WorldWideScience

Sample records for schottky barrier cell

  1. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    OpenAIRE

    Fangming Jin; Zisheng Su; Bei Chu; Pengfei Cheng; Junbo Wang; Haifeng Zhao; Yuan Gao; Xingwu Yan; Wenlian Li

    2016-01-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59?mA/cm2, an open-circuit voltage (Voc) of 1.06?V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5?G solar illumination at 100?mW/cm2. Device performance was substantiall...

  2. Fluctuations in Schottky barrier heights

    International Nuclear Information System (INIS)

    Mahan, G.D.

    1984-01-01

    A double Schottky barrier is often formed at the grain boundary in polycrystalline semiconductors. The barrier height is shown to fluctuate in value due to the random nature of the impurity positions. The magnitude of the fluctuations is 0.1 eV, and the fluctuations cause the barrier height measured by capacitance to differ from the one measured by electrical conductivity

  3. Schottky barrier enhancement on n-InP solar cell applications

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1994-01-01

    It is demonstrated that the Schottky barrier height on n-type InP can be enhanced to values close to the energy bandgap (1.35 eV) by employing a AuZnCr metallization. The process is simple and requires only mild and fast annealing sequences with temperatures not exceeding 500°C. Also, no critical...... epitaxial growth step of junctions is needed, making the process fairly cheap. Thus, prospects for an efficient and simple solar cell device structure for space application purposes based on highly radiant-resistant InP are greatly improved...

  4. Interface Engineering of Organic Schottky Barrier Solar Cells and Its Application in Enhancing Performances of Planar Heterojunction Solar Cells

    Science.gov (United States)

    Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian

    2016-05-01

    In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.

  5. Schottky barrier MOSFET systems and fabrication thereof

    Science.gov (United States)

    Welch, J.D.

    1997-09-02

    (MOS) device systems-utilizing Schottky barrier source and drain to channel region junctions are disclosed. Experimentally derived results which demonstrate operation of fabricated N-channel and P-channel Schottky barrier (MOSFET) devices, and of fabricated single devices with operational characteristics similar to (CMOS) and to a non-latching (SRC) are reported. Use of essentially non-rectifying Schottky barriers in (MOS) structures involving highly doped and the like and intrinsic semiconductor to allow non-rectifying interconnection of, and electrical accessing of device regions is also disclosed. Insulator effected low leakage current device geometries and fabrication procedures therefore are taught. Selective electrical interconnection of drain to drain, source to drain, or source to source, of N-channel and/or P-channel Schottky barrier (MOSFET) devices formed on P-type, N-type and Intrinsic semiconductor allows realization of Schottky Barrier (CMOS), (MOSFET) with (MOSFET) load, balanced differential (MOSFET) device systems and inverting and non-inverting single devices with operating characteristics similar to (CMOS), which devices can be utilized in modulation, as well as in voltage controlled switching and effecting a direction of rectification. 89 figs.

  6. Schottky Barriers in Bilayer Phosphorene Transistors.

    Science.gov (United States)

    Pan, Yuanyuan; Dan, Yang; Wang, Yangyang; Ye, Meng; Zhang, Han; Quhe, Ruge; Zhang, Xiuying; Li, Jingzhen; Guo, Wanlin; Yang, Li; Lu, Jing

    2017-04-12

    It is unreliable to evaluate the Schottky barrier height (SBH) in monolayer (ML) 2D material field effect transistors (FETs) with strongly interacted electrode from the work function approximation (WFA) because of existence of the Fermi-level pinning. Here, we report the first systematical study of bilayer (BL) phosphorene FETs in contact with a series of metals with a wide work function range (Al, Ag, Cu, Au, Cr, Ti, Ni, and Pd) by using both ab initio electronic band calculations and quantum transport simulation (QTS). Different from only one type of Schottky barrier (SB) identified in the ML phosphorene FETs, two types of SBs are identified in BL phosphorene FETs: the vertical SB between the metallized and the intact phosphorene layer, whose height is determined from the energy band analysis (EBA); the lateral SB between the metallized and the channel BL phosphorene, whose height is determined from the QTS. The vertical SBHs show a better consistency with the lateral SBHs of the ML phosphorene FETs from the QTS compared than that of the popular WFA. Therefore, we develop a better and more general method than the WFA to estimate the lateral SBHs of ML semiconductor transistors with strongly interacted electrodes based on the EBA for its BL counterpart. In terms of the QTS, n-type lateral Schottky contacts are formed between BL phosphorene and Cr, Al, and Cu electrodes with electron SBH of 0.27, 0.31, and 0.32 eV, respectively, while p-type lateral Schottky contacts are formed between BL phosphorene and Pd, Ti, Ni, Ag, and Au electrodes with hole SBH of 0.11, 0.18, 0.19, 0.20, and 0.21 eV, respectively. The theoretical polarity and SBHs are in good agreement with available experiments. Our study provides an insight into the BL phosphorene-metal interfaces that are crucial for designing the BL phosphorene device.

  7. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, D.; Rajput, S.; Li, L.

    2017-04-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS2 to fabricate Schottky junctions. These junctions exhibit rectifying current-voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions.

  8. Spatial inhomogeneity in Schottky barrier height at graphene/MoS2 Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Li, L

    2017-01-01

    Transport properties of graphene semiconductor Schottky junctions strongly depend on interfacial inhomogeneities due to the inherent formation of ripples and ridges. Here, chemical vapor deposited graphene is transferred onto multilayer MoS 2 to fabricate Schottky junctions. These junctions exhibit rectifying current–voltage behavior with the zero bias Schottky barrier height increases and ideality factor decreases with increasing temperature between 210 and 300 K. Such behavior is attributed to the inhomogeneous interface that arises from graphene ripples and ridges, as revealed by atomic force and scanning tunneling microscopy imaging. Assuming a Gaussian distribution of the barrier height, a mean value of 0.96  ±  0.14 eV is obtained. These findings indicate a direct correlation between temperature dependent Schottky barrier height and spatial inhomogeneity in graphene/2D semiconductor Schottky junctions. (paper)

  9. Piezotronically modified double Schottky barriers in ZnO varistors.

    Science.gov (United States)

    Raidl, Nadine; Supancic, Peter; Danzer, Robert; Hofstätter, Michael

    2015-03-25

    Double Schottky barriers in ZnO are modified piezotronically by the application of mechanical stresses. New effects such as the enhancement of the potential barrier height and the increase or decrease of the natural barrier asymmetry are presented. Also, an extended model for the piezotronic modification of double Schottky barriers is given. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Annealing effect on Schottky barrier inhomogeneity of graphene/n-type Si Schottky diodes

    International Nuclear Information System (INIS)

    Lin, Yow-Jon; Lin, Jian-Huang

    2014-01-01

    Highlights: • The current–voltage characteristics of graphene/n-type Si devices were measured. • The ideality factor increases with the decrease measurement temperatures. • Such behavior is attributed to Schottky barrier inhomogeneities. • Both Schottky barrier inhomogeneity and the T 0 effect are affected by annealing. • Stoichiometry of SiO x has a noticeable effect on the inhomogeneous barriers. - Abstract: The current–voltage characteristics of graphene/n-type Si (n-Si) Schottky diodes with and without annealing were measured in the temperature range of −120 to 30 °C and analyzed on the basis of thermionic emission theory. It is found that the barrier height decreases and the ideality factor increases with the decrease measurement temperatures. Such behavior is attributed to Schottky barrier inhomogeneities. It is shown that both the barrier height and the ideality factor can be tuned by changing the annealing temperature. Through the analysis, it can be suspected that a SiO x layer at the graphene/n-Si interfaces influences the electronic conduction through the device and stoichiometry of SiO x is affected by annealing treatment. In addition, both Schottky barrier inhomogeneity and the T 0 effect are affected by annealing treatment, implying that stoichiometry of SiO x has a noticeable effect on the inhomogeneous barriers of graphene/n-Si Schottky diodes

  11. A charge-based model of Junction Barrier Schottky rectifiers

    Science.gov (United States)

    Latorre-Rey, Alvaro D.; Mudholkar, Mihir; Quddus, Mohammed T.; Salih, Ali

    2018-06-01

    A new charge-based model of the electric field distribution for Junction Barrier Schottky (JBS) diodes is presented, based on the description of the charge-sharing effect between the vertical Schottky junction and the lateral pn-junctions that constitute the active cell of the device. In our model, the inherently 2-D problem is transformed into a simple but accurate 1-D problem which has a closed analytical solution that captures the reshaping and reduction of the electric field profile responsible for the improved electrical performance of these devices, while preserving physically meaningful expressions that depend on relevant device parameters. The validation of the model is performed by comparing calculated electric field profiles with drift-diffusion simulations of a JBS device showing good agreement. Even though other fully 2-D models already available provide higher accuracy, they lack physical insight making the proposed model an useful tool for device design.

  12. Schottky barrier parameters and low frequency noise characteristics of graphene-germanium Schottky barrier diode

    Science.gov (United States)

    Khurelbaatar, Zagarzusem; Kil, Yeon-Ho; Shim, Kyu-Hwan; Cho, Hyunjin; Kim, Myung-Jong; Lee, Sung-Nam; Jeong, Jae-chan; Hong, Hyobong; Choi, Chel-Jong

    2016-03-01

    We investigated the electrical properties of chemical vapor deposition-grown monolayer graphene/n-type germanium (Ge) Schottky barrier diodes (SBD) using current-voltage (I-V) characteristics and low frequency noise measurements. The Schottky barrier parameters of graphene/n-type Ge SBDs, such as Schottky barrier height (VB), ideality factor (n), and series resistance (Rs), were extracted using the forward I-V and Cheung's methods. The VB and n extracted from the forward ln(I)-V plot were found to be 0.63 eV and 1.78, respectively. In contrast, from Cheung method, the VB and n were calculated to be 0.53 eV and 1.76, respectively. Such a discrepancy between the values of VB calculated from the forward I-V and Cheung's methods indicated a deviation from the ideal thermionic emission of graphene/n-type Ge SBD associated with the voltage drop across graphene. The low frequency noise measurements performed at the frequencies in the range of 10 Hz-1 kHz showed that the graphene/n-type Ge SBD had 1/f γ frequency dependence, with γ ranging from 1.09 to 1.12, regardless of applied forward biases. Similar to forward-biased SBDs operating in the thermionic emission mode, the current noise power spectral density of graphene/n-type Ge SBD was linearly proportional to the forward current.

  13. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process

    Directory of Open Access Journals (Sweden)

    Tanujjal Bora

    2011-10-01

    Full Text Available Zinc oxide (ZnO nanorods decorated with gold (Au nanoparticles have been synthesized and used to fabricate dye-sensitized solar cells (DSSC. The picosecond-resolved, time-correlated single-photon-count (TCSPC spectroscopy technique was used to explore the charge-transfer mechanism in the ZnO/Au-nanocomposite DSSC. Due to the formation of the Schottky barrier at the ZnO/Au interface and the higher optical absorptions of the ZnO/Au photoelectrodes arising from the surface plasmon absorption of the Au nanoparticles, enhanced power-conversion efficiency (PCE of 6.49% for small-area (0.1 cm2 ZnO/Au-nanocomposite DSSC was achieved compared to the 5.34% efficiency of the bare ZnO nanorod DSSC. The TCSPC studies revealed similar dynamics for the charge transfer from dye molecules to ZnO both in the presence and absence of Au nanoparticles. A slower fluorescence decay associated with the electron recombination process, observed in the presence of Au nanoparticles, confirmed the blocking of the electron transfer from ZnO back to the dye or electrolyte by the Schottky barrier formed at the ZnO/Au interface. For large area DSSC (1 cm2, ~130% enhancement in PCE (from 0.50% to 1.16% was achieved after incorporation of the Au nanoparticles into the ZnO nanorods.

  14. Built-in potential shift and Schottky-barrier narrowing in organic solar cells with UV-sensitive electron transport layers.

    Science.gov (United States)

    Li, Cheng; Credgington, Dan; Ko, Doo-Hyun; Rong, Zhuxia; Wang, Jianpu; Greenham, Neil C

    2014-06-28

    The performance of organic solar cells incorporating solution-processed titanium suboxide (TiOx) as electron-collecting layers can be improved by UV illumination. We study the mechanism of this improvement using electrical measurements and electroabsorption spectroscopy. We propose a model in which UV illumination modifies the effective work function of the oxide layer through a significant increase in its free electron density. This leads to a dramatic improvement in device power conversion efficiency through several mechanisms - increasing the built-in potential by 0.3 V, increasing the conductivity of the TiOx layer and narrowing the interfacial Schottky barrier between the suboxide and the underlying transparent electrode. This work highlights the importance of considering Fermi-level equilibration when designing multi-layer transparent electrodes.

  15. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  16. Metal-semiconductor Schottky barrier junctions and their applications

    CERN Document Server

    1984-01-01

    The present-day semiconductor technology would be inconceivable without extensive use of Schottky barrier junctions. In spite of an excellent book by Professor E.H. Rhoderick (1978) dealing with the basic principles of metal­ semiconductor contacts and a few recent review articles, the need for a monograph on "Metal-Semiconductor Schottky Barrier Junctions and Their Applications" has long been felt by students, researchers, and technologists. It was in this context that the idea of publishing such a monograph by Mr. Ellis H. Rosenberg, Senior Editor, Plenum Publishing Corporation, was considered very timely. Due to the numerous and varied applications of Schottky barrier junctions, the task of bringing it out, however, looked difficult in the beginning. After discussions at various levels, it was deemed appropriate to include only those typical applications which were extremely rich in R&D and still posed many challenges so that it could be brought out in the stipulated time frame. Keeping in view the la...

  17. Process for preparing schottky diode contacts with predetermined barrier heights

    Science.gov (United States)

    Chang, Y. Austin; Jan, Chia-Hong; Chen, Chia-Ping

    1996-01-01

    A process is provided for producing a Schottky diode having a preselected barrier height .phi..sub.Bn. The substrate is preferably n-GaAs, the metallic contact is derived from a starting alloy of the Formula [.SIGMA.M.sub..delta. ](Al.sub.x Ga.sub.1-x) wherein: .SIGMA.M is a moiety which consists of at least one M, and when more than one M is present, each M is different, M is a Group VIII metal selected from the group consisting of nickel, cobalt, ruthenium, rhodium, indium and platinum, .delta. is a stoichiometric coefficient whose total value in any given .SIGMA.M moiety is 1, and x is a positive number between 0 and 1 (that is, x ranges from greater than 0 to less than 1). Also, the starting alloy is capable of forming with the substrate a two phase equilibrium reciprocal system of the binary alloy mixture [.SIGMA.M.sub..delta. ]Ga-[.SIGMA.M.sub..delta. ]Al-AlAs-GaAs. When members of an alloy subclass within this Formula are each preliminarily correlated with the barrier height .phi..sub.Bn of a contact producable therewith, then Schottky diodes of predetermined barrier heights are producable by sputtering and annealing. Further provided are the product Schottky diodes that are produced according to this process.

  18. Compact modeling of SiC Schottky barrier diode and its extension to junction barrier Schottky diode

    Science.gov (United States)

    Navarro, Dondee; Herrera, Fernando; Zenitani, Hiroshi; Miura-Mattausch, Mitiko; Yorino, Naoto; Jürgen Mattausch, Hans; Takusagawa, Mamoru; Kobayashi, Jun; Hara, Masafumi

    2018-04-01

    A compact model applicable for both Schottky barrier diode (SBD) and junction barrier Schottky diode (JBS) structures is developed. The SBD model considers the current due to thermionic emission in the metal/semiconductor junction together with the resistance of the lightly doped drift layer. Extension of the SBD model to JBS is accomplished by modeling the distributed resistance induced by the p+ implant developed for minimizing the leakage current at reverse bias. Only the geometrical features of the p+ implant are necessary to model the distributed resistance. Reproduction of 4H-SiC SBD and JBS current-voltage characteristics with the developed compact model are validated against two-dimensional (2D) device-simulation results as well as measurements at different temperatures.

  19. Canonical Schottky barrier heights of transition metal dichalcogenide monolayers in contact with a metal

    Science.gov (United States)

    Szcześniak, Dominik; Hoehn, Ross D.; Kais, Sabre

    2018-05-01

    The transition metal dichalcogenide (M X2 , where M =Mo , W and X =S , Se, Te) monolayers are of high interest for semiconducting applications at the nanoscale level; this interest is due to both their direct band gaps and high charge mobilities. In this regard, an in-depth understating of the related Schottky barrier heights, associated with the incorporation of M X2 sheets into novel low-dimensional metal-semiconductor junctions, is of crucial importance. Herein, we generate and provide analysis of the Schottky barrier heights behavior to account for the metal-induced gap states concept as its explanation. In particular, the present investigations concentrate on the estimation of the charge neutrality levels directly by employing the primary theoretical model, i.e., the cell-averaged Green's function formalism combined with the complex band structure technique. The results presented herein place charge neutrality levels in the vicinity of the midgap; this is in agreement with previous reports and analogous to the behavior of three-dimensional semiconductors. The calculated canonical Schottky barrier heights are also found to be in agreement with other computational and experimental values in cases where the difference between electronegativities of the semiconductor and metal contact is small. Moreover, the influence of the spin-orbit effects is herein considered and supports that Schottky barrier heights have metal-induced gap state-derived character, regardless whether spin-orbit coupling interactions are considered. The results presented within this report constitute a direct and vital verification of the importance of metal-induced gap states in explaining the behavior of observed Schottky barrier heights at M X2 -metal junctions.

  20. Highly efficient betanin dye based ZnO and ZnO/Au Schottky barrier solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Thankappan, Aparna, E-mail: aparna.subhash@gmail.com [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India); Inter University Centre for Nanomaterials and Devices (IUCND), Cochin University of Science and Technology, Kochi (India); Divya, S.; Augustine, Anju K.; Girijavallaban, C.P.; Radhakrishnan, P.; Thomas, Sheenu; Nampoori, V.P.N. [International School of Photonics (ISP), Cochin University of Science and Technology, Kochi (India)

    2015-05-29

    Performance of dye sensitized solar cells based on betanin natural dye from red beets with various nanostructured photoanodes on transparent conducting glass has been investigated. In four different electrolyte systems cell efficiency of 2.99% and overall photon to current conversion efficiency of 20% were achieved using ZnO nanosheet electrode with iodide based electrolyte in acetonitrile solution. To enhance solar harvesting in organic solar cells, uniform sized metal nanoparticles (gold (Au) of ~ 8 nm) synthesized via microwave irradiation method were incorporated into the device consisting of ZnO. Enhanced power conversion efficiency of 1.71% was achieved with ZnO/Au nanocomposite compared to the 0.868% efficiency of the bare ZnO nanosheet cell with ferrocene based electrolyte. - Highlights: • The influence of electrolytes has been studied. • Cell efficiency of 2.99% was achieved by ZnO. • Enhancement of efficiency with incorporation of Au nano.

  1. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    OpenAIRE

    Tomer, D.; Rajput, S.; Hudy, L. J.; Li, C. H.; Li, L.

    2015-01-01

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer graphene onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decr...

  2. Energy Systems Based on Polyacetylene: Rechargeable Batteries and Schottky Barrier Solar Cells. Final Report, March 1, 1981-February 29, 1984

    Science.gov (United States)

    MacDiarmid, A. G.

    1984-02-01

    The chief thrust of the research has been directed towards the evaluation of polyacetylene (CH){sub x}, the prototype conducting polymer as an electrode- active material in novel, rechargeable batteries employing nonaqueous electrolytes. The p-doped material, [(CH{sup +y})A{sub y}{sup -}]{sub x}, (where A{sup -} is an anion) in conjunction with a Li anode, shows excellent discharge characteristics, e.g., very little change in discharge voltage with change in discharge current and a high power density. Its energy density is also good but it shows poor shelf life. When (CH){sub x} is used as a cathode (Li anode), which results in the formation of the n-doped polymer, [Li{sub y} {sup +}(CH/sup -y/)]{sub x}, during discharge, good discharge plateaus and power densities are obtained together with excellent shelf life and good recyclability. The energy density is, however only moderate. Cells employing an [M{sub y}{sup +}(CH/sup -y/)]{sub x} (where M = Li, Na) anode and a TiS{sub 2} cathode show very good discharge and recycling characteristics but their energy density is poor.

  3. Measurements of Effective Schottky Barrier in Inverse Extraordinary Optoconductance Structures

    Science.gov (United States)

    Tran, L. C.; Werner, F. M.; Solin, S. A.; Gilbertson, Adam; Cohen, L. F.

    2013-03-01

    Individually addressable optical sensors with dimensions as low as 250nm, fabricated from metal semiconductor hybrid structures (MSH) of AuTi-GaAs Schottky interfaces, display a transition from resistance decreasing with intensity in micron-scale sensors (Extraordinary Optoconductance, EOC) to resistance increasing with intensity in nano-scale sensors (Inverse Extraordinary Optoconductance I-EOC). I-EOC is attributed to a ballistic to diffusive crossover with the introduction of photo-induced carriers and gives rise to resistance changes of up to 9462% in 250nm devices. We characterize the photo-dependence of the effective Schottky barrier in EOC/I-EOC structures by the open circuit voltage and reverse bias resistance. Under illumination by a 5 mW, 632.8 nm HeNe laser, the barrier is negligible and the Ti-GaAs interface becomes Ohmic. Comparing the behavior of two devices, one with leads exposed, another with leads covered by an opaque epoxy, the variation in Voc with the position of the laser can be attributed to a photovoltaic effect of the lead metal and bulk GaAs. The resistance is unaffected by the photovoltaic offset of the leads, as indicated by the radial symmetry of 2-D resistance maps obtained by rastering a laser across EOC/IEOC devices. SAS has a financial interest in PixelEXX, a start-up company whose mission is to market imaging arrays.

  4. Schottky barrier CdTe(Cl) detectors for planetary missions

    International Nuclear Information System (INIS)

    Eisen, Yosef; Floyd, Samuel

    2002-01-01

    Schottky barrier cadmium telluride (CdTe) radiation detectors of dimensions 2mm x 2mm x 1mm and segmented monolithic 3cm x 3 cm x 1mm are under study at GSFC for future NASA planetary instruments. These instruments will perform x-ray fluorescence spectrometry of the surface and monitor the solar x-ray flux spectrum, the excitation source for the characteristic x-rays emitted from the planetary body. The Near Earth Asteroid Rendezvous (NEAR) mission is the most recent example of such a remote sensing technique. Its x-ray fluorescence detectors were gas proportional counters with a back up Si PIN solar monitor. Analysis of NEAR data has shown the necessity to develop a solar x-ray detector with efficiency extending to 30keV. Proportional counters and Si diodes have low sensitivity above 9keV. Our 2mm x 2mm x 1mm CdTe operating at -30 degree sign C possesses an energy resolution of 250eV FWHM for 55Fe with unit efficiency to up to 30keV. This is an excellent candidate for a solar monitor. Another ramification of the NEAR data is a need to develop a large area detector system, 20-30 cm2, with cosmic ray charged particle rejection, for measuring the characteristic radiation. A 3cm x 3cm x 1mm Schottky CdTe segmented monolithic detector is under investigation for this purpose. A tiling of 2-3 such detectors will result in the desired area. The favorable characteristics of Schottky CdTe detectors, the system design complexities when using CdTe and its adaptation to future missions will be discussed

  5. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    Science.gov (United States)

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  6. The physics and chemistry of the Schottky barrier height

    International Nuclear Information System (INIS)

    Tung, Raymond T.

    2014-01-01

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface

  7. The effects of temperature on Schottky diode barrier height and evidence of multiple barrier

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1994-07-01

    Experimental study of Capacitance-Voltage-Temperature (C-V-T) plots, Current-Voltage-Temperature (I-V-T) characteristics have been undertaken in order to determine the height of the Schottky barrier. The results of the barrier height obtained by the above two methods were found to differ as well as vary with temperature change. In view of this discrepancy in barrier height values, two further experiments were performed: one on activation energy (I-T) plots and the other on pulsed (I-V-T) characteristics, and the results were found to show a similar trend. The Schottky diode studied was a 30CP040. (author). 23 refs, 9 figs, 3 tabs

  8. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  9. Investigation on a radiation tolerant betavoltaic battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Liu Yebing; Hu Rui; Yang Yuqing; Wang Guanquan; Luo Shunzhong; Liu Ning

    2012-01-01

    An Au–Si Schottky barrier diode was studied as the energy conversion device of betavoltaic batteries. Its electrical performance under radiation of Ni-63 and H-3 sources and radiation degradation under Am-241 were investigated and compared with those of the p–n junction. The results show that the Schottky diode had a higher I sc and harder radiation tolerance but lower V oc than the p–n junction. The results indicated that the Schottky diode can be a promising candidate for energy conversion of betavoltaic batteries. - Highlights: ► The Schottky diode was used as the converter of the betavoltaic battery. ► The radiation damage of converter was accelerated by using alpha particles. ► The Schottky diode has higher radiation resistance than that of the p–n junction. ► The Schottky diode could still be a promising converter of the betavoltaic battery.

  10. Explanation of the barrier heights of graphene Schottky contacts by the MIGS-and-electronegativity concept

    Science.gov (United States)

    Mönch, Winfried

    2016-09-01

    Graphene-semiconductor contacts exhibit rectifying properties and, in this respect, they behave in exactly the same way as a "conventional" metal-semiconductor or Schottky contacts. It will be demonstrated that, as often assumed, the Schottky-Mott rule does not describe the reported barrier heights of graphene-semiconductor contacts. With "conventional" Schottky contacts, the same conclusion was reached already in 1940. The physical reason is that the Schottky-Mott rule considers no interaction between the metal and the semiconductor. The barrier heights of "conventional" Schottky contacts were explained by the continuum of metal-induced gap states (MIGSs), where the differences of the metal and semiconductor electronegativities describe the size and the sign of the intrinsic electric-dipoles at the interfaces. It is demonstrated that the MIGS-and-electronegativity concept unambiguously also explains the experimentally observed barrier heights of graphene Schottky contacts. This conclusion includes also the barrier heights reported for MoS2 Schottky contacts with "conventional" metals as well as with graphene.

  11. Study of 4H-SiC junction barrier Schottky diode using field guard ring termination

    International Nuclear Information System (INIS)

    Feng-Ping, Chen; Yu-Ming, Zhang; Hong-Liang, Lü; Yi-Men, Zhang; Jian-Hua, Huang

    2010-01-01

    This paper reports that the 4H-SiC Schottky barrier diode, PiN diode and junction barrier Schottky diode terminated by field guard rings are designed, fabricated and characterised. The measurements for forward and reverse characteristics have been done, and by comparison with each other, it shows that junction barrier Schottky diode has a lower reverse current density than that of the Schottky barrier diode and a higher forward drop than that of the PiN diode. High-temperature annealing is presented in this paper as well to figure out an optimised processing. The barrier height of 0.79 eV is formed with Ti in this work, the forward drop for the Schottky diode is 2.1 V, with an ideality factor of 3.2, and junction barrier Schottky diode with blocking voltage higher than 400 V was achieved by using field guard ring termination. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  12. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    Science.gov (United States)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  13. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  14. Barrier Height Variation in Ni-Based AlGaN/GaN Schottky Diodes

    NARCIS (Netherlands)

    Hajlasz, Marcin; Donkers, Johan J.T.M.; Pandey, Saurabh; Hurkx, Fred; Hueting, Raymond J.E.; Gravesteijn, Dirk J.

    2017-01-01

    In this paper, we have investigated Ni-based AlGaN/GaN Schottky diodes comprising capping layers with silicon-Technology-compatible metals such as TiN, TiW, TiWN, and combinations thereof. The observed change in Schottky barrier height of a Ni and Ni/TiW/TiWN/TiW contact can be explained by stress

  15. Spatial fluctuations in barrier height at the graphene-silicon carbide Schottky junction.

    Science.gov (United States)

    Rajput, S; Chen, M X; Liu, Y; Li, Y Y; Weinert, M; Li, L

    2013-01-01

    When graphene is interfaced with a semiconductor, a Schottky contact forms with rectifying properties. Graphene, however, is also susceptible to the formation of ripples upon making contact with another material. Here we report intrinsic ripple- and electric field-induced effects at the graphene semiconductor Schottky junction, by comparing chemical vapour-deposited graphene transferred on semiconductor surfaces of opposite polarization-the hydrogen-terminated silicon and carbon faces of hexagonal silicon carbide. Using scanning tunnelling microscopy/spectroscopy and first-principles calculations, we show the formation of a narrow Schottky dipole barrier approximately 10 Å wide, which facilitates the observed effective electric field control of the Schottky barrier height. We further find atomic-scale spatial fluctuations in the Schottky barrier that directly follow the undulation of ripples on both graphene-silicon carbide junctions. These findings reveal fundamental properties of the graphene/semiconductor Schottky junction-a key component of vertical graphene devices that offer functionalities unattainable in planar device architecture.

  16. Analysing black phosphorus transistors using an analytic Schottky barrier MOSFET model.

    Science.gov (United States)

    Penumatcha, Ashish V; Salazar, Ramon B; Appenzeller, Joerg

    2015-11-13

    Owing to the difficulties associated with substitutional doping of low-dimensional nanomaterials, most field-effect transistors built from carbon nanotubes, two-dimensional crystals and other low-dimensional channels are Schottky barrier MOSFETs (metal-oxide-semiconductor field-effect transistors). The transmission through a Schottky barrier-MOSFET is dominated by the gate-dependent transmission through the Schottky barriers at the metal-to-channel interfaces. This makes the use of conventional transistor models highly inappropriate and has lead researchers in the past frequently to extract incorrect intrinsic properties, for example, mobility, for many novel nanomaterials. Here we propose a simple modelling approach to quantitatively describe the transfer characteristics of Schottky barrier-MOSFETs from ultra-thin body materials accurately in the device off-state. In particular, after validating the model through the analysis of a set of ultra-thin silicon field-effect transistor data, we have successfully applied our approach to extract Schottky barrier heights for electrons and holes in black phosphorus devices for a large range of body thicknesses.

  17. Investigation of significantly high barrier height in Cu/GaN Schottky diode

    Directory of Open Access Journals (Sweden)

    Manjari Garg

    2016-01-01

    Full Text Available Current-voltage (I-V measurements combined with analytical calculations have been used to explain mechanisms for forward-bias current flow in Copper (Cu Schottky diodes fabricated on Gallium Nitride (GaN epitaxial films. An ideality factor of 1.7 was found at room temperature (RT, which indicated deviation from thermionic emission (TE mechanism for current flow in the Schottky diode. Instead the current transport was better explained using the thermionic field-emission (TFE mechanism. A high barrier height of 1.19 eV was obtained at room temperature. X-ray photoelectron spectroscopy (XPS was used to investigate the plausible reason for observing Schottky barrier height (SBH that is significantly higher than as predicted by the Schottky-Mott model for Cu/GaN diodes. XPS measurements revealed the presence of an ultrathin cuprous oxide (Cu2O layer at the interface between Cu and GaN. With Cu2O acting as a degenerate p-type semiconductor with high work function of 5.36 eV, a high barrier height of 1.19 eV is obtained for the Cu/Cu2O/GaN Schottky diode. Moreover, the ideality factor and barrier height were found to be temperature dependent, implying spatial inhomogeneity of barrier height at the metal semiconductor interface.

  18. Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Vali, Indudhar Panduranga [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Shetty, Pramoda Kumara, E-mail: pramod.shetty@manipal.edu [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Mahesha, M.G. [Manipal Institute of Technology, Manipal University, Manipal 576104 (India); Petwal, V.C.; Dwivedi, Jishnu [Raja Ramanna Centre for Advanced Technology, Department of Atomic Energy, Government of India, Indore 452012 (India); Choudhary, R.J. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452017 (India)

    2017-06-15

    Highlights: • Tuning of Schottky barrier height has been achieved by electron beam irradiation at different doses on n-Si wafer prior to the fabrication of Schottky contact. • The XPS analyses have shown irradiation induced defects and the formation of several localized chemical states in Si/SiOx interface that influences the Schottky barrier height. • High ideality factor indicates metal-insulator-semiconductor configuration of the Schottky diode and the inhomogeneous nature of the Schottky barrier height. • The modifications in I–V characteristics have been observed as a function of electron dose. This is caused due to changes in the Schottky diode parameters and different transport mechanisms. - Abstract: The effect of electron beam irradiation (EBI) on Al/n-Si Schottky diode has been studied by I–V characterization at room temperature. The behavior of the metal-semiconductor (MS) interface is analyzed by means of variations in the MS contact parameters such as, Schottky barrier height (Φ{sub B}), ideality factor (n) and series resistance (R{sub s}). These parameters were found to depend on the EBI dose having a fixed incident beam of energy 7.5 MeV. At different doses (500, 1000, 1500 kGy) of EBI, the Schottky contacts were prepared and extracted their contact parameters by applying thermionic emission and Cheung models. Remarkably, the tuning of Φ{sub B} was observed as a function of EBI dose. The improved n with increased Φ{sub B} is seen for all the EBI doses. As a consequence of which the thermionic emission is more favored. However, the competing transport mechanisms such as space charge limited emission, tunneling and tunneling through the trap states were ascribed due to n > 1. The analysis of XPS spectra have shown the presence of native oxide and increased radiation induced defect states. The thickness variation in the MS interface contributing to Schottky contact behavior is discussed. This study explains a new technique to tune

  19. Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications.

    Science.gov (United States)

    Rahmani, Meisam; Ahmadi, Mohammad Taghi; Abadi, Hediyeh Karimi Feiz; Saeidmanesh, Mehdi; Akbari, Elnaz; Ismail, Razali

    2013-01-30

    Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current-voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current-voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption.

  20. Prediction of barrier inhomogeneities and carrier transport in Ni-silicided Schottky diode

    International Nuclear Information System (INIS)

    Saha, A.R.; Dimitriu, C.B.; Horsfall, A.B.; Chattopadhyay, S.; Wright, N.G.; O'Neill, A.G.; Maiti, C.K.

    2006-01-01

    Based on Quantum Mechanical (QM) carrier transport and the effects of interface states, a theoretical model has been developed to predict the anomalous current-voltage (I-V) characteristics of a non-ideal Ni-silicided Schottky diode at low temperatures. Physical parameters such as barrier height, ideality factor, series resistance and effective Richardson constant of a silicided Schottky diode were extracted from forward I-V characteristics and are subsequently used for the simulation of both forward and reverse I-V characteristics using a QM transport model in which the effects of interface state and bias dependent barrier reduction are incorporated. The present analysis indicates that the effects of barrier inhomogeneity caused by incomplete silicide formation at the junction and the interface states may change the conventional current transport process, leading to anomalous forward and reverse I-V characteristics for the Ni-silicided Schottky diode

  1. Schottky barrier measurements on individual GaAs nanowires by X-ray photoemission microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Mario, Lorenzo [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Turchini, Stefano, E-mail: stefano.turchini@cnr.it [ISM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Zamborlini, Giovanni; Feyer, Vitaly [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Tian, Lin [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy); Schneider, Claus M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, 52425 Jülich (Germany); Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, D-47048 Duisburg (Germany); Rubini, Silvia [IOM-CNR, TASC Laboratory, Basovizza 34149, Trieste (Italy); Martelli, Faustino, E-mail: faustino.martelli@cnr.it [IMM-CNR, via del Fosso del Cavaliere 100, 00133 Rome (Italy)

    2016-11-15

    Highlights: • The Schottky barrier at the interface between Cu and GaAs nanowires was measured. • Individual nanowires were investigated by X-ray Photoemission Microscopy. • The Schottky barrier at different positions along the nanowire was evaluated. - Abstract: We present measurements of the Schottky barrier height on individual GaAs nanowires by means of x-ray photoelectron emission microscopy (XPEEM). Values of 0.73 and 0.51 eV, averaged over the entire wires, were measured on Cu-covered n-doped and p-doped GaAs nanowires, respectively, in agreement with results obtained on bulk material. Our measurements show that XPEEM can become a feasible and reliable investigation tool of interface formation at the nanoscale and pave the way towards the study of size-dependent effects on semiconductor-based structures.

  2. ON current enhancement of nanowire Schottky barrier tunnel field effect transistors

    Science.gov (United States)

    Takei, Kohei; Hashimoto, Shuichiro; Sun, Jing; Zhang, Xu; Asada, Shuhei; Xu, Taiyu; Matsukawa, Takashi; Masahara, Meishoku; Watanabe, Takanobu

    2016-04-01

    Silicon nanowire Schottky barrier tunnel field effect transistors (NW-SBTFETs) are promising structures for high performance devices. In this study, we fabricated NW-SBTFETs to investigate the effect of nanowire structure on the device characteristics. The NW-SBTFETs were operated with a backgate bias, and the experimental results demonstrate that the ON current density is enhanced by narrowing the width of the nanowire. We confirmed using the Fowler-Nordheim plot that the drain current in the ON state mainly comprises the quantum tunneling component through the Schottky barrier. Comparison with a technology computer aided design (TCAD) simulation revealed that the enhancement is attributed to the electric field concentration at the corners of cross-section of the NW. The study findings suggest an effective approach to securing the ON current by Schottky barrier width modulation.

  3. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Davids, P.S.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas75083 (United States)

    1998-04-01

    We present device model calculations of the current{endash}voltage (I{endash}V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I{endash}V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I{endash}V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited. {copyright} {ital 1998 American Institute of Physics.}

  4. The Schottky energy barrier dependence of charge injection in organic light-emitting diodes

    Science.gov (United States)

    Campbell, I. H.; Davids, P. S.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1998-04-01

    We present device model calculations of the current-voltage (I-V) characteristics of organic diodes and compare them with measurements of structures fabricated using MEH-PPV. The structures are designed so that all of the current is injected from one contact. The I-V characteristics are considered as a function of the Schottky energy barrier to charge injection from the contact. Experimentally, the Schottky barrier is varied from essentially zero to more than 1 eV by using different metal contacts. A consistent description of the device I-V characteristics is obtained as the Schottky barrier is varied from small values, less than about 0.4 eV, where the current flow is space-charge limited to larger values where it is contact limited.

  5. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions.

    Science.gov (United States)

    Tomer, D; Rajput, S; Hudy, L J; Li, C H; Li, L

    2015-05-29

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current-voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions.

  6. Inhomogeneity in barrier height at graphene/Si (GaAs) Schottky junctions

    International Nuclear Information System (INIS)

    Tomer, D; Rajput, S; Hudy, L J; Li, L; Li, C H

    2015-01-01

    Graphene (Gr) interfaced with a semiconductor forms a Schottky junction with rectifying properties, however, fluctuations in the Schottky barrier height are often observed. In this work, Schottky junctions are fabricated by transferring chemical vapor deposited monolayer Gr onto n-type Si and GaAs substrates. Temperature dependence of the barrier height and ideality factor are obtained by current–voltage measurements between 215 and 350 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature for both junctions. Such behavior is attributed to barrier inhomogeneities that arise from interfacial disorders as revealed by scanning tunneling microscopy/spectroscopy. Assuming a Gaussian distribution of the barrier heights, mean values of 1.14 ± 0.14 eV and 0.76 ± 0.10 eV are found for Gr/Si and Gr/GaAs junctions, respectively. These findings resolve the origin of barrier height inhomogeneities in these Schottky junctions. (paper)

  7. Utilizing Schottky barriers to suppress short-channel effects in organic transistors

    Science.gov (United States)

    Fernández, Anton F.; Zojer, Karin

    2017-10-01

    Transistors with short channel lengths exhibit profound deviations from the ideally expected behavior. One of the undesired short-channel effects is an enlarged OFF current that is associated with a premature turn on of the transistor. We present an efficient approach to suppress the OFF current, defined as the current at zero gate source bias, in short-channel organic transistors. We employ two-dimensional device simulations based on the drift-diffusion model to demonstrate that intentionally incorporating a Schottky barrier for injection enhances the ON-OFF ratio in both staggered and coplanar transistor architectures. The Schottky barrier is identified to directly counteract the origin of enlarged OFF currents: Short channels promote a drain-induced barrier lowering. The latter permits unhindered injection of charges even at reverse gate-source bias. An additional Schottky barrier hampers injection for such points of operations. We explain how it is possible to find the Schottky barrier of the smallest height necessary to exactly compensate for the premature turn on. This approach offers a substantial enhancement of the ON-OFF ratio. We show that this roots in the fact that such optimal barrier heights offer an excellent compromise between an OFF current diminished by orders of magnitude and an only slightly reduced ON current.

  8. Schottky barrier parameters and structural properties of rapidly annealed Zr Schottky electrode on p-type GaN

    Science.gov (United States)

    Rajagopal Reddy, V.; Asha, B.; Choi, Chel-Jong

    2017-06-01

    The Schottky barrier junction parameters and structural properties of Zr/p-GaN Schottky diode are explored at various annealing temperatures. Experimental analysis showed that the barrier height (BH) of the Zr/p-GaN Schottky diode increases with annealing at 400 °C (0.92 eV (I-V)/1.09 eV (C-V)) compared to the as-deposited one (0.83 eV (I-V)/0.93 eV (C-V)). However, the BH decreases after annealing at 500 °C. Also, at different annealing temperatures, the series resistance and BH are assessed by Cheung's functions and their values compared. Further, the interface state density (N SS) of the diode decreases after annealing at 400 °C and then somewhat rises upon annealing at 500 °C. Analysis reveals that the maximum BH is obtained at 400 °C, and thus the optimum annealing temperature is 400 °C for the diode. The XPS and XRD analysis revealed that the increase in BH may be attributed to the creation of Zr-N phases with increasing annealing up to 400 °C. The BH reduces for the diode annealed at 500 °C, which may be due to the formation of Ga-Zr phases at the junction. The AFM measurements reveal that the overall surface roughness of the Zr film is quite smooth during rapid annealing process. Project supported by the R&D Program for Industrial Core Technology (No. 10045216) and the Transfer Machine Specialized Lighting Core Technology Development Professional Manpower Training Project (No. N0001363) Funded by the Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea.

  9. Spatially inhomogeneous barrier height in graphene/MoS2 Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant; Rajput, Shivani; Li, Lian

    Graphene interfaced with a semiconductor forms a Schottky junction with rectifying properties. In this study, graphene Schottky junctions are fabricated by transferring CVD monolayer graphene on mechanically exfoliated MoS2 multilayers. The forward bias current-voltage characteristics are measured in the temperature range of 210-300 K. An increase in the zero bias barrier height and decrease in the ideality factor are observed with increasing temperature. Such behavior is attributed to Schottky barrier inhomogeneities possibly due to graphene ripples and ridges at the junction interface as suggested by atomic force microscopy. Assuming a Gaussian distribution of the barrier height, mean barrier of 0.97+/-0.10 eV is found for the graphene MoS2 junction. Our findings provide significant insight on the barrier height inhomogeneities in graphene/two dimensional semiconductor Schottky junctions. U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering Award No. DEFG02-07ER46228.

  10. TCAD analysis of graphene silicon Schottky junction solar cell

    Science.gov (United States)

    Kuang, Yawei; Liu, Yushen; Ma, Yulong; Xu, Jing; Yang, Xifeng; Feng, Jinfu

    2015-08-01

    The performance of graphene based Schottky junction solar cell on silicon substrate is studied theoretically by TCAD Silvaco tools. We calculate the current-voltage curves and internal quantum efficiency of this device at different conditions using tow dimensional model. The results show that the power conversion efficiency of Schottky solar cell dependents on the work function of graphene and the physical properties of silicon such as thickness and doping concentration. At higher concentration of 1e17cm-3 for n-type silicon, the dark current got a sharp rise compared with lower doping concentration which implies a convert of electron emission mechanism. The biggest fill factor got at higher phos doping predicts a new direction for higher performance graphene Schottky solar cell design.

  11. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced

  12. Development of high performance Schottky barrier diode and its application to plasma diagnostics

    International Nuclear Information System (INIS)

    Fujita, Junji; Kawahata, Kazuo; Okajima, Shigeki

    1993-10-01

    At the conclusion of the Supporting Collaboration Research on 'Development of High Performance Detectors in the Far Infrared Range' carried out from FY1990 to FY1992, the results of developing Schottky barrier diode and its application to plasma diagnostics are summarized. Some remarks as well as technical know-how for the correct use of diodes are also described. (author)

  13. Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN ...

    Indian Academy of Sciences (India)

    Pt/Ru Schottky rectifiers; n-type GaN; temperature–dependent electrical properties; inhomogeneous barrier heights .... a 2 μm thick Si-doped GaN films which were grown by .... ted values of ap using (9) for two Gaussian distributions of bar-.

  14. Schottky barriers based on metal nanoparticles deposited on InP epitaxial layers

    Czech Academy of Sciences Publication Activity Database

    Grym, Jan; Yatskiv, Roman

    2013-01-01

    Roč. 28, č. 4 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Colloidal graphite * Epitaxial growth * Schottky barrier diodes Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  15. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study

    International Nuclear Information System (INIS)

    Zhong, Haijian; Liu, Zhenghui; Xu, Gengzhao; Shi, Lin; Fan, Yingmin; Yang, Hui; Xu, Ke; Wang, Jianfeng; Ren, Guoqiang

    2014-01-01

    Graphene has been proposed as a material for semiconductor electronic and optoelectronic devices. Understanding the charge transport mechanisms of graphene/semiconductor Schottky barriers will be crucial for future applications. Here, we report a theoretical model to describe the transport mechanisms at the interface of graphene and semiconductors based on conventional semiconductor Schottky theory and a floating Fermi level of graphene. The contact barrier heights can be estimated through this model and be close to the values obtained from the experiments, which are lower than those of the metal/semiconductor contacts. A detailed analysis reveals that the barrier heights are as the function of the interface separations and dielectric constants, and are influenced by the interfacial states of semiconductors. Our calculations show how this behavior of lowering barrier heights arises from the Fermi level shift of graphene induced by the charge transfer owing to the unique linear electronic structure

  16. Effect of the ion bombardment on the apparent barrier height in GaAs Schottky junctions

    International Nuclear Information System (INIS)

    Horvath, Zs. J.

    1994-01-01

    The bombardment of the semiconductor with different particles often results in the change of the doping concentration at the semiconductor surface. In this paper the effects of this near-interface concentration change on the apparent and real Schottky barrier heights are discussed. Experimental results obtained in GaAs Schottky junctions prepared on ion-bombarded semiconductor surfaces are analysed, and it is shown that their electrical characteristics are strongly influenced by the near-interface concentration change due to the ion bombardment. (author). 36 refs., 2 figs

  17. Demonstration of a 4H SiC betavoltaic nuclear battery based on Schottky barrier diode

    International Nuclear Information System (INIS)

    Qiao Dayong; Yuan Weizheng; Gao Peng; Yao Xianwang; Zang Bo; Zhang Lin; Guo Hui; Zhang Hongjian

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm 2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm 2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device. (authors)

  18. Demonstration of a 4H SiC Betavoltaic Nuclear Battery Based on Schottky Barrier Diode

    International Nuclear Information System (INIS)

    Da-Yong, Qiao; Wei-Zheng, Yuan; Peng, Gao; Xian-Wang, Yao; Bo, Zang; Lin, Zhang; Hui, Guo; Hong-Jian, Zhang

    2008-01-01

    A 4H SiC betavoltaic nuclear battery is demonstrated. A Schottky barrier diode is utilized for carrier separation. Under illumination of Ni-63 source with an apparent activity of 4 mCi/cm 2 an open circuit voltage of 0.49 V and a short circuit current density of 29.44 nA/cm 2 are measured. A power conversion efficiency of 1.2% is obtained. The performance of the device is limited by low shunt resistance, backscattering and attenuation of electron energy in air and Schottky electrode. It is expected to be significantly improved by optimizing the design and processing technology of the device

  19. Effect of inhomogeneous Schottky barrier height of SnO2 nanowires device

    Science.gov (United States)

    Amorim, Cleber A.; Bernardo, Eric P.; Leite, Edson R.; Chiquito, Adenilson J.

    2018-05-01

    The current–voltage (I–V) characteristics of metal–semiconductor junction (Au–Ni/SnO2/Au–Ni) Schottky barrier in SnO2 nanowires were investigated over a wide temperature range. By using the Schottky–Mott model, the zero bias barrier height Φ B was estimated from I–V characteristics, and it was found to increase with increasing temperature; on the other hand the ideality factor (n) was found to decrease with increasing temperature. The variation in the Schottky barrier and n was attributed to the spatial inhomogeneity of the Schottky barrier height. The experimental I–V characteristics exhibited a Gaussian distribution having mean barrier heights {\\overline{{{Φ }}}}B of 0.30 eV and standard deviation σ s of 60 meV. Additionally, the Richardson modified constant was obtained to be 70 A cm‑2 K‑2, leading to an effective mass of 0.58m 0. Consequently, the temperature dependence of I–V characteristics of the SnO2 nanowire devices can be successfully explained on the Schottky–Mott theory framework taking into account a Gaussian distribution of barrier heights.

  20. Thermal activation of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height

    International Nuclear Information System (INIS)

    Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan

    2010-01-01

    This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Schottky barriers measurements through Arrhenius plots in gas sensors based on semiconductor films

    Directory of Open Access Journals (Sweden)

    F. Schipani

    2012-09-01

    Full Text Available The oxygen adsorption effects on the Schottky barriers height measurements for thick films gas sensors prepared with undoped nanometric SnO2 particles were studied. From electrical measurements, the characteristics of the intergranular potential barriers developed at intergrains were deduced. It is shown that the determination of effective activation energies from conduction vs. 1/temperature curves is not generally a correct manner to estimate barrier heights. This is due to gas adsorption/desorption during the heating and cooling processes, the assumption of emission over the barrier as the dominant conduction mechanism, and the possible oxygen diffusion into or out of the grains.

  2. Physics of Schottky-barrier change by segregation and structural disorder at metal/Si interfaces: First-principles study

    International Nuclear Information System (INIS)

    Nakayama, T.; Kobinata, K.

    2012-01-01

    Schottky-barrier changes by the segregation and structural disorder are studied using the first-principles calculations and adopting Au/Si interface. The Schottky barrier for electrons simply decreases as increasing the valency of segregated atoms from II to VI families, which variation is shown closely related to how the Si atoms are terminated at the interface. On the other hand, the structural disorders (defects) prefer to locate near the interface and the Schottky barrier for hole carriers does not change in cases of Si vacancy and Au substitution, while it increases in cases of Si and Au interstitials reflecting the appearance of Si dangling bonds.

  3. Planar edge Schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions.

    Science.gov (United States)

    Kunc, Jan; Hu, Yike; Palmer, James; Guo, Zelei; Hankinson, John; Gamal, Salah H; Berger, Claire; de Heer, Walt A

    2014-09-10

    A purely planar graphene/SiC field effect transistor is presented here. The horizontal current flow over one-dimensional tunneling barrier between planar graphene contact and coplanar two-dimensional SiC channel exhibits superior on/off ratio compared to conventional transistors employing vertical electron transport. Multilayer epitaxial graphene (MEG) grown on SiC(0001̅) was adopted as the transistor source and drain. The channel is formed by the accumulation layer at the interface of semi-insulating SiC and a surface silicate that forms after high vacuum high temperature annealing. Electronic bands between the graphene edge and SiC accumulation layer form a thin Schottky barrier, which is dominated by tunneling at low temperatures. A thermionic emission prevails over tunneling at high temperatures. We show that neglecting tunneling effectively causes the temperature dependence of the Schottky barrier height. The channel can support current densities up to 35 A/m.

  4. Operation and scalability of dopant-segregated Schottky barrier MOSFETs with recessed channels

    International Nuclear Information System (INIS)

    Shih, Chun-Hsing; Hsia, Jui-Kai

    2013-01-01

    Recessed channels were used in scaled dopant-segregated Schottky barrier MOSFETs (DS-SBMOS) to control the severe short-channel effect. The physical operation and device scalability of the DS-SBMOS resulting from the presence of recessed channels and associated gate-corners are elucidated. The coupling of Schottky and gate-corner barriers has a key function in determining the on–off switching and drain current. The gate-corner barriers divide the channel into three regions for protection from the drain penetration field. To prevent resistive degradations in the drive current, an alternative asymmetric recessed channel (ARC) without a source-side gate-corner is proposed to simultaneously optimize both the short-channel effect and drive current in the scaled DS-SBMOS. By employing the proposed ARC architecture, the DS-SBMOS devices can be successfully scaled down, making them promising candidates for next-generation CMOS devices. (paper)

  5. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  6. New GaN Schottky barrier diode employing a trench on AlGaN/GaN heterostructure

    Science.gov (United States)

    Ha, Min-Woo; Lee, Seung-Chul; Choi, Young-Hwan; Kim, Soo-Seong; Yun, Chong-Man; Han, Min-Koo

    2006-10-01

    A new GaN Schottky barrier diode employing a trench structure, which is proposed and fabricated, successfully decreases a forward voltage drop without sacrificing any other electric characteristics. The trench is located in the middle of Schottky contact during a mesa etch. The Schottky metal of Pt/Mo/Ti/Au is e-gun evaporated on the 300 nm-deep trench as well as the surface of the proposed GaN Schottky barrier diode. The trench forms the vertical Au Schottky contact and lateral Pt Schottky contact due to the evaporation sequence of Schottky metal. The forward voltage drops of the proposed diode and conventional one are 0.73 V and 1.25 V respectively because the metal work function (5.15 eV) of the vertical Au Schottky contact is considerably less than that of the lateral Pt Schottky contact (5.65 eV). The proposed diode exhibits the low on-resistance of 1.58 mΩ cm 2 while the conventional one exhibits 8.20 mΩ cm 2 due to the decrease of a forward voltage drop.

  7. External electric field effects on Schottky barrier at Gd3N@C80/Au interface

    Science.gov (United States)

    Onishi, Koichi; Nakashima, Fumihiro; Jin, Ge; Eto, Daichi; Hattori, Hayami; Miyoshi, Noriko; Kirimoto, Kenta; Sun, Yong

    2017-08-01

    The effects of the external electric field on the height of the Schottky barrier at the Gd3N@C80/Au interface were studied by measuring current-voltage characteristics at various temperatures from 200 K to 450 K. The Gd3N@C80 sample with the conduction/forbidden/valence energy band structure had a face-centered cubic crystal structure with the average grain size of several nanometers. The height of the Gd3N@C80/Au Schottky barrier was confirmed to be 400 meV at a low electric field at room temperature. Moreover, the height decreases with the increasing external electric field through a change of permittivity in the Gd3N@C80 sample due to a polarization of the [Gd3] 9 +-[N3 -+("separators="|C80 ) 6 -] dipoles in the Gd3N@C80 molecule. The field-dependence of the barrier height can be described using a power math function of the electric field strength. The results of the field-dependent barrier height indicate that the reduction in the Schottky barrier is due to an image force effect of the transport charge carrier at the Gd3N@C80/Au interface.

  8. Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

    Science.gov (United States)

    Bera, Swades Ranjan; Saha, Satyajit

    2018-04-01

    CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV-Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. I- V and C- V characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance-voltage measurements.

  9. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M.; Mahmood, K.; Rabia, S.; BM, S.; Shahid, M. Y.; Hasan, M. A.

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 - 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Fap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Fap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(ds) (0.02 V) at zero bais. (author)

  10. Investigation of temperature dependent barrier height of Au/ZnO/Si schottky diodes

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Rabia, S; M, Samaa B; Shahid, M Y; Hasan, M A

    2014-01-01

    In this study, temperature dependent current-voltage (I-V) measurements have been performed to investigate the inhomogeneity in the temperature dependent barrier heights of Au/ZnO/Si Schottky barrier diode in the temperature range 150 – 400K. The room temperature values for ideality factor and barrier height were found to be 2.9 and 0.60 eV respectively indicating the inhomogenity in the barrier heights of grown samples. The Richardson plot and ideality factor verses barrier height graph were also drawn to verified the discontinuity between Au and ZnO. This barrier height inhomogenity was explained by applying Gaussian distribution model. The extrapolation of the linear Φ ap (n) plot to n= 1 has given a homogeneous barrier height of approximately 1.1 eV. Φ ap versus 1/T plot was drawn to obtain the values of mean barrier height for Au/ZnO/Si Schottky diode (1.1 eV) and standard deviation(δ s ) (0.02 V) at zero bais

  11. Electrical degradation of double-Schottky barrier in ZnO varistors

    Energy Technology Data Exchange (ETDEWEB)

    He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Cheng, Chenlu; Hu, Jun [The State Key Lab of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2016-03-15

    Researches on electrical degradation of double-Schottky barrier in ZnO varistors are reviewed, aimed at the constitution of a full picture of universal degradation mechanism within the perspective of defect. Recent advances in study of ZnO materials by atomic-scale first-principles calculations are partly included and discussed, which brings to our attention distinct cognition on the native point defects and their profound impact on degradation.

  12. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    Science.gov (United States)

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  13. Simulation studies of current transport in metal-insulator-semiconductor Schottky barrier diodes

    International Nuclear Information System (INIS)

    Chand, Subhash; Bala, Saroj

    2007-01-01

    The current-voltage characteristics of Schottky diodes with an interfacial insulator layer are analysed by numerical simulation. The current-voltage data of the metal-insulator-semiconductor Schottky diode are simulated using thermionic emission diffusion (TED) equation taking into account an interfacial layer parameter. The calculated current-voltage data are fitted into ideal TED equation to see the apparent effect of interfacial layer parameters on current transport. Results obtained from the simulation studies shows that with mere presence of an interfacial layer at the metal-semiconductor interface the Schottky contact behave as an ideal diode of apparently high barrier height (BH), but with same ideality factor and series resistance as considered for a pure Schottky contact without an interfacial layer. This apparent BH decreases linearly with decreasing temperature. The effects giving rise to high ideality factor in metal-insulator-semiconductor diode are analysed. Reasons for observed temperature dependence of ideality factor in experimentally fabricated metal-insulator-semiconductor diodes are analysed and possible mechanisms are discussed

  14. 63Ni schottky barrier nuclear battery of 4H-SiC

    International Nuclear Information System (INIS)

    Xiao-Ying Li; Yong Ren; Xue-Jiao Chen; Da-Yong Qiao; Wei-Zheng Yuan

    2011-01-01

    The design, fabrication, and testing of a 4H-SiC Schottky betavoltaic nuclear battery based on MEMS fabrication technology are presented in this paper. It uses a Schottky diode with an active area of 3.14 mm 2 to collect the charge from a 4 mCi/cm 2 63 Ni source. Some of the critical steps in process integration for fabricating silicon carbide-based Schottky diode were addressed. A prototype of this battery was fabricated and tested under the illumination of the 63 Ni source with an activity of 0.12 mCi. An open circuit voltage (V OC ) of 0.27 V and a short circuit current density (J SC ) of 25.57 nA/cm 2 are measured. The maximum output power density (P max ) of 4.08 nW/cm 2 and power conversion efficiency (η) of 1.01% is obtained. The performance of this battery is expected to be significantly improved by using larger activity and optimizing the design and processing technology of the battery. By achieving comparable performance with previously constructed p-n or p-i-n junction energy conversion structures, the Schottky barrier diode proves to be a feasible approach to achieve practical betavoltaics. (author)

  15. Tunable Schottky barrier and high responsivity in graphene/Si-nanotip optoelectronic device

    Science.gov (United States)

    Di Bartolomeo, Antonio; Giubileo, Filippo; Luongo, Giuseppe; Iemmo, Laura; Martucciello, Nadia; Niu, Gang; Fraschke, Mirko; Skibitzki, Oliver; Schroeder, Thomas; Lupina, Grzegorz

    2017-03-01

    We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphene/Si heterojunctions alternate to graphene areas exposed to the electric field of the Si substrate, which acts both as diode cathode and transistor gate, results in a two-terminal barristor with single-bias control of the Schottky barrier. The nanotip patterning favors light absorption, and the enhancement of the electric field at the tip apex improves photo-charge separation and enables internal gain by impact ionization. These features render the device a photodetector with responsivity (3 {{A}} {{{W}}}-1 for white LED light at 3 {{mW}} {{{cm}}}-2 intensity) almost an order of magnitude higher than commercial photodiodes. We extensively characterize the voltage and the temperature dependence of the device parameters, and prove that the multi-junction approach does not add extra-inhomogeneity to the Schottky barrier height distribution. We also introduce a new phenomenological graphene/semiconductor diode equation, which well describes the experimental I-V characteristics both in forward and reverse bias.

  16. Reducing the Schottky barrier between few-layer MoTe2 and gold

    Science.gov (United States)

    Qi, Dianyu; Wang, Qixing; Han, Cheng; Jiang, Jizhou; Zheng, Yujie; Chen, Wei; Zhang, Wenjing; Thye Shen Wee, Andrew

    2017-12-01

    Schottky barriers greatly influence the performance of optoelectronic devices. Schottky barriers can be reduced by harnessing the polymorphism of 2D metal transition dichalcogenides, since both semiconducting and metallic phases exist. However, high energy, high temperature or chemicals are normally required for phase transformation, or the processes are complex. In this work, stable low-resistance contacts between few layer MoTe2 flakes and gold electrodes are achieved by a simple thermal annealing treatment at low temperature (200-400 °C). The resulting Schottky barrier height of the annealed MoTe2/Au interface is low (~23 meV). A new Raman A g mode of the 1T‧ metallic phase of MoTe2 on gold electrode is observed, indicating that the low-resistance contact is due to the phase transition of 2H-MoTe2. The gold substrate plays an important role in the transformation, and a higher gold surface roughness increases the transformation rate. With this method, the mobility and ON-state current of the MoTe2 transistor increase by ~3-4 orders of magnitude, the photocurrent of vertically stacked graphene/MoTe2/Au device increases ~300%, and the response time decreases by ~20%.

  17. Very low Schottky barrier height at carbon nanotube and silicon carbide interface

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, Masafumi, E-mail: inaba-ma@ruri.waseda.jp; Suzuki, Kazuma; Shibuya, Megumi; Lee, Chih-Yu [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Masuda, Yoshiho; Tomatsu, Naoya; Norimatsu, Wataru; Kusunoki, Michiko [EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Hiraiwa, Atsushi [Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); Kawarada, Hiroshi [Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Institute for Nanoscience and Nanotechnology, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041 (Japan); The Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo 169-0051 (Japan)

    2015-03-23

    Electrical contacts to silicon carbide with low contact resistivity and high current durability are crucial for future SiC power devices, especially miniaturized vertical-type devices. A carbon nanotube (CNT) forest formed by silicon carbide (SiC) decomposition is a densely packed forest, and is ideal for use as a heat-dissipative ohmic contact in SiC power transistors. The contact resistivity and Schottky barrier height in a Ti/CNT/SiC system with various SiC dopant concentrations were evaluated in this study. Contact resistivity was evaluated in relation to contact area. The Schottky barrier height was calculated from the contact resistivity. As a result, the Ti/CNT/SiC contact resistivity at a dopant concentration of 3 × 10{sup 18 }cm{sup −3} was estimated to be ∼1.3 × 10{sup −4} Ω cm{sup 2} and the Schottky barrier height of the CNT/SiC contact was in the range of 0.40–0.45 eV. The resistivity is relatively low for SiC contacts, showing that CNTs have the potential to be a good ohmic contact material for SiC power electronic devices.

  18. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75083 (United States)

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2{prime}-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM{close_quote}s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM{close_quote}s on the Ag surface potential. {ital Ab} {ital initio} Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. {copyright} {ital 1996 The American Physical Society.}

  19. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    International Nuclear Information System (INIS)

    Campbell, I.H.; Rubin, S.; Zawodzinski, T.A.; Kress, J.D.; Martin, R.L.; Smith, D.L.; Barashkov, N.N.; Ferraris, J.P.

    1996-01-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy], 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM close-quote s) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM close-quote s on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices. copyright 1996 The American Physical Society

  20. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers

    Science.gov (United States)

    Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1996-11-01

    We demonstrate tuning of Schottky energy barriers in organic electronic devices by utilizing chemically tailored electrodes. The Schottky energy barrier of Ag on poly[2-methoxy, 5-(2'-ethyl-hexyloxy)- 1,4-phenylene was tuned over a range of more than 1 eV by using self-assembled monolayers (SAM's) to attach oriented dipole layers to the Ag prior to device fabrication. Kelvin probe measurements were used to determine the effect of the SAM's on the Ag surface potential. Ab initio Hartree-Fock calculations of the molecular dipole moments successfully describe the surface potential changes. The chemically tailored electrodes were then incorporated in organic diode structures and changes in the metal/organic Schottky energy barriers were measured using an electroabsorption technique. These results demonstrate the use of self-assembled monolayers to control metal/organic interfacial electronic properties. They establish a physical principle for manipulating the relative energy levels between two materials and demonstrate an approach to improve metal/organic contacts in organic electronic devices.

  1. Effect of hydrogen on the diode properties of reactively sputtered amorphous silicon Schottky barrier structures

    International Nuclear Information System (INIS)

    Morel, D.L.; Moustakas, T.D.

    1981-01-01

    The diode properties of reactively sputtered hydrogenated amorphous silicon Schottky barrier structures (a-SiH/sub x/ /Pt) have been investigated. We find a systematic relation between the changes in the open circuit voltage, the barrier height, and the diode quality factor. These results are accounted for by assuming that hydrogen incorporation into the amorphous silicon network removes states from the top of the valence band and sharpens the valence-band tail. Interfacial oxide layers play a significant role in the low hydrogen content, and low band-gap regime

  2. Characteristics of Al/p-AgGaTe2 polycrystalline thin film Schottky barrier diode

    International Nuclear Information System (INIS)

    Patel, S.S.; Patel, B.H.; Patel, T.S.

    2008-01-01

    An Al/p-AgGaTe 2 polycrystalline thin film schottky barrier diode have been prepared by flash-evaporation of p-AgGaTe 2 onto a pre-deposited film of aluminium. The current-voltage, capacitance-voltage and photoresponse of the diode have been investigated. The important physical parameter such as barrier height of the fabricated diode was derived from these measurements. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Determination of the Schottky barrier height of ferromagnetic contacts to few-layer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Anugrah, Yoska; Robbins, Matthew C.; Koester, Steven J. [Department of Electrical and Computer Engineering, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455 (United States); Crowell, Paul A. [School of Physics and Astronomy, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455 (United States)

    2015-03-09

    Phosphorene, the 2D analogue of black phosphorus, is a promising material for studying spin transport due to its low spin-orbit coupling and its ½ nuclear spin, which could allow the study of hyperfine effects. In this work, the properties of permalloy (Py) and cobalt (Co) contacts to few-layer phosphorene are presented. The Schottky barrier height was extracted and determined as a function of gate bias. Flat-band barrier heights, relative to the valence band edge, of 110 meV and 200 meV were determined for Py and Co, respectively. These results are important for future studies of spin transport in phosphorene.

  4. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.

    Science.gov (United States)

    Ye, Yu; Dai, Yu; Dai, Lun; Shi, Zujin; Liu, Nan; Wang, Fei; Fu, Lei; Peng, Ruomin; Wen, Xiaonan; Chen, Zhijian; Liu, Zhongfan; Qin, Guogang

    2010-12-01

    High-performance single CdS nanowire (NW) as well as nanobelt (NB) Schottky junction solar cells were fabricated. Au (5 nm)/graphene combined layers were used as the Schottky contact electrodes to the NWs (NBs). Typical as-fabricated NW solar cell shows excellent photovoltaic behavior with an open circuit voltage of ∼0.15 V, a short circuit current of ∼275.0 pA, and an energy conversion efficiency of up to ∼1.65%. The physical mechanism of the combined Schottky electrode was discussed. We attribute the prominent capability of the devices to the high-performance Schottky combined electrode, which has the merits of low series resistance, high transparency, and good Schottky contact to the CdS NW (NB). Besides, a promising site-controllable patterned graphene transfer method, which has the advantages of economizing graphene material and free from additional etching process, was demonstrated in this work. Our results suggest that semiconductor NWs (NBs) are promising materials for novel solar cells, which have potential application in integrated nano-optoelectronic systems.

  5. Schottky Barrier Height Tuning via the Dopant Segregation Technique through Low-Temperature Microwave Annealing.

    Science.gov (United States)

    Fu, Chaochao; Zhou, Xiangbiao; Wang, Yan; Xu, Peng; Xu, Ming; Wu, Dongping; Luo, Jun; Zhao, Chao; Zhang, Shi-Li

    2016-04-27

    The Schottky junction source/drain structure has great potential to replace the traditional p/n junction source/drain structure of the future ultra-scaled metal-oxide-semiconductor field effect transistors (MOSFETs), as it can form ultimately shallow junctions. However, the effective Schottky barrier height (SBH) of the Schottky junction needs to be tuned to be lower than 100 meV in order to obtain a high driving current. In this paper, microwave annealing is employed to modify the effective SBH of NiSi on Si via boron or arsenic dopant segregation. The barrier height decreased from 0.4-0.7 eV to 0.2-0.1 eV for both conduction polarities by annealing below 400 °C. Compared with the required temperature in traditional rapid thermal annealing, the temperature demanded in microwave annealing is ~60 °C lower, and the mechanisms of this observation are briefly discussed. Microwave annealing is hence of high interest to future semiconductor processing owing to its unique capability of forming the metal/semiconductor contact at a remarkably lower temperature.

  6. Fabrication of 4H-SiC Schottky barrier diodes with high breakdown voltages

    CERN Document Server

    Kum, B H; Shin, M W; Park, J D

    1999-01-01

    This paper discusses the fabrication and the breakdown characteristics of 4H-SiC Schottky barrier diodes (SBDs). Optimal processing conditions for the ohmic contacts were extracted using the transmission-line method (TLM) and were applied to the device fabrication. The Ti/4H-SiC SBDs with Si sub x B sub y passivation showed a maximum reverse breakdown voltage of 268 V with a forward current density as high as 70 mA/cm sup 2 at a forward voltage of 2 V. The breakdown of the Pt. 4H-SiC SBDs without any passivation occurred at near 110 V. It is concluded that the breakdown enhancement in the Ti/4H-SiC SBDs can be attributed to the passivation; otherwise, excess surface charge near the edge of the Schottky contact would lead to electric fields of sufficient magnitude to cause field emission.

  7. Fabrication and characteristics of a 4H-SiC junction barrier Schottky diode

    International Nuclear Information System (INIS)

    Chen Fengping; Zhang Yuming; Lue Hongliang; Zhang Yimen; Guo Hui; Guo Xin

    2011-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently, and the other is processed by depositing a Schottky metal multi-layer on the whole anode. The reverse performances are compared to find the influences of these factors. The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage, and with independent P-type ohmic contact manufacturing, the reverse performance of 4H-SiC JBS diodes can be improved effectively. Furthermore, the P-type ohmic contact is studied in this work. (semiconductor devices)

  8. Calculation of the Schottky barrier and current–voltage characteristics of metal–alloy structures based on silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Altuhov, V. I., E-mail: altukhovv@mail.ru; Kasyanenko, I. S.; Sankin, A. V. [North Caucasian Federal University, Institute of Service, Tourism and Design (Branch) (Russian Federation); Bilalov, B. A. [Dagestan State Technical University (Russian Federation); Sigov, A. S. [Moscow State Technical University of Radio Engineering, Electronics, and Automation (Russian Federation)

    2016-09-15

    A simple but nonlinear model of the defect density at a metal–semiconductor interface, when a Schottky barrier is formed by surface defects states localized at the interface, is developed. It is shown that taking the nonlinear dependence of the Fermi level on the defect density into account leads to a Schottky barrier increase by 15–25%. The calculated barrier heights are used to analyze the current–voltage characteristics of n-M/p-(SiC){sub 1–x}(AlN){sub x} structures. The results of calculations are compared to experimental data.

  9. InGaAs/InP heteroepitaxial Schottky barrier diodes for terahertz applications

    Science.gov (United States)

    Bhapkar, Udayan V.; Li, Yongjun; Mattauch, Robert J.

    1992-01-01

    This paper explores the feasibility of planar, sub-harmonically pumped, anti-parallel InGaAs/InP heteroepitaxial Schottky diodes for terahertz applications. We present calculations of the (I-V) characteristics of such diodes using a numerical model that considers tunneling. We also present noise and conversion loss predictions of diode mixers operated at 500 GHz, and obtained from a multi-port mixer analysis, using the I-V characteristics predicted by our model. Our calculations indicate that InGaAs/InP heteroepitaxial Schottky barrier diodes are expected to have an I-V characteristic with an ideality factor comparable to that of GaAs Schottky diodes. However, the reverse saturation current of InGaAs/InP diodes is expected to be much greater than that of GaAs diodes. These predictions are confirmed by experiment. The mixer analyses predict that sub-harmonically pumped anti-parallel InGaAs/InP diode mixers are expected to offer a 2 dB greater conversion loss and a somewhat higher single sideband noise temperature than their GaAs counterparts. More importantly, the InGaAs/InP devices are predicted to require only one-tenth of the local oscillator power required by similar GaAs diodes.

  10. Subthreshold Schottky-barrier thin-film transistors with ultralow power and high intrinsic gain

    Science.gov (United States)

    Lee, Sungsik; Nathan, Arokia

    2016-10-01

    The quest for low power becomes highly compelling in newly emerging application areas related to wearable devices in the Internet of Things. Here, we report on a Schottky-barrier indium-gallium-zinc-oxide thin-film transistor operating in the deep subthreshold regime (i.e., near the OFF state) at low supply voltages (400) that was both bias and geometry independent. The transistor reported here is useful for sensor interface circuits in wearable devices where high current sensitivity and ultralow power are vital for battery-less operation.

  11. Sub 20 meV Schottky barriers in metal/MoTe2 junctions

    Science.gov (United States)

    Townsend, Nicola J.; Amit, Iddo; Craciun, Monica F.; Russo, Saverio

    2018-04-01

    The newly emerging class of atomically-thin materials has shown a high potential for the realisation of novel electronic and optoelectronic components. Amongst this family, semiconducting transition metal dichalcogenides (TMDCs) are of particular interest. While their band gaps are compatible with those of conventional solid state devices, they present a wide range of exciting new properties that is bound to become a crucial ingredient in the future of electronics. To utilise these properties for the prospect of electronics in general, and long-wavelength-based photodetectors in particular, the Schottky barriers formed upon contact with a metal and the contact resistance that arises at these interfaces have to be measured and controlled. We present experimental evidence for the formation of Schottky barriers as low as 10 meV between MoTe2 and metal electrodes. By varying the electrode work functions, we demonstrate that Fermi level pinning due to metal induced gap states at the interfaces occurs at 0.14 eV above the valence band maximum. In this configuration, thermionic emission is observed for the first time at temperatures between 40 K and 75 K. Finally, we discuss the ability to tune the barrier height using a gate electrode.

  12. Influence of Asymmetric Contact Form on Contact Resistance and Schottky Barrier, and Corresponding Applications of Diode.

    Science.gov (United States)

    Zhao, Yudan; Xiao, Xiaoyang; Huo, Yujia; Wang, Yingcheng; Zhang, Tianfu; Jiang, Kaili; Wang, Jiaping; Fan, Shoushan; Li, Qunqing

    2017-06-07

    We have fabricated carbon nanotube and MoS 2 field-effect transistors with asymmetric contact forms of source-drain electrodes, from which we found the current directionality of the devices and different contact resistances under the two current directions. By designing various structures, we can conclude that the asymmetric electrical performance was caused by the difference in the effective Schottky barrier height (Φ SB ) caused by the different contact forms. A detailed temperature-dependent study was used to extract and compare the Φ SB for both contact forms of CNT and MoS 2 devices; we found that the Φ SB for the metal-on-semiconductor form was much lower than that of the semiconductor-on-metal form and is suitable for all p-type, n-type, or ambipolar semiconductors. This conclusion is meaningful with respect to the design and application of nanomaterial electronic devices. Additionally, using the difference in barrier height caused by the contact forms, we have also proposed and fabricated Schottky barrier diodes with a current ratio up to 10 4 ; rectifying circuits consisting of these diodes were able to work in a wide frequency range. This design avoided the use of complex chemical doping or heterojunction methods to achieve fundamental diodes that are relatively simple and use only a single material; these may be suitable for future application in nanoelectronic radio frequency or integrated circuits.

  13. Graphene barristor, a triode device with a gate-controlled Schottky barrier.

    Science.gov (United States)

    Yang, Heejun; Heo, Jinseong; Park, Seongjun; Song, Hyun Jae; Seo, David H; Byun, Kyung-Eun; Kim, Philip; Yoo, InKyeong; Chung, Hyun-Jong; Kim, Kinam

    2012-06-01

    Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.

  14. Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors

    International Nuclear Information System (INIS)

    De-Gang, Zhao; Shuang, Zhang; Wen-Bao, Liu; De-Sheng, Jiang; Jian-Jun, Zhu; Zong-Shun, Liu; Hui, Wang; Shu-Ming, Zhang; Hui, Yang; Xiao-Peng, Hao; Long, Wei

    2010-01-01

    The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Optimization of Silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si Schottky barrier

    International Nuclear Information System (INIS)

    Rahmani, Faezeh; Khosravinia, Hossein

    2016-01-01

    Theoretical studies on the optimization of Silicon (Si) parameters as the base of betavoltaic battery have been presented using Monte Carlo simulations and the state equations in semiconductor to obtain maximum power. Si with active area of 1 cm 2 has been considered in p-n junction and Schottky barrier structure to collect the radiation induced-charge from 10 mCi cm −2 of Nickle-63 ( 63 Ni) Source. The results show that the betavoltaic conversion efficiency in the Si p-n structure is about 2.7 times higher than that in the Ni/Si Schottky barrier structure. - Highlights: • Silicon parameters were studied in betavoltaic batteries. • Studied betavoltaic batteries include p-n and Schottky barrier structures. • The p-n structure has higher conversion efficiency.

  16. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    Science.gov (United States)

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  17. Effect of annealing temperature on electrical properties of Au/polyvinyl alcohol/n-InP Schottky barrier structure

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Reddy, M. Siva Pratap; Kumar, A. Ashok; Choi, Chel-Jong

    2012-01-01

    In the present work, thin film of polyvinyl alcohol (PVA) is fabricated on n-type InP substrate as an interfacial layer for electronic modification of Au/n-InP Schottky contact. The electrical characteristics of Au/PVA/n-InP Schottky diode are determined at annealing temperature in the range of 100–300 °C by current–voltage (I-V) and capacitance–voltage (C-V) methods. The Schottky barrier height and ideality factor (n) values of the as-deposited Au/PVA/n-InP diode are obtained at room temperature as 0.66 eV (I-V), 0.82 eV (C-V) and 1.32, respectively. Upon annealing at 200 °C in nitrogen atmosphere for 1 min, the barrier height value increases to 0.81 eV (I-V), 0.99 eV (C-V) and ideality factor decreases to 1.18. When the contact is annealed at 300 °C, the barrier height value decreases to 0.77 eV (I-V), 0.96 eV (C-V) and ideality factor increases to 1.22. It is observed that the interfacial layer of PVA increases the barrier height by the influence of the space charge region of the Au/n-InP Schottky junction. The discrepancy between Schottky barrier heights calculated from I-V and C-V measurements is also explained. Further, Cheung's functions are used to extract the series resistance of Au/PVA/n-InP Schottky diode. The interface state density as determined by Terman's method is found to be 1.04 × 10 12 and 0.59 × 10 12 cm −2 eV −1 for the as-deposited and 200 °C annealed Au/PVA/n-InP Schottky diodes. Finally, it is seen that the Schottky diode parameters changed with increase in the annealing temperature. - Highlights: ► Electrical properties of Au/polyvinyl alcohol (PVA)/n-InP structure have been studied. ► The Au/PVA/n-InP Schottky structure showed a good rectifying behavior. ► A maximum barrier height is obtained when the contact is annealed at 200 °C. ► Interface state density found to be 0.59 × 10 12 cm −2 eV −1 for 200 °C annealed contact. ► Significant effect of interface state density and series resistance on electrical

  18. Novel field-effect schottky barrier transistors based on graphene-MoS 2 heterojunctions

    KAUST Repository

    Tian, He

    2014-08-11

    Recently, two-dimensional materials such as molybdenum disulphide (MoS 2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5-20 cm2/V.s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V.s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics.

  19. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole

    Science.gov (United States)

    Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei

    2017-03-01

    The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.

  20. Modeling of 4H—SiC multi-floating-junction Schottky barrier diode

    International Nuclear Information System (INIS)

    Hong-Bin, Pu; Lin, Cao; Zhi-Ming, Chen; Jie, Ren; Ya-Gong, Nan

    2010-01-01

    This paper develops a new and easy to implement analytical model for the specific on-resistance and electric field distribution along the critical path for 4H—SiC multi-floating junction Schottky barrier diode. Considering the charge compensation effects by the multilayer of buried opposite doped regions, it improves the breakdown voltage a lot in comparison with conventional one with the same on-resistance. The forward resistance of the floating junction Schottky barrier diode consists of several components and the electric field can be understood with superposition concept, both are consistent with MEDICI simulation results. Moreover, device parameters are optimized and the analyses show that in comparison with one layer floating junction, multilayer of floating junction layer is an effective way to increase the device performance when specific resistance and the breakdown voltage are traded off. The results show that the specific resistance increases 3.2 mΩ·cm 2 and breakdown voltage increases 422 V with an additional floating junction for the given structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions

    Science.gov (United States)

    Tian, He; Tan, Zhen; Wu, Can; Wang, Xiaomu; Mohammad, Mohammad Ali; Xie, Dan; Yang, Yi; Wang, Jing; Li, Lain-Jong; Xu, Jun; Ren, Tian-Ling

    2014-01-01

    Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5–20 cm2/V·s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where the characteristics of high mobility from graphene and high on-off ratio from MoS2 are properly balanced in the novel transistors. Large modulation on the device current (on/off ratio of 105) is achieved by adjusting the backgate (through 300 nm SiO2) voltage to modulate the graphene-MoS2 Schottky barrier. Moreover, the field effective mobility of the FESBT is up to 58.7 cm2/V·s. Our theoretical analysis shows that if the thickness of oxide is further reduced, a subthreshold swing (SS) of 40 mV/decade can be maintained within three orders of drain current at room temperature. This provides an opportunity to overcome the limitation of 60 mV/decade for conventional CMOS devices. The FESBT implemented with a high on-off ratio, a relatively high mobility and a low subthreshold promises low-voltage and low-power applications for future electronics. PMID:25109609

  2. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    OpenAIRE

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe2 vdW interface is ...

  3. Leakage current reduction of vertical GaN junction barrier Schottky diodes using dual-anode process

    Science.gov (United States)

    Hayashida, Tetsuro; Nanjo, Takuma; Furukawa, Akihiko; Watahiki, Tatsuro; Yamamuka, Mikio

    2018-04-01

    The origin of the leakage current of a trench-type vertical GaN diode was discussed. We found that the edge of p-GaN is the main leakage spot. To reduce the reverse leakage current at the edge of p-GaN, a dual-anode process was proposed. As a result, the reverse blocking voltage defined at the leakage current density of 1 mA/cm2 of a vertical GaN junction barrier Schottky (JBS) diode was improved from 780 to 1,190 V, which is the highest value ever reported for vertical GaN Schottky barrier diodes (SBDs).

  4. A planar Al-Si Schottky barrier metal–oxide–semiconductor field effect transistor operated at cryogenic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Purches, W. E. [School of Physics, UNSW, Sydney 2052 (Australia); Rossi, A.; Zhao, R. [School of Electrical Engineering and Telecommunications, UNSW, Sydney 2052 (Australia); Kafanov, S.; Duty, T. L. [School of Physics, UNSW, Sydney 2052 (Australia); Centre for Engineered Quantum Systems (EQuS), School of Physics, UNSW, Sydney 2052 (Australia); Dzurak, A. S. [School of Electrical Engineering and Telecommunications, UNSW, Sydney 2052 (Australia); Australian Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), UNSW, Sydney 2052 (Australia); Rogge, S.; Tettamanzi, G. C., E-mail: g.tettamanzi@unsw.edu.au [School of Physics, UNSW, Sydney 2052 (Australia); Australian Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), UNSW, Sydney 2052 (Australia)

    2015-08-10

    Schottky Barrier-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a device architecture where the gate electrode is self-aligned with the device channel and overlaps the source and drain electrodes. This facilitates a sub-5 nm gap between the source/drain and channel, and no spacers are required. At cryogenic temperatures, such devices function as p-MOS Tunnel FETs, as determined by the Schottky barrier at the Al-Si interface, and as a further advantage, fabrication processes are compatible with both CMOS and superconducting logic technology.

  5. Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

    Science.gov (United States)

    Baeumer, Christoph; Schmitz, Christoph; Marchewka, Astrid; Mueller, David N.; Valenta, Richard; Hackl, Johanna; Raab, Nicolas; Rogers, Steven P.; Khan, M. Imtiaz; Nemsak, Slavomir; Shim, Moonsub; Menzel, Stephan; Schneider, Claus Michael; Waser, Rainer; Dittmann, Regina

    2016-08-01

    The continuing revolutionary success of mobile computing and smart devices calls for the development of novel, cost- and energy-efficient memories. Resistive switching is attractive because of, inter alia, increased switching speed and device density. On electrical stimulus, complex nanoscale redox processes are suspected to induce a resistance change in memristive devices. Quantitative information about these processes, which has been experimentally inaccessible so far, is essential for further advances. Here we use in operando spectromicroscopy to verify that redox reactions drive the resistance change. A remarkable agreement between experimental quantification of the redox state and device simulation reveals that changes in donor concentration by a factor of 2-3 at electrode-oxide interfaces cause a modulation of the effective Schottky barrier and lead to >2 orders of magnitude change in device resistance. These findings allow realistic device simulations, opening a route to less empirical and more predictive design of future memory cells.

  6. Characterization of Schottky barrier diodes fabricated from electrochemical oxidation of {alpha} phase brass

    Energy Technology Data Exchange (ETDEWEB)

    Bond, John W., E-mail: jwb13@le.ac.u [Forensic Research Centre, University of Leicester, Leicester LE1 7 EA (United Kingdom)

    2011-04-01

    By careful selection of chloride ion concentration in aqueous sodium chloride, electrochemical oxidation of {alpha} phase brass is shown to permit fabrication of either p-type copper (I) oxide/metal or n-type zinc oxide/metal Schottky barrier diodes. X-ray photoelectron and Auger electron spectroscopies provide evidence that barrier formation and rectifying qualities depend on the relative surface abundance of copper (I) oxide and zinc oxide. X-ray diffraction of the resulting diodes shows polycrystalline oxides embedded in amorphous oxidation products that have a lower relative abundance than the diode forming oxide. Conventional I/V characteristics of these diodes show good rectifying qualities. When neither of the oxides dominate, the semiconductor/metal junction displays an absence of rectification.

  7. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes

    Science.gov (United States)

    Konishi, Keita; Goto, Ken; Murakami, Hisashi; Kumagai, Yoshinao; Kuramata, Akito; Yamakoshi, Shigenobu; Higashiwaki, Masataka

    2017-03-01

    Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n--Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ.cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current-voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

  8. Analysis of Schottky Barrier Parameters and Current Transport Properties of V/p-Type GaN Schottky Junction at Low Temperatures

    Science.gov (United States)

    Asha, B.; Harsha, Cirandur Sri; Padma, R.; Rajagopal Reddy, V.

    2018-05-01

    The electrical characteristics of a V/p-GaN Schottky junction have been investigated by current-voltage (I-V) and capacitance-voltage (C-V) characteristics under the assumption of the thermionic emission (TE) theory in the temperature range of 120-280 K with steps of 40 K. The zero-bias barrier height (ΦB0), ideality factor (n), flat-band barrier height (ΦBF) and series resistance (R S) values were evaluated and were found to be strongly temperature dependent. The results revealed that the ΦB0 values increase, whereas n, ΦFB and R S values decrease, with increasing temperature. Using the conventional Richardson plot, the mean barrier height (0.39 eV) and Richardson constant (8.10 × 10-10 Acm-2 K-2) were attained. The barrier height inhomogeneities were demonstrated by assuming a Gaussian distribution function. The interface state density (N SS) values were found to decrease with increasing temperature. The reverse leakage current mechanism of the V/p-GaN Schottky junction was found to be governed by Poole-Frenkel emission at all temperatures.

  9. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd

    2015-05-21

    Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  10. Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-05-01

    Full Text Available Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0–20 min of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung’s and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung’s methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.

  11. Features of current-voltage characteristic of nonequilibrium trench MOS barrier Schottky diode

    Science.gov (United States)

    Mamedov, R. K.; Aslanova, A. R.

    2018-06-01

    The trench MOS barrier Schottky diodes (TMBS diode) under the influence of the voltage drop of the additional electric field (AEF) appearing in the near-contact region of the semiconductor are in a nonequilibrium state and their closed external circuit flows currents in the absence of an external voltage. When an external voltage is applied to the TMBS diode, the current transmission is described by the thermionic emission theory with a specific feature. Both forward and reverse I-V characteristics of the TMBS diode consist of two parts. In the initial first part of the forward I-V characteristic there are no forward currents, but reverse saturation currents flow, in its subsequent second part the currents increase exponentially with the voltage. In the initial first part of the reverse I-V characteristic, the currents increase in an abrupt way and in the subsequent second part the saturation currents flow under the action of the image force. The mathematical expressions for forward and reverse I-V characteristic of the TMBS diode and also narrow or nanostructure Schottky diode are proposed, which are in good agreement with the results of experimental and calculated I-V characteristics.

  12. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  13. Inhomogeneous barrier height effect on the current–voltage characteristics of an Au/n-InP Schottky diode

    International Nuclear Information System (INIS)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-01-01

    We report the current–voltage (I–V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I–V characteristic in the temperature range of 280–400 K. This is to study the effect of temperature on the I–V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I–V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A * was 10.32 A·cm −2 ·K −2 , which is close to the theoretical value of 9.4 A·cm −2 ·K −2 for n-InP. The temperature dependence of the I–V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I–V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP. (paper)

  14. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode

    Science.gov (United States)

    Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine

    2015-12-01

    We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.

  15. Electrical characteristics of schottky barriers on 4H-SiC: The effects of barrier height nonuniformity

    Science.gov (United States)

    Skromme, B. J.; Luckowski, E.; Moore, K.; Bhatnagar, M.; Weitzel, C. E.; Gehoski, T.; Ganser, D.

    2000-03-01

    Electrical properties, including current-voltage (I-V) and capacitance-voltage (C-V) characteristics, have been measured on a large number of Ti, Ni, and Pt-based Schottky barrier diodes on 4H-SiC epilayers. Various nonideal behaviors are frequently observed, including ideality factors greater than one, anomalously low I-V barrier heights, and excess leakage currents at low forward bias and in reverse bias. The nonidealities are highly nonuniform across individual wafers and from wafer to wafer. We find a pronounced linear correlation between I-V barrier height and ideality factor for each metal, while C-V barrier heights remain constant. Electron beam induced current (EBIC) imaging strongly suggests that the nonidealities result from localized low barrier height patches. These patches are related to discrete crystal defects, which become visible as recombination centers in the EBIC images. Alternative explanations involving generation-recombination current, uniform interfacial layers, and effects related to the periphery are ruled out.

  16. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations

    Science.gov (United States)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-01

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  17. Schottky barrier at graphene/metal oxide interfaces: insight from first-principles calculations.

    Science.gov (United States)

    Cheng, Kai; Han, Nannan; Su, Yan; Zhang, Junfeng; Zhao, Jijun

    2017-02-06

    Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interactions between GR and several MOs (including Cu2O, NiO). The Schottky barrier height (SBH) in these metal/semiconductor heterostructures are computed using the macroscopically averaged electrostatic potential method, and the role of interfacial dipole is discussed. The calculated SBHs below 1 eV suggest low contact resistance; thus these GR/MO composites are favorable anode materials for better lithium ion batteries.

  18. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    Science.gov (United States)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  19. Field plate engineering for GaN-based Schottky barrier diodes

    International Nuclear Information System (INIS)

    Lei Yong; Shi Hongbiao; Lu Hai; Chen Dunjun; Zhang Rong; Zheng Youdou

    2013-01-01

    The practical design of GaN-based Schottky barrier diodes (SBDs) incorporating a field plate (FP) structure necessitates an understanding of their working mechanism and optimization criteria. In this work, the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters. By comparing three representative dielectric materials (SiO 2 , Si 3 N 4 and Al 2 O 3 ) selected for fabricating FPs, it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications. (semiconductor devices)

  20. A simulation study of 6H-SiC Schottky barrier source/drain MOSFET

    International Nuclear Information System (INIS)

    Wang Yuan; Zhang Yimen; Zhang Yuming; Tang Xiaoyan

    2003-01-01

    A novel SiC metal-oxide-semiconductor field-effect transistor (SiC SBSD-MOSFET) with Schottky barrier contacts for source and drain is presented in this paper. This kind of device gives a fabrication advantage of avoiding the steps of ion implantation and annealing at high temperatures of the conventional SiC MOSFET. Also it has no problems of crystal damage caused by ion implantation and low activation rate of implanted atoms. The operational mechanism of this device is analyzed and its characteristics are comparable to the conventional SiC MOSFET from the simulation with MEDICI. The effects of different metal workfunctions, oxide thickness, and gate length on the device performance are discussed

  1. Formation and Schottky barrier height of Au contacts to CuInSe2

    International Nuclear Information System (INIS)

    Nelson, A.J.; Gebhard, S.; Kazmerski, L.L.; Colavita, E.; Engelhardt, M.; Hoechst, H.

    1991-01-01

    Synchrotron radiation soft x-ray photoemission spectroscopy was used to investigate the development of the electronic structure at the Au/CuInSe 2 interface. Au overlayers were deposited in steps on single-crystal p and n-type CuInSe 2 at ambient temperature. Reflection high-energy electron diffraction analysis before and during growth of the Au overlayers indicated that the Au overlayer was amorphous. Photoemission measurements were acquired after each growth in order to observe changes in the valence band electronic structure as well as changes in the In 4d and Se 3d core lines. The results were used to correlate the interface chemistry with the electronic structure at these interfaces and to directly determine the Au/CuInSe 2 Schottky barrier height

  2. Schottky barrier diode embedded AlGaN/GaN switching transistor

    International Nuclear Information System (INIS)

    Park, Bong-Ryeol; Lee, Jung-Yeon; Lee, Jae-Gil; Lee, Dong-Myung; Cha, Ho-Young; Kim, Moon-Kyung

    2013-01-01

    We developed a Schottky barrier diode (SBD) embedded AlGaN/GaN switching transistor to allow negative current flow during off-state condition. An SBD was embedded in a recessed normally-off AlGaN/GaN-on-Si metal-oxide-semiconductor heterostructure field-effect transistor (MOSHFET). The fabricated device exhibited normally-off characteristics with a gate threshold voltage of 2.8 V, a diode turn-on voltage of 1.2 V, and a breakdown voltage of 849 V for the anode-to-drain distance of 8 µm. An on-resistance of 2.66 mΩcm 2 was achieved at a gate voltage of 16 V in the forward transistor mode. Eliminating the need for an external diode, the SBD embedded switching transistor has advantages of significant reduction in parasitic inductance and chip area. (paper)

  3. Effect of dissolved hydrogen on Schottky barrier height of Fe-Cr alloy heterojunction

    Science.gov (United States)

    Berahim, A. N.; Zaharudin, M. Z.; Ani, M. H.; Arifin, S. K.

    2018-01-01

    The presence of water vapour at high temperature oxidation has certain effects on ferritic alloy in comparison to dry environment. It is hypothesized that at high temperature; water vapour provides hydrogen, which will dissolve into ferritic alloy substrate and altering their electronic state at the metal-oxide interface. This work aimed to clarify the change in electronic state of metal-oxide heterojunction with the presence of hydrogen/water vapour. In this study, the Schottky Barrier (SB) was created by sputtering Cr2O3 onto prepared samples by using RF Magnetron sputtering machine. The existence of Fe/Cr2O3 junction was characterized by using XRD. The surfaces were observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM). The samples were then exposed in dry and humid condition at temperature of 473 K and 1073 K. In dry condition, 100% Ar is flown inside the furnace, while in wet condition mixture of 95% Ar and 5% H was used. I-V measurement of the junction was done to determine the Schottky Barrier Height(SBH) of the samples in the corresponding ambient. The results show that in Fe/Cr2O3 junction, with presence of hydrogen at temperature 473 K; the SBH was reduced by the scale factor of 1.054 and at 1073 K in wet ambient by factor of 1.068. Meanwhile, in Fe-Cr/Cr2O3 junction with presence of hydrogen, the value of SBH was increased by scale factor of 1.068 at temperature 473 K while at 1073 K, the SBH also increased by factor of 1.009.

  4. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    International Nuclear Information System (INIS)

    Saha, A.R.; Chattopadhyay, S.; Bose, C.; Maiti, C.K.

    2005-01-01

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region

  5. Technology CAD of silicided Schottky barrier MOSFET for elevated source-drain engineering

    Energy Technology Data Exchange (ETDEWEB)

    Saha, A.R. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)]. E-mail: ars.iitkgp@gmail.com; Chattopadhyay, S. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India); School of Electrical, Electronics and Computer Engineering, University of Newcastle, Newcastle upon Tyne (United Kingdom); Bose, C. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700032 (India); Maiti, C.K. [Department of Electronics and ECE, IIT, Kharagpur 721302 (India)

    2005-12-05

    Technology CAD has been used to study the performance of a silicided Schottky barrier (SB) MOSFET with gate, source and drain contacts realized with nickel-silicide. Elevated source-drain structures have been used towards the S/D engineering of CMOS devices. A full process-to-device simulation has been employed to predict the performance of sub-micron SB n-MOSFETs for the first time. A model for the diffusion and alloy growth kinetics has been incorporated in SILVACO-ATLAS and ATHENA to explore the processing and design parameter space for the Ni-silicided MOSFETs. The temperature and concentration dependent diffusion model for NiSi have been developed and necessary material parameters for nickel-silicide and epitaxial-Si have been incorporated through the C-interpreter function. Two-dimensional (2D) process-to-device simulations have also been used to study the dc and ac (RF) performance of silicided Schottky barrier (SB) n-MOSFETs. The extracted sheet resistivity, as a function of annealing temperature of the silicided S/D contacts, is found to be lower than the conventional contacts currently in use. It is also shown that the Technology CAD has the full capability to predict the possible dc and ac performance enhancement of a MOSFET with elevated S/D structures. While the simulated dc performance shows a clear enhancement, the RF analyses show no performance degradation in the cut-off frequency/propagation delay and also improve the ac performance due to the incorporation of silicide contacts in the S/D region.

  6. Determination of the characteristics of a Schottky barrier formed by latent finger mark corrosion of brass

    International Nuclear Information System (INIS)

    Bond, J W

    2009-01-01

    The ideality factor (η) and barrier height (φ B ) for a metal-copper(I) oxide rectifying contact formed by the latent finger mark corrosion of α phase brass have been determined from forward bias I/V characteristics in the range 0.4 V ≤ V ≤ 0.55 V. Rectifying contacts formed from the finger mark deposits of different people gave η = 1.5-1.6 ± 0.1 and φ B = 0.49-0.52 ± 0.04 V. A Mott-Schottky plot of capacitance-voltage measurements in reverse bias gave the built in potential ψ bi = 0.4 ± 0.1 V, the gradient of the plot confirming the conductivity of the finger mark corrosion as p type. X-ray photoelectron spectroscopy spectra of the corrosion showed that Cu(I), Cu(II) and Zn(II) can co-exist on the surface, the Cu(I) : Cu(II) and Zn : Cu ratios determining whether a rectifying contact is formed. Initial findings suggest that when the concentration of Cu(I) dominates the Cu(I) : Cu(II) ratio (approximately 6 : 1), or when Cu(II) is absent, a rectifying contact can be formed subject to the Zn : Cu ratio being approximately 1 : 3. As the surface concentration of zinc increases, the rectifying contact is degraded until the concentration of zinc approaches that of copper when no evidence of a Schottky barrier is observed and the contact appears ohmic.

  7. Significant improvement in the electrical characteristics of Schottky barrier diodes on molecularly modified Gallium Nitride surfaces

    Science.gov (United States)

    Garg, Manjari; Naik, Tejas R.; Pathak, C. S.; Nagarajan, S.; Rao, V. Ramgopal; Singh, R.

    2018-04-01

    III-Nitride semiconductors face the issue of localized surface states, which causes fermi level pinning and large leakage current at the metal semiconductor interface, thereby degrading the device performance. In this work, we have demonstrated the use of a Self-Assembled Monolayer (SAM) of organic molecules to improve the electrical characteristics of Schottky barrier diodes (SBDs) on n-type Gallium Nitride (n-GaN) epitaxial films. The electrical characteristics of diodes were improved by adsorption of SAM of hydroxyl-phenyl metallated porphyrin organic molecules (Zn-TPPOH) onto the surface of n-GaN. SAM-semiconductor bonding via native oxide on the n-GaN surface was confirmed using X-ray photoelectron spectroscopy measurements. Surface morphology and surface electronic properties were characterized using atomic force microscopy and Kelvin probe force microscopy. Current-voltage characteristics of different metal (Cu, Ni) SBDs on bare n-GaN were compared with those of Cu/Zn-TPPOH/n-GaN and Ni/Zn-TPPOH/n-GaN SBDs. It was found that due to the molecular monolayer, the surface potential of n-GaN was decreased by ˜350 mV. This caused an increase in the Schottky barrier height of Cu and Ni SBDs from 1.13 eV to 1.38 eV and 1.07 eV to 1.22 eV, respectively. In addition to this, the reverse bias leakage current was reduced by 3-4 orders of magnitude for both Cu and Ni SBDs. Such a significant improvement in the electrical performance of the diodes can be very useful for better device functioning.

  8. Local irradiation effects of one-dimensional ZnO based self-powered asymmetric Schottky barrier UV photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yaxue [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Qi, Junjie, E-mail: junjieqi@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Biswas, Chandan [Department of Electrical Engineering, University of California Los Angeles, California 90095 (United States); Li, Feng; Zhang, Kui; Li, Xin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Yue, E-mail: yuezhang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Key Laboratory of New Energy Materials and Technologies, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-09-15

    A self-powered metal-semiconductor-metal (MSM) UV photodetector was successfully fabricated based on Ag/ZnO/Au structure with asymmetric Schottky barriers. This exhibits excellent performance compared to many previous studies. Very high photo-to-dark current ratio (approximately 10{sup 5}–10{sup 6}) was demonstrated without applying any external bias, and very fast switching time of less than 30 ms was observed during the investigation. Opposite photocurrent direction was generated by irradiating different Schottky diodes in the fabricated photodetector. Furthermore, the device performance was optimized by largely irradiating both the ZnO microwire (MW) junctions. Schottky barrier effect theory and O{sub 2} adsorption–desorption theories were used to investigate the phenomenon. The device has potential applications in self-powered UV detection field and can be used as electrical power source for electronic, optoelectronic and mechanical devices. - Highlights: • A self-powered Schottky barrier UV photodetector based on 1-D ZnO is fabricated. • For the first time we investigate the local irradiation effects of UV detector. • Irradiating both the junctions and ZnO can optimize the performance of the device.

  9. Simulations about self-absorption of tritium in titanium tritide and the energy deposition in a silicon Schottky barrier diode

    International Nuclear Information System (INIS)

    Li, Hao; Liu, Yebing; Hu, Rui; Yang, Yuqing; Wang, Guanquan; Zhong, Zhengkun; Luo, Shunzhong

    2012-01-01

    Simulations on the self-absorption of tritium electrons in titanium tritide films and the energy deposition in a silicon Schottky barrier diode are carried out using the Geant4 radiation transport toolkit. Energy consumed in each part of the Schottky radiovoltaic battery is simulated to give a clue about how to make the battery work better. The power and energy-conversion efficiency of the tritium silicon Schottky radiovoltaic battery in an optimized design are simulated. Good consistency with experiments is obtained. - Highlights: ► Simulation of the energy conversion inside the radiovoltaic battery is carried out. ► Energy-conversion efficiency in the simulation shows good consistency with experimental result. ► Inadequacy of the present configuration is studied in this work and improvements are proposed.

  10. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.

    Science.gov (United States)

    Su, Jie; Feng, Liping; Zhang, Yan; Liu, Zhengtang

    2016-06-22

    Using first-principles calculations within density functional theory, we systematically studied the effect of BN-MoS2 heterostructure on the Schottky barriers of metal-MoS2 contacts. Two types of FETs are designed according to the area of the BN-MoS2 heterostructure. Results show that the vertical and lateral Schottky barriers in all the studied contacts, irrespective of the work function of the metal, are significantly reduced or even vanish when the BN-MoS2 heterostructure substitutes the monolayer MoS2. Only the n-type lateral Schottky barrier of Au/BN-MoS2 contact relates to the area of the BN-MoS2 heterostructure. Notably, the Pt-MoS2 contact with n-type character is transformed into a p-type contact upon substituting the monolayer MoS2 by a BN-MoS2 heterostructure. These changes of the contact natures are ascribed to the variation of Fermi level pinning, work function and charge distribution. Analysis demonstrates that the Fermi level pinning effects are significantly weakened for metal/BN-MoS2 contacts because no gap states dominated by MoS2 are formed, in contrast to those of metal-MoS2 contacts. Although additional BN layers reduce the interlayer interaction and the work function of the metal, the Schottky barriers of metal/BN-MoS2 contacts still do not obey the Schottky-Mott rule. Moreover, different from metal-MoS2 contacts, the charges transfer from electrodes to the monolayer MoS2, resulting in an increment of the work function of these metals in metal/BN-MoS2 contacts. These findings may prove to be instrumental in the future design of new MoS2-based FETs with ohmic contact or p-type character.

  11. A comprehensive study of cryogenic cooled millimeter-wave frequency multipliers based on GaAs Schottky-barrier varactors

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rybalko, Oleksandr; Zhurbenko, Vitaliy

    2018-01-01

    The benefit of cryogenic cooling on the performance of millimeter-wave GaAs Schottky-barrier varactor-based frequency multipliers has been studied. For this purpose, a dedicated compact model of a GaAs Schottky-barrier varactor using a triple-anode diode stack has been developed for use...... with a commercial RF and microwave CAD tool. The model implements critical physical phenomena such as thermionic-field emission current transport at cryogenic temperatures, temperature dependent mobility, reverse breakdown, self-heating, and high-field velocity saturation effects. A parallel conduction model...... is employed in order to include the effect of barrier inhomogeneities which is known to cause deviation from the expected I--V characteristics at cryogenic temperatures. The developed model is shown to accurately fit the I--V --T dataset from 25 to 295 K measured on the varactor diode stack. Harmonic balance...

  12. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    Science.gov (United States)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  13. Planar InP-based Schottky barrier diodes for terahertz applications

    International Nuclear Information System (INIS)

    Zhou Jingtao; Yang Chengyue; Ge Ji; Jin Zhi

    2013-01-01

    Based on characteristics such as low barrier and high electron mobility of lattice matched In 0.53 Ga 0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω; and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits. (semiconductor devices)

  14. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Erdoğan, Erman, E-mail: e.erdogan@alparslan.edu.tr [Department of Physics, Faculty of Art and Science, Muş Alparslan University, Muş 49250 (Turkey); Kundakçı, Mutlu [Department of Physics, Faculty of Science, Atatürk University, Erzurum 25240 (Turkey)

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10{sup −5} mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  15. Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode

    Science.gov (United States)

    Erdoğan, Erman; Kundakçı, Mutlu

    2017-02-01

    Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.

  16. Observation of Van Hove Singularities and Temperature Dependence of Electrical Characteristics in Suspended Carbon Nanotube Schottky Barrier Transistors

    Science.gov (United States)

    Zhang, Jian; Liu, Siyu; Nshimiyimana, Jean Pierre; Deng, Ya; Hu, Xiao; Chi, Xiannian; Wu, Pei; Liu, Jia; Chu, Weiguo; Sun, Lianfeng

    2018-06-01

    A Van Hove singularity (VHS) is a singularity in the phonon or electronic density of states of a crystalline solid. When the Fermi energy is close to the VHS, instabilities will occur, which can give rise to new phases of matter with desirable properties. However, the position of the VHS in the band structure cannot be changed in most materials. In this work, we demonstrate that the carrier densities required to approach the VHS are reached by gating in a suspended carbon nanotube Schottky barrier transistor. Critical saddle points were observed in regions of both positive and negative gate voltage, and the conductance flattened out when the gate voltage exceeded the critical value. These novel physical phenomena were evident when the temperature is below 100 K. Further, the temperature dependence of the electrical characteristics was also investigated in this type of Schottky barrier transistor.

  17. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    International Nuclear Information System (INIS)

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe 2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe 2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe 2 vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10 5 . These results point to the potential high performance of the graphene/MoSe 2 vdW heterostructure for electronics applications

  18. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    International Nuclear Information System (INIS)

    Li Gui-fang; Hu Jing; Lv Hui; Cui Zhijun; Hou Xiaowei; Liu Shibin; Du Yongqian

    2016-01-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co 2 MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance–area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co 2 MnSi and Ge. The electron SBH is modulated in the 0.34 eV–0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. (paper)

  19. Effect of graphene tunnel barrier on Schottky barrier height of Heusler alloy Co2MnSi/graphene/n-Ge junction

    Science.gov (United States)

    Gui-fang, Li; Jing, Hu; Hui, Lv; Zhijun, Cui; Xiaowei, Hou; Shibin, Liu; Yongqian, Du

    2016-02-01

    We demonstrate that the insertion of a graphene tunnel barrier between Heusler alloy Co2MnSi and the germanium (Ge) channel modulates the Schottky barrier height and the resistance-area product of the spin diode. We confirm that the Fermi level is depinned and a reduction in the electron Schottky barrier height (SBH) occurs following the insertion of the graphene layer between Co2MnSi and Ge. The electron SBH is modulated in the 0.34 eV-0.61 eV range. Furthermore, the transport mechanism changes from rectifying to symmetric tunneling following the insertion. This behavior provides a pathway for highly efficient spin injection from a Heusler alloy into a Ge channel with high electron and hole mobility. Project supported by the National Natural Science Foundation of China (Grant No. 61504107) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102014JCQ01059 and 3102015ZY043).

  20. Magnetic field induced suppression of the forward bias current in Bi2Se3/Si Schottky barrier diodes

    Science.gov (United States)

    Jin, Haoming; Hebard, Arthur

    Schottky diodes formed by van der Waals bonding between freshly cleaved flakes of the topological insulator Bi2Se3 and doped silicon substrates show electrical characteristics in good agreement with thermionic emission theory. The motivation is to use magnetic fields to modulate the conductance of the topologically protected conducting surface state. This surface state in close proximity to the semiconductor surface may play an important role in determining the nature of the Schottky barrier. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were obtained for temperatures in the range 50-300 K and magnetic fields, both perpendicular and parallel to the interface, as high as 7 T. The I-V curve shows more than 6 decades linearity on semi-logarithmic plots, allowing extraction of parameters such as ideality (η), zero-voltage Schottky barrier height (SBH), and series resistance (Rs). In forward bias we observe a field-induced decrease in current which becomes increasingly more pronounced at higher voltages and lower temperature, and is found to be correlated with changes in Rs rather than other barrier parameters. A comparison of changes in Rs in both field direction will be made with magnetoresistance in Bi2Se3 transport measurement. The work is supported by NSF through DMR 1305783.

  1. Schottky Barrier Height of Pd/MoS2 Contact by Large Area Photoemission Spectroscopy.

    Science.gov (United States)

    Dong, Hong; Gong, Cheng; Addou, Rafik; McDonnell, Stephen; Azcatl, Angelica; Qin, Xiaoye; Wang, Weichao; Wang, Weihua; Hinkle, Christopher L; Wallace, Robert M

    2017-11-08

    MoS 2 , as a model transition metal dichalcogenide, is viewed as a potential channel material in future nanoelectronic and optoelectronic devices. Minimizing the contact resistance of the metal/MoS 2 junction is critical to realizing the potential of MoS 2 -based devices. In this work, the Schottky barrier height (SBH) and the band structure of high work function Pd metal on MoS 2 have been studied by in situ X-ray photoelectron spectroscopy (XPS). The analytical spot diameter of the XPS spectrometer is about 400 μm, and the XPS signal is proportional to the detection area, so the influence of defect-mediated parallel conduction paths on the SBH does not affect the measurement. The charge redistribution by Pd on MoS 2 is detected by XPS characterization, which gives insight into metal contact physics to MoS 2 and suggests that interface engineering is necessary to lower the contact resistance for the future generation electronic applications.

  2. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping

    DEFF Research Database (Denmark)

    Jin, Chengjun; Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    ) with a generalized gradient approximation predicts a Schottky barrier height of 0.18 eV, whereas the G0W0 method increases this value to 0.60 eV. While the DFT band gap of MoS2 does not change when the heterostructure is formed, the G0W0 gap is reduced by 0.30 eV as a result of the enhanced screening by the graphene...... layer. In contrast to the case of metal substrates, where the band alignment is governed by Pauli repulsion-induced interface dipoles, the graphene/MoS2 heterostructure shows only a negligible interface dipole. As a consequence, the band alignment at the neutral heterostructure is not changed when...... the two layers are brought into contact. We systematically follow the band alignment as a function of doping concentration and find that the Fermi level of the graphene crosses the MoS2 conduction band at a doping concentration of around 1012 cm–2. The variation of the energy levels with doping...

  3. Chemical trends of Schottky barrier behavior on monolayer hexagonal B, Al, and Ga nitrides

    Science.gov (United States)

    Lu, Haichang; Guo, Yuzheng; Robertson, John

    2016-08-01

    The Schottky Barrier Heights (SBH) of metal layers on top of monolayer hexagonal X-nitrides (X = B, Al, Ga, and h-XN) are calculated using supercells and density functional theory so as to understand the chemical trends of contact formation on graphene and the 2D layered semiconductors such as the transition metal dichalcogenides. The Fermi level pinning factor S of SBHs on h-BN is calculated to be nearly 1, indicating no pinning. For h-AlN and h-GaN, the calculated pinning factor is about 0.63, less than for h-BN. We attribute this to the formation of stronger, chemisorptive bonds between the nitrides and the contact metal layer. Generally, the h-BN layer remains in a planar sp2 geometry and has weak physisorptive bonds to the metals, whereas h-AlN and h-GaN buckle out of their planar geometry which enables them to form the chemisorptive bonds to the metals.

  4. Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes

    Science.gov (United States)

    Vigneshwara Raja, P.; Narasimha Murty, N. V. L.

    2018-04-01

    Deep level defects in 4H-SiC Schottky barrier diodes (SBDs) fabricated on n-type epitaxial 4H-SiC have been identified by thermally stimulated capacitance (TSCAP) spectroscopy prior to and after 60Co-gamma irradiation. The TSCAP measurements on the non-irradiated SBDs reveal two electron traps at Ec-0.63 eV (˜250 K) and Ec-1.13 eV (˜525 K), whereas only one trap at Ec-0.63 eV is identified by conventional thermally stimulated current (TSC) measurements. Hence, TSCAP spectroscopy is more effective in identifying deep level defects in epitaxial 4 H-SiC SBDs as compared to the TSC spectroscopy. Upon exposure to 60Co-gamma rays up to a dose of 100 Mrad, significant changes in the concentration of the traps at Ec-0.63 eV, Ec-1.13 eV, and one new trap at Ec-0.89 eV (˜420 K) are observed. The electrical characteristics of the SBDs are considerably changed after gamma irradiation. The dominant mechanisms responsible for the irradiation induced changes in the SBD electrical characteristics are analyzed by incorporating the trap signatures in the commercial Silvaco® TCAD device simulator. The extracted trap parameters of the irradiated SBDs may be helpful in predicting the survival of 4H-SiC SBD detectors at higher irradiation levels.

  5. Synthesis of Peripherally Tetrasubstituted Phthalocyanines and Their Applications in Schottky Barrier Diodes

    Directory of Open Access Journals (Sweden)

    Semih Gorduk

    2017-01-01

    Full Text Available New metal-free and metallophthalocyanine compounds (Zn, Co, Ni, and Cu were synthesized using 2-hydroxymethyl-1,4-benzodioxan and 4-nitrophthalonitrile compounds. All newly synthesized compounds were characterized by elemental analysis, FT-IR, UV-Vis, 1H-NMR, MALDI-TOF MS, and GC-MS techniques. The applications of synthesized compounds in Schottky barrier diodes were investigated. Ag/Pc/p–Si structures were fabricated and charge transport mechanism in these devices was investigated using dc technique. It was observed from the analysis of the experimental results that the charge transport can be described by Ohmic conduction at low values of the reverse bias. On the other hand, the voltage dependence of the measured current for high values of the applied reverse bias indicated that space charge limited conduction is the dominant mechanism responsible for dc conduction. From the observed voltage dependence of the current density under forward bias conditions, it has been concluded that the charge transport is dominated by Poole-Frenkel emission.

  6. Junction barrier Schottky rectifier with an improved P-well region

    International Nuclear Information System (INIS)

    Wang Ying; Li Ting; Cao Fei; Shao Lei; Chen Yu-Xian

    2012-01-01

    A junction barrier Schottky (JBS) rectifier with an improved P-well on 4H—SiC is proposed to improve the V F —I R trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10 −8 times that of the common JBS rectifier at no expense of the forward voltage drop. This is because the depletion layer thickness in the P-well region at the same reverse voltage is larger than in the P + grid, resulting in a lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV, that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of the common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier. (interdisciplinary physics and related areas of science and technology)

  7. Tunneling Characteristics Depending on Schottky Barriers and Diffusion Current in SiOC.

    Science.gov (United States)

    Oh, Teresa; Kim, Chy Hyung

    2016-02-01

    To obtain a diffusion current in SiOC, the aluminum doped zinc oxide films were deposited on SiOC/Si wafer by a RF magnetron sputtering. All the X-ray patterns of the SiOC films showed amorphous phases. The level of binding energy of Si atoms will lead to an additional potential modulation by long range Coulombic and covalent interactions with oxygen ions. The growth of the AZO film was affected by the characteristics of SiOC, resulting in similar trends in XPS spectra and a shift to higher AZO lattice d values than the original AZO d values in XRD analyses. The charges trapped by the defects at the interlayer between AZO and SiOC films induced the decreased mobility of carriers. In the absence of trap charges, AZO grown on SiOC film such as the sample prepared at O2 = 25 or 30 sccm, which has low charge carrier concentration and high mobility, showed high mobility in an ambipolar characteristic of oxide semiconductor due to the tunneling effect and diffusion current. The structural matching of an interface between AZO and amorphous SiOC enhanced the height of Schottky Barrier (SB), and then the mobility was increased by the tunneling effect from band to band through the high SB.

  8. Ambipolarity reduction in DMG asymmetric vacuum dielectric Schottky Barrier GAA MOSFET to improve hot carrier reliability

    Science.gov (United States)

    Kumar, Manoj; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-11-01

    An explicit surface potential and subthreshold current model for novel Dual Metal Gate (DMG) Asymmetric Vacuum (AV) as gate dielectric Schottky Barrier (SB) Cylindrical Gate All Around (CGAA) MOSFET with the incorporation of localized charges (Nf) is developed to provide excellent immunity against threshold voltage (Vth) degradation due to hot carriers. Hot carrier induced Localized Charges (LC) either positive or negative leads to degrade the threshold of the device. The major advantage of the proposed DMG-AV-SB-CGAA MOSFET is that it mitigates the ambipolar behavior thus offering very good on current to off current ratio; and also reduces the electron temperature which leads to less hot carrier generation thus lesser degradation in Vth and improved Hot Carrier reliability. The surface potential is determined for three different regions by solving 1-D Poisson's and 2-D Laplace equation through separation of variable method to facilitate an optimal model for calculating the subthreshold drain current from Si-SiO2 interface boundary. The developed model results are in good agreement with that of ATLAS-TCAD simulation.

  9. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.

    Science.gov (United States)

    Shtepliuk, Ivan; Eriksson, Jens; Khranovskyy, Volodymyr; Iakimov, Tihomir; Lloyd Spetz, Anita; Yakimova, Rositsa

    2016-01-01

    A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current-voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium-graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT) calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I - V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  10. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

    Directory of Open Access Journals (Sweden)

    Ivan Shtepliuk

    2016-11-01

    Full Text Available A vertical diode structure comprising homogeneous monolayer epitaxial graphene on silicon carbide is fabricated by thermal decomposition of a Si-face 4H-SiC wafer in argon atmosphere. Current–voltage characteristics of the graphene/SiC Schottky junction were analyzed by applying the thermionic-emission theory. Extracted values of the Schottky barrier height and the ideality factor are found to be 0.4879 ± 0.013 eV and 1.01803 ± 0.0049, respectively. Deviations of these parameters from average values are smaller than those of previously observed literature data, thereby implying uniformity of the Schottky barrier height over the whole diode area, a stable rectifying behaviour and a good quality of ohmic palladium–graphene contacts. Keeping in mind the strong sensitivity of graphene to analytes we propose the possibility to use the graphene/SiC Schottky diode as a sensing platform for the recognition of toxic heavy metals. Using density functional theory (DFT calculations we gain insight into the nature of the interaction of cadmium, mercury and lead with graphene as well as estimate the work function and the Schottky barrier height of the graphene/SiC structure before and after applying heavy metals to the sensing material. A shift of the I–V characteristics of the graphene/SiC-based sensor has been proposed as an indicator of presence of the heavy metals. Since the calculations suggested the strongest charge transfer between Pb and graphene, the proposed sensing platform was characterized by good selectivity towards lead atoms and slight interferences from cadmium and mercury. The dependence of the sensitivity parameters on the concentration of Cd, Hg and Pb is studied and discussed.

  11. Calculation of the intrinsic spectral density of current fluctuations in nanometric Schottky-barrier diodes at terahertz frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F.Z. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria)], E-mail: fati_zo_mahi2002@yahoo.fr; Helmaoui, A. [Science and Technology Institute, University of Bechar, 08000 Bechar (Algeria); Varani, L. [Institut d' Electronique du Sud (CNRS UMR 5214), Universite Montpellier II, 34095 Montpellier (France); Shiktorov, P.; Starikov, E.; Gruzhinskis, V. [Semiconductor Physics Institute, 01108 Vilnius (Lithuania)

    2008-10-01

    An analytical model for the noise spectrum of nanometric Schottky-barrier diodes (SBD) is developed. The calculated frequency dependence of the spectral density of current fluctuations exhibits resonances in the terahertz domain which are discussed and analyzed as functions of the length of the diode, free carrier concentration, length of the depletion region and applied voltage. A good agreement obtained with direct Monte Carlo simulations of GaAs SBDs operating from barrier-limited to flat-band conditions fully validates the proposed approach.

  12. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Qingyun

    2013-01-01

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  13. Two-dimensional ferromagnet/semiconductor transition metal dichalcogenide contacts: p-type Schottky barrier and spin-injection control

    KAUST Repository

    Gan, Liyong

    2013-09-26

    We study the ferromagnet/semiconductor contacts formed by transition metal dichalcogenide monolayers, focusing on semiconducting MoS2 and WS2 and ferromagnetic VS2. We investigate the degree of p-type doping and demonstrate tuning of the Schottky barrier height by vertical compressive pressure. An analytical model is presented for the barrier heights that accurately describes the numerical findings and is expected to be of general validity for all transition metal dichalcogenide metal/semiconductor contacts. Furthermore, magnetic proximity effects induce a 100% spin polarization at the Fermi level in the semiconductor where the spin splitting increases up to 0.70 eV for increasing pressure.

  14. The role of deep level traps in barrier height of 4H-SiC Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, G., E-mail: gzaremba@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Adamus, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Jung, W.; Kaminska, E.; Borysiewicz, M.A.; Korwin-Mikke, K. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2012-09-01

    This paper presents a discussion about the influence of deep level defects on the height of Ni-Si based Schottky barriers to 4H-SiC. The defects were characterized by deep level transient spectroscopy (DLTS) in a wide range of temperatures (78-750 K). The numerical simulation of barrier height value as a function of dominant defect concentration was carried out to estimate concentration, necessary to 'pin' Fermi level and thus significantly influence the barrier height. From comparison of the results of simulation with barrier height values obtained by capacitance-voltage (C-V) measurements it seems that dominant defect in measured concentration has a very small impact on the barrier height and on the increase of reverse current.

  15. Electronic parameters of high barrier Au/Rhodamine-101/n-Inp Schottky diode with organic ınterlayer

    International Nuclear Information System (INIS)

    Güllü, Ö.; Aydoğan, S.; Türüt, A.

    2012-01-01

    In this work, we present that Rhodamine-101 (Rh-101) organic molecules can control the electrical characteristics of conventional Au/n-InP metal–semiconductor contacts. An Au/n-InP Schottky junction with Rh-101 interlayer has been formed by using a simple cast process. A potential barrier height as high as 0.88 eV has been achieved for Au/Rh-101/n-InP Schottky diodes, which have good current–voltage (I–V) characteristics. This good performance is attributed to the effect of formation of interfacial organic thin layer between Au and n-InP. By using capacitance-voltage measurement of the Au/Rh-101/n-InP Schottky diode the diffusion potential and the barrier height have been calculated as 0.78 V and 0.88 eV, respectively. From the I–V measurement of the diode under illumination, short circuit current and open circuit voltage have been extracted as 1.70 μA and 240 mV, respectively.

  16. Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects

    Science.gov (United States)

    Oshima, Takayoshi; Hashiguchi, Akihiro; Moribayashi, Tomoya; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu; Oishi, Toshiyuki; Kasu, Makoto

    2017-08-01

    The electrical properties of Schottky barrier diodes (SBDs) on a (001) β-Ga2O3 substrate were characterized and correlated with wet etching-revealed crystal defects below the corresponding Schottky contacts. The etching process revealed etched grooves and etched pits, indicating the presence of line-shaped voids and small defects near the surface, respectively. The electrical properties (i.e., leakage currents, ideality factor, and barrier height) exhibited almost no correlation with the density of the line-shaped voids. This very weak correlation was reasonable considering the parallel positional relation between the line-shaped voids extending along the [010] direction and the (001) basal plane in which the voids are rarely exposed on the initial surface in contact with the Schottky metals. The distribution of small defects and SBDs with unusually large leakage currents showed similar patterns on the substrate, suggesting that these defects were responsible for the onset of fatal leak paths. These results will encourage studies on crystal defect management of (001) β-Ga2O3 substrates for the fabrication of devices with enhanced performance using these substrates.

  17. High-performance 4H-SiC junction barrier Schottky diodes with double resistive termination extensions

    International Nuclear Information System (INIS)

    Zheng Liu; Zhang Feng; Liu Sheng-Bei; Dong Lin; Liu Xing-Fang; Liu Bin; Yan Guo-Guo; Wang Lei; Zhao Wan-Shun; Sun Guo-Sheng; He Zhi; Fan Zhong-Chao; Yang Fu-Hua

    2013-01-01

    4H-SiC junction barrier Schottky (JBS) diodes with a high-temperature annealed resistive termination extension (HARTE) are designed, fabricated and characterized in this work. The differential specific on-state resistance of the device is as low as 3.64 mΩ·cm 2 with a total active area of 2.46 × 10 −3 cm 2 . Ti is the Schottky contact metal with a Schottky barrier height of 1.08 V and a low onset voltage of 0.7 V. The ideality factor is calculated to be 1.06. Al implantation annealing is performed at 1250°C in Ar, while good reverse characteristics are achieved. The maximum breakdown voltage is 1000 V with a leakage current of 9 × 10 −5 A on chip level. These experimental results show good consistence with the simulation results and demonstrate that high-performance 4H-SiC JBS diodes can be obtained based on the double HARTE structure. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Lateral polarity control of III-nitride thin film and application in GaN Schottky barrier diode

    Science.gov (United States)

    Li, Junmei; Guo, Wei; Sheikhi, Moheb; Li, Hongwei; Bo, Baoxue; Ye, Jichun

    2018-05-01

    N-polar and III-polar GaN and AlN epitaxial thin films grown side by side on single sapphire substrate was reported. Surface morphology, wet etching susceptibility and bi-axial strain conditions were investigated and the polarity control scheme was utilized in the fabrication of Schottky barrier diode where ohmic contact and Schottky contact were deposited on N-polar domains and Ga-polar domains, respectively. The influence of N-polarity on on-state resistivity and I–V characteristic was discussed, demonstrating that lateral polarity structure of GaN and AlN can be widely used in new designs of optoelectronic and electronic devices. Project partially supported by the National Key Research and Development Program of China (No. 2016YFB0400802), the National Natural Science Foundation of China (No. 61704176), and the Open project of Zhejiang Key Laboratory for Advanced Microelectronic Intelligent Systems and Applications (No. ZJUAMIS1704).

  19. Experimental analysis of the Schottky barrier height of metal contacts in black phosphorus field-effect transistors

    Science.gov (United States)

    Chang, Hsun-Ming; Fan, Kai-Lin; Charnas, Adam; Ye, Peide D.; Lin, Yu-Ming; Wu, Chih-I.; Wu, Chao-Hsin

    2018-04-01

    Compared to graphene and MoS2, studies on metal contacts to black phosphorus (BP) transistors are still immature. In this work, we present the experimental analysis of titanium contacts on BP based upon the theory of thermionic emssion. The Schottky barrier height (SBH) is extracted by thermionic emission methods to analyze the properties of Ti-BP contact. To examine the results, the band gap of BP is extracted followed by theoretical band alignment by Schottky-Mott rule. However, an underestimated SBH is found due to the hysteresis in electrical results. Hence, a modified SBH extraction for contact resistance that avoids the effects of hysteresis is proposed and demonstrated, showing a more accurate SBH that agrees well with theoretical value and results of transmission electron microscopy and energy-dispersive x-ray spectroscopy.

  20. Characteristics of surface mount low barrier silicon Schottky diodes with boron contamination in the substrate–epitaxial layer interface

    International Nuclear Information System (INIS)

    Pal, Debdas; Hoag, David; Barter, Margaret

    2012-01-01

    Unusual negative resistance characteristics were observed in low barrier HMIC (Heterolithic Microwave Integrated Circuit) silicon Schottky diodes with HF (hydrofluoric acid)/IPA (isopropyl alcohol) vapor clean prior to epitaxial growth of silicon. SIMS (secondary ion mass spectroscopy) analysis and the results of the buried layer structure confirmed boron contamination in the substrate/epitaxial layer interface. Consequently the structure turned into a thyristor like p-n-p-n device. A dramatic reduction of boron contamination was found in the wafers with H 2 0/HCl/HF dry only clean prior to growth, which provided positive resistance characteristics. Consequently the mean differential resistance at 10 mA was reduced to about 8.1 Ω. The lower series resistance (5.6–5.9 Ω) and near 1 ideality factor (1.03–1.06) of the Schottky devices indicated the good quality of the epitaxial layer. (paper)

  1. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    Science.gov (United States)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  2. Barrier cell sheath formation

    International Nuclear Information System (INIS)

    Kesner, J.

    1980-04-01

    The solution for electrostatic potential within a simply modeled tandem mirror thermal barrier is seen to exhibit a sheath at each edge of the cell. The formation of the sheath requires ion collisionality and the analysis assmes that the collisional trapping rate into the barrier is considerably slower than the barrier pump rate

  3. Interface Schottky barrier engineering via strain in metal-semiconductor composites

    Science.gov (United States)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2016-01-01

    The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation demonstrates that strain can be an effective way to decrease the interface SBH and that the n-type SBH can be more effectively decreased than the p-type SBH. Astonishingly, strain affects the interface SBH mainly by changing the intrinsic properties of Au and TiO2, whereas the interfacial potential alignment is almost independent of strain due to two opposite effects, which are induced by strain at the interfacial region. These observed trends can be understood on the basis of the general free-electron gas model of typical metals, the tight-binding theory and the crystal-field theory, which suggest that similar trends may be generalized for many other metal-semiconductor heterostructures. Given the commonness and tunability of strain in typical heterostructures, we anticipate that the tunability of the interface SBH with strain described here can provide an alternative effective way for realizing more efficient applications of relevant heterostructures.The interfacial carrier transfer property, which is dominated by the interface Schottky barrier height (SBH), plays a crucial role in determining the performance of metal-semiconductor heterostructures in a variety of applications. Therefore, artificially controlling the interface SBH is of great importance for their industrial applications. As a model system, the Au/TiO2 (001) heterostructure is studied using first-principles calculations and the tight-binding method in the present study. Our investigation

  4. Interface gap states and Schottky barrier inhomogeneity at metal/n-type GaN Schottky contacts

    International Nuclear Information System (INIS)

    Mamor, M

    2009-01-01

    The barrier heights (BH) of various metals including Pd, Pt and Ni on n-type GaN (M/n-GaN) have been measured in the temperature range 80-400 K with using a current-voltage (I-V) technique. The temperature dependence of the I-V characteristics of M/n-GaN have shown non-ideal behaviors and indicate the presence of a non-uniform distribution of surface gap states, resulting from the residual defects in the as grown GaN. The surface gap states density N ss , as well as its temperature dependence were obtained from the bias and temperature dependence of the ideality factor n(V,T) and the barrier height Φ Bn (V,T). Further, a dependence of zero-bias BH Φ 0Bn on the metal work function (Φ m ) with an interface parameter coefficient of proportionality of 0.47 is found. This result indicates that the Fermi level at the M/n-GaN interface is unpinned. Additionally, the presence of lateral inhomogeneities of the BH, with two Gaussian distributions of the BH values is seen. However, the non-homogeneous SBH is found to be correlated to the surface gap states density, in that Φ 0Bn becomes smaller with increasing N ss . These findings suggest that the lateral inhomogeneity of the SBH is connected to the non-uniform distribution of the density of surface gap states at metal/GaN which is attributed to the presence of native defects in the as grown GaN. Deep level transient spectroscopy confirms the presence of native defects with discrete energy levels at GaN and provides support to this interpretation.

  5. Effect of Barrier Metal Based on Titanium or Molybdenum in Characteristics of 4H-SiC Schottky Diodes

    Directory of Open Access Journals (Sweden)

    M. Ben Karoui

    2014-05-01

    Full Text Available The electrical properties were extracted by I-V and C-V analysis, performed from 10 K to 450 K. When the annealing temperature varied to 400 °C, the Schottky barrier height (SBH increased from 0.85 Ev to 1.20 eV in Ti/4H-SiC whereas in the Mo/4H-SiC the SBH varied from 1.04 eV to 1.10 eV. Deformation of J-V-T characteristics was observed in two types of devices when the temperature decreases from 300 K to 10 K. The electrical properties and the stability of the devices have been correlated to the fabrication processes and to the metal/semiconductor interfaces. Mo-based contacts show better behaviour in forward polarization when compared to the Ti-based Schottky contacts, with ideality factors close to the unity even after the annealing process. However, Mo-based contacts show leakage currents higher than that measured on the more optimized Ti-based Schottky.

  6. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    International Nuclear Information System (INIS)

    Chawanda, A.; Coelho, S.M.M.; Auret, F.D.; Mtangi, W.; Nyamhere, C.; Nel, J.M.; Diale, M.

    2012-01-01

    Highlights: ► Ir/n-Ge (1 0 0) Schottky diodes were characterized using I–V, C–V and SEM techniques under various annealing conditions. ► The variation of the electrical and structural properties can be due to effects phase transformation during annealing. ► Thermal stability of these diodes is maintained up to 500 °C anneal. ► SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 °C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current–voltage (I–V) and capacitance–voltage (C–V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 °C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 °C.

  7. Determination of Schottky barrier heights and Fermi-level unpinning at the graphene/n-type Si interfaces by X-ray photoelectron spectroscopy and Kelvin probe

    International Nuclear Information System (INIS)

    Lin, Yow-Jon; Zeng, Jian-Jhou

    2014-01-01

    Highlights: • The interface characteristics of graphene/n-type Si devices are measured. • The actual work function of graphene is examined with the Kelvin probe. • An analysis is conducted according to the Schottky–Mott limit. • The Fermi energy level at the graphene/n-type Si interfaces is unpinned. • The Schottky barrier value is dependent on the work function of graphene. - Abstract: The interface characteristics of graphene/n-type Si samples using X-ray photoelectron spectroscopy (XPS) measurements are investigated. XPS makes it possible to extract a reliable Schottky barrier value. For graphene/n-type Si samples with (without) sulfide treatment, the Schottky barrier height is 0.86 (0.78) eV. The Schottky barrier height was increased from 0.78 to 0.86 eV, indicating that sulfide treatment is effective in passivating the surface of Si (owing to the formation of Si–S bonds). To determine the Fermi-level pinning/unpinning at the graphene/n-type Si interfaces with sulfide treatment, an analysis is conducted according to the Schottky–Mott limit and the actual work function of graphene is examined with the Kelvin probe. It is shown that the Fermi energy level is unpinned and the Schottky barrier value is dependent on the work function of graphene. Investigation of graphene/n-type Si interfaces is important, and providing the other technique for surface potential control is possible

  8. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS2/h-BN Heterostructure.

    Science.gov (United States)

    Joo, Min-Kyu; Moon, Byoung Hee; Ji, Hyunjin; Han, Gang Hee; Kim, Hyun; Lee, Gwanmu; Lim, Seong Chu; Suh, Dongseok; Lee, Young Hee

    2016-10-12

    Layered hexagonal boron nitride (h-BN) thin film is a dielectric that surpasses carrier mobility by reducing charge scattering with silicon oxide in diverse electronics formed with graphene and transition metal dichalcogenides. However, the h-BN effect on electron doping concentration and Schottky barrier is little known. Here, we report that use of h-BN thin film as a substrate for monolayer MoS 2 can induce ∼6.5 × 10 11 cm -2 electron doping at room temperature which was determined using theoretical flat band model and interface trap density. The saturated excess electron concentration of MoS 2 on h-BN was found to be ∼5 × 10 13 cm -2 at high temperature and was significantly reduced at low temperature. Further, the inserted h-BN enables us to reduce the Coulombic charge scattering in MoS 2 /h-BN and lower the effective Schottky barrier height by a factor of 3, which gives rise to four times enhanced the field-effect carrier mobility and an emergence of metal-insulator transition at a much lower charge density of ∼1.0 × 10 12 cm -2 (T = 25 K). The reduced effective Schottky barrier height in MoS 2 /h-BN is attributed to the decreased effective work function of MoS 2 arisen from h-BN induced n-doping and the reduced effective metal work function due to dipole moments originated from fixed charges in SiO 2 .

  9. Semi-insulating GaAs and Au Schottky barrier photodetectors for near-infrared detection (1280 nm)

    Science.gov (United States)

    Nusir, A. I.; Makableh, Y. F.; Manasreh, O.

    2015-08-01

    Schottky barriers formed between metal (Au) and semiconductor (GaAs) can be used to detect photons with energy lower than the bandgap of the semiconductor. In this study, photodetectors based on Schottky barriers were fabricated and characterized for the detection of light at wavelength of 1280 nm. The device structure consists of three gold fingers with 1.75 mm long and separated by 0.95 mm, creating an E shape while the middle finger is disconnected from the outer frame. When the device is biased, electric field is stretched between the middle finger and the two outermost electrodes. The device was characterized by measuring the current-voltage (I-V) curve at room temperature. This showed low dark current on the order of 10-10 A, while the photocurrent was higher than the dark current by four orders of magnitude. The detectivity of the device at room temperature was extracted from the I-V curve and estimated to be on the order of 5.3x1010 cm.Hz0.5/W at 5 V. The step response of the device was measured from time-resolved photocurrent curve at 5 V bias with multiple on/off cycles. From which the average recovery time was estimated to be 0.63 second when the photocurrent decreases by four orders of magnitude, and the average rise time was measured to be 0.897 second. Furthermore, the spectral response spectrum of the device exhibits a strong peak close to the optical communication wavelength (~1.3 μm), which is attributed to the internal photoemission of electrons above the Schottky barrier formed between Au and GaAs.

  10. Barrier height and interface effect of Pt-n-GaN and Pd-n-GaN Schottky diodes

    International Nuclear Information System (INIS)

    Khan, M.R.H.; Saha, S.L.; Sawaki, N.

    1999-01-01

    Schottky barriers on n-type GaN films by Pt and Pd are fabricated and characterized. A thin Pt or Pd layer is deposited on n-GaN layers to form Schottky contacts in a vacuum below 1x10/sup -6/ Torr. The area of all diodes is 3.46 x 10-4 cm/sup 2/. Several samples of Pt-n GaN and Pd-n GaN were studied. The ideality factor of Pt-n-GaN diode is 1.26 and of Pd-n-GaN is 1.17. The breakdown voltage of Pt-n-GaN and Pd-n-GaN diodes is 21 V and 26 V respectively. In both the cases the leakage current varies between 1x10-9 A and 5x 10-9 A. The Schottky barrier heights (phi/sub B/ ) of Pt-GaN diode is been determined to be 1.02 eV by current voltage (I-V) and 1.07 eV by capacitance (C-V) measurements Also, phi/sub B/ of Pd-GaN diode is determined to be 0.91 eV by I-V and 0.98 eV, by C-V measurements. The departure of the values of the ideality factor is considered to be due to spatial inhomogeneities at the meal semiconductor interface. The difference in the values of phi/sub B/ determined by I-V and C-V measurements is attributed to the deformation of the spatial barrier distribution. (author)

  11. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    Science.gov (United States)

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  12. Investigation of Schottky-Barrier carbon nanotube field-effect transistor by an efficient semi-classical numerical modeling

    International Nuclear Information System (INIS)

    Chen Changxin; Zhang Wei; Zhao Bo; Zhang Yafei

    2009-01-01

    An efficient semi-classical numerical modeling approach has been developed to simulate the coaxial Schottky-barrier carbon nanotube field-effect transistor (SB-CNTFET). In the modeling, the electrostatic potential of the CNT is obtained by self-consistently solving the analytic expression of CNT carrier distribution and the cylindrical Poisson equation, which significantly enhances the computational efficiency and simultaneously present a result in good agreement to that obtained from the non-equilibrium Green's function (NEGF) formalism based on the first principle. With this method, the effects of the CNT diameter, power supply voltage, thickness and dielectric constant of gate insulator on the device performance are investigated.

  13. Measurements of Schottky barrier at the low-k SiOC:H/Cu interface using vacuum ultraviolet photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, X.; Pei, D.; Zheng, H.; Shohet, J. L. [Plasma Processing and Technology Laboratory and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); King, S. W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States); Lin, Y.-H.; Fung, H.-S.; Chen, C.-C. [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Nishi, Y. [Department of Electrical Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-12-07

    The band alignment between copper interconnects and their low-k interlayer dielectrics is critical to understanding the fundamental mechanisms involved in electrical leakage in low-k/Cu interconnects. In this work, vacuum-ultraviolet (VUV) photoemission spectroscopy is utilized to determine the potential of the Schottky barrier present at low-k a-SiOC:H/Cu interfaces. By examining the photoemission spectra before and after VUV exposure of a low-k a-SiOC:H (k = 3.3) thin film fabricated by plasma-enhanced chemical-vapor deposition on a polished Cu substrate, it was found that photons with energies of 4.9 eV or greater can deplete accumulated charge in a-SiOC:H films, while VUV photons with energies of 4.7 eV or less, did not have this effect. These critical values were identified to relate the electric potential of the interface barrier between the a-SiOC:H and the Cu layers. Using this method, the Schottky barrier at the low-k a-SiOC:H (k = 3.3)/Cu interface was determined to be 4.8 ± 0.1 eV.

  14. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  15. Interfacial Chemistry-Induced Modulation of Schottky Barrier Heights: In Situ Measurements of the Pt-Amorphous Indium Gallium Zinc Oxide Interface Using X-ray Photoelectron Spectroscopy.

    Science.gov (United States)

    Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S

    2018-01-31

    A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.

  16. Barrier height of Pt–In[sub x]Ga[sub 1−x]N (0≤x≤0.5) nanowire Schottky diodes

    KAUST Repository

    Guo, Wei; Banerjee, Animesh; Zhang, Meng; Bhattacharya, Pallab

    2011-01-01

    The barrier height of Schottky diodes made on Inx Ga 1-x N nanowires have been determined from capacitance-voltage measurements. The nanowires were grown undoped on n-type (001) silicon substrates by plasma-assisted molecular beam epitaxy. The length, diameter and density of the nanowires are ∼1 μm, 20 nm, and 1× 1011 cm-2. The Schottky contact was made on the top surface of the nanowires with Pt after planarizing with parylene. The measured barrier height B varies from 1.4 eV (GaN) to 0.44 eV (In0.5 Ga0.5 N) and agrees well with the ideal barrier heights in the Schottky limit. © 2011 American Institute of Physics.

  17. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe

    Science.gov (United States)

    Guo, Yuzheng; Robertson, John

    2017-09-01

    We present a detailed study of the electronic structure of the layered semiconductor InSe. We calculate the band structure of the monolayer and bulk material using density functional theory, hybrid functionals, and G W . The band gap of the monolayer InSe is calculated to be 2.4 eV in screened exchange hybrid functional, close to the experimental photoluminescence gap. The electron affinities and band offsets are calculated for vertical stacked-layer heterostructures, and are found to be suitable for tunnel field effect transistors (TFETs) in combination with WS e2 or similar. The valence-band edge of InSe is calculated to lie 5.2 eV below the vacuum level, similar to that for the closed shell systems HfS e2 or SnS e2 . Hence InSe would be suitable to act as a p -type drain in the TFET. The intrinsic defects are calculated. For Se-rich layers, the Se adatom (interstitial) is found to be the most stable defect, whereas for In-rich layers, the Se vacancy is the most stable for the neutral state. Antisites tend to have energies just above those of vacancies. The Se antisite distorts towards a bond-breaking distortion as in the EL2 center of GaAs. Both substitutional donors and acceptors are calculated to be shallow, and effective dopants. They do not reconstruct to form nondoping configurations as occurs in black phosphorus. Finally, the Schottky barriers of metals on InSe are found to be strongly pinned by metal induced gap states (MIGS) at ˜0.5 eV above the valence-band edge. Any interfacial defects would lead to a stronger pinning at a similar energy. Overall, InSe is an effective semiconductor combining the good features of 2D (lack of dangling bonds, etc.) with the good features of 3D (effective doping), which few others achieve.

  18. Schottky barrier height of Ni to β-(AlxGa1-x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Ahmadi, Elaheh; Oshima, Yuichi; Wu, Feng; Speck, James S.

    2017-03-01

    Coherent β-(AlxGa1-x)2O3 films (x = 0, 0.038, 0.084, 0.164) were grown successfully on a Sn-doped β-Ga2O3 (010) substrate using plasma-assisted molecular beam epitaxy. Atom probe tomography, transmission electron microscopy, and high resolution x-ray diffraction were used to verify the alloy composition and high quality of the films. Schottky diodes were then fabricated using Ni as the Schottky metal. Capacitance-voltage measurements revealed a very low (current-voltage (I-V) measurements performed at temperatures varying from 300 K to 500 K on the Schottky diodes. These measurements revealed that the apparent Schottky barrier height could have similar values for different compositions of β-(AlxGa1-x)2O3. We believe this is attributed to the lateral fluctuation in the alloy’s composition. This results in a lateral variation in the barrier height. Therefore, the average Schottky barrier height extracted from I-V measurements could be similar for β-(AlxGa1-x)2O3 films with different compositions.

  19. High performance and transparent multilayer MoS2 transistors: Tuning Schottky barrier characteristics

    Directory of Open Access Journals (Sweden)

    Young Ki Hong

    2016-05-01

    Full Text Available Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS2 thin-film transistor (TFT, which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS2 TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS2 and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  20. High performance and transparent multilayer MoS{sub 2} transistors: Tuning Schottky barrier characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Young Ki; Kwon, Junyeon; Hong, Seongin; Song, Won Geun; Liu, Na; Omkaram, Inturu; Kim, Sunkook, E-mail: kimskcnt@gmail.com, E-mail: ohms@keti.re.kr [Multi-Functional Bio/Nano Lab., Kyung Hee University, Gyeonggi 446-701 (Korea, Republic of); Yoo, Geonwook; Yoo, Byungwook; Oh, Min Suk, E-mail: kimskcnt@gmail.com, E-mail: ohms@keti.re.kr [Display Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi 463-816 (Korea, Republic of); Ju, Sanghyun [Department of Physics, Kyonggi University, Suwon, Gyeonggi-Do 443-760 (Korea, Republic of)

    2016-05-15

    Various strategies and mechanisms have been suggested for investigating a Schottky contact behavior in molybdenum disulfide (MoS{sub 2}) thin-film transistor (TFT), which are still in much debate and controversy. As one of promising breakthrough for transparent electronics with a high device performance, we have realized MoS{sub 2} TFTs with source/drain electrodes consisting of transparent bi-layers of a conducting oxide over a thin film of low work function metal. Intercalation of a low work function metal layer, such as aluminum, between MoS{sub 2} and transparent source/drain electrodes makes it possible to optimize the Schottky contact characteristics, resulting in about 24-fold and 3 orders of magnitude enhancement of the field-effect mobility and on-off current ratio, respectively, as well as transmittance of 87.4 % in the visible wavelength range.

  1. Strong Schottky barrier reduction at Au-catalyst/GaAs-nanowire interfaces by electric dipole formation and Fermi-level unpinning.

    Science.gov (United States)

    Suyatin, Dmitry B; Jain, Vishal; Nebol'sin, Valery A; Trägårdh, Johanna; Messing, Maria E; Wagner, Jakob B; Persson, Olof; Timm, Rainer; Mikkelsen, Anders; Maximov, Ivan; Samuelson, Lars; Pettersson, Håkan

    2014-01-01

    Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

  2. Effect of thermal treatment on the characteristics of iridium Schottky barrier diodes on n-Ge (1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, A., E-mail: albert.chawanda@up.ac.za [Department of Physics, University of Pretoria, 0002 (South Africa); Department of Physics, Midlands State University, Bag 9055, Gweru (Zimbabwe); Coelho, S.M.M.; Auret, F.D.; Mtangi, W. [Department of Physics, University of Pretoria, 0002 (South Africa); Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, Box 77000, Port Elizabeth 6031 (South Africa); Nel, J.M.; Diale, M. [Department of Physics, University of Pretoria, 0002 (South Africa)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Ir/n-Ge (1 0 0) Schottky diodes were characterized using I-V, C-V and SEM techniques under various annealing conditions. Black-Right-Pointing-Pointer The variation of the electrical and structural properties can be due to effects phase transformation during annealing. Black-Right-Pointing-Pointer Thermal stability of these diodes is maintained up to 500 Degree-Sign C anneal. Black-Right-Pointing-Pointer SEM results depicts that the onset temperature for agglomeration in 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C. - Abstract: Iridium (Ir) Schottky barrier diodes were deposited on bulk grown (1 0 0) Sb-doped n-type germanium by using the electron beam deposition system. Electrical characterization of these contacts using current-voltage (I-V) and capacitance-voltage (C-V) measurements was performed under various annealing conditions. The variation of the electrical properties of these Schottky diodes can be attributed to combined effects of interfacial reaction and phase transformation during the annealing process. Thermal stability of the Ir/n-Ge (1 0 0) was observed up to annealing temperature of 500 Degree-Sign C. Furthermore, structural characterization of these samples was performed by using a scanning electron microscopy (SEM) at different annealing temperatures. Results have also revealed that the onset temperature for agglomeration in a 20 nm Ir/n-Ge (1 0 0) system occurs between 600 and 700 Degree-Sign C.

  3. Internal photoemission for photovoltaic using p-type Schottky barrier: Band structure dependence and theoretical efficiency limits

    Science.gov (United States)

    Shih, Ko-Han; Chang, Yin-Jung

    2018-01-01

    Solar energy conversion via internal photoemission (IPE) across a planar p-type Schottky junction is quantified for aluminum (Al) and copper (Cu) in the framework of direct transitions with non-constant matrix elements. Transition probabilities and k-resolved group velocities are obtained based on pseudo-wavefunction expansions and realistic band structures using the pseudopotential method. The k-resolved number of direct transitions, hole photocurrent density, quantum yield (QY), and the power conversion efficiency (PCE) under AM1.5G solar irradiance are subsequently calculated and analyzed. For Al, the parabolic and "parallel-band" effect along the U-W-K path significantly enhances the transition rate with final energies of holes mainly within 1.41 eV below the Fermi energy. For Cu, d-state hot holes mostly generated near the upper edge of 3d bands dominate the hole photocurrent and are weekly (strongly) dependent on the barrier height (metal film thickness). Hot holes produced in the 4s band behave just oppositely to their d-state counterparts. Non-constant matrix elements are shown to be necessary for calculations of transitions due to time-harmonic perturbation in Cu. Compared with Cu, Al-based IPE in p-type Schottky shows the highest PCE (QY) up to about 0.2673% (5.2410%) at ΦB = 0.95 eV (0.5 eV) and a film thickness of 11 nm (20 nm). It is predicted that metals with relatively dispersionless d bands (such as Cu) in most cases do not outperform metals with photon-accessible parallel bands (such as Al) in photon energy conversion using a planar p-type Schottky junction.

  4. Low-pressure CVD-grown β-Ga2O3 bevel-field-plated Schottky barrier diodes

    Science.gov (United States)

    Joishi, Chandan; Rafique, Subrina; Xia, Zhanbo; Han, Lu; Krishnamoorthy, Sriram; Zhang, Yuewei; Lodha, Saurabh; Zhao, Hongping; Rajan, Siddharth

    2018-03-01

    We report (010)-oriented β-Ga2O3 bevel-field-plated mesa Schottky barrier diodes grown by low-pressure chemical vapor deposition (LPCVD) using a solid Ga precursor and O2 and SiCl4 sources. Schottky diodes with good ideality and low reverse leakage were realized on the epitaxial material. Edge termination using beveled field plates yielded a breakdown voltage of -190 V, and maximum vertical electric fields of 4.2 MV/cm in the center and 5.9 MV/cm at the edge were estimated, with extrinsic R ON of 3.9 mΩ·cm2 and extracted intrinsic R ON of 0.023 mΩ·cm2. The reported results demonstrate the high quality of homoepitaxial LPCVD-grown β-Ga2O3 thin films for vertical power electronics applications, and show that this growth method is promising for future β-Ga2O3 technology.

  5. Characteristics of Schottky-barrier source/drain metal-oxide-polycrystalline thin-film transistors on glass substrates

    International Nuclear Information System (INIS)

    Jung, Seung-Min; Cho, Won-Ju; Jung, Jong-Wan

    2012-01-01

    Polycrystalline-silicon (poly-Si) Schottky-barrier thin-film transistors (SB-TFTs) with Pt-silicided source /drain junctions were fabricated on glass substrates, and the electrical characteristics were examined. The amorphous silicon films on glass substrates were converted into high-quality poly-Si by using excimer laser annealing (ELA) and solid phase crystallization (SPC) methods. The crystallinity of poly-Si was analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. The silicidation process was optimized by measuring the electrical characteristics of the Pt-silicided Schottky diodes. The performances of Pt-silicided SB-TFTs using poly-Si films on glass substrates and crystallized by using ELA and SPC were demonstrated. The SB-TFTs using the ELA poly-Si film demonstrated better electrical performances such as higher mobility (22.4 cm 2 /Vs) and on/off current ratio (3 x 10 6 ) and lower subthreshold swing value (120 mV/dec) than the SPC poly-Si films.

  6. The Influence of High-Energy Electrons Irradiation on Surface of n-GaP and on Au/n-GaP/Al Schottky Barrier Diode

    Science.gov (United States)

    Demir, K. Çinar; Kurudirek, S. V.; Oz, S.; Biber, M.; Aydoğan, Ş.; Şahin, Y.; Coşkun, C.

    We fabricated 25 Au/n-GaP/Al Schottky devices and investigated the influence of high electron irradiation, which has 12MeV on the devices, at room temperature. The X-ray diffraction patterns, scanning electron microscopic images and Raman spectra of a gallium phosphide (GaP) semiconductor before and after electron irradiation have been analyzed. Furthermore, some electrical measurements of the devices were carried out through the current-voltage (I-V) and capacitance-voltage (C-V) measurements. From the I-V characteristics, experimental ideality factor n and barrier height Φ values of these Schottky diodes have been determined before and after irradiation, respectively. The results have also been analyzed statically, and a gauss distribution has been obtained. The built-in potential Vbi, barrier height Φ, Fermi level EF and donor concentration Nd values have been determined from the reverse bias C-V and C-2-V curves of Au/n-GaP/Al Schottky barrier diodes at 100kHz before and after 12MeV electron irradiation. Furthermore, we obtained the series resistance values of Au/n-GaP/Al Schottky barrier diodes with the help of different methods. Experimental results confirmed that the electrical characterization of the device changed with the electron irradiation.

  7. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes

    Science.gov (United States)

    Sang, Liwen; Ren, Bing; Sumiya, Masatomo; Liao, Meiyong; Koide, Yasuo; Tanaka, Atsushi; Cho, Yujin; Harada, Yoshitomo; Nabatame, Toshihide; Sekiguchi, Takashi; Usami, Shigeyoshi; Honda, Yoshio; Amano, Hiroshi

    2017-09-01

    Electrical characteristics of leakage current paths in vertical-type n-GaN Schottky barrier diodes (SBDs) on free-standing GaN substrates are investigated by using photon emission microscopy (PEM). The PEM mapping shows that the initial failure of the SBD devices at low voltages is due to the leakage current paths from polygonal pits in the GaN epilayers. It is observed that these polygonal pits originate from carbon impurity accumulation to the dislocations with a screw-type component by microstructure analysis. For the SBD without polygonal pits, no initial failure is observed and the first leakage appeals at the edge of electrodes as a result of electric field concentration. The mechanism of leakage at pits is explained in terms of trap assisted tunneling through fitting current-voltage characteristics.

  8. Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer

    Science.gov (United States)

    Mahato, Somnath; Puigdollers, Joaquim

    2018-02-01

    Temperature dependent current-voltage (I‒V) characteristics of Au/n-type silicon (n-Si) Schottky barrier diodes have been investigated. Three transition metal oxides (TMO) are used as an interface layer between gold and silicon. The basic Schottky diode parameters such as ideality factor (n), barrier height (ϕb 0) and series resistance (Rs) are calculated and successfully explained by the thermionic emission (TE) theory. It has been found that ideality factor decreased and barrier height increased with increased of temperature. The conventional Richardson plot of ln(I0/T2) vs. 1000/T is determined the activation energy (Ea) and Richardson constant (A*). Whereas value of 'A*' is much smaller than the known theoretical value of n-type Si. The temperature dependent I-V characteristics obtained the mean value of barrier height (ϕb 0 bar) and standard deviation (σs) from the linear plot of ϕap vs. 1000/T. From the modified Richardson plot of ln(I0/T2) ˗ (qσ)2/2(kT)2 vs. 1000/T gives Richardson constant and homogeneous barrier height of Schottky diodes. Main observation in this present work is the barrier height and ideality factor shows a considerable change but the series resistance value exhibits negligible change due to TMO as an interface layer.

  9. Effects of the TiO2 high-k insulator material on the electrical characteristics of GaAs based Schottky barrier diodes

    Science.gov (United States)

    Zellag, S.; Dehimi, L.; Asar, T.; Saadoune, A.; Fritah, A.; Özçelik, S.

    2018-01-01

    The effects of the TiO2 high-k insulator material on Au/n-GaAs/Ti/Au Schottky barrier diodes have been studied by means of the numerical simulation and experimental results at room temperature. The Atlas-Silvaco-TCAD numerical simulator has been used to explain the behavior of different physical phenomena of Schottky diode. The experimental values of ideality factor, barrier height, and series resistance have been determined by using the various techniques such as Cheung's method, forward bias ln I- V and reverse capacitance-voltage behaviors. The experimental ideality factor and barrier height values have been found to be 4.14 and 0.585 eV for Au/n-GaAs/Ti/Au Schottky barrier diode and 4.00 and 0.548 eV for that structure with 16 nm thick TiO2 film and 3.92, 0.556 eV with 100 nm thick TiO2 film. The diodes show a non-ideal current-voltage behavior that of the ideality factor so far from unity. The extraction of N ss interface distribution profile as a function of E c -E ss is made using forward-bias I- V measurement by considering the bias dependence of ideality factor, the effective barrier height, and series resistance for Schottky barrier diodes. The N ss calculated values with consideration of the series resistance are lower than the calculated ones without series resistance. The current-voltage results of diodes reveal an abnormal increase in leakage current with an increase in thickness of high-k interfacial insulator layer. However, the simulation agrees in general with the experimental results.

  10. Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics

    Science.gov (United States)

    He, Qiming; Mu, Wenxiang; Dong, Hang; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tang, Minghua; Tao, Xutang; Liu, Ming

    2017-02-01

    The Pt/β-Ga2O3 Schottky barrier diode and its temperature-dependent current-voltage characteristics were investigated for power device application. The edge-defined film-fed growth (EFG) technique was utilized to grow the (100)-oriented β-Ga2O3 single crystal substrate that shows good crystal quality characterized by X-ray diffraction and high resolution transmission electron microscope. Ohmic and Schottky electrodes were fabricated by depositing Ti and Pt metals on the two surfaces, respectively. Through the current-voltage (I-V) measurement under different temperature and the thermionic emission modeling, the fabricated Pt/β-Ga2O3 Schottky diode was found to show good performances at room temperature, including rectification ratio of 1010, ideality factor (n) of 1.1, Schottky barrier height (ΦB) of 1.39 eV, threshold voltage (Vbi) of 1.07 V, ON-resistance (RON) of 12.5 mΩ.cm2, forward current density at 2 V (J@2V) of 56 A/cm2, and saturation current density (J0) of 2 × 10-16 A/cm2. The effective donor concentration Nd - Na was calculated to be about 2.3 × 1014 cm3. Good temperature dependent performance was also found in the device. The Schottky barrier height was estimated to be about 1.3 eV-1.39 eV at temperatures ranging from room temperature to 150 °C. With increasing temperature, parameters such as RON and J@2V become better, proving that the diode can work well at high temperature. The EFG grown β-Ga2O3 single crystal is a promising material to be used in the power devices.

  11. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors

    Science.gov (United States)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-01

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  12. Electrically Tunable and Negative Schottky Barriers in Multi-layered Graphene/MoS2 Heterostructured Transistors.

    Science.gov (United States)

    Qiu, Dongri; Kim, Eun Kyu

    2015-09-03

    We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.

  13. Mo1-xWxSe2-Based Schottky Junction Photovoltaic Cells.

    Science.gov (United States)

    Yi, Sum-Gyun; Kim, Sung Hyun; Park, Sungjin; Oh, Donggun; Choi, Hwan Young; Lee, Nara; Choi, Young Jai; Yoo, Kyung-Hwa

    2016-12-14

    We developed Schottky junction photovoltaic cells based on multilayer Mo 1-x W x Se 2 with x = 0, 0.5, and 1. To generate built-in potentials, Pd and Al were used as the source and drain electrodes in a lateral structure, and Pd and graphene were used as the bottom and top electrodes in a vertical structure. These devices exhibited gate-tunable diode-like current rectification and photovoltaic responses. Mo 0.5 W 0.5 Se 2 Schottky diodes with Pd and Al electrodes exhibited higher photovoltaic efficiency than MoSe 2 and WSe 2 devices with Pd and Al electrodes, likely because of the greater adjusted band alignment in Mo 0.5 W 0.5 Se 2 devices. Furthermore, we showed that Mo 0.5 W 0.5 Se 2 -based vertical Schottky diodes yield a power conversion efficiency of ∼16% under 532 nm light and ∼13% under a standard air mass 1.5 spectrum, demonstrating their remarkable potential for photovoltaic applications.

  14. An all-carbon vdW heterojunction composed of penta-graphene and graphene: Tuning the Schottky barrier by electrostatic gating or nitrogen doping

    Science.gov (United States)

    Guo, Yaguang; Wang, Fancy Qian; Wang, Qian

    2017-08-01

    The non-zero band gap together with other unique properties endows penta-graphene with potential for device applications. Here, we study the performance of penta-graphene as the channel material contacting with graphene to form a van der Waals heterostructure. Based on first-principles calculations, we show that the intrinsic properties of penta-graphene are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The stacked system forms an n-type Schottky barrier (Φe) at the vertical interface, while a negative band bending occurs at the lateral interface in a current-in-plane model. From the device point of view, we further demonstrate that a low-Φe or an Ohmic contact can be realized by applying an external electric field or doping graphene with nitrogen atoms. This allows the control of the Schottky barrier height, which is essential in fabricating penta-graphene-based nanotransistors.

  15. Dynamics of modification of Ni/n-GaN Schottky barrier diodes irradiated at low temperature by 200 MeV Ag14+ ions

    International Nuclear Information System (INIS)

    Kumar, Ashish; Kumar, Tanuj; Kanjilal, D.; Hähnel, A.; Singh, R.

    2014-01-01

    Ni/GaN Schottky barrier diodes were irradiated with 200 MeV Ag ions up to fluence of 1 × 10 11 ions/cm 2 at the substrate temperature of 80 K. Post-irradiation current-voltage measurements showed that the ideality factor, n increased and the reverse leakage current, I R decreased with increase in fluence. But Schottky barrier height, ϕ b increased only marginally with increase in ion fluence. In situ resistivity measurements showed orders of magnitude increase in resistivity of GaN epitaxial film with irradiation fluence. Cross-sectional transmission electron microscopy images revealed the presence of defect clusters in bulk GaN after irradiation

  16. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    International Nuclear Information System (INIS)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I.; Mora-Ramos, M.E.; Duque, C.A.

    2013-01-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions

  17. Evaluation of 320x240 pixel LEC GaAs Schottky barrier X-ray imaging arrays, hybridized to CMOS readout circuit based on charge integration

    CERN Document Server

    Irsigler, R; Alverbro, J; Borglind, J; Froejdh, C; Helander, P; Manolopoulos, S; O'Shea, V; Smith, K

    1999-01-01

    320x240 pixels GaAs Schottky barrier detector arrays were fabricated, hybridized to silicon readout circuits, and subsequently evaluated. The detector chip was based on semi-insulating LEC GaAs material. The square shaped pixel detector elements were of the Schottky barrier type and had a pitch of 38 mu m. The GaAs wafers were thinned down prior to the fabrication of the ohmic back contact. After dicing, the chips were indium bump, flip-chip bonded to CMOS readout circuits based on charge integration, and finally evaluated. A bias voltage between 50 and 100 V was sufficient to operate the detector. Results on I-V characteristics, noise behaviour and response to X-ray radiation are presented. Images of various objects and slit patterns were acquired by using a standard dental imaging X-ray source. The work done was a part of the XIMAGE project financed by the European Community (Brite-Euram). (author)

  18. Nonlinear absorption coefficient and relative refraction index change for an asymmetrical double δ-doped quantum well in GaAs with a Schottky barrier potential

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Briseño, J.G.; Martínez-Orozco, J.C.; Rodríguez-Vargas, I. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, Calzada Solidaridad esquina con Paseo la Bufa S/N, C.P. 98060, Zacatecas, Zac. (Mexico); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Instituto de Física, Universidad de Antioquia, AA 1226, Medellín (Colombia)

    2013-09-01

    In this work we are reporting the energy level spectrum for a quantum system consisting of an n-type double δ-doped quantum well with a Schottky barrier potential in a Gallium Arsenide matrix. The calculated states are taken as the basis for the evaluation of the linear and third-order nonlinear contributions to the optical absorption coefficient and to the relative refractive index change, making particular use of the asymmetry of the potential profile. These optical properties are then reported as a function of the Schottky barrier height (SBH) and the separation distance between the δ-doped quantum wells. Also, the effects of the application of hydrostatic pressure are studied. The results show that the amplitudes of the resonant peaks are of the same order of magnitude of those obtained in the case of single δ-doped field effect transistors; but tailoring the asymmetry of the confining potential profile allows the control the resonant peak positions.

  19. Analysis of temperature-dependant current–voltage characteristics and extraction of series resistance in Pd/ZnO Schottky barrier diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mayimele, M A, E-mail: meehleketo@gmail.com; Rensburg, J P van. Janse; Auret, F D; Diale, M

    2016-01-01

    We report on the analysis of current voltage (I–V) measurements performed on Pd/ZnO Schottky barrier diodes (SBDs) in the 80–320 K temperature range. Assuming thermionic emission (TE) theory, the forward bias I–V characteristics were analysed to extract Pd/ZnO Schottky diode parameters. Comparing Cheung’s method in the extraction of the series resistance with Ohm’s law, it was observed that at lower temperatures (T<180 K) the series resistance decreased with increasing temperature, the absolute minimum was reached near 180 K and increases linearly with temperature at high temperatures (T>200 K). The barrier height and the ideality factor decreased and increased, respectively, with decrease in temperature, attributed to the existence of barrier height inhomogeneity. Such inhomogeneity was explained based on TE with the assumption of Gaussian distribution of barrier heights with a mean barrier height of 0.99 eV and a standard deviation of 0.02 eV. A mean barrier height of 0.11 eV and Richardson constant value of 37 A cm{sup −2} K{sup −2} were determined from the modified Richardson plot that considers the Gaussian distribution of barrier heights.

  20. First-principles study of the effects of Silicon doping on the Schottky barrier of TiSi2/Si interfaces

    Science.gov (United States)

    Wang, Han; Silva, Eduardo; West, Damien; Sun, Yiyang; Restrepo, Oscar; Zhang, Shengbai; Kota, Murali

    As scaling of semiconductor devices is pursued in order to improve power efficiency, quantum effects due to the reduced dimensions on devices have become dominant factors in power, performance, and area scaling. In particular, source/drain contact resistance has become a limiting factor in the overall device power efficiency and performance. As a consequence, techniques such as heavy doping of source and drain have been explored to reduce the contact resistance, thereby shrinking the width of depletion region and lowering the Schottky barrier height. In this work, we study the relation between doping in Silicon and the Schottky barrier of a TiSi2/Si interface with first-principles calculation. Virtual Crystal Approximation (VCA) is used to calculate the average potential of the interface with varying doping concentration, while the I-V curve for the corresponding interface is calculated with a generalized one-dimensional transfer matrix method. The relation between substitutional and interstitial Boron and Phosphorus dopant near the interface, and their effect on tuning the Schottky barrier is studied. These studies provide insight to the type of doping and the effect of dopant segregation to optimize metal-semiconductor interface resistance.

  1. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO2 heterostructure.

    Science.gov (United States)

    Ma, Xiangchao; Wu, Xin; Wang, Yucheng; Dai, Ying

    2017-07-19

    Charge transfer across the Pt/TiO 2 interface, which is mainly determined by the interface Schottky barrier height (SBH), is an important process in the (photo)catalytic and electronic applications of the Pt/TiO 2 composite. Therefore, systematic investigation of the factors that affect the interface SBH is indispensable for understanding and optimizing its performance. In this work, a systematic study of the effects of the interfacial structure and strain on the SBH of the Pt/TiO 2 (001) interface has been carried out based on the first-principles calculations. The results of interface adhesion energy show that two different interfacial structures for the Pt/TiO 2 (001) heterointerface may exist experimentally, namely, O-Pt bonding and Ti-Pt bonding. Moreover, the interfacial structures result in not only different values for the SBH, but also different dependences of the SBH on strain. Detailed investigations show that these versatile modulations of the SBH with the structure and strain are mainly attributed to the strong dependence of the band edges of TiO 2 and the interfacial potential alignments on the strain and structure, suggesting that these results are general and may be applicable to other metal/TiO 2 heterostructures.

  2. Charge plasma based source/drain engineered Schottky Barrier MOSFET: Ambipolar suppression and improvement of the RF performance

    Science.gov (United States)

    Kale, Sumit; Kondekar, Pravin N.

    2018-01-01

    This paper reports a novel device structure for charge plasma based Schottky Barrier (SB) MOSFET on ultrathin SOI to suppress the ambipolar leakage current and improvement of the radio frequency (RF) performance. In the proposed device, we employ dual material for the source and drain formation. Therefore, source/drain is divided into two parts as main source/drain and source/drain extension. Erbium silicide (ErSi1.7) is used as main source/drain material and Hafnium metal is used as source/drain extension material. The source extension induces the electron plasma in the ultrathin SOI body resulting reduction of SB width at the source side. Similarly, drain extension also induces the electron plasma at the drain side. This significantly increases the SB width due to increased depletion at the drain end. As a result, the ambipolar leakage current can be suppressed. In addition, drain extension also reduces the parasitic capacitances of the proposed device to improve the RF performance. The optimization of length and work function of metal used in the drain extension is performed to achieve improvement in device performance. Moreover, the proposed device makes fabrication simpler, requires low thermal budget and free from random dopant fluctuations.

  3. Defect-driven inhomogeneities in Ni /4H-SiC Schottky barriers

    Science.gov (United States)

    Tumakha, S.; Ewing, D. J.; Porter, L. M.; Wahab, Q.; Ma, X.; Sudharshan, T. S.; Brillson, L. J.

    2005-12-01

    Nanoscale depth-resolved cathodoluminescence spectroscopy (DRCLS) of Ni diode arrays on 4H-SiC epitaxial wafers reveals a striking correspondence between deep level defects and electrical transport measurements on a diode-by-diode basis. Current-voltage measurements display both ideal and nonideal diode characteristics due to multiple barriers within individual contacts. Near-interface DRCLS demonstrates the presence of three discrete midgap defect levels with 2.2, 2.45, and 2.65eV emission energies whose concentrations vary on a submicron scale among and within individual diodes, correlating with barrier inhomogeneity. These results also suggest that SiC native defect levels can account for the maximum range of n-type barrier heights.

  4. A novel δ-doped partially insulated dopant-segregated Schottky barrier SOI MOSFET for analog/RF applications

    International Nuclear Information System (INIS)

    Patil, Ganesh C; Qureshi, S

    2011-01-01

    In this paper, a comparative analysis of single-gate dopant-segregated Schottky barrier (DSSB) SOI MOSFET and raised source/drain ultrathin-body SOI MOSFET (RSD UTB) has been carried out to explore the thermal efficiency, scalability and analog/RF performance of these devices. A novel p-type δ-doped partially insulated DSSB SOI MOSFET (DSSB Pi-OX-δ) has been proposed to reduce the self-heating effect and to improve the high-frequency performance of DSSB SOI MOSFET over RSD UTB. The improved analog/RF figures of merit such as transconductance, transconductance generation factor, unity-gain frequency, maximum oscillation frequency, short-circuit current gain and unilateral power gain in DSSB Pi-OX-δ MOSFET show the suitability of this device for analog/RF applications. The reduced drain-induced barrier lowering, subthreshold swing and parasitic capacitances also make this device highly scalable. By using mixed-mode simulation capability of MEDICI simulator a cascode amplifier has been implemented using all the structures (RSD UTB, DSSB SOI and DSSB Pi-OX-δ MOSFETs). The results of this implementation show that the gain-bandwidth product in the case of DSSB Pi-OX-δ MOSFET has improved by 50% as compared to RSD UTB and by 20% as compared to DSSB SOI MOSFET. The detailed fabrication flow of DSSB Pi-OX-δ MOSFET has been proposed which shows that with the bare minimum of steps the performance of DSSB SOI MOSFET can be improved significantly in comparison to RSD UTB

  5. Modeling and Design of a New Flexible Graphene-on-Silicon Schottky Junction Solar Cell

    Directory of Open Access Journals (Sweden)

    Francesco Dell’Olio

    2016-10-01

    Full Text Available A new graphene-based flexible solar cell with a power conversion efficiency >10% has been designed. The environmental stability and the low complexity of the fabrication process are the two main advantages of the proposed device with respect to other flexible solar cells. The designed solar cell is a graphene/silicon Schottky junction whose performance has been enhanced by a graphene oxide layer deposited on the graphene sheet. The effect of the graphene oxide is to dope the graphene and to act as anti-reflection coating. A silicon dioxide ultrathin layer interposed between the n-Si and the graphene increases the open-circuit voltage of the cell. The solar cell optimization has been achieved through a mathematical model, which has been validated by using experimental data reported in literature. The new flexible photovoltaic device can be integrated in a wide range of microsystems powered by solar energy.

  6. Analytical model for the TeraHertz current noise in nanometric Schottky-barrier diodes and heterostructure barrier varactors

    Energy Technology Data Exchange (ETDEWEB)

    Mahi, F Z; Helmaoui, A [Physics of Semiconductor Devices Laboratory (LPDS), University of Bechar (Algeria); Varani, L [Institute of Electronics of the South (IES - CNRS UMR 5214), University of Montpellier (France); Shiktorov, P; Starikov, E; Gruzhinskis, V, E-mail: fati_zo_mahi2002@yahoo.f [Semiconductor Physics Institute, Vilnius (Lithuania)

    2009-11-15

    In this paper we propose an analytical model for the calculation of the spectral density of current fluctuations in Heterostructure-barrier varactors . The structures of the calculated spectra are analyzed in terms of physical processes useful to optimize the device parameters for the extraction of the high-order harmonics.

  7. Determination of the laterally homogeneous barrier height of palladium Schottky barrier diodes on n-Ge (111)

    CSIR Research Space (South Africa)

    Chawanda, A

    2011-05-01

    Full Text Available The authors have studied the experimental linear relationship between barrier heights and ideality factors for palladium (Pd) on bulk-grown (1 1 1) Sb-doped n-type germanium (Ge) metal-semiconductor structures with a doping density of about 2...

  8. Lateral current generation in n-AlGaAs/GaAs heterojunction channels by Schottky-barrier gate illumination

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, Takuya; Noda, Takeshi; Sakuma, Yoshiki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, Hiroyuki [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2015-01-12

    We observe lateral currents induced in an n-AlGaAs/GaAs heterojunction channel of Hall bar geometry, when an asymmetric position of the Schottky metal gate is locally irradiated by a near-infrared laser beam. When the left side of the Schottky gate is illuminated with the laser, the lateral current flows from left to right in the two dimensional electron gas (2DEG) channel. In contrast, the right side illumination leads to the current from right to left. The magnitude of the lateral current is almost linearly dependent on the beam position, the current reaching its maximum for the beam at the edge of the Schottky gate. The experimental findings are well explained by a theory based on the current-continuity equation, where the lateral current in the 2DEG channel is driven by the photocurrent which vertically flows from the 2DEG to the Schottky gate.

  9. Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface

    Science.gov (United States)

    Chanana, Anuja; Mahapatra, Santanu

    2016-01-01

    A low Schottky barrier height (SBH) at source/drain contact is essential for achieving high drive current in atomic layer MoS2-channel-based field effect transistors. Approaches such as choosing metals with appropriate work functions and chemical doping are employed previously to improve the carrier injection from the contact electrodes to the channel and to mitigate the SBH between the MoS2 and metal. Recent experiments demonstrate significant SBH reduction when graphene layer is inserted between metal slab (Ti and Ni) and MoS2. However, the physical or chemical origin of this phenomenon is not yet clearly understood. In this work, density functional theory simulations are performed, employing pseudopotentials with very high basis sets to get insights of the charge transfer between metal and monolayer MoS2 through the inserted graphene layer. Our atomistic simulations on 16 different interfaces involving five different metals (Ti, Ag, Ru, Au, and Pt) reveal that (i) such a decrease in SBH is not consistent among various metals, rather an increase in SBH is observed in case of Au and Pt; (ii) unlike MoS2-metal interface, the projected dispersion of MoS2 remains preserved in any MoS2-graphene-metal system with shift in the bands on the energy axis. (iii) A proper choice of metal (e.g., Ru) may exhibit ohmic nature in a graphene-inserted MoS2-metal contact. These understandings would provide a direction in developing high-performance transistors involving heteroatomic layers as contact electrodes.

  10. Response of Ni/4H-SiC Schottky barrier diodes to alpha-particle irradiation at different fluences

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E., E-mail: ezekiel.omotoso@up.ac.za [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Departments of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Diale, M.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2016-01-01

    Irradiation experiments have been carried out on 1.9×10{sup 16} cm{sup −3} nitrogen-doped 4H-SiC at room temperature using 5.4 MeV alpha-particle irradiation over a fluence ranges from 2.6×10{sup 10} to 9.2×10{sup 11} cm{sup −2}. Current–voltage (I–V), capacitance–voltage (C–V) and deep level transient spectroscopy (DLTS) measurements have been carried out to study the change in characteristics of the devices and free carrier removal rate due to alpha-particle irradiation, respectively. As radiation fluence increases, the ideality factors increased from 1.20 to 1.85 but the Schottky barrier height (SBH{sub I–V}) decreased from 1.47 to 1.34 eV. Free carrier concentration, N{sub d} decreased with increasing fluence from 1.7×10{sup 16} to 1.1×10{sup 16} cm{sup −2} at approximately 0.70 μm depth. The reduction in N{sub d} shows that defects were induced during the irradiation and have effect on compensating the free carrier. The free carrier removal rate was estimated to be 6480±70 cm{sup −1}. Alpha-particle irradiation introduced two electron traps (E{sub 0.39} and E{sub 0.62}), with activation energies of 0.39±0.03 eV and 0.62±0.08 eV, respectively. The E{sub 0.39} as attribute related to silicon or carbon vacancy, while the E{sub 0.62} has the attribute of Z{sub 1}/Z{sub 2}.

  11. Microstructure, electrical, and optical properties of evaporated PtSi/p-Si(100) Schottky barriers as high quantum efficient infrared detectors

    International Nuclear Information System (INIS)

    Wu Jihhuah; Chang Rongsen; Horng Gwoji

    2004-01-01

    The effects of the microstructure and the electrical and optical properties on the formation at highly efficient infrared PtSi Schottky barrier detectors (SBD) have been studied in detail. Two- to twelve-nanometer-thick PtSi films were grown by evaporation at temperature ranging from 350 to 550 deg. C. The electron diffraction patterns indicate the existence of both the (11-bar0) and (12-bar1) orientations when PtSi films formed at 350 deg. C. However, the diffraction patterns show only the (12-bar1) orientation when the PtSi films are formed at 450 deg. C or above. The electrical barrier height of the Schottky barrier detector that formed at 350 deg. C was about 20 meV higher than that formed at 450 deg. C or above. The grain size and the film thickness had a negligible effect on the electrical barrier height. However, the optical performance was strongly dependent on the film thickness and the growth conditions. The 350 deg. C PtSi film showed increased quantum efficiency as the film thickness decreased. The optimal thickness that provided the highest responsivity was 2 nm. On the other hand, the optimal thickness shifted to 8 nm for PtSi film formed at 450 deg. C or above. These results indicate that the quantum efficiency of a detector can be improved if the PtSi film has an orientation at (12-bar1), a larger grain size, and an optimal film thickness

  12. Temperature dependence of the current in Schottky-barrier source-gated transistors

    Science.gov (United States)

    Sporea, R. A.; Overy, M.; Shannon, J. M.; Silva, S. R. P.

    2015-05-01

    The temperature dependence of the drain current is an important parameter in thin-film transistors. In this paper, we propose that in source-gated transistors (SGTs), this temperature dependence can be controlled and tuned by varying the length of the source electrode. SGTs comprise a reverse biased potential barrier at the source which controls the current. As a result, a large activation energy for the drain current may be present which, although useful in specific temperature sensing applications, is in general deleterious in many circuit functions. With support from numerical simulations with Silvaco Atlas, we describe how increasing the length of the source electrode can be used to reduce the activation energy of SGT drain current, while maintaining the defining characteristics of SGTs: low saturation voltage, high output impedance in saturation, and tolerance to geometry variations. In this study, we apply the dual current injection modes to obtain drain currents with high and low activation energies and propose mechanisms for their exploitation in future large-area integrated circuit designs.

  13. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  14. Silicon Schottky photovoltaic diodes for solar energy conversion

    Science.gov (United States)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  15. X-ray photoelectron spectroscopy study of Schottky barrier formation and thermal stability of the LaB6/GaAs(001) c (4 x 4) interface

    International Nuclear Information System (INIS)

    Yokotsuka, T.; Narusawa, T.; Uchida, Y.; Nakashima, H.

    1987-01-01

    Schottky barrier formation and thermal stability of the LaB 6 /GaAs(001) c (4 x 4) interface were investigated by x-ray photoelectron spectroscopy. Results show an excellent thermal stability without any appreciable interface reactions such as interdiffusion. Band bending induced by LaB 6 deposition is found to depend on the evaporation condition. However, the Fermi level pinning position does not change due to heat treatments between 300 and 700 0 C. This indicates that LaB 6 is a promising gate material for GaAs integrated circuits

  16. Estimation of power dissipation of a 4H-SiC Schottky barrier diode with a linearly graded doping profile in the drift region

    Directory of Open Access Journals (Sweden)

    Rajneesh Talwar

    2009-09-01

    Full Text Available The aim of this paper is to establish the importance of a linearly graded profile in the drift region of a 4H-SiC Schottky barrier diode (SBD. The power dissipation of the device is found to be considerably lower at any given current density as compared to its value obtained for a uniformly doped drift region. The corresponding values of breakdown voltages obtained are similar to those obtained with uniformly doped wafers of 4H-SiC.

  17. Tuning of Schottky Barrier Height at NiSi/Si Contact by Combining Dual Implantation of Boron and Aluminum and Microwave Annealing

    Directory of Open Access Journals (Sweden)

    Feng Sun

    2018-03-01

    Full Text Available Dopant-segregated source/drain contacts in a p-channel Schottky-barrier metal-oxide semiconductor field-effect transistor (SB-MOSFET require further hole Schottky barrier height (SBH regulation toward sub-0.1 eV levels to improve their competitiveness with conventional field-effect transistors. Because of the solubility limits of dopants in silicon, the requirements for effective hole SBH reduction with dopant segregation cannot be satisfied using mono-implantation. In this study, we demonstrate a potential solution for further SBH tuning by implementing the dual implantation of boron (B and aluminum (Al in combination with microwave annealing (MWA. By using such a method, not only has the lowest hole SBH ever with 0.07 eV in NiSi/n-Si contacts been realized, but also the annealing duration of MWA was sharply reduced to 60 s. Moreover, we investigated the SBH tuning mechanisms of the dual-implanted diodes with microwave annealing, including the dopant segregation, activation effect, and dual-barrier tuning effect of Al. With the selection of appropriate implantation conditions, the dual implantation of B and Al combined with the MWA technique shows promise for the fabrication of future p-channel SB-MOSFETs with a lower thermal budget.

  18. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach

    Science.gov (United States)

    Kumar, Manoj; Pratap, Yogesh; Haldar, Subhasis; Gupta, Mridula; Gupta, R. S.

    2017-12-01

    In this paper TCAD-based simulation of a novel insulated shallow extension (ISE) cylindrical gate all around (CGAA) Schottky barrier (SB) MOSFET has been reported, to eliminate the suicidal ambipolar behavior (bias-dependent OFF state leakage current) of conventional SB-CGAA MOSFET by blocking the metal-induced gap states as well as unwanted charge sharing between source/channel and drain/channel regions. This novel structure offers low barrier height at the source and offers high ON-state current. The I ON/I OFF of ISE-CGAA-SB-MOSFET increases by 1177 times and offers steeper subthreshold slope (~60 mV/decade). However a little reduction in peak cut off frequency is observed and to further improve the cut-off frequency dual metal gate architecture has been employed and a comparative assessment of single metal gate, dual metal gate, single metal gate with ISE, and dual metal gate with ISE has been presented. The improved performance of Schottky barrier CGAA MOSFET by the incorporation of ISE makes it an attractive candidate for CMOS digital circuit design. The numerical simulation is performed using the ATLAS-3D device simulator.

  19. Influence of B doping on the carrier transport mechanism and barrier height of graphene/ZnO Schottky contact

    Science.gov (United States)

    Li, Yapeng; Li, Yingfeng; Zhang, Jianhua; Tong, Ting; Ye, Wei

    2018-03-01

    The ZnO films were fabricated on the surface of n-Si(1 1 1) substrate using the sol-gel method, and the graphene was then transferred to its surface for the fabrication of the graphene/ZnO Schottky contact. The results showed that ZnO films presented a strong (0 0 2) preferred direction, and that the particle sizes on the surface decreased as the doping concentration of B ions increased. The electrical properties of the graphene/ZnO Schottky contact were measured by using current-voltage measurements. It was found that the graphene/ZnO Schottky contact showed a fine rectification behavior when the doping concentration of B ions was increased. However, when the doping concentration of the B ions increased to 0.15 mol l-1, the leakage current increased and rectification behavior weakened. This was due to the Fermi level pinning caused by the presence of the O vacancy at the interface of the graphene/ZnO Schottky contact.

  20. Investigation of Schottky Barriers

    Science.gov (United States)

    1989-12-01

    W. E. Spicer, I. Lindau, P. R. Skeath, C. Y. Su and P. W. Chye , Phys. Rev. Lett. 44, 420 (1980); W. E. Spicer, P. W. Chye , P. R. Skeath, C. Y. Su and...Kahn, D. G. Kilday, and G. Margaritondo, J. Vac. Sci. Technol. B5, 987 (1987). 8. R. Cao, K. Miyano, T. Kendelewicz, K. K. Chin , I. Lindau, and W. E

  1. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2018-01-01

    Full Text Available In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V, a low reverse leakage current density (≤72 μA/mm2@100 V, and a Schottky barrier height of 1.074 eV.

  2. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Science.gov (United States)

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  3. On electrical and interfacial properties of iron and platinum Schottky barrier diodes on (111) n-type Si0.65Ge0.35

    Science.gov (United States)

    Hamri, D.; Teffahi, A.; Djeghlouf, A.; Chalabi, D.; Saidane, A.

    2018-04-01

    Current-voltage (I-V), capacitance-voltage-frequency (C-V-f) and conductance-voltage-frequency (G/ω-V-f) characteristics of Molecular Beam Epitaxy (MBE)-deposited Fe/n-Si0.65Ge0.35 (FM1) and Pt/n-Si0.65Ge0.35(PM2) (111) orientated Schottky barrier diodes (SBDs) have been investigated at room-temperature. Barrier height (ΦB0), ideality factor (n) and series resistance (RS) were extracted. Dominant current conduction mechanisms were determined. They revealed that Poole-Frenkel-type conduction mechanism dominated reverse current. Differences in shunt resistance confirmed the difference found in leakage current. Under forward bias, quasi-ohmic conduction is found at low voltage regions and space charge-limited conduction (SCLC) at higher voltage regions for both SBDs. Density of interface states (NSS) indicated a difference in interface reactivity. Distribution profiles of series resistance (RS) with bias gives a peak in depletion region at low-frequencies that disappears with increasing frequencies. These results show that interface states density and series resistance of Schottky diodes are important parameters that strongly influence electrical properties of FM1 and PM2 structures.

  4. The distribution of the barrier height in Al–TiW–Pd2Si/n-Si Schottky diodes from I–V–T measurements

    International Nuclear Information System (INIS)

    Dökme, Ilbilge; Altındal, Şemsettin; Afandiyeva, Izzet M

    2008-01-01

    The forward and reverse bias current–voltage (I–V) characteristics of Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes (SBDs) were measured in the temperature range of 300–400 K. The estimated zero-bias barrier height Φ B0 and the ideality factor n assuming thermionic emission (TE) theory show a strong temperature dependence. While n decreases, Φ B0 increases with increasing temperature. The Richardson plot is found to be linear in the temperature range measured, but the activation energy value of 0.378 eV and the Richardson constant (A*) value of 15.51 A cm −2 K −2 obtained in this plot are much lower than the known values. Such behavior is attributed to Schottky barrier inhomogeneities by assuming a Gaussian distribution of barrier heights (BHs) due to BH inhomogeneities that prevail at the interface. Also, the Φ B0 versus q/2kT plot was drawn to obtain evidence of a Gaussian distribution of the BHs, and Φ B0 = 0.535 eV and σ 0 = 0.069 V for the mean BH and zero-bias standard deviation, respectively, have been obtained from this plot. Thus, the modified ln(I 0 /T 2 ) − q 2 σ 2 0 /2k 2 T 2 versus q/kT plot gives Φ B0 and A* as 0.510 eV and 121.96 A cm −2 K −2 , respectively. This value of the Richardson constant 121.96 A cm −2 K −2 is very close to the theoretical value of 120 A K −2 cm −2 for n-type Si. Hence, it has been concluded that the temperature dependence of the forward I–V characteristics of the Al–TiW–Pd 2 Si/n-Si Schottky barrier diodes can be successfully explained on the basis of a thermionic emission mechanism with a Gaussian distribution of the BHs

  5. Characterization of the inhomogeneous barrier distribution in a Pt/(100)β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Science.gov (United States)

    Jian, Guangzhong; He, Qiming; Mu, Wenxiang; Fu, Bo; Dong, Hang; Qin, Yuan; Zhang, Ying; Xue, Huiwen; Long, Shibing; Jia, Zhitai; Lv, Hangbing; Liu, Qi; Tao, Xutang; Liu, Ming

    2018-01-01

    β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current-voltage and capacitance-voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A.cm-2.K-2, which is close to the theoretical value of 41.11 A.cm-2.K-2. The differences between the barrier heights determined using the capacitance-voltage and current-voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  6. Improvements on high voltage capacity and high temperature performances of Si-based Schottky potential barrier diode

    International Nuclear Information System (INIS)

    Wang Yongshun; Rui Li; Adnan Ghaffar; Wang Zaixing; Liu Chunjuan

    2015-01-01

    In order to improve the reverse voltage capacity and low junction temperature characteristics of the traditional silicon-based Schottky diode, a Schottky diode with high reverse voltage capacity and high junction temperature was fabricated using ion implantation, NiPt60 sputtering, silicide-forming and other major technologies on an N-type silicon epitaxial layer of 10.6–11.4 μm and (2.2–2.4) × 10 15 cm −3 doping concentration. The measurement results show that the junction temperature of the Schottky diode fabricated can reach 175 °C, that is 50 °C higher than that of the traditional one; the reverse voltage capacity V R can reach 112 V, that is 80 V higher than that of the traditional one; the leakage current is only 2 μA and the forward conduction voltage drop is V F = 0.71 V at forward current I F = 3 A. (semiconductor devices)

  7. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Murape, D.M.; Botha, J.R. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Auret, F.D. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa)

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ{sub b} vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ{sub b,mean} assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact.

  8. Transport characteristics of Pd Schottky barrier diodes on epitaxial n-GaSb as determined from temperature dependent current–voltage measurements

    International Nuclear Information System (INIS)

    Venter, A.; Murape, D.M.; Botha, J.R.; Auret, F.D.

    2015-01-01

    The temperature dependent transport characteristics of Pd/n-GaSb:Te Schottky contacts with low and saturating reverse current are investigated by means of current–voltage measurements between 80 K and 320 K. The apparent barrier height and ideality factor increase with a decrease in temperature. Neither thermionic nor thermionic field emission can explain the low temperature characteristics of these diodes. Instead, evidence is presented for barrier inhomogeneity across the metal/semiconductor contact. A plot of the barrier height, ϕ b vs. 1/2kT revealed a double Gaussian distribution for the barrier height with ϕ b,mean assuming values of 0.59 eV ± 0.07 (80–140 K) and 0.25 eV ± 0.12 (140–320 K) respectively. - Highlights: • Transport characteristics of Pd/epitaxial n-GaSb:Te SBDs are studied by means of I-V-T measurements. • SBDs have remarkably low and saturating reverse current – of the lowest ever reported for GaSb. • Transport behaviour is explained by considering electronic states present on the GaSb surface. • Evidence is presented for barrier inhomogeneity across the metal-semiconductor contact

  9. Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods

    Directory of Open Access Journals (Sweden)

    Abedin Nematpour

    2018-03-01

    Full Text Available Herein, the design and simulation of graphene/InP thin film solar cells with a novel periodic array of nanorods and plasmonic back-reflectors of the nano-semi sphere was proposed. In this structure, a single-layer of the graphene sheet was placed on the vertical nanorods of InP to form a Schottky junction. The electromagnetic field was determined using solving three-dimensional Maxwell's equations discretized by the finite difference method (FDM. The enhancement of light trapping in the absorbing layer was illustrated, thereby increasing the short circuit current to a maximum value of 31.57 mA/cm2 with nanorods having a radius of 400 nm, height of 1250 nm, and nano-semi sphere radius of 50 nm, under a solar irradiation of AM1.5G. The maximum ultimate efficiency was determined to be 45.8% for an angle of incidence of 60°. This structure has shown a very good light trapping ability when graphene and ITO layers were used at the top and as a back-reflector in the proposed photonic crystal structure of the InP nanorods. Thence, this structure improves the short-circuit current density and the ultimate efficiency of 12% and 2.7%, respectively, in comparison with the InP-nanowire solar cells.

  10. Highly sensitive hydrogen sensor based on graphite-InP or graphite-GaN Schottky barrier with electrophoretically deposited Pd nanoparticles

    Directory of Open Access Journals (Sweden)

    Zdansky Karel

    2011-01-01

    Full Text Available Abstract Depositions on surfaces of semiconductor wafers of InP and GaN were performed from isooctane colloid solutions of palladium (Pd nanoparticles (NPs in AOT reverse micelles. Pd NPs in evaporated colloid and in layers deposited electrophoretically were monitored by SEM. Diodes were prepared by making Schottky contacts with colloidal graphite on semiconductor surfaces previously deposited with Pd NPs and ohmic contacts on blank surfaces. Forward and reverse current-voltage characteristics of the diodes showed high rectification ratio and high Schottky barrier heights, giving evidence of very small Fermi level pinning. A large increase of current was observed after exposing diodes to flow of gas blend hydrogen in nitrogen. Current change ratio about 700,000 with 0.1% hydrogen blend was achieved, which is more than two orders-of-magnitude improvement over the best result reported previously. Hydrogen detection limit of the diodes was estimated at 1 ppm H2/N2. The diodes, besides this extremely high sensitivity, have been temporally stable and of inexpensive production. Relatively more expensive GaN diodes have potential for functionality at high temperatures.

  11. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-01

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  12. Physical Modeling of Gate-Controlled Schottky Barrier Lowering of Metal-Graphene Contacts in Top-Gated Graphene Field-Effect Transistors.

    Science.gov (United States)

    Mao, Ling-Feng; Ning, Huansheng; Huo, Zong-Liang; Wang, Jin-Yan

    2015-12-17

    A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

  13. Photosensitive thin-film In/p-Pb{sub x}Sn{sub 1-x}S Schottky barriers: Fabrication and properties

    Energy Technology Data Exchange (ETDEWEB)

    Gremenok, V. F., E-mail: gremenok@ifttp.bas-net.by [Scientific-Practical Center of the National Academy of Sciences of Belarus State Scientific and Production Association (Belarus); Rud' , V. Yu., E-mail: rudvas.spb@gmail.com [St. Petersburg State Polytechnic University (Russian Federation); Rud' , Yu. V. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Bashkirov, S. A.; Ivanov, V. A. [Scientific-Practical Center of the National Academy of Sciences of Belarus State Scientific and Production Association (Belarus)

    2011-08-15

    Thin Pb{sub x}Sn{sub 1-x}S films are obtained by the 'hot-wall' method at substrate temperatures of 210-330 Degree-Sign C. The microstructure, composition, morphology, and electrical characteristics of films are investigated. On the basis of the obtained films, photosensitive In/p-Pb{sub x}Sn{sub 1-x}S Schottky barriers are fabricated for the first time. The photosensivity spectra of these structures are investigated, and the character of interband transitions and the band-gap values are determined from them. The conclusion is drawn that Pb{sub x}Sn{sub 1-x}S thin polycrystalline films may be used in solar-energy converters.

  14. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides

    Science.gov (United States)

    Fan, Zhi-Qiang; Jiang, Xiang-Wei; Luo, Jun-Wei; Jiao, Li-Ying; Huang, Ru; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As Moore's law approaches its end, two-dimensional (2D) materials are intensely studied for their potentials as one of the "More than Moore' (MM) devices. However, the ultimate performance limits and the optimal design parameters for such devices are still unknown. One common problem for the 2D-material-based device is the relative weak on-current. In this study, two-dimensional Schottky-barrier field-effect transistors (SBFETs) consisting of in-plane heterojunctions of 1T metallic-phase and 2H semiconducting-phase transition-metal dichalcogenides (TMDs) are studied following the recent experimental synthesis of such devices at a much larger scale. Our ab initio simulation reveals the ultimate performance limits of such devices and offers suggestions for better TMD materials. Our study shows that the Schottky-barrier heights (SBHs) of the in-plane 1T/2H contacts are smaller than the SBHs of out-of-plane contacts, and the contact coupling is also stronger in the in-plane contact. Due to the atomic thickness of the monolayer TMD, the average subthreshold swing of the in-plane TMD-SBFETs is found to be close to the limit of 60 mV/dec, and smaller than that of the out-of-plane TMD-SBFET device. Different TMDs are considered and it is found that the in-plane WT e2-SBFET provides the best performance and can satisfy the performance requirement of the sub-10-nm high-performance transistor outlined by the International Technology Roadmap for Semiconductors, and thus could be developed into a viable sub-10-nm MM device in the future.

  15. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al2O3 interlayers

    International Nuclear Information System (INIS)

    Chauhan, Lalit; Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A.; Hughes, G.

    2015-01-01

    The effect of inserting ultra-thin atomic layer deposited Al 2 O 3 dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al 2 O 3 /p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al 2 O 3 interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al 2 O 3 interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al 2 O 3 /n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface

  16. Modification of metal–InGaAs Schottky barrier behaviour by atomic layer deposition of ultra-thin Al{sub 2}O{sub 3} interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Lalit [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Gupta, Suman; Jaiswal, Piyush; Bhat, Navakanta; Shivashankar, S.A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012 (India); Hughes, G. [School of Physical Sciences, Dublin City University, Dublin 9 (Ireland)

    2015-08-31

    The effect of inserting ultra-thin atomic layer deposited Al{sub 2}O{sub 3} dielectric layers (1 nm and 2 nm thick) on the Schottky barrier behaviour for high (Pt) and low (Al) work function metals on n- and p-doped InGaAs substrates has been investigated. Rectifying behaviour was observed for the p-type substrates (both native oxide and sulphur passivated) for both the Al/p-InGaAs and Al/Al{sub 2}O{sub 3}/p-InGaAs contacts. The Pt contacts directly deposited on p-InGaAs displayed evidence of limited rectification which increased with Al{sub 2}O{sub 3} interlayer thickness. Ohmic contacts were formed for both metals on n-InGaAs in the absence of an Al{sub 2}O{sub 3} interlayer, regardless of surface passivation. However, limited rectifying behaviour was observed for both metals on the 2 nm Al{sub 2}O{sub 3}/n-InGaAs samples for the sulphur passivated InGaAs surface, indicating the importance of both surface passivation and the presence of an ultra-thin dielectric interlayer on the current–voltage characteristics displayed by these devices. - Highlights: • Investigation of the modification of metal–InGaAs Schottky barrier (SB) behaviour • Improving metal–InGaAs interface by sulphur passivation and ultrathin interlayer • Examine the effect of low work function and high work function metals on SB • Different SB behaviours observed on both n-type InGaAs and p-type InGaAs • Metal/n-InGaAs interface is more strongly pinned than the metal/p-InGaAs interface.

  17. Characterization of the inhomogeneous barrier distribution in a Pt/(100β-Ga2O3 Schottky diode via its temperature-dependent electrical properties

    Directory of Open Access Journals (Sweden)

    Guangzhong Jian

    2018-01-01

    Full Text Available β-Ga2O3 is an ultra-wide bandgap semiconductor with applications in power electronic devices. Revealing the transport characteristics of β-Ga2O3 devices at various temperatures is important for improving device performance and reliability. In this study, we fabricated a Pt/β-Ga2O3 Schottky barrier diode with good performance characteristics, such as a low ON-resistance, high forward current, and a large rectification ratio. Its temperature-dependent current–voltage and capacitance–voltage characteristics were measured at various temperatures. The characteristic diode parameters were derived using thermionic emission theory. The ideality factor n was found to decrease from 2.57 to 1.16 while the zero-bias barrier height Φb0 increased from 0.47 V to 1.00 V when the temperature was increased from 125 K to 350 K. This was explained by the Gaussian distribution of barrier height inhomogeneity. The mean barrier height Φ ¯ b0 = 1.27 V and zero-bias standard deviation σ0 = 0.13 V were obtained. A modified Richardson plot gave a Richardson constant A* of 36.02 A·cm−2·K−2, which is close to the theoretical value of 41.11 A·cm−2·K−2. The differences between the barrier heights determined using the capacitance–voltage and current–voltage curves were also in line with the Gaussian distribution of barrier height inhomogeneity.

  18. Influence of thermal stress on the relative permittivity of the AlGaN barrier layer in an AlGaN/GaN heterostructure Schottky contacts

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Lin Zhao-Jun; Zhang Yu; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Chen Hong; Wang Zhan-Guo

    2011-01-01

    Ni Schottky contacts on AlGaN/GaN heterostructures were fabricated. Some samples were thermally treated in a furnace with N 2 ambience at 600 °C for different times (0.5 h, 4.5 h, 10.5 h, 18 h, 33 h, 48 h, and 72 h), the others were thermally treated for 0.5 h at different temperatures (500 °C, 600 °C, 700 °C, and 800 °C). With the measured current—voltage (I—V) and capacitance—voltage (C—V) curves and by self-consistently solving Schrodinger's and Poisson's equations, we found that the relative permittivity of the AlGaN barrier layer was related to the piezoelectric and the spontaneous polarization of the AlGaN barrier layer. The relative permittivity was in proportion to the strain of the AlGaN barrier layer. The relative permittivity and the strain reduced with the increased thermal stress time until the AlGaN barrier totally relaxed (after 18 h at 600 °C in the current study), and then the relative permittivity was almost a constant with the increased thermal stress time. When the sample was treated at 800 °C for 0.5 h, the relative permittivity was less than the constant due to the huge diffusion of the contact metal atoms. Considering the relation between the relative permittivity of the AlGaN barrier layer and the converse piezoelectric effect, the conclusion can be made that a moderate thermal stress can restrain the converse piezoelectric effect and can improve the stability of AlGaN/GaN heterostructure devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells.

    Science.gov (United States)

    Jiao, Tianpeng; Liu, Jian; Wei, Dapeng; Feng, Yanhui; Song, Xuefen; Shi, Haofei; Jia, Shuming; Sun, Wentao; Du, Chunlei

    2015-09-16

    The conventional graphene-silicon Schottky junction solar cell inevitably involves the graphene growth and transfer process, which results in complicated technology, loss of quality of the graphene, extra cost, and environmental unfriendliness. Moreover, the conventional transfer method is not well suited to conformationally coat graphene on a three-dimensional (3D) silicon surface. Thus, worse interfacial conditions are inevitable. In this work, we directly grow graphene nanowalls (GNWs) onto the micropyramidal silicon (MP) by the plasma-enhanced chemical vapor deposition method. By controlling growth time, the cell exhibits optimal pristine photovoltaic performance of 3.8%. Furthermore, we improve the conductivity of the GNW electrode by introducing the silver nanowire (AgNW) network, which could achieve lower sheet resistance. An efficiency of 6.6% has been obtained for the AgNWs-GNWs-MP solar cell without any chemical doping. Meanwhile, the cell exhibits excellent stability exposed to air. Our studies show a promising way to develop simple-technology, low-cost, high-efficiency, and stable Schottky junction solar cells.

  20. Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation.

    Science.gov (United States)

    Shih, Chih-Jen; Wang, Qing Hua; Son, Youngwoo; Jin, Zhong; Blankschtein, Daniel; Strano, Michael S

    2014-06-24

    Field-effect transistor (FET) devices composed of a MoS2-graphene heterostructure can combine the advantages of high carrier mobility in graphene with the permanent band gap of MoS2 for digital applications. Herein, we investigate the electron transfer, photoluminescence, and gate-controlled carrier transport in such a heterostructure. We show that the junction is a Schottky barrier, whose height can be artificially controlled by gating or doping graphene. When the applied gate voltage (or the doping level) is zero, the photoexcited electron-hole pairs in monolayer MoS2 can be split by the heterojunction, significantly reducing the photoluminescence. By applying negative gate voltage (or p-doping) in graphene, the interlayer impedance formed between MoS2 and graphene exhibits an 100-fold increase. For the first time, we show that the gate-controlled interlayer Schottky impedance can be utilized to modulate carrier transport in graphene, significantly depleting the hole transport, but preserving the electron transport. Accordingly, we demonstrate a new type of FET device, which enables a controllable transition from NMOS digital to bipolar characteristics. In the NMOS digital regime, we report a very high room temperature on/off current ratio (ION/IOFF ∼ 36) in comparison to graphene-based FET devices without sacrificing the field-effect electron mobilities in graphene. By engineering the source/drain contact area, we further estimate that a higher value of ION/IOFF up to 100 can be obtained in the device architecture considered. The device architecture presented here may enable semiconducting behavior in graphene for digital and analogue electronics.

  1. Schottky diodes between Bi2S3 nanorods and metal nanoparticles in a polymer matrix as hybrid bulk-heterojunction solar cells

    International Nuclear Information System (INIS)

    Saha, Sudip K.; Pal, Amlan J.

    2015-01-01

    We report the use of metal-semiconductor Schottky junctions in a conjugated polymer matrix as solar cells. The Schottky diodes, which were formed between Bi 2 S 3 nanorods and gold nanoparticles, efficiently dissociated photogenerated excitons. The bulk-heterojunction (BHJ) devices based on such metal-semiconductor Schottky diodes in a polymer matrix therefore acted as an efficient solar cell as compared to the devices based on only the semiconductor nanorods in the polymer matrix or when gold nanoparticles were added separately to the BHJs. In the latter device, gold nanoparticles offered plasmonic enhancement due to an increased cross-section of optical absorption. We report growth and characteristics of the Schottky junctions formed through an intimate contact between Bi 2 S 3 nanorods and gold nanoparticles. We also report fabrication and characterization of BHJ solar cells based on such heterojunctions. We highlight the benefit of using metal-semiconductor Schottky diodes over only inorganic semiconductor nanorods or quantum dots in a polymer matrix in forming hybrid BHJ solar cells

  2. Gate-modulated conductance of few-layer WSe2 field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states

    International Nuclear Information System (INIS)

    Wang, Junjie; Feng, Simin; Rhodes, Daniel; Balicas, Luis; Nguyen, Minh An T.; Watanabe, K.; Taniguchi, T.; Mallouk, Thomas E.; Terrones, Mauricio; Zhu, J.

    2015-01-01

    Two key subjects stand out in the pursuit of semiconductor research: material quality and contact technology. The fledging field of atomically thin transition metal dichalcogenides (TMDCs) faces a number of challenges in both efforts. This work attempts to establish a connection between the two by examining the gate-dependent conductance of few-layer (1-5L) WSe 2 field effect devices. Measurements and modeling of the subgap regime reveal Schottky barrier transistor behavior. We show that transmission through the contact barrier is dominated by thermionic field emission (TFE) at room temperature, despite the lack of intentional doping. The TFE process arises due to a large number of subgap impurity states, the presence of which also leads to high mobility edge carrier densities. The density of states of such impurity states is self-consistently determined to be approximately 1–2 × 10 13 /cm 2 /eV in our devices. We demonstrate that substrate is unlikely to be a major source of the impurity states and suspect that lattice defects within the material itself are primarily responsible. Our experiments provide key information to advance the quality and understanding of TMDC materials and electrical devices

  3. Gate-modulated conductance of few-layer WSe{sub 2} field-effect transistors in the subgap regime: Schottky barrier transistor and subgap impurity states

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junjie; Feng, Simin [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Rhodes, Daniel; Balicas, Luis [National High Magnetic Field Lab, Florida State University, Tallahassee, Florida 32310 (United States); Nguyen, Minh An T. [Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Watanabe, K.; Taniguchi, T. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Mallouk, Thomas E. [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Terrones, Mauricio [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Zhu, J., E-mail: jzhu@phys.psu.edu [Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-04-13

    Two key subjects stand out in the pursuit of semiconductor research: material quality and contact technology. The fledging field of atomically thin transition metal dichalcogenides (TMDCs) faces a number of challenges in both efforts. This work attempts to establish a connection between the two by examining the gate-dependent conductance of few-layer (1-5L) WSe{sub 2} field effect devices. Measurements and modeling of the subgap regime reveal Schottky barrier transistor behavior. We show that transmission through the contact barrier is dominated by thermionic field emission (TFE) at room temperature, despite the lack of intentional doping. The TFE process arises due to a large number of subgap impurity states, the presence of which also leads to high mobility edge carrier densities. The density of states of such impurity states is self-consistently determined to be approximately 1–2 × 10{sup 13}/cm{sup 2}/eV in our devices. We demonstrate that substrate is unlikely to be a major source of the impurity states and suspect that lattice defects within the material itself are primarily responsible. Our experiments provide key information to advance the quality and understanding of TMDC materials and electrical devices.

  4. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode

    OpenAIRE

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-01-01

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28?eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increa...

  5. Effect of the periphery of metal-semiconductor contacts with Schottky barriers on their static current-voltage characteristic

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2010-01-01

    Kelvin probe atomic-force microscopy of the electrostatic surface potential of gold Schottky contacts on n-GaAs showed that there is an extended transition area (halo) (tens of micrometers) around contacts in which the surface potential varies from the n-GaAs free surface potential to the gold contact surface potential. The contact potential and its distribution in the surrounding halo are controlled by the contact structure. The study of spreading currents showed that there is a high-conductance area (periphery) around the contact perimeter due to strong electric fields of the halo, which causes leakage currents. The conductivity of the main contact area is caused by 100- to 200-nm local areas with higher and lower conducting abilities. Mesa formation around contacts causes a decrease in the work function, a decrease in the halo extent and electric field strength, which is accompanied by spreading and decreasing of the peripheral area conductance. This results in disappearance of leakage currents and a decrease in the ideality index. In contrast, protection of the peripheral area by a SiO 2 insulating film 0.5 μm thick increases the work function, which is accompanied by the formation of potential lobes around the contact in two mutually perpendicular crystallographic directions. A stronger penetration of halo electric fields into the contact area results in an increase in the ideality index and disappearance of high-conductance peripheral area and leakage currents. The difference between the electrical properties of the periphery, gold grains, and their boundaries controls the contact switching mechanism when applying forward or reverse biases.

  6. Distribution of barrier heights in Au/porous GaAs Schottky diodes from current-voltage-temperature measurements

    International Nuclear Information System (INIS)

    Harrabi, Z.; Jomni, S.; Beji, L.; Bouazizi, A.

    2010-01-01

    In this work, we have studied the electrical characteristics of the Au/porous GaAs/p-GaAs diodes as a function of temperature. The (I-V)-T characteristics are analysed on the basis of thermionic emission (TE). The temperature behaviour of the barrier height potential and the ideality factor demonstrate that the current transport is controlled by the thermionic emission mechanism (TE) with Gaussian distribution of the barrier height potential. The Gaussian distribution of barrier height potential is due to barrier inhomogeneity, which is suggested to be caused by the presence of the porous GaAs interfacial layer. The experimental (I-V)-T characteristics of the Au/porous GaAs/p-GaAs heterostructure demonstrate the presence of a two Gaussian distributions having a mean barrier height potential Φ b0 -bar of about 0.67 and 0.54 V and standard deviations σ s 2 of about 8.4x10 -3 and 4.2x10 -3 V, respectively. Using the obtained standard deviation, the obtained Richardson constant value is in accordance with the well documented value (79.2 A cm -2 K -2 ) of p-type GaAs and the mean barrier height Φ b0 -bar is closed to the band gap of GaAs. The obtained values prove that the I-V-T characteristics of Au/porous GaAs/p-GaAs heterostructure are governed by the TE mechanism theory with two Gaussian distributions of barrier heights.

  7. Frequency Dependent Electrical and Dielectric Properties of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky Barrier Diode

    Science.gov (United States)

    Taşçıoğlu, İ.; Tüzün Özmen, Ö.; Şağban, H. M.; Yağlıoğlu, E.; Altındal, Ş.

    2017-04-01

    In this study, poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester: 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (P3HT:PCBM:F4-TCNQ) organic film was deposited on n-type silicon (n-Si) substrate by spin coating method. The electrical and dielectric analysis of Au/P3HT:PCBM:F4-TCNQ/n-Si Schottky barrier diode was conducted by means of capacitance-voltage ( C- V) and conductance-voltage ( G/ ω- V) measurements in the frequency range of 10 kHz-2 MHz. The C- V- f plots exhibit fairly large frequency dispersion due to excess capacitance caused by the presence of interface states ( N ss). The values of N ss located in semiconductor bandgap at the organic film/semiconductor interface were calculated by Hill-Coleman method. Experimental results show that dielectric constant ( ɛ') and dielectric loss ( ɛ″) decrease with increasing frequency, whereas loss tangent (tan δ) remains nearly the same. The decrease in ɛ' and ɛ″ was interpreted by the theory of dielectric relaxation due to interfacial polarization. It is also observed that ac electrical conductivity ( σ ac) and electric modulus ( M' and M″) increase with increasing frequency.

  8. Tuning the p-type Schottky barrier in 2D metal/semiconductor interface:boron-sheet on MoSe2, and WSe2

    Science.gov (United States)

    Couto, W. R. M.; Miwa, R. H.; Fazzio, A.

    2017-10-01

    Van der Waals (vdW) metal/semiconductor heterostructures have been investigated through first-principles calculations. We have considered the recently synthesized borophene (Mannix et al 2015 Science 350 1513), and the planar boron sheets (S1 and S2) (Feng et al 2016 Nat. Chem. 8 563) as the 2D metal layer, and the transition metal dichalcogenides (TMDCs) MoSe2, and WSe2 as the semiconductor monolayer. We find that the energetic stability of those 2D metal/semiconductor heterojunctions is mostly ruled by the vdW interactions; however, chemical interactions also take place in borophene/TMDC. The electronic charge transfer at the metal/semiconductor interface has been mapped, where we find a a net charge transfer from the TMDCs to the boron sheets. Further electronic structure calculations reveal that the metal/semiconductor interfaces, composed by planar boron sheets S1 and S2, present a p-type Schottky barrier which can be tuned to a p-type ohmic contact by an external electric field.

  9. Atomic nature of the Schottky barrier height formation of the Ag/GaAs(001)-2 × 4 interface: An in-situ synchrotron radiation photoemission study

    International Nuclear Information System (INIS)

    Cheng, Chiu-Ping; Chen, Wan-Sin; Lin, Keng-Yung; Wei, Guo-Jhen; Cheng, Yi-Ting; Lin, Yen-Hsun; Wan, Hsien-Wen; Pi, Tun-Wen; Tung, Raymond T.; Kwo, Jueinai; Hong, Minghwei

    2017-01-01

    Highlights: • The interaction of Ag on a p-type α2 GaAs(001)-2 × 4 surface has been studied. • The dipole formation mechanism of the Ag/GaAs(001)-2 × 4 interface is proposed. • Determination of the SBH prior to metal formation is found. • Inadequacy of the metal-induced gap-state model for explaining the SBH is evident. - Abstract: The Interface of Ag with p-type α2 GaAs(001)-2 × 4 has been studied to further understand the formation mechanism of the Schottky barrier height (SBH). In the initial phase of Ag deposition, high-resolution core-level data show that Ag adatoms effectively passivate the surface As-As dimers without breaking them apart. The Ag(+)-As(−) dipoles are thus generated with a maximal potential energy of 0.26 eV; a SBH of 0.38 eV was measured. Greater Ag coverage causes elemental segregation of As/Ga atoms, reversing the direction of the net dipole. The band bending effect near the interface shows a downward shift of 0.08 eV, and the final SBH is similar to the value as measured at the initial Ag deposition. Both parameters are secured at 0.25 Å of Ag thickness prior to the observation of metallic behavior of Ag. Inadequacy of the metal-induced gap-state model for explaining SBH is evident.

  10. Barrier Parameters and Current Transport Characteristics of Ti/ p-InP Schottky Junction Modified Using Orange G (OG) Organic Interlayer

    Science.gov (United States)

    Sreenu, K.; Venkata Prasad, C.; Rajagopal Reddy, V.

    2017-10-01

    A Ti/Orange G/ p-InP metal/interlayer/semiconductor (MIS) junction has been prepared with Orange G (OG) organic layer by electron beam evaporation and spin coating processes. The electrical properties of Ti/ p-InP metal/semiconductor (MS) and Ti/OG/ p-InP MIS junctions have been analyzed based on current-voltage ( I- V) and capacitance-voltage ( C- V) characteristics. The MIS junction exhibited higher rectifying behavior than the MS junction. The higher barrier height (BH) of the MIS junction compared with the MS junction indicates effective modification by the OG layer. Also, the BH, ideality factor, shunt resistance, and series resistance were extracted based on the I- V characteristic, Cheung's and Norde's methods, and the ΨS- V plot. The BH evaluated by Cheung's and Norde's methods and the ΨS- V plot was shown to be similar, confirming the reliability and validity of the methods applied. The extracted interface state density ( N SS) of the MIS junction was less than for the MS junction, revealing that the OG organic layer reduced the N SS value. Analysis demonstrated that, in the lower bias region, the reverse current conduction mechanism was dominated by Poole-Frenkel emission for both the MS and MIS junction. Meanwhile, in the higher bias region, Schottky emission governed the reverse current conduction mechanism. The results suggest that such OG layers have potential for use in high-quality electronic devices.

  11. Atomic nature of the Schottky barrier height formation of the Ag/GaAs(001)-2 × 4 interface: An in-situ synchrotron radiation photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chiu-Ping, E-mail: cpcheng@mail.ncyu.edu.tw [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Chen, Wan-Sin [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC (China); Lin, Keng-Yung [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China); Wei, Guo-Jhen; Cheng, Yi-Ting [Department of Electrophysics, National Chiayi University, Chiayi, 60004, Taiwan, ROC (China); Lin, Yen-Hsun; Wan, Hsien-Wen [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China); Pi, Tun-Wen, E-mail: pi@nsrrc.org.tw [National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan, ROC (China); Tung, Raymond T. [Department of Physics, Brooklyn College, CUNY, NY 11210 (United States); Kwo, Jueinai, E-mail: raynien@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, 30013, Taiwan, ROC (China); Hong, Minghwei, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei, 10617, Taiwan, ROC (China)

    2017-01-30

    Highlights: • The interaction of Ag on a p-type α2 GaAs(001)-2 × 4 surface has been studied. • The dipole formation mechanism of the Ag/GaAs(001)-2 × 4 interface is proposed. • Determination of the SBH prior to metal formation is found. • Inadequacy of the metal-induced gap-state model for explaining the SBH is evident. - Abstract: The Interface of Ag with p-type α2 GaAs(001)-2 × 4 has been studied to further understand the formation mechanism of the Schottky barrier height (SBH). In the initial phase of Ag deposition, high-resolution core-level data show that Ag adatoms effectively passivate the surface As-As dimers without breaking them apart. The Ag(+)-As(−) dipoles are thus generated with a maximal potential energy of 0.26 eV; a SBH of 0.38 eV was measured. Greater Ag coverage causes elemental segregation of As/Ga atoms, reversing the direction of the net dipole. The band bending effect near the interface shows a downward shift of 0.08 eV, and the final SBH is similar to the value as measured at the initial Ag deposition. Both parameters are secured at 0.25 Å of Ag thickness prior to the observation of metallic behavior of Ag. Inadequacy of the metal-induced gap-state model for explaining SBH is evident.

  12. Recrystallization effects of swift heavy {sup 209}Bi ions irradiation on electrical degradation in 4H-SiC Schottky barrier diode

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimei; Ma, Yao; Gong, Min [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Li, Yun [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Huang, Mingmin [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Gao, Bo [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China); Zhao, Xin, E-mail: zhaoxin1234@scu.edu.cn [Key Laboratory for Microelectronics, College of Physical Science and Technology, Sichuan University, Chengdu 610064 (China)

    2017-06-15

    In this paper, the phenomenon that the recrystallization effects of swift heavy {sup 209}Bi ions irradiation can partially recovery damage with more than 1 × 10{sup 10} ions/cm{sup 2} is investigated by the degradation of the electrical characteristics of 4H-SiC Schottky barrier diode (SBD) with swift heavy ion irradiation. Deep level transient spectroscopy (DLTS) and Current-Voltage (I-V) measurements clearly indicated that E{sub 0.62} defect induced by swift heavy ion irradiation, which was a recombination center, could result in the increase of reverse leakage current (I{sub R}) at fluence less than 1 × 10{sup 9} ions/cm{sup 2} and the recovery of I{sub R} at fluence more than 1 × 10{sup 10} ions/cm{sup 2} in 4H-SiC SBD. The variation tendency of I{sub R} is consisted with the change of E{sub 0.62} defect. Furthermore, it is reasonable explanation that the damage or defect formed at low fluence in SiC may be recovered by further swift heavy ion irradiation with high fluence, which is due to the melting with the ion tracks of the amorphous zones through a thermal spike and subsequent epitaxial recrystallization initiated from the neighboring crystalline regions.

  13. Effect of a gate buffer layer on the performance of a 4H-SiC Schottky barrier field-effect transistor

    International Nuclear Information System (INIS)

    Zhang Xianjun; Yang Yintang; Chai Changchun; Duan Baoxing; Song Kun; Chen Bin

    2012-01-01

    A lower doped layer is inserted between the gate and channel layer and its effect on the performance of a 4H-SiC Schottky barrier field-effect transistor (MESFET) is investigated. The dependences of the drain current and small signal parameters on this inserted gate-buffer layer are obtained by solving one-dimensional (1-D) and two-dimensional (2-D) Poisson's equations. The drain current and small signal parameters of the 4H-SiC MESFET with a gate-buffer layer thickness of 0.15 μm are calculated and the breakdown characteristics are simulated. The results show that the current is increased by increasing the thickness of the gate-buffer layer; the breakdown voltage is 160 V, compared with 125 V for the conventional 4H-SiC MESFET; the cutoff frequency is 27 GHz, which is higher than 20 GHz of the conventional structure due to the lower doped gate-buffer layer. (semiconductor devices)

  14. Calculation of the Electronic Parameters of an Al/DNA/p-Si Schottky Barrier Diode Influenced by Alpha Radiation

    Directory of Open Access Journals (Sweden)

    Hassan Maktuff Jaber Al-Ta'ii

    2015-02-01

    Full Text Available Many types of materials such as inorganic semiconductors have been employed as detectors for nuclear radiation, the importance of which has increased significantly due to recent nuclear catastrophes. Despite the many advantages of this type of materials, the ability to measure direct cellular or biological responses to radiation might improve detector sensitivity. In this context, semiconducting organic materials such as deoxyribonucleic acid or DNA have been studied in recent years. This was established by studying the varying electronic properties of DNA-metal or semiconductor junctions when exposed to radiation. In this work, we investigated the electronics of aluminium (Al/DNA/silicon (Si rectifying junctions using their current-voltage (I-V characteristics when exposed to alpha radiation. Diode parameters such as ideality factor, barrier height and series resistance were determined for different irradiation times. The observed results show significant changes with exposure time or total dosage received. An increased deviation from ideal diode conditions (7.2 to 18.0 was observed when they were bombarded with alpha particles for up to 40 min. Using the conventional technique, barrier height values were observed to generally increase after 2, 6, 10, 20 and 30 min of radiation. The same trend was seen in the values of the series resistance (0.5889–1.423 Ω for 2–8 min. These changes in the electronic properties of the DNA/Si junctions could therefore be utilized in the construction of sensitive alpha particle detectors.

  15. Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Atxabal, Ainhoa; Ribeiro, Mário; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger [CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country (Spain); Casanova, Fèlix; Hueso, Luis E., E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu [CIC nanoGUNE, 20018 Donostia-San Sebastian, Basque Country (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Basque Country (Spain)

    2015-11-02

    We show the operation of a Cu/Al{sub 2}O{sub 3}/Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 ± 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ∼2 × 10{sup −13} A, an ON/OFF ratio of ∼10{sup 5}, and an equivalent subthreshold swing of ∼96 mV/dec at low temperatures, which are suitable values for potential high frequency devices.

  16. Reliable determination of the Cu/n-Si Schottky barrier height by using in-device hot-electron spectroscopy

    International Nuclear Information System (INIS)

    Parui, Subir; Atxabal, Ainhoa; Ribeiro, Mário; Bedoya-Pinto, Amilcar; Sun, Xiangnan; Llopis, Roger; Casanova, Fèlix; Hueso, Luis E.

    2015-01-01

    We show the operation of a Cu/Al 2 O 3 /Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 ± 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ∼2 × 10 −13  A, an ON/OFF ratio of ∼10 5 , and an equivalent subthreshold swing of ∼96 mV/dec at low temperatures, which are suitable values for potential high frequency devices

  17. Design of 340 GHz 2× and 4× Sub-Harmonic Mixers Using Schottky Barrier Diodes in Silicon-Based Technology

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2015-05-01

    Full Text Available This paper presents the design of terahertz 2× and 4× sub-harmonic down-mixers using Schottky Barrier Diodes fabricated in standard 0.13 μm SiGe BiCMOS technology. The 340 GHz sub-harmonic mixers (SHMs are designed based on anti-parallel-diode-pairs (APDPs. With the 2nd and 4th harmonic, local oscillator (LO frequencies of 170 GHz and 85 GHz are used to pump the two 340 GHz SHMs. With LO power of 7 dBm, the 2× SHM exhibits a conversion loss of 34.5–37 dB in the lower band (320–340 GHz and 35.5–41 dB in the upper band (340–360 GHz; with LO power of 9 dBm, the 4× SHM exhibits a conversion loss of 39–43 dB in the lower band (320–340 GHz and 40–48 dB in the upper band (340–360 GHz. The measured input 1-dB conversion gain compression point for the 2× and 4× SHMs are −8 dBm and −10 dBm at 325 GHz, respectively. The simulated LO-IF (intermediate frequency isolation of the 2× SHM is 21.5 dB, and the measured LO-IF isolation of the 4× SHM is 32 dB. The chip areas of the 2× and 4× SHMs are 330 μm × 580 μm and 550 μm × 610 μm, respectively, including the testing pads.

  18. Gate Modulation of Graphene-ZnO Nanowire Schottky Diode.

    Science.gov (United States)

    Liu, Ren; You, Xu-Chen; Fu, Xue-Wen; Lin, Fang; Meng, Jie; Yu, Da-Peng; Liao, Zhi-Min

    2015-05-06

    Graphene-semiconductor interface is important for the applications in electronic and optoelectronic devices. Here we report the modulation of the electric transport properties of graphene/ZnO nanowire Schottky diode by gate voltage (Vg). The ideality factor of the graphene/ZnO nanowire Schottky diode is ~1.7, and the Schottky barrier height is ~0.28 eV without external Vg. The Schottky barrier height is sensitive to Vg due to the variation of Fermi level of graphene. The barrier height increases quickly with sweeping Vg towards the negative value, while decreases slowly towards the positive Vg. Our results are helpful to understand the fundamental mechanism of the electric transport in graphene-semiconductor Schottky diode.

  19. Schottky junction interfacial properties at high temperature: A case of AgNWs embedded metal oxide/p-Si

    Science.gov (United States)

    Mahala, Pramila; Patel, Malkeshkumar; Gupta, Navneet; Kim, Joondong; Lee, Byung Ha

    2018-05-01

    Studying the performance limiting parameters of the Schottky device is an urgent issue, which are addressed herein by thermally stable silver nanowire (AgNW) embedded metal oxide/p-Si Schottky device. Temperature and bias dependent junction interfacial properties of AgNW-ITO/Si Schottky photoelectric device are reported. The current-voltage-temperature (I-V-T), capacitance-voltage-temperature (C-V-T) and impedance analysis have been carried out in the high-temperature region. The ideality factor and barrier height of Schottky junction are assessed using I-V-T characteristics and thermionic emission, to reveal the decrease of ideality factor and increase of barrier height by the increasing of temperature. The extracted values of laterally homogeneous Schottky (ϕb) and ideality factor (n) are approximately 0.73 eV and 1.58, respectively. Series resistance (Rs) assessed using Cheung's method and found that it decreases with the increase of temperature. A linear response of Rs of AgNW-ITO/Si Schottky junction is observed with respect to change in forward bias, i.e. dRS/dV from 0 to 0.7 V is in the range of 36.12-36.43 Ω with a rate of 1.44 Ω/V. Impedance spectroscopy is used to study the effect of bias voltage and temperature on intrinsic Schottky properties which are responsible for photoconversion efficiency. These systematic analyses are useful for the AgNWs-embedding Si solar cells or photoelectrochemical cells.

  20. Electrochemical cell structure including an ionomeric barrier

    Science.gov (United States)

    Lambert, Timothy N.; Hibbs, Michael

    2017-06-20

    An apparatus includes an electrochemical half-cell comprising: an electrolyte, an anode; and an ionomeric barrier positioned between the electrolyte and the anode. The anode may comprise a multi-electron vanadium phosphorous alloy, such as VP.sub.x, wherein x is 1-5. The electrochemical half-cell is configured to oxidize the vanadium and phosphorous alloy to release electrons. A method of mitigating corrosion in an electrochemical cell includes disposing an ionomeric barrier in a path of electrolyte or ion flow to an anode and mitigating anion accumulation on the surface of the anode.

  1. Richardson constant and electrostatics in transfer-free CVD grown few-layer MoS2/graphene barristor with Schottky barrier modulation >0.6eV

    Science.gov (United States)

    Jahangir, Ifat; Uddin, M. Ahsan; Singh, Amol K.; Koley, Goutam; Chandrashekhar, M. V. S.

    2017-10-01

    We demonstrate a large area MoS2/graphene barristor, using a transfer-free method for producing 3-5 monolayer (ML) thick MoS2. The gate-controlled diodes show good rectification, with an ON/OFF ratio of ˜103. The temperature dependent back-gated study reveals Richardson's coefficient to be 80.3 ± 18.4 A/cm2/K and a mean electron effective mass of (0.66 ± 0.15)m0. Capacitance and current based measurements show the effective barrier height to vary over a large range of 0.24-0.91 eV due to incomplete field screening through the thin MoS2. Finally, we show that this barristor shows significant visible photoresponse, scaling with the Schottky barrier height. A response time of ˜10 s suggests that photoconductive gain is present in this device, resulting in high external quantum efficiency.

  2. Flexible IGZO Schottky diodes on paper

    Science.gov (United States)

    Kaczmarski, Jakub; Borysiewicz, Michał A.; Piskorski, Krzysztof; Wzorek, Marek; Kozubal, Maciej; Kamińska, Eliana

    2018-01-01

    With the development of novel device applications, e.g. in the field of robust and recyclable paper electronics, came an increased demand for the understanding and control of IGZO Schottky contact properties. In this work, a fabrication and characterization of flexible Ru-Si-O/IGZO Schottky barriers on paper is presented. It is found that an oxygen-rich atomic composition and microstructure of Ru-Si-O containing randomly oriented Ru inclusions with diameter of 3-5 nm embedded in an amorphous SiO2 matrix are effective in preventing interfacial reactions in the contact region, allowing to avoid pre-treatment of the semiconductor surface and fabricate reliable diodes at room temperature characterized by Schottky barrier height and ideality factor equal 0.79 eV and 2.13, respectively.

  3. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    Science.gov (United States)

    Alvarez, J.; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-09-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm-1). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current-voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices.

  4. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    OpenAIRE

    Alvarez, Jose; Boutchich, M.; Kleider, J. P.; Teraji, T.; Koide, Y.

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy (CP-AFM) and confocal micro-Raman/Photoluminescence (PL) imaging analysis. Local areas characterized by a strong decrease of the local resistance (5-6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced ...

  5. Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts

    KAUST Repository

    Hu, Youfan

    2010-05-31

    A Schottky barrier can be formed at the interface between a metal electrode and a semiconductor. The current passing through the metal-semiconductor contact is mainly controlled by the barrier height and barrier width. In conventional nanodevices, Schottky contacts are usually avoided in order to enhance the contribution made by the nanowires or nanotubes to the detected signal. We present a key idea of using the Schottky contact to achieve supersensitive and fast response nanowire-based nanosensors. We have illustrated this idea on several platforms: UV sensors, biosensors, and gas sensors. The gigantic enhancement in sensitivity of up to 5 orders of magnitude shows that an effective usage of the Schottky contact can be very beneficial to the sensitivity of nanosensors. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (\\bar{2}01) β-Ga2O3

    Science.gov (United States)

    Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu

    2017-09-01

    A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.

  7. Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination

    KAUST Repository

    Tang, Jiang

    2010-01-07

    (Figure Presented) The air stability and power conversion efficiency of solution-processed PbS quantum dot solar cells is dramatically improved by the insertion of 0.8 nm LiF between the PbS nanoparticle film and the Al contact. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  8. Carbon nanotube Schottky diode: an atomic perspective

    International Nuclear Information System (INIS)

    Bai, P; Li, E; Kurniawan, O; Koh, W S; Lam, K T

    2008-01-01

    The electron transport properties of semiconducting carbon nanotube (SCNT) Schottky diodes are investigated with atomic models using density functional theory and the non-equilibrium Green's function method. We model the SCNT Schottky diode as a SCNT embedded in the metal electrode, which resembles the experimental set-up. Our study reveals that the rectification behaviour of the diode is mainly due to the asymmetric electron transmission function distribution in the conduction and valence bands and can be improved by changing metal-SCNT contact geometries. The threshold voltage of the diode depends on the electron Schottky barrier height which can be tuned by altering the diameter of the SCNT. Contrary to the traditional perception, the metal-SCNT contact region exhibits better conductivity than the other parts of the diode

  9. Direct observation of the leakage current in epitaxial diamond Schottky barrier devices by conductive-probe atomic force microscopy and Raman imaging

    International Nuclear Information System (INIS)

    Alvarez, J; Boutchich, M; Kleider, J P; Teraji, T; Koide, Y

    2014-01-01

    The origin of the high leakage current measured in several vertical-type diamond Schottky devices is conjointly investigated by conducting probe atomic force microscopy and confocal micro-Raman/photoluminescence imaging analysis. Local areas characterized by a strong decrease of the local resistance (5–6 orders of magnitude drop) with respect to their close surrounding have been identified in several different regions of the sample surface. The same local areas, also referenced as electrical hot-spots, reveal a slightly constrained diamond lattice and three dominant Raman bands in the low-wavenumber region (590, 914 and 1040 cm −1 ). These latter bands are usually assigned to the vibrational modes involving boron impurities and its possible complexes that can electrically act as traps for charge carriers. Local current–voltage measurements performed at the hot-spots point out a trap-filled-limited current as the main conduction mechanism favouring the leakage current in the Schottky devices. (paper)

  10. Graphite based Schottky diodes formed semiconducting substrates

    Science.gov (United States)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  11. Schottky contacts to In2O3

    Directory of Open Access Journals (Sweden)

    H. von Wenckstern

    2014-04-01

    Full Text Available n-type binary compound semiconductors such as InN, InAs, or In2O3 are especial because the branch-point energy or charge neutrality level lies within the conduction band. Their tendency to form a surface electron accumulation layer prevents the formation of rectifying Schottky contacts. Utilizing a reactive sputtering process in an oxygen-containing atmosphere, we demonstrate Schottky barrier diodes on indium oxide thin films with rectifying properties being sufficient for space charge layer spectroscopy. Conventional non-reactive sputtering resulted in ohmic contacts. We compare the rectification of Pt, Pd, and Au Schottky contacts on In2O3 and discuss temperature-dependent current-voltage characteristics of Pt/In2O3 in detail. The results substantiate the picture of oxygen vacancies being the source of electrons accumulating at the surface, however, the position of the charge neutrality level and/or the prediction of Schottky barrier heights from it are questioned.

  12. Polycrystalline Diamond Schottky Diodes and Their Applications.

    Science.gov (United States)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  13. High-temperature current conduction through three kinds of Schottky diodes

    International Nuclear Information System (INIS)

    Fei, Li; Xiao-Ling, Zhang; Yi, Duan; Xue-Song, Xie; Chang-Zhi, Lü

    2009-01-01

    Fundamentals of the Schottky contacts and the high-temperature current conduction through three kinds of Schottky diodes are studied. N-Si Schottky diodes, GaN Schottky diodes and AlGaN/GaN Schottky diodes are investigated by I–V–T measurements ranging from 300 to 523 K. For these Schottky diodes, a rise in temperature is accompanied with an increase in barrier height and a reduction in ideality factor. Mechanisms are suggested, including thermionic emission, field emission, trap-assisted tunnelling and so on. The most remarkable finding in the present paper is that these three kinds of Schottky diodes are revealed to have different behaviours of high-temperature reverse currents. For the n-Si Schottky diode, a rise in temperature is accompanied by an increase in reverse current. The reverse current of the GaN Schottky diode decreases first and then increases with rising temperature. The AlGaN/GaN Schottky diode has a trend opposite to that of the GaN Schottky diode, and the dominant mechanisms are the effects of the piezoelectric polarization field and variation of two-dimensional electron gas charge density. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. 1.5-V-threshold-voltage Schottky barrier normally-off AlGaN/GaN high-electron-mobility transistors with f T/f max of 41/125 GHz

    Science.gov (United States)

    Hou, Bin; Ma, Xiaohua; Yang, Ling; Zhu, Jiejie; Zhu, Qing; Chen, Lixiang; Mi, Minhan; Zhang, Hengshuang; Zhang, Meng; Zhang, Peng; Zhou, Xiaowei; Hao, Yue

    2017-07-01

    In this paper, a normally-off AlGaN/GaN high-electron-mobility transistors (HEMT) fabricated using inductively coupled plasma (ICP) CF4 plasma recessing and an implantation technique is reported. A gate-to-channel distance of ˜10 nm and an equivalent negative fluorine sheet charge density of -1.21 × 1013 cm-2 extracted using a simple threshold voltage (V th) analytical model result in a high V th of 1.5 V, a peak transconductance of 356 mS/mm, and a subthreshold slope of 133 mV/decade. A small degradation of channel mobility leads to a high RF performance with f T/f max of 41/125 GHz, resulting in a record high f T × L g product of 10.66 GHz·µm among Schottky barrier AlGaN/GaN normally-off HEMTs with V th exceeding 1 V, to the best of our knowledge.

  15. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  16. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu

    2009-12-09

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  17. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor

    KAUST Repository

    Wei, Te-Yu; Yeh, Ping-Hung; Lu, Shih-Yuan; Wang, Zhong Lin

    2009-01-01

    A new single nanowire based nanosensor is demonstrated for illustrating its ultrahigh sensitivity for gas sensing. The device is composed of a single ZnO nanowire mounted on Pt electrodes with one end in Ohmic contact and the other end in Schottky contact. The Schottky contact functions as a "gate" that controls the current flowing through the entire system. By tuning the Schottky barrier height through the responsive variation of the surface chemisorbed gases and the amplification role played by the nanowire to Schottky barrier effect, an ultrahigh sensitivity of 32 000% was achieved using the Schottky contacted device operated in reverse bias mode at 275 °C for detection of 400 ppm CO, which is 4 orders of magnitude higher than that obtained using an Ohmic contact device under the same conditions. In addition, the response time and reset time have been shortened by a factor of 7. The methodology and principle illustrated in the paper present a new sensing mechanism that can be readily and extensively applied to other gas sensing systems. © 2009 American Chemical Society.

  18. Molten carbonate fuel cell integral matrix tape and bubble barrier

    International Nuclear Information System (INIS)

    Reiser, C.A.; Maricle, D.L.

    1983-01-01

    A molten carbonate fuel cell matrix material is described made up of a matrix tape portion and a bubble barrier portion. The matrix tape portion comprises particles inert to molten carbonate electrolyte, ceramic particles and a polymeric binder, the matrix tape being flexible, pliable and having rubber-like compliance at room temperature. The bubble barrier is a solid material having fine porosity preferably being bonded to the matrix tape. In operation in a fuel cell, the polymer binder burns off leaving the matrix and bubble barrier providing superior sealing, stability and performance properties to the fuel cell stack

  19. SCHOTTKY MEASUREMENTS DURING RHIC 2000

    International Nuclear Information System (INIS)

    CAMERON, P.; CUPOLO, J.; DEGEN, C.; HAMMONS, L.; KESSELMAN, M.; LEE, R.; MEYER, A.; SIKORA, R.

    2001-01-01

    The 2GHz Schottky system was a powerful diagnostic during RHIC 2000 commissioning. A continuous monitor without beam excitation, it provided betatron tune, chromaticity, momentum spread relative emittance, and synchrotron tune. It was particularly useful during transition studies. In addition, a BPM was resonated at 230MHz for Schottky measurements

  20. Numerical Study on Open-Circuit Voltage of Single Layer Organic Solar Cells with Schottky Contacts: Effects of Molecular Energy Levels, Temperature and Thickness

    International Nuclear Information System (INIS)

    Rong-Hua, Li; Ying-Quan, Peng; Chao-Zhu, Ma; Run-Sheng, Wang; Hong-Wei, Xie; Ying, Wang; Wei-Min, Meng

    2010-01-01

    We numerically investigate the effects of the exciton generation rate G, temperature T, the active layer thickness d and the position of LUMO level E L related to the cathode work function W c at a given energy gap on the open-circuit voltage V oc of single layer organic solar cells with Schottky contact. It is demonstrated that open-circuit voltage increases concomitantly with the decreasing cathode work function W c for given anode work functions and exciton generation rates. In the case of given cathode and anode work functions, the open-circuit voltage first increases with the exciton generation rate and then reaches a saturation value, which equals to the built-in voltage. Additionally, it is worth noting that a significant improvement to V oc could be made by selecting an organic material which has a relative high LUMO level (low |E L | value). However, V oc decreases as the temperature increases, and the decreasing rate reduces with the enhancement of exciton generation rate. Our study also shows that it is of no benefit to improve the open-circuit voltage by increasing the device thickness because of an enhanced charge recombination in thicker devices. (cross-disciplinary physics and related areas of science and technology)

  1. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Chakrabarti, P., E-mail: pchakrabarti.ece@iitbhu.ac.in [Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-08-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  2. Fabrication and characterization of Pd/Cu doped ZnO/Si and Ni/Cu doped ZnO/Si Schottky diodes

    International Nuclear Information System (INIS)

    Agarwal, Lucky; Singh, Brijesh Kumar; Tripathi, Shweta; Chakrabarti, P.

    2016-01-01

    In this paper, fabrication and characterization of copper doped ZnO (Cu doped ZnO) based Schottky devices have been reported. Cu doped ZnO thin films have been deposited on p-Si (100) samples by the sol-gel spin coating method. X-Ray diffraction (XRD) and atomic force microscopy (AFM) studies have been done in order to evaluate the structural and morphological properties of the film. The optical properties of the film have been determined by using variable angle ellipsometry. Further, Seebeck measurement of the deposited Cu doped ZnO film leads to positive Seebeck coefficient confirming the p-type conductivity of the sample. The resistivity and acceptor concentration of the film has also been evaluated using four probe measurement system. Pd and Ni metals have been deposited on separate Cu doped ZnO thin film samples using low cost thermal evaporation method to form Schottky contacts. The electrical characterization of the Schottky diode has been performed by semiconductor device analyzer (SDA). Electrical parameters such as barrier height, ideality factor, reverse saturation current and rectification ratio have also been determined for the as-prepared Schottky diode using conventional thermionic emission model and Cheung's method. - Highlights: • Fabrication of sol-gel derived Cu doped ZnO (p-type) Schottky contact proposed. • The p-type Conductivity of the sample confirmed by Seebeck Measurement. • Pd and Ni deposited on Cu doped ZnO film to form Schottky contacts. • Cu doped ZnO expected to emerge as a potential material for thin film solar cells.

  3. Impedance-based cell monitoring: barrier properties and beyond

    Directory of Open Access Journals (Sweden)

    Benson Kathrin

    2013-01-01

    Full Text Available Abstract In multicellular organisms epithelial and endothelial cells form selective permeable interfaces between tissue compartments of different chemical compositions. Tight junctions which connect adjacent cells, control the passage of molecules across the barrier and, in addition, facilitate active transport processes. The cellular barriers are not static but can be deliberately modulated by exposure to specific external stimuli. In vitro models representing the essential absorption barriers of the body are nowadays available, thus allowing investigation of the parameters that control permeability as well as transport processes across those barriers. Independent of the origin of the barrier forming cells, techniques are needed to quantify their barrier integrity. One simple assay is to measure the permeability for given hydrophilic substrates possessing different molecular weights like sucrose or dextrans. However, this technique is time-consuming and labor-intensive. Moreover, radioactive or fluorescently-labeled substrates are needed to allow easy analytical detection. Finally, if transport processes are investigated, the standard permeant may interfere with the transport process under investigation or might even alter the barrier integrity by itself. Thus, independent, non-invasive techniques are needed to quantify the barrier integrity continuously during the experiment. Such techniques are available and are mainly based on the measurement of the transendothelial or transepithelial electrical resistance (TEER of barrier forming cells grown on porous membranes. Simple devices using two sets of electrodes (so-called Voltohmeters are widely used. In addition, an easy-to-use physical technique called impedance spectroscopy allows the continuous analysis of both the TEER and the electrical capacitance giving additional information about the barrier properties of cells grown on permeable membranes. This technique is useful as a quality control

  4. Photovoltaic cells employing zinc phosphide

    Science.gov (United States)

    Barnett, Allen M.; Catalano, Anthony W.; Dalal, Vikram L.; Masi, James V.; Meakin, John D.; Hall, Robert B.

    1984-01-01

    A photovoltaic cell having a zinc phosphide absorber. The zinc phosphide can be a single or multiple crystal slice or a thin polycrystalline film. The cell can be a Schottky barrier, heterojunction or homojunction device. Methods for synthesizing and crystallizing zinc phosphide are disclosed as well as a method for forming thin films.

  5. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  6. Development of Schottky diode detectors at Research Institute of Electrical Communication, Tohoku University

    International Nuclear Information System (INIS)

    Mizuno, K.; Ono, S.; Suzuki, T.; Daiku, Y.

    1982-01-01

    Schottky diode detectors are widely used as fast, sensitive submillimeter detectors in plasma physics, radio astronomy, frequency standards and so on. In this paper, the research on submillimeter Schottky diodes at Tohoku University is described. A brief description is given on the theoretical examination of diode parameters for video detection in design and on the fabrication of n/n + GaAs Schottky diode chips. Antennas for Schottky barrier diodes are discussed. Three types of antenna structures have been proposed, and used for whisker-contacted Schottky diodes so far. These are compared with each other for their frequency response and gain. The bicone type antenna is promising because of its larger frequency response, but the optimum design for this type of antenna has not yet sufficiently been obtained. As the application of Schottky barrier diodes, the intensity modulation of submillimeter laser and a quasi-optically coupled harmonic mixer have been studied. The modulation degree of about 4 % for HCN laser output has been so far obtained at the maximum modulation frequency of 2 GHz. Since 1976, a quasi-optically coupled harmonic mixer has been used with a Schottky diode in harmonic mixing between microwaves, millimeter waves, and submillimeter waves. (Wakatsuki, Y.)

  7. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    OpenAIRE

    H. MAZARI; K. AMEUR; N. BENSEDDIK; Z. BENAMARA; R. KHELIFI; M. MOSTEFAOUI; N. ZOUGAGH; N. BENYAHYA; R. BECHAREF; G. BASSOU; B. GRUZZA; J. M. BLUET; C. BRU-CHEVALLIER

    2014-01-01

    The current-voltage (I-V) characteristics of Pt/(n.u.d)-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semicondu...

  8. Heavy Ion Induced Degradation in SiC Schottky Diodes: Bias and Energy Deposition Dependence

    Science.gov (United States)

    Javanainen, Arto; Galloway, Kenneth F.; Nicklaw, Christopher; Bosser, Alexandre L.; Ferlet-Cavrois, Veronique; Lauenstein, Jean-Marie; Pintacuda, Francesco; Reed, Robert A.; Schrimpf, Ronald D.; Weller, Robert A.; hide

    2016-01-01

    Experimental results on ion-induced leakage current increase in 4H-SiC Schottky power diodes are presented. Monte Carlo and TCAD simulations show that degradation is due to the synergy between applied bias and ion energy deposition. This degradation is possibly related to thermal spot annealing at the metal semiconductor interface. This thermal annealing leads to an inhomogeneity of the Schottky barrier that could be responsible for the increase leakage current as a function of fluence.

  9. Influence of interface inhomogeneities in thin-film Schottky diodes

    Science.gov (United States)

    Wilson, Joshua; Zhang, Jiawei; Li, Yunpeng; Wang, Yiming; Xin, Qian; Song, Aimin

    2017-11-01

    The scalability of thin-film transistors has been well documented, but there have been very few investigations into the effects of device scalability in Schottky diodes. Indium-gallium-zinc-oxide (IGZO) Schottky diodes were fabricated with IGZO thicknesses of 50, 150, and 250 nm. Despite the same IGZO-Pt interface and Schottky barrier being formed in all devices, reducing the IGZO thickness caused a dramatic deterioration of the current-voltage characteristics, most notably increasing the reverse current by nearly five orders of magnitude. Furthermore, the forward characteristics display an increase in the ideality factor and a reduction in the barrier height. The origins of this phenomenon have been elucidated using device simulations. First, when the semiconductor layer is fully depleted, the electric field increases with the reducing thickness, leading to an increased diffusion current. However, the effects of diffusion only offer a small contribution to the huge variations in reverse current seen in the experiments. To fully explain this effect, the role of inhomogeneities in the Schottky barrier height has been considered. Contributions from lower barrier regions (LBRs) are found to dominate the reverse current. The conduction band minimum below these LBRs is strongly dependent upon thickness and bias, leading to reverse current variations as large as several orders of magnitude. Finally, it is demonstrated that the thickness dependence of the reverse current is exacerbated as the magnitude of the inhomogeneities is increased and alleviated in the limit where the LBRs are large enough not to be influenced by the adjacent higher barrier regions.

  10. Electrical transport measurements and degradation of graphene/n-Si Schottky junction diodes

    International Nuclear Information System (INIS)

    Park, No-Won; Lee, Won-Yong; Lee, Sang-Kwon; Koh, Jung-Hyuk; Kim, Dong-Joo; Kim, Gil-Sung; Hyung, Jung-Hwan; Hong, Chang-Hee; Kim, Keun-Soo

    2015-01-01

    We report on the electrical properties, such as the ideality factors and Schottky barrier heights, that were obtained by using current density - voltage (J - V ) and capacitance - voltage (C - V ) characteristics. To fabricate circularly- and locally-contacted Au/Gr/n-Si Schottky diode, we deposited graphene through the chemical vapor deposition (CVD) growth technique, and we employed reactive ion etching to reduce the leakage current of the Schottky diodes. The average values of the barrier heights and the ideality factors from the J .V characteristics were determined to be ∼0.79 ± 0.01 eV and ∼1.80 ± 0.01, respectively. The Schottky barrier height and the doping concentration from the C - V measurements were ∼0.85 eV and ∼1.76 x 10 15 cm -3 , respectively. From the J - V characteristics, we obtained a relatively low reverse leakage current of ∼2.56 x 10 -6 mA/cm -2 at -2 V, which implies a well-defined rectifying behavior. Finally, we found that the Gr/n-Si Schottky diodes that were exposed to ambient conditions for 7 days exhibited a ∼3.2-fold higher sheet resistance compared with the as-fabricated Gr/n-Si diodes, implying a considerable electrical degradation of the Gr/n-Si Schottky diodes.

  11. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  12. GaAs Schottky versus p/i/n diodes for pixellated X-ray detectors

    CERN Document Server

    Bourgoin, J C

    2002-01-01

    We discuss the performances of GaAs p/i/n structures and Schottky barriers for application as photodetectors for high-energy photons. We compare the magnitude of the leakage current and the width of the depleted region for a given reverse bias. We mention the effect of states present at the metal-semiconductor interface on the extension of the space charge region in Schottky barriers. We illustrate this effect by a description of the capacitance behaviour of a Au-GaAs barrier under gamma irradiation.

  13. InGaP Heterojunction Barrier Solar Cells

    Science.gov (United States)

    Welser, Roger E. (Inventor)

    2014-01-01

    A new solar cell structure called a heterojunction barrier solar cell is described. As with previously reported quantum-well and quantum-dot solar cell structures, a layer of narrow band-gap material, such as GaAs or indium-rich InGaP, is inserted into the depletion region of a wide band-gap PN junction. Rather than being thin, however, the layer of narrow band-gap material is about 400-430 nm wide and forms a single, ultrawide well in the depletion region. Thin (e.g., 20-50 nm), wide band-gap InGaP barrier layers in the depletion region reduce the diode dark current. Engineering the electric field and barrier profile of the absorber layer, barrier layer, and p-type layer of the PN junction maximizes photogenerated carrier escape. This new twist on nanostructured solar cell design allows the separate optimization of current and voltage to maximize conversion efficiency.

  14. Conduction mechanism in electron beam irradiated Al/n-Si Schottky diode

    International Nuclear Information System (INIS)

    Vali, Indudhar Panduranga; Shetty, Pramoda Kumara; Mahesha, M.G.; Petwal, V.C.

    2016-01-01

    In the high energy physics experiments, silicon based diodes are used to fabricate radiation detector to detect the charged particles. The Schottky barrier diodes have been studied extensively to understand the behavior of metal semiconductor interface, since such interfaces have been utilized as typical contacts in silicon devices. Because of surface states, interfacial layer, microscopic clusters of metal-semiconductor phases and other effects, it is difficult to fabricate junctions with barriers near the ideal values predicted from the work functions of the two isolated materials, therefore measured barrier heights are used in the device design. In this work, the Al/n-Si Schottky contacts are employed to study the diode parameters (Schottky barrier height and ideality factor), where the Schottky contacts were fabricated on electron beam irradiated silicon wafers. The interface behavior between electron irradiated Si wafer and post metal deposition is so far not reported. This method could be an alternative way to tailor the Schottky barrier height (SBH) without subjecting semiconductor sample to pre chemical and/or post heat treatments during fabrication

  15. Tuning the Schottky rectification in graphene-hexagonal boron nitride-molybdenum disulfide heterostructure.

    Science.gov (United States)

    Liu, Biao; Zhao, Yu-Qing; Yu, Zhuo-Liang; Wang, Lin-Zhi; Cai, Meng-Qiu

    2018-03-01

    It was still a great challenge to design high performance of rectification characteristic for the rectifier diode. Lately, a new approach was proposed experimentally to tune the Schottky barrier height (SBH) by inserting an ultrathin insulated tunneling layer to form metal-insulator-semiconductor (MIS) heterostructures. However, the electronic properties touching off the high performance of these heterostructures and the possibility of designing more efficient applications for the rectifier diode were not presently clear. In this paper, the structural, electronic and interfacial properties of the novel MIS diode with the graphene/hexagonal boron nitride/monolayer molybdenum disulfide (GBM) heterostructure had been investigated by first-principle calculations. The calculated results showed that the intrinsic properties of graphene and MoS 2 were preserved due to the weak van der Waals contact. The height of interfacial Schottky barrier can be tuned by the different thickness of hBN layers. In addition, the GBM Schottky diode showed more excellent rectification characteristic than that of GM Schottky diode due to the interfacial band bending caused by the epitaxial electric field. Based on the electronic band structure, we analyzed the relationship between the electronic structure and the nature of the Schottky rectifier, and revealed the potential of utilizing GBM Schottky diode for the higher rectification characteristic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    Science.gov (United States)

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  17. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    Science.gov (United States)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  18. Schottky contacts to polar and nonpolar n-type GaN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hogyoung [Hanbat National University, Daejeon (Korea, Republic of); Phark, Soohyon [Max-Planck-Institut fur Mikrostrukturphysik, Halle (Germany); Song, Keunman [Korea Advanced Nano Fab Center, Suwon (Korea, Republic of); Kim, Dongwook [Ewha Woman' s University, Seoul (Korea, Republic of)

    2012-01-15

    Using the current-voltage measurements, we observed the barrier heights of c-plane GaN in Pt and Au Schottky contacts to be higher than those of a-plane GaN. However, the barrier height of c-plane GaN was lower than that of a-plane GaN in the Ti Schottky contacts. The N/Ga ratio calculated by integrating the X-ray photoelectron spectroscopy (XPS) spectra of Ga 3d and N 1s core levels showed that c-plane GaN induced more Ga vacancies near the interface than a-plane GaN in the Ti Schottky contacts, reducing the effective barrier height through an enhancement of the tunneling probability.

  19. Copper (I) oxide (Cu 2 ) based solar cells - a review | Abdu | Bayero ...

    African Journals Online (AJOL)

    Copper (I) oxide (Cu2O) is a potential material for the fabrication of low cost solar cells for terrestrial application. A detailed survey on the previous work so far carried out on Cu2O based solar cells has been presented. The aspects discussed include the fabrication of Schottky (metal/semiconductor) barrier Cu2O solar cells, ...

  20. Silicon solar cells made by ion implantation and glow discharge

    International Nuclear Information System (INIS)

    Ponpon, J.P.; Siffert, P.

    1975-01-01

    Three different methods of silicon solar cell preparation are considered and investigated: low energy implantation, glow discharge and prebombarded Schottky barriers. The properties of the contact layers realized by these processes are compared in terms of junction depth and sheet resistance. Preliminary results show the usefulness of these techniques for terrestrial solar cell realization [fr

  1. The nature of electrical interaction of Schottky contacts

    International Nuclear Information System (INIS)

    Torkhov, N. A.

    2011-01-01

    Electrical interaction between metal-semiconductor contacts combined in a diode matrix with a Schottky barrier manifests itself in an appreciable variation in their surface potentials and static current-volt-characteristics. The necessary condition for appearance of electrical interaction between such contacts consists in the presence of a peripheral electric field (a halo) around them; this field propagates to a fairly large distances ( i,j ), concentration of doping impurities in the semiconductor N D , and physical nature of a metal-semiconductor system with a Schottky barrier (with the barrier height φ b ). It is established that bringing the contacts closer leads to a relative decrease in the threshold value of the “dead” zone in the forward current-voltage characteristics, an increase in the effective height of the barrier, and an insignificant increase in the nonideality factor. An increase in the total area of contacts (a total electric charge in the space charge region) in the matrix brings about an increase in the threshold value of the “dead” zone, a relative decrease in the effective barrier height, and an insignificant increase in the ideality factor.

  2. Enhancement in performance of polycarbazole-graphene nanocomposite Schottky diode

    International Nuclear Information System (INIS)

    Pandey, Rajiv K.; Singh, Arun Kumar; Prakash, Rajiv

    2013-01-01

    We report formation of polycarbazole (PCz)–graphene nanocomposite over indium tin oxide (ITO) coated glass substrate using electrochemical technique for fabrication of high performance Schottky diodes. The synthesized nanocomposite is characterized before fabrication of devices for confirmation of uniform distribution of graphene nanosheets in the polymer matrix. Pure PCz and PCz-graphene nanocomposites based Schottky diodes are fabricated of configuration Al/PCz/ITO and Al/PCz-graphene nanocomposite/ITO, respectively. The current density–voltage (J-V) characteristics and diode performance parameters (such as the ideality factor, barrier height, and reverse saturation current density) are compared under ambient condition. Al/PCz-graphene nanocomposite/ITO device exhibits better ideality factor in comparison to the device formed using pure PCz. It is also observed that the Al/PCz-graphene nanocomposite/ITO device shows large forward current density and low turn on voltage in comparison to Al/PCz/ITO device

  3. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery

    International Nuclear Information System (INIS)

    San, Haisheng; Yao, Shulin; Wang, Xiang; Cheng, Zaijun; Chen, Xuyuan

    2013-01-01

    The current paper presents a theoretical analysis of Ni-63 nuclear micro-battery based on a wide-band gap semiconductor GaN thin-film covered with thin Ni/Au films to form Schottky barrier for carrier separation. The total energy deposition in GaN was calculated using Monte Carlo methods by taking into account the full beta spectral energy, which provided an optimal design on Schottky barrier width. The calculated results show that an 8 μm thick Schottky barrier can collect about 95% of the incident beta particle energy. Considering the actual limitations of current GaN growth technique, a Fe-doped compensation technique by MOCVD method can be used to realize the n-type GaN with a carrier concentration of 1×10 15 cm −3 , by which a GaN based Schottky betavoltaic micro-battery can achieve an energy conversion efficiency of 2.25% based on the theoretical calculations of semiconductor device physics. - Highlights: • Ni-63 is employed as the pure beta radioisotope source. • The Schottky junction betavoltaic battery is based on the wide-band gap semiconductor GaN. • The total energy deposition of incident beta particles in GaN was simulated by the Monte Carlo method. • A Fe-doped compensation technique is suggested to increase the energy conversion efficiency

  4. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation...

  5. Schottky signal analysis: tune and chromaticity computation

    CERN Document Server

    Chanon, Ondine

    2016-01-01

    Schottky monitors are used to determine important beam parameters in a non-destructive way. The Schottky signal is due to the internal statistical fluctuations of the particles inside the beam. In this report, after explaining the different components of a Schottky signal, an algorithm to compute the betatron tune is presented, followed by some ideas to compute machine chromaticity. The tests have been performed with offline and/or online LHC data.

  6. Longitudinal Schottky noise of intense beam

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1990-01-01

    Some phenomena, which can be observed in the longitudinal Schottky spectra in storage ring with electron cooling as well as some technical details, which can be useful for the models of fitting are reviewed. Results shows that both the spectra and the power of the Schottky noise of the coasting beam are very sensitive to collective behaviour of the beam. This can be used for fitting of Schottky noise measurements and recalculation of beam parameters, parameters of cooling device. 9 refs.; 4 figs

  7. Electrical characterization of Au/ZnO/Si Schottky contact

    International Nuclear Information System (INIS)

    Asghar, M; Mahmood, K; Faisal, M; Hasan, M A

    2013-01-01

    In this study, temperature dependent current-voltage (I-V) and capacitance-voltage (C-V) measurements have been performed on Au/ZnO/Si Schottky barrier diode in the range 150 – 400K. The room temperature values for ideality factor and barrier height found to be 2.68 and 0.68 eV respectively. From the temperature dependence of I–V, the ideality factor was observed to decrease with increasing temperature and barrier height increased with increasing temperature. The observed barrier height trend was disagreeing with the negative temperature coefficient for semiconductor. A deep defect with activation energy 0.57 eV below the conduction band was observed using the saturation current plot and deep level transient spectroscopy.

  8. Power Conversion Efficiency of AlGaAs/GaAs Schottky Diode for Low-Power On-Chip Rectenna Device Application

    International Nuclear Information System (INIS)

    Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Osman, Mohd Nizam

    2011-01-01

    A Schottky diode has been designed and fabricated on n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences of Schottky barrier height from theoretical value are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are well rectified by the fabricated Schottky diodes and stable DC output voltage is obtained. Power conversion efficiency up to 50% is obtained at 1 GHz with series connection between diode and load. The fabricated the n-AlGaAs/GaAs Schottky diode provide conduit for breakthrough designs for ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  9. Comparison of electrical characteristic between AlN/GaN and AlGaN/GaN heterostructure Schottky diodes

    International Nuclear Information System (INIS)

    Lü Yuan-Jie; Feng Zhi-Hong; Gu Guo-Dong; Dun Shao-Bo; Yin Jia-Yun; Han Ting-Ting; Cai Shu-Jun; Lin Zhao-Jun

    2014-01-01

    Ni/Au Schottky contacts on AlN/GaN and AlGaN/GaN heterostructures are fabricated. Based on the measured current—voltage and capacitance—voltage curves, the electrical characteristics of AlN/GaN Schottky diode, such as Schottky barrier height, turn-on voltage, reverse breakdown voltage, ideal factor, and the current-transport mechanism, are analyzed and then compared with those of an AlGaN/GaN diode by self-consistently solving Schrödinger's and Poisson's equations. It is found that the dislocation-governed tunneling is dominant for both AlN/GaN and AlGaN/GaN Schottky diodes. However, more dislocation defects and a thinner barrier layer for AlN/GaN heterostructure results in a larger tunneling probability, and causes a larger leakage current and lower reverse breakdown voltage, even though the Schottky barrier height of AlN/GaN Schottky diode is calculated to be higher that of an AlGaN/GaN diode. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Research on the electrical characteristics of the Pt/CdS Schottky diode

    Science.gov (United States)

    Ding, Jia-xin; Zhang, Xiang-feng; Yao, Guansheng

    2013-08-01

    With the development of technology, the demand for semiconductor ultraviolet detector is increasing day by day. Compared with the traditional infrared detector in missile guidance, ultraviolet/infrared dual-color detection can significantly improve the anti-interference ability of the missile. According to the need of missile guidance and other areas of the application of ultraviolet detector, the paper introduces a manufacture of the CdS Schottky barrier ultraviolet detector. By using the radio frequency magnetron sputtering technology, a Pt thin film layer is sputtered on CdS basement to form a Schottky contact firstly. Then the indium ohmic contact electrode is fabricated by thermal evaporation method, and eventually a Pt/CdS/In Schottky diode is formed. The I-V characteristic of the device was tested at room temperature, its zero bias current and open circuit voltage is -0.578nA and 130mV, respectively. Test results show that the the Schottky contact has been formed between Pt and CdS. The device has good rectifying characteristics. According to the thermionic emission theory, the I-V curve fitting analysis of the device was studied under the condition of small voltage. The ideality factor and Schottky barrier height is 1.89 and 0.61eV, respectively. The normalized spectral responsivity at zero bias has been tested. The device has peak responsivity at 500nm, and it cutoff at 510nm.

  11. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  12. Electrical properties of Au/perylene-monoimide/p-Si Schottky diode

    International Nuclear Information System (INIS)

    Yüksel, Ö.F.; Tuğluoğlu, N.; Gülveren, B.; Şafak, H.; Kuş, M.

    2013-01-01

    Graphical abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. An emphasis is placed on how electrical and interface characteristics like current–voltage (I–V) variation, ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of Au/PMI/p-Si diode structure change with the temperatures between 100 and 300 K. The temperature dependence of barrier height shows that the Schottky barrier height is inhomogeneous in nature at the interface. Such inhomogeneous behavior was explained on the basis of thermionic emission mechanism by assuming the existence of a Gaussian distribution of barrier heights. -- Highlights: •An Au/perylene-monoimide (PMI)/p-Si Schottky diode having an organic interlayer has been fabricated. •I–V characteristics have been investigated over a wide temperature range 100–300 K. •C–V measurements have been analyzed at room temperature. -- Abstract: In this work, we have fabricated an Au/perylene-monoimide (PMI)/p-Si Schottky barrier diode. We have investigated how electrical and interface characteristics like current–voltage characteristics (I–V), ideality factor (n), barrier height (Φ B ) and series resistance (R s ) of diode change with temperature over a wide range of 100–300 K. Detailed analysis on the electrical properties of structure is performed by assuming the standard thermionic emission (TE) model. Possible mechanisms such as image force lowering, generation–recombination processes and interface states which cause deviations of n values from the unity have been discussed. Cheung–Cheung method is also employed to analysis the current–voltage characteristics and a good agreement is observed between the results. It is shown that the electronic properties of Schottky diode are very sensitive to the modification of perylene-monoimide (PMI) interlayer organic material and also to the temperature. The ideality factor was found to decrease and the barrier

  13. Plasmonic silicon Schottky photodetectors: the physics behind graphene enhanced internal photoemission

    DEFF Research Database (Denmark)

    Levy, Uriel; Grajower, Meir; Gonçalves, P. A. D.

    2017-01-01

    a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor...

  14. The properties of transparent TiO2 films for Schottky photodetector

    Directory of Open Access Journals (Sweden)

    Sung-Ho Park

    2017-08-01

    Full Text Available In this data, the properties of transparent TiO2 film for Schottky photodetector are presented for the research article, entitled as “High-performing transparent photodetectors based on Schottky contacts” (Patel et al., 2017 [1]. The transparent photoelectric device was demonstrated by using various Schottky metals, such as Cu, Mo and Ni. This article mainly shows the optical transmittance of the Ni-transparent Schottky photodetector, analyzed by the energy dispersive spectroscopy and interfacial TEM images for transparency to observe the interface between NiO and TiO2 film. The observation and analyses clearly show that no pinhole formation in the TiO2 film by Ni diffusion. The rapid thermal process is an effective way to form the quality TiO2 film formation without degradation, such as pinholes (Qiu et al., 2015 [2]. This thermal process may apply to form functional metal oxide layers for solar cells and photodetectors.

  15. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    Science.gov (United States)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  16. Physical Mechanisms Responsible for Electrical Conduction in Pt/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    H. MAZARI

    2014-05-01

    Full Text Available The current-voltage (I-V characteristics of Pt/(n.u.d-GaN and Pt/Si-doped-GaN diodes Schottky are investigated. Based on these measurements, physical mechanisms responsible for electrical conduction have been suggested. The contribution of thermionic-emission current and various other current transport mechanisms were assumed when evaluating the Schottky barrier height. Thus the generation-recombination, tunneling and leakage currents caused by inhomogeneities and defects at metal-semiconductor interface were taken into account.

  17. Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy

    Science.gov (United States)

    Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.

    2016-04-01

    Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.

  18. High performance Schottky diodes based on indium-gallium-zinc-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiawei; Song, Aimin, E-mail: A.Song@manchester.ac.uk [School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Xin, Qian [School of Physics, Shandong University, Jinan 250100 (China)

    2016-07-15

    Indium-gallium-zinc-oxide (IGZO) Schottky diodes exhibit excellent performance in comparison with conventional devices used in future flexible high frequency electronics. In this work, a high performance Pt IGZO Schottky diode was presented by using a new fabrication process. An argon/oxygen mixture gas was introduced during the deposition of the Pt layer to reduce the oxygen deficiency at the Schottky interface. The diode showed a high barrier height of 0.92 eV and a low ideality factor of 1.36 from the current–voltage characteristics. Even the radius of the active area was 0.1 mm, and the diode showed a cut-off frequency of 6 MHz in the rectifier circuit. Using the diode as a demodulator, a potential application was also demonstrated in this work.

  19. Schottky Noise and Beam Transfer Functions

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz M.; Blaskiewicz M.

    2016-12-01

    Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.

  20. Electrical characterization of organic-on-inorganic semiconductor Schottky structures

    International Nuclear Information System (INIS)

    Guellue, Oe; Tueruet, A; Asubay, S

    2008-01-01

    We prepared a methyl red/p-InP organic-inorganic (OI) Schottky device formed by evaporation of an organic compound solution directly to a p-InP semiconductor wafer. The value of the optical band gap energy of the methyl red organic film on a glass substrate was obtained as 2.0 eV. It was seen that the Al/methyl red/p-InP contacts showed a good rectifying behavior. An ideality factor of 2.02 and a barrier height (Φ b ) of 1.11 eV for the Al/methyl red/p-InP contact were determined from the forward bias I-V characteristics. It was seen that the value of 1.11 eV obtained for Φ b for the Al/methyl red/p-InP contact was significantly larger than the value of 0.83 eV for conventional Al/p-InP Schottky diodes. Modification of the interfacial potential barrier for the Al/p-InP diode was achieved using a thin interlayer of the methyl red organic semiconductor. This ascribed to the fact that the methyl red interlayer increases the effective Φ b by influencing the space charge region of InP

  1. Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction

    International Nuclear Information System (INIS)

    Di Bartolomeo, Antonio

    2016-01-01

    In the past decade graphene has been one of the most studied materials for several unique and excellent properties. Due to its two dimensional nature, physical and chemical properties and ease of manipulation, graphene offers the possibility of integration with the existing semiconductor technology for next-generation electronic and sensing devices. In this context, the understanding of the graphene/semiconductor interface is of great importance since it can constitute a versatile standalone device as well as the building-block of more advanced electronic systems. Since graphene was brought to the attention of the scientific community in 2004, the device research has been focused on the more complex graphene transistors, while the graphene/semiconductor junction, despite its importance, has started to be the subject of systematic investigation only recently. As a result, a thorough understanding of the physics and the potentialities of this device is still missing. The studies of the past few years have demonstrated that graphene can form junctions with 3D or 2D semiconducting materials which have rectifying characteristics and behave as excellent Schottky diodes. The main novelty of these devices is the tunable Schottky barrier height, a feature which makes the graphene/semiconductor junction a great platform for the study of interface transport mechanisms as well as for applications in photo-detection, high-speed communications, solar cells, chemical and biological sensing, etc. In this paper, we review the state-of-the art of the research on graphene/semiconductor junctions, the attempts towards a modeling and the most promising applications.

  2. Silver nanowires-templated metal oxide for broadband Schottky photodetector

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Malkeshkumar; Kim, Hong-Sik; Kim, Joondong, E-mail: joonkim@inu.ac.kr [Photoelectric and Energy Device Application Lab (PEDAL) and Department of Electrical Engineering, Incheon National University, 119 Academy Rd. Yeonsu, Incheon 406772 (Korea, Republic of); Park, Hyeong-Ho [Applied Device and Material Lab., Device Technology Division, Korea Advanced Nano Fab Center (KANC), Suwon 443270 (Korea, Republic of)

    2016-04-04

    Silver nanowires (AgNWs)-templated transparent metal oxide layer was applied for Si Schottky junction device, which remarked the record fastest photoresponse of 3.4 μs. Self-operating AgNWs-templated Schottky photodetector showed broad wavelength photodetection with high responsivity (42.4 A W{sup −1}) and detectivity (2.75 × 10{sup 15} Jones). AgNWs-templated indium-tin-oxide (ITO) showed band-to-band excitation due to the internal photoemission, resulting in significant carrier collection performances. Functional metal oxide layer was formed by AgNWs-templated from ITO structure. The grown ITO above AgNWs has a cylindrical shape and acts as a thermal protector of AgNWs for high temperature environment without any deformation. We developed thermal stable AgNWs-templated transparent oxide devices and demonstrated the working mechanism of AgNWs-templated Schottky devices. We may propose the high potential of hybrid transparent layer design for various photoelectric applications, including solar cells.

  3. Comparison of nickel, cobalt, palladium, and tungsten Schottky contacts on n-4H-silicon carbide

    Science.gov (United States)

    Gora, V. E.; Chawanda, A.; Nyamhere, C.; Auret, F. D.; Mazunga, F.; Jaure, T.; Chibaya, B.; Omotoso, E.; Danga, H. T.; Tunhuma, S. M.

    2018-04-01

    We have investigated the current-voltage (I-V) characteristics of nickel (Ni), cobalt (Co), tungsten (W) and palladium (Pd) Schottky contacts on n-type 4H-SiC in the 300-800 K temperature range. Results extracted from I-V measurements of Schottky barrier diodes showed that barrier height (ФBo) and ideality factor (n) were strongly dependent on temperature. Schottky barrier heights for contacts of all the metals showed an increase with temperature between 300 K and 800 K. This was attributed to barrier inhomogeneities at the interface between the metal and the semiconductor, which resulted in a distribution of barrier heights at the interface. Ideality factors of Ni, Co and Pd decreased from 1.6 to 1.0 and for W the ideality factor decreased from 1.1 to 1.0 when the temperature was increased from 300 K to 800 K respectively. The device parameters were compared to assess advantages and disadvantages of the metals for envisaged applications.

  4. Forward Current Transport Mechanisms of Ni/Au—InAlN/AlN/GaN Schottky Diodes

    Science.gov (United States)

    Wang, Xiao-Feng; Shao, Zhen-Guang; Chen, Dun-Jun; Lu, Hai; Zhang, Rong; Zheng, You-Dou

    2014-05-01

    We fabricate two Ni/Au-In0.17Al0.83N/AlN/GaN Schottky diodes on substrates of sapphire and Si, respectively, and investigate their forward-bias current transport mechanisms by temperature-dependent current-voltage measurements. In the temperature range of 300-485 K, the Schottky barrier heights (SBHs) calculated by using the conventional thermionic-emission (TE) model are strongly positively dependent on temperature, which is in contrast to the negative-temperature-dependent characteristic of traditional semiconductor Schottky diodes. By fitting the forward-bias I-V characteristics using different current transport models, we find that the tunneling current model can describe generally the I-V behaviors in the entire measured range of temperature. Under the high forward bias, the traditional TE mechanism also gives a good fit to the measured I-V data, and the actual barrier heights calculated according to the fitting TE curve are 1.434 and 1.413 eV at 300K for InAlN/AlN/GaN Schottky diodes on Si and the sapphire substrate, respectively, and the barrier height shows a slightly negative temperature coefficient. In addition, a formula is given to estimate SBHs of Ni/Au—InAlN/AlN/GaN Schottky diodes taking the Fermi-level pinning effect into account.

  5. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration.

    Science.gov (United States)

    Karki, Surya B; Yildirim-Ayan, Eda; Eisenmann, Kathryn M; Ayan, Halim

    2017-01-01

    Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  6. Miniature Dielectric Barrier Discharge Nonthermal Plasma Induces Apoptosis in Lung Cancer Cells and Inhibits Cell Migration

    Directory of Open Access Journals (Sweden)

    Surya B. Karki

    2017-01-01

    Full Text Available Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.

  7. Schottky nanocontact of one-dimensional semiconductor nanostructures probed by using conductive atomic force microscopy

    Science.gov (United States)

    Lee, Jung Ah; Rok Lim, Young; Jung, Chan Su; Choi, Jun Hee; Im, Hyung Soon; Park, Kidong; Park, Jeunghee; Kim, Gyu Tae

    2016-10-01

    To develop the advanced electronic devices, the surface/interface of each component must be carefully considered. Here, we investigate the electrical properties of metal-semiconductor nanoscale junction using conductive atomic force microscopy (C-AFM). Single-crystalline CdS, CdSe, and ZnO one-dimensional nanostructures are synthesized via chemical vapor transport, and individual nanobelts (or nanowires) are used to fabricate nanojunction electrodes. The current-voltage (I -V) curves are obtained by placing a C-AFM metal (PtIr) tip as a movable contact on the nanobelt (or nanowire), and often exhibit a resistive switching behavior that is rationalized by the Schottky (high resistance state) and ohmic (low resistance state) contacts between the metal and semiconductor. We obtain the Schottky barrier height and the ideality factor through fitting analysis of the I-V curves. The present nanojunction devices exhibit a lower Schottky barrier height and a higher ideality factor than those of the bulk materials, which is consistent with the findings of previous works on nanostructures. It is shown that C-AFM is a powerful tool for characterization of the Schottky contact of conducting channels between semiconductor nanostructures and metal electrodes.

  8. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  9. Fabrication of a Schottky junction diode with direct growth graphene on silicon by a solid phase reaction

    International Nuclear Information System (INIS)

    Kalita, Golap; Hirano, Ryo; Ayhan, Muhammed E; Tanemura, Masaki

    2013-01-01

    We demonstrate fabrication of a Schottky junction diode with direct growth graphene on n-Si by the solid phase reaction approach. Metal-assisted crystallization of a-C thin film was performed to synthesize transfer-free graphene directly on a SiO 2 patterned n-Si substrate. Graphene formation at the substrate and catalyst layer interface is achieved in presence of a Co catalytic and CoO carbon diffusion barrier layer. The as-synthesized material shows a linear current–voltage characteristic confirming the metallic behaviour of the graphene structure. The direct grown graphene on n-Si substrate creates a Schottky junction with a potential barrier of 0.44 eV and rectification diode characteristic. Our finding shows that the directly synthesized graphene on Si substrate by a solid phase reaction process can be a promising technique to fabricate an efficient Schottky junction device. (paper)

  10. Cumulative dose 60Co gamma irradiation effects on AlGaN/GaN Schottky diodes and its area dependence

    Science.gov (United States)

    Sharma, Chandan; Laishram, Robert; Rawal, Dipendra Singh; Vinayak, Seema; Singh, Rajendra

    2018-04-01

    Cumulative dose gamma radiation effects on current-voltage characteristics of GaN Schottky diodes have been investigated. The different area diodes have been fabricated on AlGaN/GaN high electron mobility transistor (HEMT) epi-layer structure grown over SiC substrate and irradiated with a dose up to the order of 104 Gray (Gy). Post irradiation characterization shows a shift in the turn-on voltage and improvement in reverse leakage current. Other calculated parameters include Schottky barrier height, ideality factor and reverse saturation current. Schottky barrier height has been decreased whereas reverse saturation current shows an increase in the value post irradiation with improvement in the ideality factor. Transfer length measurement (TLM) characterization shows an improvement in the contact resistance. Finally, diodes with larger area have more variation in the calculated parameters due to the induced local heating effect.

  11. Temperature dependent current transport of Pd/ZnO nanowire Schottky diodes

    Science.gov (United States)

    Gayen, R. N.; Bhattacharyya, S. R.; Jana, P.

    2014-09-01

    Zinc oxide (ZnO) nanowire based Schottky barrier diodes are fabricated by depositing Pd metal contact on top of vertically well-aligned ZnO nanowire arrays. A vertical array of ZnO nanowires on indium tin oxide (ITO) coated glass substrates is synthesized by hybrid wet chemical route. Scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS) measurement confirm the formation of stoichiometric well-aligned hexagonal (h-ZnO) nanowire arrays with wurtzite structure. Temperature dependent current-voltage (I-V) measurements on palladium-ZnO (Pd/ZnO) nanowire Schottky junctions in the temperature range 303-383 K exhibit excellent rectifying character. From these nonlinear I-V plots, different electrical parameters of diode-like reverse saturation current, barrier height and ideality factor are determined as a function of temperature assuming pure thermionic emission model. The ideality factor is found to decrease while the barrier height increases with the increase in temperature. The series resistance values calculated from Cheung’s functions also show temperature dependency. Such behavior can be attributed to the presence of defects that traps carriers, and barrier height inhomogeneity at the interface of the barrier junction. After barrier height inhomogeneity correction, considering a Gaussian distributed barrier height fluctuation across the Pd/ZnO interface, the estimated values of mean barrier height and modified Richardson constant are more closely matched to the theoretically predicted value for Pd/ZnO Schottky barrier diodes. The variation of density of interface states as a function of interface state energy is also calculated.

  12. Mesenchymal stem cells attenuate blood-brain barrier leakage after cerebral ischemia in mice.

    Science.gov (United States)

    Cheng, Zhuo; Wang, Liping; Qu, Meijie; Liang, Huaibin; Li, Wanlu; Li, Yongfang; Deng, Lidong; Zhang, Zhijun; Yang, Guo-Yuan

    2018-05-03

    Ischemic stroke induced matrixmetallo-proteinase-9 (MMP-9) upregulation, which increased blood-brain barrier permeability. Studies demonstrated that mesenchymal stem cell therapy protected blood-brain barrier disruption from several cerebrovascular diseases. However, the underlying mechanism was largely unknown. We therefore hypothesized that mesenchymal stem cells reduced blood-brain barrier destruction by inhibiting matrixmetallo-proteinase-9 and it was related to intercellular adhesion molecule-1 (ICAM-1). Adult ICR male mice (n = 118) underwent 90-min middle cerebral artery occlusion and received 2 × 10 5 mesenchymal stem cell transplantation. Neurobehavioral outcome, infarct volume, and blood-brain barrier permeability were measured after ischemia. The relationship between myeloperoxidase (MPO) activity and ICAM-1 release was further determined. We found that intracranial injection of mesenchymal stem cells reduced infarct volume and improved behavioral function in experimental stroke models (p mesenchymal stem cell-treated mice compared to the control group following ischemia (p cells and myeloperoxidase activity were decreased in mesenchymal stem cell-treated mice (p mesenchymal stem cell therapy attenuated blood-brain barrier disruption in mice after ischemia. Mesenchymal stem cells attenuated the upward trend of MMP-9 and potentially via downregulating ICAM-1 in endothelial cells. Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathway may influence MMP-9 expression of neutrophils and resident cells, and ICAM-1 acted as a key factor in the paracrine actions of mesenchymal stem cell.

  13. Interfacial barrier height modification of indium tin oxide/a-Si:H(p) via control of density of interstitial oxygen for silicon heterojunction solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Shihyun; Kim, Sunbo; Dao, Vinh Ai; Lee, Seungho; Iftiquar, S.M. [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College, Ulsan, 680-749 (Korea, Republic of); Hussain, Shahzada Qamar [Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Park, Hyeongsik; Lee, Jaehyeong [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Lee, Youngseok [Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Cho, Jaehyun [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Kim, Sangho [Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Yi, Junsin, E-mail: yi@yurim.skku.ac.kr [College of Information and Communication Engineering, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, 300 Chunchun-dong, Jangan-gu, Suwon, Gyeonggi-do 400-746 (Korea, Republic of)

    2013-11-01

    An indium tin oxide (ITO) film with low carrier concentration (n), high mobility (μ) and high work function (Φ{sub ITO}) is a beneficial material for the front electrode in heterojunction silicon (HJ) solar cells due to its low free-carrier absorption in the near-infrared wavelength and low Schottky barrier height at the ITO/emitter-layer front contact. This low free-carrier absorption as well as the low Schottky barrier height increase the open-circuit voltage (V{sub oc}) and the short-circuit current density (J{sub sc}), which in turn increases the overall cell efficiency (η). Hence, ITO films with lower n, higher μ and higher Φ{sub ITO} were prepared by controlling the density of the interstitial oxygen [O{sub i}] in the films and used as anti-reflection electrodes in HJ solar cells. With increasing [O{sub i}] in the ITO, the preferential orientation of the (222) crystalline plane became more dominant. The Φ{sub ITO} and μ increased from 4.87 eV and 38.9 cm{sup 2} V{sup −1} s{sup −1} to 5.04 eV and 48.79 cm{sup 2} V{sup −1} s{sup −1}, respectively, whereas n decreased from 4.7 × 10{sup 20} cm{sup −3} to 2.8 × 10{sup 20} cm{sup −3}. We attribute these changes to the chemisorbed oxygen into the ITO films, while the decrease of n is due to the ability of interstitial oxygen to capture electron, and the increase of μ is due to the reduction in free-carrier scattering. These ITO films were used to fabricate HJ solar cells. As [O{sub i}] in the ITO film increased, the device performance improved and the best cell performance was obtained with V{sub oc} of 714 mV, J{sub sc} 34.79 mA/cm{sup 2} and η of 17.82%. By computer simulation, we found that the higher Φ{sub ITO} and μ but lower n were responsible for the enhanced cell performance. The cell performance, however, deteriorated due to poor film properties when [O{sub i}] exceeded concentration limit from 3.2 × 10{sup 20} cm{sup −3}. - Highlights: • The carrier concentration (n) decreases

  14. Hybrid graphene/silicon Schottky photodiode with intrinsic gating effect

    Science.gov (United States)

    Di Bartolomeo, Antonio; Luongo, Giuseppe; Giubileo, Filippo; Funicello, Nicola; Niu, Gang; Schroeder, Thomas; Lisker, Marco; Lupina, Grzegorz

    2017-06-01

    We propose a hybrid device consisting of a graphene/silicon (Gr/Si) Schottky diode in parallel with a Gr/SiO2/Si capacitor for high-performance photodetection. The device, fabricated by transfer of commercial graphene on low-doped n-type Si substrate, achieves a photoresponse as high as 3 \\text{A} {{\\text{W}}-1} and a normalized detectivity higher than 3.5× {{10}12} \\text{cm} \\text{H}{{\\text{z}}1/2} {{\\text{W}}-1} in the visible range. It exhibits a photocurrent exceeding the forward current because photo-generated minority carriers, accumulated at Si/SiO2 interface of the Gr/SiO2/Si capacitor, diffuse to the Gr/Si junction. We show that the same mechanism, when due to thermally generated carriers, although usually neglected or disregarded, causes the increased leakage often measured in Gr/Si heterojunctions. We perform extensive I-V and C-V characterization at different temperatures and we measure a zero-bias Schottky barrier height of 0.52 eV at room temperature, as well as an effective Richardson constant A **  =  4× {{10}-5} \\text{A} \\text{c}{{\\text{m}}-2} {{\\text{K}}-2} and an ideality factor n≈ 3.6 , explained by a thin (<1 nm) oxide layer at the Gr/Si interface.

  15. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  16. Analysis of infiltration through a clay radon barrier at an UMTRA disposal cell

    International Nuclear Information System (INIS)

    1991-01-01

    An infiltration study was initiated in January 1988 to assess the percent saturation in, and infiltration through, clay radon barriers of typical Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Predicting infiltration through the radon barrier is necessary to evaluate whether the disposal cell will comply with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (40 CFR 192). The groundwater standards require demonstrating that tailings seepage will not cause background concentrations or maximum concentration limits (MCLs) to be exceeded at the downgradient edge of the disposal facility (the point of compliance, or POC). This demonstration generally consists of incorporating the predicted seepage flux and the concentration of the specific hazardous constituents into a contaminant transport model, and predicting the resultant concentrations at the POC. The infiltration study consisted of a field investigation to evaluate moisture conditions in the radon barrier of the completed Shiprock, New Mexico, UMTRA Project disposal cell and previously completed UMTRA Project disposal cells at Clive, Utah, and Burrell, Pennsylvania. Coring was conducted to measure percent saturation profiles in the radon barriers at these disposal cells. In addition, a detailed investigation of the Shiprock radon barrier was conducted to establish the effects of meteorological stresses on moisture conditions in the filter layer and radon barrier. The Shiprock infiltration study was also intended to characterize hydraulic gradients and operational unsaturated hydraulic conductivities in the radon barrier

  17. Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes

    Science.gov (United States)

    Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R. T.; Sahin, H.; Selamet, Y.

    2018-01-01

    We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4″bis(diphenylamino)-1, 1‧:3″-terphenyl-5‧ carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-yl-1,1‧:3‧1‧-terphenyl-5‧ carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13, 1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as π-π interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode.

  18. Thermal stability study of semimetal graphite n-InP and n-GaN Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2013-01-01

    Roč. 28, č. 5 (2013) ISSN 0268-1242 R&D Projects: GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Gallium nitride * Schottky barrier diodes * Graphite Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.206, year: 2013

  19. Characterization and Reliability of Vertical N-Type Gallium Nitride Schottky Contacts

    Science.gov (United States)

    2016-09-01

    ACKNOWLEDGMENTS Foremost, I would like to thank my wife, Melissa, with whom I have three wonderful children. Without her endless love , unwavering...conducting research in the lab and studying in the library, she cared for our children and created a loving home for our family. Her strength, passion...Online]. Available: http://ecee.colorado.edu/~bart/book/book/title.htm 78 [12] R. T. Tung, “The physics and chemistry of the Schottky barrier

  20. Current-voltage temperature characteristics of Au/n-Ge (1 0 0) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Chawanda, Albert, E-mail: albert.chawanda@up.ac.za [Midlands State University, Bag 9055 Gweru (Zimbabwe); University of Pretoria, 0002 Pretoria (South Africa); Mtangi, Wilbert; Auret, Francois D; Nel, Jacqueline [University of Pretoria, 0002 Pretoria (South Africa); Nyamhere, Cloud [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Diale, Mmantsae [University of Pretoria, 0002 Pretoria (South Africa)

    2012-05-15

    The variation in electrical characteristics of Au/n-Ge (1 0 0) Schottky contacts have been systematically investigated as a function of temperature using current-voltage (I-V) measurements in the temperature range 140-300 K. The I-V characteristics of the diodes indicate very strong temperature dependence. While the ideality factor n decreases, the zero-bias Schottky barrier height (SBH) ({Phi}{sub B}) increases with the increasing temperature. The I-V characteristics are analyzed using the thermionic emission (TE) model and the assumption of a Gaussian distribution of the barrier heights due to barrier inhomogeneities at the metal-semiconductor interface. The zero-bias barrier height {Phi}{sub B} vs. 1/2 kT plot has been used to show the evidence of a Gaussian distribution of barrier heights and values of {Phi}{sub B}=0.615 eV and standard deviation {sigma}{sub s0}=0.0858 eV for the mean barrier height and zero-bias standard deviation have been obtained from this plot, respectively. The Richardson constant and the mean barrier height from the modified Richardson plot were obtained as 1.37 A cm{sup -2} K{sup -2} and 0.639 eV, respectively. This Richardson constant is much smaller than the reported of 50 A cm{sup -2} K{sup -2}. This may be due to greater inhomogeneities at the interface.

  1. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

    Science.gov (United States)

    Clay, Lori; Caudron, Fabrice; Denoth-Lippuner, Annina; Boettcher, Barbara; Buvelot Frei, Stéphanie; Snapp, Erik Lee; Barral, Yves

    2014-01-01

    In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI: http://dx.doi.org/10.7554/eLife.01883.001 PMID:24843009

  2. Atomic composition of WC/ and Zr/O-terminated diamond Schottky interfaces close to ideality

    Energy Technology Data Exchange (ETDEWEB)

    Piñero, J.C., E-mail: josecarlos.pinero@uca.es [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Araújo, D. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Fiori, A. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan); Traoré, A. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Villar, M.P. [Dpto. Ciencias de los Materiales, Universidad de Cádiz, Puerto Real, Cádiz,11510 (Spain); Eon, D.; Muret, P.; Pernot, J. [Institut Néel, CNRS-UJF, av. des Martyrs, Grenoble,38042 France (France); Teraji, T. [National Institute for Materials Science, Tsukuba, Ibaraki (Japan)

    2017-02-15

    Highlights: • Metal/O-terminated diamond interfaces are analyzed by a variety of TEM techniques. • Thermal treatment is shown to modify structural and chemical interface properties. • Electrical behavior vs annealing is shown to be related with interface modification. • Interfaces are characterized with atomic resolution to probe inhomogeneities. • Oxide formation and modification is demonstrated in both Schottky diodes. - Abstract: Electrical and nano-structural properties of Zr and WC-based Schottky power diodes are compared and used for investigating oxide-related effects at the diamond/metal interface. Differences in Schottky barrier heights and ideality factors of both structures are shown to be related with the modification of the oxygen-terminated diamond/metal interface configuration. Oxide formation, oxide thickness variations and interfacial oxygen redistribution, associated with thermal treatment are demonstrated. Ideality factors close to ideality (n{sub WC} = 1.02 and n{sub Zr} = 1.16) are obtained after thermal treatment and are shown to be related with the relative oxygen content at the surface (OCR{sub WC} = 3.03 and OCR{sub Zr} = 1.5). Indeed, thermal treatment at higher temperatures is shown to promote an escape of oxygen for the case of the WC diode, while it generates a sharper accumulation of oxygen at the metal/diamond interface for the case of Zr diode. Therefore, the metal-oxygen affinity is shown to be a key parameter to improve diamond-based Schottky diodes.

  3. Electrical characterization of MEH-PPV based Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Nimith, K. M., E-mail: nimithkm@gmail.com; Satyanarayan, M. N., E-mail: satya-mn@nitk.edu.in; Umesh, G., E-mail: umesh52@gmail.com [Optoelectronics Laboratory (OEL), Department of Physics, National Institute of Technology Karnataka (NITK),Surathkal, PO Srinivasnagar, Mangalore, DK-575025 (India)

    2016-05-06

    MEH-PPV Schottky diodes with and without Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) have been fabricated and characterized. The highlight of this work is that all the fabrication and characterization steps had been carried out in the ambient conditions and the device fabrication was done without any UV-Ozone surface treatment of ITO anodes. Current Density-Voltage characteristics shows that the addition of hole injection layer (HIL) enhances the charge injection into the polymer layer by reducing the energy barrier across the Indium Tin Oxide (ITO)-Organic interface. The rectification ratio increases to 2.21 from 0.76 at 5V for multilayer devices compared to single layer devices. Further we investigated the effect of an alkali metal fluoride (LiF) by inserting a thin layer in between the organic layer and Aluminum (Al) cathode. The results of these investigations will be discussed in detail.

  4. Theory of thermionic emission from a two-dimensional conductor and its application to a graphene-semiconductor Schottky junction

    Science.gov (United States)

    Trushin, Maxim

    2018-04-01

    The standard theory of thermionic emission developed for three-dimensional semiconductors does not apply to two-dimensional materials even for making qualitative predictions because of the vanishing out-of-plane quasiparticle velocity. This study reveals the fundamental origin of the out-of-plane charge carrier motion in a two-dimensional conductor due to the finite quasiparticle lifetime and huge uncertainty of the out-of-plane momentum. The theory is applied to a Schottky junction between graphene and a bulk semiconductor to derive a thermionic constant, which, in contrast to the conventional Richardson constant, is determined by the Schottky barrier height and Fermi level in graphene.

  5. Large magnetocurrents in double-barrier tunneling transistors

    International Nuclear Information System (INIS)

    Lee, J.H.; Jun, K.-I.; Shin, K.-H.; Park, S.Y.; Hong, J.K.; Rhie, K.; Lee, B.C.

    2005-01-01

    Magnetic tunneling transistors (MTT) with double tunneling barriers are fabricated. The structure of the transistor is AFM/FM/I/FM/I/FM/AFM, and ferromagnetic layers serve as the emitter, base and collector. This double-barrier tunneling transistor (DBTT) has an advantage of controlling the potential between the base and collector, compared to the Schottky-barrier-based base and collector of MTT. We found that the collector current density of DBTT is at least 10 3 times larger than that of conventional MTT, since tunneling through AlO x barrier provides much larger current density than that through Schottky barrier

  6. Fabrication and characterization of n-AlGaAs/ GaAs Schottky diode for rectennas device application

    International Nuclear Information System (INIS)

    Norfarariyanti Parimon; Abdul Manaf Hashim; Farahiyah Mustafa

    2009-01-01

    Full text: Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectennas device application. Rectennas is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current?voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectennas device application. (author)

  7. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    Energy Technology Data Exchange (ETDEWEB)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul [Material Innovations and Nanoelectronics Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Osman, Mohd Nizam, E-mail: manaf@fke.utm.my [Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya (Malaysia)

    2011-02-15

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  8. Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures

    International Nuclear Information System (INIS)

    Das, Subhashis; Majumdar, Shubhankar; Kumar, Rahul; Ghosh, Saptarsi; Biswas, Dhrubes

    2016-01-01

    An AlGaN/GaN heterostructure based metal–semiconductor–metal symmetrically bi-directional Schottky diode sensor structure has been employed to investigate acetone sensing and to analyze thermodynamics of acetone adsorption at low temperatures. The AlGaN/GaN heterostructure has been grown by plasma-assisted molecular beam epitaxy on Si (111). Schottky diode parameters at different temperatures and acetone concentrations have been extracted from I–V characteristics. Sensitivity and change in Schottky barrier height have been studied. Optimum operating temperature has been established. Coverage of acetone adsorption sites at the AlGaN surface and the effective equilibrium rate constant of acetone adsorption have been explored to determine the endothermic nature of acetone adsorption enthalpy.

  9. Fabrication and Characterization of n-AlGaAs/GaAs Schottky Diode for Rectenna Device Application

    International Nuclear Information System (INIS)

    Parimon, Norfarariyanti; Mustafa, Farahiyah; Hashim, Abdul Manaf; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul; Osman, Mohd Nizam

    2011-01-01

    Schottky diode was designed and fabricated on n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for rectenna device application. Rectenna is one of the most potential devices to form the wireless power supply which is really good at converting microwaves to DC. The processing steps used in the fabrication of Schottky diode were the conventional steps used in standard GaAs processing. Current-voltage (I-V) measurements showed that the device had rectifying properties with a barrier height of 0.5468 eV for Ni/Au metallization. The fabricated Schottky diode detected RF signals and the cut-off frequency up to 20 GHz was estimated in direct injection experiments. These preliminary results will provide a breakthrough for the direct integration with antenna towards realization of rectenna device application.

  10. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  11. The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers

    Science.gov (United States)

    Zhou, Quan; Liu, Xiangzhi; Luo, Wei; Shen, Jun; Wang, Yuefeng; Wei, Dapeng

    2018-03-01

    Polyethylenimine ethoxylated (PEIE) and polyethyl-enimine (PEI), the two kinds of interface buffer layer, are widely used in the organic light-emitting diodes and solar cells for band alignment adjustment. In this report, we carefully studied the influence of the inserting organic layer on the graphene nanowalls(GNWS)/Si junction quality and the photoresponse of the Schottky devices. We found that thinner layers of PEI could decrease the dark current and improve the photo-to-dark ratio to 105 for n-Si devices. The s-kink effect and degradation of open circuit voltage could be observed for thicker thickness and excessive doping. Relatively, PEIE with stable thin layer not only improve the rectifying characteristics of p-Si devices but also the incident photon conversion efficiency. The maximus IPCE could reach 44% and be adjusted to zero by the reverse bias. The tunneling inhibition for electrons can be alleviated by increasing the barrier height. Our results provide an attractive method to improve the efficiency of pristine GNWs/Si junction with interface doping and passivation.

  12. A microfluidic cell culture device with integrated microelectrodes for barrier studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Dufva, Martin; Kutter, Jörg P.

    We present an eight cell culture microfluidic device fabricated using thiol-ene ‘click’ chemistry with embedded microelectrodes for evaluating barrier properties of human intestinal epithelial cells. The capability of the microelectrodes for trans-epithelial electrical resistance (TEER) measureme......) measurements was demonstrated by using confluent human colorectal epithelial cells (Caco-2) and rat fibroblast (CT 26) cells cultured in the microfluidic device....

  13. Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions

    Directory of Open Access Journals (Sweden)

    Lefeng Wang

    2017-01-01

    Full Text Available Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC, leading to barrier dysfunction and acute respiratory distress syndrome (ARDS. Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix] of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.

  14. Influence of nanostructure Fe-doped ZnO interlayer on the electrical properties of Au/n-type InP Schottky structure

    Energy Technology Data Exchange (ETDEWEB)

    Padma, R.; Balaram, N.; Reddy, I. Neelakanta; Reddy, V. Rajagopal, E-mail: reddy_vrg@rediffmail.com

    2016-07-01

    The Au/Fe-doped ZnO/n-InP metal/interlayer/semiconductor (MIS) Schottky structure is fabricated with Fe-doped ZnO nanostructure (NS) as an interlayer. The field emission scanning electron microscopy and atomic force microscopy results demonstrated that the surface morphology of the Fe−ZnO NS on n-InP is fairly smooth. The x-ray diffraction results reveal that the average grain size of the Fe−ZnO film is 12.35 nm. The electrical properties of the Au/n-InP metal-semiconductor (MS) and Au/Fe−ZnO NS/n-InP MIS Schottky structures are investigated by current-voltage and capacitance-voltage measurements at room temperature. The Au/Fe−ZnO NS/n-InP MIS Schottky structure has good rectifying ratio with low-leakage current compared to the Au/n-InP MS structure. The barrier height obtained for the MIS structure is higher than those of MS Schottky structure because of the modification of the effective barrier height by the Fe−ZnO NS interlayer. Further, the barrier height, ideality factor and series resistance are determined for the MS and MIS Schottky structures using Norde and Cheung's functions and compared to each other. The estimated interface state density of MIS Schottky structure is lower than that of MS Schottky structure. Experimental results revealed that the Poole-Frenkel emission is the dominant conduction mechanism in the lower bias region whereas Schottky emission is the dominant in the higher bias region for both the Au/n-InP MS and Au/Fe−ZnO NS/n-InP MIS Schottky structures. - Highlights: • Barrier height of Au/n-InP Schottky diode was modified by Fe−ZnO nanostructure interlayer. • MIS structure has a good rectification ratio compared to the MS structure. • The interface state density of MIS structure is lower than that of MS structure. • Poole-Frenkel mechanism is found to dominate in both MS and MIS structure.

  15. Barriers to Mental Health Service Use among Hematopoietic Stem Cell Transplant Survivors

    OpenAIRE

    Mosher, Catherine E.; DuHamel, Katherine N.; Rini, Christine M.; Li, Yuelin; Isola, Luis; Labay, Larissa; Rowley, Scott; Papadopoulos, Esperanza; Moskowitz, Craig; Scigliano, Eileen; Grosskreutz, Celia; Redd, William H.

    2009-01-01

    Summary This study examined barriers to mental health service use and their demographic, medical, and psychosocial correlates among hematopoietic stem cell transplant (HSCT) survivors. A sample of 253 HSCT survivors who were 1- to 3-years post-transplant completed measures of demographic, physical, psychological, and social characteristics as well as a newly modified measure of barriers to mental health service use. Only 50% of distressed HSCT survivors had received mental health services. An...

  16. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Directory of Open Access Journals (Sweden)

    Mónica Díaz-Coránguez

    Full Text Available Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  17. Transmigration of neural stem cells across the blood brain barrier induced by glioma cells.

    Science.gov (United States)

    Díaz-Coránguez, Mónica; Segovia, José; López-Ornelas, Adolfo; Puerta-Guardo, Henry; Ludert, Juan; Chávez, Bibiana; Meraz-Cruz, Noemi; González-Mariscal, Lorenza

    2013-01-01

    Transit of human neural stem cells, ReNcell CX, through the blood brain barrier (BBB) was evaluated in an in vitro model of BBB and in nude mice. The BBB model was based on rat brain microvascular endothelial cells (RBMECs) cultured on Millicell inserts bathed from the basolateral side with conditioned media (CM) from astrocytes or glioma C6 cells. Glioma C6 CM induced a significant transendothelial migration of ReNcells CX in comparison to astrocyte CM. The presence in glioma C6 CM of high amounts of HGF, VEGF, zonulin and PGE2, together with the low abundance of EGF, promoted ReNcells CX transmigration. In contrast cytokines IFN-α, TNF-α, IL-12p70, IL-1β, IL-6, IL-8 and IL-10, as well as metalloproteinases -2 and -9 were present in equal amounts in glioma C6 and astrocyte CMs. ReNcells expressed the tight junction proteins occludin and claudins 1, 3 and 4, and the cell adhesion molecule CRTAM, while RBMECs expressed occludin, claudins 1 and 5 and CRTAM. Competing CRTAM mediated adhesion with soluble CRTAM, inhibited ReNcells CX transmigration, and at the sites of transmigration, the expression of occludin and claudin-5 diminished in RBMECs. In nude mice we found that ReNcells CX injected into systemic circulation passed the BBB and reached intracranial gliomas, which overexpressed HGF, VEGF and zonulin/prehaptoglobin 2.

  18. Irradiation effects on electrical properties of DNA solution/Al Schottky diodes

    Science.gov (United States)

    Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Iwamoto, Mitsumasa

    2018-04-01

    Deoxyribonucleic acid (DNA) has emerged as one of the most exciting organic material and as such extensively studied as a smart electronic material since the last few decades. DNA molecules have been reported to be utilized in the fabrication of small-scaled sensors and devices. In this current work, the effect of alpha radiation on the electrical properties of an Al/DNA/Al device using DNA solution was studied. It was observed that the carrier transport was governed by electrical interface properties at the Al-DNA interface. Current ( I)-voltage ( V) curves were analyzed by employing the interface limited Schottky current equations, i.e., conventional and Cheung and Cheung's models. Schottky parameters such as ideality factor, barrier height and series resistance were also determined. The extracted barrier height of the Schottky contact before and after radiation was calculated as 0.7845, 0.7877, 0.7948 and 0.7874 eV for the non-radiated, 12, 24 and 36 mGy, respectively. Series resistance of the structure was found to decline with the increase in the irradiation, which was due to the increase in the free radical root effects in charge carriers in the DNA solution. Results pertaining to the electronic profiles obtained in this work may provide a better understanding for the development of precise and rapid radiation sensors using DNA solution.

  19. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage

    Directory of Open Access Journals (Sweden)

    Sangeeta Singh

    2016-03-01

    Full Text Available In this paper, we have investigated a novel Schottky tunneling source impact ionization MOSFET (STS-IMOS to lower the breakdown voltage of conventional impact ionization MOS (IMOS and developed an analytical model for the same. In STS-IMOS there is an accumulative effect of both impact ionization and source induced barrier tunneling. The silicide source offers very low parasitic resistance, the outcome of which is an increment in voltage drop across the intrinsic region for the same applied bias. This reduces operating voltage and hence, it exhibits a significant reduction in both breakdown and threshold voltage. STS-IMOS shows high immunity against hot electron damage. As a result of this the device reliability increases magnificently. The analytical model for impact ionization current (Iii is developed based on the integration of ionization integral (M. Similarly, to get Schottky tunneling current (ITun expression, Wentzel–Kramers–Brillouin (WKB approximation is employed. Analytical models for threshold voltage and subthreshold slope is optimized against Schottky barrier height (ϕB variation. The expression for the drain current is computed as a function of gate-to-drain bias via integral expression. It is validated by comparing it with the technology computer-aided design (TCAD simulation results as well. In essence, this analytical framework provides the physical background for better understanding of STS-IMOS and its performance estimation.

  20. Characterization of a SiC MIS Schottky diode as RBS particle detector

    Science.gov (United States)

    Kaufmann, I. R.; Pick, A. C.; Pereira, M. B.; Boudinov, H. I.

    2018-02-01

    A 4H-SiC Schottky diode was investigated as a particle detector for Rutherford Backscattering Spectroscopy (RBS) experiment. The device was fabricated on a commercial 4H-SiC epitaxial n-type layer grown onto a 4H-SiC n+ type substrate wafer doped with nitrogen. Hafnium oxide with thickness of 1 nm was deposited by Atomic Layer Deposition and 10 nm of Ni were deposited by sputtering to form the Ni/HfO2/4H-SiC MIS Schottky structure. Current-Voltage curves with variable temperature were measured to extract the real Schottky Barrier Height (0.32 V) and ideality factor values (1.15). Reverse current and Capacitance-Voltage measurements were performed on the 4H-SiC detector and compared to a commercial Si barrier detector acquired from ORTEC. RBS data for four alpha energies (1, 1.5, 2 and 2.5 MeV) were collected from an Au/Si sample using the fabricated SiC and the commercial Si detectors simultaneously. The energy resolution for the fabricated detector was estimated to be between 75 and 80 keV.

  1. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    Science.gov (United States)

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  2. Edaravone protects against methylglyoxal-induced barrier damage in human brain endothelial cells.

    Directory of Open Access Journals (Sweden)

    Andrea E Tóth

    Full Text Available Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line treated with methylglyoxal.Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging.Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound.These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases.

  3. All-back-Schottky-contact thin-film photovoltaics

    Science.gov (United States)

    Nardone, Marco

    2016-02-01

    The concept of All-Back-Schottky-Contact (ABSC) thin-film photovoltaic (TFPV) devices is introduced and evaluated using 2D numerical simulation. Reach-through Schottky junctions due to two metals of different work functions in an alternating, side-by-side pattern along the non-illuminated side generate the requisite built-in field. It is shown that our simulation method quantitatively describes existing data for a recently demonstrated heterojunction thin-film cell with interdigitated back contacts (IBCs) of one metal type. That model is extended to investigate the performance of ABSC devices with bimetallic IBCs within a pertinent parameter space. Our calculations indicate that 20% efficiency is achievable with micron-scale features and sufficient surface passivation. Bimetallic, micron-scale IBCs are readily fabricated using photo-lithographic techniques and the ABSC design allows for optically transparent surface passivation layers that need not be electrically conductive. The key advantages of the ABSC-TFPV architecture are that window layers, buffer layers, heterojunctions, and module scribing are not required because both contacts are located on the back of the device.

  4. A graphene barristor using nitrogen profile controlled ZnO Schottky contacts.

    Science.gov (United States)

    Hwang, Hyeon Jun; Chang, Kyoung Eun; Yoo, Won Beom; Shim, Chang Hoo; Lee, Sang Kyung; Yang, Jin Ho; Kim, So-Young; Lee, Yongsu; Cho, Chunhum; Lee, Byoung Hun

    2017-02-16

    We have successfully demonstrated a graphene-ZnO:N Schottky barristor. The barrier height between graphene and ZnO:N could be modulated by a buried gate electrode in the range of 0.5-0.73 eV, and an on-off ratio of up to 10 7 was achieved. By using a nitrogen-doped ZnO film as a Schottky contact material, the stability problem of previously reported graphene barristors could be greatly alleviated and a facile route to build a top-down processed graphene barristor was realized with a very low heat cycle. This device will be instrumental when implementing logic functions in systems requiring high-performance logic devices fabricated with a low temperature fabrication process such as back-end integrated logic devices or flexible devices on soft substrates.

  5. Electronic Transport Mechanism for Schottky Diodes Formed by Au/HVPE a-Plane GaN Templates Grown via In Situ GaN Nanodot Formation

    Directory of Open Access Journals (Sweden)

    Moonsang Lee

    2018-06-01

    Full Text Available We investigate the electrical characteristics of Schottky contacts for an Au/hydride vapor phase epitaxy (HVPE a-plane GaN template grown via in situ GaN nanodot formation. Although the Schottky diodes present excellent rectifying characteristics, their Schottky barrier height and ideality factor are highly dependent upon temperature variation. The relationship between the barrier height, ideality factor, and conventional Richardson plot reveals that the Schottky diodes exhibit an inhomogeneous barrier height, attributed to the interface states between the metal and a-plane GaN film and to point defects within the a-plane GaN layers grown via in situ nanodot formation. Also, we confirm that the current transport mechanism of HVPE a-plane GaN Schottky diodes grown via in situ nanodot formation prefers a thermionic field emission model rather than a thermionic emission (TE one, implying that Poole–Frenkel emission dominates the conduction mechanism over the entire range of measured temperatures. The deep-level transient spectroscopy (DLTS results prove the presence of noninteracting point-defect-assisted tunneling, which plays an important role in the transport mechanism. These electrical characteristics indicate that this method possesses a great throughput advantage for various applications, compared with Schottky contact to a-plane GaN grown using other methods. We expect that HVPE a-plane GaN Schottky diodes supported by in situ nanodot formation will open further opportunities for the development of nonpolar GaN-based high-performance devices.

  6. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    Science.gov (United States)

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Autophagy inhibitor 3-methyladenine protects against endothelial cell barrier dysfunction in acute lung injury.

    Science.gov (United States)

    Slavin, Spencer A; Leonard, Antony; Grose, Valerie; Fazal, Fabeha; Rahman, Arshad

    2018-03-01

    Autophagy is an evolutionarily conserved cellular process that facilitates the continuous recycling of intracellular components (organelles and proteins) and provides an alternative source of energy when nutrients are scarce. Recent studies have implicated autophagy in many disorders, including pulmonary diseases. However, the role of autophagy in endothelial cell (EC) barrier dysfunction and its relevance in the context of acute lung injury (ALI) remain uncertain. Here, we provide evidence that autophagy is a critical component of EC barrier disruption in ALI. Using an aerosolized bacterial lipopolysaccharide (LPS) inhalation mouse model of ALI, we found that administration of the autophagy inhibitor 3-methyladenine (3-MA), either prophylactically or therapeutically, markedly reduced lung vascular leakage and tissue edema. 3-MA was also effective in reducing the levels of proinflammatory mediators and lung neutrophil sequestration induced by LPS. To test the possibility that autophagy in EC could contribute to lung vascular injury, we addressed its role in the mechanism of EC barrier disruption. Knockdown of ATG5, an essential regulator of autophagy, attenuated thrombin-induced EC barrier disruption, confirming the involvement of autophagy in the response. Similarly, exposure of cells to 3-MA, either before or after thrombin, protected against EC barrier dysfunction by inhibiting the cleavage and loss of vascular endothelial cadherin at adherens junctions, as well as formation of actin stress fibers. 3-MA also reversed LPS-induced EC barrier disruption. Together, these data imply a role of autophagy in lung vascular injury and reveal the protective and therapeutic utility of 3-MA against ALI.

  8. Vertically grown Ge nanowire Schottky diodes on Si and Ge substrates

    Science.gov (United States)

    Chandra, Nishant; Tracy, Clarence J.; Cho, Jeong-Hyun; Picraux, S. T.; Hathwar, Raghuraj; Goodnick, Stephen M.

    2015-07-01

    The processing and performance of Schottky diodes formed from arrays of vertical Ge nanowires (NWs) grown on Ge and Si substrates are reported. The goal of this work is to investigate CMOS compatible processes for integrating NWs as components of vertically scaled integrated circuits, and elucidate transport in vertical Schottky NWs. Vertical phosphorus (P) doped Ge NWs were grown using vapor-liquid-solid epitaxy, and nickel (Ni)-Ge Schottky contacts were made to the tops of the NWs. Current-voltage (I-V) characteristics were measured for variable ranges of NW diameters and numbers of nanowires in the arrays, and the I-V characteristics were fit using modified thermionic emission theory to extract the barrier height and ideality factor. As grown NWs did not show rectifying behavior due to the presence of heavy P side-wall doping during growth, resulting in a tunnel contact. After sidewall etching using a dilute peroxide solution, rectifying behavior was obtained. Schottky barrier heights of 0.3-0.4 V and ideality factors close to 2 were extracted using thermionic emission theory, although the model does not give an accurate fit across the whole bias range. Attempts to account for enhanced side-wall conduction due to non-uniform P doping profile during growth through a simple shunt resistance improve the fit, but are still insufficient to provide a good fit. Full three-dimensional numerical modeling using Silvaco Atlas indicates that at least part of this effect is due to the presence of fixed charge and acceptor like traps on the NW surface, which leads to effectively high ideality factors.

  9. Evaluation of Schottky and MgO-based tunnelling diodes with different ferromagnets for spin injection in n-Si

    International Nuclear Information System (INIS)

    Uhrmann, T; Dimopoulos, T; Brueckl, H; Kovacs, A; Kohn, A; Weyers, S; Paschen, U; Smoliner, J

    2009-01-01

    In this work we present the electrical properties of sputter-deposited ferromagnetic (FM) Schottky diodes and MgO-based tunnelling diodes to n-doped (0 0 1) silicon. The effective Schottky barrier height (SBH) has been evaluated as a function of the FM electrode (Co 70 Fe 30 , Co 40 Fe 40 B 20 and Ni 80 Fe 20 ), the silicon doping density (10 15 to 10 18 cm -3 ), the MgO tunnelling barrier thickness (0, 1.5 and 2.5 nm) and post-deposition annealing up to 400 0 C. The ideality factors of the Schottky diodes are close to unity, indicating transport by thermionic emission and the absence of an interfacial oxide layer, which is confirmed by transmission electron microscopy. The effective SBH is found to be approximately 0.65 eV, independent of the FM material and decreasing with increasing doping density. The changes induced by high temperature annealing at the current-voltage characteristic of the Schottky diodes depend strongly on the FM electrode. The effective SBH for the tunnelling diodes is as low as 0.3 eV, which suggests a high density of oxide and interface traps. It is again independent of the FM electrode, decreasing with increasing doping density and annealing temperature. The inclusion of MgO leads to higher thermal stability of the tunnelling diodes. The measured contact resistance values are discussed with respect to the conductivity mismatch for spin injection and detection.

  10. Modulation of electrical properties in Cu/n-type InP Schottky junctions using oxygen plasma treatment

    International Nuclear Information System (INIS)

    Kim, Hogyoung; Jung, Chan Yeong; Hyun Kim, Se; Cho, Yunae; Kim, Dong-Wook

    2015-01-01

    Using current–voltage (I–V) measurements, we investigated the effect of oxygen plasma treatment on the temperature-dependent electrical properties of Cu/n-type indium phosphide (InP) Schottky contacts at temperatures in the range 100–300 K. Changes in the electrical parameters were evident below 180 K for the low-plasma-power sample (100 W), which is indicative of the presence of a wider distribution of regions of low barrier height. Modified Richardson plots were used to obtain Richardson constants, which were similar to the theoretical value of 9.4 A cm −2 K −2 for n-type InP. This suggests that, for all the samples, a thermionic emission model including a spatially inhomogeneous Schottky barrier can be used to describe the charge transport phenomena at the metal/semiconductor interface. The voltage dependence of the reverse-bias current revealed that Schottky emission was dominant for the untreated and high-plasma-power (250 W) samples. For the low-plasma-power sample, Poole–Frenkel emission was dominant at low voltages, whereas Schottky emission dominated at higher voltages. Defect states and nonuniformity of the interfacial layer appear to be significant in the reverse-bias charge transport properties of the low-plasma-power sample. (paper)

  11. Pentacene-based photodiode with Schottky junction

    International Nuclear Information System (INIS)

    Lee, Jiyoul; Hwang, D.K.; Park, C.H.; Kim, S.S.; Im, Seongil

    2004-01-01

    We have fabricated a metal/organic semiconductor Schottky photodiode based on Al/pentacene junction. Since the energy band gap of thin solid pentacene was determined to be 1.82 eV, as characterized by direct absorption spectroscopy, we measured spectral photoresponses on our Schottky photodiode in the monochromatic light illumination range of 325-650 nm applying a reverse bias of -2 V. The main features of photo-response spectra were found to shift from those of direct absorption spectra toward higher photon energies. It is because the direct absorption spectra mainly show exciton level peaks rather than the true highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps while the photo-response spectra clearly represents the true HOMO-LUMO gap. Our photo-response spectra reveal 1.97 eV as the HOMO-LUMO gap

  12. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  13. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  14. Low-temperature current-voltage characteristics of MIS Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biber, M

    2003-01-01

    The current-voltage (I-V) characteristics of metal-insulating layer-semiconductor Cu/n-GaAs and inhomogeneous Cu/n-GaAs Schottky barrier diodes were determined in the temperature range 80-300 K. The evaluation of the experimental I-V data reveals a nonlinear increase of the zero-bias barrier height (qPHI{sub 0}) for the inhomogeneous Cu/n-GaAs Schottky barrier diodes and a linear increase of the zero-bias barrier height (qPHI{sub 0}) for Cu/n-GaAs Schottky barrier diodes with an interfacial layer. The ideality factor n decreases with increasing temperature for all diodes. Furthermore, the changes in PHI{sub 0} and n become quite significant below 150 K and the plot of ln(I{sub 0}/T{sup 2}) versus 1/T exhibits a non-linearity below 180 K for the inhomogeneous barrier diodes. Such behavior is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights at the interface. The value of the Richardson constant was found to be 5.033 A/cm{sup 2} K{sup 2}, which is close to the theoretical value of 8.16 A/cm{sup 2} K{sup 2} used for the determination of the zero-bias barrier height.

  15. Development of Inorganic Solar Cells by Nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang; Huey Liang Hwang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light,have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  16. A graphene/single GaAs nanowire Schottky junction photovoltaic device.

    Science.gov (United States)

    Luo, Yanbin; Yan, Xin; Zhang, Jinnan; Li, Bang; Wu, Yao; Lu, Qichao; Jin, Chenxiaoshuai; Zhang, Xia; Ren, Xiaomin

    2018-05-04

    A graphene/nanowire Schottky junction is a promising structure for low-cost high-performance optoelectronic devices. Here we demonstrate a graphene/single GaAs nanowire Schottky junction photovoltaic device. The Schottky junction is fabricated by covering a single layer graphene onto an n-doped GaAs nanowire. Under 532 nm laser excitation, the device exhibits a high responsivity of 231 mA W-1 and a short response/recover time of 85/118 μs at zero bias. Under AM 1.5 G solar illumination, the device has an open-circuit voltage of 75.0 mV and a short-circuit current density of 425 mA cm-2, yielding a remarkable conversion efficiency of 8.8%. The excellent photovoltaic performance of the device is attributed to the strong built-in electric field in the Schottky junction as well as the transparent property of graphene. The device is promising for self-powered high-speed photodetectors and low-cost high-efficiency solar cells.

  17. Recombination barrier layers in solid-state quantum dot-sensitized solar cells

    KAUST Repository

    Roelofs, Katherine E.

    2012-06-01

    By replacing the dye in the dye-sensitized solar cell design with semiconductor quantum dots as the light-absorbing material, solid-state quantum dot-sensitized solar cells (ss-QDSSCs) were fabricated. Cadmium sulfide quantum dots (QDs) were grown in situ by successive ion layer adsorption and reaction (SILAR). Aluminum oxide recombination barrier layers were deposited by atomic layer deposition (ALD) at the TiO2/hole-conductor interface. For low numbers of ALD cycles, the Al2O3 barrier layer increased open circuit voltage, causing an increase in device efficiency. For thicker Al2O3 barrier layers, photocurrent decreased substantially, leading to a decrease in device efficiency. © 2012 IEEE.

  18. Organic modification of metal / semiconductor Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Pinzon, H.A.

    2006-07-10

    In the present work a Metal / organic / inorganic semiconductor hybrid heterostructure (Ag / DiMe-PTCDI / GaAs) was built under UHV conditions and characterised in situ. The aim was to investigate the influence of the organic layer in the surface properties of GaAs(100) and in the electrical response of organic-modified Ag / GaAs Schottky diodes. The device was tested by combining surface-sensitive techniques (Photoemission spectroscopy and NEXAFS) with electrical measurements (current-voltage, capacitance-voltage, impedance and charge transient spectroscopies). Core level examination by PES confirms removal of native oxide layers on sulphur passivated (S-GaAs) and hydrogen plasma treated GaAs(100) (H+GaAs) surfaces. Additional deposition of ultrathin layers of DiMe-PTCDI may lead to a reduction of the surface defects density and thereby to an improvement of the electronic properties of GaAs. The energy level alignment through the heterostructure was deduced by combining UPS and I-V measurements. This allows fitting of the I-V characteristics with electron as majority carriers injected over a barrier by thermionic emission as a primary event. For thin organic layers (below 8 nm thickness) several techniques (UPS, I-V, C-V, QTS and AFM) show non homogeneous layer growth, leading to formation of voids. The coverage of the H+GaAs substrate as a function of the nominal thickness of DiMe-PTCDI was assessed via C-V measurements assuming a voltage independent capacitance of the organic layer. The frequency response of the device was evaluated through C-V and impedance measurements in the range 1 kHz-1 MHz. The almost independent behaviour of the capacitance in the measured frequency range confirmed the assumption of a near geometrical capacitor, which was used for modelling the impedance with an equivalent circuit of seven components. From there it was found a predominance of the space charge region impedance, so that A.C. conduction can only takes place through the

  19. Tunable reverse-biased graphene/silicon heterojunction Schottky diode sensor.

    Science.gov (United States)

    Singh, Amol; Uddin, Ahsan; Sudarshan, Tangali; Koley, Goutam

    2014-04-24

    A new chemical sensor based on reverse-biased graphene/Si heterojunction diode has been developed that exhibits extremely high bias-dependent molecular detection sensitivity and low operating power. The device takes advantage of graphene's atomically thin nature, which enables molecular adsorption on its surface to directly alter graphene/Si interface barrier height, thus affecting the junction current exponentially when operated in reverse bias and resulting in ultrahigh sensitivity. By operating the device in reverse bias, the work function of graphene, and hence the barrier height at the graphene/Si heterointerface, can be controlled by the bias magnitude, leading to a wide tunability of the molecular detection sensitivity. Such sensitivity control is also possible by carefully selecting the graphene/Si heterojunction Schottky barrier height. Compared to a conventional graphene amperometric sensor fabricated on the same chip, the proposed sensor demonstrated 13 times higher sensitivity for NO₂ and 3 times higher for NH₃ in ambient conditions, while consuming ∼500 times less power for same magnitude of applied voltage bias. The sensing mechanism based on heterojunction Schottky barrier height change has been confirmed using capacitance-voltage measurements. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetron sputtered gadolinia-doped ceria diffusion barriers for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Sønderby, Steffen; Klemensø, Trine; Christensen, Bjarke H.

    2014-01-01

    Gadolinia-doped ceria (GDC) thin films are deposited by reactive magnetron sputtering in an industrial-scale setup and implemented as barrier layers between the cathode and electrolyte in metal-based solid oxide fuel cells consisting of a metal support, an electrolyte of ZrO2 co-doped with Sc2O3...

  1. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    Science.gov (United States)

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  2. Arctigenin from Fructus Arctii (Seed of Burdock) Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Science.gov (United States)

    Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa

    2015-01-01

    Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018

  3. Mechanisms of pertussis toxin-induced barrier dysfunction in bovine pulmonary artery endothelial cell monolayers.

    Science.gov (United States)

    Patterson, C E; Stasek, J E; Schaphorst, K L; Davis, H W; Garcia, J G

    1995-06-01

    We have previously characterized several G proteins in endothelial cells (EC) as substrates for the ADP-ribosyltransferase activity of both pertussis (PT) and cholera toxin and described the modulation of key EC physiological responses, including gap formation and barrier function, by these toxins. In this study, we investigated the mechanisms involved in PT-mediated regulation of bovine pulmonary artery endothelial cells barrier function. PT caused a dose-dependent increase in albumin transfer, dependent upon action of the holotoxin, since neither the heat-inactivated PT, the isolated oligomer, nor the protomer induced EC permeability. PT-induced gap formation and barrier dysfunction were additive to either thrombin- or thrombin receptor-activating peptide-induced permeability, suggesting that thrombin and PT utilize distinct mechanisms. PT did not result in Ca2+ mobilization or alter either basal or thrombin-induced myosin light chain phosphorylation. However, PT stimulated protein kinase C (PKC) activation, and both PKC downregulation and PKC inhibition attenuated PT-induced permeability, indicating that PKC activity is involved in PT-induced barrier dysfunction. Like thrombin-induced permeability, the PT effect was blocked by prior increases in adenosine 3',5'-cyclic monophosphate. Thus PT-catalyzed ADP-ribosylation of a G protein (possibly other than Gi) may regulate cytoskeletal protein interactions, leading to EC barrier dysfunction.

  4. Arctigenin from Fructus Arctii (Seed of Burdock Reinforces Intestinal Barrier Function in Caco-2 Cell Monolayers

    Directory of Open Access Journals (Sweden)

    Hee Soon Shin

    2015-01-01

    Full Text Available Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER value (as an index of barrier function and ovalbumin (OVA permeation (as an index of permeability to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function.

  5. Live cell imaging techniques to study T cell trafficking across the blood-brain barrier in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Coisne Caroline

    2013-01-01

    Full Text Available Abstract Background The central nervous system (CNS is an immunologically privileged site to which access for circulating immune cells is tightly controlled by the endothelial blood–brain barrier (BBB located in CNS microvessels. Under physiological conditions immune cell migration across the BBB is low. However, in neuroinflammatory diseases such as multiple sclerosis, many immune cells can cross the BBB and cause neurological symptoms. Extravasation of circulating immune cells is a multi-step process that is regulated by the sequential interaction of different adhesion and signaling molecules on the immune cells and on the endothelium. The specialized barrier characteristics of the BBB, therefore, imply the existence of unique mechanisms for immune cell migration across the BBB. Methods and design An in vitro mouse BBB model maintaining physiological barrier characteristics in a flow chamber and combined with high magnification live cell imaging, has been established. This model enables the molecular mechanisms involved in the multi-step extravasation of T cells across the in vitro BBB, to be defined with high-throughput analyses. Subsequently these mechanisms have been verified in vivo using a limited number of experimental animals and a spinal cord window surgical technique. The window enables live observation of the dynamic interaction between T cells and spinal cord microvessels under physiological and pathological conditions using real time epifluorescence intravital imaging. These in vitro and in vivo live cell imaging methods have shown that the BBB endothelium possesses unique and specialized mechanisms involved in the multi-step T cell migration across this endothelial barrier under physiological flow. The initial T cell interaction with the endothelium is either mediated by T cell capture or by T cell rolling. Arrest follows, and then T cells polarize and especially CD4+ T cells crawl over long distances against the direction of

  6. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    DEFF Research Database (Denmark)

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2017-01-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue...... homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body — namely, the epidermis and the intestine — and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity...

  7. Dual-Functional On-Chip AlGaAs/GaAs Schottky Diode for RF Power Detection and Low-Power Rectenna Applications

    Directory of Open Access Journals (Sweden)

    Abdul Manaf Hashim

    2011-08-01

    Full Text Available A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT structure. Current-voltage (I-V measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device’s good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  8. Dual-functional on-chip AlGaAs/GaAs Schottky diode for RF power detection and low-power rectenna applications.

    Science.gov (United States)

    Hashim, Abdul Manaf; Mustafa, Farahiyah; Rahman, Shaharin Fadzli Abd; Rahman, Abdul Rahim Abdul

    2011-01-01

    A Schottky diode has been designed and fabricated on an n-AlGaAs/GaAs high-electron-mobility-transistor (HEMT) structure. Current-voltage (I-V) measurements show good device rectification, with a Schottky barrier height of 0.4349 eV for Ni/Au metallization. The differences between the Schottky barrier height and the theoretical value (1.443 eV) are due to the fabrication process and smaller contact area. The RF signals up to 1 GHz are rectified well by the fabricated Schottky diode and a stable DC output voltage is obtained. The increment ratio of output voltage vs input power is 0.2 V/dBm for all tested frequencies, which is considered good enough for RF power detection. Power conversion efficiency up to 50% is obtained at frequency of 1 GHz and input power of 20 dBm with series connection between diode and load, which also shows the device's good potential as a rectenna device with further improvement. The fabricated n-AlGaAs/GaAs Schottky diode thus provides a conduit for breakthrough designs for RF power detectors, as well as ultra-low power on-chip rectenna device technology to be integrated in nanosystems.

  9. Arsenic compromises conducting airway epithelial barrier properties in primary mouse and immortalized human cell cultures.

    Directory of Open Access Journals (Sweden)

    Cara L Sherwood

    Full Text Available Arsenic is a lung toxicant that can lead to respiratory illness through inhalation and ingestion, although the most common exposure is through contaminated drinking water. Lung effects reported from arsenic exposure include lung cancer and obstructive lung disease, as well as reductions in lung function and immune response. As part of their role in innate immune function, airway epithelial cells provide a barrier that protects underlying tissue from inhaled particulates, pathogens, and toxicants frequently found in inspired air. We evaluated the effects of a five-day exposure to environmentally relevant levels of arsenic {<4μM [~300 μg/L (ppb] as NaAsO2} on airway epithelial barrier function and structure. In a primary mouse tracheal epithelial (MTE cell model we found that both micromolar (3.9 μM and submicromolar (0.8 μM arsenic concentrations reduced transepithelial resistance, a measure of barrier function. Immunofluorescent staining of arsenic-treated MTE cells showed altered patterns of localization of the transmembrane tight junction proteins claudin (Cl Cl-1, Cl-4, Cl-7 and occludin at cell-cell contacts when compared with untreated controls. To better quantify arsenic-induced changes in tight junction transmembrane proteins we conducted arsenic exposure experiments with an immortalized human bronchial epithelial cell line (16HBE14o-. We found that arsenic exposure significantly increased the protein expression of Cl-4 and occludin as well as the mRNA levels of Cl-4 and Cl-7 in these cells. Additionally, arsenic exposure resulted in altered phosphorylation of occludin. In summary, exposure to environmentally relevant levels of arsenic can alter both the function and structure of airway epithelial barrier constituents. These changes likely contribute to the observed arsenic-induced loss in basic innate immune defense and increased infection in the airway.

  10. Interdigitated Pt-GaN Schottky interfaces for high-temperature soot-particulate sensing

    Science.gov (United States)

    So, Hongyun; Hou, Minmin; Jain, Sambhav R.; Lim, Jongwoo; Senesky, Debbie G.

    2016-04-01

    A microscale soot-particulate sensor using interdigitated platinum-gallium nitride (Pt-GaN) Schottky interfaces was developed to monitor fine soot particles within high-temperature environments (e.g., combustion exhausts and flues). Upon exposure to soot particles (30 to 50 nm in diameter) from an experimental chimney, an increased current (∼43.6%) is observed through the back-to-back Schottky contact to n-type GaN. This is attributed to a reduction in the effective Schottky barrier height (SBH) of ∼10 meV due to the electric field from the charged soot particles in the depletion region and exposed GaN surface. Furthermore, the microfabricated sensor was shown to recover sensitivity and regenerate the sensing response (∼11 meV SBH reduction) after exposure to temperature as high as 550 °C. This study supports the feasibility of a simple and reliable soot sensor to meet the increasing market demand for particulate matter sensing in harsh environments.

  11. Electrical characterization of CdTe pixel detectors with Al Schottky anode

    International Nuclear Information System (INIS)

    Turturici, A.A.; Abbene, L.; Gerardi, G.; Principato, F.

    2014-01-01

    Pixelated Schottky Al/p-CdTe/Pt detectors are very attractive devices for high-resolution X-ray spectroscopic imaging, even though they suffer from bias-induced time instability (polarization). In this work, we present the results of the electrical characterization of a (4×4) pixelated Schottky Al/p-CdTe/Pt detector. Current–voltage (I–V) characteristics and current transients were investigated at different temperatures. The results show deep levels that play a dominant role in the charge transport mechanism. The conduction mechanism is dominated by the space charge limited current (SCLC) both under forward bias and at high reverse bias. Schottky barrier height of the Al/CdTe contact was estimated by using the thermionic-field emission model at low reverse bias voltages. Activation energy of the deep levels was measured through the analysis of the reverse current transients at different temperatures. Finally, we employed an analytical method to determine the density and the energy distribution of the traps from SCLC current–voltage characteristics

  12. Electrical characteristics of {sup 60}Co {gamma}-ray irradiated MIS Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Tataroglu, A. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)]. E-mail: ademt@gazi.edu.tr; Altindal, S. [Department of Physics, Faculty of Arts and Sciences, Gazi University, 06500 Ankara (Turkey)

    2006-11-15

    In order to interpret the effect of {sup 60}Co {gamma}-ray irradiation dose on the electrical characteristics of MIS Schottky diodes, they were stressed with a zero bias at 1 MHz in dark and room temperature during {gamma}-ray irradiation and the total dose range was 0-450 kGy. The effect of {gamma}-ray exposure on the electrical characteristics of MIS Schottky diodes has been investigated using C-V and G/{omega}-V measurements at room temperature. Experimental results show that {gamma}-ray irradiation induces a decrease in the barrier height {phi} {sub B} and series resistance R {sub s}, decreasing with increasing dose rate. Also, the acceptor concentration N {sub A} increases with increasing radiation dose. The C-V characteristics prove that there is a reaction for extra recombination centers in case of MIS Schottky diodes exposed to {gamma}-ray radiation. Furthermore, the density of interface states N {sub ss} by Hill-Coleman method increases with increasing radiation dose. Experimental results indicate that the interface-trap formation at high irradiation dose is reduced due to positive charge build-up in the Si/SiO{sub 2} interface (due to the trapping of holes) that reduces the flow rate of subsequent holes and protons from the bulk of the insulator to the Si/SiO{sub 2} interface.

  13. Effect of nanodimensional polyethylenimine layer on surface potential barriers of hybrid structures based on silicon single crystal

    Science.gov (United States)

    Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.

    2013-01-01

    In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.

  14. The electrical characterization and response to hydrogen of Schottky diodes with a resistive metal electrode-rectifying an oversight in Schottky diode investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, P; Feng, L; Penate-Quesada, L [Centre for Nanostructured Media, School of Maths and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Hill, G [EPSRC National Centre for III-V Technologies, Mappin Street, University ofSheffield, Sheffield S1 3JD (United Kingdom); Mitra, J, E-mail: P.dawson@qub.ac.uk

    2011-03-30

    Schottky-barrier structures with a resistive metal electrode are examined using the 4-point probe method where the probes are connected to the metal electrode only. The observation of a significant decrease in resistance with increasing temperature (over a range of {approx}100 K) in the diode resistance-temperature (R{sub D}-T) characteristic is considered due to charge carrier confinement to the metal electrode at low temperature (high resistance), with the semiconductor progressively opening up as a parallel current carrying channel (low resistance) with increasing temperature due to increasing thermionic emission across the barrier. A simple model is constructed, based on thermionic emission at quasi-zero bias, that generates good fits to the experimental data. The negative differential resistance (NDR) region in the R{sub D}-T characteristic is a general effect and is demonstrated across a broad temperature range for a variety of Schottky structures grown on Si-, GaAs- and InP-substrates. In addition the NDR effect is harnessed in micro-scaled Pd/n-InP devices for the detection of low levels of hydrogen in an ambient atmosphere of nitrogen.

  15. Accelerated differentiation of human induced pluripotent stem cells to blood-brain barrier endothelial cells.

    Science.gov (United States)

    Hollmann, Emma K; Bailey, Amanda K; Potharazu, Archit V; Neely, M Diana; Bowman, Aaron B; Lippmann, Ethan S

    2017-04-13

    Due to their ability to limitlessly proliferate and specialize into almost any cell type, human induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to generate human brain microvascular endothelial cells (BMECs), which compose the blood-brain barrier (BBB), for research purposes. Unfortunately, the time, expense, and expertise required to differentiate iPSCs to purified BMECs precludes their widespread use. Here, we report the use of a defined medium that accelerates the differentiation of iPSCs to BMECs while achieving comparable performance to BMECs produced by established methods. Induced pluripotent stem cells were seeded at defined densities and differentiated to BMECs using defined medium termed E6. Resultant purified BMEC phenotypes were assessed through trans-endothelial electrical resistance (TEER), fluorescein permeability, and P-glycoprotein and MRP family efflux transporter activity. Expression of endothelial markers and their signature tight junction proteins were confirmed using immunocytochemistry. The influence of co-culture with astrocytes and pericytes on purified BMECs was assessed via TEER measurements. The robustness of the differentiation method was confirmed across independent iPSC lines. The use of E6 medium, coupled with updated culture methods, reduced the differentiation time of iPSCs to BMECs from thirteen to 8 days. E6-derived BMECs expressed GLUT-1, claudin-5, occludin, PECAM-1, and VE-cadherin and consistently achieved TEER values exceeding 2500 Ω × cm 2 across multiple iPSC lines, with a maximum TEER value of 4678 ± 49 Ω × cm 2 and fluorescein permeability below 1.95 × 10 -7 cm/s. E6-derived BMECs maintained TEER above 1000 Ω × cm 2 for a minimum of 8 days and showed no statistical difference in efflux transporter activity compared to BMECs differentiated by conventional means. The method was also found to support long-term stability of BMECs harboring biallelic PARK2 mutations associated

  16. Biosensor Technology Reveals the Disruption of the Endothelial Barrier Function and the Subsequent Death of Blood Brain Barrier Endothelial Cells to Sodium Azide and Its Gaseous Products.

    Science.gov (United States)

    Kho, Dan T; Johnson, Rebecca H; O'Carroll, Simon J; Angel, Catherine E; Graham, E Scott

    2017-09-21

    Herein we demonstrate the sensitive nature of human blood-brain barrier (BBB) endothelial cells to sodium azide and its gaseous product. Sodium azide is known to be acutely cytotoxic at low millimolar concentrations, hence its use as a biological preservative (e.g., in antibodies). Loss of barrier integrity was noticed in experiments using Electric Cell-substrate Impedance Sensing (ECIS) biosensor technology, to measure endothelial barrier integrity continuously in real-time. Initially the effect of sodium azide was observed as an artefact where it was present in antibodies being employed in neutralisation experiments. This was confirmed where antibody clones that were azide-free did not mediate loss of barrier function. A delayed loss of barrier function in neighbouring wells implied the influence of a liberated gaseous product. ECIS technology demonstrated that the BBB endothelial cells had a lower level of direct sensitivity to sodium azide of ~3 µM. Evidence of gaseous toxicity was consistently observed at 30 µM and above, with disrupted barrier function and cell death in neighbouring wells. We highlight the ability of this cellular biosensor technology to reveal both the direct and gaseous toxicity mediated by sodium azide. The sensitivity and temporal dimension of ECIS technology was instrumental in these observations. These findings have substantial implications for the wide use of sodium azide in biological reagents, raising issues of their application in live-cell assays and with regard to the protection of the user. This research also has wider relevance highlighting the sensitivity of brain endothelial cells to a known mitochondrial disruptor. It is logical to hypothesise that BBB endothelial dysfunction due to mitochondrial dys-regulation could have an important but underappreciated role in a range of neurological diseases.

  17. The effects of interfacial recombination and injection barrier on the electrical characteristics of perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Lin Xing Shi

    2018-02-01

    Full Text Available Charge carrier recombination in the perovskite solar cells (PSCs has a deep influence on the electrical performance, such as open circuit voltage, short circuit current, fill factor and ultimately power conversion efficiency. The impacts of injection barrier, recombination channels, doping properties of carrier transport layers and light intensity on the performance of PSCs are theoretically investigated by drift-diffusion model in this work. The results indicate that due to the injection barrier at the interfaces of perovskite and carrier transport layer, the accumulated carriers modify the electric field distribution throughout the PSCs. Thus, a zero electric field is generated at a specific applied voltage, with greatly increases the interfacial recombination, resulting in a local kink of current density-voltage (J-V curve. This work provides an effective strategy to improve the efficiency of PSCs by pertinently reducing both the injection barrier and interfacial recombination.

  18. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin; Trier, Sofie; Rahbek, Ulrik L

    2018-01-01

    with platinum wires, enabling parallel real-time monitoring of barrier integrity for the eight chambers. Additionally, the translucent porous Teflon membrane enabled optical monitoring of cell monolayers. The device was developed and tested with the Caco-2 intestinal model, and compared to the conventional...... through permeability studies of mannitol, dextran and insulin, alone or in combination with the absorption enhancer tetradecylmaltoside (TDM). The thiol-ene-based microchip material and electrodes were highly compatible with cell growth. In fact, Caco-2 cells cultured in the device displayed...

  19. Thermal stability of TaN Schottky contacts on n-GaN

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, J.R.; Kim, D-W.; Meidia, H.; Mahajan, S

    2003-02-07

    The thermal stability and electrical characteristics of tantalum-nitrogen alloy Schottky contacts on n-GaN were investigated. Non-stoichiometric {delta}-phase (40 atomic percent nitrogen) tantalum nitride contacts exhibited good electrical properties up to an annealing temperature of 600 deg. C. However, they degrade rapidly above this temperature due to outward diffusion of Ga and presumably nitrogen into the {delta}-phase tantalum nitride. It is surmised that excess Ta reacts with N at the GaN surface, freeing Ga which then diffuses into the TaN layer. Stoichiometric TaN Schottky contacts were stable at temperatures as high as 800 deg. C and had far superior electrical performance. This stems from the thermodynamic stability of the stoichiometric TaN/GaN interface. {delta}-phase TaN had I-V and C-V barrier heights of 0.55 eV and 0.8 eV respectively. On the other hand, TaN had an I-V barrier height near 0.7 eV and a C-V barrier height near 1.2 eV. The ideality factors for both {delta}-phase TaN and TaN were above 1.8 at all annealing temperatures, suggesting tunneling contributes significantly to current transport.

  20. Regulation of Thrombin-Induced Lung Endothelial Cell Barrier Disruption by Protein Kinase C Delta.

    Directory of Open Access Journals (Sweden)

    Lishi Xie

    Full Text Available Protein Kinase C (PKC plays a significant role in thrombin-induced loss of endothelial cell (EC barrier integrity; however, the existence of more than 10 isozymes of PKC and tissue-specific isoform expression has limited our understanding of this important second messenger in vascular homeostasis. In this study, we show that PKCδ isoform promotes thrombin-induced loss of human pulmonary artery EC barrier integrity, findings substantiated by PKCδ inhibitory studies (rottlerin, dominant negative PKCδ construct and PKCδ silencing (siRNA. In addition, we identified PKCδ as a signaling mediator upstream of both thrombin-induced MLC phosphorylation and Rho GTPase activation affecting stress fiber formation, cell contraction and loss of EC barrier integrity. Our inhibitor-based studies indicate that thrombin-induced PKCδ activation exerts a positive feedback on Rho GTPase activation and contributes to Rac1 GTPase inhibition. Moreover, PKD (or PKCμ and CPI-17, two known PKCδ targets, were found to be activated by PKCδ in EC and served as modulators of cytoskeleton rearrangement. These studies clarify the role of PKCδ in EC cytoskeleton regulation, and highlight PKCδ as a therapeutic target in inflammatory lung disorders, characterized by the loss of barrier integrity, such as acute lung injury and sepsis.

  1. Apoptosis of Endothelial Cells by 13-HPODE Contributes to Impairment of Endothelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Valerie E. Ryman

    2016-01-01

    Full Text Available Inflammation is an essential host response during bacterial infections such as bovine mastitis. Endothelial cells are critical for an appropriate inflammatory response and loss of vascular barrier integrity is implicated in the pathogenesis of Streptococcus uberis-induced mastitis. Previous studies suggested that accumulation of linoleic acid (LA oxygenation products derived from 15-lipoxygenase-1 (15-LOX-1 metabolism could regulate vascular functions. The initial LA derivative from the 15-LOX-1 pathway, 13-hydroperoxyoctadecadienoic acid (HPODE, can induce endothelial death, whereas the reduced hydroxyl product, 13-hydroxyoctadecadienoic acid (HODE, is abundantly produced during vascular activation. However, the relative contribution of specific LA-derived metabolites on impairment of mammary endothelial integrity is unknown. Our hypothesis was that S. uberis-induced LA-derived 15-LOX-1 oxygenation products impair mammary endothelial barrier integrity by apoptosis. Exposure of bovine mammary endothelial cells (BMEC to S. uberis did not increase 15-LOX-1 LA metabolism. However, S. uberis challenge of bovine monocytes demonstrated that monocytes may be a significant source of both 13-HPODE and 13-HODE during mastitis. Exposure of BMEC to 13-HPODE, but not 13-HODE, significantly reduced endothelial barrier integrity and increased apoptosis. Changing oxidant status by coexposure to an antioxidant during 13-HPODE treatment prevented adverse effects of 13-HPODE, including amelioration of apoptosis. A better understanding of how the oxidant status of the vascular microenvironment impacts endothelial barrier properties could lead to more efficacious treatments for S. uberis mastitis.

  2. Selective ablation of the androgen receptor in mouse sertoli cells affects sertoli cell maturation, barrier formation and cytoskeletal development.

    Directory of Open Access Journals (Sweden)

    Ariane Willems

    2010-11-01

    Full Text Available The observation that mice with a selective ablation of the androgen receptor (AR in Sertoli cells (SC (SCARKO mice display a complete block in meiosis supports the contention that SC play a pivotal role in the control of germ cell development by androgens. To delineate the physiological and molecular mechanism responsible for this control, we compared tubular development in pubertal SCARKO mice and littermate controls. Particular attention was paid to differences in SC maturation, SC barrier formation and cytoskeletal organization and to the molecular mediators potentially involved. Functional analysis of SC barrier development by hypertonic perfusion and lanthanum permeation techniques and immunohistochemical analysis of junction formation showed that SCARKO mice still attempt to produce a barrier separating basal and adluminal compartment but that barrier formation is delayed and defective. Defective barrier formation was accompanied by disturbances in SC nuclear maturation (immature shape, absence of prominent, tripartite nucleoli and SC polarization (aberrant positioning of SC nuclei and cytoskeletal elements such as vimentin. Quantitative RT-PCR was used to study the transcript levels of genes potentially related to the described phenomena between day 8 and 35. Differences in the expression of SC genes known to play a role in junction formation could be shown from day 8 for Cldn11, from day 15 for Cldn3 and Espn, from day 20 for Cdh2 and Jam3 and from day 35 for ZO-1. Marked differences were also noted in the transcript levels of several genes that are also related to cell adhesion and cytoskeletal dynamics but that have not yet been studied in SC (Actn3, Ank3, Anxa9, Scin, Emb, Mpzl2. It is concluded that absence of a functional AR in SC impedes the remodeling of testicular tubules expected at the onset of spermatogenesis and interferes with the creation of the specific environment needed for germ cell development.

  3. Development of microfluidic cell culture devices towards an in vitro human intestinal barrier model

    DEFF Research Database (Denmark)

    Tan, Hsih-Yin

    to enable real-time detection of cell responses, adjustment of cellular stimulation etc. leading to establishment of conditional experiments. In this project, microfluidic systems engineering was leveraged to develop an eight chamber multi-layer microchip for intestinal barrier studies. Sandwiched between...... the layers was a modified Teflon porous membrane for cell culture. The novelty lies in modifying the surface of the porous Teflon support membrane using thiol-ene ‘click’ chemistry, thus allowing the modified Teflon membrane to be bonded between the chip layers to form an enclosed microchip. Successful...... application of the multi-layer microchip was demonstrated by integrating the microchip to an existing cell culture fluidic system to culture the human intestinal epithelial cells, Caco-2, for long term studies. Under the continuous low flow conditions, the cells differentiated into columnar cells displaying...

  4. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    Science.gov (United States)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  5. Simultaneous cell death and desquamation of the embryonic diffusion barrier during epidermal development

    International Nuclear Information System (INIS)

    Saathoff, Manuela; Blum, Barbara; Quast, Thomas; Kirfel, Gregor; Herzog, Volker

    2004-01-01

    The periderm is an epithelial layer covering the emerging epidermis in early embryogenesis of vertebrates. In the chicken embryo, an additional cellular layer, the subperiderm, occurs at later embryonic stages underneath the periderm. The questions arose what is the function of both epithelial layers and, as they are transitory structures, by which mechanism are they removed. By immunocytochemistry, the tight junction (TJ) proteins occludin and claudin-1 were localized in the periderm and in the subperiderm, and sites of close contact between adjacent cells were detected by electron microscopy. Using horseradish peroxidase (HRP) as tracer, these contacts were identified as tight junctions involved in the formation of the embryonic diffusion barrier. This barrier was lost by desquamation at the end of the embryonic period, when the cornified envelope of the emerging epidermis was formed. By TUNEL and DNA ladder assays, we detected simultaneous cell death in the periderm and the subperiderm shortly before hatching. The absence of caspases-3, -6, and -7 activity, key enzymes of apoptosis, and the lack of typical morphological criteria of apoptosis such as cell fragmentation or membrane blebbing point to a special form of programmed cell death (PCD) leading to the desquamation of the embryonic diffusion barrier

  6. Development of Inorganic Solar Cells by Nano-technology

    Institute of Scientific and Technical Information of China (English)

    Yafei Zhang; HueyLiang Hwang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang; Yaozhong Zhang; Zhongli Li; Liying Zhang; Zhi Yang

    2012-01-01

    Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light, have received tremendous attention due to the fear of exhausting the earth’s energy resources and damaging the living environment due to greenhouse gases. Some recent developments in nanotechnology have opened up new avenues for more relevant inorganic solar cells produced by new photovoltaic conversion concepts and effective solar energy harvesting nanostructures. In this review, the multiple exciton generation effect solar cells, hot carrier solar cells, one dimensional material constructed asymmetrical schottky barrier arrays, noble nanoparticle induced plasmonic enhancement, and light trapping nanostructured semiconductor solar cells are highlighted.

  7. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  8. Schottky-contact plasmonic dipole rectenna concept for biosensing.

    Science.gov (United States)

    Alavirad, Mohammad; Mousavi, Saba Siadat; Roy, Langis; Berini, Pierre

    2013-02-25

    Nanoantennas are key optical components for several applications including photodetection and biosensing. Here we present an array of metal nano-dipoles supporting surface plasmon polaritons (SPPs) integrated into a silicon-based Schottky-contact photodetector. Incident photons coupled to the array excite SPPs on the Au nanowires of the antennas which decay by creating "hot" carriers in the metal. The hot carriers may then be injected over the potential barrier at the Au-Si interface resulting in a photocurrent. High responsivities of 100 mA/W and practical minimum detectable powers of -12 dBm should be achievable in the infra-red (1310 nm). The device was then investigated for use as a biosensor by computing its bulk and surface sensitivities. Sensitivities of ∼ 250 nm/RIU (bulk) and ∼ 8 nm/nm (surface) in water are predicted. We identify the mode propagating and resonating along the nanowires of the antennas, we apply a transmission line model to describe the performance of the antennas, and we extract two useful formulas to predict their bulk and surface sensitivities. We prove that the sensitivities of dipoles are much greater than those of similar monopoles and we show that this difference comes from the gap in dipole antennas where electric fields are strongly enhanced.

  9. The B-Cell Follicle in HIV Infection: Barrier to a Cure.

    Science.gov (United States)

    Bronnimann, Matthew P; Skinner, Pamela J; Connick, Elizabeth

    2018-01-01

    The majority of HIV replication occurs in secondary lymphoid organs (SLOs) such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA + cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA + cells in the B-cell follicle is mediated by several factors. Follicular CD4 + T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs) in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA + cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA + cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells that express

  10. The B-Cell Follicle in HIV Infection: Barrier to a Cure

    Directory of Open Access Journals (Sweden)

    Matthew P. Bronnimann

    2018-01-01

    Full Text Available The majority of HIV replication occurs in secondary lymphoid organs (SLOs such as the spleen, lymph nodes, and gut-associated lymphoid tissue. Within SLOs, HIV RNA+ cells are concentrated in the B-cell follicle during chronic untreated infection, and emerging data suggest that they are a major source of replication in treated disease as well. The concentration of HIV RNA+ cells in the B-cell follicle is mediated by several factors. Follicular CD4+ T-cell subsets including T-follicular helper cells and T-follicular regulatory cells are significantly more permissive to HIV than extrafollicular subsets. The B cell follicle also contains a large reservoir of extracellular HIV virions, which accumulate on the surface of follicular dendritic cells (FDCs in germinal centers. FDC-bound HIV virions remain infectious even in the presence of neutralizing antibodies and can persist for months or even years. Moreover, the B-cell follicle is semi-immune privileged from CTL control. Frequencies of HIV- and SIV-specific CTL are lower in B-cell follicles compared to extrafollicular regions as the majority of CTL do not express the follicular homing receptor CXCR5. Additionally, CTL in the B-cell follicle may be less functional than extrafollicular CTL as many exhibit the recently described CD8 T follicular regulatory phenotype. Other factors may also contribute to the follicular concentration of HIV RNA+ cells. Notably, the contribution of NK cells and γδ T cells to control and/or persistence of HIV RNA+ cells in secondary lymphoid tissue remains poorly characterized. As HIV research moves increasingly toward the development of cure strategies, a greater understanding of the barriers to control of HIV infection in B-cell follicles is critical. Although no strategy has as of yet proven to be effective, a range of novel therapies to address these barriers are currently being investigated including genetically engineered CTL or chimeric antigen receptor T cells

  11. Effective transvascular delivery of nanoparticles across the blood-brain tumor barrier into malignant glioma cells

    Directory of Open Access Journals (Sweden)

    Sharma Kamal

    2008-12-01

    Full Text Available Abstract Background Effective transvascular delivery of nanoparticle-based chemotherapeutics across the blood-brain tumor barrier of malignant gliomas remains a challenge. This is due to our limited understanding of nanoparticle properties in relation to the physiologic size of pores within the blood-brain tumor barrier. Polyamidoamine dendrimers are particularly small multigenerational nanoparticles with uniform sizes within each generation. Dendrimer sizes increase by only 1 to 2 nm with each successive generation. Using functionalized polyamidoamine dendrimer generations 1 through 8, we investigated how nanoparticle size influences particle accumulation within malignant glioma cells. Methods Magnetic resonance and fluorescence imaging probes were conjugated to the dendrimer terminal amines. Functionalized dendrimers were administered intravenously to rodents with orthotopically grown malignant gliomas. Transvascular transport and accumulation of the nanoparticles in brain tumor tissue was measured in vivo with dynamic contrast-enhanced magnetic resonance imaging. Localization of the nanoparticles within glioma cells was confirmed ex vivo with fluorescence imaging. Results We found that the intravenously administered functionalized dendrimers less than approximately 11.7 to 11.9 nm in diameter were able to traverse pores of the blood-brain tumor barrier of RG-2 malignant gliomas, while larger ones could not. Of the permeable functionalized dendrimer generations, those that possessed long blood half-lives could accumulate within glioma cells. Conclusion The therapeutically relevant upper limit of blood-brain tumor barrier pore size is approximately 11.7 to 11.9 nm. Therefore, effective transvascular drug delivery into malignant glioma cells can be accomplished by using nanoparticles that are smaller than 11.7 to 11.9 nm in diameter and possess long blood half-lives.

  12. Spray pyrolysis of doped-ceria barrier layers for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Szymczewska, Dagmara; Chrzan, Aleksander; Karczewski, Jakub

    2017-01-01

    Gadolinium doped ceria (Ce0.8Gd0.2O2 − x-CGO) layer fabricated by spray pyrolysis is investigated as the diffusion barrier for solid oxide fuel cell. It is deposited between the La0.6Sr0.4FeO3 − δ cathode and the yttria stabilized zirconia electrolyte to mitigate harmful interdiffusion...

  13. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    Science.gov (United States)

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  14. Annealing effects on structural and electrical properties of Ru/Au on n-GaN Schottky contacts

    International Nuclear Information System (INIS)

    Reddy, V. Rajagopal; Rao, P. Koteswara; Ramesh, C.K.

    2007-01-01

    Thermal annealing effects on electrical and structural properties of Ru/Au Schottky contact to n-type GaN (n d = 4.07 x 10 17 cm -3 ) have been investigated using current-voltage (I-V), capacitance-voltage (C-V), Auger electron spectroscopy (AES) and X-ray diffraction (XRD). The Schottky barrier height of the as-deposited sample was found to be 0.75 eV (I-V) and 0.93 eV (C-V), respectively. It is noted that the barrier height increased when the contact was annealed at 300 deg. C and slightly decreased upon annealing at temperatures of 400 deg. C and 500 deg. C. The extracted Schottky barrier heights are 0.99 eV (I-V), 1.34 eV (C-V) for 300 deg. C, 0.88 eV (I-V), 1.20 eV (C-V) for 400 deg. C and 0.72 eV (I-V), 1.08 eV (C-V) for 500 deg. C annealed contacts, respectively. Further it is observed that annealing results in the improvement of electrical properties of Ru/Au Schottky contacts. Based on Auger electron spectroscopy and X-ray diffraction studies, the formation of gallide phases at the Ru/Au/n-GaN interface could be the reason for the improvement of electrical characteristics upon annealing at elevated temperatures

  15. A gate enhanced power U-shaped MOSFET integrated with a Schottky rectifier

    International Nuclear Information System (INIS)

    Wang Ying; Jiao Wen-Li; Hu Hai-Fan; Liu Yun-Tao; Cao Fei

    2012-01-01

    An accumulation gate enhanced power U-shaped metal-oxide-semiconductor field-effect-transistor (UMOSFET) integrated with a Schottky rectifier is proposed. In this device, a Schottky rectifier is integrated into each cell of the accumulation gate enhanced power UMOSFET. Specific on-resistances of 7.7 mΩ·mm 2 and 6.5 mΩ·mm 2 for the gate bias voltages of 5 V and 10 V are achieved, respectively, and the breakdown voltage is 61 V. The numerical simulation shows a 25% reduction in the reverse recovery time and about three orders of magnitude reduction in the leakage current as compared with the accumulation gate enhanced power UMOSFET. (condensed matter: structural, mechanical, and thermal properties)

  16. Contacting co-culture of human retinal microvascular endothelial cells alters barrier function of human embryonic stem cell derived retinal pigment epithelial cells.

    Science.gov (United States)

    Skottman, H; Muranen, J; Lähdekorpi, H; Pajula, E; Mäkelä, K; Koivusalo, L; Koistinen, A; Uusitalo, H; Kaarniranta, K; Juuti-Uusitalo, K

    2017-10-01

    Here we evaluated the effects of human retinal microvascular endothelial cells (hREC) on mature human embryonic stem cell (hESC) derived retinal pigment epithelial (RPE) cells. The hESC-RPE cells (Regea08/017, Regea08/023 or Regea11/013) and hREC (ACBRI 181) were co-cultured on opposite sides of transparent membranes for up to six weeks. Thereafter barrier function, small molecule permeability, localization of RPE and endothelial cell marker proteins, cellular fine structure, and growth factor secretion of were evaluated. After co-culture, the RPE specific CRALBP and endothelial cell specific von Willebrand factor were appropriately localized. In addition, the general morphology, pigmentation, and fine structure of hESC-RPE cells were unaffected. Co-culture increased the barrier function of hESC-RPE cells, detected both with TEER measurements and cumulative permeability of FD4 - although the differences varied among the cell lines. Co-culturing significantly altered VEGF and PEDF secretion, but again the differences were cell line specific. The results of this study showed that co-culture with hREC affects hESC-RPE functionality. In addition, co-culture revealed drastic cell line specific differences, most notably in growth factor secretion. This model has the potential to be used as an in vitro outer blood-retinal barrier model for drug permeability testing. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Gamma-Ray Irradiation Effects on the Characteristics of New Material P Type 6H-SiC Ni-Schottky Diodes (Application For Nuclear Fuel Facilities)

    International Nuclear Information System (INIS)

    U-Sudjadi; T-Ohshima, N. Iwamoto; S-Hishiki; N-Iwamoto, K. Kawano

    2007-01-01

    Effects of gamma-ray irradiation on electrical characteristics of new material p type 6H-SiC Ni-Schottky diodes were investigated. Ni Schottky diodes fabricated on p type 6H-SiC epi-layer were irradiated with gamma-rays at RT. The electrical characteristics of the diodes were evaluated before and after irradiation. The value of the on-resistance does not change up to 1 MGy, and the value increases with increasing absorbed dose above 1 MGy. For n factor, no significant increase is observed below 500 kGy, however, the value increases above 500 kGy. Schottky Barrier Height (SBH) decreases with increasing absorbed dose. Leakage current tends to increase due to irradiation. (author)

  18. Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga{sub 2}O{sub 3} solar-blind ultraviolet photodetectors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, D. Y.; Wu, Z. P.; An, Y. H.; Guo, X. C.; Chu, X. L.; Sun, C. L.; Tang, W. H., E-mail: whtang@bupt.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Li, L. H. [Physics Department, The State University of New York at Potsdam, Potsdam, New York 13676-2294 (United States); Li, P. G., E-mail: pgli@zstu.edu.cn [School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Center for Optoelectronics Materials and Devices, Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018 Zhejiang (China)

    2014-07-14

    β-Ga{sub 2}O{sub 3} epitaxial thin films were deposited using laser molecular beam epitaxy technique and oxygen atmosphere in situ annealed in order to reduce the oxygen vacancy. Metal/semiconductor/metal structured photodetectors were fabricated using as-grown film and annealed film separately. Au/Ti electrodes were Ohmic contact with the as-grown films and Schottky contact with the annealed films. In compare with the Ohmic-type photodetector, the Schottky-type photodetector takes on lower dark current, higher photoresponse, and shorter switching time, which benefit from Schottky barrier controlling electron transport and the quantity of photogenerated carriers trapped by oxygen vacancy significant decreasing.

  19. A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells.

    Directory of Open Access Journals (Sweden)

    Romeo Cecchelli

    Full Text Available The human blood brain barrier (BBB is a selective barrier formed by human brain endothelial cells (hBECs, which is important to ensure adequate neuronal function and protect the central nervous system (CNS from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.

  20. Interface feature characterization and Schottky interfacial layer confirmation of TiO{sub 2} nanotube array film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongchao [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China); Chongyi Zhangyuan Tungsten Industry Corporation Limited, 341300 Ganzhou (China); Tang, Ningxin; Yang, Hongzhi; Leng, Xian [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China); Zou, Jianpeng, E-mail: zoujp@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, 410083 Changsha (China)

    2015-11-15

    Highlights: • Interfacial fusion of TiO{sub 2} nanotube film increases with annealing temperature. • Interface bonding force of the film increases with annealing temperature. • We report the forth stage of nanofibers formation in the growing mechanism. • TiO{sub 2} nanotubes grow from Schottky interface layer rather than from Ti substrate. • Schottky interface layer's thickness of 35–45 nm is half the diameter of nanotube. - Abstract: We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO{sub 2}) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO{sub 2} nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO{sub 2} nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO{sub 2} nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35–45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO{sub 2} nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  1. Transport properties in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe

    Science.gov (United States)

    Lu, Jian-Duo; Li, Yun-Bao; Liu, Hong-Yu; Peng, Shun-Jin; Zhao, Fei-Xiang

    2016-09-01

    Based on the transfer-matrix method, a systematic investigation of electron transport properties is done in a monolayer graphene modulated by the realistic magnetic field and the Schottky metal stripe. The strong dependence of the electron transmission and the conductance on the incident angle of carriers is clearly seen. The height, position as well as width of the barrier also play an important role on the electron transport properties. These interesting results are very useful for understanding the tunneling mechanism in the monolayer graphene and helpful for designing the graphene-based electrical device modulated by the realistic magnetic field and the electrical barrier.

  2. Characterization and Modeling I(V of the Gate Schottky Structures HEMTs Ni/Au/AlInN/GaN

    Directory of Open Access Journals (Sweden)

    N. Benyahya

    2014-05-01

    Full Text Available In this paper, we have studied the Schottky contact of Ni/Au/AlInN/GaN HEMTs. The current–voltage Igs (Vgs of Ni/Au/AlInN/GaN structures were investigated at room temperature. The electrical parameters such as ideality factor (2.3, barrier height (0.72 eV and series resistance (33 W were evaluated from I(V data, the threshold voltage (-2.42 V, the 2D gas density (1.35 ´ 1013 cm-2 and barrier height (0.94 eV were evaluated from C(V data.

  3. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    Energy Technology Data Exchange (ETDEWEB)

    Chalk, S.G. [Dept. of Energy, Washington, DC (United States); Venkateswaran, S.R. [Energetics, Inc., Columbia, MD (United States)

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  4. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech; Baker, A; Arneborg, Nils

    2015-01-01

    distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase....... In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability......). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. SIGNIFICANCE AND IMPACT...

  5. Photovoltaic characterization of graphene/silicon Schottky junctions from local and macroscopic perspectives

    Czech Academy of Sciences Publication Activity Database

    Hájková, Zdeňka; Ledinský, Martin; Vetushka, Aliaksi; Stuchlík, Jiří; Müller, Martin; Fejfar, Antonín; Bouša, Milan; Kalbáč, Martin; Frank, Otakar

    2017-01-01

    Roč. 676, May (2017), s. 82-88 ISSN 0009-2614 R&D Projects: GA ČR GA14-15357S Institutional support: RVO:68378271 ; RVO:61388955 Keywords : CVD graphene * microcrystalline silicon * solar cells * Schottky junctions * current-voltage curves * C-AFM Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (UFCH-W) Impact factor: 1.815, year: 2016

  6. GaAs detectors with an ultra-thin Schottky contact for spectrometry of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Chernykh, S.V., E-mail: chsv_84@mail.ru [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Chernykh, A.V. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Didenko, S.I.; Baryshnikov, F.M. [National University of Science and Technology “MISIS”, Moscow (Russian Federation); Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Burtebayev, N. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan); Britvich, G.I. [Institute of High Energy Physics, Protvino, Moscow region (Russian Federation); Chubenko, A.P. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (Russian Federation); Guly, V.G.; Glybin, Yu.N. [LLC “SNIIP Plus”, Moscow (Russian Federation); Zholdybayev, T.K.; Burtebayeva, J.T.; Nassurlla, M. [Research Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Institute of Nuclear Physics, Almaty (Kazakhstan)

    2017-02-11

    For the first time, samples of particle detectors based on high-purity GaAs epilayers with an active area of 25 and 80 mm{sup 2} and an ultra-thin Pt Schottky barrier were fabricated for use in the spectrometry of charged particles and their operating characteristics were studied. The obtained FWHM of 14.2 (for 25 mm{sup 2} detector) and 15.5 keV (for 80 mm{sup 2} detector) on the 5.499 MeV line of {sup 238}Pu is at the level of silicon spectrometric detectors. It was found that the main component that determines the energy resolution of the detector is a fluctuation in the number of collected electron–hole pairs. This allows us to state that the obtained energy resolution is close to the limit for VPE GaAs. - Highlights: • VPE GaAs particle detectors with an active area of 25 and 80 mm{sup 2} were fabricated. • 120 Å ultra-thin Pt Schottky barrier was used as a rectifying contact. • The obtained FWHM of 14.2 keV ({sup 238}Pu) is at the level of Si spectrometric detectors. • Various components of the total energy resolution were analyzed. • It was shown that obtained energy resolution is close to its limit for VPE GaAs.

  7. Active barrier films of PET for solar cell application: Processing and characterization

    International Nuclear Information System (INIS)

    Rossi, Gabriella; Scarfato, Paola; Incarnato, Loredana

    2014-01-01

    A preliminary investigation was carried out on the possibility to improve the protective action offered by the standard multilayer structures used to encapsulate photovoltaic devices. With this aim, a commercial active barrier PET-based material, able to absorb oxygen when activated by liquid water, was used to produce flexible and transparent active barrier films, by means of a lab-scale film production plant. The obtained film, tested in terms of thermal, optical and oxygen absorption properties, shows a slow oxygen absorption kinetics, an acceptable transparency and an easy roll-to-roll processability, so proving itself as a good candidate for the development of protective coating for solar cells against the atmospheric degradation agents like the rain

  8. A method of producing a multilayer barrier structure for a solid oxide fuel cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a method of producing a multilayer barrier structure for a solid oxide cell stack, comprising the steps of: - providing a metal interconnect, wherein the metal interconnect is a ferritic stainless steel layer; - applying a first metal oxide layer on said metal...... oxide; and - reacting the metal oxide in said first metal oxide layer with the metal of said metal interconnect during the SOC-stack initialisation, and a solid oxide stack comprising an anode contact layer and support structure, an anode layer, an electrolyte layer, a cathode layer, a cathode contact...... layer, a metallic interconnect, and a multilayer barrier structure which is obtainable by the above method and through an initialisation step, which is carried out under controlled conditions for atmosphere composition and current load, which depends on the layer composition facilitating the formation...

  9. Schottky-contact plasmonic rectenna for biosensing

    Science.gov (United States)

    Alavirad, Mohammad; Siadat Mousavi, Saba; Roy, Langis; Berini, Pierre

    2013-10-01

    We propose a plasmonic gold nanodipole array on silicon, forming a Schottky contact thereon, and covered by water. The behavior of this array under normal excitation has been extensively investigated. Trends have been found and confirmed by identification of the mode propagating in nanodipoles and its properties. This device can be used to detect infrared radiation below the bandgap energy of the substrate via internal photoelectric effect (IPE). Also we estimate its responsivity and detection limit. Finally, we assess the potential of the structure for bulk and surface (bio) chemical sensing. Based on modal results an analytical model has been proposed to estimate the sensitivity of the device. Results show a good agreement between numerical and analytical interpretations.

  10. A comparative study of the electrical properties of Pd/ZnO Schottky contacts fabricated using electron beam deposition and resistive/thermal evaporation techniques

    International Nuclear Information System (INIS)

    Mtangi, W.; Auret, F. D.; Janse van Rensburg, P. J.; Coelho, S. M. M.; Legodi, M. J.; Nel, J. M.; Meyer, W. E.; Chawanda, A.

    2011-01-01

    A systematic investigation to check the quality of Pd Schottky contacts deposited on ZnO has been performed on electron beam (e-beam) deposited and resistively/thermally evaporated samples using current-voltage, IV, and conventional deep level transient spectroscopy (DLTS) measurements. Room temperature IV measurements reveal the dominance of pure thermionic emission on the resistively evaporated contacts, while the e-beam deposited contacts show the dominance of generation recombination at low voltages, -10 A at a reverse voltage of 1.0 V whereas the e-beam deposited contacts have reverse currents of the order of 10 -6 A at 1.0 V. Average ideality factors have been determined as (1.43 ± 0.01) and (1.66 ± 0.02) for the resistively evaporated contacts and e-beam deposited contacts, respectively. The IV barrier heights have been calculated as (0.721 ± 0.002) eV and (0.624 ± 0.005) eV for the resistively evaporated and e-beam deposited contacts, respectively. Conventional DLTS measurements reveal the presence of three prominent defects in both the resistive and e-beam contacts. Two extra peaks with energy levels of 0.60 and 0.81 eV below the conduction band minimum have been observed in the e-beam deposited contacts. These have been explained as contributing to the generation recombination current that dominates at low voltages and high leakage currents. Based on the reverse current at 1.0 V, the degree of rectification, the dominant current transport mechanism and the observed defects, we conclude that the resistive evaporation technique yields better quality Schottky contacts for use in solar cells and ultraviolet detectors compared to the e-beam deposition technique. The 0.60 eV has been identified as possibly related to the unoccupied level for the doubly charged oxygen vacancy, V o 2+ .

  11. Failure Analysis of Heavy-Ion-Irradiated Schottky Diodes

    Science.gov (United States)

    Casey, Megan C.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Campola, Michael J.; Label, Kenneth A.

    2017-01-01

    In this work, we use high- and low-magnitude optical microscope images, infrared camera images, and scanning electron microscope images to identify and describe the failure locations in heavy-ion-irradiated Schottky diodes.

  12. Durability of PEDOT: PSS-pentacene Schottky diode

    International Nuclear Information System (INIS)

    Kang, K S; Lim, H K; Cho, K Y; Han, K J; Kim, Jaehwan

    2008-01-01

    The durability and failure cause of a polymer Schottky diode made with PEDOT : PSS-pentacene were investigated. A polymer Schottky diode was fabricated by dissolving pentacene in N-methylpyrrolidone (NMP) and mixing with PEDOT : PSS. Pentacene solution having a maximum concentration of approximately 9.7 mmoles was prepared by simply stirring the solution at room temperature for 36 h. As the pentacene concentration increased, the absorption of the broad UV regime increased dramatically. However, absorption peaks of pentacene at 301 and 260 nm were not observed for the PEDOT : PSS-pentacene. A three-layered polymer Schottky diode was fabricated and its current-voltage (I-V) characteristic was evaluated. The current was reduced by 7% in the first 50 min and then stabilized during biased electrical field sweeps. After 500 and 800 min, catastrophic failure occurred. FESEM images revealed that the electrode damage caused catastrophic failure of the Schottky diode. (fast track communication)

  13. Effects of surface morphology on the optical and electrical properties of Schottky diodes of CBD deposited ZnO nanostructures

    Science.gov (United States)

    Mwankemwa, Benard S.; Akinkuade, Shadrach; Maabong, Kelebogile; Nel, Jackie M.; Diale, Mmantsae

    2018-04-01

    We report on effect of surface morphology on the optical and electrical properties of chemical bath deposited Zinc oxide (ZnO) nanostructures. ZnO nanostructures were deposited on the seeded conducting indium doped tin oxide substrate positioned in three different directions in the growth solution. Field emission scanning electron microscopy was used to evaluate the morphological properties of the synthesized nanostructures and revealed that the positioning of the substrate in the growth solution affects the surface morphology of the nanostructures. The optical absorbance, photoluminescence and Raman spectroscopy of the resulting nanostructures are discussed. The electrical characterization of the Schottky diode such as barrier height, ideality factor, rectification ratios, reverse saturation current and series resistance were found to depend on the nanostructures morphology. In addition, current transport mechanism in the higher forward bias of the Schottky diode was studied and space charge limited current was found to be the dominant transport mechanism in all samples.

  14. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  15. Three cell flying capacitor inverter for dielectric barrier discharge plasma applications

    International Nuclear Information System (INIS)

    Flores-Fuentes, A.; Lopez-Callejas, A.; Piedad-Beneitez, A. de la; Pena-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Barocio, S.R.

    2009-01-01

    It is reported the design, construction and initial tests of a three cell flying capacitor inverter (TCFCI) in a half-bridge configuration. The device operates at a 200 k Hz frequency which leads to a voltage output at 12.5 k Hz presenting an acceptable response in an open-loop configuration. These features outdo those reported in the current multilevel converter literature. The TCFCI is driven by pulse width modulation, following a phase shift (PS-PWM) control strategy, in order to generate a steady AC voltage signal. This inverter is used to excite a dielectric barrier discharge cell (DBDC) intended for cold plasma generation at room pressure. Some results obtained for two different kinds of atmosphere, helium and argon, are presented. All the system having been tested, early recorded voltage and current waveforms, are included. Finally, three methods for calculating the related electric efficiency of the discharge cell are discussed. (author)

  16. Mediating broadband light into graphene–silicon Schottky photodiodes by asymmetric silver nanospheroids: effect of shape anisotropy

    Science.gov (United States)

    Bhardwaj, Shivani; Parashar, Piyush K.; Roopak, Sangita; Ji, Alok; Uma, R.; Sharma, R. P.

    2018-05-01

    Designing thinner, more efficient and cost-effective 2D materials/silicon Schottky photodiodes using the plasmonic concept is one of the most recent quests for the photovoltaic research community. This work demonstrates the enhanced performance of graphene–Si Schottky junction solar cells by introducing asymmetric spheroidal shaped Ag nanoparticles (NPs) embedded in a graphene monolayer (GML). The optical signatures of these Ag NPs (oblate, ortho-oblate, prolate and ortho-prolate) have been analyzed by discrete dipole approximation in terms of extinction efficiency and surface plasmon resonance tunability, against the quasi-static approximation. The spatial field distribution is enhanced by optimizing the size (a eff  =  100 nm) and aspect ratio (0.4) for all of the utilized Ag NPs with an optimized graphene environment (t  =  0.1 nm). An improvement of photon absorption in the thin Si wafer for the polychromatic spectral region (λ ~ 300–1100 nm) under an AM 1.5 G solar spectrum has been observed. This resulted in a photocurrent enhancement from 7.98 mA cm‑2 to 10.0 mA cm‑2 for oblate-shaped NPs integrated into GML/Si Schottky junction solar cells as compared to the bare cell. The structure used in this study to improve the graphene–Si Schottky junction’s performance is also advantageous for other graphene-like 2D material-based Schottky devices.

  17. Pulsed Magnetic Field Improves the Transport of Iron Oxide Nanoparticles through Cell Barriers

    Science.gov (United States)

    Min, Kyoung Ah; Shin, Meong Cheol; Yu, Faquan; Yang, Meizhu; David, Allan E.; Yang, Victor C.; Rosania, Gus R.

    2013-01-01

    Understanding how a magnetic field affects the interaction of magnetic nanoparticles (MNPs) with cells is fundamental to any potential downstream applications of MNPs as gene and drug delivery vehicles. Here, we present a quantitative analysis of how a pulsed magnetic field influences the manner in which MNPs interact with, and penetrate across a cell monolayer. Relative to a constant magnetic field, the rate of MNP uptake and transport across cell monolayers was enhanced by a pulsed magnetic field. MNP transport across cells was significantly inhibited at low temperature under both constant and pulsed magnetic field conditions, consistent with an active mechanism (i.e. endocytosis) mediating MNP transport. Microscopic observations and biochemical analysis indicated that, in a constant magnetic field, transport of MNPs across the cells was inhibited due to the formation of large (>2 μm) magnetically-induced MNP aggregates, which exceeded the size of endocytic vesicles. Thus, a pulsed magnetic field enhances the cellular uptake and transport of MNPs across cell barriers relative to a constant magnetic field by promoting accumulation while minimizing magnetically-induced MNP aggregates at the cell surface. PMID:23373613

  18. Barriers to hydroxyurea adherence and health-related quality of life in adolescents and young adults with sickle cell disease.

    Science.gov (United States)

    Badawy, Sherif M; Thompson, Alexis A; Penedo, Frank J; Lai, Jin-Shei; Rychlik, Karen; Liem, Robert I

    2017-06-01

    To identify barriers to hydroxyurea adherence (negative beliefs, access, and/or recall barriers), and their relationship to adherence rates and health-related quality of life (HRQOL) among adolescents and young adults (AYA) with sickle cell disease (SCD). A cross-sectional survey was administered to 34 AYAs (12-22 years old) in SCD clinics from January to December 2015. Study measures included Brief Medication Questionnaire, Modified Morisky Adherence Scale 8-items, visual analog scale, and Patient Reported Outcomes Measurement Information System. Participants (59% male; 91% Black) had a median age of 13.5 years (IQR 12-18). Participants reported negative beliefs (32%), recall barriers (44%), and access barriers (32%). Participants with recall barriers reported worse pain (P=.02), fatigue (P=.05), and depression (P=.05). The number of adherence barriers inversely correlated with adherence level using ©MMAS-8 (r s =-.38, P=.02) and VAS dose (r s =-.25, P=.14) as well as MCV (r s =-.45, P=.01) and HbF% (r s =-.36, P=.05), suggesting higher hydroxyurea adherence in patients with fewer barriers. Patients with fewer barriers to hydroxyurea adherence were more likely to have higher adherence rates and better HRQOL scores. Routine assessment of hydroxyurea adherence and its related barriers could provide actionable information to improve adherence rates, HRQOL, and other clinical outcomes. © 2017 The Authors. European Journal of Haematology Published by John Wiley & Sons Ltd.

  19. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells.

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-28

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  20. Understanding the free energy barrier and multiple timescale dynamics of charge separation in organic photovoltaic cells

    Science.gov (United States)

    Yan, Yaming; Song, Linze; Shi, Qiang

    2018-02-01

    By employing several lattice model systems, we investigate the free energy barrier and real-time dynamics of charge separation in organic photovoltaic (OPV) cells. It is found that the combined effects of the external electric field, entropy, and charge delocalization reduce the free energy barrier significantly. The dynamic disorder reduces charge carrier delocalization and results in the increased charge separation barrier, while the effect of static disorder is more complicated. Simulation of the real-time dynamics indicates that the free charge generation process involves multiple time scales, including an ultrafast component within hundreds of femtoseconds, an intermediate component related to the relaxation of the hot charge transfer (CT) state, and a slow component on the time scale of tens of picoseconds from the thermally equilibrated CT state. Effects of hot exciton dissociation as well as its dependence on the energy offset between the Frenkel exciton and the CT state are also analyzed. The current results indicate that only a small energy offset between the band gap and the lowest energy CT state is needed to achieve efficient free charge generation in OPV devices, which agrees with recent experimental findings.

  1. Fabrication and electrical properties of organic-on-inorganic Schottky devices

    International Nuclear Information System (INIS)

    Guellue, Oe; Biber, M; Tueruet, A; Cankaya, M

    2008-01-01

    In this paper, we fabricated an Al/new fuchsin/p-Si organic-inorganic (OI) Schottky diode structure by direct evaporation of an organic compound solution on a p-Si semiconductor wafer. A direct optical band gap energy value of the new fuchsin organic film on a glass substrate was obtained as 1.95 eV. Current-voltage (I-V) and capacitance-voltage (C-V) measurements of the OI device were carried out at room temperature. From the I-V characteristics, it was seen that the Al/new fuchsin/p-Si contacts showed good rectifying behavior. An ideality factor value of 1.47 and a barrier height (BH) value of 0.75 eV for the Al/new fuchsin/p-Si contact were determined from the forward bias I-V characteristics. A barrier height value of 0.78 eV was obtained from the capacitance-voltage (C-V) characteristics. It has been seen that the BH value of 0.75 eV obtained for the Al/new fuchsin/p-Si contact is significantly larger than that of conventional Al/p-Si Schottky metal-semiconductor (MS) diodes. Thus, modification of the interfacial potential barrier for Al/p-Si diodes has been achieved using a thin interlayer of the new fuchsin organic semiconductor; this has been ascribed to the fact that the new fuchsin interlayer increases the effective barrier height because of the interface dipole induced by passivation of the organic layer

  2. Barriers to Infection of Human Cells by Feline Leukemia Virus: Insights into Resistance to Zoonosis.

    Science.gov (United States)

    Terry, Anne; Kilbey, Anna; Naseer, Asif; Levy, Laura S; Ahmad, Shamim; Watts, Ciorsdaidh; Mackay, Nancy; Cameron, Ewan; Wilson, Sam; Neil, James C

    2017-03-01

    The human genome displays a rich fossil record of past gammaretrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro Feline leukemia viruses (FeLVs) rank high on this list, but neither domestic nor workplace exposure has been associated with detectable serological responses. Nonspecific inactivation of gammaretroviruses by serum factors appears insufficient to explain these observations. To investigate further, we explored the susceptibilities of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines but was also a feature of nontransformed keratinocytes and lung fibroblasts. Cells of hematopoietic origin were generally less permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in nonpermissive cells. FeLV-B was subject to G→A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in nonpermissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV. IMPORTANCE Domestic exposure to gammaretroviruses such as feline leukemia viruses (FeLVs) occurs worldwide, but the basis of human resistance to infection remains incompletely understood. The potential threat is evident from the human genome sequence, which reveals many past epidemics of gammaretrovirus infection, and from recent cross-species jumps of gammaretroviruses from rodents to primates and marsupials. This study examined resistance to infection at the cellular level with the most

  3. Temperature dependent electrical characterisation of Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Arjun, E-mail: arjun@ece.iisc.ernet.in; Vinoy, K. J. [Electrical Communication Engineering, Indian Institute of Science, Bangalore, India 560012 (India); Roul, Basanta; Mukundan, Shruti; Mohan, Lokesh; Chandan, Greeshma; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore, India 560012 (India)

    2015-09-15

    This paper reports an improvement in Pt/n-GaN metal-semiconductor (MS) Schottky diode characteristics by the introduction of a layer of HfO{sub 2} (5 nm) between the metal and semiconductor interface. The resulting Pt/HfO{sub 2}/n-GaN metal-insulator-semiconductor (MIS) Schottky diode showed an increase in rectification ratio from 35.9 to 98.9(@ 2V), increase in barrier height (0.52 eV to 0.63eV) and a reduction in ideality factor (2.1 to 1.3) as compared to the MS Schottky. Epitaxial n-type GaN films of thickness 300nm were grown using plasma assisted molecular beam epitaxy (PAMBE). The crystalline and optical qualities of the films were confirmed using high resolution X-ray diffraction and photoluminescence measurements. Metal-semiconductor (Pt/n-GaN) and metal-insulator-semiconductor (Pt/HfO{sub 2}/n-GaN) Schottky diodes were fabricated. To gain further understanding of the Pt/HfO{sub 2}/GaN interface, I-V characterisation was carried out on the MIS Schottky diode over a temperature range of 150 K to 370 K. The barrier height was found to increase (0.3 eV to 0.79 eV) and the ideality factor decreased (3.6 to 1.2) with increase in temperature from 150 K to 370 K. This temperature dependence was attributed to the inhomogeneous nature of the contact and the explanation was validated by fitting the experimental data into a Gaussian distribution of barrier heights.

  4. Ultrathin film, high specific power InP solar cells on flexible plastic substrates

    International Nuclear Information System (INIS)

    Shiu, K.-T.; Zimmerman, Jeramy; Wang Hongyu; Forrest, Stephen R.

    2009-01-01

    We demonstrate ultrathin-film, single-crystal InP Schottky-type solar cells mounted on flexible plastic substrates. The lightly p-doped InP cell is grown epitaxially on an InP substrate via gas source molecular beam epitaxy. The InP substrate is removed via selective chemical wet-etching after the epitaxial layers are cold-welded to a 25 μm thick Kapton sheet, followed by the deposition of an indium tin oxide top contact that forms the Schottky barrier with InP. The power conversion efficiency under 1 sun is 10.2±1.0%, and its specific power is 2.0±0.2 kW/kg. The ultrathin-film solar cells can tolerate both tensile and compressive stress by bending over a <1 cm radius without damage.

  5. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  6. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  7. High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer.

    Science.gov (United States)

    Minh Triet, Nguyen; Thai Duy, Le; Hwang, Byeong-Ung; Hanif, Adeela; Siddiqui, Saqib; Park, Kyung-Ho; Cho, Chu-Young; Lee, Nae-Eung

    2017-09-13

    A Schottky diode based on a heterojunction of three-dimensional (3D) nanohybrid materials, formed by hybridizing reduced graphene oxide (RGO) with epitaxial vertical zinc oxide nanorods (ZnO NRs) and Al 0.27 GaN 0.73 (∼25 nm)/GaN is presented as a new class of high-performance chemical sensors. The RGO nanosheet layer coated on the ZnO NRs enables the formation of a direct Schottky contact with the AlGaN layer. The sensing results of the Schottky diode with respect to NO 2 , SO 2 , and HCHO gases exhibit high sensitivity (0.88-1.88 ppm -1 ), fast response (∼2 min), and good reproducibility down to 120 ppb concentration levels at room temperature. The sensing mechanism of the Schottky diode can be explained by the effective modulation of the reverse saturation current due to the change in thermionic emission carrier transport caused by ultrasensitive changes in the Schottky barrier of a van der Waals heterostructure between RGO and AlGaN layers upon interaction with gas molecules. Advances in the design of a Schottky diode gas sensor based on the heterojunction of high-mobility two-dimensional electron gas channel and highly responsive 3D-engineered sensing nanomaterials have potential not only for the enhancement of sensitivity and selectivity but also for improving operation capability at room temperature.

  8. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  9. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis

    International Nuclear Information System (INIS)

    Van De Walle, Jacqueline; Sergent, Therese; Piront, Neil; Toussaint, Olivier; Schneider, Yves-Jacques; Larondelle, Yvan

    2010-01-01

    Deoxynivalenol (DON), one of the most common mycotoxin contaminants of raw and processed cereal food, adversely affects the gastrointestinal tract. Since DON acts as a protein synthesis inhibitor, the constantly renewing intestinal epithelium could be particularly sensitive to DON. We analyzed the toxicological effects of DON on intestinal epithelial protein synthesis and barrier integrity. Differentiated Caco-2 cells, as a widely used model of the human intestinal barrier, were exposed to realistic intestinal concentrations of DON (50, 500 and 5000 ng/ml) during 24 h. DON caused a concentration-dependent decrease in total protein content associated with a reduction in the incorporation of [ 3 H]-leucine, demonstrating its inhibitory effect on protein synthesis. DON simultaneously increased the paracellular permeability of the monolayer as reflected through a decreased transepithelial electrical resistance associated with an increased paracellular flux of the tracer [ 3 H]-mannitol. A concentration-dependent reduction in the expression level of the tight junction constituent claudin-4 was demonstrated by Western blot, which was not due to diminished transcription, increased degradation, or NF-κB, ERK or JNK activation, and was also observed for a tight junction independent protein, i.e. intestinal alkaline phosphatase. These results demonstrate a dual toxicological effect of DON on differentiated Caco-2 cells consisting in an inhibition of protein synthesis as well as an increase in monolayer permeability, and moreover suggest a possible link between them through diminished synthesis of the tight junction constituent claudin-4.

  10. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells

    DEFF Research Database (Denmark)

    Del Vecchio, Giovanna; Tscheik, Christian; Tenz, Kareen

    2012-01-01

    Claudin-5 is a tight junction (TJ) protein which limits the diffusion of small hydrophilic molecules. Thus, it represents a potential pharmacological target to improve drug delivery to the tissues protected by claudin-5-dependent barriers. Sodium caprate is known as an absorption enhancer which...... opens the paracellular space acting on TJ proteins and actin cytoskeleton. Its action on claudin-5 is not understood so far. Epithelial and endothelial systems were used to evaluate the effect of caprate on claudin-5 in TJ-free cells and on claudin-5 fully integrated in TJ. To this aim, confocal...... of endothelial and epithelial cells. In conclusion, the study further elucidates the cellular effects of caprate at the tight junctions....

  11. Tryps and trips: cell trafficking across the 100-year-old blood-brain barrier.

    Science.gov (United States)

    Bentivoglio, Marina; Kristensson, Krister

    2014-06-01

    One hundred years ago, Edwin E. Goldmann discovered the blood-brain barrier (BBB) using trypan dyes. These dyes were developed and named by Paul Ehrlich during his search for drugs to kill African trypanosomes (extracellular parasites that cause sleeping sickness) while sparing host cells. For Ehrlich, this was the first strategy based on the 'chemotherapy' concept he had introduced. The discovery of the BBB revealed, however, the difficulties in drug delivery to the brain. Mechanisms by which parasites enter, dwell, and exit the brain currently provide novel views on cell trafficking across the BBB. These mechanisms also highlight the role of pericytes and endocytosis regulation in BBB functioning and in disrupted BBB gating, which may be involved in the pathogenesis of neurodegeneration. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Transporter-Guided Delivery of Nanoparticles to Improve Drug Permeation across Cellular Barriers and Drug Exposure to Selective Cell Types

    Directory of Open Access Journals (Sweden)

    Longfa Kou

    2018-01-01

    Full Text Available Targeted nano-drug delivery systems conjugated with specific ligands to target selective cell-surface receptors or transporters could enhance the efficacy of drug delivery and therapy. Transporters are expressed differentially on the cell-surface of different cell types, and also specific transporters are expressed at higher than normal levels in selective cell types under pathological conditions. They also play a key role in intestinal absorption, delivery via non-oral routes (e.g., pulmonary route and nasal route, and transfer across biological barriers (e.g., blood–brain barrier and blood–retinal barrier. As such, the cell-surface transporters represent ideal targets for nano-drug delivery systems to facilitate drug delivery to selective cell types under normal or pathological conditions and also to avoid off-target adverse side effects of the drugs. There is increasing evidence in recent years supporting the utility of cell-surface transporters in the field of nano-drug delivery to increase oral bioavailability, to improve transfer across the blood–brain barrier, and to enhance delivery of therapeutics in a cell-type selective manner in disease states. Here we provide a comprehensive review of recent advancements in this interesting and important area. We also highlight certain key aspects that need to be taken into account for optimal development of transporter-assisted nano-drug delivery systems.

  13. Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion

    Directory of Open Access Journals (Sweden)

    Lorène J. Lebrun

    2017-10-01

    Full Text Available Summary: Glucagon-like peptide 1 (GLP-1 is a hormone released from enteroendocrine L cells. Although first described as a glucoregulatory incretin hormone, GLP-1 also suppresses inflammation and promotes mucosal integrity. Here, we demonstrate that plasma GLP-1 levels are rapidly increased by lipopolysaccharide (LPS administration in mice via a Toll-like receptor 4 (TLR4-dependent mechanism. Experimental manipulation of gut barrier integrity after dextran sodium sulfate treatment, or via ischemia/reperfusion experiments in mice, triggered a rapid rise in circulating GLP-1. This phenomenon was detected prior to measurable changes in inflammatory status and plasma cytokine and LPS levels. In human subjects, LPS administration also induced GLP-1 secretion. Furthermore, GLP-1 levels were rapidly increased following the induction of ischemia in the human intestine. These findings expand traditional concepts of enteroendocrine L cell biology to encompass the sensing of inflammatory stimuli and compromised mucosal integrity, linking glucagon-like peptide secretion to gut inflammation. : Lebrun et al. demonstrate that enteroendocrine L cells sense lipopolysaccharides (pro-inflammatory bacterial compounds after gut injury and respond by secreting glucagon-like peptide 1. These findings expand concepts of L cell function to include roles as both a nutrient and pathogen sensor, linking glucagon-like peptide secretion to gut inflammation. Keywords: glucagon-like peptide 1, lipopolysaccharides, enteroendocrine cells, TLR4, gut injury, intestinal ischemia, inflammation

  14. Initial Attempts of Development and Characterization of an In Vitro Blood Brain Barrier Model Derived from Human Pluripotent Stem Cells

    DEFF Research Database (Denmark)

    Goldeman, Charlotte; Saaby, Lasse; Hall, Vanessa Jane

    The human blood brain barrier has yet to be successfully replicated as an in vitro model. One of the more promising approaches has been to develop an in vitro model derived from human pluripotent stem cells. However, as promising as this model may be, a successful replication of the differentiation...... method on different kinds of pluripotent stem cell lines have yet to be accomplished. We try to approach the promising method as described by Stebbins et al. (2015) to differentiate human pluripotent stem cells into brain like endothelial cells (BECs). Five different human pluripotent stem cell lines...... configurations (mono culture, non-contact co-culture and contact co-culture) with primary rat astrocytes to induce barrier-like properties. Endothelial cell media supplemented with retinoic acid were then applied to the cells to ensure selective expansion of BECs. The different culture configurations were...

  15. High Voltage GaN Schottky Rectifiers

    Energy Technology Data Exchange (ETDEWEB)

    CAO,X.A.; CHO,H.; CHU,S.N.G.; CHUO,C.-C.; CHYI,J.-I.; DANG,G.T.; HAN,JUNG; LEE,C.-M.; PEARTON,S.J.; REN,F.; WILSON,R.G.; ZHANG,A.P.

    1999-10-25

    Mesa and planar GaN Schottky diode rectifiers with reverse breakdown voltages (V{sub RB}) up to 550V and >2000V, respectively, have been fabricated. The on-state resistance, R{sub ON}, was 6m{Omega}{center_dot} cm{sup 2} and 0.8{Omega}cm{sup 2}, respectively, producing figure-of-merit values for (V{sub RB}){sup 2}/R{sub ON} in the range 5-48 MW{center_dot}cm{sup -2}. At low biases the reverse leakage current was proportional to the size of the rectifying contact perimeter, while at high biases the current was proportional to the area of this contact. These results suggest that at low reverse biases, the leakage is dominated by the surface component, while at higher biases the bulk component dominates. On-state voltages were 3.5V for the 550V diodes and {ge}15 for the 2kV diodes. Reverse recovery times were <0.2{micro}sec for devices switched from a forward current density of {approx}500A{center_dot}cm{sup -2} to a reverse bias of 100V.

  16. Ellipsometric study and application of rubrene thin film in organic Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liang; Deng, Jinxiang, E-mail: jdeng@bjut.edu.cn; Gao, Hongli; Yang, Qianqian; Kong, Le; Cui, Min; Zhang, Zijia

    2016-12-01

    Highlights: • The optical constants of rubrene were studied by ellipsometry spectroscopic. • The α reveals direct allowed transition with corresponding energy 2.21 eV. • A Schottky diodes based on rubrene were fabricated. • The basic device parameters were determined by the I–V measurement. - Abstract: Rubrene thin film was deposited by thermal evaporation technique under high vacuum (∼10{sup −4} Pa). The film surface morphology was characterized by atomic force microscopy (AFM). Ellipsometric studies on rubrene thin film were presented for understanding its growth and optical characteristics by the Classical-Oscillator model. The analysis of the absorption coefficient (α) revealed the direct allowed transition with corresponding energy 2.21 eV of the rubrene film. In order to exploring the rubrene applications, Al/rubrene/ITO Schottky diode was fabricated. The basic device parameters, barrier height and ideality factor were determined by the I–V measurement. The log(I)–log(V) characteristic indicated three distinct regions. These regions followed ohmic conduction, TCL conduction and SCLC conduction mechanisms.

  17. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Directory of Open Access Journals (Sweden)

    Zhang Teng-Fei

    2016-11-01

    Full Text Available In this study, we present a simple ultraviolet (UV light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  18. Temperature dependent electrical characterization of organic Schottky diode based on thick MgPc films

    Science.gov (United States)

    Singh, J.; Sharma, R. K.; Sule, U. S.; Goutam, U. K.; Gupta, Jagannath; Gadkari, S. C.

    2017-07-01

    Magnesium phthalocyanine (MgPc) based Schottky diode on indium tin oxide (ITO) substrate was fabricated by thermal evaporation method. The dark current voltage characteristics of the prepared ITO-MgPc-Al heterojunction Schottky diode were measured at different temperatures. The diode showed the non-ideal rectification behavior under forward and reverse bias conditions with a rectification ratio (RR) of 56 at  ±1 V at room temperature. Under forward bias, thermionic emission and space charge limited conduction (SCLC) were found to be the dominant conduction mechanisms at low (below 0.6 V) and high voltages (above 0.6 V) respectively. Under reverse bias conditions, Poole-Frenkel (field assisted thermal detrapping of carriers) was the dominant conduction mechanism. Three different approaches namely, I-V plots, Norde and Cheung methods were used to determine the diode parameters including ideality factor (n), barrier height (Φb), series resistance (R s) and were compared. SCLC mechanism showed that the trap concentration is 5.52  ×  1022 m-3 and it lies at 0.46 eV above the valence band edge.

  19. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes.

    Science.gov (United States)

    Shen, Jun; Liu, Xiangzhi; Song, Xuefen; Li, Xinming; Wang, Jun; Zhou, Quan; Luo, Shi; Feng, Wenlin; Wei, Xingzhan; Lu, Shirong; Feng, Shuanglong; Du, Chunlei; Wang, Yuefeng; Shi, Haofei; Wei, Dapeng

    2017-05-11

    Schottky heterojunctions based on graphene-silicon structures are promising for high-performance photodetectors. However, existing fabrication processes adopt transferred graphene as electrodes, limiting process compatibility and generating pollution because of the metal catalyst. In this report, photodetectors are fabricated using directly grown graphene nanowalls (GNWs) as electrodes. Due to the metal-free growth process, GNWs-Si heterojunctions with an ultralow measured current noise of 3.1 fA Hz -1/2 are obtained, and the as-prepared photodetectors demonstrate specific detectivities of 5.88 × 10 13 cm Hz 1/2 W -1 and 2.27 × 10 14 cm Hz 1/2 W -1 based on the measured and calculated noise current, respectively, under ambient conditions. These are among the highest reported values for planar silicon Schottky photodetectors. In addition, an on/off ratio of 2 × 10 7 , time response of 40 μs, cut-off frequency of 8.5 kHz and responsivity of 0.52 A W -1 are simultaneously realized. The ultralow current noise is attributed to the excellent junction quality with a barrier height of 0.69 eV and an ideal factor of 1.18. Furthermore, obvious infrared photoresponse is observed in blackbody tests, and potential applications based on the photo-thermionic effect are discussed.

  20. A sensitive ultraviolet light photodiode based on graphene-on-zinc oxide Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Wu, Guo-An; Wang, Jiu-Zhen; Yu, Yong-Qiang; Zhang, Deng-Yue; Wang, Dan-Dan; Jiang, Jing-Bo; Wang, Jia-Mu; Luo, Lin-Bao

    2017-08-01

    In this study, we present a simple ultraviolet (UV) light photodiode by transferring a layer of graphene film on single-crystal ZnO substrate. The as-fabricated heterojunction exhibited typical rectifying behavior, with a Schottky barrier height of 0.623 eV. Further optoelectronic characterization revealed that the graphene-ZnO Schottky junction photodiode displayed obvious sensitivity to 365-nm light illumination with good reproducibility. The responsivity and photoconductive gain were estimated to be 3×104 A/W and 105, respectively, which were much higher than other ZnO nanostructure-based devices. In addition, it was found that the on/off ratio of the present device can be considerably improved from 2.09 to 12.1, when the device was passivated by a layer of AlOx film. These results suggest that the present simply structured graphene-ZnO UV photodiode may find potential application in future optoelectronic devices.

  1. Current Transport Mechanisms and Capacitance Characteristic in the InN/InP Schottky Structures

    Directory of Open Access Journals (Sweden)

    K. AMEUR

    2014-05-01

    Full Text Available In this work, electrical characterization of the current-voltage and capacitance- voltage curves for the Metal/InN/InP Schottky structures are investigated. We have studied electrically thin InN films realized by the nitridation of InP (100 substrates using a Glow Discharge Source (GDS in ultra high vacuum. The I (V curves have exhibited anomalous two-step (kink forward bias behaviour; a suitable fit was only obtained by using a model of two discrete diodes in parallel. Thus, we have calculated, using I(V and C(V curves of Hg/InN/InP Schottky structures, the ideality factor n, the saturation current Is, the barrier height jB, the series resistance Rs, the doping concentration Nd and the diffusion voltage Vd. We have also presented the band diagram of this heterojunction which indicates the presence of a channel formed by holes at the interface InN/InP which explain by the presence of two-dimensional electron gas (2-DEG and this was noticed in the presentation of characteristics C(V.

  2. Modeling and fabrication of 4H-SiC Schottky junction

    Science.gov (United States)

    Martychowiec, A.; Pedryc, A.; Kociubiński, A.

    2017-08-01

    The rapidly growing demand for electronic devices requires using of alternative semiconductor materials, which could replace conventional silicon. Silicon carbide has been proposed for these harsh environment applications (high temperature, high voltage, high power conditions) because of its wide bandgap, its high temperature operation ability, its excellent thermal and chemical stability, and its high breakdown electric field strength. The Schottky barrier diode (SBD) is known as one of the best refined SiC devices. This paper presents prepared model, simulations and description of technology of 4H-SiC Schottky junction as well as characterization of fabricated structures. The future aim of the application of the structures is an optical detection of an ultraviolet radiation. The model section contains a comparison of two different solutions of SBD's construction. Simulations - as a crucial process of designing electronic devices - have been performed using the ATLAS device of Silvaco TCAD software. As a final result the paper shows I-V characteristics of fabricated diodes.

  3. Optical and electrical characterization of AlGaN based Schottky photodiodes after annealing at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ngoepe, PNM, E-mail: phuti.ngoepe@up.ac.za; Meyer, WE; Diale, M; Auret, FD; Schalkwyk, L van

    2014-04-15

    In this study a comparison is made between the optical and electrical properties of Ni/Au and Ni/Ir/Au Schottky photodiodes based on Al{sub 0.35}Ga{sub 0.65}N. The effects of inserting Ir between Ni and Au are of particular interest. The comparison in the properties is done after annealing the photodiodes at different temperatures in an argon gas ambient. The reverse current decreased with annealing temperature up to 400 °C for the Ni/Au Schottky photodiode and up to 500 °C for the Ni/Ir/Au photodiode. The Schottky barrier heights increased with increasing annealing temperature. The responsivity of the Ni/Au photodiode was higher than that of the Ni/Ir/Au photodiode. The transmission of the Ni/Au metal layer improved with increasing annealing temperature up to 500 °C and the best transmission of the Ni/Ir/Au metal layer was after 400 °C annealing.

  4. Schottky junctions on perovskite single crystals: light-modulated dielectric constant and self-biased photodetection

    KAUST Repository

    Shaikh, Parvez Abdul Ajij; Shi, Dong; Duran Retamal, Jose Ramon; Sheikh, Arif D.; Haque, Mohammed; Kang, Chen-Fang; He, Jr-Hau; Bakr, Osman; Wu, Tao

    2016-01-01

    Schottky junctions formed between semiconductors and metal contacts are ubiquitous in modern electronic and optoelectronic devices. Here we report on the physical properties of Schottky-junctions formed on hybrid perovskite CH3NH3PbBr3 single

  5. In-situ transport and microstructural evolution in GaN Schottky diodes and epilayers exposed to swift heavy ion irradiation

    Science.gov (United States)

    Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.

    2018-04-01

    A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.

  6. MD 2408: Study of Schottky Monitors for Q' Measurement at Injection

    CERN Document Server

    Tydecks, Tobias; Levens, Tom; Wendt, Manfred; Wenninger, Jorg; CERN. Geneva. ATS Department

    2018-01-01

    The Schottky monitors installed at the LHC enable the detection of Schottky noise of the two circulating proton / ion beams. From Schottky noise, beam parameters like tune, chromaticity, and relative emittance, can be extracted in a non-destructive and purely parasitic method of measurement. The primary goal of this MD was to study the Schottky monitors capability to reliably and accurately determine the beam chromaticities at injection energy. Furthermore, the possibility to track the beam emittance has been investigated.

  7. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    Science.gov (United States)

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A 3D-printed microbial cell culture platform with in situ PEGDA hydrogel barriers for differential substrate delivery.

    Science.gov (United States)

    Kadilak, Andrea L; Rehaag, Jessica C; Harrington, Cameron A; Shor, Leslie M

    2017-09-01

    Additive manufacturing, or 3D-printing techniques have recently begun to enable simpler, faster, and cheaper production of millifluidic devices at resolutions approaching 100-200  μ m. At this resolution, cell culture devices can be constructed that more accurately replicate natural environments compared with conventional culturing techniques. A number of microfluidics researchers have begun incorporating additive manufacturing into their work, using 3D-printed devices in a wide array of chemical, fluidic, and even some biological applications. Here, we describe a 3D-printed cell culture platform and demonstrate its use in culturing Pseudomonas putida KT2440 bacteria for 44 h under a differential substrate gradient. Polyethylene glycol diacrylate (PEGDA) hydrogel barriers are patterned in situ within a 3D-printed channel. Transport of the toluidine blue tracer dye through the hydrogel barriers is characterized. Nutrients and oxygen were delivered to cells in the culture region by diffusion through the PEGDA hydrogel barriers from adjacent media or saline perfusion channels. Expression of green fluorescent protein by P. putida KT2440 enabled real time visualization of cell density within the 3D-printed channel, and demonstrated cells were actively expressing protein over the course of the experiment. Cells were observed clustering near hydrogel barrier boundaries where fresh substrate and oxygen were being delivered via diffusive transport, but cells were unable to penetrate the barrier. The device described here provides a versatile and easy to implement platform for cell culture in readily controlled gradient microenvironments. By adjusting device geometry and hydrogel properties, this platform could be further customized for a wide variety of biological applications.

  9. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease: A Review.

    Science.gov (United States)

    Nguyen, Patricia K; Neofytou, Evgenios; Rhee, June-Wha; Wu, Joseph C

    2016-11-01

    Although progress continues to be made in the field of stem cell regenerative medicine for the treatment of cardiovascular disease, significant barriers to clinical implementation still exist. To summarize the current barriers to the clinical implementation of stem cell therapy in patients with cardiovascular disease and to discuss potential strategies to overcome them. Information for this review was obtained through a search of PubMed and the Cochrane database for English-language studies published between January 1, 2000, and July 25, 2016. Ten randomized clinical trials and 8 systematic reviews were included. One of the major clinical barriers facing the routine implementation of stem cell therapy in patients with cardiovascular disease is the limited and inconsistent benefit observed thus far. Reasons for this finding are unclear but may be owing to poor cell retention and survival, as suggested by numerous preclinical studies and a small number of human studies incorporating imaging to determine cell fate. Additional studies in humans using imaging to determine cell fate are needed to understand how these factors contribute to the limited efficacy of stem cell therapy. Treatment strategies to address poor cell retention and survival are under investigation and include the following: coadministration of immunosuppressive and prosurvival agents, delivery of cardioprotective factors packaged in exosomes rather than the cells themselves, and use of tissue-engineering strategies to provide structural support for cells. If larger grafts are achieved using these strategies, it will be imperative to carefully monitor for the potential risks of tumorigenicity, immunogenicity, and arrhythmogenicity. Despite important achievements to date, stem cell therapy is not yet ready for routine clinical implementation. Significant research is still needed to address the clinical barriers outlined herein before the next wave of large clinical trials is under way.

  10. Modeling the ischemic blood-brain barrier; the effects of oxygen-glucose deprivation (OGD) on endothelial cells in culture

    DEFF Research Database (Denmark)

    Tornabene, Erica; Helms, Hans Christian Cederberg; Berndt, Philipp

    Introduction - The blood-brain barrier (BBB) is a physical, transport and metabolic barrier which plays a key role in preventing uncontrolled exchanges between blood and brain, ensuring an optimal environment for neurons activity. This extent interface is created by the endothelial cells forming...... pathways across the barrier in ischemic and postischemic brain endothelium is important for developing new medical therapies capable to exploit the barrier changes occurring during/after ischemia to permeate in the brain and treat this devastating disease. Materials and Methods - Primary cultures...... the wall of brain capillaries. The restrictive nature of the BBB is due to the tight junctions (TJs), which seal the intercellular clefts, limiting the paracellular diffusion, efflux transporters, which extrude xenobiotics, and metabolizing enzymes, which may break down or convert molecules during...

  11. Mott-Schottky analysis of thin ZnO films

    International Nuclear Information System (INIS)

    Windisch, Charles F. Jr.; Exarhos, Gregory J.

    2000-01-01

    Thin ZnO films, both native and doped with secondary metal ions, have been prepared by sputter deposition and also by casting from solutions containing a range of precursor salts. The conductivity and infrared reflectivity of these films are subsequently enhanced chemically following treatment in H 2 gas at 400 degree sign C or by cathodic electrochemical treatment in a neutral (pH=7) phosphate buffer solution. While Hall-type measurements usually are used to evaluate the electrical properties of such films, the present study investigated whether a conventional Mott-Schottky analysis could be used to monitor the change in concentration of free carriers in these films before and after chemical and electrochemical reduction. The Mott-Schottky approach would be particularly appropriate for electrochemically modified films since the measurements could be made in the same electrolyte used for the post-deposition electrochemical processing. Results of studies on sputtered pure ZnO films in ferricyanide solution were promising. Mott-Schottky plots were linear and gave free carrier concentrations typical for undoped semiconductors. Film thicknesses estimated from the Mott-Schottky data were also reasonably close to thicknesses calculated from reflectance measurements. Studies on solution-deposited films were less successful. Mott-Schottky plots were nonlinear, apparently due to film porosity. A combination of dc polarization and atomic force microscopy measurements confirmed this conclusion. The results suggest that Mott-Schottky analysis would be suitable for characterizing solution-deposited ZnO films only after extensive modeling was performed to incorporate the effects of film porosity on the characteristics of the space-charge region of the semiconductor. (c) 2000 American Vacuum Society

  12. Stepwise DNA Methylation Changes Are Linked to Escape from Defined Proliferation Barriers and Mammary Epithelial Cell Immortalization

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Petr; Jensen, Taylor J.; Garbe, James C.; Stampfer, Martha R.; Futscher, Bernard W.

    2009-04-20

    The timing and progression of DNA methylation changes during carcinogenesis are not completely understood. To develop a timeline of aberrant DNA methylation events during malignant transformation, we analyzed genome-wide DNA methylation patterns in an isogenic human mammary epithelial cell (HMEC) culture model of transformation. To acquire immortality and malignancy, the cultured finite lifespan HMEC must overcome two distinct proliferation barriers. The first barrier, stasis, is mediated by the retinoblastoma protein and can be overcome by loss of p16(INK4A) expression. HMEC that escape stasis and continue to proliferate become genomically unstable before encountering a second more stringent proliferation barrier, telomere dysfunction due to telomere attrition. Rare cells that acquire telomerase expression may escape this barrier, become immortal, and develop further malignant properties. Our analysis of HMEC transitioning from finite lifespan to malignantly transformed showed that aberrant DNA methylation changes occur in a stepwise fashion early in the transformation process. The first aberrant DNA methylation step coincides with overcoming stasis, and results in few to hundreds of changes, depending on how stasis was overcome. A second step coincides with immortalization and results in hundreds of additional DNA methylation changes regardless of the immortalization pathway. A majority of these DNA methylation changes are also found in malignant breast cancer cells. These results show that large-scale epigenetic remodeling occurs in the earliest steps of mammary carcinogenesis, temporally links DNA methylation changes and overcoming cellular proliferation barriers, and provides a bank of potential epigenetic biomarkers that mayprove useful in breast cancer risk assessment.

  13. Forward-bias diode parameters, electronic noise, and photoresponse of graphene/silicon Schottky junctions with an interfacial native oxide layer

    Science.gov (United States)

    An, Yanbin; Behnam, Ashkan; Pop, Eric; Bosman, Gijs; Ural, Ant

    2015-09-01

    Metal-semiconductor Schottky junction devices composed of chemical vapor deposition grown monolayer graphene on p-type silicon substrates are fabricated and characterized. Important diode parameters, such as the Schottky barrier height, ideality factor, and series resistance, are extracted from forward bias current-voltage characteristics using a previously established method modified to take into account the interfacial native oxide layer present at the graphene/silicon junction. It is found that the ideality factor can be substantially increased by the presence of the interfacial oxide layer. Furthermore, low frequency noise of graphene/silicon Schottky junctions under both forward and reverse bias is characterized. The noise is found to be 1/f dominated and the shot noise contribution is found to be negligible. The dependence of the 1/f noise on the forward and reverse current is also investigated. Finally, the photoresponse of graphene/silicon Schottky junctions is studied. The devices exhibit a peak responsivity of around 0.13 A/W and an external quantum efficiency higher than 25%. From the photoresponse and noise measurements, the bandwidth is extracted to be ˜1 kHz and the normalized detectivity is calculated to be 1.2 ×109 cm Hz1/2 W-1. These results provide important insights for the future integration of graphene with silicon device technology.

  14. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  15. Effects of 5.4 MeV alpha-particle irradiation on the electrical properties of nickel Schottky diodes on 4H–SiC

    Energy Technology Data Exchange (ETDEWEB)

    Omotoso, E. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa); Department of Physics, Obafemi Awolowo University, Ile-Ife 220005 (Nigeria); Meyer, W.E.; Auret, F.D.; Paradzah, A.T.; Diale, M.; Coelho, S.M.M.; Janse van Rensburg, P.J.; Ngoepe, P.N.M. [Department of Physics, University of Pretoria, Private Bag X20, Hatfield 0028 (South Africa)

    2015-12-15

    Current–voltage, capacitance–voltage and conventional deep level transient spectroscopy at temperature ranges from 40 to 300 K have been employed to study the influence of alpha-particle irradiation from an {sup 241}Am source on Ni/4H–SiC Schottky contacts. The nickel Schottky barrier diodes were resistively evaporated on n-type 4H–SiC samples of doping density of 7.1 × 10{sup 15} cm{sup −3}. It was observed that radiation damage caused an increase in ideality factors of the samples from 1.04 to 1.07, an increase in Schottky barrier height from 1.25 to 1.31 eV, an increase in series resistance from 48 to 270 Ω but a decrease in saturation current density from 55 to 9 × 10{sup −12} A m{sup −2} from I–V plots at 300 K. The free carrier concentration of the sample decreased slightly after irradiation. Conventional DLTS showed peaks due to four deep levels for as-grown and five deep levels after irradiation. The Richardson constant, as determined from a modified Richardson plot assuming a Gaussian distribution of barrier heights for the as-grown and irradiated samples were 133 and 151 A cm{sup −2} K{sup −2}, respectively. These values are similar to literature values.

  16. Influence of He-ion irradiation on the characteristics of Pd/n-Si{sub 0.90}Ge{sub 0.10}/Si Schottky contacts

    Energy Technology Data Exchange (ETDEWEB)

    Mamor, M; Sellai, A; Bouziane, K; Harthi, S H Al; Busaidi, M Al; Gard, F S [Physics Department, Sultan Qaboos University, PO Box 36 Muscat 123, Sultanate of (Oman)

    2007-03-07

    Current-voltage (I-V) and capacitance-voltage (C-V) characteristics of He-ion irradiated Pd/n-Si{sub 09}Ge{sub 0.10} Schottky contacts have been measured in the temperature range from 100 to 300 K. Schottky barrier properties such as the Schottky barrier height ({phi}{sub bn}) and ideality factor (n) have been studied as a function of temperature. The degree to which their characteristics deviated from the ideal case increased as the temperature decreased. A decrease in {phi}{sub bn} and an increase in n with decreasing temperature are observed. Additionally, linear dependence between the so-called temperature factor T{sub 0} and temperature as well as between {phi}{sub bn} and n are shown. This type of strong temperature dependence indicates the presence of a large degree of lateral inhomogeneities of the barrier height, resulting from the He-ion irradiation induced defects and traps which produce a variation in the number of free carriers. The presence of electrically active defects introduced by He-ion irradiation at and below the Si{sub 0.90}Ge{sub 0.10} surface support this interpretation.

  17. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells.

    Science.gov (United States)

    Liu, Hao-Yu; Roos, Stefan; Jonsson, Hans; Ahl, David; Dicksved, Johan; Lindberg, Jan Erik; Lundh, Torbjörn

    2015-04-01

    Heat shock proteins (HSPs) are a set of highly conserved proteins that can serve as intestinal gate keepers in gut homeostasis. Here, effects of a probiotic, Lactobacillus rhamnosus GG (LGG), and two novel porcine isolates, Lactobacillus johnsonii strain P47-HY and Lactobacillus reuteri strain P43-HUV, on cytoprotective HSP expression and gut barrier function, were investigated in a porcine IPEC-J2 intestinal epithelial cell line model. The IPEC-J2 cells polarized on a permeable filter exhibited villus-like cell phenotype with development of apical microvilli. Western blot analysis detected HSP expression in IPEC-J2 and revealed that L. johnsonii and L. reuteri strains were able to significantly induce HSP27, despite high basal expression in IPEC-J2, whereas LGG did not. For HSP72, only the supernatant of L. reuteri induced the expression, which was comparable to the heat shock treatment, which indicated that HSP72 expression was more stimulus specific. The protective effect of lactobacilli was further studied in IPEC-J2 under an enterotoxigenic Escherichia coli (ETEC) challenge. ETEC caused intestinal barrier destruction, as reflected by loss of cell-cell contact, reduced IPEC-J2 cell viability and transepithelial electrical resistance, and disruption of tight junction protein zonula occludens-1. In contrast, the L. reuteri treatment substantially counteracted these detrimental effects and preserved the barrier function. L. johnsonii and LGG also achieved barrier protection, partly by directly inhibiting ETEC attachment. Together, the results indicate that specific strains of Lactobacillus can enhance gut barrier function through cytoprotective HSP induction and fortify the cell protection against ETEC challenge through tight junction protein modulation and direct interaction with pathogens. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Contribution to the study of rectification at the metal-semiconductor contact: analysis of aging in silicon Schottky diodes

    International Nuclear Information System (INIS)

    Ponpon, J.-P.

    1979-01-01

    The formation of the barrier height and the aging of metal-semiconductor contacts during exposure to air have been studied. The evolution of the electrical characteristics, especially the barrier height, of silicon Schottky diodes results from the diffusion of oxygen through the electrode and its accumulation at the interface. The diffusion coefficient of oxygen has been deduced for each metal used. In a first step the oxygen neutralize a fixed positive charge which remains at the semiconductor surface after etching; then, as silicon is oxidized, a MIS device is formed. Similar results have been obtained in the case of germanium, while no aging appears with cadmium telluride. In this case the barrier height seems to be determined by chemical reactions at the interface [fr

  19. *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood-brain barrier.

    Science.gov (United States)

    Blasig, I E; Giese, H; Schroeter, M L; Sporbert, A; Utepbergenov, D I; Buchwalow, I B; Neubert, K; Schönfelder, G; Freyer, D; Schimke, I; Siems, W E; Paul, M; Haseloff, R F; Blasig, R

    2001-09-01

    To investigate the relevance of *NO and oxyradicals in the blood-brain barrier (BBB), differentiated and well-proliferating brain capillary endothelial cells (BCEC) are required. Therefore, rat BCEC (rBCEC) were transfected with immortalizing genes. The resulting lines exhibited endothelial characteristics (factor VIII, angiotensin-converting enzyme, high prostacyclin/thromboxane release rates) and BBB markers (gamma-glutamyl transpeptidase, alkaline phosphatase). The control line rBCEC2 (mock transfected) revealed fibroblastoid morphology, less factor VIII, reduced gamma-glutamyl transpeptidase, weak radical defence, low prostanoid metabolism, and limited proliferation. Lines transfected with immortalizing genes (especially rBCEC4, polyoma virus large T antigen) conserved primary properties: epitheloid morphology, subcultivation with high proliferation rate under pure culture conditions, and powerful defence against reactive oxygen species (Mn-, Cu/Zn-superoxide dismutase, catalase, glutathione peroxidase, glutathione) effectively controlling radical metabolism. Only 100 microM H2O2 overcame this defence and stimulated the formation of eicosanoids similarly as in primary cells. Some BBB markers were expressed to a lower degree; however, cocultivation with astrocytes intensified these markers (e.g., alkaline phosphatase) and paraendothelial tightness, indicating induction of BBB properties. Inducible NO synthase was induced by a cytokine plus lipopolysaccharide mixture in all lines and primary cells, resulting in *NO release. Comparing the cell lines obtained, rBCEC4 are stable immortalized and reveal the best conservation of properties from primary cells, including enzymes producing or decomposing reactive species. These cells can be subcultivated in large amounts and, hence, they are suitable to study the role of radical metabolism in the BBB and in the cerebral microvasculature. Copyright 2001 Academic Press.

  20. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers

    International Nuclear Information System (INIS)

    Schlenker, E.; Mertens, V.; Parisi, J.; Reineke-Koch, R.; Koentges, M.

    2007-01-01

    Current-voltage and capacitance-voltage measurements serve to analyze thermally evaporated Al Schottky contacts on Cu(In, Ga)Se 2 based photovoltaic thin film devices, either taken as grown or etched in a bromine-methanol solution. The characteristics of the Schottky contacts on the as-grown films give evidence for some dielectric layer developing between the metal and the semiconductor. Etching the semiconductor surface prior to evaporation of the Al front contact yields a pure metal-semiconductor behavior, including effects that can be attributed to an additional diode at the Mo contact. Simulations confirm the experimental results

  1. Modeling Group B Streptococcus and Blood-Brain Barrier Interaction by Using Induced Pluripotent Stem Cell-Derived Brain Endothelial Cells

    OpenAIRE

    Kim, Brandon J.; Bee, Olivia B.; McDonagh, Maura A.; Stebbins, Matthew J.; Palecek, Sean P.; Doran, Kelly S.; Shusta, Eric V.

    2017-01-01

    ABSTRACT Bacterial meningitis is a serious infection of the central nervous system (CNS) that occurs after bacteria interact with and penetrate the blood-brain barrier (BBB). The BBB is comprised of highly specialized brain microvascular endothelial cells (BMECs) that function to separate the circulation from the CNS and act as a formidable barrier for toxins and pathogens. Certain bacteria, such as Streptococcus agalactiae (group B Streptococcus [GBS]), possess the ability to interact with a...

  2. Barrier effect of AlN film in flexible Cu(In,Ga)Se{sub 2} solar cells on stainless steel foil and solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Li, Boyan; Li, Jianjun [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Wu, Li [The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071 (China); Liu, Wei; Sun, Yun [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China); Zhang, Yi, E-mail: yizhang@nankai.edu.cn [Institute of Photo-electronic Thin Film Devices and Technology, Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300071 (China)

    2015-04-05

    Highlights: • The adhension between AlN film and Mo are verygood. • AlN film can be effectively used as the barrier of flexible CIGS solar cell on SS substrate. • AlN film is suitable as the insulation barrier of flexible CIGS solar cell on SS substrate. - Abstract: The AlN film deposited by DC magnetron sputtering on stainless steel (SS) foils was used as the barrier in flexible Cu(In,Ga)Se{sub 2} (CIGS) solar cells on stainless steel foil and characterized comprehensively by X-ray diffraction (XRD), scanning electron microscopy (SEM), I–V, and QE measurements study. The study of AlN as insulation barrier in the flexible CIGS solar cell showed that the adhesion strength between the SS foil and the deposited AlN film was very strong even after annealing at high temperature at 530 °C. More importantly, a high resistance of over 10 MΩ was remained with the film with thickness of around 200 nm after annealing. This indicates that the AlN film is suitable as an effective insulation barrier in flexible CIGS solar cells based on SS foil. In addition, the XRD and SEM results showed that the AlN film did not influence the crystal structure of the Mo film which was deposited upon the AlN layer and used as the electrical contact in CIGS solar cells. It was found that the AlN film contributed to an improved crystallinity of the Mo contact layer compared to the bare SS foil. The combined results of secondary ion mass spectrometry, I–V and EQE measurements of the corresponding flexible CIGS solar cells confirmed that 1 μm-thick AlN film could be used as an efficient barrier layer in CIGS solar cells on SS foil.

  3. Optical and Electrical Properties of Al/(p)Bi2S3 Schottky Junction

    International Nuclear Information System (INIS)

    Kachari, T.; Wary, G.; Rahman, A.

    2010-01-01

    Thin film Al/(p)Bi 2 S 3 Schottky junctions were prepared by vacuum evaporation under pressure 10 -6 Torr. The p-type Bi 2 S 3 thin films with acceptor concentration (3.36-7.33)x10 16 /cm 3 were obtained by evaporating 'In' along with Bi 2 S 3 powder and then annealing the films at 453K for 5 hours. Different junction-parameters such as ideality factor, barrier height, effective Richardson's constant, short-circuit current, etc. were determined from I-V characteristics. The junctions exhibited rectifying I-V characteristics and also photovoltaic effect. Ideality factor was found to decrease with the increase of temperature. Proper doping, annealing, and hydrogenation are necessary to reduce the series resistance so as to achieve high carrier efficiency. More works are being carried out in this direction.

  4. Measuring size dependent electrical properties from nanoneedle structures: Pt/ZnO Schottky diodes

    International Nuclear Information System (INIS)

    Mao, Shimin; Anderson, Daniel D.; Shang, Tao; Park, Byoungnam; Dillon, Shen J.

    2014-01-01

    This work reports the fabrication and testing of nanoneedle devices with well-defined interfaces that are amenable to a variety of structural and electrical characterization, including transmission electron microscopy. Single Pt/ZnO nanoneedle Schottky diodes were fabricated by a top down method using a combination of electro-polishing, sputtering, and focused ion beam milling. The resulting structures contained nanoscale planar heterojunctions with low ideality factors, the dimensions of which were tuned to study size-dependent electrical properties. The diameter dependence of the Pt/ZnO diode barrier height is explained by a joule heating effect and/or electronic inhomogeneity in the Pt/ZnO contact area

  5. Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission

    Directory of Open Access Journals (Sweden)

    Uriel Levy

    2017-02-01

    Full Text Available Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene ( ∼ π α = 2.3 % . Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond.

  6. Schottky x-ray detectors based on a bulk β-Ga2O3 substrate

    Science.gov (United States)

    Lu, Xing; Zhou, Leidang; Chen, Liang; Ouyang, Xiaoping; Liu, Bo; Xu, Jun; Tang, Huili

    2018-03-01

    β-Ga2O3 Schottky barrier diodes (SBDs) have been fabricated on a bulk (100) β-Ga2O3 substrate and tested as X-ray detectors in this study. The devices exhibited good rectification properties, such as a high rectification ratio and a close-to-unity ideality factor. A high photo-to-dark current ratio exceeding 800 was achieved for X-ray detection, which was mainly attributed to the low reverse leakage current in the β-Ga2O3 SBDs. Furthermore, transient response of the β-Ga2O3 X-ray detectors was investigated, and two different detection mechanisms, photovoltaic and photoconductive, were identified. The results imply the great potential of β-Ga2O3 based devices for X-ray detection.

  7. Analysis of Reverse-Bias Leakage Current Mechanisms in Metal/GaN Schottky Diodes

    Directory of Open Access Journals (Sweden)

    P. Pipinys

    2010-01-01

    Full Text Available Temperature-dependent reverse-bias current-voltage characteristics obtained by other researchers for Schottky diodes fabricated on GaN are reinterpreted in terms of phonon-assisted tunneling (PhAT model. Temperature dependence of reverse-bias leakage current is shown could be caused by the temperature dependence of electron tunneling rate from traps in the metal-semiconductor interface to the conduction band of semiconductor. A good fit of experimental data with the theory is received in a wide temperature range (from 80 K to 500 K using for calculation the effective mass of 0.222 me. and for the phonon energy the value of 70 meV. The temperature and bias voltages dependences of an apparent barrier height (activation energy are also explicable in the framework of the PhAT model.

  8. Excreted/secreted Trichuris suis products reduce barrier function and suppress inflammatory cytokine production of intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hiemstra, I. H.; Klaver, E. J.; Vrijland, K.

    2014-01-01

    The administration of helminths is considered a promising strategy for the treatment of autoimmune diseases due to their immunomodulatory properties. Currently, the application of the helminth Trichuris suis as a treatment for Crohn's disease is being studied in large multi-center clinical trials....... The intestinal epithelium forms an efficient barrier between the intestinal lumen containing the microbial flora and helminths, and dendritic cells (DCs) present in the lamina propria that determine the TH response. Here, we investigated how excreted/secreted (E/S) products of T. suis affect the barrier function...... of intestinal epithelial cells (IECs) in order to reach the DCs and modulate the immune response. We show that T. suis E/S products reduce the barrier function and the expression of the tight junction proteins EMP-1 and claudin-4 in IEC CMT93/69 monolayers in a glycan-dependent manner. This resulted...

  9. Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients.

    Science.gov (United States)

    Sugita, Kazunari; Steer, Catherine A; Martinez-Gonzalez, Itziar; Altunbulakli, Can; Morita, Hideaki; Castro-Giner, Francesc; Kubo, Terufumi; Wawrzyniak, Paulina; Rückert, Beate; Sudo, Katsuko; Nakae, Susumu; Matsumoto, Kenji; O'Mahony, Liam; Akdis, Mübeccel; Takei, Fumio; Akdis, Cezmi A

    2018-01-01

    Bronchial epithelial barrier leakiness and type 2 innate lymphoid cells (ILC2s) have been separately linked to asthma pathogenesis; however, the influence of ILC2s on the bronchial epithelial barrier has not been investigated previously. We investigated the role of ILC2s in the regulation of bronchial epithelial tight junctions (TJs) and barrier function both in bronchial epithelial cells of asthmatic patients and healthy subjects and general innate lymphoid cell- and ILC2-deficient mice. Cocultures of human ILC2s and bronchial epithelial cells were used to determine transepithelial electrical resistance, paracellular flux, and TJ mRNA and protein expressions. The effect of ILC2s on TJs was examined by using a murine model of IL-33-induced airway inflammation in wild-type, recombination-activating gene 2 (Rag2) -/- , Rag2 -/- Il2rg -/- , and Rora sg/sg mice undergoing bone marrow transplantation to analyze the in vivo relevance of barrier disruption by ILC2s. ILC2s significantly impaired the epithelial barrier, as demonstrated by reduced transepithelial electrical resistance and increased fluorescein isothiocyanate-dextran permeability in air-liquid interface cultures of human bronchial epithelial cells. This was in parallel to decreased mRNAs and disrupted protein expression of TJ proteins and was restored by neutralization of IL-13. Intranasal administration of recombinant IL-33 to wild-type and Rag2 -/- mice lacking T and B cells triggered TJ disruption, whereas Rag2 -/- Il2rg -/- and Rora sg/sg mice undergoing bone marrow transplantation that lack ILC2s did not show any barrier leakiness. Direct nasal administration of IL-13 was sufficient to induce deficiency in the TJ barrier in the bronchial epithelium of mice in vivo. These data highlight an essential mechanism in asthma pathogenesis by demonstrating that ILC2s are responsible for bronchial epithelial TJ barrier leakiness through IL-13. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  10. High-temperature Schottky diode characteristics of bulk ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Guer, Emre; Tuezemen, S; Kilic, Bayram; Coskun, C [Department of Physics, Faculty of Arts and Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2007-05-16

    Current-voltage (I-V) measurements of Ag/n-ZnO have been carried out at temperatures of 200-500 K in order to understand the temperature dependence of the diode characteristics. Forward-bias I-V analysis results in a Schottky barrier height of 0.82 eV and an ideality factor of 1.55 at room temperature. The barrier height of 0.74 eV and Richardson constant of 0.248 A K{sup -2} cm{sup -2} were also calculated from the Richardson plot, which shows nearly linear characteristics in the temperature range 240-440 K. From the nk{sub b}T/q versus k{sub b}T/q graph, where n is ideality factor, k{sub b} the Boltzmann constant, T the temperature and q the electronic charge we deduce that thermionic field emission (TFE) is dominant in the charge transport mechanism. At higher sample temperatures (>440 K), a trap-assisted tunnelling mechanism is proposed due to the existence of a deep donor situated at E{sub c}-0.62 eV with 3.3 x 10{sup -15} cm{sup 2} capture cross section observed by both deep-level transient spectroscopy (DLTS) and lnI{sub 0} versus 1/k{sub b}T plots. The ideality factor almost remains constant in the temperature range 240-400 K, which shows the stability of the Schottky contact in this temperature range.

  11. Transfection of brain capillary endothelial cells in primary culture with defined blood-brain barrier properties.

    Science.gov (United States)

    Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben

    2015-08-07

    Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly

  12. Zika Virus Infects, Activates, and Crosses Brain Microvascular Endothelial Cells, without Barrier Disruption

    Science.gov (United States)

    Papa, Michelle P.; Meuren, Lana M.; Coelho, Sharton V. A.; Lucas, Carolina G. de Oliveira; Mustafá, Yasmin M.; Lemos Matassoli, Flavio; Silveira, Paola P.; Frost, Paula S.; Pezzuto, Paula; Ribeiro, Milene R.; Tanuri, Amilcar; Nogueira, Mauricio L.; Campanati, Loraine; Bozza, Marcelo T.; Paula Neto, Heitor A.; Pimentel-Coelho, Pedro M.; Figueiredo, Claudia P.; de Aguiar, Renato S.; de Arruda, Luciana B.

    2017-01-01

    Zika virus (ZIKV) has been associated to central nervous system (CNS) harm, and virus was detected in the brain and cerebrospinal fluids of microcephaly and meningoencephalitis cases. However, the mechanism by which the virus reaches the CNS is unclear. Here, we addressed the effects of ZIKV replication in human brain microvascular endothelial cells (HBMECs), as an in vitro model of blood brain barrier (BBB), and evaluated virus extravasation and BBB integrity in an in vivo mouse experimental model. HBMECs were productively infected by African and Brazilian ZIKV strains (ZIKVMR766 and ZIKVPE243), which induce increased production of type I and type III IFN, inflammatory cytokines and chemokines. Infection with ZIKVMR766 promoted earlier cellular death, in comparison to ZIKVPE243, but infection with either strain did not result in enhanced endothelial permeability. Despite the maintenance of endothelial integrity, infectious virus particles crossed the monolayer by endocytosis/exocytosis-dependent replication pathway or by transcytosis. Remarkably, both viruses' strains infected IFNAR deficient mice, with high viral load being detected in the brains, without BBB disruption, which was only detected at later time points after infection. These data suggest that ZIKV infects and activates endothelial cells, and might reach the CNS through basolateral release, transcytosis or transinfection processes. These findings further improve the current knowledge regarding ZIKV dissemination pathways. PMID:29312238

  13. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.; Labelle, André J.; Sargent, Edward H.

    2013-01-01

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  14. Efficient, air-stable colloidal quantum dot solar cells encapsulated using atomic layer deposition of a nanolaminate barrier

    KAUST Repository

    Ip, Alexander H.

    2013-12-23

    Atomic layer deposition was used to encapsulate colloidal quantum dot solar cells. A nanolaminate layer consisting of alternating alumina and zirconia films provided a robust gas permeation barrier which prevented device performance degradation over a period of multiple weeks. Unencapsulated cells stored in ambient and nitrogen environments demonstrated significant performance losses over the same period. The encapsulated cell also exhibited stable performance under constant simulated solar illumination without filtration of harsh ultraviolet photons. This monolithically integrated thin film encapsulation method is promising for roll-to-roll processed high efficiency nanocrystal solar cells. © 2013 AIP Publishing LLC.

  15. Doping enhanced barrier lowering in graphene-silicon junctions

    Science.gov (United States)

    Zhang, Xintong; Zhang, Lining; Chan, Mansun

    2016-06-01

    Rectifying properties of graphene-semiconductor junctions depend on the Schottky barrier height. We report an enhanced barrier lowering in graphene-Si junction and its essential doping dependence in this paper. The electric field due to ionized charge in n-type Si induces the same type doping in graphene and contributes another Schottky barrier lowering factor on top of the image-force-induced lowering (IFIL). We confirm this graphene-doping-induced lowering (GDIL) based on well reproductions of the measured reverse current of our fabricated graphene-Si junctions by the thermionic emission theory. Excellent matching between the theoretical predictions and the junction data of the doping-concentration dependent barrier lowering serves as another evidence of the GDIL. While both GDIL and IFIL are enhanced with the Si doping, GDIL exceeds IFIL with a threshold doping depending on the as-prepared graphene itself.

  16. Membrane organization determines barrier properties of endothelial cells and short-chain sphingolipid-facilitated doxorubicin influx.

    Science.gov (United States)

    van Hell, A J; Klymchenko, A; Gueth, D M; van Blitterswijk, W J; Koning, G A; Verheij, M

    2014-09-01

    The endothelial lining and its outer lipid membrane are the first major barriers drug molecules encounter upon intravenous administration. Our previous work identified lipid analogs that counteract plasma membrane barrier function for a series of amphiphilic drugs. For example, short-chain sphingolipids (SCS), like N-octanoyl-glucosylceramide, effectively elevated doxorubicin accumulation in tumor cells, both in vitro and in vivo, and in endothelial cells, whereas other (normal) cells remained unaffected. We hypothesize here that local membrane lipid composition and the degree of lipid ordering define SCS efficacy in individual cells. To this end, we study the differential effect of SCS on bovine aortic endothelial cells (BAEC) in its confluent versus proliferative state, as a model system. While their (plasma membrane) lipidome stays remarkably unaltered when BAECs reach confluency, their lipids segregate to form apical and basolateral domains. Using probe NR12S, we reveal that lipids in the apical membrane are more condensed/liquid-ordered. SCS preferentially attenuate the barrier posed by these condensed membranes and facilitate doxorubicin influx in these particular membrane regions. We confirm these findings in MDCK cells and artificial membranes. In conclusion, SCS-facilitated drug traversal acts on condensed membrane domains, elicited by confluency in resting endothelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Performance enhancement of polymer Schottky diode by doping pentacene

    International Nuclear Information System (INIS)

    Kang, K.S.; Chen, Y.; Lim, H.K.; Cho, K.Y.; Han, K.J.; Kim, Jaehwan

    2009-01-01

    Schottky diodes have been fabricated using pentacene-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as a semiconducting material. To understand the fundamental properties of the pentacene-doped PEDOT:PSS, ultraviolet visible (UV) absorption spectroscopy was employed. It was found that a significant amount of pentacene can dissolve in n-methylpyrrolidone solvent. No characteristic absorption peak of pentacene was observed in the UV-visible spectra of PEDOT:PSS films doped with pentacene,. However, the absorption intensity of the doped PEDOT:PSS films increased as the pentacene concentration increased in particular in the UV region. The atomic force microscope images show that the surface roughnesses of PEDOT:PSS films increased as the pentacene concentration increased. Three-layer Schottky diodes comprising Al/PEDOT:PSS/Au or Al/PEDOT:PSS-pentacene/Au were fabricated. The maximum forward currents of non-doped and doped Schottky diodes were 4.8 and 440 μA/cm 2 at 3.3 MV/m, respectively. The forward current increased nearly two orders of magnitude for Schottky diode doped with 11.0 wt.% of pentacene.

  18. Particle detectors based on InP Schottky diodes

    Czech Academy of Sciences Publication Activity Database

    Yatskiv, Roman; Grym, Jan

    2012-01-01

    Roč. 10, č. 7 (2012), C100051-C100055 ISSN 1748-0221 R&D Projects: GA MŠk(CZ) OC10021; GA MŠk LD12014 Institutional support: RVO:67985882 Keywords : Particle detector * High purity InP layer * Schottky diode Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.869, year: 2011

  19. Importins α and β signaling mediates endothelial cell inflammation and barrier disruption.

    Science.gov (United States)

    Leonard, Antony; Rahman, Arshad; Fazal, Fabeha

    2018-04-01

    Nucleocytoplasmic shuttling via importins is central to the function of eukaryotic cells and an integral part of the processes that lead to many human diseases. In this study, we addressed the role of α and β importins in the mechanism of endothelial cell (EC) inflammation and permeability, important pathogenic features of many inflammatory diseases such as acute lung injury and atherosclerosis. RNAi-mediated knockdown of importin α4 or α3 each inhibited NF-κB activation, proinflammatory gene (ICAM-1, VCAM-1, and IL-6) expression, and thereby endothelial adhesivity towards HL-60 cells, upon thrombin challenge. The inhibitory effect of α4 and α3 knockdown was associated with impaired nuclear import and consequently, DNA binding of RelA/p65 subunit of NF-κB and occurred independently of IκBα degradation. Intriguingly, knockdown of importins α4 and α3 also inhibited thrombin-induced RelA/p65 phosphorylation at Ser 536 , showing a novel role of α importins in regulating transcriptional activity of RelA/p65. Similarly, knockdown of importin β1, but not β2, blocked thrombin-induced activation of RelA/p65 and its target genes. In parallel studies, TNFα-mediated inflammatory responses in EC were refractory to knockdown of importins α4, α3 or β1, indicating a stimulus-specific regulation of RelA/p65 and EC inflammation by these importins. Importantly, α4, α3, or β1 knockdown also protected against thrombin-induced EC barrier disruption by inhibiting the loss of VE-cadherin at adherens junctions and by regulating actin cytoskeletal rearrangement. These results identify α4, α3 and β1 as critical mediators of EC inflammation and permeability associated with intravascular coagulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs.

    Science.gov (United States)

    Hahner, J; Hoyer, M; Hillig, S; Schulze-Tanzil, G; Meyer, M; Schröpfer, M; Lohan, A; Garbe, L-A; Heinrich, G; Breier, A

    2015-01-01

    A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.