced by H 2 O 2 treatment. The threshold formation of ZnO 2 resistive layer on H 2 O 2 -treated ZnO for 45 min is observed from grazing-incidence X-ray diffraction. The better electrical characteristic is performed by Pt oxide SC with the larger barrier height (1.09 eV) and the lower leakage current (9.52 x 10 -11 A/cm 2 at -2 V) than Pt SC on the H 2 O 2 -treated ZnO for 60 min. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometer (SIMS) examinations indicate the promoted interface oxide bonding and Zn outdiffusion for Pt oxide contact, different from Pt contact. Based on current-voltage, capacitance-voltage, X-ray diffraction, PL spectra, XPS, and SIMS results, the possible mechanism for effective rectifying characteristic and enhanced Schottky fbehavior is given.

  17. A new route for the synthesis of graphene oxide–Fe3O4 (GO–Fe3O4) nanocomposites and their Schottky diode applications

    International Nuclear Information System (INIS)

    Metin, Önder; Aydoğan, Şakir; Meral, Kadem

    2014-01-01

    Highlights: • Graphene Oxide (GO)–Fe 3 O 4 nanocomposites were prepared by a novel and facile method. • The successful assembly of Fe 3 O 4 NPs onto GO sheets was displayed by TEM. • The GO–Fe 3 O 4 nanocomposites/p-Si junction showed good rectifying property. -- Abstract: Addressed herein is a facile method for the preparation of magnetic graphene oxide–Fe 3 O 4 (GO–Fe 3 O 4 ) nanocomposites and the rectifying properties of (GO–Fe 3 O 4 )/p-Si junction in a Schottky diode. GO–Fe 3 O 4 nanocomposites were prepared by a novel method in which as-prepared GO sheets were decorated with the monodisperse Fe 3 O 4 nanoparticles (NPs) in dimethylformamide/chloroform mixture via a sonication process. The successful assembly of Fe 3 O 4 NPs onto GO sheets was displayed by transmission electron microscopy (TEM). Inductively couple plasma optical emission spectroscopy (ICP-OES) analysis of the GO–Fe 3 O 4 nanocomposite showed that the nanocomposite consists of 20.1 wt% Fe 3 O 4 NPs which provides a specific saturation magnetization (Ms) as 16 emu/g. The current–voltage (I–V) characteristics of the (GO–Fe 3 O 4 )/p-Si junction in a Schottky diode were studied in the temperature range of 50–350 K in the steps of 25 K. It was determined that the barrier height and ideality factor of the Au/GO–Fe 3 O 4 /p-Si/Al Schottky diode were depended on temperature as the barrier height increased while the ideality factor decreased with increasing temperature. The experimental values of barrier height and ideality factor were varied from 0.12 eV and 11.24 at 50 K to 0.76 eV and 2.49 at 350 K, respectively. The Richardson plot exhibited non-linearity at low temperatures that was attributed to the barrier inhomogeneities prevailing at the GO–Fe 3 O 4 /p-Si junction

  18. Temperature and voltage dependence of barrier height and ideality factor in Au/0.07 graphene-doped PVA/n-Si structures

    Science.gov (United States)

    Altındal Yerişkin, S.; Balbaşı, M.; Demirezen, S.

    2017-04-01

    In this study, Au/0.07 graphene-doped PVA/n-Si structures were fabricated and current conduction mechanism in these structures were investigated in the temperature range of 80-380 K through forward bias current-voltage ( I- V) measurements. Main electrical parameters were extracted from I-V data. Zero-bias barrier height (\\overline{Φ}_{B0}) and ideality factor (n) were found strong functions of temperature and their values ranged from 0.234 eV and 4.98 (at 80 K) to 0.882 eV and 1.15 (at 380 K), respectively. Φ ap versus q/2k T plot was drawn to obtain an evidence of a Gaussian distribution of the barrier heights (BHs) and it revealed two distinct linear regions with different slopes and intercepts. The mean values of BH ( Φ Bo) and zero-bias standard deviation (σ s ) were obtained from the intercept and slope of the linear regions of this plot as 1.30 eV and 0.16 V for the first region (280-380 K) and 0.74 eV and 0.085 V for the second region (80-240 K), respectively. Thus, the values of \\overline{Φ}_{B0} and effective Richardson constant ( A*) were also found from the intercept and slope of the modified Richardson plot [ln( I s /T 2) - q 2 σ o 2 /2k 2 T 2 vs q/ kT] as 1.31 eV and 130 A/cm2 K2 for the first region and 0.76 eV and 922 A/cm2 K2 for the second region, respectively. The value of A* for the first region was very close to the theoretical value for n-Si (112 A/cm2 K2). The energy density distribution profile of surface states (Nss) was also extracted from the forward bias I-V data by taking into account voltage dependent effective BH (Φe) and n.

  19. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    Science.gov (United States)

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Measuring the Electronic Properties of DNA-Specific Schottky Diodes Towards Detecting and Identifying Basidiomycetes DNA

    Science.gov (United States)

    Periasamy, Vengadesh; Rizan, Nastaran; Al-Ta’ii, Hassan Maktuff Jaber; Tan, Yee Shin; Tajuddin, Hairul Annuar; Iwamoto, Mitsumasa

    2016-01-01

    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology. PMID:27435636

  1. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction

    International Nuclear Information System (INIS)

    Di Bartolomeo, Antonio

    2016-01-01

    In the past decade graphene has been one of the most studied materials for several unique and excellent properties. Due to its two dimensional nature, physical and chemical properties and ease of manipulation, graphene offers the possibility of integration with the existing semiconductor technology for next-generation electronic and sensing devices. In this context, the understanding of the graphene/semiconductor interface is of great importance since it can constitute a versatile standalone device as well as the building-block of more advanced electronic systems. Since graphene was brought to the attention of the scientific community in 2004, the device research has been focused on the more complex graphene transistors, while the graphene/semiconductor junction, despite its importance, has started to be the subject of systematic investigation only recently. As a result, a thorough understanding of the physics and the potentialities of this device is still missing. The studies of the past few years have demonstrated that graphene can form junctions with 3D or 2D semiconducting materials which have rectifying characteristics and behave as excellent Schottky diodes. The main novelty of these devices is the tunable Schottky barrier height, a feature which makes the graphene/semiconductor junction a great platform for the study of interface transport mechanisms as well as for applications in photo-detection, high-speed communications, solar cells, chemical and biological sensing, etc. In this paper, we review the state-of-the art of the research on graphene/semiconductor junctions, the attempts towards a modeling and the most promising applications.

  2. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen; Wilson, Joshua [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Jin, Jidong [Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ (United Kingdom); Du, Lulu; Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China); Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); School of Physics, Shandong University, Jinan 250100 (China)

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant of 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.

  3. Monolayer WS{sub 2} crossed with an electro-spun PEDOT-PSS nano-ribbon: Fabricating a Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Deliris N.; Vedrine, Josee [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Pinto, Nicholas J., E-mail: nicholas.pinto@upr.edu [Department of Physics and Electronics, University of Puerto Rico-Humacao, Humacao, PR 00791 (United States); Naylor, Carl H.; Charlie Johnson, A.T. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2016-12-15

    Highlights: • First report on a Schottky diode formed from monolayer WS{sub 2} and PEDOT-PSSA nano-ribbon. • Straightforward and unique fabrication technique. • Diode operation is stable in air. - Abstract: WS{sub 2} and PEDOT-PSS were individually characterized with the goal of analyzing charge transport across a hetero-junction formed by these two materials. In thermal equilibrium electron flow from the WS{sub 2} conduction band into the polymer LUMO level leads to band bending that creates a potential barrier preventing further current. The measured current-voltage (I{sub DS}-V{sub DS}) curve across the hetero-junction was non-linear and asymmetric similar to a diode, with a turn-on voltage of 1.4 V and a rectification ratio of 12. The device I–V data were analyzed using the standard thermionic emission model of a Schottky junction and yielded an ideality parameter of 1.9 and a barrier height of 0.58 eV. This facile technique is the first report on a nano-diode fabricated using WS{sub 2} and PEDOT-PSS, opening up the possibility of extending this work to include other layered transition metal dichalcogenides and conducting polymers.

  4. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery

    International Nuclear Information System (INIS)

    San, Haisheng; Yao, Shulin; Wang, Xiang; Cheng, Zaijun; Chen, Xuyuan

    2013-01-01

    The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy. Considering the actual limitations of current GaN growth technique, a Fe-doped compensation technique by MOCVD method can be used to realize the n-type GaN with a carrier concentration of 1×10 15 cm −3 , by which a GaN based Schottky betavoltaic micro-battery can achieve an energy conversion efficiency of 2.25% based on the theoretical calculations of semiconductor device physics. - Highlights: • Ni-63 is employed as the pure beta radioisotope source. • The Schottky junction betavoltaic battery is based on the wide-band gap semiconductor GaN. • The total energy deposition of incident beta particles in GaN was simulated by the Monte Carlo method. • A Fe-doped compensation technique is suggested to increase the energy conversion efficiency

  5. The influence of thermal annealing on the characteristics of Au/Ni Schottky contacts on n-type 4 H-SiC

    Science.gov (United States)

    Omotoso, E.; Auret, F. D.; Igumbor, E.; Tunhuma, S. M.; Danga, H. T.; Ngoepe, P. N. M.; Taleatu, B. A.; Meyer, W. E.

    2018-05-01

    The effects of isochronal annealing on the electrical, morphological and structural characteristics of Au/Ni/4 H-SiC Schottky barrier diodes (SBDs) have been studied. Current-voltage ( I- V), capacitance-voltage ( C- V), deep-level transient spectroscopy, scanning electron microscope (SEM) and X-ray diffraction measurements were employed to study the thermal effect on the characteristics of the SBDs. Prior to thermal annealing of Schottky contacts, the I- V measurements results confirmed the good rectification behaviour with ideality factor of 1.06, Schottky barrier height of 1.20 eV and series resistance of 7 Ω. The rectification properties after annealing was maintained up to an annealing temperature of 500 °C, but deviated slightly above 500 °C. The uncompensated ionized donor concentration decreased with annealing temperature, which could be attributed to out-diffusion of the 4 H-SiC into the Au/Ni contacts and decrease in bonding due to formation of nickel silicides. We observed the presence of four deep-level defects with energies 0.09, 0.11, 0.16 and 0.65 eV below the conduction band before and after the isochronal annealing up to 600 °C. The conclusion drawn was that annealing did not affect the number of deep-level defects present in Au/Ni/4 H-SiC contacts. The variations in electrical properties of the devices were attributed to the phase transformations and interfacial reactions that occurred after isochronal annealing.

  6. Effects of swift heavy ion irradiation on the electrical characteristics of Au/n-GaAs Schottky diodes

    International Nuclear Information System (INIS)

    Sharma, A. Tarun; Shahnawaz; Kumar, Sandeep; Katharria, Yashpal S.; Kanjilal, Dinakar

    2007-01-01

    Metal-semiconductor diode of Au/n-GaAs is studied under the irradiation of swift heavy ion (SHI) beam (80 MeV 16 O 6+ ), using in situ current-voltage characterization technique. The diode parameters like ideality factor, barrier height, and leakage current are observed to vary with irradiation fluence. Significantly, the diode performance improves at a high fluence of 2 x 10 13 ions cm -2 with a large decrease of reverse leakage current in comparison to the original as deposited sample. The Schottky barrier height (SBH) also increases with fluence. At a high irradiation fluence of 5 x 10 13 ions cm -2 the SBH (0.62 ± 0.01 eV) is much larger than that of the as deposited sample (0.55 ± 0.01 eV). The diode parameters remain stable over a large range of irradiation up to fluence of 8 x 10 13 ions cm -2 . A prominent annealing effect of the swift ion beam owing to moderate electronic excitation and high ratio of electronic energy loss to the nuclear loss is found to be responsible for the improvement in diode characteristics

  7. The electrical characterization of Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode by current–voltage characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, Muhammad [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Department of Physics, Abdul Wali Khan University Mardan, 23200 (Pakistan); Sayyad, Muhammad Hassan; Wahab, Fazal; Khan, Dil Nawaz [Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640 (Pakistan); Aziz, Fakhra, E-mail: fakhra69@yahoo.com [Department of Electronics, Jinnah College for Women, University of Peshawar, Peshawar 25120 (Pakistan)

    2013-04-15

    The Ag/PTCDA/PEDOT:PSS/p-Si Schottky diode has been fabricated by adding a layer of organic compound 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on top of the p-Si for which the junction characteristics have been investigated. The electronic properties of the device have been studied by the conventional I–V and the Norde's methods. For conventional I–V measurements the rectifying behavior has been observed with a rectification ratio of 236. The barrier height and ideality factor values of 0.81 eV and 3.5, respectively, for the structure have been obtained from the forward bias I–V characteristics. Various electrical parameters such as reverse saturation current, series resistance and shunt resistance have been calculated from the analysis of experimental I–V results and discussed in detail. The barrier height and the series resistance determined by the Norde's function are found in good agreement with the values calculated from conventional I–V measurements. The charge conduction mechanism has also been discussed.

  8. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  9. Longitudinal Schottky noise of intense beam

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1990-01-01

    Some phenomena, which can be observed in the longitudinal Schottky spectra in storage ring with electron cooling as well as some technical details, which can be useful for the models of fitting are reviewed. Results shows that both the spectra and the power of the Schottky noise of the coasting beam are very sensitive to collective behaviour of the beam. This can be used for fitting of Schottky noise measurements and recalculation of beam parameters, parameters of cooling device. 9 refs.; 4 figs

  10. Interplay between barrier width and height in electron tunneling: photoinduced electron transfer in porphyrin-based donor-bridge-acceptor systems.

    Science.gov (United States)

    Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo

    2006-01-12

    The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.

  11. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  12. Plasmonic silicon Schottky photodetectors: the physics behind graphene enhanced internal photoemission

    DEFF Research Database (Denmark)

    Levy, Uriel; Grajower, Meir; Gonçalves, P. A. D.

    2017-01-01

    a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor...

  13. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    Science.gov (United States)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  14. Trap-assisted transition between Schottky emission and Fowler-Nordheim tunneling in the interfacial-memristor based on Bi2S3 nano-networks

    Directory of Open Access Journals (Sweden)

    Ye Tian

    2018-03-01

    Full Text Available For the usage of the memristors in functional circuits, a predictive physical model is of great importance. However, other than the developments of the memristive models accounting bulky effects, the achievements on simulating the interfacial memristance are still insufficient. Here we provide a physical model to describe the electrical switching of the memristive interface. It considers the trap-assisted transition between Schottky emission and Fowler-Nordheim tunneling, and successfully reproduces the memristive behaviors occurring on the interface between Bi2S3 nano-networks and F-doped SnO2. Such success not only allows us uncover several features of the memristive interface including the distribution nature of the traps, barrier height/thickness and so on, but also provides a foundation from which we can quantitatively simulate the real interfacial memristor.

  15. An investigation of characteristics parameters of Ag/p-Si Schottky diodes based on I-V-T and C-V-T measurements

    International Nuclear Information System (INIS)

    Selcuk, A.B.

    2004-01-01

    The current-voltage (I-V) measurements on Ag/p-Si Schottky barrier diodes in the temperature range 125-300 K were carried out. The experimental values of n and Φ b 0 were determined from intercepts and slopes of the forward bias In I-V plot at each temperature. The Φ b 0 and n determined from semilog-forwaid I- V plots were found to be a strong function of temperature. The ideality factor n was found to increase, while the Φ b 0 decrease with decreasing temperature. The flat-band barrier height Φ b f and series resistance R s are also determined from the I-V measurements. Furthermore, the diffusion potential V D , experimental carrier doping density N A , Fermi level E F and barrier height Φ C V are determined from the C- V measurements. It is shown that the values of R s estimated from Cheung's method were strongly temperature dependent decreased with increasing temperature

  16. The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers

    Science.gov (United States)

    Zhou, Quan; Liu, Xiangzhi; Luo, Wei; Shen, Jun; Wang, Yuefeng; Wei, Dapeng

    2018-03-01

    Polyethylenimine ethoxylated (PEIE) and polyethyl-enimine (PEI), the two kinds of interface buffer layer, are widely used in the organic light-emitting diodes and solar cells for band alignment adjustment. In this report, we carefully studied the influence of the inserting organic layer on the graphene nanowalls(GNWS)/Si junction quality and the photoresponse of the Schottky devices. We found that thinner layers of PEI could decrease the dark current and improve the photo-to-dark ratio to 105 for n-Si devices. The s-kink effect and degradation of open circuit voltage could be observed for thicker thickness and excessive doping. Relatively, PEIE with stable thin layer not only improve the rectifying characteristics of p-Si devices but also the incident photon conversion efficiency. The maximus IPCE could reach 44% and be adjusted to zero by the reverse bias. The tunneling inhibition for electrons can be alleviated by increasing the barrier height. Our results provide an attractive method to improve the efficiency of pristine GNWs/Si junction with interface doping and passivation.

  17. 4H-SiC Schottky diode arrays for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lioliou, G. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Chan, H.K. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Gohil, T. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Vassilevski, K.V.; Wright, N.G.; Horsfall, A.B. [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Barnett, A.M. [Semiconductor Materials and Devices Laboratory, School of Engineering and Informatics, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2016-12-21

    Five SiC Schottky photodiodes for X-ray detection have been electrically characterized at room temperature. One representative diode was also electrically characterized over the temperature range 20°C to 140 °C. The performance at 30 °C of all five X-ray detectors, in both current mode and for photon counting X-ray spectroscopy was investigated. The diodes were fabricated in an array form such that they could be operated as either a 2×2 or 1×3 pixel array. Although the devices showed double barrier heights, high ideality factors and higher than expected leakage current at room temperature (12 nA/cm{sup 2} at an internal electric field of 105 kV/cm), they operated as spectroscopic photon counting soft X-ray detectors uncooled at 30 °C. The measured energy resolution (FWHM at 17.4 keV, Mo Kα) varied from 1.36 to 1.68 keV among different diodes.

  18. Ga2O3 Schottky rectifiers with 1 ampere forward current, 650 V reverse breakdown and 26.5 MW.cm-2 figure-of-merit

    Science.gov (United States)

    Yang, Jiancheng; Ren, F.; Tadjer, Marko; Pearton, S. J.; Kuramata, A.

    2018-05-01

    A key goal for Ga2O3 rectifiers is to achieve high forward currents and high reverse breakdown voltages. Field-plated β-Ga2O3 Schottky rectifiers with area 0.01 cm2, fabricated on 10 μm thick, lightly-doped drift regions (1.33 x 1016 cm-3) on heavily-doped (3.6 x 1018 cm-3) substrates, exhibited forward current density of 100A.cm-2 at 2.1 V, with absolute current of 1 A at this voltage and a reverse breakdown voltage (VB) of 650V. The on-resistance (RON) was 1.58 x 10-2 Ω.cm2, producing a figure of merit (VB2/RON) of 26.5 MW.cm-2. The Schottky barrier height of the Ni was 1.04 eV, with an ideality factor of 1.02. The on/off ratio was in the range 3.3 x 106 - 5.7 x 109 for reverse biases between 5 and 100V. The reverse recovery time was ˜30 ns for switching from +2V to -5V. The results show the capability of β-Ga2O3 rectifiers to achieve exceptional performance in both forward and reverse bias conditions.

  19. A new route for the synthesis of graphene oxide–Fe{sub 3}O{sub 4} (GO–Fe{sub 3}O{sub 4}) nanocomposites and their Schottky diode applications

    Energy Technology Data Exchange (ETDEWEB)

    Metin, Önder [Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey); Aydoğan, Şakir [Department of Physics, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey); Meral, Kadem, E-mail: kademm@atauni.edu.tr [Department of Chemistry, Faculty of Science, Atatürk University, 25240 Erzurum (Turkey)

    2014-02-05

    Highlights: • Graphene Oxide (GO)–Fe{sub 3}O{sub 4} nanocomposites were prepared by a novel and facile method. • The successful assembly of Fe{sub 3}O{sub 4} NPs onto GO sheets was displayed by TEM. • The GO–Fe{sub 3}O{sub 4} nanocomposites/p-Si junction showed good rectifying property. -- Abstract: Addressed herein is a facile method for the preparation of magnetic graphene oxide–Fe{sub 3}O{sub 4} (GO–Fe{sub 3}O{sub 4}) nanocomposites and the rectifying properties of (GO–Fe{sub 3}O{sub 4})/p-Si junction in a Schottky diode. GO–Fe{sub 3}O{sub 4} nanocomposites were prepared by a novel method in which as-prepared GO sheets were decorated with the monodisperse Fe{sub 3}O{sub 4} nanoparticles (NPs) in dimethylformamide/chloroform mixture via a sonication process. The successful assembly of Fe{sub 3}O{sub 4} NPs onto GO sheets was displayed by transmission electron microscopy (TEM). Inductively couple plasma optical emission spectroscopy (ICP-OES) analysis of the GO–Fe{sub 3}O{sub 4} nanocomposite showed that the nanocomposite consists of 20.1 wt% Fe{sub 3}O{sub 4} NPs which provides a specific saturation magnetization (Ms) as 16 emu/g. The current–voltage (I–V) characteristics of the (GO–Fe{sub 3}O{sub 4})/p-Si junction in a Schottky diode were studied in the temperature range of 50–350 K in the steps of 25 K. It was determined that the barrier height and ideality factor of the Au/GO–Fe{sub 3}O{sub 4}/p-Si/Al Schottky diode were depended on temperature as the barrier height increased while the ideality factor decreased with increasing temperature. The experimental values of barrier height and ideality factor were varied from 0.12 eV and 11.24 at 50 K to 0.76 eV and 2.49 at 350 K, respectively. The Richardson plot exhibited non-linearity at low temperatures that was attributed to the barrier inhomogeneities prevailing at the GO–Fe{sub 3}O{sub 4}/p-Si junction.

  20. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  1. Temperature dependent I-V characteristics of an Au/n-GaAs Schottky diode analyzed using Tung’s model

    Science.gov (United States)

    Korucu, Demet; Turut, Abdulmecit; Efeoglu, Hasan

    2013-04-01

    The current-voltage (I-V) characteristics of Au/n-GaAs contacts prepared with photolithography technique have been measured in the temperature range of 80-320 K. The ideality factor and barrier height (BH) values have remained almost unchanged between 1.04 and 1.10 and at a value of about 0.79 eV at temperatures above 200 K, respectively. Therefore, the ideality factor values near unity say that the experimental I-V data are almost independent of the sample temperature, that is, contacts have shown excellent Schottky diode behavior above 200 K. An abnormal decrease in the experimental BH Φb and an increase in the ideality factor with a decrease in temperature have been observed below 200 K. This behavior has been attributed to the barrier inhomogeneity by assuming a Gaussian distribution of nanometer-sized patches with low BH at the metal-semiconductor interface. The barrier inhomogeneity assumption is also confirmed by the linear relationship between the BH and the ideality factor. According to Tung’s barrier inhomogeneity model, it has been seen that the value of σT=7.41×10-5 cm2/3 V1/3from ideality factor versus (kT)-1 curve is in close agreement with σT=7.95×10-5 cm2/3 V1/3 value from the Φeff versus (2kT)-1 curve in the range of 80-200 K. The modified Richardson ln(J0/T2)-(qσT)2(Vb/η)2/3/[2(kT)2] versus (kT)-1 plot, from Tung’s Model, has given a Richardson constant value of 8.47 A cm-2 K-2which is in very close agreement with the known value of 8.16 A cm-2 K-2 for n-type GaAs; considering the effective patch area which is significantly lower than the entire geometric area of the Schottky contact, in temperature range of 80-200 K. Thus, it has been concluded that the use of Tung’s lateral inhomogeneity model is more appropriate to interpret the temperature-dependent I-V characteristics in the Schottky contacts.

  2. The importance of the neutral region resistance for the calculation of the interface state in Pb/p-Si Schottky contacts

    International Nuclear Information System (INIS)

    Aydin, M.E.; Akkilic, K.; Kilicoglu, T.

    2004-01-01

    We have fabricated H-terminated Pb/p-type Si Schottky contacts with and without the native oxide layer to explain the importance of the fact that the neutral region resistance value is considered in calculating the interface state density distribution from the nonideal forward bias current-voltage (I-V) characteristics. The diodes with the native oxide layer (metal-insulating layer-semiconductor (MIS)) showed nonideal I-V behavior with an ideality factor value of 1.310 and the barrier height value of 0.746eV. An ideality factor value of 1.065 and a barrier height value of 0.743eV were obtained for the diodes without the native oxide layer (MS). At the same energy position near the top of the valance band, the calculated interface states density (Nss) values, obtained without taking into account the series resistance of the devices (i.e. without subtracting the voltage drop across the series resistance from the applied voltage values V) is almost one order of magnitude larger than Nss values obtained by taking into account the series resistance

  3. {sup 60}Co {gamma} irradiation effects on the current-voltage (I-V) characteristics of Al/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey); Buelbuel, M.M. [Department of Physics, Faculty of Arts and Sciences, Gazi University 06500, Ankara (Turkey)

    2006-12-01

    It is well known that the exposure of any semiconductor surfaces to the {sup 60}Co {gamma}-ray irradiation causes electrically active defects. To investigate the effect of {gamma}-ray irradiation dose on the electrical characteristics of metal-insulator-semiconductor (MIS) Schottky diodes, the fabricated devices were exposed to {gamma} radiation at a dose of 2.12 kGy/h. The total dose range was from 0 to 450 kGy at room temperature. The density of interface states N {sub ss} as a function of E {sub ss}-E {sub v}, the values of series resistance R {sub s} and the bias dependence of the effective barrier height {phi} {sub e} for each dose were obtained from the forward bias I-V characteristics. Experimental results show that the {gamma}-irradiation gives rise to an increase in the zero bias barrier height {phi} {sub BO}, as the ideality factor n, R {sub s} and N {sub ss} decreases with increasing radiation dose.

  4. Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction

    International Nuclear Information System (INIS)

    Kalita, Golap; Hirano, Ryo; Ayhan, Muhammed E; Tanemura, Masaki

    2013-01-01

    We demonstrate fabrication of a Schottky junction diode with direct growth graphene on n-Si by the solid phase reaction approach. Metal-assisted crystallization of a-C thin film was performed to synthesize transfer-free graphene directly on a SiO 2 patterned n-Si substrate. Graphene formation at the substrate and catalyst layer interface is achieved in presence of a Co catalytic and CoO carbon diffusion barrier layer. The as-synthesized material shows a linear current–voltage characteristic confirming the metallic behaviour of the graphene structure. The direct grown graphene on n-Si substrate creates a Schottky junction with a potential barrier of 0.44 eV and rectification diode characteristic. Our finding shows that the directly synthesized graphene on Si substrate by a solid phase reaction process can be a promising technique to fabricate an efficient Schottky junction device. (paper)

  5. Wuthering Heights

    NARCIS (Netherlands)

    Bronte, Emily

    2005-01-01

    Wuthering Heights tells the story of a romance between two youngsters: Catherine Earnshaw and an orphan boy, Heathcliff. After she rejects him for a boy from a better background he develops a lust for revenge that takes over his life. In attempting to win her back and destroy those he blames for his

  6. Thermal stability study of semimetal graphite n-InP and n-GaN Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2013-01-01

    Roč. 28, č. 5 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Gallium nitride * Schottky barrier diodes * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  7. Characterization and Reliability of Vertical N-Type Gallium Nitride Schottky Contacts

    Science.gov (United States)

    2016-09-01

    ACKNOWLEDGMENTS Foremost, I would like to thank my wife, Melissa, with whom I have three wonderful children. Without her endless love , unwavering...conducting research in the lab and studying in the library, she cared for our children and created a loving home for our family. Her strength, passion...Online]. Available: http://ecee.colorado.edu/~bart/book/book/title.htm 78 [12] R. T. Tung, “The physics and chemistry of the Schottky barrier

  8. Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride

    Science.gov (United States)

    Khanna, Rohit

    compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy

  9. Radiation-resistant photostructure for Schottky diode based on Cr/In2Hg3Te6

    Directory of Open Access Journals (Sweden)

    Ashcheulov A. A.

    2016-05-01

    Full Text Available Ge, Si, InGaAs, GaInAsP photodiodes are used as optical radiation receivers and function in a spectral range of transparency of quartz fiberglass. For the optical systems operated in the increased radioactivity the photodetectors' application on In2Hg3Te6 crystal base characterized by a photosensitivity in the spectral range of 0,5-1,6 mm and also by increased radiation resistance to alpha, beta and gamma radiation is most acceptable. Schottky photodiode structure was designed on the base of this semiconductor formed by a modified floating zone recrystallization technique where the sedimentation effect was leveled. It consists of n-In2Hg3Te6 substrate and deposited by cathode sputtering Cr barrier layer of thickness within a range 10-11 nm choice of Cr is determined by its optimal optical, electric and adhesive features in high quality radiation-resistant photodiode structures manufacturing. Indium and nichrome are used as ohmic contacts. The barrier structures have the contact area of 1,13 mm2 with photo response of 0,6-1,6 mm at the maximal sensitivity 0,43 A/W on the wavelength l,55 mm. Reverse dark current of these structures do not exceed 4 mA at the bias of 1 V (T=295 K, and the potential barrier height is equal to 0,41 eV. The tests of radiation resistance of these structures demonstrated their ability to function at doses of 2⋅108 rem without evident parameters changes. This allows using them in practical aims in the conditions of high radiation.

  10. Electrical characterization of MEH-PPV based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nimith, K. M., E-mail: nimithkm@gmail.com; Satyanarayan, M. N., E-mail: satya-mn@nitk.edu.in; Umesh, G., E-mail: umesh52@gmail.com [Optoelectronics Laboratory (OEL), Department of Physics, National Institute of Technology Karnataka (NITK),Surathkal, PO Srinivasnagar, Mangalore, DK-575025 (India)

    2016-05-06

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  11. Effect of barrier height and indium composition on the internal quantum efficiency of (In)AlGaN multiple quantum well structures

    Energy Technology Data Exchange (ETDEWEB)

    Ledentsov, Nikolay Jr.; Reich, Christoph; Mehnke, Frank; Kuhn, Christian; Wernicke, Tim; Kolbe, Tim; Lobo Ploch, Neysha; Rass, Jens [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Kueller, Viola [Ferdinand-Braun-Institut, Berlin (Germany); Kneissl, Michael [Institute of Solid State Physics, Technische Universitaet Berlin (Germany); Ferdinand-Braun-Institut, Berlin (Germany)

    2013-07-01

    We studied (In)AlGaN multiple quantum wells (MQWs) emitting in the UV-B spectral region with photoluminescence and electroluminescence spectroscopy. The internal quantum efficiency (IQE) was determined by temperature dependent measurements (5 K-300 K). The quantum confined Stark effect (QCSE) was investigated by studying the shift of the emission energy with increasing excitation power density. In the first series, Al{sub 0.27}Ga{sub 0.73}N MQWs with different Al{sub x}Ga{sub 1-x}N barriers (0.32barriers decreased the IQE due to a stronger QCSE. In the second series, quaternary InAlGaN QWs were investigated. Due to In incorporation, room temperature emission energy shifted from 4.3 eV to 3.9 eV. At low temperatures two peaks were observed. The lower energetic peak was attributed to In-rich clusters. Influence of the In segregation is discussed.

  12. Large magnetocurrents in double-barrier tunneling transistors

    International Nuclear Information System (INIS)

    Lee, J.H.; Jun, K.-I.; Shin, K.-H.; Park, S.Y.; Hong, J.K.; Rhie, K.; Lee, B.C.

    2005-01-01

    Magnetic tunneling transistors (MTT) with double tunneling barriers are fabricated. The structure of the transistor is AFM/FM/I/FM/I/FM/AFM, and ferromagnetic layers serve as the emitter, base and collector. This double-barrier tunneling transistor (DBTT) has an advantage of controlling the potential between the base and collector, compared to the Schottky-barrier-based base and collector of MTT. We found that the collector current density of DBTT is at least 10 3 times larger than that of conventional MTT, since tunneling through AlO x barrier provides much larger current density than that through Schottky barrier

  13. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Özerli, Halil; Karteri, İbrahim [Department of Materials Science And Engineering, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Karataş, Şükrü, E-mail: skaratas@ksu.edu.tr [Department of Materials Science And Engineering, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Department of Physics, Kahramanmaraş Sütçü İmam University, 46100 Kahramanmaraş (Turkey); Altindal, Şemsettin [Department of Physics, Gazi University, 06100 Ankara (Turkey)

    2014-05-01

    Highlights: • The electronic parameters of the diode under temperature were investigated. • The barrier heights have a Gaussian distribution. • Au/n-GaAs diode exhibits a rectification behavior. - Abstract: We have investigated the temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 280–415 K. The barrier height for the Au/n-type GaAs SBDs from the I–V and C–V characteristics have varied from 0.901 eV to 0.963 eV (I–V) and 1.234 eV to 0.967 eV (C–V), and the ideality factor (n) from 1.45 to 1.69 in the temperature range 280–415 K. The conventional Richardson plots are found to be linear in the temperature range measured. Both the ln(I{sub 0}/T{sup 2}) versus (kT){sup −1} and ln(I{sub 0}/T{sup 2}) versus (nkT){sup −1} plots gives a straight line corresponding to activation energies 0.773 eV and 0.870 eV, respectively. A Φ{sub b0} versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of Φ{sup ¯}{sub b0} = 1.071 eV and σ{sub 0} = 0.094 V for the mean BH and zero-bias standard deviation have been obtained from this plot.

  14. The current–voltage and capacitance–voltage characteristics at high temperatures of Au Schottky contact to n-type GaAs

    International Nuclear Information System (INIS)

    Özerli, Halil; Karteri, İbrahim; Karataş, Şükrü; Altindal, Şemsettin

    2014-01-01

    Highlights: • The electronic parameters of the diode under temperature were investigated. • The barrier heights have a Gaussian distribution. • Au/n-GaAs diode exhibits a rectification behavior. - Abstract: We have investigated the temperature-dependent current–voltage (I–V) and capacitance–voltage (C–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) in the temperature range of 280–415 K. The barrier height for the Au/n-type GaAs SBDs from the I–V and C–V characteristics have varied from 0.901 eV to 0.963 eV (I–V) and 1.234 eV to 0.967 eV (C–V), and the ideality factor (n) from 1.45 to 1.69 in the temperature range 280–415 K. The conventional Richardson plots are found to be linear in the temperature range measured. Both the ln(I 0 /T 2 ) versus (kT) −1 and ln(I 0 /T 2 ) versus (nkT) −1 plots gives a straight line corresponding to activation energies 0.773 eV and 0.870 eV, respectively. A Φ b0 versus 1/T plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and values of Φ ¯ b0 = 1.071 eV and σ 0 = 0.094 V for the mean BH and zero-bias standard deviation have been obtained from this plot

  15. A comparative study of the electrical properties of Pd/ZnO Schottky contacts fabricated using electron beam deposition and resistive/thermal evaporation techniques

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F. D.; Janse van Rensburg, P. J.; Coelho, S. M. M.; Legodi, M. J.; Nel, J. M.; Meyer, W. E.; Chawanda, A.

    2011-01-01

    A systematic investigation to check the quality of Pd Schottky contacts deposited on ZnO has been performed on electron beam (e-beam) deposited and resistively/thermally evaporated samples using current-voltage, IV, and conventional deep level transient spectroscopy (DLTS) measurements. Room temperature IV measurements reveal the dominance of pure thermionic emission on the resistively evaporated contacts, while the e-beam deposited contacts show the dominance of generation recombination at low voltages, -10 A at a reverse voltage of 1.0 V whereas the e-beam deposited contacts have reverse currents of the order of 10 -6 A at 1.0 V. Average ideality factors have been determined as (1.43 ± 0.01) and (1.66 ± 0.02) for the resistively evaporated contacts and e-beam deposited contacts, respectively. The IV barrier heights have been calculated as (0.721 ± 0.002) eV and (0.624 ± 0.005) eV for the resistively evaporated and e-beam deposited contacts, respectively. Conventional DLTS measurements reveal the presence of three prominent defects in both the resistive and e-beam contacts. Two extra peaks with energy levels of 0.60 and 0.81 eV below the conduction band minimum have been observed in the e-beam deposited contacts. These have been explained as contributing to the generation recombination current that dominates at low voltages and high leakage currents. Based on the reverse current at 1.0 V, the degree of rectification, the dominant current transport mechanism and the observed defects, we conclude that the resistive evaporation technique yields better quality Schottky contacts for use in solar cells and ultraviolet detectors compared to the e-beam deposition technique. The 0.60 eV has been identified as possibly related to the unoccupied level for the doubly charged oxygen vacancy, V o 2+ .

  16. Pentacene-based photodiode with Schottky junction

    International Nuclear Information System (INIS)

    Lee, Jiyoul; Hwang, D.K.; Park, C.H.; Kim, S.S.; Im, Seongil

    2004-01-01

    We have fabricated a metal/organic semiconductor Schottky photodiode based on Al/pentacene junction. Since the energy band gap of thin solid pentacene was determined to be 1.82 eV, as characterized by direct absorption spectroscopy, we measured spectral photoresponses on our Schottky photodiode in the monochromatic light illumination range of 325-650 nm applying a reverse bias of -2 V. The main features of photo-response spectra were found to shift from those of direct absorption spectra toward higher photon energies. It is because the direct absorption spectra mainly show exciton level peaks rather than the true highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps while the photo-response spectra clearly represents the true HOMO-LUMO gap. Our photo-response spectra reveal 1.97 eV as the HOMO-LUMO gap

  17. From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure

    International Nuclear Information System (INIS)

    Fisichella, G.; Greco, G.; Roccaforte, F.; Giannazzo, F.

    2014-01-01

    The electrical behaviour of graphene (Gr) contacts to Al x Ga 1−x N/GaN heterostructures has been investigated, focusing, in particular, on the impact of the AlGaN microstructure on the current transport at Gr/AlGaN interface. Two Al 0.25 Ga 0.75 N/GaN heterostructures with very different quality in terms of surface roughness and defectivity, as evaluated by atomic force microscopy (AFM) and transmission electron microscopy, were compared in this study, i.e., a uniform and defect-free sample and a sample with a high density of typical V-defects, which locally cause a reduction of the AlGaN thickness. Nanoscale resolution current voltage (I-V) measurements by an Au coated conductive AFM tip were carried out at several positions both on the bare and Gr-coated AlGaN surfaces. Rectifying contacts were found onto both bare AlGaN surfaces, but with a more inhomogeneous and lower Schottky barrier height (Φ B  ≈ 0.6 eV) for AlGaN with V-defects, with respect to the case of the uniform AlGaN (Φ B  ≈ 0.9 eV). Instead, very different electrical behaviours were observed in the presence of the Gr interlayer between the Au tip and AlGaN, i.e., a Schottky contact with reduced barrier height (Φ B ≈ 0.4 eV) for the uniform AlGaN and an Ohmic contact for the AlGaN with V-defects. Interestingly, excellent lateral uniformity of the local I-V characteristics was found in both cases and can be ascribed to an averaging effect of the Gr electrode over the AlGaN interfacial inhomogeneities. Due to the locally reduced AlGaN layer thickness, V defect act as preferential current paths from Gr to the 2DEG and can account for the peculiar Ohmic behaviour of Gr contacts on defective AlGaN

  18. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  19. Organic modification of metal / semiconductor Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Pinzon, H.A.

    2006-07-10

    In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe-PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic-modified Ag / GaAs Schottky diodes. The device was tested by combining surface-sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current-voltage, capacitance-voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S-GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe-PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I-V measurements. This allows fitting of the I-V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I-V, C-V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe-PTCDI was assessed via C-V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C-V and impedance measurements in the range 1 kHz-1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the

  20. Transport spectroscopy and modeling of a clean MOS point contact tunnel barrier

    Science.gov (United States)

    Shirkhorshidian, Amir; Bishop, Nathaniel; Dominguez, Jason; Grubbs, Robert; Wendt, Joel; Lilly, Michael; Carroll, Malcolm

    2014-03-01

    We present transport spectroscopy of non-implanted and antimony-implanted tunnel barriers formed in MOS split-gate structures at 4K. The non-implanted barrier shows no signs of resonant behavior while the Sb-implanted barrier shows resonances superimposed on the clean transport. We simulate the transmission through the clean barrier over the entire gate and bias range of the experiment using a phenomenological 1D-tunneling model that includes Fowler-Nordheim tunneling and Schottky barrier lowering to capture effects at high bias. The model is qualitatively similar to experiment when the barrier height has a quadratic dependence in contrast to a linear one, which can be a sign of 2D effects such as confinement perpendicular to the transport direction. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE, Office of Basic Energy Sciences user facility. This work was supported by the Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Investigation of diode parameters using I-V and C-V characteristics of In/SiO{sub 2}/p-Si (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Yueksel, O.F. [Department of Physics, Faculty of Arts and Science, Selcuk University, Kampus, Konya 42075 (Turkey)], E-mail: fyuksel@selcuk.edu.tr; Selcuk, A.B.; Ocak, S.B. [PK, 14 Etlik, Ankara (Turkey)

    2008-08-01

    A study on interface states density distribution and characteristic parameters of the In/SiO{sub 2}/p-Si (MIS) capacitor has been made. The thickness of the SiO{sub 2} film obtained from the measurement of the corrected capacitance in the strong accumulation region for MIS Schottky diodes was 220 A. The diode parameters from the forward bias I-V characteristics such as ideality factor, series resistance and barrier heights were found to be 1.75, 106-112 {omega} and 0.592 eV, respectively. The energy distribution of the interface state density D{sub it} was determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density obtained using the I-V characteristics had an exponential growth, with bias towards the top of the valance band, from 9.44x10{sup 13} eV{sup -1} cm{sup -2} in 0.329-E{sub v} eV to 1.11x10{sup 13} eV{sup -1} cm{sup -2} in 0.527-E{sub v} eV at room temperature. Furthermore, the values of interface state density D{sub it} obtained by the Hill-Coleman method from the C-V characteristics range from 52.9x10{sup 13} to 1.11x10{sup 13} eV{sup -1} cm{sup -2} at a frequency range of 30kHz-1 MHz. These values of D{sub it} and R{sub s} were responsible for the non-ideal behaviour of I-V and C-V characteristics.

  2. On the junction physics of Schottky contact of (10, 10) MX{sub 2} (MoS{sub 2}, WS{sub 2}) nanotube and (10, 10) carbon nanotube (CNT): an atomistic study

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Amretashis [Hanse-Wissenschaftskolleg (HWK), Delmenhorst (Germany); Universitaet Bremen, Bremen Center for Computational Materials Science (BCCMS), Bremen (Germany)

    2017-04-15

    Armchair nanotubes of MoS{sub 2} and WS{sub 2} offer a sizeable band gap, with the advantage of a one dimensional (1D) electronic material, but free from edge roughness and thermodynamic instability of nanoribbons. Use of such semiconducting MX{sub 2} (MoS{sub 2}, WS{sub 2}) armchair nanotubes (NTs) in conjunction with metallic carbon nanotubes (CNT) can be useful for nanoelectronics and photonics applications. In this work, atomistic simulations of MoS{sub 2} NT-CNT and WS{sub 2} NT-CNT junctions are carried out to study the physics of such junctions. With density functional theory (DFT) we study the carrier density distribution, effective potential, electron difference density, electron localization function, electrostatic difference potential and projected local density of states of such MX{sub 2} NT-CNT 1D junctions. Thereafter the conductance of such a junction under moderate bias is studied with non-equilibrium Green's function (NEGF) method. From the forward bias characteristics simulated from NEGF, we extract diode parameters of the junction. The electrostatic simulations from DFT show the formation of an inhomogeneous Schottky barrier with a tendency towards charge transfer from metal and chalcogen atoms towards the C atoms. For low bias conditions, the ideality factor was calculated to be 1.1322 for MoS{sub 2} NT-CNT junction and 1.2526 for the WS{sub 2} NT-CNT junction. The Schottky barrier heights displayed significant bias dependent modulation and are calculated to be in the range 0.697-0.664 eV for MoS{sub 2} NT-CNT and 0.669-0.610 eV for the WS{sub 2} NT-CNT, respectively. (orig.)

  3. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  4. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  5. Schottky-contact plasmonic dipole rectenna concept for biosensing.

    Science.gov (United States)

    Alavirad, Mohammad; Mousavi, Saba Siadat; Roy, Langis; Berini, Pierre

    2013-02-25

    Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating "hot" carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of -12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

  6. Detection of alpha particles using DNA/Al Schottky junctions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ta' ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001 (Iraq); Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my [Low Dimensional Materials Research Centre (LDMRC), 50603 Kuala Lumpur (Malaysia); Amin, Yusoff Mohd [Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barrier height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.

  7. A new type photodiode: p-Si/GaN pn junction in series with GaN/Ag Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Yakuphanoglu, F., E-mail: fyhanoglu@firat.edu.tr [Department of Physics, Faculty of Science, Firat University, Elazig (Turkey); Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Shokr, F.S. [Physics Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh (Saudi Arabia); Gupta, R.K., E-mail: ramguptamsu@gmail.com [Department of Chemistry and Kansas Polymer Research Center, Pittsburg State University, Pittsburg (United States); Al-Ghamdi, Ahmed A. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Al-Turki, Yusuf [Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah (Saudi Arabia); El-Tantawy, Farid [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt)

    2015-11-25

    Large quantities of gallium nitride (GaN) nanoparticles were successfully synthesized via a facile sol-gel approach. X-ray diffraction analysis confirms the polycrystalline nature of the GaN with hexagonal wurtzite structure and lattice constants a = 0.3189 nm and c = 0.5185 nm. The morphology of the GaN film was investigated by field emission scanning electron microscopy. The obtained results indicate that the synthesized GaN nanorods have an average length of around 60 nm and an average diameter of 23 nm. The optical band gap of the GaN film was obtained to be 3.4 eV. The gallium nitride/p-Si Schottky diode was fabricated by thermal evaporation technique on p-silicon. The current–voltage (I–V) characteristics of the fabricated diode was tested under dark and various light intensities. T The diode ideality factor and barrier height were computed using forward bias I–V characteristics of the diode and are found to be 1.66 and 0.53 eV, respectively. The obtained results suggest that the film preparation by sol gel method is fast and simple to prepare GaN based photodiode by according to metal organic deposition methods. - Highlights: • Facile method was used to synthesize GaN powder. • The Al/p-Si/GaN/Ag diode was fabricated using thermal evaporator technique. • Al/p-Si/GaN/Ag diode can be used as a photosensor for optoelectronic applications.

  8. Noncollinear Spin States for Density Functional Calculations of Open-Shell and Multi-Configurational Systems: Dissociation of MnO and NiO and Barrier Heights of O3, BeH2, and H4.

    Science.gov (United States)

    Luo, Sijie; Truhlar, Donald G

    2013-12-10

    When the spins of molecular orbitals are allowed to be aligned with different directions in space rather than being aligned collinearly, the resulting noncollinear spin orbitals add extra flexibility to variational optimization of the orbitals, and solutions obtained with collinear spin orbitals may be unstable with respect to becoming noncollinear in the expanded variational space. The goal of the present work is to explore whether and in what way the molecular orbitals of the Kohn-Sham density functional theory become noncollinear when fully optimized for multi-reference molecules, transition states, and reaction paths. (We note that a noncollinear determinant has intermediate flexibility between a collinear determinant and a linear combination of many collinear determinants with completely independent coefficients. However, the Kohn-Sham method is defined to involve the variational optimization of a single determinant, and a noncollinear determinant represents the limit of complete optimization in the Kohn-Sham scheme.) We compare the results obtained with the noncollinear Kohn-Sham (NKS) scheme to those obtained with the widely used unrestricted Kohn-Sham (UKS) scheme for two types of multi-reference systems. For the dissociation of the MnO and NiO transition metal oxides, we find UKS fails to dissociate to the ground states of neutral atoms, while NKS dissociates to the correct limit and predicts potential energy curves that vary smoothly at intermediate bond lengths. This is due to the instability of UKS solutions at large bond distances. For barrier heights of O3, BeH2, and H4, NKS is shown to stabilize the multi-reference transition states by expanding the variational space. Although the errors vary because they are closely coupled with the capability of the employed exchange-correlation functionals in treating the multi-configurational states, these findings demonstrate that results with collinear spin orbitals should be further scrutinized, and future

  9. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga{sub 2}O{sub 3} solar-blind ultraviolet photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, D. Y.; Wu, Z. P.; An, Y. H.; Guo, X. C.; Chu, X. L.; Sun, C. L.; Tang, W. H., E-mail: whtang@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Li, L. H. [Physics Department, The State University of New York at Potsdam, Potsdam, New York 13676-2294 (United States); Li, P. G., E-mail: pgli@zstu.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang (China)

    2014-07-14

    β-Ga{sub 2}O{sub 3} epitaxial thin films were deposited using laser molecular beam epitaxy technique and oxygen atmosphere in situ annealed in order to reduce the oxygen vacancy. Metal/semiconductor/metal structured photodetectors were fabricated using as-grown film and annealed film separately. Au/Ti electrodes were Ohmic contact with the as-grown films and Schottky contact with the annealed films. In compare with the Ohmic-type photodetector, the Schottky-type photodetector takes on lower dark current, higher photoresponse, and shorter switching time, which benefit from Schottky barrier controlling electron transport and the quantity of photogenerated carriers trapped by oxygen vacancy significant decreasing.

  10. Interface feature characterization and Schottky interfacial layer confirmation of TiO{sub 2} nanotube array film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongchao [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China); Chongyi Zhangyuan Tungsten Industry Corporation Limited, 341300 Ganzhou (China); Tang, Ningxin; Yang, Hongzhi; Leng, Xian [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China); Zou, Jianpeng, E-mail: zoujp@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China)

    2015-11-15

    Highlights: • Interfacial fusion of TiO{sub 2} nanotube film increases with annealing temperature. • Interface bonding force of the film increases with annealing temperature. • We report the forth stage of nanofibers formation in the growing mechanism. • TiO{sub 2} nanotubes grow from Schottky interface layer rather than from Ti substrate. • Schottky interface layer's thickness of 35–45 nm is half the diameter of nanotube. - Abstract: We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO{sub 2}) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO{sub 2} nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO{sub 2} nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO{sub 2} nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35–45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO{sub 2} nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  11. Fear of heights and visual height intolerance.

    Science.gov (United States)

    Brandt, Thomas; Huppert, Doreen

    2014-02-01

    The aim of this review is, first, to cover the different aspects of visual height intolerance such as historical descriptions, definition of terms, phenomenology of the condition, neurophysiological control of gaze, stance and locomotion, and therapy, and, second, to identify warranted epidemiological and experimental studies. Vivid descriptions of fear of heights can be found in ancient texts from the Greek, Roman, and Chinese classics. The life-time prevalence of visual height intolerance is as high as 28% in the general population, and about 50% of those who are susceptible report an impact on quality of life. When exposed to heights, visual exploration by eye and head movements is restricted, and the velocity of locomotion is reduced. Therapy for fear of heights is dominated by the behavioral techniques applied during real or virtual reality exposure. Their efficacy might be facilitated by the administration of D-cycloserine or glucocorticoids. Visual height intolerance has a considerable impact on daily life and interpersonal interactions. It is much more frequent than fear of heights, which is defined as an environmental subtype of a specific phobia. There is certainly a continuum stretching from acrophobia to a less-pronounced visual height intolerance, to which the categorical distinction of a specific phobia does not apply.

  12. GaAs detectors with an ultra-thin Schottky contact for spectrometry of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Chernykh, S.V., E-mail: chsv_84@mail.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Chernykh, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Didenko, S.I.; Baryshnikov, F.M. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Burtebayev, N. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan); Britvich, G.I. [Institute of High Energy Physics, Protvino, Moscow region (Russian Federation); Chubenko, A.P. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Guly, V.G.; Glybin, Yu.N. [LLC “SNIIP Plus”, Moscow (Russian Federation); Zholdybayev, T.K.; Burtebayeva, J.T.; Nassurlla, M. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-02-11

    For the first time, samples of particle detectors based on high-purity GaAs epilayers with an active area of 25 and 80 mm{sup 2} and an ultra-thin Pt Schottky barrier were fabricated for use in the spectrometry of charged particles and their operating characteristics were studied. The obtained FWHM of 14.2 (for 25 mm{sup 2} detector) and 15.5 keV (for 80 mm{sup 2} detector) on the 5.499 MeV line of {sup 238}Pu is at the level of silicon spectrometric detectors. It was found that the main component that determines the energy resolution of the detector is a fluctuation in the number of collected electron–hole pairs. This allows us to state that the obtained energy resolution is close to the limit for VPE GaAs. - Highlights: • VPE GaAs particle detectors with an active area of 25 and 80 mm{sup 2} were fabricated. • 120 Å ultra-thin Pt Schottky barrier was used as a rectifying contact. • The obtained FWHM of 14.2 keV ({sup 238}Pu) is at the level of Si spectrometric detectors. • Various components of the total energy resolution were analyzed. • It was shown that obtained energy resolution is close to its limit for VPE GaAs.

  13. Schottky-contact plasmonic rectenna for biosensing

    Science.gov (United States)

    Alavirad, Mohammad; Siadat Mousavi, Saba; Roy, Langis; Berini, Pierre

    2013-10-01

    We propose a plasmonic gold nanodipole array on silicon, forming a Schottky contact thereon, and covered by water. The behavior of this array under normal excitation has been extensively investigated. Trends have been found and confirmed by identification of the mode propagating in nanodipoles and its properties. This device can be used to detect infrared radiation below the bandgap energy of the substrate via internal photoelectric effect (IPE). Also we estimate its responsivity and detection limit. Finally, we assess the potential of the structure for bulk and surface (bio) chemical sensing. Based on modal results an analytical model has been proposed to estimate the sensitivity of the device. Results show a good agreement between numerical and analytical interpretations.

  14. Floating barrier

    Energy Technology Data Exchange (ETDEWEB)

    1968-05-06

    This floating barrier consists of relatively long elements which can be connected to form a practically continuous assembly. Each element consists of an inflatable tube with an apron of certain height, made of impregnated fabric which is resistant to ocean water and also to hydrocarbons. Means for connecting one element to the following one, and means for attaching ballast to the apron are also provided.

  15. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  16. Durability of PEDOT: PSS-pentacene Schottky diode

    International Nuclear Information System (INIS)

    Kang, K S; Lim, H K; Cho, K Y; Han, K J; Kim, Jaehwan

    2008-01-01

    The durability and failure cause of a polymer Schottky diode made with PEDOT : PSS-pentacene were investigated. A polymer Schottky diode was fabricated by dissolving pentacene in N-methylpyrrolidone (NMP) and mixing with PEDOT : PSS. Pentacene solution having a maximum concentration of approximately 9.7 mmoles was prepared by simply stirring the solution at room temperature for 36 h. As the pentacene concentration increased, the absorption of the broad UV regime increased dramatically. However, absorption peaks of pentacene at 301 and 260 nm were not observed for the PEDOT : PSS-pentacene. A three-layered polymer Schottky diode was fabricated and its current-voltage (I-V) characteristic was evaluated. The current was reduced by 7% in the first 50 min and then stabilized during biased electrical field sweeps. After 500 and 800 min, catastrophic failure occurred. FESEM images revealed that the electrode damage caused catastrophic failure of the Schottky diode. (fast track communication)

  17. An antithetic variate to facilitate upper-stem height measurements for critical height sampling with importance sampling

    Science.gov (United States)

    Thomas B. Lynch; Jeffrey H. Gove

    2013-01-01

    Critical height sampling (CHS) estimates cubic volume per unit area by multiplying the sum of critical heights measured on trees tallied in a horizontal point sample (HPS) by the HPS basal area factor. One of the barriers to practical application of CHS is the fact that trees near the field location of the point-sampling sample point have critical heights that occur...

  18. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  19. Fall from heights: does height really matter?

    Science.gov (United States)

    Alizo, G; Sciarretta, J D; Gibson, S; Muertos, K; Romano, A; Davis, J; Pepe, A

    2018-06-01

    Fall from heights is high energy injuries and constitutes a fraction of all fall-related trauma evaluations while bearing an increase in morbidity and mortality. We hypothesize that despite advancements in trauma care, the overall survivability has not improved in this subset of trauma patients. All adult trauma patients treated after sustaining a fall from heights during a 40-month period were retrospectively reviewed. Admission demographics, clinical data, fall height (ft), injury patterns, ISS, GCS, length of stay, and mortality were reviewed. 116 patients sustained a fall from heights, 90.4% accidental. A mean age of 37± 14.7 years, 86% male, and a fall height of 19 ± 10 ft were encountered. Admission GCS was 13 ± 2 with ISS 10 ± 11. Overall LOS was 6.6 ± 14.9 days and an ICU LOS of 2.8 ± 8.9 days. Falls ≥ 25 ft.(16%) had lower GCS 10.4 ± 5.8, increased ISS 22.6 ± 13.8, a fall height 37.9 ± 13.1 ft and associated increased mortality (p < 0.001). Mortality was 5.2%, a mean distance fallen of 39 ± 22 ft. and an ISS of 31.5 ±16.5. Brain injury was the leading cause of death, 50% with open skull fractures. Level of height fallen is a good predictor of overall outcome and survival. Despite advances in trauma care, death rates remain unchanged. Safety awareness and injury prevention programs are needed to reduce the risk of high-level falls.

  20. Transport mechanisms in Schottky diodes realized on GaN

    Science.gov (United States)

    Amor, Sarrah; Ahaitouf, Ali; Ahaitouf, Abdelaziz; Salvestrini, Jean Paul; Ougazzaden, Abdellah

    2017-03-01

    This work is focused on the conducted transport mechanisms involved on devices based in gallium nitride GaN and its alloys. With considering all conduction mechanisms of current, its possible to understanded these transport phenomena. Thanks to this methodology the current-voltage characteristics of structures with unusual behaviour are further understood and explain. Actually, the barrier height (SBH) is a complex problem since it depends on several parameters like the quality of the metal-semiconductor interface. This study is particularly interesting as solar cells are made on this material and their qualification is closely linked to their transport properties.

  1. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  2. Modeling and fabrication of 4H-SiC Schottky junction

    Science.gov (United States)

    Martychowiec, A.; Pedryc, A.; Kociubiński, A.

    2017-08-01

    The rapidly growing demand for electronic devices requires using of alternative semiconductor materials, which could replace conventional silicon. Silicon carbide has been proposed for these harsh environment applications (high temperature, high voltage, high power conditions) because of its wide bandgap, its high temperature operation ability, its excellent thermal and chemical stability, and its high breakdown electric field strength. The Schottky barrier diode (SBD) is known as one of the best refined SiC devices. This paper presents prepared model, simulations and description of technology of 4H-SiC Schottky junction as well as characterization of fabricated structures. The future aim of the application of the structures is an optical detection of an ultraviolet radiation. The model section contains a comparison of two different solutions of SBD's construction. Simulations - as a crucial process of designing electronic devices - have been performed using the ATLAS device of Silvaco TCAD software. As a final result the paper shows I-V characteristics of fabricated diodes.

  3. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection

    KAUST Repository

    Shaikh, Parvez Abdul Ajij; Shi, Dong; Duran Retamal, Jose Ramon; Sheikh, Arif D.; Haque, Mohammed; Kang, Chen-Fang; He, Jr-Hau; Bakr, Osman; Wu, Tao

    2016-01-01

    Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single

  4. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  5. MD 2408: Study of Schottky Monitors for Q' Measurement at Injection

    CERN Document Server

    Tydecks, Tobias; Levens, Tom; Wendt, Manfred; Wenninger, Jorg; CERN. Geneva. ATS Department

    2018-01-01

    The Schottky monitors installed at the LHC enable the detection of Schottky noise of the two circulating proton / ion beams. From Schottky noise, beam parameters like tune, chromaticity, and relative emittance, can be extracted in a non-destructive and purely parasitic method of measurement. The primary goal of this MD was to study the Schottky monitors capability to reliably and accurately determine the beam chromaticities at injection energy. Furthermore, the possibility to track the beam emittance has been investigated.

  6. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  7. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  8. Mott-Schottky analysis of thin ZnO films

    International Nuclear Information System (INIS)

    Windisch, Charles F. Jr.; Exarhos, Gregory J.

    2000-01-01

    Thin ZnO films, both native and doped with secondary metal ions, have been prepared by sputter deposition and also by casting from solutions containing a range of precursor salts. The conductivity and infrared reflectivity of these films are subsequently enhanced chemically following treatment in H 2 gas at 400 degree sign C or by cathodic electrochemical treatment in a neutral (pH=7) phosphate buffer solution. While Hall-type measurements usually are used to evaluate the electrical properties of such films, the present study investigated whether a conventional Mott-Schottky analysis could be used to monitor the change in concentration of free carriers in these films before and after chemical and electrochemical reduction. The Mott-Schottky approach would be particularly appropriate for electrochemically modified films since the measurements could be made in the same electrolyte used for the post-deposition electrochemical processing. Results of studies on sputtered pure ZnO films in ferricyanide solution were promising. Mott-Schottky plots were linear and gave free carrier concentrations typical for undoped semiconductors. Film thicknesses estimated from the Mott-Schottky data were also reasonably close to thicknesses calculated from reflectance measurements. Studies on solution-deposited films were less successful. Mott-Schottky plots were nonlinear, apparently due to film porosity. A combination of dc polarization and atomic force microscopy measurements confirmed this conclusion. The results suggest that Mott-Schottky analysis would be suitable for characterizing solution-deposited ZnO films only after extensive modeling was performed to incorporate the effects of film porosity on the characteristics of the space-charge region of the semiconductor. (c) 2000 American Vacuum Society

  9. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van; Nyamhere, C.

    2012-01-01

    Highlights: ► Highly rectifying Pd/ZnO contacts have been fabricated. ► The rectification behaviour decrease with annealing temperature. ► The surface donor concentration increases with increase in annealing temperature. ► The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current–voltage (IV) and capacitance–voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at −1.5 V. An average barrier height of (0.77 ± 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 ± 0.03) eV after annealing at 550 °C. The reverse current has been measured as (2.10 ± 0.01) × 10 −10 A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 °C to (1.56 ± 0.01) × 10 −5 A. The depletion layer width measured at −2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 μm after annealing at 200 °C to 0.24 μm after annealing at 500 °C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 × 10 15 cm −3 at 200 °C to 6.06 × 10 16 cm −3 after annealing at 550 °C. This increase in the volume concentration has been explained as an effect of a conductive channel that shifts closer to the surface after sample annealing. The series resistance has been observed to decrease with increase in annealing temperature. The Pd contacts have shown high stability up to an annealing temperature of 250 °C as revealed by the IV

  10. Thermal annealing behaviour of Pd Schottky contacts on melt-grown single crystal ZnO studied by IV and CV measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Auret, F.D.; Chawanda, A.; Janse van Rensburg, P.J.; Coelho, S.M.M.; Nel, J.M.; Diale, M.; Schalkwyk, L. van [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Nyamhere, C. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Highly rectifying Pd/ZnO contacts have been fabricated. Black-Right-Pointing-Pointer The rectification behaviour decrease with annealing temperature. Black-Right-Pointing-Pointer The surface donor concentration increases with increase in annealing temperature. Black-Right-Pointing-Pointer The depletion layer width at a specific reverse voltage decreases with increase in annealing temperature. - Abstract: Current-voltage (IV) and capacitance-voltage (CV) measurement techniques have successfully been employed to study the effects of annealing highly rectifying Pd/ZnO Schottky contacts. IV results reveal a decrease in the contact quality with increasing annealing temperature as confirmed by a decrease in the zero bias barrier height and an increase in the reverse current measured at -1.5 V. An average barrier height of (0.77 {+-} 0.02) eV has been calculated by assuming pure thermionic emission for the as-deposited material and as (0.56 {+-} 0.03) eV after annealing at 550 Degree-Sign C. The reverse current has been measured as (2.10 {+-} 0.01) Multiplication-Sign 10{sup -10} A for the as-deposited and increases by 5 orders of magnitude after annealing at 550 Degree-Sign C to (1.56 {+-} 0.01) Multiplication-Sign 10{sup -5} A. The depletion layer width measured at -2.0 V has shown a strong dependence on thermal annealing as it decreases from 1.09 {mu}m after annealing at 200 Degree-Sign C to 0.24 {mu}m after annealing at 500 Degree-Sign C, resulting in the modification of the dopant concentration within the depletion region and hence the current flowing through the interface from pure thermionic emission to thermionic field emission with the donor concentrations increasing from 6.90 Multiplication-Sign 10{sup 15} cm{sup -3} at 200 Degree-Sign C to 6.06 Multiplication-Sign 10{sup 16} cm{sup -3} after annealing at 550 Degree-Sign C. This increase in the volume concentration has been explained as an effect of a conductive channel

  11. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  12. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers

    International Nuclear Information System (INIS)

    Schlenker, E.; Mertens, V.; Parisi, J.; Reineke-Koch, R.; Koentges, M.

    2007-01-01

    Current-voltage and capacitance-voltage measurements serve to analyze thermally evaporated Al Schottky contacts on Cu(In, Ga)Se 2 based photovoltaic thin film devices, either taken as grown or etched in a bromine-methanol solution. The characteristics of the Schottky contacts on the as-grown films give evidence for some dielectric layer developing between the metal and the semiconductor. Etching the semiconductor surface prior to evaporation of the Al front contact yields a pure metal-semiconductor behavior, including effects that can be attributed to an additional diode at the Mo contact. Simulations confirm the experimental results

  13. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission

    Directory of Open Access Journals (Sweden)

    Uriel Levy

    2017-02-01

    Full Text Available Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene ( ∼ π α = 2.3 % . Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.

  14. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    Science.gov (United States)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  15. Performance enhancement of polymer Schottky diode by doping pentacene

    International Nuclear Information System (INIS)

    Kang, K.S.; Chen, Y.; Lim, H.K.; Cho, K.Y.; Han, K.J.; Kim, Jaehwan

    2009-01-01

    Schottky diodes have been fabricated using pentacene-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as a semiconducting material. To understand the fundamental properties of the pentacene-doped PEDOT:PSS, ultraviolet visible (UV) absorption spectroscopy was employed. It was found that a significant amount of pentacene can dissolve in n-methylpyrrolidone solvent. No characteristic absorption peak of pentacene was observed in the UV-visible spectra of PEDOT:PSS films doped with pentacene,. However, the absorption intensity of the doped PEDOT:PSS films increased as the pentacene concentration increased in particular in the UV region. The atomic force microscope images show that the surface roughnesses of PEDOT:PSS films increased as the pentacene concentration increased. Three-layer Schottky diodes comprising Al/PEDOT:PSS/Au or Al/PEDOT:PSS-pentacene/Au were fabricated. The maximum forward currents of non-doped and doped Schottky diodes were 4.8 and 440 μA/cm 2 at 3.3 MV/m, respectively. The forward current increased nearly two orders of magnitude for Schottky diode doped with 11.0 wt.% of pentacene.

  16. Particle detectors based on InP Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2012-01-01

    Roč. 10, č. 7 (2012), C100051-C100055 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) OC10021; GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Particle detector * High purity InP layer * Schottky diode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  17. Lucas Heights technology park

    International Nuclear Information System (INIS)

    1987-01-01

    The proposed Lucas Heights Technology Park will pound together the applied research programs of Government, tertiary and industry sectors, aiming to foster technology transfer particularly to the high-technology manufacturing industry. A description of the site is given along with an outline of the envisaged development, existing facilities and expertise. ills

  18. Monte Carlo modelling of Schottky diode for rectenna simulation

    Science.gov (United States)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  19. Examinations of Selected Thermal Properties of Packages of SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    Bisewski Damian

    2016-09-01

    Full Text Available This paper describes the study of thermal properties of packages of silicon carbide Schottky diodes. In the paper the packaging process of Schottky diodes, the measuring method of thermal parameters, as well as the results of measurements are presented. The measured waveforms of transient thermal impedance of the examined diodes are compared with the waveforms of this parameter measured for commercially available Schottky diodes.

  20. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr [Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772 (Korea, Republic of); Park, Hyeong-Ho [Applied Device and Material Lab., Device Technology Division, Korea Advanced Nano Fab Center (KANC), Suwon 443270 (Korea, Republic of)

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  1. Successful observation of Schottky signals at the Tevatron collider

    International Nuclear Information System (INIS)

    Goldberg, D.A.; Lambertson, G.R.

    1989-08-01

    We have constructed a Schottky detector for the Tevatron collider in the form of a high-Q (∼5000) cavity which operates at roughly 2 GHz, well above the frequency at which the Tevatron's single-bunch frequency spectrum begins to roll off. Initial spectra obtained from the detector show clearly observable Schottky betatron lines, free of coherent contaminants; also seen are the ''common-mode'' longitudinal signals due to the offset of the beam from the detector center. The latter signals indicate that at 2 GHz, the coherent single-bunch spectrum from the detector is reduced by >80 dB; therefore, in normal collider operation, the Schottky betatron lines are >40 dB greater than their coherent counterparts. We describe how the data we have obtained give information on transverse and longitudinal emittances, synchrotron frequency, and betatron tunes, as well as reveal what may be previously unobserved phenomena. Space limitations restrict us to presenting only as much data as should be necessary to convince even the skeptical reader of the validity of the claim made in the paper's title. 3 refs., 2 figs

  2. Charge conduction process and photovoltaic effects in thiazole yellow (TY) thin film based Schottky devices

    Energy Technology Data Exchange (ETDEWEB)

    Roy, M.S. [Defence Lab., Jodhpur (India). Camouflage Div.; Sharma, G.D.; Gupta, S.K. [Department of Physics, J.N.V. University, Jodhpur (Raj.) (India)

    1997-11-21

    The charge generation and photovoltaic effects observed with thin films of TY in the form of sandwich structures, were analysed by J-V, C-V and photoaction spectra. These measurements were explained in terms of n-type semiconductivity of TY thin film and by the formation of a Schottky barrier with ITO while Ohmic contact with an Al or In electrode. The existence of thermionic emission over the ITO-TY barrier has been observed in low voltage region, whereas at high voltages, the process is dominant by the series resistance of TY layer. Various electrical parameters were calculated from the analysis of J-V and C-V characteristics of the devices and discussed in details. The diode quality factor is higher for Al/TY/ITO than In/TY/ITO device which can be attributed to the formation of thin layer of Al{sub 2}O{sub 3} between Al and TY. The photoaction spectra of the devices reveal that the fraction of light which is absorbed near the ITO-TY interface, to the depth of 180 A, is responsible for producing the charge carriers. The photovoltaic parameters were also calculated from the J-V characteristics of the devices, under illumination and described in detail. (orig.) 21 refs.

  3. Structural, microstructural, and electrical properties of gold films and Schottky contacts on remote plasma-cleaned, n-type ZnO{0001} surfaces

    International Nuclear Information System (INIS)

    Coppa, B.J.; Fulton, C.C.; Kiesel, S.M.; Davis, R.F.; Pandarinath, C.; Burnette, J.E.; Nemanich, R.J.; Smith, D.J.

    2005-01-01

    leakage current density of ∼1.0x10 -4 A/cm 2 (∼91x10 -9 A/cm 2 ) at 8.5 (7.0) V reverse bias prior to sharp, permanent breakdown (soft breakdown). All measured barrier heights were lower than the predicted Schottky-Mott value of 1.0 eV, indicating that the interface structure and the associated interface states affect the Schottky barrier. However, the constancy in the full width at half maximum of the core levels for Zn 2p (1.9±0.1 eV) and O 1s (1.5±0.1 eV), before and after sequential in situ Au depositions, indicated an abrupt, unreacted Au/ZnO(0001) interface. Transmission electron microscopy confirmed the abruptness of an epitaxial interface. Annealing the contacts on the (0001) surface to 80±5 and 150±5 deg. C resulted in decreases in the ideality factors to 1.12±0.05 and 1.09±0.05 and increases in saturation current density to 9.05 and 4.34 μA/cm 2 , the barrier height to 0.82±0.5 and 0.79±0.5 eV, and in the leakage current densities to ∼2x10 -3 A/cm 2 at 6 V and ∼20x10 -3 A/cm 2 at 7 V, respectively

  4. APTCARE - Lucas Heights

    International Nuclear Information System (INIS)

    1986-05-01

    This plan details command co-ordination and support responses of Commonwealth and State Authorities in the event of an accident with offsite consequences at the Lucas Heights Research Laboratories. The plan has been prepared by the AAEC Local Liaison Working Party, comprising representatives of the Australian Atomic Energy Commission, NSW Police Department, NSW Board of Fire Commissioners, NSW State Emergency Services and Civil Defence Organisation, NSW Department of Health, NSW Department of Environment and Planning and Sutherland Shire Council

  5. Childhood height, adult height, and the risk of prostate cancer

    DEFF Research Database (Denmark)

    Bjerregaard, Lise Geisler; Aarestrup, Julie; Gamborg, Michael

    2016-01-01

    PURPOSE: We previously showed that childhood height is positively associated with prostate cancer risk. It is, however, unknown whether childhood height exerts its effects independently of or through adult height. We investigated whether and to what extent childhood height has a direct effect...... on the risk of prostate cancer apart from adult height. METHODS: We included 5,871 men with height measured at ages 7 and 13 years in the Copenhagen School Health Records Register who also had adult (50-65 years) height measured in the Danish Diet, Cancer and Health study. Prostate cancer status was obtained...... through linkage to the Danish Cancer Registry. Direct and total effects of childhood height on prostate cancer risk were estimated from Cox regressions. RESULTS: From 1996 to 2012, 429 prostate cancers occurred. Child and adult heights were positively and significantly associated with prostate cancer risk...

  6. Accuracy of recumbent height measurement.

    Science.gov (United States)

    Gray, D S; Crider, J B; Kelley, C; Dickinson, L C

    1985-01-01

    Since many patients requiring specialized nutritional support are bedridden, measurement of height for purposes of nutritional assessment or prescription must often be done with the patient in bed. This study examined the accuracy of measuring body height in bed in the supine position. Two measurements were performed on 108 ambulatory inpatients: (1) standing height using a standard height-weight scale, and (2) bed height using a flexible tape. Patients were divided into four groups based on which of two researchers performed each of the two measurements. Each patient was also weighed and self-reported height, weight, sex, and age were recorded. Bed height was significantly longer than standing height by 3.68 cm, but the two measurements were equally precise. It was believed, however, that this 2% difference was probably not clinically significant in most circumstances. Bed height correlated highly with standing height (r = 0.95), and the regression equation was standing height = 13.82 +/- 0.09 bed height. Patients overestimated their heights. Heights recorded by nurses were more accurate when patients were measured than when asked about their heights, but the patients were more often asked than measured.

  7. Few-Layer WSe2 Schottky Junction-Based Photovoltaic Devices through Site-Selective Dual Doping.

    Science.gov (United States)

    Ko, Seungpil; Na, Junhong; Moon, Young-Sun; Zschieschang, Ute; Acharya, Rachana; Klauk, Hagen; Kim, Gyu-Tae; Burghard, Marko; Kern, Klaus

    2017-12-13

    Ultrathin sheets of two-dimensional (2D) materials like transition metal dichalcogenides have attracted strong attention as components of high-performance light-harvesting devices. Here, we report the implementation of Schottky junction-based photovoltaic devices through site-selective surface doping of few-layer WSe 2 in lateral contact configuration. Specifically, whereas the drain region is covered by a strong molecular p-type dopant (NDP-9) to achieve an Ohmic contact, the source region is coated with an Al 2 O 3 layer, which causes local n-type doping and correspondingly an increase of the Schottky barrier at the contact. By scanning photocurrent microscopy using green laser light, it could be confirmed that photocurent generation is restricted to the region around the source contact. The local photoinduced charge separation is associated with a photoresponsivity of up to 20 mA W -1 and an external quantum efficiency of up to 1.3%. The demonstrated device concept should be easily transferrable to other van der Waals 2D materials.

  8. Deep-level transient spectroscopy on an amorphous InGaZnO{sub 4} Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chasin, Adrian, E-mail: adrian.chasin@imec.be; Bhoolokam, Ajay; Nag, Manoj; Genoe, Jan; Heremans, Paul [imec, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium); Simoen, Eddy [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Gielen, Georges [ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium)

    2014-02-24

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier electrode and with a molybdenum (Mo) Ohmic contact at the top. The DLTS technique allows to independently measure the energy and spatial distribution of subgap states in the IGZO thin film. The subgap trap concentration has a double exponential distribution as a function energy, with a value of ∼10{sup 19} cm{sup −3} eV{sup −1} at the conduction band edge and a value of ∼10{sup 17} cm{sup −3} eV{sup −1} at an energy of 0.55 eV below the conduction band. Such spectral distribution, however, is not uniform through the semiconductor film. The spatial distribution of subgap states correlates well with the background doping density distribution in the semiconductor, which increases towards the Ohmic Mo contact, suggesting that these two properties share the same physical origin.

  9. Structural Consequences of Hydrogen Intercalation of Epitaxial Graphene on SiC(0001)

    Science.gov (United States)

    2014-10-23

    in barrier height at the graphene –silicon carbide Schottky junction,” Nat. Commun. 4, 2752 (2013). 31H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K...displacement. The shift of the Dirac point defines the Schottky barrier height and will determine the practicality of employing the wide-bandgap...are thought to critically influence technologi- cally relevant properties such as Dirac point shift and Schottky barrier height . Furthermore, this

  10. Memory for target height is scaled to observer height.

    Science.gov (United States)

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2012-04-01

    According to the embodied approach to visual perception, individuals scale the environment to their bodies. This approach highlights the central role of the body for immediate, situated action. The present experiments addressed whether body scaling--specifically, eye-height scaling--occurs in memory when action is not immediate. Participants viewed standard targets that were either the same height as, taller than, or shorter than themselves. Participants then viewed a comparison target and judged whether the comparison was taller or shorter than the standard target. Participants were most accurate when the standard target height matched their own heights, taking into account postural changes. Participants were biased to underestimate standard target height, in general, and to push standard target height away from their own heights. These results are consistent with the literature on eye-height scaling in visual perception and suggest that body scaling is not only a useful metric for perception and action, but is also preserved in memory.

  11. Concordant preferences for actual height and facial cues to height

    OpenAIRE

    Re, Daniel Edward; Perrett, David I.

    2012-01-01

    Physical height has a well-documented effect on human mate preferences. In general, both sexes prefer opposite-sex romantic relationships in which the man is taller than the woman, while individual preferences for height are affected by a person’s own height. Research in human mate choice has demonstrated that attraction to facial characteristics, such as facial adiposity, may reflect references for body characteristics. Here, we tested preferences for facial cues to height. In general, incre...

  12. Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods

    Directory of Open Access Journals (Sweden)

    Abedin Nematpour

    2018-03-01

    Full Text Available Herein, the design and simulation of graphene/InP thin film solar cells with a novel periodic array of nanorods and plasmonic back-reflectors of the nano-semi sphere was proposed. In this structure, a single-layer of the graphene sheet was placed on the vertical nanorods of InP to form a Schottky junction. The electromagnetic field was determined using solving three-dimensional Maxwell's equations discretized by the finite difference method (FDM. The enhancement of light trapping in the absorbing layer was illustrated, thereby increasing the short circuit current to a maximum value of 31.57 mA/cm2 with nanorods having a radius of 400 nm, height of 1250 nm, and nano-semi sphere radius of 50 nm, under a solar irradiation of AM1.5G. The maximum ultimate efficiency was determined to be 45.8% for an angle of incidence of 60°. This structure has shown a very good light trapping ability when graphene and ITO layers were used at the top and as a back-reflector in the proposed photonic crystal structure of the InP nanorods. Thence, this structure improves the short-circuit current density and the ultimate efficiency of 12% and 2.7%, respectively, in comparison with the InP-nanowire solar cells.

  13. Effects of electron-irradiation on electrical properties of AgCa/Si Schottky diodes

    International Nuclear Information System (INIS)

    Harmatha, L.; Zizka, M.; Sagatova, A.; Nemec, M.; Hybler, P.

    2013-01-01

    This contribution presents the results of the current-voltage I-V and the capacitance-voltage C-V measurement on the Schottky diodes with the AgCa gate on the silicon n-type substrate. The Si substrate was irradiated by 5 MeV electrons with a different dose value before the Schottky diode preparation. (authors)

  14. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth

    Science.gov (United States)

    Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B.

    2016-02-01

    Vertical GaN Schottky barrier diode (SBD) structures were grown by metal-organic chemical vapor deposition on free-standing GaN substrates. The carbon doping effect on SBD performance was studied by adjusting the growth conditions and spanning the carbon doping concentration between ≤3 × 1015 cm-3 and 3 × 1019 cm-3. Using the optimized growth conditions that resulted in the lowest carbon incorporation, a vertical GaN SBD with a 6-μm drift layer was fabricated. A low turn-on voltage of 0.77 V with a breakdown voltage over 800 V was obtained from the device.

  15. Sexual Orientation, Objective Height, and Self-Reported Height.

    Science.gov (United States)

    Skorska, Malvina N; Bogaert, Anthony F

    2017-01-01

    Studies that have used mostly self-reported height have found that androphilic men and women are shorter than gynephilic men and women, respectively. This study examined whether an objective height difference exists or whether a psychosocial account (e.g., distortion of self-reports) may explain these putative height differences. A total of 863 participants, recruited at a Canadian university, the surrounding region, and through lesbian, gay, bisexual, and transgender (LGBT) events across Canada, self-reported their height and had their height measured. Androphilic men were shorter, on average, than gynephilic men. There was no objective height difference between gynephilic, ambiphilic, and androphilic women. Self-reported height, statistically controlling for objective height, was not related to sexual orientation. These findings are the first to show an objective height difference between androphilic and gynephilic men. Also, the findings suggest that previous studies using self-reported height found part of a true objective height difference between androphilic and gynephilic men. These findings have implications for existing biological theories of men's sexual orientation development.

  16. Current transport mechanisms in lattice-matched Pt/Au-InAlN/GaN Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Jian; Yan, Dawei, E-mail: daweiyan@jiangnan.edu.cn; Yang, Guofeng; Wang, Fuxue; Xiao, Shaoqing; Gu, Xiaofeng [Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-04-21

    Lattice-matched Pt/Au-In{sub 0.17}Al{sub 0.83}N/GaN hetreojunction Schottky diodes with circular planar structure have been fabricated and investigated by temperature dependent electrical measurements. The forward and reverse current transport mechanisms are analyzed by fitting the experimental current-voltage characteristics of the devices with various models. The results show that (1) the forward-low-bias current is mainly due to the multiple trap-assisted tunneling, while the forward-high-bias current is governed by the thermionic emission mechanism with a significant series resistance effect; (2) the reverse leakage current under low electric fields (<6 MV/cm) is mainly carried by the Frenkel-Poole emission electrons, while at higher fields the Fowler-Nordheim tunneling mechanism dominates due to the formation of a triangular barrier.

  17. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  18. All-back-Schottky-contact thin-film photovoltaics

    Science.gov (United States)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  19. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    International Nuclear Information System (INIS)

    Hathwar, Raghuraj; Dutta, Maitreya; Chowdhury, Srabanti; Goodnick, Stephen M.; Koeck, Franz A. M.; Nemanich, Robert J.

    2016-01-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco ® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures

  20. Temperature dependent simulation of diamond depleted Schottky PIN diodes

    Science.gov (United States)

    Hathwar, Raghuraj; Dutta, Maitreya; Koeck, Franz A. M.; Nemanich, Robert J.; Chowdhury, Srabanti; Goodnick, Stephen M.

    2016-06-01

    Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco® Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures