WorldWideScience

Sample records for school science programs

  1. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  2. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  3. How to implement the Science Fair Self-Help Development Program in schools

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it frees the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.

  4. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  5. Foundations in Science and Mathematics Program for Middle School and High School Students

    Science.gov (United States)

    Desai, Karna Mahadev; Yang, Jing; Hemann, Jason

    2016-01-01

    The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .

  6. Improving pupils’ conceptual understanding by a connected in-school and out-of-school science program: a multiple case study

    NARCIS (Netherlands)

    Geveke, Carla; Steenbeek, Henderien; Doornenbal, Jeannette; van Geert, Paul

    2016-01-01

    The number of out-of-school science programs, which refers to science education at outside school environments, is gradually increasing. Although out-of-school programs are generally considered to be important for the development of pupils’ science knowledge and skills, more evidence concerning the

  7. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  8. Mapping Out-of-School-Time Youth Science Programs: Organizational Patterns and Possibilities

    Science.gov (United States)

    Laursen, S. L.; Archie, T.; Thiry, H.

    2012-12-01

    Out-of-school-time (OST) experiences promise to enrich young (K-12) people's experience of science, technology and engineering. Belief is widespread that OST programs are ideal locations to learn science, and that youth participation may enhance the science workforce and increase access to science for girls and minorities. Yet we know little about the scope or nature of science-focused OST youth programming. Variety poses a challenge for researchers, with OST sites in schools, museums, zoos, science and nature centers, aquariums, planetariums, and community centers; and formats including after-school clubs, camps, workshops, festivals, research apprenticeships, and more. Moreover, there is no single national network through which researchers might reach and recruit nationally representative samples of programs. Thus, to date there has been no systematic study of the broader national landscape of OST STEM programming. Our national study, Mapping Out-of-School-Time Science (MOST-Science), examines a national sample of OST programs focused on science, engineering, and/or technology. Here we describe first findings about the characteristics of these programs and their home organizations, including aspects of program design, structure, funding, staffing, and youth audience. Using an electronic survey, we collected data from 417 programs and classified their host institutions into eight organizational types: aquariums and zoos, museums, non-profits, national youth organizations, K-12 school districts, colleges and universities, government labs, and private sector organizations. We then examine key attributes of the youth programs hosted by these institution and discuss differences based on organizational types, including scientific organizations that are especially well equipped to offer research and field experiences. Programs engaging youth in research and field experiences are offered across all organizational types. Yet they vary notably in the size and demographics

  9. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  10. An analysis of program planning in schools with emerging excellence in science instructional design

    Science.gov (United States)

    Carroll, Karen Marie

    Science educators agree on many of the program elements that characterize exemplary science instructional programs, but it has not been clear how the processes of planning and implementation lead to excellence in program design. This study focuses on two K--12 school clusters located in unified school districts and one K--12 school cluster spanning two non-unified districts that are in the midst of building new science programs. The clusters were selected for support by an organization of educators, scientists, and businesspersons because they were recognized as likely to produce good programs. The investigation centers on three research questions: (1) To what extent have schools engaged in science education reform achieved excellence? (2) How did schools engaged in science program improvement go about achieving their goals, and (3) What contextual factors are most closely related to the realization of quality program elements? The degree to which each program studied met indicators of quality suggested by the National Science Education Standards (NSES) are described according to an Innovation Configuration (IC) Chart. Using a Stream Diagnostic method of analysis, levels of practice were associated with contextual factors categorized as Social, Organizing, and Resource. Findings reveal the importance of a balanced and synchronized function of all components, including administrative commitment, teacher participation, and favorable logistical aspects. Individual reform projects were more likely to be successful if they included exemplary program elements and mechanisms for program managers to access district personnel and procedures needed to implement programs. A review of the cluster case histories also revealed the positive impact of cooperation between the funding organization and the project, the degree to which professional development is directly related to the new program, and the availability of resources and support for each exemplary program element.

  11. A multimedia educational program that increases science achievement among inner-city non-Asian minority middle-school students.

    Science.gov (United States)

    Murray, Nancy G; Opuni, Kwame A; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M; Hobbs, Mary

    2009-06-01

    To test the effectiveness of a middle school, multimedia health sciences educational program called HEADS UP in non-Asian-minority (Hispanic and African American), inner-city students. The program designers hope to increase the number of these students entering the health sciences pipeline. The program includes video role-model stories featuring minority scientists and students, hands-on activities, and teacher resources. Collaborators from The University of Texas Health Science Center at Houston, Spring Branch Independent School District, and the Health Museum developed the modules. From 2004 to 2007, the authors used a quasi-experimental, two-group pretest/posttest design to assess program effects on students' performance and interest in science, their science self-efficacy, their fear of science, and their science-related careers self-efficacy. An independent third party matched the intervention school to a comparison school by test scores, school demographics, and student demographics and then matched pairs of sixth-grade students (N = 428) by fifth-grade science scores, gender, ethnicity, and participation in the free or reduced lunch program. The authors collected data on these students for three years. At eighth grade (2007), the intervention school students scored significantly higher (F = 12.38, P science and reported higher interest in science (F = 11.08, P school pairs. Students in neither group reported an increase in their confidence to choose a science-related career, but students in one high-implementing teacher's class reported decreased fear of science. HEADS UP shows potential for improving inner-city, non-Asian-minority middle school students' performance and interest in science.

  12. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  13. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  14. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  15. The long-term impact of a math, science and technology program on grade school girls

    Science.gov (United States)

    Sullivan, Sandra Judd

    The purpose of this study was to determine if a math, science, and technology intervention program improved grade school girls' attitudes and stereotypes toward science and scientists, as well as participation levels in science-related activities, two years after their participating in the program. The intervention program evaluated was Operation SMART, developed by Girls Incorporated. Participants were recruited from the 6th and 7th grades from two public middle schools in Northern California. One hundred twenty-seven girls signed up for the survey and were assigned to either the SMART group (previous SMART participants) or Non-SMART group (no previous experience with SMART). The survey consisted of five parts: (1) a background information sheet, (2) the Modified Attitudes Toward Science Inventory, (3) the What Do You Do? survey, (4) the Draw-A-Scientist Test-Revised, and (5) a career interests and role models/influencer survey. Results indicated that there were no significant differences between the SMART and Non-SMART groups on any of the test measures. However, middle school attended did have a significant effect on the outcome variables. Girls from Middle School A reported more positive attitudes toward science, while girls from Middle School B reported higher participation levels in extracurricular science activities. Possible explanations for these findings suggest too much time had passed between treatment effect and time of measurement as well as the strong influence of teacher and school environment on girls' attitudes and stereotypes. Recommendations for future research are discussed.

  16. Program to enrich science and mathematics experiences of high school students through interactive museum internships

    Energy Technology Data Exchange (ETDEWEB)

    Reif, R.J. [State Univ. of New York, New Paltz, NY (United States); Lock, C.R. [Univ. of North Carolina, Charlotte, NC (United States)

    1998-11-01

    This project addressed the problem of female and minority representation in science and mathematics education and in related fields. It was designed to recruit high school students from under-represented groups into a program that provided significant, meaningful experiences to encourage those young people to pursue careers in science and science teaching. It provided role models for those students. It provided experiences outside of the normal school environment, experiences that put the participants in the position to serve as role models themselves for disadvantaged young people. It also provided encouragement to pursue careers in science and mathematics teaching and related careers. In these respects, it complemented other successful programs to encourage participation in science. And, it differed in that it provided incentives at a crucial time, when career decisions are being made during the high school years. Further, it encouraged the pursuit of careers in science teaching. The objectives of this project were to: (1) provide enrichment instruction in basic concepts in the life, earth, space, physical sciences and mathematics to selected high school students participating in the program; (2) provide instruction in teaching methods or processes, including verbal communication skills and the use of questioning; (3) provide opportunities for participants, as paid student interns, to transfer knowledge to other peers and adults; (4) encourage minority and female students with high academic potential to pursue careers in science teaching.

  17. The journey of a science teacher: Preparing female students in the Training Future Scientists after school program

    Science.gov (United States)

    Robinson-Hill, Rona M.

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed through a constructivist perspective, using dialogic engagement, coinciding with Lev Vygotsky's sociocultural learning theory. This action research project used mixed methods research design, targeted urban adolescent females who were members of Boys & Girls Club of Greater St. Louis (BGCGSTL) after-school program. The data collection measures were three qualitative instruments (semi-structured interviews, reflective journal entries and attitudinal survey open-ended responses) and two quantitative instruments (pre-test and posttests over the content from the Buckle-down Curriculum and attitudinal survey scaled responses). The goal was to describe the impact the Training Future Scientist (TFS) after-school program has on the girls' scientific content knowledge, attitude toward choosing a science career, and self-perception in science. Through the TFS after-school program participants had access to a secondary science teacher-researcher, peer leaders that were in the 9th--12th grade, and Science, Technology, Engineering and Math (STEM) role models from Washington University Medical School Young Scientist Program (YSP) graduate and medical students and fellows as volunteers. The program utilized the Buckle-down Curriculum as guided, peer-led cooperative learning groups, hands-on labs and demonstrations facilitated by the researcher, trained peer leaders and/or role models that used constructivist science pedagogy to improve test-taking strategies. The outcomes for the TFS study were an increase in science content knowledge, a positive trend in attitude change, and a negative trend in choosing a science career. Keywords: informal

  18. THE INCORPORATION OF THE USA ‘SCIENCE MADE SENSIBLE’ PROGRAM IN SOUTH AFRICAN PRIMARY SCHOOLS: A CROSS-CULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2016-02-01

    Full Text Available The Science Made Sensible (SMS program began as a partnership between the University of Miami (UM, Florida, USA, and some public schools in Miami. In this program, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of the SMS program in Miami, it was extended internationally. The SMS team (two Miami Grade 6/7 science teachers and two UM postgraduate students, 195 learners, and five South African teachers at two primary schools in Pretoria, South Africa, participated in this study. A quantitative research design was employed, and learners, teachers and UM postgraduate students used questionnaires to evaluate the SMS program. The results show that the SMS team was successful in reaching the SMS goals in these South African schools. More than 90% of the learners are of opinion that the SMS team from the USA made them more interested in the natural sciences and fostered an appreciation for the natural sciences. All the South African teachers plan to adopt and adapt some of the pedagogical strategies they learned from the SMS team. This article includes a discussion about the benefits of inquiry-based learning and the similarities and dissimilarities of USA and South Africa’s teaching methods in the science classrooms.

  19. Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students

    Science.gov (United States)

    Kim, Hanna

    2016-01-01

    This study investigates the effects of an intensive 1-week Inquiry-Based Science and Technology Enrichment Program (InSTEP) designed for middle school-aged female students. InSTEP uses a guided/open inquiry approach that is deepened and redefined as eight sciences and engineering practices in the Next Generation Science Standards, which aimed at…

  20. DoD Science and Engineering Apprenticeship Program for High School Students, 1996-󈨥 Activities

    Science.gov (United States)

    1997-05-01

    Science Fair, A Honor Roll Baseball, Cross Country, Athletics, Weightlifting , Computers Robert Sidney Cox, III Other Male Leon High School...Sports Medicine Honor Roll Weightlifting , Swimming Marcus Mills Black Male Godby High School Florida State University Undecided FSU Incentive...paid for by the program. Seven of the students took a Psy- chology course, one a Nutritional Science class and two a Mathematics course. Eight of these

  1. A program to enhance k-12 science education in ten rural New York school districts.

    Science.gov (United States)

    Goodell, E; Visco, R; Pollock, P

    1999-04-01

    The Rural Partnership for Science Education, designed by educators and scientists in 1991 with funding from the National Institutes of Health, works in two rural New York State counties with students and their teachers from kindergarten through grade 12 to improve pre-college science education. The Partnership is an alliance among ten rural New York school districts and several New York State institutions (e.g., a regional academic medical center; the New York Academy of Sciences; and others), and has activities that involve around 4,800 students and 240 teachers each year. The authors describe the program's activities (e.g., summer workshops for teachers; science exploration camps for elementary and middle-school students; enrichment activities for high school students). A certified science education specialist directs classroom demonstrations throughout the academic year to support teachers' efforts to integrate hands-on activities into the science curriculum. A variety of evaluations over the years provides strong evidence of the program's effectiveness in promoting students' and teachers' interest in science. The long-term goal of the Partnership is to inspire more rural students to work hard, learn science, and enter the medical professions.

  2. NASA's explorer school and spaceward bound programs: Insights into two education programs designed to heighten public support for space science initiatives

    Science.gov (United States)

    Allner, Matthew; McKay, Christopher P; Coe, Liza; Rask, Jon; Paradise, Jim; Wynne, J. Judson

    2010-01-01

    IntroductionNASA has played an influential role in bringing the enthusiasm of space science to schools across the United States since the 1980s. The evolution of this public outreach has led to a variety of NASA funded education programs designed to promote student interest in science, technology, engineering, math, and geography (STEM-G) careers.PurposeThis paper investigates the educational outreach initiatives, structure, and impact of two of NASA's largest educational programs: the NASA Explorer School (NES) and NASA Spaceward Bound programs.ResultsSince its induction in 2003 the NES program has networked and provided resources to over 300 schools across the United States. Future directions include further development of mentor schools for each new NES school selected, while also developing a longitudinal student tracking system for NES students to monitor their future involvement in STEM-G careers. The Spaceward Bound program, now in its third year of teacher outreach, is looking to further expand its teacher network and scientific collaboration efforts, while building on its teacher mentorship framework.

  3. Working with Science Teachers to Transform the Opportunity Landscape for Regional and Rural Youth: A Qualitative Evaluation of the Science in Schools Program

    Science.gov (United States)

    Sheehan, Grania R.; Mosse, Jennifer

    2013-01-01

    This article reports on a qualitative evaluation of the Science in Schools program; a suite of science based activities delivered by staff of a regional university campus and designed to provide professional development for science teachers working in non-metropolitan schools in a socioeconomically disadvantaged region of Australia. The research…

  4. UCLA's outreach program of science education in the Los Angeles schools.

    Science.gov (United States)

    Palacio-Cayetano, J; Kanowith-Klein, S; Stevens, R

    1999-04-01

    The UCLA School of Medicine's Interactive Multi-media Exercises (IMMEX) Project began its outreach into pre-college education in the Los Angeles area in 1993. The project provides a model in which software and technology are effectively intertwined with teaching, learning, and assessment (of both students' and teachers' performances) in the classroom. The project has evolved into a special collaboration between the medical school and Los Angeles teachers. UCLA faculty and staff work with science teachers and administrators from elementary, middle, and high schools. The program benefits ethnically and racially diverse groups of students in schools ranging from the inner city to the suburbs. The project's primary goal is to use technology to increase students' achievement and interest in science, including medicine, and thus move more students into the medical school pipeline. Evaluations from outside project evaluators (West Ed) as well as from teachers and IMMEX staff show that the project has already had a significant effect on teachers' professional development, classroom practice, and students' achievement in the Los Angeles area.

  5. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    Science.gov (United States)

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  6. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  7. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. PMID:26086660

  8. The relationship of mentoring on middle school girls' science-related attitudes

    Science.gov (United States)

    Clark, Lynette M.

    This quantitative study examined the science-related attitudes of middle school girls who attended a science-focused mentoring program and those of middle school girls who attended a traditional mentoring program. Theories related to this study include social cognitive theory, cognitive development theory, and possible selves' theory. These theories emphasize social and learning experiences that may impact the science-related attitudes of middle school girls. The research questions examined the science-related attitudes of middle school girls who participate in a science-related mentoring program. The hypotheses suggested that there are significant differences that exist between the attitudes of middle school female participants in a science-related mentoring program and female participants in a traditional mentoring program. The quantitative data were collected through a survey entitled the Test of Science-Related Attitudes (TOSRA) which measures science-related attitudes. The population of interest for this study is 11-15 year old middle school girls of various racial and socio-economic backgrounds. The sample groups for the study were middle school girls participating in either a science-focused mentoring program or a traditional mentoring program. Results of the study indicated that no significant difference existed between the science-related attitudes of middle school girls in a science-related mentoring program and the attitudes of those in a traditional mentoring program. The practical implications for examining the concerns of the study would be further investigations to increase middle school girls' science-related attitudes.

  9. Implications for School Leaders of the Impact of Math, Science, and Technology Magnet Programs on Middle School Student Achievement

    Science.gov (United States)

    Hinojosa, Lupita

    2012-01-01

    Although many national studies have been conducted on the effectiveness of magnet programs, there is limited research involving math, science, and technology magnet schools and their influence on student academic performance, especially at the middle school level. The purpose of this study was to determine whether a statistical difference existed…

  10. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    Science.gov (United States)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  12. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  13. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  14. Thinking about television science: How students understand the nature of science from different program genres

    Science.gov (United States)

    Dhingra, Koshi

    2003-02-01

    Student views on the nature of science are shaped by a variety of out-of-school forces and television-mediated science is a significant force. To attempt to achieve a science for all, we need to recognize and understand the diverse messages about science that students access and think about on a regular basis. In this work I examine how high school students think about science that is mediated by four different program genres on television: documentary, magazine-format programming, network news, and dramatic or fictional programming. The following categories of findings are discussed: the ethics and validity of science, final form science, science as portrayed by its practitioners, and school science and television science. Student perceptions of the nature of science depicted on the program sample used in this study ranged from seeing science as comprising tentative knowledge claims to seeing science as a fixed body of facts.

  15. Student science enrichment training program

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1994-08-01

    This is a report on the Student Science Enrichment Training Program, with special emphasis on chemical and computer science fields. The residential summer session was held at the campus of Claflin College, Orangeburg, SC, for six weeks during 1993 summer, to run concomitantly with the college`s summer school. Fifty participants selected for this program, included high school sophomores, juniors and seniors. The students came from rural South Carolina and adjoining states which, presently, have limited science and computer science facilities. The program focused on high ability minority students, with high potential for science engineering and mathematical careers. The major objective was to increase the pool of well qualified college entering minority students who would elect to go into science, engineering and mathematical careers. The Division of Natural Sciences and Mathematics and engineering at Claflin College received major benefits from this program as it helped them to expand the Departments of Chemistry, Engineering, Mathematics and Computer Science as a result of additional enrollment. It also established an expanded pool of well qualified minority science and mathematics graduates, which were recruited by the federal agencies and private corporations, visiting Claflin College Campus. Department of Energy`s relationship with Claflin College increased the public awareness of energy related job opportunities in the public and private sectors.

  16. The effects of a science intervention program on the attitudes and achievement of high school girls in science

    Science.gov (United States)

    Steakley, Carrie Capers

    This study investigated the effects of a high school science intervention program that included hands-on activities, science-related career information and exposure, and real-world experiences on girls' attitudes and achievement in science. Eighty-four girls, 44 ninth-graders and 40 tenth-graders, and 105 parents participated in the study. Survey data was collected to assess the girls' attitudes toward science in seven distinct areas: social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Additional questionnaires were used to determine the extent of the girls' participation in sports and the attitudes of their parents toward science. The girls' cumulative science semester grade point averages since the seventh grade were used to assess academic science achievement. This study found no evidence that participation in the program improved the girls' attitudes or achievement in science. Parent attitudes and years of participation in sports were not accurate predictors of science achievement. Additionally, no significant relationship was detected between the girls' and their parents' perceptions of science. However, the study did suggest that extended participation in sports may positively affect science achievement for girls. This study holds implications for educational stakeholders who seek to implement intervention methods and programs that may improve student attitudes and achievement in science and attract more youth to future science-related careers.

  17. A study of science leadership and science standards in exemplary standards-based science programs

    Science.gov (United States)

    Carpenter, Wendy Renae

    The purpose for conducting this qualitative study was to explore best practices of exemplary standards-based science programs and instructional leadership practices in a charter high school and in a traditional high school. The focus of this study included how twelve participants aligned practices to National Science Education Standards to describe their science programs and science instructional practices. This study used a multi-site case study qualitative design. Data were obtained through a review of literature, interviews, observations, review of educational documents, and researcher's notes collected in a field log. The methodology used was a multi-site case study because of the potential, through cross analysis, for providing greater explanation of the findings in the study (Merriam, 1988). This study discovered six characteristics about the two high school's science programs that enhance the literature found in the National Science Education Standards; (a) Culture of expectations for learning-In exemplary science programs teachers are familiar with a wide range of curricula. They have the ability to examine critically and select activities to use with their students to promote the understanding of science; (b) Culture of varied experiences-In exemplary science programs students are provided different paths to learning, which help students, take in information and make sense of concepts and skills that are set forth by the standards; (c) Culture of continuous feedback-In exemplary science programs teachers and students work together to engage students in ongoing assessments of their work and that of others as prescribed in the standards; (d) Culture of Observations-In exemplary science programs students, teachers, and principals reflect on classroom instructional practices; teachers receive ongoing evaluations about their teaching and apply feedback towards improving practices as outlined in the standards; (e) Culture of continuous learning-In exemplary

  18. The effectiveness of a popular science promotion program on nanotechnology for elementary school students in I-Lan City

    Science.gov (United States)

    Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I.; Chen, Hui-Huang

    2015-01-01

    Background:Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in nanotechnology among schoolchildren. Purpose:The objective of this study was to evaluate the effectiveness of the Nanotechnology-based Popular Science Education Promotion and Teaching (NPSEPT) program through camp activity that was implemented in elementary schools in I-Lan City, Taiwan. Program description:To create a competitive advantage, a human resources development program was implemented as one of the nanotechnology incubation projects in Taiwan and focused on developing an appropriately-skilled professional workforce as well as promoting popular science education. Sample:The volunteer research participants were 323 sixth grade students in four elementary schools in I-Lan City, Taiwan, who were evaluated at the beginning and the end of the nanotechnology-based popular science promotion camp activity. Design and methods:A research tool called the 'NPSEPT test' was designed specifically for this study and was approved by experts who evaluated its content and face validity. The questionnaire was divided into three aspects: 'Nanophenomena in the natural world'; 'Nanomaterials and their scaling effects'; and 'Definition, characteristics, and applications of nanotechnology.' The effectiveness of learning among the students was analyzed using descriptive statistics, a paired sample t-test, analysis of variance (ANOVA) and a post hoc comparison. Results:The results of the three-part 'NPSEPT test' revealed that NPSEPT significantly advanced nanotechnology learning performance and outcomes among students in the four participating elementary schools. Of the 15 questions included in the NPSEPT test, positive change for more than 30

  19. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  20. Nuclear science and technology, a four-week residential summer program for high school rising seniors at NCSU

    International Nuclear Information System (INIS)

    Stam, E.

    1992-01-01

    In 1982, the North Carolina State University (NCSU) Department of Nuclear Engineering (NE Department) established a 2-week residential summer program on nuclear science and technology for high school rising seniors to stimulate their interest in nuclear engineering as a career. The program was designed with the following goals in mind: (1) to expose the students to mathematics and science fundamentals, which are essential for a career in science or engineering; (2) to demonstrate the use of nuclear energy and nuclear techniques in areas that affect the well being, technical progress, and the shape of our society; (3) to acquaint the students with the resources of NCSU when contemplating a career in science of engineering; and (4) to provide a relaxed setting for student-faculty interaction, which can provide motivation and guidance toward a career in science or engineering and ease the transition from high school to college

  1. Improving pupils conceptual understanding by an in- and out-of-school science program

    NARCIS (Netherlands)

    Steenbeek, Henderien; Doornenbal, Jeannette; van Geert, Paul; Geveke, Carla

    Research in the field of out-of-school science is gradually increasing. These programs are considered to be important, yet more evidence about the learning effect is needed. This study aims to contribute to that matter by means of microgenetic measurements. We wanted to answer the question: How is

  2. The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science

    Science.gov (United States)

    Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard

    2011-01-01

    A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally…

  3. Re-designing an Earth Sciences outreach program for Rhode Island public elementary schools to address new curricular standards and logistical realities in the community

    Science.gov (United States)

    Richter, N.; Vachula, R. S.; Pascuzzo, A.; Prilipko Huber, O.

    2017-12-01

    In contrast to middle and high school students, elementary school students in Rhode Island (RI) have no access to dedicated science teachers, resulting in uneven quality and scope of science teaching across the state. In an attempt to improve science education in local public elementary schools, the Department of Earth, Environmental, and Planetary Sciences (DEEPS) at Brown University initiated a student-driven science-teaching program that was supported by a NSF K-12 grant from 2007 to 2014. The program led to the development of an extensive in-house lesson plan database and supported student-led outreach and teaching in several elementary and middle school classrooms. After funding was terminated, the program continued on a volunteer basis, providing year-round science teaching for several second-grade classrooms. During the 2016-2017 academic year, New Generation Science Standards (NGSS) were introduced in RI public schools, and it became apparent that our outreach efforts required adaptation to be more efficient and relevant for both elementary school students and teachers. To meet these new needs, DEEPS, in collaboration with the Providence Public School District, created an intensive summer re-design program involving both graduate and undergraduate students. Three multi-lesson units were developed in collaboration with volunteer public school teachers to specifically address NGSS goals for earth science teaching in 2nd, 3rd and 4th grades. In the 2017-2018 academic year DEEPS students will co-teach the science lessons with the public school teachers in two local elementary schools. At the end of the next academic year all lesson plans and activities will be made publically available through a newly designed DEEPS outreach website. We herein detail our efforts to create and implement new educational modules with the goals of: (1) empowering teachers to instruct science, (2) engaging students and fostering lasting STEM interest and competency, (3) optimizing

  4. The science experience: The relationship between an inquiry-based science program and student outcomes

    Science.gov (United States)

    Poderoso, Charie

    Science education reforms in U.S. schools emphasize the importance of students' construction of knowledge through inquiry. Organizations such as the National Science Foundation (NSF), the National Research Council (NRC), and the American Association for the Advancement of Science (AAAS) have demonstrated a commitment to searching for solutions and renewed efforts to improve science education. One suggestion for science education reform in U.S. schools was a transition from traditional didactic, textbook-based to inquiry-based instructional programs. While inquiry has shown evidence for improved student learning in science, what is needed is empirical evidence of those inquiry-based practices that affect student outcomes in a local context. This study explores the relationship between instructional programs and curricular changes affecting student outcomes in the Santa Ana Unified District (SAUSD): It provides evidence related to achievement and attitudes. SAUSD employs two approaches to teaching in the middle school science classrooms: traditional and inquiry-based approaches. The Leadership and Assistance for Science Education Reform (LASER) program is an inquiry-based science program that utilizes resources for implementation of the University of California Berkeley's Lawrence Hall of Science Education for Public Understanding Program (SEPUP) to support inquiry-based teaching and learning. Findings in this study provide empirical support related to outcomes of seventh-grade students, N = 328, in the LASER and traditional science programs in SAUSD.

  5. General Atomics Sciences Education Foundation Outreach Programs

    Science.gov (United States)

    Winter, Patricia S.

    1997-11-01

    Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].

  6. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    Science.gov (United States)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  7. Teaching planetary sciences to elementary school teachers: Programs that work

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  8. National Science Resources Center Project to Improve Science Teaching in Elementary Schools with Special Emphasis on Department of Defense Dependents Schools and Other Schools Serving Children of Military Personnel

    Science.gov (United States)

    1992-10-01

    2555. NCTM to Publish Resource Directory ANNOUNCEMENTS The National Council of Teachers of Mathematics ’ ( NCTM ) Committee for a Coin- Coalition Launches...science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools...elementary school teachers . The units also link science with other curriculum areas, including mathematics , language arts, social studies, and art. In

  9. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    Science.gov (United States)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  10. Students' Attitudes toward Science as Predictors of Gains on Student Content Knowledge: Benefits of an After-School Program

    Science.gov (United States)

    Newell, Alana D.; Zientek, Linda R.; Tharp, Barbara Z.; Vogt, Gregory L.; Moreno, Nancy P.

    2015-01-01

    High-quality after-school programs devoted to science have the potential to enhance students' science knowledge and attitudes, which may impact their decisions about pursuing science-related careers. Because of the unique nature of these informal learning environments, an understanding of the relationships among aspects of students' content…

  11. Gail Harlamoff: Executive Director, Life Lab Science Program

    OpenAIRE

    Rabkin, Sarah

    2010-01-01

    Gail Harlamoff is Executive Director of the Life Lab Science Program, a nationally recognized, award-winning nonprofit science and environmental organization located on the UC Santa Cruz campus. Founded in 1979, Life Lab helps schools develop gardens and implement curricula to enhance students’ learning about science, math, and the natural world. The program has trained tens of thousands of educators in more than 1400 schools across the country. Life Lab’s specialized initiatives inc...

  12. Middle School Girls' Science Motivation and Performance: Cognitive Effects of an Out-of-School Time Program with Nutrition and Fitness Components

    Science.gov (United States)

    Gatz, Jennifer

    2017-01-01

    Middle school is a critical period in the cognitive and academic development of young women, and a time when their performance and interest in science may decline. After school programs play a key role in engaging youth in learning by providing opportunities to increase health and wellness, set goals, and strategize problem solving. Skills…

  13. Evaluation of a Secondary School Science Program Inversion: Moving from a Traditional to a Modifified-PCB Sequence

    Science.gov (United States)

    Gaubatz, Julie

    2013-01-01

    Studies of high-school science course sequences have been limited primarily to a small number of site-specific investigations comparing traditional science sequences (e.g., Biology-Chemistry-Physics: BCP) to various Physics First-influenced sequences (Physics-Chemistry-Biology: PCB). The present study summarizes a five-year program evaluation…

  14. Science Education at Riverside Middle School A Case Study

    Science.gov (United States)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and

  15. Growing minds: The effect of school gardening programs on the science achievement of elementary students

    Science.gov (United States)

    Klemmer, Cynthia Davis

    Science literacy refers to a basic knowledge and understanding of science concepts and processes needed to consider issues and make choices on a daily basis in an increasingly technology-driven society. A critical precursor to producing science literate adults is actively involving children in science while they are young. National and state (TX) science standards advocate the use of constructivist methods including hands-on, experiential activities that foster the development of science process skills through real-world investigations. School gardens show promise as a tool for implementing these guidelines by providing living laboratories for active science. Gardens offer opportunities for a variety of hands-on investigations, enabling students to apply and practice science skills. School gardens are increasing in popularity; however, little research data exists attesting to their actual effectiveness in enhancing students' science achievement. The study used a quasi-experimental posttest-only research design to assess the effects of a school gardening program on the science achievement of 3rd, 4th, and 5th grade elementary students. The sample consisted of 647 students from seven elementary schools in Temple, Texas. The experimental group participated in school gardening activities as part of their science curriculum. The control group did not garden and were taught using traditional classroom-based methods. Results showed higher scores for students in the experimental group which were statistically significant. Post-hoc tests using Scheffe's method revealed that these differences were attributed to the 5th grade. No statistical significance was found between girls and boys in the experimental group, indicating that gardening was equally effective for both genders. Within each gender, statistical significance was found between males in the experimental and control groups at all three grade levels, and for females in the 5 th grade. This research indicated that

  16. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  17. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  18. The Single Sex Debate for Girls in Science: a Comparison Between Two Informal Science Programs on Middle School Students' STEM Identity Formation

    Science.gov (United States)

    Hughes, Roxanne M.; Nzekwe, Brandon; Molyneaux, Kristen J.

    2013-10-01

    Currently, there are policy debates regarding the efficacy and legality of single sex formal and informal education programs. This issue is particularly poignant in science education due to the historical marginalization of women in these fields. This marginalization has resulted in women being positioned as a stigmatized group within many science, technology, engineering, and mathematics (STEM) related fields. Research points to adolescence as the age where this sense of marginalization begins to develop. As a result, policy responses have utilized various frameworks such as: increased access for women, changing pedagogy to address women's learning styles, changing the language and culture of science to prevent marginalization of stigmatized groups, and finally exploring the role that individual identity plays in the marginalization of women. This study adds to the policy debate as it applies to single sex education by comparing middle school participants' STEM identity formation during two informal science learning environments (an all girls' STEM camp and a co-educational STEM camp). Additionally, this study focuses on the influence of camp activities within two informal science education programs: particularly the provision of role models and authentic STEM research activities, as means to improve STEM identity and make these fields relevant to the lives of middle school students. The results indicate that both camps improved girls' STEM identities. These findings suggest that the single sex environment is not as important to STEM identity as the pedagogy used within the program.

  19. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  20. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  1. A Study on The Effectiveness of a Pilot Inquiry-Based Middle School Science Program on Non- Cognitive Outcomes and Academic Achievement

    Science.gov (United States)

    Dionisio, Rui Meira

    The randomized research study assessed the effect of an inquiry-based science (IBS) program on non-cognitive outcomes and academic achievement. The study was the result of a grant that was awarded by Professional Resources in Science and Mathematics (PRISM), a program affiliated with Montclair State University in conjunction with Bristol-Myers Squibb, and part of the New Jersey Statewide Systemic Initiative (NJSSI). The NJSSI is a partnership of schools, districts, colleges and universities, science centers, businesses, and museums dedicated to improving the teaching and learning of science, mathematics, and technology in New Jersey. The quantitative research study utilized an IBS instructional program titled Science and Technology Concepts for Middle Schools (STC/MS) and was implemented in two middle schools within the same suburban school district. This study examined the effect of IBS classrooms on learning outcomes specifically related to gender and special education. Evaluation of student learning outcomes was conducted through the administration of three instruments: the Academic Self-Concept (ASC) scale, unit assessments, and NJASK 8 Science. The ASC scale and unit assessments were administered as a pretest and posttest in IBS classrooms. NJASK 8 Science scale scores were obtained through reporting of student performance data from the New Jersey Department of Education to the district. The quantitative analysis in this study provided evidence that IBS classrooms had a positive effect on academic achievement. Overall, students in IBS classrooms performed better than students in traditional classrooms on unit assessments. Additionally, male students and special education students in IBS classrooms outperformed students in traditional classrooms on unit assessments.

  2. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within the school curriculum and in OST programs. Nationwide, many OST programs are offered for students but few have engaged in an in-depth assessment. This study included an assessment of two different types of OST programs and direct observations by the researcher. This study involved two advisors (one male, one female), 111 students, and their parents during 2016. Student participants completed two standardized surveys, one to determine their Science Self-Efficacy and another to assess their engagement in science during their OST programs. Parents described their parental involvement and their child's interest in the OST program(s). The OST program advisors participated in lengthy interviews. Additionally, the advisors rated their perceived interest level of the enrolled students and recorded attendance data. Bandura's Social Cognitive Theory (1997a) provided the theoretical framework. This theory describes the multidirectional influence of behavioral factors, personal factors, and environmental factors have on a student's Self-Efficacy. Compiled data from the teachers, students, and parents were used to determine the relationship of selected variables on Science Self-Efficacy of students. A correlational analysis revealed that students who participated in these OST programs possessed a high Mindset for the Enjoyment of science and that teacher ratings were also positively correlated to Mindset and Enjoyment of Science. Descriptive analyses showed that (a) girls who chose to participate in these OST programs possessed higher school grades in their in-school coursework than boys, (b) that parents of girls participated in more

  3. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    Science.gov (United States)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  4. Preparing Science Teachers: Strong Emphasis on Science Content Course Work in a Master's Program in Education

    Science.gov (United States)

    Ajhar, Edward A.; Blackwell, E.; Quesada, D.

    2010-05-01

    In South Florida, science teacher preparation is often weak as a shortage of science teachers often prompts administrators to assign teachers to science classes just to cover the classroom needs. This results is poor preparation of students for college science course work, which, in turn, causes the next generation of science teachers to be even weaker than the first. This cycle must be broken in order to prepare better students in the sciences. At St. Thomas University in Miami Gardens, Florida, our School of Science has teamed with our Institute for Education to create a program to alleviate this problem: A Master of Science in Education with a Concentration in Earth/Space Science. The Master's program consists of 36 total credits. Half the curriculum consists of traditional educational foundation and instructional leadership courses while the other half is focused on Earth and Space Science content courses. The content area of 18 credits also provides a separate certificate program. Although traditional high school science education places a heavy emphasis on Earth Science, this program expands that emphasis to include the broader context of astronomy, astrophysics, astrobiology, planetary science, and the practice and philosophy of science. From this contextual basis the teacher is better prepared to educate and motivate middle and high school students in all areas of the physical sciences. Because hands-on experience is especially valuable to educators, our program uses materials and equipment including small optical telescopes (Galileoscopes), several 8-in and 14-in Celestron and Meade reflectors, and a Small Radio Telescope installed on site. (Partial funding provided by the US Department of Education through Minority Science and Engineering Improvement Program grant P120A050062.)

  5. DoD Science and Engineering Apprenticeship Program for High School Students, 1995-󈨤 Activities

    Science.gov (United States)

    1996-06-01

    University of Florida Sports Medicine Honor Roll Weightlifting , Swimming NAME: RACE: SEX: HIGH SCHOOL: ANTICIPATED COLLEGE: ANTICIPATED MAJOR...program. Three of the students took a Psychology course, one took a Nutritional Science class, one a Math course and two of them took a Meteorology...Awards and Scholarships: Honor Roll 13. Activities/Hobbies: Weightlifting , Swimming (Suggested Form) INFORMATION FOR EACH APPRENTICE

  6. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  7. Memories of GAMES: Exploring the Long-Term Impacts of After-School Museum Programming on Girls' Attitudes Towards Science

    Science.gov (United States)

    Snow, Sarah Elizabeth

    The purpose of this study is to investigate any lasting impacts of the University of Colorado Museum of Natural History's Girls at the Museum Exploring Science (GAMES) Program. Using assessment document analysis, student focus groups, and adult interviews, this study examined whether students' positive associations with science continue after completion of the program and whether the program affects the academic and career choices of past participants. Results from the analysis suggest that GAMES has a generally positive impact on participant attitudes towards science in both the short- and long-term. These results also support existing research in identifying key factors in the success of the program including hands-on activities, exposure to diverse careers and female role models, and the incorporation of authentic objects and experiences. These factors of success can contribute to the evidence base about the role of informal education programs in increasing science participation among women, as well as ways in which schools and universities can collaborate to effectively serve populations that are traditionally underrepresented in the sciences.

  8. Multicultural and multilingual approach: Mathematics, science, and engineering education for junior high school minority students and high school administrators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crumbly, I.J.; Hodges, J.

    1994-09-01

    During the 1993 school year, LLNL and the US Department of Energy`s San Francisco Field Office provided funds through grant {number_sign}DE-FG03-93SF20045/A000 to assist Cooperative Developmental Energy Program (CDEP) with its network coalition of high school counselors from 19 states and with its outreach and early intervention program in mathematics, science and engineering for minority junior high school students. The program for high school counselors is called the National Educators Orientation Program (NEOP) and the outreach program for minority junior high school students is called the Mathematics, Science and Engineering Academy (MSEA). A total of 35 minority and female rising eighth grade students participated in the Second Annual Mathematics, Science, and Engineering Academy sponsored by the Cooperative Developmental Energy Program of Fort Valley State College (FVSC). There were 24 students from the middle Georgia area, 4 students from Oakland, California, and 7 students from Portland, Oregon. Each student was selected by counselor in his or her respective school. The selection criteria were based on the students` academic performance in science and mathematics courses.

  9. Topics in nuclear and radiochemistry for college curricula and high school science programs

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures.

  10. Topics in nuclear and radiochemistry for college curricula and high school science programs

    International Nuclear Information System (INIS)

    1990-01-01

    The concern with the current status and trends of nuclear chemistry and radiochemistry education in academic institutions was addressed in a recent workshop. The 1988 workshop considered the important contributions that scientist with nuclear and radiochemistry backgrounds have made and are continuing to make to other sciences and to various applied fields. Among the areas discussed were environmental studies, life sciences, materials science, separation technology, hot atom chemistry, cosmochemistry, and the rapidly growing field of nuclear medicine. It is intent of the organizer and participants of this symposium entitled ''Topics in Nuclear and Radiochemistry for College Curricula and High School Science Program'' to provide lecture material on topics related to nuclear and radiochemistry to educators. It is our hope that teachers, who may or may not be familiar with the field, will find this collections of articles useful and incorporate some of them into their lectures

  11. Advanced Science for Kids: Multicultural Assessment and Programming.

    Science.gov (United States)

    Bettac, Teresa; Huckabee, Colleen; Musser, Louise; Patton, Paulette; Yates, Joyce

    1997-01-01

    Describes Advanced Science for Kids (ASK), a multicultural approach to assessment and programming for a middle school advanced science program. ASK is designed to provide alternative approaches to identification and assessment, facilitate authentic instruction and assessment, and provide minority students with academic and social support as they…

  12. Science for the People: High School Students Investigate Community Air Quality

    Science.gov (United States)

    Marks-Block, Tony

    2011-01-01

    Over a year, a small group of high school students risked their afternoons and summer to participate in a science program that was "much different from science class." This was one of several after-school programs in Oakland and Richmond that the author was leading as an instructor with the East Bay Academy for Young Scientists (EBAYS). Students…

  13. Transformative Multicultural Science curriculum: A case study of middle school robotics

    Science.gov (United States)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  14. STEM after School: How to Design and Run Great Programs and Activities. A Guidebook for Program Leaders, Second Edition

    Science.gov (United States)

    ExpandED Schools, 2014

    2014-01-01

    This guidebook was prepared by TASC (The After-School Corporation) and their Frontiers in Urban Science Education (FUSE) programs. FUSE is TASC's initiative to help more out-of-school-time programs and expanded learning time schools offer kids engaging, exciting and inspiring activities that promote science inquiry. The guidebook offers a a…

  15. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  16. Exploring Girls' Science Affinities Through an Informal Science Education Program

    Science.gov (United States)

    Todd, Brandy; Zvoch, Keith

    2017-10-01

    This study examines science interests, efficacy, attitudes, and identity—referred to as affinities, in the context of an informal science outreach program for girls. A mixed methods design was used to explore girls' science affinities before, during, and after participation in a cohort-based summer science camp. Multivariate analysis of survey data revealed that girls' science affinities varied as a function of the joint relationship between family background and number of years in the program, with girls from more affluent families predicted to increase affinities over time and girls from lower income families to experience initial gains in affinities that diminish over time. Qualitative examination of girls' perspectives on gender and science efficacy, attitudes toward science, and elements of science identities revealed a complex interplay of gendered stereotypes of science and girls' personal desires to prove themselves knowledgeable and competent scientists. Implications for the best practice in fostering science engagement and identities in middle school-aged girls are discussed.

  17. A museum-based urban teacher residency program's approach to strengthening the STEM pipeline: Channeling highly qualified Earth Science teachers into high needs schools

    Science.gov (United States)

    Ustunisik, G. K.; Zirakparvar, N. A.

    2015-12-01

    Channeling better prepared Earth Science teachers into secondary schools with low achievement rates in STEM subjects is essential to ensuring that the students attending these schools are ultimately afforded the opportunity to take advantage of projected growth in the global geoscience workforce. Here, a museum-based urban teacher residency (UTR) program's approach to building subject specific content knowledge and research experience in Earth Science teacher candidates is described. In the museum-based program, graduate-level science courses and research experiences are designed and implemented specifically for the UTR by active Earth and Space research scientists that account for almost half of the program's faculty. Because these courses and research experiences are designed specifically for the teacher candidates, they are different than many science courses and research experiences available to pre-service teachers in a university setting. At the same time, the museum-based program is the only UTR to incorporate such a rigorous science curriculum, and some possible advantages and disadvantages of the program's approach are also considered here. While the impact of the program's approach on student achievement rates has yet to be evaluated, there is promise in the well documented links between a teacher's own experience with the practice of science and that teacher's ability to leverage effective pedagogical content knowledge in the teaching of science. Because the museum-based program's science curriculum is balanced against the educational coursework and teaching residencies that necessarily form the program's backbone, the museum's approach to strengthening the teacher candidate's science background may also inform the faculty and administration of other UTRs in cases where one of their program goals is to further expand their teacher candidate's content knowledge and practical subject matter experience.

  18. Learning Science and English: How School Reform Advances Scientific Learning for Limited English Proficient Middle School Students

    OpenAIRE

    Minicucci, Catherine

    1996-01-01

    This article presents findings from the School Reform and Student Diversity Study, a 4-year project to locate and analyze schools offering exemplary science and mathematics programs to middle school students with limited proficiency in English. In contrast to the vast majority of schools, the four schools described in this article give these students access to stimulating science and mathematics curricula by instructing them either in the students' primary language or in English using shelter...

  19. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    Science.gov (United States)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  20. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Science.gov (United States)

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  1. Optical Science Discovery Program: Pre-College Outreach and So Much More

    Science.gov (United States)

    Deutsch, Miriam

    2010-03-01

    Recruiting and retaining women into the physical sciences is an ongoing struggle for universities, with the gap between men and women in physics remaining strong. Research shows a precipitous drop in female participation in the physical sciences around the 7th grade year of primary education, where girls begin losing interest during middle school, the drain continuing throughout high school with another significant drop at the bachelors level. To combat the loss of women in the physical sciences, the Oregon Center for Optics at the University of Oregon has created the Optical Science Discovery Program (OSDP), a precollege outreach program that targets girls in middle and high school. This program uses optical sciences as the medium through which girls explore experimental science. The program consists of a one-week intensive summer camp, a mentored monthly science club, summer internships and mentoring opportunities for camp alumni. By utilizing media often at the core of teenage life (e.g. Facebook, MySpace) we also aim to interact with program participants in a familiar and informal environment. Mentoring of OSDP activities is carried out by faculty and students of all levels. This in turn allows other education and outreach efforts at the University of Oregon to incorporate OSDP activities into their own, contributing to our broader university goals of surmounting barriers to higher education and creating a more scientifically literate populace. This talk will describe the OSDP program and its incorporation into the broader spectrum of outreach and education efforts.

  2. STEM after school programming: The effect on student achievement and attitude

    Science.gov (United States)

    Ashford, Vanessa Dale

    Science, technology, engineering and math (STEM) curriculum has become a major component in to 21st century teaching and learning. STEM skills and STEM careers are in demand globally. Disadvantaged and minority students continue to have an achievement gap in STEM classes. They do not perform well in elementary and middle school and frequently do not pursue STEM-based studies in high school or careers in the field. One innovation in STEM education is after-school programming to increase student interest, attitudes, and achievement. This mixed-methods study examines the Discovery Place After-School STEM Program to compare the achievement levels of participants to non-participants in the program and provides recommendations for STEM after-school programming across the district. As part of the study, teachers were interviewed to examine attitudes and perceptions about the program. This study was conducted at an elementary school in a large urban school district in the southeastern United States which has a unique STEM-based after-school program. Student performance data indicated a significant difference in achievement between participants and non-participants in the program as measured by fifth grade science End-of-Grade test. Data from the seven units of study in the program showed significant achievement for three of the seven units.

  3. The Impact of Length of Engagement in After-School STEM Programs on Middle School Girls

    Science.gov (United States)

    Cupp, Garth Meichel

    An underrepresentation of females exists in the STEM fields. In order to tackle this issue, work begins early in the education of young women to ensure they are interested and have the confidence to gain a career in the STEM fields. It is important to engage girls in STEM opportunities in and out of school to ignite their interest and build their confidence. Brigid Barron's learning ecology perspective shows that girls pursuing STEM outside of the classroom is critical to their achievement in the STEM pipeline. This study investigated the impact after-school STEM learning opportunities have on middle school girls by investigating (a) how the length of engagement in after-school programs can affect the confidence of female students in their science and math abilities; (b) how length of engagement in after-school programs can affect the interest of female students in attaining a career in STEM; (c) how length of engagement in after-school programs can affect interest in science and math classes; and (d) how length of engagement can affect how female students' view gender parity in the STEM workforce. The major findings revealed no statistical significance when comparing confidence in math or science abilities or the perception that gender plays a role in attaining a career in STEM. The findings revealed statistical significance in the areas when comparing length of engagement in the girls' interest in their math class and attaining a career in three of the four STEM fields: science, technology, and engineering. The findings showed that multiple terms of engagement in the after-school STEM programs appear to be an effective catalyst to maintain the interest of girls pursuing STEM-related careers, in addition to allowing their interest in a topic to provide a new lens for the way they see their math work during the school day. The implications of this study show that schools must engage middle school girls who are interested in STEM in a multitude of settings

  4. Canisius College Summer Science Camp: Combining Science and Education Experts to Increase Middle School Students' Interest in Science

    Science.gov (United States)

    Sheridan, Phillip M.; Szczepankiewicz, Steven H.; Mekelburg, Christopher R.; Schwabel, Kara M.

    2011-01-01

    The Canisius College Summer Science Camp is a successful and effective annual outreach program that specifically targets middle school students in an effort to increase their interest in science. Five broadly defined science topics are explored in a camp-like atmosphere filled with hands-on activities. A 2010 module focused on chemistry topics of…

  5. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  6. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  7. Why and How Do Parents Decide to Send Their Children to the Interdistrict School Choice Program at the Magnet Program for Math and Science

    Science.gov (United States)

    Doyle, Kevin S.

    The New Jersey Interdistrict School Choice Program allows parents to send their students to schools outside of their local school district. Determining why parents send their students to choice schools is important to school leaders who are trying to attract new students, as well as those who are trying to retain their current students. This study examined the reasons why parents decided to send their students to the Magnet Program for Math and Science (MP4M&S), a school choice program in a suburban school district in northwest New Jersey, during the 2015- 2016 school year. A large volume of research has focused on school choice programs in urban and poor communities. This study addressed the gap in the research by focusing on an affluent suburban school district. This mixed methods study focused on three areas, why parents choose to send their students to the MP4M&S, what criteria they used to make their decision, and where they got their information. Research shows that these three areas of focus can be influenced by parental level of education, socioeconomic status, geographic location, academic rigor, school quality, and school environment. Parents from different groups, based upon their out-of-district status, were interviewed. The information from the interviews was used to focus a survey that was given to the families of all 137 students in the MP4M&S during the 2015-2016 school year. The results of this study show that parents found the academic focus, academic rigor, the school environment, the original research project, the activity offerings, and the economics involved in attending the program to be important attractors. The study also found that the Information Nights, the school website, and interactions with members of the MP4M&S community to be important sources of information. Finally, the study found that there were few differences between in and out-of-district parents when assigning importance to both the attractors and the sources in the study

  8. Evaluation of the Alliance for Climate Education's national high school edutainment program (Invited)

    Science.gov (United States)

    Lappe, M.; Flora, J.; Saphir, M.; Roser-Renouf, C.; Maibach, E.; Leiserowitz, A.

    2013-12-01

    The Alliance for Climate Education educates high school students on the science of climate change and inspires them to create effective solutions. Since 2009, ACE has reached over 1.6 million students nationwide with its multi media assembly presentation. In this paper, we evaluate the climate science knowledge, beliefs, attitudes, behavior and communication impact of the ACE Assembly program in a random sample of 49 schools (from population of 779) and a panel of 1,241 high school students. Pre and post assembly surveys composed of questions from the Global Warming Six Americas segmentation and intervention specific questions were administered in classrooms. We demonstrate that exposure to climate science in an engaging edutainment format changes youths' beliefs, involvement, and behavior positively and moves them to more climate science literate audience segments. The net impact of scaled and engaging programs for youth could be a population shift in climate science literacy and positive engagement in the issue of climate change. In addition, such programs can empower youth for deeper engagement in school programs, personal action, political and consumer advocacy.

  9. Effective Practices for Evaluating STEM Out-of-School Time Programs

    Science.gov (United States)

    Wilkerson, Stephanie B.; Haden, Carol M.

    2014-01-01

    Science, technology, engineering, and mathematics (STEM) programs in out-of-school time (OST) are designed to supplement school work, ignite student interest, and extend STEM learning. From interactive museum exhibits to summer-long science camps, opportunities for informal student engagement in STEM learning abound. The differences these programs…

  10. School Indoor Air Quality Assessment and Program Implementation.

    Science.gov (United States)

    Prill, R.; Blake, D.; Hales, D.

    This paper describes the effectiveness of a three-step indoor air quality (IAQ) program implemented by 156 schools in the states of Washington and Idaho during the 2000-2001 school year. An experienced IAQ/building science specialist conducted walk-through assessments at each school. These assessments documented deficiencies and served as an…

  11. Building the pipeline: programs to introduce middle school, high school, medical, and veterinary students to careers in epidemiology and public health.

    Science.gov (United States)

    Cordell, Ralph L; Cordeira, Kelly L; Cohen, Laurence P; Bensyl, Diana M

    2017-11-01

    This report describes Centers for Disease Control and Prevention programs that expose students to epidemiology and public health sciences (EPHS). The Science Ambassador workshop targets middle and high school teachers and promotes teaching EPHS in the classroom. The National Science Olympiad Disease Detectives event is an extracurricular science competition for middle and high school students based on investigations of outbreaks and other public health problems. The Epidemiology Elective Program provides experiential learning activities for veterinary and medical students. As of 2016, 234 teachers from 37 states and territories and three other countries participated in SA workshops. Several are teaching units or entire courses in EPHS. The National Science Olympiad Disease Detectives event exposed approximately 15,000 middle and high school students to EPHS during the 2015-2016 school year. The Epidemiology Elective Program has exposed 1,795 veterinary and medical students to EPHS. Students can master fundamental concepts of EPHS as early as middle school and educators are finding ways to introduce this material into their classrooms. Programs to introduce veterinary and medical students to EPHS can help fill the gap in exposing older students to the field. Professional organizations can assist by making their members aware of these programs. Published by Elsevier Inc.

  12. Impact of Science Tutoring on African Americans' Science Scores on the High School Students' Graduation Examination

    Science.gov (United States)

    Davis, Edward

    This study investigated the relationship between an after-school tutorial program for African American high school students at a Title I school and scores on the science portion of the High School Graduation Examination (HSGE). Passing the examination was required for graduation. The target high school is 99% African American and the passing rate of the target high school was 42%---lower than the state average of 76%. The purpose of the study was to identify (a) the relationship between a science tutorial program and scores on the science portion of the HSGE, (b) the predictors of tutoring need by analyzing the relationship between biology grades and scores on the science portion of the HSGE, and (c) the findings between biology grades and scores on the science portion of the HSGE by analyzing the relationship between tutorial attendance and HSGE scores. The study was based on Piaget's cognitive constructivism, which implied the potential benefits of tutorials on high-stakes testing. This study used a 1-group pretest-posttest, quantitative methodology. Results showed a significant relationship between tutoring and scores on the biology portion of the HSGE. Results found no significant relationship between the tutorial attendance and the scores on the biology portion of the HSGE or between the biology grades and scores on the biology portion of the HSGE before tutoring. It has implications for positive social change by providing educational stakeholders with empirically-based guidance in determining the potential benefit of tutorial intervention strategies on high school graduation examination scores.

  13. Improving epistemological beliefs and moral judgment through an STS-based science ethics education program.

    Science.gov (United States)

    Han, Hyemin; Jeong, Changwoo

    2014-03-01

    This study develops a Science-Technology-Society (STS)-based science ethics education program for high school students majoring in or planning to major in science and engineering. Our education program includes the fields of philosophy, history, sociology and ethics of science and technology, and other STS-related theories. We expected our STS-based science ethics education program to promote students' epistemological beliefs and moral judgment development. These psychological constructs are needed to properly solve complicated moral and social dilemmas in the fields of science and engineering. We applied this program to a group of Korean high school science students gifted in science and engineering. To measure the effects of this program, we used an essay-based qualitative measurement. The results indicate that there was significant development in both epistemological beliefs and moral judgment. In closing, we briefly discuss the need to develop epistemological beliefs and moral judgment using an STS-based science ethics education program.

  14. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  15. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    Science.gov (United States)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  16. Museum nuclear science programs during the past 30 years

    International Nuclear Information System (INIS)

    Marsee, M.D.

    1990-01-01

    The American Museum of Atomic Energy was opened as a program of the Atomic Energy Commission. The name was changed in 1977 to the American Museum of Science and Energy to reflect an expanded roll of the Department of Energy. From 1954 until 1980 the museum was the base for a Traveling Exhibit Program that visited schools, state fairs, shopping centers and malls, libraries, summer camps, and science museums throughout the United States. Today the museum transfers information on the research and development of all the energy sources, the environmental impact of these sources and possible solutions to these impacts. The museum also manages an Outreach Program to area schools and coordinates several special events for student visits to the museum

  17. Informal Science and Youth Development: Creating Convergence in Out-of-School Time

    Science.gov (United States)

    Noam, Gil G.; Shah, Ashima

    2014-01-01

    This chapter highlights the fit between youth-development-oriented programming and informal science activities in out-of-school time (OST) and illustrates how science and youth development can and should co-occur. The clover model and Dimensions of Success tool are introduced as lenses for designing and assessing science program quality in OST.…

  18. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  19. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  20. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    2017-01-01

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…

  1. USAF Summer Research Program - 1995 High School Apprenticeship Program Final Reports, Volume 14, Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1995-01-01

    The United States Air Force High School Apprenticeship Program's (USAF HSAP) purpose is to place outstanding high school students whose interests are in the areas of mathematics, engineering, and science to work in a laboratory environment...

  2. Education and training program for graduate school student with synchrotron radiation facility

    International Nuclear Information System (INIS)

    Harada, Isao; Ikeda, Naoshi; Yokoya, Takayoshi

    2008-01-01

    We report the education and training program for graduate students of Graduate School of Natural Science and Technology Okayama University made at synchrotron facilities, SPring-8 and HiSOR. This program is a joint course of graduate school lecture and synchrotron facility training with company researchers, that was authorized by the Ministry of Education, Culture, Sports, Science and Technology. The purpose of this program is the development of human resources who can understand the potential ability of synchrotron experiment. We report our plan and actual activity of the training program. (author)

  3. [Development of an advanced education program for community medicine by Nagasaki pharmacy and nursing science union consortium].

    Science.gov (United States)

    Teshima, Mugen; Nakashima, Mikiro; Hatakeyama, Susumi

    2012-01-01

    The Nagasaki University School of Pharmaceutical Sciences has conducted a project concerning "development of an advanced education program for community medicine" for its students in collaboration with the University's School of Nursing Sciences, the University of Nagasaki School of Nursing Sciences, and the Nagasaki International University School of Pharmaceutical Sciences. The project was named "formation of a strategic base for the integrated education of pharmacy and nursing science specially focused on home-healthcare and welfare", that has been adopted at "Strategic University Cooperative Support Program for Improving Graduate" by the Ministry of Education, Culture, Sports, Science and Technology, Japan from the 2009 academic year to the 2011 academic year. Our project is a novel education program about team medical care in collaboration with pharmacist and nurse. In order to perform this program smoothly, we established "Nagasaki pharmacy and nursing science union consortium (Nagasaki University, The University of Nagasaki, Nagasaki International University, Nagasaki Pharmaceutical Association, Nagasaki Society of Hospital Pharmacists, Nagasaki Nursing Association, Nagasaki Medical Association, Nagasaki Prefectural Government)". In this symposium, we introduce contents about university education program and life learning program of the project.

  4. Student Science Training Program in Mathematics, Physics and Computer Science. Final Report to the National Science Foundation. Artificial Intelligence Memo No. 393.

    Science.gov (United States)

    Abelson, Harold; diSessa, Andy

    During the summer of 1976, the MIT Artificial Intelligence Laboratory sponsored a Student Science Training Program in Mathematics, Physics, and Computer Science for high ability secondary school students. This report describes, in some detail, the style of the program, the curriculum and the projects the students under-took. It is hoped that this…

  5. Enhancing Postgraduate Learning and Teaching: Postgraduate Summer School in Dairy Science

    Directory of Open Access Journals (Sweden)

    Pietro Celi

    2014-01-01

    Full Text Available Dairy science is a multidisciplinary area of scientific investigation and Ph.D. students aiming to do research in the field of animal and/or veterinary sciences must be aware of this. Ph.D. students often have vast spectra of research interests, and it is quite challenging to satisfy the expectation of all of them. The aim of this study was to establish an international Ph.D. training program based on research collaboration between the University of Sydney and the University of Padova. The core component of this program was a two-week Postgraduate Summer School in Dairy Science, which was held at the University of Padova, for Ph.D. students of both universities. Therefore, we designed a program that encompassed seminars, workshops, laboratory practical sessions, and farm visits. Participants were surveyed using a written questionnaire. Overall, participants have uniformly praised the Summer School calling it a rewarding and valuable learning experience. The Ph.D. Summer School in Dairy Science provided its participants a positive learning experience, provided them the opportunity to establish an international network, and facilitated the development of transferable skills.

  6. RIS4E Science Journalism Program

    Science.gov (United States)

    Whelley, N.; Bleacher, L.; Jones, A. P.; Bass, E.; Bleacher, J. E.; Firstman, R.; Glotch, T. D.; Young, K.

    2017-12-01

    NASA's Remote, In-Situ, and Synchrotron Studies for Science and Exploration (RIS4E) team addresses the goals of the Solar System Exploration Research Virtual Institute via four themes, one of which focuses on evaluating the role of handheld and portable field instruments for human exploration. The RIS4E Science Journalism Program highlights science in an innovative way: by instructing journalism students in the basics of science reporting and then embedding them with scientists in the field. This education program is powerful because it is deeply integrated within a science program, strongly supported by the science team and institutional partners, and offers an immersive growth experience for learners, exposing them to cutting edge NASA research and field technology. This program is preparing the next generation of science journalists to report on complex science accurately and effectively. The RIS4E Science Journalism Program consists of two components: a semester-long science journalism course and a reporting trip in the field. First, students participate in the RIS4E Science Journalism Practicum offered by the Stony Brook University School of Journalism. Throughout the semester, students learn about RIS4E science from interactions with the RIS4E science team, through classroom visits, one-on-one interviews, and tours of laboratories. At the conclusion of the course, several students, along with a professor and a teaching assistant, join the RIS4E team during the field season. The journalism students observe the entire multi-day field campaign, from set-up, to data collection and analysis, and investigation of questions that arise as a result of field discoveries. They watch the scientists formulate and test hypotheses in real time. The field component for the 2017 RIS4E Science Journalism Program took journalism students to the Potrillo Volcanic Field in New Mexico for a 10-day field campaign. Student feedback was overwhelmingly positive. They gained experience

  7. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  8. Factors Affecting the Retention of First-career and Second-career Science Teachers in Urban High Schools

    Science.gov (United States)

    Rak, Rosemary C.

    The turnover of high school science teachers is an especially troubling problem in urban schools with economically disadvantaged students. Because high teacher turnover rates impede effective instruction, the persistence of teacher attrition is a serious concern. Using an online survey and interviews in a sequential mixed-methods approach, this study investigates the perceptions of high school science teachers regarding factors that contribute to their employment decisions. The study also compares first-career and second-career science teachers' perceptions of retention and attrition factors and identifies conditions that urban school leaders can establish to support the retention of their science teachers. A purposeful sample of 138 science teachers from urban area New England public high schools with 50% or more Free and Reduced Price Lunch-eligible students participated in the survey. Twelve survey respondents were subsequently interviewed. In accord with extant research, this study's results suggest that school leadership is essential to fostering teacher retention. The findings also reveal the importance of autonomy, professional community, and adequate resources to support science instruction. Although mentoring and induction programs receive low importance ratings in this study, career-changers view these programs as more important to their retention than do first-career science teachers. Second-career interviewees, in particular, voice the importance of being treated as professionals by school leaders. Future research may examine the characteristics of mentoring and induction programs that make them most responsive to the needs of first-career and second-career science teachers. Future studies may also investigate the aspects of school leadership and professional autonomy that are most effective in promoting science teacher retention. Keywords: career-changers; school leaders; science teachers; second-career teachers; teacher retention; teacher turnover

  9. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  10. Laptops and the Gender Gap: An Investigation of a High School Core Curriculum Program

    Science.gov (United States)

    Wade, Melanie

    2010-01-01

    Girls and women continue to be underrepresented in high school Advanced Placement computer science courses, undergraduate and graduate computer science programs at colleges and universities, and engineering programs and related careers. This is not to suggest that public schools train students to fulfill specific job needs, yet it is evident that…

  11. Big Bang! An Evaluation of NASA's Space School Musical Program for Elementary and Middle School Learners

    Science.gov (United States)

    Haden, C.; Styers, M.; Asplund, S.

    2015-12-01

    Music and the performing arts can be a powerful way to engage students in learning about science. Research suggests that content-rich songs enhance student understanding of science concepts by helping students develop content-based vocabulary, by providing examples and explanations of concepts, and connecting to personal and situational interest in a topic. Building on the role of music in engaging students in learning, and on best practices in out-of-school time learning, the NASA Discovery and New Frontiers program in association with Jet Propulsion Laboratory, Marshall Space Flight Center, and KidTribe developed Space School Musical. Space School Musical consists of a set of nine songs and 36 educational activities to teach elementary and middle school learners about the solar system and space science through an engaging storyline and the opportunity for active learning. In 2014, NASA's Jet Propulsion Laboratory contracted with Magnolia Consulting, LLC to conduct an evaluation of Space School Musical. Evaluators used a mixed methods approach to address evaluation questions related to educator professional development experiences, program implementation and perceptions, and impacts on participating students. Measures included a professional development feedback survey, facilitator follow-up survey, facilitator interviews, and a student survey. Evaluation results showed that educators were able to use the program in a variety of contexts and in different ways to best meet their instructional needs. They noted that the program worked well for diverse learners and helped to build excitement for science through engaging all learners in the musical. Students and educators reported positive personal and academic benefits to participating students. We present findings from the evaluation and lessons learned about integration of the arts into STEM education.

  12. The aurora, Mars, and more! Increasing science content in elementary grades through art and literacy programs in earth and space science

    Science.gov (United States)

    Renfrow, S.; Wood, E. L.

    2011-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. One unintended result is that teachers in grades where science is tested must play catch-up with students for them to be successful on the assessment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy, social studies, and math into an integrated science program, thereby increasing the number of science contact hours. The Dancing Lights program, developed at the Laboratory for Atmospheric and Space Physics, is a science, art, and literacy program about the aurora designed to easily fit into a typical 3rd-5th grade instructional day. It mirrors other successful literacy programs and will provide a basis for the literacy program being developed for the upcoming MAVEN mission to Mars. We will present early findings, as well as "lessons learned" during our development and implementation of the Dancing Lights program and will highlight our goals for the MAVEN mission literacy program.

  13. Needs assessment of science teachers in secondary schools in Kumasi, Ghana: A basis for in-service education training programs at the Science Resource Centers

    Science.gov (United States)

    Gyamfi, Alexander

    The purpose of this study was twofold. First, it identified the priority needs common to all science teachers in secondary schools in Kumasi, Ghana. Second, it investigated the relationship existing between the identified priority needs and the teacher demographic variables (type of school, teacher qualification, teaching experience, subject discipline, and sex of teacher) to be used as a basis for implementing in-service education training programs at the Science Resource Centers in Kumasi Ghana. An adapted version of the Moore Assessment Profile (MAP) survey instrument and a set of open-ended questions were used to collect data from the science teachers. The researcher handed out one hundred and fifty questionnaire packets, and all one hundred and fifty (100%) were collected within a period of six weeks. The data were analyzed using descriptive statistics, content analysis, and inferential statistics. The descriptive statistics reported the frequency of responses, and it was used to calculate the Need Index (N) of the identified needs of teachers. Sixteen top-priority needs were identified, and the needs were arranged in a hierarchical order according to the magnitude of the Need Index (0.000 ≤ N ≤ 1.000). Content analysis was used to analyze the responses to the open-ended questions. One-way analysis of variance (ANOVA) was used to test the null hypotheses of the study on each of the sixteen identified top-priority needs and the teacher demographic variables. The findings of this study were as follows: (1) The science teachers identified needs related to "more effective use of instructional materials" as a crucial area for in-service training. (2) Host and Satellite schools exhibited significant difference on procuring supplementary science books for students. Subject discipline of teachers exhibited significant differences on utilizing the library and its facilities by students, obtaining information on where to get help on effective science teaching

  14. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    Science.gov (United States)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  15. One-to-one iPad technology in the middle school mathematics and science classrooms

    Science.gov (United States)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  16. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  17. Practices implemented by a Texas charter school system to overcome science teacher shortage

    Science.gov (United States)

    Yasar, Bilgehan M.

    The purpose of this study was to examine practices used by a charter school system to hire and retain science teachers. The research design for this study was a qualitative case study. This single instrumental case study explored the issue within a bounded system. Purposeful sampling strategy was used to identify the participants who were interviewed individually. Findings of the case study supported that using online resources, advertising in the newspaper, attending job fairs, using alternative certification programs, attracting alumni, contacting the college of educations and hiring internationally helped the charter school system with hiring science teachers. Improving teacher salary scale, implementing teacher mentorship programs, reimbursing teachers for certification and master's programs, providing professional development and supporting teachers helped to retain science teachers. Therefore, this study contributes to determining strategies and techniques, selecting methods and programs, training administrators, and monitoring for successful hiring and retaining science teacher implementation.

  18. Examining a math-science professional development program for teachers in grades 7-12 in an urban school district in New York State

    Science.gov (United States)

    Kaszczak, Lesia

    With the adoption of the Common Core State Standards in New York State and the Next Generation Science Standards, it is more important than ever for school districts to develop professional development programs to provide teachers with the resources that will assist them in incorporating the new standards into their classroom instruction. This study focused on a mathematics and science professional development program known as STEMtastic STEM. The two purposes of the study were: to determine if there is an increase in STEM content knowledge of the participants involved in year two of a three year professional development program and to examine the teachers' perceptions of the impact of the professional development program on classroom instruction. The sample included teachers of grades 7-12 from an urban school district in New York State. The scores of a content knowledge pre-test and post-test were analyzed using a paired sample t-test to determine any significant differences in scores. In order to determine mathematics and science teachers' perceptions of the impact of the professional development program, responses from a 22 item Likert-style survey were analyzed to establish patterns of responses and to determine positive and negative perceptions of participants of the professional development program. A single sample t-test was used to determine if the responses were significantly positive. The results of this study indicated that there was no significant increase in content knowledge as a result of participation in the STEMtastic STEM professional development program. Both mathematics and science teachers exhibited significant positive perceptions of items dealing with hands-on participation during the professional development; support provided by STEMtastic STEM specialists; and the support provided by the administration. It was concluded that both mathematics and science teachers responded positively to the training they received during the professional

  19. Inspiring careers in STEM and healthcare fields through medical simulation embedded in high school science education.

    Science.gov (United States)

    Berk, Louis J; Muret-Wagstaff, Sharon L; Goyal, Riya; Joyal, Julie A; Gordon, James A; Faux, Russell; Oriol, Nancy E

    2014-09-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K-12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted. Copyright © 2014 The American Physiological Society.

  20. A qualitative study of motivation in Alaska Native Science and Engineering Program (ANSEP) precollege students

    Science.gov (United States)

    Yatchmeneff, Michele

    The dramatic underrepresentation of Alaska Natives in science, technology, engineering and mathematics (STEM) degrees and professions calls for rigorous research in how students access these fields. Research has shown that students who complete advanced mathematics and science courses while in high school are more academically prepared to pursue and succeed in STEM degree programs and professions. There is limited research on what motivates precollege students to become more academically prepared before they graduate from high school. In Alaska, Alaska Native precollege students regularly underperform on required State of Alaska mathematics and science exams when compared to non-Alaska Native students. Research also suggests that different things may motivate Alaska Native students than racial majority students. Therefore there is a need to better understand what motivates Alaska Native students to take and successfully complete advanced mathematics and science courses while in high school so that they are academically prepared to pursue and succeed in STEM degrees and professions. The Alaska Native Science & Engineering Program (ANSEP) is a longitudinal STEM educational enrichment program that works with Alaska Native students starting in middle school through doctoral degrees and further professional endeavors. Research suggests that Alaska Native students participating in ANSEP are completing STEM degrees at higher rates than before the program was available. ANSEP appears to be unique due to its longitudinal approach and the large numbers of Alaska Native precollege, university, and graduate students it supports. ANSEP provides precollege students with opportunities to take advanced high school and college-level mathematics and science courses and complete STEM related projects. Students work and live together on campus during the program components. Student outcome data suggests that ANSEP has been successful at motivating precollege participants to

  1. Gender differences in partner interactions during an after-school science peer tutoring program

    Science.gov (United States)

    Brei-Crawley, M. Jo

    This teacher research study examined an after-school science program called SSTAR (Science Students Teaching as Resources) to determine if this program encourages early scientific involvement for girls, specifically the investigation of simple machines. SSTAR's overall goal was to develop scientific skills in fourth grade tutors who were partnered with second grade tutees. This study was conducted during two different SSTAR study sessions, identified as the pilot study (year one) and the expanded study (year two). The SSTAR program and the data collection instruments were refined and modified during this two-year process. Four data collection instruments were used to gather data and insights into this program; video-taped interactions between tutor and tutee, a writing assessment, a performance assessment and focus group discussions. The video taped partnership interactions found that tutors used similar instructional strategies and tutees gave similar response strategies. However, these strategies varied according to the gender of the partner. A written assessment, in the form of an open ended question was given to just the tutors at the beginning and end of their session. Additionally, a performance assessment was given. This assessment asked the tutors to construct a machine from the Legos(c) that were provided. This assessment was also done in a pretest/post-test format. Scores from the writing and performance assessment were then compared and the performance assessment showed more tutor growth in knowledge of simple machines than the writing assessment. Overall students made comments stating they enjoyed the SSTAR program and would sign up again. They had no preference for a same gender or opposite gender partner among either tutor or tutee discussions. All the data examined shows evidence that SSTAR was an effective program for tutor growth in the scientific area of simple machines. While the original study focus was specifically on girls, both genders

  2. Establishing a Student Research and Publishing Program in High School Physics

    Science.gov (United States)

    Eales, Jonathan; Laksana, Sangob

    2016-01-01

    Student learning in science is improved by authentic personal experience of research projects and the publication of findings. Graduate students do this, but it is uncommon to find student research and publishing in high school science programs. We describe here the Student Research and Publishing Program (SRPP) established at International School…

  3. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  4. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  5. Outside school time: an examination of science achievement and non-cognitive characteristics of 15-year olds in several countries

    Science.gov (United States)

    Suter, Larry E.

    2016-03-01

    Elementary and secondary students spend more hours outside of class than in formal school and thus have more time for interaction with everyday science. However, evidence from a large international survey, Program of International Student Assessment (PISA) (OECD 2012), found a negative relationship between number of hours attending after-school science and science assessment scores in many countries, raising questions about why. The secondary analysis of the 2006, 2009, and 2012 PISA surveys found that in most Western countries the longer students attended after-school science programs (in a typical week), the lower their PISA standardized science test score, but the higher their positive attitudes toward future science careers, interest in science, and self-confidence in science. Several potential hypotheses for this relationship are examined and rejected. Further analysis of a causal relationship between frequent attendance in after-school programs and student achievement and attitudes should clearly identify the content of the program so that the analysis could distinguish experiences closely related to regular school curricula from the informal science activities that are not. A new analysis also should include carefully designed longitudinal surveys to test the effectiveness of informal experiences on later life choices in career and study. Revision of a Paper prepared for AERA meetings in Chicago, 19 April 2015.

  6. In Defense of Societal Issues as Organizers for School Science.

    Science.gov (United States)

    Yager, Robert E.

    1983-01-01

    Offers a defense of societal issues as organizers for school science programs in response to criticisms of this thesis discussed in SE 534 649. Indicates that there appears to be no evidence that using nontraditional topics as organizers will make science more subject to manipulation and perversion. (JN)

  7. Improving Science Teacher Preparation through the APS PhysTEC and NSF Noyce Programs

    Science.gov (United States)

    Williams, Tasha; Tyler, Micheal; van Duzor, Andrea; Sabella, Mel

    2013-03-01

    Central to the recruitment of students into science teaching at a school like CSU, is a focus on the professional nature of teaching. The purpose of this focus is twofold: it serves to change student perceptions about teaching and it prepares students to become teachers who value continued professional development and value the science education research literature. The Noyce and PhysTEC programs at CSU place the professional nature of teaching front and center by involving students in education research projects, paid internships, attendance at conferences, and participation in a new Teacher Immersion Institute and a Science Education Journal Reading Class. This poster will focus on specific components of our teacher preparation program that were developed through these two programs. In addition we will describe how these new components provide students with diverse experiences in the teaching of science to students in the urban school district. Supported by the NSF Noyce Program (0833251) and the APS PhysTEC Program.

  8. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  9. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  10. Evaluating Junior Secondary Science Textbook Usage in Australian Schools

    Science.gov (United States)

    McDonald, Christine V.

    2016-08-01

    A large body of research has drawn attention to the importance of providing engaging learning experiences in junior secondary science classes, in an attempt to attract more students into post-compulsory science courses. The reality of time and resource constraints, and the high proportion of non-specialist science teachers teaching science, has resulted in an overreliance on more transmissive pedagogical tools, such as textbooks. This study sought to evaluate the usage of junior secondary science textbooks in Australian schools. Data were collected via surveys from 486 schools teaching junior secondary (years 7-10), representing all Australian states and territories. Results indicated that most Australian schools use a science textbook in the junior secondary years, and textbooks are used in the majority of science lessons. The most highly cited reason influencing choice of textbook was layout/colour/illustrations, and electronic technologies were found to be the dominant curricula material utilised, in addition to textbooks, in junior secondary science classes. Interestingly, the majority of respondents expressed high levels of satisfaction with their textbooks, although many were keen to stress the subsidiary role of textbooks in the classroom, emphasising the textbook was `one' component of their teaching repertoire. Importantly, respondents were also keen to stress the benefits of textbooks in supporting substitute teachers, beginning teachers, and non-specialist science teachers; in addition to facilitating continuity of programming and staff support in schools with high staff turnover. Implications from this study highlight the need for high quality textbooks to support teaching and learning in Australian junior secondary science classes.

  11. A Case Study of the Introduction of Computer Science in NZ Schools

    Science.gov (United States)

    Bell, Tim; Andreae, Peter; Robins, Anthony

    2014-01-01

    For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…

  12. Moving to higher ground: Closing the high school science achievement gap

    Science.gov (United States)

    Mebane, Joyce Graham

    The purpose of this study was to examine the perceptions of West High School constituents (students, parents, teachers, administrators, and guidance counselors) about the readiness and interest of African American students at West High School to take Advanced Placement (AP) and International Baccalaureate (IB) science courses as a strategy for closing the achievement gap. This case study utilized individual interviews and questionnaires for data collection. The participants were selected biology students and their parents, teachers, administrators, and guidance counselors at West High School. The results of the study indicated that just over half the students and teachers, most parents, and all guidance counselors thought African American students were prepared to take AP science courses. Only one of the three administrators thought the students were prepared to take AP science courses. Between one-half and two-thirds of the students, parents, teachers, and administrators thought students were interested in taking an AP science course. Only two of the guidance counselors thought there was interest among the African American students in taking AP science courses. The general consensus among the constituents about the readiness and interest of African American students at West High School to take IB science courses was that it is too early in the process to really make definitive statements. West is a prospective IB school and the program is new and not yet in place. Educators at the West High School community must find reasons to expect each student to succeed. Lower expectations often translate into lower academic demands and less rigor in courses. Lower academic demands and less rigor in courses translate into less than adequate performance by students. When teachers and administrators maintain high expectations, they encourage students to aim high rather than slide by with mediocre effort (Lumsden, 1997). As a result of the study, the following suggestions should

  13. Determination of in-service needs of Turkish high school science teachers in Istanbul

    Science.gov (United States)

    Ogan, Feral

    The purposes of this study were to identify the in-service needs of high school science teachers in Istanbul, Turkey according to the subgroups such as school type and gender and determine the priority obstacles preventing these science teachers from attendance at in-service programs. Moreover, this study aimed to find the other greatest needs of high school science teachers that are not mentioned in the survey instrument. The data for this research was gathered by conducting a survey in Istanbul, Turkey in Fall 2001 and Spring 2002 Semesters. Turkish translation of the modified version of a science teacher's needs inventory, Science Teacher Inventory of Need (STIN), entitled STIN-2 was used as the survey instrument. The subjects consisted of 75 high school science teachers who were selected from 369 high schools by using stratified random sampling in grades nine through eleven. By personally administering the survey, 422 science teachers from 75 high schools completed the survey and a 97% response rate was achieved. The results obtained in this study show that Turkish high school science teachers in Istanbul have a number of shared needs. One other indication is that they also have a number of needs, which are specific to subgroups of those science teachers.

  14. Assessing middle school students` understanding of science relationships and processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R. [Univ. of New Nexico, Albuquerque, NM (United States); Minnick, K. [Minnick & Associates, Inc., Albuquerque, NM (United States)

    1994-09-01

    Our overall goal for this multi-year project is to develop and validate an alternative assessment format that effectively measures middle school students understanding of the relationships among selected science concepts and processes. In this project, we collaborate with the staff of the Los Alamos National Laboratory`s TOPS Program and the Programs participating teachers and their students. We also work with selected middle school science teachers from the TOPS program at Sandia National Laboratories. Our goal for this past year was to develop and field test informally a variety of potential measurement formats. This work has allowed us to identify formats to test during the validation phase of the project which will occur during the second year.

  15. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  16. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  17. School Breakfast Program and school performance.

    Science.gov (United States)

    Meyers, A F; Sampson, A E; Weitzman, M; Rogers, B L; Kayne, H

    1989-10-01

    To test the hypothesis that participation in the School Breakfast Program by low-income children is associated with improvements in standardized achievement test scores and in rates of absence and tardiness, children in grades 3 through 6 were studied in the Lawrence, Mass, public schools, where the School Breakfast Program was begun at the start of the second semester 1986-1987 school year. The changes in scores on a standardized achievement test and in rates of absence and tardiness before and after the implementation of the School Breakfast Program for children participating in the program were compared with those of children who also qualified but did not participate. Controlling for other factors, participation in the School Breakfast Program contributed positively to the 1987 Comprehensive Tests of Basic Skills battery total scale score and negatively to 1987 tardiness and absence rates. These findings suggest that participation in the School Breakfast Program is associated with significant improvements in academic functioning among low-income elementary school children.

  18. The Workshop Program on Authentic Assessment for Science Teachers

    Science.gov (United States)

    Rustaman, N. Y.; Rusdiana, D.; Efendi, R.; Liliawati, W.

    2017-02-01

    A study on implementing authentic assessment program through workshop was conducted to investigate the improvement of the competence of science teachers in designing performance assessment in real life situation at school level context. A number of junior high school science teachers and students as participants were involved in this study. Data was collected through questionnaire, observation sheets, and pre-and post-test during 4 day workshop. This workshop had facilitated them direct experience with seventh grade junior high school students during try out. Science teachers worked in group of four and communicated each other by think-pair share in cooperative learning approach. Research findings show that generally the science teachers’ involvement and their competence in authentic assessment improved. Their knowledge about the nature of assessment in relation to the nature of science and its instruction was improved, but still have problem in integrating their design performance assessment to be implemented in their lesson plan. The 7th grade students enjoyed participating in the science activities, and performed well the scientific processes planned by group of science teachers. The response of science teachers towards the workshop was positive. They could design the task and rubrics for science activities, and revised them after the implementation towards the students. By participating in this workshop they have direct experience in designing and trying out their ability within their professional community in real situation towards their real students in junior high school.

  19. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. JOHNSON

    2011-11-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  20. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. Johnson

    2011-10-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  1. BURECS: An Interdisciplinary Undergraduate Climate Science Program

    Science.gov (United States)

    Dennis, D. P.; Marchant, D. R.; Christ, A. J.; Ehrenfeucht, S.

    2017-12-01

    The current structure of many undergraduate programs, particularly those at large research universities, requires students to engage with a major or academic emphasis early in their university careers. This oftentimes curbs exploration outside the major and can inhibit interdisciplinary collaboration. The Boston University Research Education and Communication of Science (BURECS) program seeks to bridge this institutional divide by fostering interdisciplinary and multidisciplinary collaboration on climate change-related issues by students from across Boston University (B.U.). Every year, approximately fifteen first-year students from B.U.'s College of Arts and Sciences, College of Communication, and School of Education are selected to join BURECS, which includes a climate science seminar, a hands-on lab course, a supported summer internship with Boston-area researchers, and the opportunity to participate in Antarctic field work during subsequent B.U. Antarctic Research Group expeditions. Currently in its third year, BURECS is funded through the Howard Hughes Medical Institute (HHMI) Professors Program.

  2. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  3. Impact of Texas high school science teacher credentials on student performance in high school science

    Science.gov (United States)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  4. Beyond the Classroom: The Potential of After School Programs to Engage Diverse High School Students in the Geosciences

    Science.gov (United States)

    Pickering, J.; Briggs, D. E.; Alonzo, J.

    2011-12-01

    Over the last decade many influential reports on how to improve the state of STEM education in the United States have concluded that students need exciting science experiences that speak to their interests - beyond the classroom. High school students spend only about one third of their time in school. After school programs are an important opportunity to engage them in activities that enhance their understanding of complex scientific issues and allow them to explore their interests in more depth. For the last four years the Peabody Museum, in partnership with Yale faculty, other local universities and the New Haven Public Schools, has engaged a diverse group of New Haven teens in an after school program that provides them with multiple opportunities to explore the geosciences and related careers, together with access to the skills and support needed for college matriculation. The program exposes 100 students each year to the world of geoscience research; internships; the development of a Museum exhibition; field trips; opportunities for paid work interpreting geoscience exhibits; mentoring by successful college students; and an introduction to local higher education institutions. It is designed to address issues that particularly influence the college and career choices of students from communities traditionally underrepresented in STEM. Independent in-depth evaluation, using quantitative and qualitative methods, has shown that the program has enormous positive impact on the students. Results show that the program significantly improves students' knowledge and understanding of the geosciences and geoscience careers, together with college and college preparation. In the last two years 70% - 80% of respondents agreed that the program has changed the way they feel about science, and in 2010/11 over half of the students planned to pursue a science degree - a considerable increase from intentions voiced at the beginning of the program. The findings show that the

  5. Meeting the Demands of Science Reforms: A Comprehensive Professional Development for Practicing Middle School Teachers

    Science.gov (United States)

    Pringle, Rose M.; Mesa, Jennifer; Hayes, Lynda

    2018-03-01

    Preparing teachers to teach science consistent with current reforms in science education is a daunting enterprise given a lack of high-quality science professional development (PD) adaptable across various contexts (Wilson 2013). This study examines the impact of a comprehensive professional development program on middle school teachers' disciplinary content knowledge and instructional practices. In this mixed methods investigation, data sources included classroom observations, content knowledge assessments, surveys, and a range of interviews. The teachers in the program showed significant improvements in their disciplinary content knowledge and demonstrated through their enactment of a reform-based curriculum, a range of ability levels to translate their knowledge into instructional practices consistent with the principles espoused in the PD. We conclude that programs that attend to elements of effective PD identified in the literature can positively impact middle school science teachers' enactment of reform-based science teaching. Our findings extend these elements to include the strategic engagement of school and district leadership and the provision of a safe learning space for teachers to collectively engage in reciprocal learning and critical practice. This study has worldwide implications for designing PD for science teachers and for extending our understanding of the impact of each element.

  6. STEM Enrichment Programs and Graduate School Matriculation: The Role of Science Identity Salience

    Science.gov (United States)

    Merolla, David M.; Serpe, Richard T.

    2013-01-01

    Improving the state of science education in the United States has become a national priority. One response to this problem has been the implementation of STEM enrichment programs designed to increase the number of students that enter graduate programs in science. Current research indicates enrichment programs have positive effects for student…

  7. Science Programs

    Science.gov (United States)

    Laboratory Delivering science and technology to protect our nation and promote world stability Science & ; Innovation Collaboration Careers Community Environment Science & Innovation Facilities Science Pillars Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied

  8. The level of new science leadership behaviors of school principals: A scale development

    Directory of Open Access Journals (Sweden)

    Akpil Şerife

    2016-01-01

    Full Text Available Einstein’s theory of relativity and quantum physics opened Newton physics up for discussion, thus triggering the new science at the beginning of the 20th century. Philosophy of science, which was named as the new science in the 20th century, caused fundamental changes in research methods and paradigms. The methods and set of values brought by the new science affected social sciences as well. In conjunction with this mentioned change and development, the field of education and the view of schools were influenced. In the same vein, identifying the thoughts of school principals on leadership styles based on new science was considered as a primary need and set the objective of this research. In this regard, a “The Levels of New Science Leadership Behaviors of School Principals Scale” was developed. Following the literature review, the scale with 54 items was prepared and underwent expert review. Finally it was applied to 200 school principals who were working in primary and secondary schools in the Anatolian side of Istanbul. The data acquired were analyzed through SPSS 15.0 and Lisrel 8.51 programs. The results of the analysis revealed that the scale was comprised of a total of 27 items and had 5 factors (dimensions. The reliability analysis indicated internal consistency value (Cronbach Alpha as .94. Confirmatory factor analysis was carried out in Lisrel program. According to results of confirmatory factor analysis, the X2/df ratio was calculated as 2, 24 which showed that the measurement model was in accord with the data.

  9. Strengthening programs in science, engineering and mathematics. Third annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1997-09-30

    The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratory equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.

  10. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual‐Degree Program

    Science.gov (United States)

    Pillinger, Michael; Plottel, Claudia S.; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S.; Cronstein, Bruce N.; Gold‐von Simson, Gabrielle

    2015-01-01

    Abstract To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU‐NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU‐HHC CTSI) developed the Master's of Science in Clinical Investigation dual‐degree (MD/MSCI) program. This 5‐year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010–2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time‐limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual‐degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow‐up is warranted to evaluate the academic trajectory of these students. PMID:26365704

  11. Teaching Translational Research to Medical Students: The New York University School of Medicine's Master's of Science in Clinical Investigation Dual-Degree Program.

    Science.gov (United States)

    Gillman, Jennifer; Pillinger, Michael; Plottel, Claudia S; Galeano, Claudia; Maddalo, Scott; Hochman, Judith S; Cronstein, Bruce N; Gold-von Simson, Gabrielle

    2015-12-01

    To develop the next generation of translational investigators, New York University School of Medicine (NYUSOM) and the NYU-NYC Health and Hospitals Corporation Clinical and Translational Science Institute (NYU-HHC CTSI) developed the Master's of Science in Clinical Investigation dual-degree (MD/MSCI) program. This 5-year program dedicates 1 year to coursework and biomedical research, followed by a medical school/research overlap year, to prepare students for academic research careers. This paper details the MD/MSCI program's curriculum and approach to mentorship, describes the research/professional interests of students, and reports student productivity. In the first 4 years of the program (2010-2014) 20 students were matriculated; 7 (35%) were women, and 12 (60%) research projects were in surgical specialties. To date, 14 students have applied to residency, and half pursued surgical residency programs. Our students have produced 68 accepted abstracts, 15 abstracts in submission, 38 accepted papers, and 24 papers in submission. Despite the time-limited nature of this program, additional training in research design and implementation has promoted a high level of productivity. We conclude that dual-degree training in medicine and translational research is feasible for medical students and allows for meaningful participation in valuable projects. Follow-up is warranted to evaluate the academic trajectory of these students. © 2015 Wiley Periodicals, Inc.

  12. High school students as science researchers: Opportunities and challenges

    Science.gov (United States)

    Smith, W. R.; Grannas, A. M.

    2007-12-01

    Today's K-12 students will be the scientists and engineers who bring currently emerging technologies to fruition. Existing research endeavors will be continued and expanded upon in the future only if these students are adequately prepared. High school-university collaborations provide an effective means of recruiting and training the next generation of scientists and engineers. Here, we describe our successful high school-university collaboration in the context of other models. We have developed an authentic inquiry-oriented environmental chemistry research program involving high school students as researchers. The impetus behind the development of this project was twofold. First, participation in authentic research may give some of our students the experience and drive to enter technical studies after high school. One specific goal was to develop a program to recruit underrepresented minorities into university STEM (science, technology, engineering, and mathematics) programs. Second, inquiry-oriented lessons have been shown to be highly effective in developing scientific literacy among the general population of students. This collaboration involves the use of local resources and equipment available to most high schools and could serve as a model for developing high school- university partnerships.

  13. La Materia. Nivel II. Basado en el curso de estudios de Ciencia de Montgomery County Public Schools. (Matter. Level II. Based on the Montgomery County Public Schools Science Studies Program).

    Science.gov (United States)

    Gerstman, M. Linda

    This curriculum unit is for use in an elementary school foreign language immersion program in Montgomery County, Maryland. The unit is geared toward the second grade science classroom. It includes instructional and performance objectives, vocabulary lists, optional language structure sections, illustrations, activities, evaluation suggestions, and…

  14. Montgomery Blair Science, Mathematics and Computer Science Magnet Program: A Successful Model for Meeting the Needs of Highly Able STEM Learners

    Science.gov (United States)

    Stein, David; Ostrander, Peter; Lee, G. Maie

    2016-01-01

    The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…

  15. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  16. Leadership that promotes teacher empowerment among urban middle school science teachers

    Science.gov (United States)

    Howard-Skipper, Joni

    In this study, the focus was on determining leadership strategies that promote teacher empowerment among urban middle school science teachers. The purpose of the paper was to determine if leadership strategies are related to teacher empowerment. The emphasis was on various forms of leadership and the empowerment of teachers in context in restructuring the democratic structure. An effective leadership in science education entails empowering others, especially science teachers. In this regard, no published studies had examined this perspective on empowering teachers and school leadership. Therefore, this study determined if a relationship exists between leadership strategy actions and teacher empowerment. The significance of the study is to determine a relationship between leadership strategies and teacher empowerment as a positive approach toward developing successful schools. Empowerment is essential for implementing serious improvements. Empowering others in schools must form a major component of an effective principal's agenda. It is becoming clearer in research literature that complex changes in education sometimes require active initiation. For this study, a quantitative methodology was used. Primary data enabled the research questions to be answered. The reliability and validity of the research were ensured. The results of this study showed that 40% of the administrators establish program policies with teachers, and 53% of teachers make decisions about new programs in schools. Furthermore, the findings, their implications, and recommendations are discussed.

  17. Delaware GK-12: Improvement of Science Education in Vocational Technical High Schools Through Collaborative Learning and Coteaching

    Science.gov (United States)

    Madsen, J.; Skalak, K.; Watson, G.; Scantlebury, K.; Allen, D.; Quillen, A.

    2006-12-01

    With funding from the National Science Foundation, the University of Delaware (UD) in partnership with the New Castle County Vocational Technical School District (NCCoVoTech) in Delaware has initiated a GK-12 Program. In each of year this program, nine full time UD graduate students in the sciences, who have completed all or most of their coursework, will be selected to serve as fellows. Participation in the GK-12 program benefits the graduate fellows in many ways. In addition to gaining general insight into current issues of science education, the fellows enhance their experience as scientific researchers by directly improving their ability to effectively communicate complex quantitative and technical knowledge to an audience with multiple and diverse learning needs. In the first year of this project, fellows have been paired with high school science teachers from NCCoVoTech. These pairs, along with the principal investigators (PIs) of this program have formed a learning community that is taking this opportunity to examine and to reflect on current issues in science education while specifically addressing critical needs in teaching science in vocational technical high schools. By participating in summer workshops and follow-up meetings facilitated by the PIs, the fellows have been introduced to a number of innovative teaching strategies including problem-based learning (PBL). Fellow/teacher pairs have begun to develop and teach PBL activities that are in agreement with State of Delaware science standards and that support student learning through inquiry. Fellows also have the opportunity to engage in coteaching with their teacher partner. In this "teaching at the elbow of another", fellows will gain a better understanding of and appreciation for the complexities and nuances of teaching science in vocational technical high schools. While not taught as a stand-alone course in NCCoVoTech high schools, earth science topics are integrated into the science curriculum at

  18. An evaluative study of the impact of the "Curriculum Alignment Toolbox" on middle school science achievement

    Science.gov (United States)

    Jones, Carol L.

    The number of computer-assisted education programs on the market is overwhelming science teachers all over the Michigan. Though the need is great, many teachers are reluctant to procure computer-assisted science education programs because they are unsure of the effectiveness of such programs. The Curriculum Alignment Toolbox (CAT) is a computer-based program, aligned to the Michigan Curriculum Framework's Benchmarks for Science Education and designed to supplement science instruction in Michigan middle schools. The purpose of this study was to evaluate the effectiveness of CAT in raising the standardized test scores of Michigan students. This study involved 419 students from one urban, one suburban and one rural middle school. Data on these students was collected from 4 sources: (1) the 8th grade Michigan Education Assessment Program (MEAP) test, (2) a 9 question, 5-point Likert-type scale student survey, (3) 4 open-response student survey questions and (4) classroom observations. Results of this study showed that the experimental group of 226 students who utilized the CAT program in addition to traditional instruction did significantly better on the Science MEAP test than the control group of 193 students who received only traditional instruction. The study also showed that the urban students from a "high needs" school seemed to benefit most from the program. Additionally, though both genders and all identified ethnic groups benefited from the program, males benefited more than females and whites, blacks and Asian/Pacific Islander students benefited more than Hispanic and multi-racial students. The CAT program's success helping raise the middle school MEAP scores may well be due to some of its components. CAT provided students with game-like experiences all based on the benchmarks required for science education and upon which the MEAP test is based. The program also provided visual and auditory stimulation as well as numerous references which students indicated

  19. Availability, Uniqueness and Perceived Value of Bachelor of Science in Pharmaceutical Sciences (BSPS Programs in the United States

    Directory of Open Access Journals (Sweden)

    Rabaa M. Al-Rousan

    2013-12-01

    Full Text Available We describe the uniqueness of the Bachelor of Science in Pharmaceutical Sciences (BSPS degree and the factors that contribute to this uniqueness. A total of 18 colleges and schools that offer a BSPS were identified in the literature and compared. A review of the current literature and university websites was conducted in order to compare and contrast the different BSPS programs. BSPS program directors’ perceptions were evaluated through a 14-item online survey instrument. Of the 16 programs surveyed, seven (43.8% responded to the survey. The respondents agreed that most of the BSPS graduates are placed (from the highest to the lowest at pharmacy school, postgraduate education and in the pharmaceutical industry. This is a timely review of coursework, program lengths and job opportunities for graduates of the BSPS. Currently, the BSPS programs have yet to receive a large amount of attention, but the importance in pharmaceutical education cannot be denied.

  20. MOBI: a marine and earth science interpretation and qualification program for out-of-school environment and natural heritage interpreters and other science communicators in Germany

    Science.gov (United States)

    Schneider, S.; Ellger, C.

    2017-12-01

    As a contribution to Germany's "Science Year 2016*17 - Seas and Oceans", a large science outreach program organized and financed by the National Ministry for Education and Research, GeoUnion, the umbrella organization of Earth science associations and institutions in Germany, has conducted a series of advance level workshops for out-of-school educators and interpreters in Germany. The workshops were organized in co-operation with geoparks, biosphere reserve areas and other environmental management institutions all over Germany. The goal was to convey various perspectives of modern marine sciences to inland venues, linking important present-day marine themes with the presentation of marine phases in the geological history of the host region. The workshops were designed for park rangers, museum educationalists and other science communicators, initiating a broader impact on target groups such as school classes, (geo-)tourists and stakeholder groups. Our approach has been to combine lectures by top-level scientists (on both ocean literacy aspects and regional geology) with discussions and an on-the-spot learning-and-presenting module based on prepared text and visual material. Beyond earth science issues we have integrated economy, ecology, social sciences as well as arts and humanities aspects. One central topic was the role of the world ocean in climate change; other themes highlighted sea level rise, the thermohaline circulation, sea-floor spreading, coral reefs, over-fishing, various marine species and the problem of plastic waste in the ocean. We had anticipated that marine issues are actually very rarely discussed in inland Germany. A structured presentation of ocean literacy elements has proved to be a new range of topical issues from earth and environmental sciences highly appreciated by the participants.

  1. The Science on Saturday Program at Princeton Plasma Physics Laboratory

    Science.gov (United States)

    Bretz, N.; Lamarche, P.; Lagin, L.; Ritter, C.; Carroll, D. L.

    1996-11-01

    The Science on Saturday Program at Princeton Plasma Physics Laboratory consists of a series of Saturday morning lectures on various topics in science by scientists, engineers, educators, and others with an interesting story. This program has been in existence for over twelve years and has been advertised to and primarily aimed at the high school level. Topics ranging from superconductivity to computer animation and gorilla conservation to pharmaceutical design have been covered. Lecturers from the staff of Princeton, Rutgers, AT and T, Bristol Meyers Squibb, and many others have participated. Speakers have ranged from Nobel prize winners, astronauts, industrialists, educators, engineers, and science writers. Typically, there are eight to ten lectures starting in January. A mailing list has been compiled for schools, science teachers, libraries, and museums in the Princeton area. For the past two years AT and T has sponsored buses for Trenton area students to come to these lectures and an effort has been made to publicize the program to these students. The series has been very popular, frequently overfilling the 300 seat PPPL auditorium. As a result, the lectures are videotaped and broadcast to a large screen TV for remote viewing. Lecturers are encouraged to interact with the audience and ample time is provided for questions.

  2. The Impact of E-Education on At Risk High School Students' Science Achievement and Experiences during Summer School Credit Recovery Courses

    Science.gov (United States)

    Phillips, Pamela Prevette

    interview data. Twenty-eight of the students were interviewed individually or as a member of a focus group. During the study, students were enrolled in either a biology course (n =10), earth science (n =10) or physical science (n =12). The students who participated in the study included thirteen females (37.5%) and nineteen males (62.5%). Students were classified as Caucasian (56.25%) or African American (43.75%) as well as non-Hispanic (87.5%) or Hispanic (12.5%). For analyses, Welch's t-tests were employed to investigate the effects of race/ethnicity or gender on how at risk students interacted with an e-education science course. Analyses revealed that self-efficacy by gender was statistically significant at the 0.01 critical level. Males had a higher self-efficacy mean than did females; however, females had higher academic growth. Learning environment stimulation was statistically significant at the 0.01 critical level for African American students. Time-on-task had a significant impact on academic growth for students who had previously failed the pretests. At risk students who completed one of the summer school science courses using an e-education program reported an increase in science self-efficacy, expressed satisfaction with their achievement, appreciated the autonomy afforded by the program, and expressed having positive emotions toward using the program. Students who could not demonstrate science proficiency during the pretest benefitted the most from the e-education program; students who failed the course due to non-academic reasons received virtually no academic benefit from the e-education program. However, the e-education program did serve to mitigate negative interactions with their face-to-face teachers, providing a neutral vehicle for content delivery. The program, while not benefiting all students equally, enabled all students who finished the course to earn a graduation credit. A majority of the students expressed great satisfaction with their ability to

  3. Tri-P-LETS: Changing the Face of High School Computer Science

    Science.gov (United States)

    Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James

    2012-01-01

    From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…

  4. Perspectives on the Science Advisor Program at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Bennett, P.C.; Heath, R.B.; Podlesny, A.; Channon, P.A.

    1992-01-01

    This paper discusses a Science Advisor Program which has been established at Sandia National Laboratories (SNL) for the long term augmentation of math and science instruction in New Mexico schools. Volunteer SNL engineers and scientists team with the faculty of participating schools to enhance the teachers' abilities to capture and hold the student's scientific imagination and develop their scientific skills. This is done primarily through providing laboratory resources, training the teachers how to use those resources, and advising how to obtain them in the future. In its first year, over 140 advisors teamed with 132 schools, for average weekly contact with 500 teachers and 10,000 students. Surveys indicate a general rise in frequency and quality of hands-on science instruction, as well as teacher and student attitudes. An expanded evaluation is planned for subsequent years

  5. School of Political Science

    Directory of Open Access Journals (Sweden)

    A. D. Voskresensky

    2014-01-01

    Full Text Available Out of all the departments of political sciences in Russia - the Department at MGIMO-University is probably the oldest one. In fact it is very young. While MGIMO-University is celebrating its 70th anniversary the Department of Political Sciences turns 15. Despite the fact that political analyst is a relatively new profession in Russia, it acquired a legal standing only in the 1990s, the political science school at MGIMO-University is almost as old as the university itself. Unlike many other universities, focused on the training teachers of political science or campaign managers MGIMO-University has developed its own unique political science school of "full cycle", where students grow into political sciences from a zero level up to the highest qualifications as teachers and researchers, and campaign managers, consultants and practitioners. The uniqueness of the school of political science at MGIMO-University allows its institutional incarnation -the Department of Political Science - to offer prospective studentsa training in a wide range of popular specialties and specializations, while ensuring a deep theoretical and practical basis of the training. Studying at MGIMO-University traditionally includes enhanced linguistic component (at least two foreign languages. For students of international relations and political science learning foreign languages is particularly important.It allows not only to communicate, but also to produce expertise and knowledge in foreign languages.

  6. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  7. Increasing student engagement in science through field-based research: University of Idaho's WoW STEMcore Program

    Science.gov (United States)

    Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.

    2013-12-01

    A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In

  8. Linking Curriculum and Learning to Facilities: Arizona State University's GK-12 Sustainable Schools Program

    Science.gov (United States)

    Elser, Monica M.; Pollari, Lynette; Frisk, Erin; Wood, Mark

    2011-01-01

    Arizona State University's "Sustainability Science for Sustainable Schools program" brings together graduate students, sustainability researchers, high school teachers and students, and school or district administrators in a project designed to address the challenge of becoming a "sustainable school." Funded by the National…

  9. Articulating attrition: Graduate school experiences of female doctoral students in the sciences

    Science.gov (United States)

    Osburn, Kathryn Ann

    2005-07-01

    Despite decades of research and reform efforts designed to bolster female retention in scientific disciplines, the conundrum of women's departure from doctoral programs in the sciences remains. This qualitative case study investigated the aspects of the graduate school experience that female doctoral students described as facilitating or impeding their successful degree completion in chemistry. I analyzed the graduate school narratives of twelve female participants who represented both successful and unsuccessful doctoral recipients from four advisors at one university. Participants identified four types of experiences that facilitated their retention in the doctoral program: feeling successful and confident in meeting the program requirements, having positive research experiences, receiving support from social networks, and being dedicated to career goals. Participants cited four kinds of experiences that impeded their continued participation in the doctoral program: having negative research experiences, feeling a lack of success and confidence in meeting the program requirements, changing career goals, and receiving no support from social networks. The graduate school experiences of participants who did and did not successfully attain their degree objectives differed in terms of four dimensions: pre-program experiences, academic experiences, advisory experiences, and social experiences. Based on these findings, I have proposed a model of attrition and retention that emphasizes the role that these unique program experiences play in shaping participants' sense of professional fit within the community of doctoral chemists, consequently contributing to their differential program outcomes. This study not only offers a new perspective on the phenomenon of female doctoral attrition in the sciences but also informs the development of more gender-inclusive graduate science practices and policies that will support the retention of female doctoral students.

  10. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  11. A Primary Grade (K-3) Earth Science Program

    Science.gov (United States)

    Schwartz, Maurice L.; Slesnick, Irwin L.

    1973-01-01

    Describes the rationale and structure of a newly developed earth science program for elementary school children (K-3). The activities involve pre-operational and concrete operational stages, progressing from one to the other. Children show sustained interest and enthusiasm as they investigate landforms, the moon, fossils, and weather phenomena.…

  12. The Howard University Program in Atmospheric Sciences: A Program Exemplifying Diversity and Excellence

    Science.gov (United States)

    Morria, V. R.; Demoz, B.; Joseph, E.

    2017-12-01

    The Howard University Graduate Program in Atmospheric Sciences (HUPAS) is the first advanced degree program in the atmospheric sciences instituted at a Historically Black College/University (HBCU) or at a Minority-Serving Institution (MSI). MSI in this context refers to academic institutions whose histories are grounded in serving minority students from their inception, rather than institutions whose student body demographics have evolved along with the "browning of America" and now meet recent Federal criteria for "minority-serving". HUPAS began in 1996 when initiatives within the Howard University Graduate School overlapped with the motivations of investigators within a NASA-funded University research center for starting a sustainable interdisciplinary program. After twenty years, the results have been the production of greater institutional depth and breadth of research in the geosciences and significant production of minority scientists contributing to the atmospheric sciences enterprise in various sectors. This presentation will highlight the development of the Howard University graduate program in atmospheric sciences, its impact on the national statistics for the production of underrepresented minority (URM) advanced degree holders in the atmospheric sciences, and some of the program's contributions to the diversity in geosciences and the National pipeline of talent from underrepresented groups. Over the past decade, Howard University is leading producer of African American and Hispanic female doctorates in atmospheric sciences - producing nearly half of all degree holders in the Nation. Specific examples of successful partnerships between this program and federal funding agencies such as NASA and NOAA which have been critical in the development process will also be highlighted. Finally, some of the student recruitment and retention strategies that have enabled the success of this program and statistics of student graduation will also be shared and

  13. Twenty-first Century Space Science in The Urban High School Setting: The NASA/John Dewey High School Educational Outreach Partnership

    Science.gov (United States)

    Fried, B.; Levy, M.; Reyes, C.; Austin, S.

    2003-05-01

    A unique and innovative partnership has recently developed between NASA and John Dewey High School, infusing Space Science into the curriculum. This partnership builds on an existing relationship with MUSPIN/NASA and their regional center at the City University of New York based at Medgar Evers College. As an outgrowth of the success and popularity of our Remote Sensing Research Program, sponsored by the New York State Committee for the Advancement of Technology Education (NYSCATE), and the National Science Foundation and stimulated by MUSPIN-based faculty development workshops, our science department has branched out in a new direction - the establishment of a Space Science Academy. John Dewey High School, located in Brooklyn, New York, is an innovative inner city public school with students of a diverse multi-ethnic population and a variety of economic backgrounds. Students were recruited from this broad spectrum, which covers the range of learning styles and academic achievement. This collaboration includes students of high, average, and below average academic levels, emphasizing participation of students with learning disabilities. In this classroom without walls, students apply the strategies and methodologies of problem-based learning in solving complicated tasks. The cooperative learning approach simulates the NASA method of problem solving, as students work in teams, share research and results. Students learn to recognize the complexity of certain tasks as they apply Earth Science, Mathematics, Physics, Technology and Engineering to design solutions. Their path very much follows the NASA model as they design and build various devices. Our Space Science curriculum presently consists of a one-year sequence of elective classes taken in conjunction with Regents-level science classes. This sequence consists of Remote Sensing, Planetology, Mission to Mars (NASA sponsored research program), and Microbiology, where future projects will be astronomy related. This

  14. Towards a pragmatic science in schools

    Science.gov (United States)

    Segal, Gilda

    1997-06-01

    This paper contrasts naive beliefs about the nature of science, with science as it appears from sociological and philosophical study, feminist critique and insights from multicultural education. I draw implications from these informed views to suggest how school science might be modified to project a pragmatic view of science to its students that allows students to know science and its relationships to themselves and society in multi-faceted ways. From these perspectives, pragmatic school science is situated within a values framework that questions how we know. Pragmatic school science also requires that the naive inductivist views that permeate school science inquiry methods at present be modified to recognise that observations and inquiry are guided by prior knowledge and values; that new knowledge is tentative; that some knowledge has high status, as it has been constructed consensually over a long period; but that even high status knowledge can be challenged. For implementation of these reforms, yet still to embrace the need for some students to appropriate understanding of discipline knowledge required for advanced science education, a broad set of aims is required.

  15. Making ionising radiation a real experience for high school science students

    International Nuclear Information System (INIS)

    Whitlock, J.; Lang, P.; De La Matter, D.; Hinman, P.; White, B.

    2009-01-01

    The Canadian public has little understanding of ionising radiation due in part to its treatment in popular media. In principle, students learn about ionising radiation in their school science classes. Developments in science curricula are providing more education opportunities for this subject. The Canadian Nuclear Society's program for introducing real, personal experience with ionising radiation in the classroom is starting to make a difference. The demand is expected to exceed the resources of the CNS and the program is being developed to facilitate external support. This paper summarizes the need, the history of this program development, and the path forward. (author)

  16. Seres Vivos. Nivel I. Basado en el curso de estudios de Ciencia de Montgomery County Public Schools. (Living Beings. Level 1. Based on the Montgomery County Public Schools Science Studies Program).

    Science.gov (United States)

    Senger, Graciela

    This curriculum unit, developed by the Montgomery County Public Schools, Maryland, was designed for use in the elementary level foreign language immersion program. It is geared toward the first grade science classroom. The unit includes instructional and performance objectives, necessary vocabulary lists, optional language structure sections,…

  17. Motivating Young Native American Students to Pursue STEM Learning Through a Culturally Relevant Science Program

    Science.gov (United States)

    Stevens, Sally; Andrade, Rosi; Page, Melissa

    2016-12-01

    Data indicate that females and ethnic/race minority groups are underrepresented in the science and engineering workforce calling for innovative strategies to engage and retain them in science education and careers. This study reports on the development, delivery, and outcomes of a culturally driven science, technology, engineering, mathematics (STEM) program, iSTEM, aimed at increasing engagement in STEM learning among Native American 3rd-8th grade students. A culturally relevant theoretical framework, Funds of Knowledge, informs the iSTEM program, a program based on the contention that the synergistic effect of a hybrid program combining two strategic approaches (1) in-school mentoring and (2) out-of-school informal science education experiences would foster engagement and interest in STEM learning. Students are paired with one of three types of mentors: Native American community members, university students, and STEM professionals. The iSTEM program is theme based with all program activities specifically relevant to Native people living in southern Arizona. Student mentees and mentors complete interactive flash STEM activities at lunch hour and attend approximately six field trips per year. Data from the iSTEM program indicate that the program has been successful in engaging Native American students in iSTEM as well as increasing their interest in STEM and their science beliefs.

  18. Young Engineers and Sciences (YES) - Mentoring High School Students

    Science.gov (United States)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  19. UNH Project SMART 2017: Space Science for High School Students

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  20. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  1. Taking Back the Future with an Innovative Program for Training Science Teachers

    Science.gov (United States)

    Hooper, E. J.; Dickinson, G.; Walker, M. H.; Marder, M. P.; Kumar, P.

    2003-12-01

    Research findings for students in Texas and Alabama indicate that teachers' expertise accounted for about 40% of the variance in mathematics and reading achievement. Given that about one third of high school mathematics and science teachers lack either a major or certification in their field, the impact of underqualified teachers can have far reaching impacts. In 1997, the colleges of Natural Science and Education at the University of Texas, in concert with the local school district and experienced teachers, developed a new joint secondary school science teacher preparation program called UTeach. This program provides early and frequent field experience, instruction from master teachers and university scientists, the development of a teaching portfolio, plus a peer and support network which extends beyond graduation. The innovative and streamlined courses focus on the particulars of secondary science education, project and inquiry teaching methodologies, and lab experiences more true to what actually happens in research. After starting with only 28, UTeach now has approximately 400 students enrolled, and graduates have started fanning out across the country. Two research astronomers (EH & PK) recently joined the program and now work alongside physicists, biologists, and chemists teaching courses or parts of them. In addition to helping some of the students with physics and astronomy projects, the astronomers provide guidance on experiment design and execution principles, statistics, and scientific writing to students working in all fields.

  2. Effects of a School-Based Instrumental Music Program on Verbal and Visual Memory in Primary School Children: A Longitudinal Study

    OpenAIRE

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 minutes sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests for three times over a period of 18 ...

  3. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    Science.gov (United States)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  4. NASA Ames summary high school apprenticeship research program, 1983 research papers

    Science.gov (United States)

    Powell, P.

    1984-01-01

    Engineering enrollments are rising in universities; however, the graduate engineer shortage continues. Particularly, women and minorities will be underrepresented for years to come. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created 4 years ago to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP Program is designed for high school juniors (women and minorities) who are U.S. citizens, are 16 years old, and who have unusually high promise in mathematics and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hours a day in a 5-day work week. This work-study program features weekly field trips, lectures and written reports, and job experience related to the student's career interests.

  5. High school science teacher perceptions of the science proficiency testing as mandated by the State of Ohio Board of Education

    Science.gov (United States)

    Jeffery, Samuel Shird

    There is a correlation between the socioeconomic status of secondary schools and scores on the State of Ohio's mandated secondary science proficiency tests. In low scoring schools many reasons effectively explain the low test scores as a result of the low socioeconomics. For example, one reason may be that many students are working late hours after school to help with family finances; parents may simply be too busy providing family income to realize the consequences of the testing program. There are many other personal issues students face that may cause them to score poorly an the test. The perceptions of their teachers regarding the science proficiency test program may be one significant factor. These teacher perceptions are the topic of this study. Two sample groups ware established for this study. One group was science teachers from secondary schools scoring 85% or higher on the 12th grade proficiency test in the academic year 1998--1999. The other group consisted of science teachers from secondary schools scoring 35% or less in the same academic year. Each group of teachers responded to a survey instrument that listed several items used to determine teachers' perceptions of the secondary science proficiency test. A significant difference in the teacher' perceptions existed between the two groups. Some of the ranked items on the form include teachers' opinions of: (1) Teaching to the tests; (2) School administrators' priority placed on improving average test scores; (3) Teacher incentive for improving average test scores; (4) Teacher teaching style change as a result of the testing mandate; (5) Teacher knowledge of State curriculum model; (6) Student stress as a result of the high-stakes test; (7) Test cultural bias; (8) The tests in general.

  6. Principals' instructional management skills and middle school science teacher job satisfaction

    Science.gov (United States)

    Gibbs-Harper, Nzinga A.

    The purpose of this research study was to determine if a relationship exists between teachers' perceptions of principals' instructional leadership behaviors and middle school teacher job satisfaction. Additionally, this study sought to assess whether principal's instructional leadership skills were predictors of middle school teachers' satisfaction with work itself. This study drew from 13 middle schools in an urban Mississippi school district. Participants included teachers who taught science. Each teacher was given the Principal Instructional Management Rating Scale (PIMRS; Hallinger, 2011) and the Teacher Job Satisfaction Questionnaire (TJSQ; Lester, 1987) to answer the research questions. The study was guided by two research questions: (a) Is there a relationship between the independent variables Defining the School's Mission, Managing the Instructional Program, and Developing the School Learning Climate Program and the dependent variable Work Itself?; (b) Are Defining the School's Mission, Managing the Instructional Program, and Developing the School Learning Climate Program predictors of Work Itself? The Pearson's correlation and multiple regression analysis were utilized to examine the relationship between the three dimensions of principals' instructional leadership and teacher satisfaction with work itself. The data revealed that there was a strong, positive correlation between all three dimensions of principals' instructional leadership and teacher satisfaction with work itself. However, the multiple regression analysis determined that teachers' perceptions of principals' instructional management skills is a slight predictor of Defining the School's Mission only.

  7. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    Science.gov (United States)

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  8. NASA Ames Summer High School Apprenticeship Research Program: 1986 research papers

    Science.gov (United States)

    Powell, Patricia

    1988-01-01

    Engineering enrollments are rising in universities; however the graduate engineering shortage continues. Particularly, women and minorities will be underrepresented for many years. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP program is designed for high school juniors who are U.S. citizens, are 16 years old, and who have very high promise in math and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hr days in a 5-day work week. Reports from SHARP students are presented.

  9. FORMATION OF ICT COMPETENCES FUTURE TEACHER OF COMPUTER SCIENCE IN THE ELEMENTARY SCHOOL VIA DELPHI SYSTEM

    Directory of Open Access Journals (Sweden)

    Hrihorii Pustovit

    2015-10-01

    Full Text Available In article, authors clarified the concept of "ICT competence of future teachers of computer science in the elementary school"; improved criteria for formation of the ICT competences future teachers of computer science in the elementary school to identify the system ready for use Delphi during process of visual programming in professional activity. We present the model of the formation of the ICT competence future teachers of computer science in the elementary school via visual programming tools, where importance given to the construction of individual learning paths, taking into account individual learning rhythm, because students have different levels of training, they are different in nature perception of information. It is proved that the proposed model will make it possible to carry out training, starting from the result of the educational process at the university, which takes into account the impact of external and internal variables, as well as a feedback mechanism that allows adjustment of the process at different stages. Authors presented developed method of forming ICT competences future teachers of computer science in the elementary school via Delphi tools during learning of visual programming, feature of which is that to present course materials were chosen LMS Moodle platform.

  10. School Breakfast Program and School Performance.

    Science.gov (United States)

    Meyers, Alan; And Others

    Children who participate in the School Breakfast Program show significant improvement in academic performance and tardiness rates, and a trend toward improvement in absenteeism. The School Breakfast Program was created by Congress in 1966 to provide a breakfast on school days for low income children who would otherwise have none. Children…

  11. A Summary of the Naval Postgraduate School Research Program, 1982

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1982-01-01

    Approved For Public Release; Distribution Unlimited This report contains 224 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Operations Research, National Security Affairs, Physics and Chemistry, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical Engineering. The Table of Content...

  12. A Summary of the Naval Postgraduate School Research Program, 1981

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1981-01-01

    Approved for public release; distribution unlimited. This report contains 230 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Defense Resources Management, Operations Resear-h, National Security Affairs, Physics and Chemistry, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical...

  13. A Summary of the Naval Postgraduate School Research Program, 1983

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1983-01-01

    Approved For Public Release; Distribution Unlimited This report contains 249 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical Engineering. The Table of Contents identifies t...

  14. A Summary of the Naval Postgraduate School Research Program, 1984

    OpenAIRE

    Faculty of the Naval Postgraduate School

    1984-01-01

    Approved for public release; distribution unlimited. This report contains 221 summaries on research projects which were carried out under funding to the Naval Postgraduate School Research Program. This research was carried out in the areas of Computer Science, Mathematics, Administrative Sciences, Operations Research, National Security Affairs, Physics, Electrical Engineering, Meterology, Aeronautics, Oceanography and Mechanical Engineering. The Table of Contents identifies ...

  15. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  16. Big Data Science Cafés: High School Students Experiencing Real Research with Scientists

    Science.gov (United States)

    Walker, C. E.; Pompea, S. M.

    2017-12-01

    The Education and Public Outreach group at the National Optical Astronomy Observatory has designed an outside-of-school education program to excite the interest of talented youth in future projects like the Large Synoptic Survey Telescope (LSST) and the NOAO (archival) Data Lab - their data approaches and key science projects. Originally funded by the LSST Corporation, the program cultivates talented youth to enter STEM disciplines and serves as a model to disseminate to the 40+ institutions involved in LSST. One Saturday a month during the academic year, high school students have the opportunity to interact with expert astronomers who work with large astronomical data sets in their scientific work. Students learn about killer asteroids, the birth and death of stars, colliding galaxies, the structure of the universe, gravitational waves, dark energy, dark matter, and more. The format for the Saturday science cafés has been a short presentation, discussion (plus food), computer lab activity and more discussion. They last about 2.5 hours and have been planned by a group of interested local high school students, an undergraduate student coordinator, the presenting astronomers, the program director and an evaluator. High school youth leaders help ensure an enjoyable and successful program for fellow students. They help their fellow students with the activities and help evaluate how well the science café went. Their remarks shape the next science café and improve the program. The experience offers youth leaders ownership of the program, opportunities to take on responsibilities and learn leadership and communication skills, as well as foster their continued interests in STEM. The prototype Big Data Science Academy was implemented successfully in the Spring 2017 and engaged almost 40 teens from greater Tucson in the fundamentals of astronomy concepts and research. As with any first implementation there were bumps. However, staff, scientists, and student leaders all

  17. A case study of one school system's adoption and implementation of an elementary science program

    Science.gov (United States)

    Kelly, Michael Patrick

    2000-10-01

    The researcher's purpose in this study was to examine the process used by the Minot Public Schools to adopt and implement a new elementary science program from Silver Burdett Ginn called Discovery Works. Using case study methods within a naturalistic design, the researcher investigated teachers' concerns as they adopted and implemented Discovery Works in their classrooms. Data were gathered using the Concerns Based Adoption Model (CBAM) instrument, interviews with adoption committee members, classroom teachers, grade level meetings, and document analysis of field notes related to each phase of the study. Content analysis methods were used to analyze the data. Emergent themes were presented and substantiated in the data, in terms of six research questions that guided this research. The data were analyzed both quantitatively and qualitatively to provide a rich, thick description that and enabled the researcher to confirm and triangulate the concerns of teachers in this study. The quantitative data revealed a general nonuser profile by teachers as they implemented Discovery Works. Three major themes of concerns emerged from a qualitative analysis of the data. The first theme was implementation, including issues related to teacher attitudes and inservice needs. The second theme, management issues, had five concerns subsumed within it. These included concerns related to time, materials, storage, reorder, and cooperative groups. The third theme, effects on students, included issues concerning hands-on methods of teaching science, vocabulary, especially at the upper elementary, and assessment issues. Possible solutions to resolve each of the concerns were presented. Major conclusions are that teacher concerns about Discovery Works were normal for any group experiencing a new innovation. Teachers and students enjoyed using the hands-on materials, and that Minot Public Schools has taken a small, but important step forward on the road to science education reform. Although

  18. Results of a Master's degree program for high-school teachers

    Science.gov (United States)

    Cocke, W. J.

    1993-05-01

    Starting in the summer of 1990, the Astronomy Department at the University of Arizona began a 3-year summer program for upgrading the skills of high-school and middle-school science teachers. The program granted Master's degrees in Astronomy to the 33 teachers that completed the program this past summer. The teachers received tuition waivers and stipends to cover living expenses. The funding came mostly from the National Science Foundation, but the University of Arizona cost-shared at the 15% level. About half of the teachers were from Arizona, and the rest came from out-of-state. Although minorities were encouraged to apply, we had few minority applicants, and there were no Afro-Americans and only one Hispanic in the program. The content of the courses was heavily slanted towards mathematics and the physical sciences. The math level went up to vector calculus and linear partial differential equations, and there was a heavy emphasis on physics and astrophysics. Astronomy turned out to be a good umbrella under which to strengthen the teachers' knowledge of the physical sciences. One of the weak points in the program was the pace at which we introduced new material to the teachers. The summer sessions were short and very intense, and the teachers often found themselves with insufficient time to digest the information. This was offset to some degree by the high rate of cooperative learning that the teachers exhibited. The program seems to have been a great success, and the teachers report that their higher level of understanding is very useful to them in the classroom, and the astronomy content provided an excellent source of new demonstrations and projects. We present the results of a final survey, in which we ask the teachers to summarize their thoughts about the program and its effectiveness.

  19. Attracting young women to the physical sciences: The Newton Summer Science Academy and other extra curricular programs

    Science.gov (United States)

    Chandrasekhar, Meera

    2000-03-01

    Early familiarity is regarded as one of the keys to attracting female students to traditionally male professions. I will describe four different extra curricular programs that my collaborators in the local school district and I have developed for students in grades 5-12. These programs are part of a project entitled ``Promoting Young Women in the Physical sciences", which also includes teacher training and programs in which parents participate with the child. Through these sustained and broad based interventions, we provide early experiences that we expect will prove positive to students. In particular, I will describe the Newton Summer Academy, a program for female high school students which integrates Physics, Chemistry, Math, Engineering and Economics. I will also address the successes and difficulties in starting and sustaining these programs.

  20. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  1. Exploring teachers' perspectives on the impact of out-of-school science-based programs for secondary level physics classrooms in Nebraska

    Science.gov (United States)

    Baquerizo-Birth, Marisol

    This exploratory phenomenological study investigates the lived experiences of six high school physics teachers in Nebraska regarding their perceptions on the impact of participating in a science-based out-of-school program. By exploring the research question, we discover how this experience relates to these teachers' self-concept and professional growth. Open-ended, semi-structured, one-on-one interviews are used as the data collection method to explore teachers' perceptions. Responses reveal that teachers participating in the Cosmic Ray Observatory Project (CROP) as a means of exploring advanced, extracurricular physics projects perceive their participation as an opportunity for enrichment, collaboration, helping their students, and empowerment. Intertwined in the presented narratives, teachers refer to their schools' limited administrative support as a source of struggle tied to the challenge of balancing school and teaching responsibilities with CROP participants' responsibilities. This study proposes teachers must feel confident with their specific subject area to achieve a progressive view of self, and that supplemental professional development opportunities are crucial to physics teaching.

  2. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  3. FOSTER-Flight Opportunities for Science Teacher EnRichment, A New IDEA Program From NASA Astrophysics

    Science.gov (United States)

    Devore, E.; Gillespie, C.; Hull, G.; Koch, D.

    1993-05-01

    Flight Opportunities for Science Teacher EnRichment (FOSTER) is a new educational program from the Imitative to Develop Education through Astronomy in the Astrophysics Division at NASA Headquarters. Now in its first year of the pilot program, the FOSTER project brings eleven Bay Area teaaaachers to NASA Ames to participate in a year-long program of workshops, educational programs at their schools and the opportunity to fly aboard the Kuiper Airborne Observatory (KAO) on research missions. As science and math educators, FOSTER teachers get a close-up look at science in action and have the opportunity to interact with the entire team of scientists, aviators and engineers that support the research abord the KAO. In June, a second group of FOSTER teachers will participate in a week-long workshop at ASes to prepare for flights during the 1993-94 school year. In addition, the FOSTER project trains teachers to use e-mail for ongoing communication with scientists and the KAO team, develops educational materials and supports opportunities for scientists to become directly involved in local schools. FOSTER is supported by a NASA grant (NAGW 3291).

  4. The Status of Science Education in Illinois Scientific Literacy Target Schools, K-6, 1994. A Study.

    Science.gov (United States)

    Finson, Kevin D.; Beaver, John B.

    The Illinois State Board of Education's Scientific Literacy Project provided extra funds to certain schools with the intent of creating demonstration schools useful as models for other schools to improve their science education programs. The study described in this document examined the impact of these funds on the target schools and attempted to…

  5. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  6. Neuroscience in Middle Schools: A Professional Development and Resource Program That Models Inquiry-based Strategies and Engages Teachers in Classroom Implementation

    OpenAIRE

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J.; Dubinsky, Janet M.

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5–8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU...

  7. Science and Engineering of the Environment of Los Angeles: A GK-12 Experiment at Developing Science Communications Skills in UCLA's Graduate Program

    Science.gov (United States)

    Moldwin, M. B.; Hogue, T. S.; Nonacs, P.; Shope, R. E.; Daniel, J.

    2008-12-01

    Many science and research skills are taught by osmosis in graduate programs with the expectation that students will develop good communication skills (speaking, writing, and networking) by observing others, attending meetings, and self reflection. A new National Science Foundation Graduate Teaching Fellows in K- 12 Education (GK-12; http://ehrweb.aaas.org/gk12new/) program at UCLA (SEE-LA; http://measure.igpp.ucla.edu/GK12-SEE-LA/overview.html ) attempts to make the development of good communication skills an explicit part of the graduate program of science and engineering students. SEE-LA places the graduate fellows in two pairs of middle and high schools within Los Angeles to act as scientists-in- residence. They are partnered with two master science teachers and spend two-days per week in the classroom. They are not student teachers, or teacher aides, but scientists who contribute their content expertise, excitement and experience with research, and new ideas for classroom activities and lessons that incorporate inquiry science. During the one-year fellowship, the graduate students also attend a year-long Preparing Future Faculty seminar that discusses many skills needed as they begin their academic or research careers. Students are also required to include a brief (two-page) summary of their research that their middle or high school students would be able to understand as part of their published thesis. Having students actively thinking about and communicating their science to a pre-college audience provides important science communication training and helps contribute to science education. University and local pre- college school partnerships provide an excellent opportunity to support the development of graduate student communication skills while also contributing significantly to the dissemination of sound science to K-12 teachers and students.

  8. Building Transferable Knowledge and Skills through an Interdisciplinary Polar Science Graduate Program

    Science.gov (United States)

    Culler, L. E.; Virginia, R. A.; Albert, M. R.; Ayres, M.

    2015-12-01

    Modern graduate education must extend beyond disciplinary content to prepare students for diverse careers in science. At Dartmouth, a graduate program in Polar Environmental Change uses interdisciplinary study of the polar regions as a core from which students develop skills and knowledge for tackling complex environmental issues that require cooperation across scientific disciplines and with educators, policy makers, and stakeholders. Two major NSF-funded initiatives have supported professional development for graduate students in this program, including an IGERT (Integrative Graduate Education and Research Traineeship) and leadership of JSEP's (Joint Science Education Project) Arctic Science Education Week in Greenland. We teach courses that emphasize the links between science and the human dimensions of environmental change; host training sessions in science communication; invite guest speakers who work in policy, academia, journalism, government research, etc.; lead an international field-based training that includes policy-focused meetings and a large outreach component; provide multiple opportunities for outreach and collaboration with local schools; and build outreach and education into graduate research programs where students instruct and mentor high school students. Students from diverse scientific disciplines (Ecology, Earth Science, and Engineering) participate in all of the above, which significantly strengthens their interdisciplinary view of polar science and ability to communicate across disciplines. In addition, graduate students have developed awareness, confidence, and the skills to pursue and obtain diverse careers. This is reflected in the fact that recent graduates have acquired permanent and post-doctoral positions in academic and government research, full-time teaching, and also in post-docs focused on outreach and science policy. Dartmouth's interdisciplinary approach to graduate education is producing tomorrow's leaders in science.

  9. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  10. Teaching science to English Language Learners: Instructional approaches of high school teachers

    Science.gov (United States)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  11. Chemistry, the Central Science? The History of the High School Science Sequence

    Science.gov (United States)

    Sheppard, Keith; Robbins, Dennis M.

    2005-01-01

    Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.

  12. National School Lunch Program

    Science.gov (United States)

    US Department of Agriculture, 2009

    2009-01-01

    The National School Lunch Program is a federally assisted meal program operating in over 101,000 public and non-profit private schools and residential child care institutions. It provides nutritionally balanced, low-cost or free lunches to more than 30.5 million children each school day in 2008. In 1998, Congress expanded the National School Lunch…

  13. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    Science.gov (United States)

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  14. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  15. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Box Cello Middle School Science Clubs

    Science.gov (United States)

    Vandegrift, Guy

    1998-10-01

    The Box Cello is a middle school science club which is attempting to (1) understand the cello and (2) design a low-cost starter instrument. We can support and justify this research by adding a third goal: (3) to help supply local science classes with equipment. My policy of spending one entire day each week away from the university, out in a local school is essential to this project. This schedule also permits me to conduct lessons on optics and music in the schools. And, it permits circulation of tools and equipment. A simple calculation demonstrates the great economy achieved by combining science clubs with academic year school visits. Consider the cost of letting 10,000 students in 10 middle schools each learn about and play with a pair of "upside-down" glasses for one hour. A visit to each school for three consecutive weeks would easily permit such a circulation if only 30 pairs were constructed. Assume rhetorically, that the construction of 30 pairs of glasses were to consume the entire estimated annual budget of $100,000. The cost per student would be only ten dollars! The visits, guest lectures, and equipment loans permit informal networking (including lunch) with math, science and music teachers in 10 schools. For more information, visit the http://www.utep.edu/boxcello/

  17. Growing Plants and Scientists: Fostering Positive Attitudes toward Science among All Participants in an Afterschool Hydroponics Program

    Science.gov (United States)

    Patchen, Amie K.; Zhang, Lin; Barnett, Michael

    2017-01-01

    This study examines an out-of-school time program targeting elementary-aged youth from populations that are typically underrepresented in science fields (primarily African-American, Hispanic, and/or English Language Learner participants). The program aimed to foster positive attitudes toward science among youth by engaging them in growing plants…

  18. Evaluation of a High School Fair Program for Promoting Successful Inquiry-based Learning

    Science.gov (United States)

    Betts, Julia Nykeah

    The success of inquiry-based learning (IBL) in supporting science literacy can be challenged when students encounter obstacles in the absence of proper support. This research is intended to evaluate the effectiveness of an Oregon public school district's regional science fair coaching program in promoting inquiry skills and positive attitudes toward science in participating high school students. The purpose of this study was to better understand students' perception of program support, obstacles or barriers faced by students, and potential benefits of IBL facilitated by the science fair program. Data included responses to informal and semi-structured interviews, an anonymous survey, a Skills assessment of final project displays, and an in-depth case study on three students' experiences. Results suggest that the science fair program can properly engage participants in authentic IBL. However, when assessing the participant's final project displays, I found that previous fair experience did not significantly increase mean scores as identified by the official Oregon Department of Education (ODE) scoring guides. Based on results from the case study, it is suggested that participants' low science self-concept, poor understanding of inquiry skills, and inability to engage in reflective discourse may reduce students' abilities to truly benefit. Recommendations to address this discrepancy include identifying specific needs of students through a pre--fair survey to develop more targeted support, and providing new opportunities to develop skills associated with science-self concept, understanding of inquiry and reflective discourse. In addition, results suggest that students would benefit from more financial support in the form of grants, and more connections with knowledgeable mentors.

  19. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  20. Ventures in science status report, Summer 1992. [Program description and Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Fredrick, Wayne C.

    1992-01-01

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  1. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Science.gov (United States)

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  2. A Study of the Impact of Transformative Professional Development on Hispanic Student Performance on State Mandated Assessments of Science in Elementary School

    Science.gov (United States)

    Johnson, Carla C.; Fargo, Jamison D.

    2014-11-01

    This paper reports the findings of a study of the impact of the transformative professional development (TPD) model on student achievement on state-mandated assessments of science in elementary school. Two schools (one intervention and one control) participated in the case study where teachers from one school received the TPD intervention across a 2-year period while teachers at the other school received no program and continued business as usual. The TPD program includes a focus on the core conceptual framework for effective professional development (Desimone in Educ Res 38:181-199, 2009) as well as an emphasis on culturally relevant pedagogy (CRP) and other effective science instructional strategies. Findings revealed that participation in TPD had a significant impact on student achievement for Burns Elementary with the percentage of proficient students growing from 25 % at baseline to 67 % at the end of the 2-year program, while the comparison school did not experience similar growth. Implications for future research and implementation of professional development programs to meet the needs of teachers in the realm of CRP in science are discussed.

  3. Materials Science Programs

    International Nuclear Information System (INIS)

    1990-03-01

    The Division of Materials Sciences is located within the Department of Energy in the Office of Basic Energy Sciences. The Office of Basic Energy Sciences reports to the Director of the Office of Energy Research. The Director of this office is appointed by the President with Senate consent. The Director advises the Secretary on the physical research program; monitors the Department's R ampersand D programs; advises the Secretary on management of the laboratories under the jurisdiction of the Department, excluding those that constitute part of the nuclear weapon complex; and advises the Secretary on basic and applied research activities of the Department. The research covers a spectrum of scientific and engineering areas of interest to the Department of Energy and is conducted generally by personnel trained in the disciplines of Solid State Physics, Metallurgy, Ceramics, Chemistry, Polymers and Materials Science. The Materials Sciences Division supports basic research on materials properties and phenomena important to all energy systems. The aim is to provide the necessary base of materials knowledge required to advance the nation's energy programs. This report contains a listing of research underway in FY 1989 together with a convenient index to the Division's programs

  4. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    Science.gov (United States)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  5. Bringing Up Girls in Science (BUGS): The Effectiveness of an Afterschool Environmental Science Program for Increasing Female Students' Interest in Science Careers

    Science.gov (United States)

    Tyler-Wood, Tandra; Ellison, Amber; Lim, Okyoung; Periathiruvadi, Sita

    2012-02-01

    Bringing Up Girls in Science (BUGS) was an afterschool program for 4th and 5th grade girls that provided authentic learning experiences in environmental science as well as valuable female mentoring opportunities in an effort to increase participants' academic achievement in science. BUGS participants demonstrated significantly greater amounts of gain in science knowledge as measured by the Iowa Test of Basic Skills in Science (ITBS-S). The original BUGS participants and contrasts have now completed high school and entered college, allowing researchers to assess the long-term impact of the BUGS program. Fourteen former BUGS participants completed two instruments to assess their perceptions of science and science, technology, engineering, and mathematics (STEM) careers. Their results were compared to four contrast groups composed entirely of females: 12 former BUGS contrasts, 10 college science majors, 10 non-science majors, and 9 current STEM professionals. Results indicate that BUGS participants have higher perceptions of science careers than BUGS contrasts. There were no significant differences between BUGS participants, Science Majors, and STEM professionals in their perceptions of science and STEM careers, whereas the BUGS contrast group was significantly lower than BUGS participants, Science Majors, and STEM Professionals. Additional results and implications are discussed within.

  6. Employing Popular Children's Literature to Teach Elementary School Chemistry: An Engaging Outreach Program

    Science.gov (United States)

    Wally, Laura M.; Levinger, Nancy E.; Grainger, David W.

    2005-01-01

    A chemistry outreach program to enthuse students of elementary school levels through employing popular children's literature Harry Potter is presented. The outreach activity performance found the students discovering new skills, learning more about science, and participating enthusiastically in the program without any added incentive from their…

  7. The Courts, Social Science, and School Desegregation.

    Science.gov (United States)

    Levin, Betsy, Ed.; Hawley, Willis D., Ed.

    A conference on the courts, social science, and school desegregation attempted to clarify how social science research has been used and possibly misused in school desegregation litigation. The symposium issue addressed in this book is a product of that conference. First, the judicial evolution of the law of school desegregation from Brown V. the…

  8. GSA's Teacher Advocate Program - getting teachers to be advocates for Earth Science

    Science.gov (United States)

    Lewis, G. B.

    2011-12-01

    After parents, teachers are they most influential people when it comes to students leaning about their world. However, when it comes to Earth science, the vast majority of our teachers have little to no Earth science training and lack the resources to run exciting and challenging classes on Earth science topics for their students. The Geological Society of America (GSA) is committed to reversing that trend by developing easy to use resources and training teachers on how to use them in their classrooms. Through a program called the Teacher Advocate Program (TAP), GSA has already had teachers using Earth science materials with over 6 million students (1.3 million a year). Formally established in 2003, TAP aims to raise the number of teachers who are advocates for geoscience in their classrooms, schools and school districts by providing those teachers with: Low cost teaching resources that provide them with teaching notes, teaching materials (images, models etc) and usable class room activities. Low cost training opportunities for teachers on how to use TAP materials. In-field experiences for teachers to provide them with teaching materials and insights.

  9. Teachers Training Teachers: Four Perspectives on an Innovative Mentoring Program for Intern Science Teachers.

    Science.gov (United States)

    Diehl, Christine L.; Harris, Jerilyn; Barrios, David; O'Connor, Heather; Fong, Jennifer

    The Graduate School of Education (GSE) at the University of California at Berkeley (UCB), the San Francisco Unified School District (SFUSD), and the Lawrence Berkeley National Laboratory (LBNL) have collaborated to pilot an on-site training and mentoring program for intern science teachers. Exit interviews suggest that its innovative mentoring…

  10. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    Science.gov (United States)

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  11. Teacher Identity and Self-efficacy Development in an Alternative Licensure Program for Middle and High School Math and Science Teachers

    Science.gov (United States)

    West, Robert J.

    This mixed-method case study focused on the phenomenon of the transition from student to teacher. The educational system in the United States is constantly shifting to provide the correct number of teachers for our nations' schools. There is no simple formula for this process and occasionally an area of need arises that is not being met. Recently, the demand for science and math teachers in the K-12 system has outpaced the supply of new teachers (Business-Higher Education Forum, 2011). To complicate the problem further, teachers are leaving the field in record numbers both through retirement and attrition (National Commission on Teaching and America's Future, 2007). Particularly hard hit are poor rural schools with low-performing students, such as the schools of Appalachia (Barley, 2009; Goodpaster, Adedokun, & Weaver, 2012). Out of this need, alternative licensure programs for teachers have developed. The alternative teacher-training program studied in this research is the Woodrow Wilson Teaching Fellowship (WWTF) website, "The Woodrow Wilson Ohio Teaching Fellowship seeks to attract talented, committed individuals with backgrounds in the STEM fields---science, technology, engineering, and mathematics---into teaching in high-need Ohio secondary schools" (para. 2) . The researcher was interested in the formation of teacher identity and self-efficacy as these constructs have been shown to manifest in highly effective teachers that are likely to remain in the field of teaching (Beaucamp & Thomas 2009; Klassen, Tze, Betts, & Gordon, 2010). The research method included in-depth interviews, mixed with pretest/posttest administrations of the Teacher Sense of Efficacy Scale (TSES) (Tschannen-Moran & Woolfolk Hoy 2001) given during the teacher-training period and again following the first year of professional teaching. Results from both the TSES and the interviews indicate that the participants had a successful transition into teaching. They both felt and demonstrated that

  12. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  13. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  14. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  15. School Health: Findings from Evaluated Programs.

    Science.gov (United States)

    Public Health Service (DHHS), Rockville, MD. Office of Disease Prevention and Health Promotion.

    This publication presents findings from evaluations of many school health programs from across the United States. Each program includes at least one of the following eight components of a comprehensive school health program: health education, clinical services, counseling and mental health services, school environment, school food programs,…

  16. The Impact of a Short-Term Pharmacology Enrichment Program on Knowledge and Science Attitudes in Precollege Students

    Directory of Open Access Journals (Sweden)

    Molly N Downing

    2016-06-01

    Full Text Available As our nation and the global economy place an increased demand for science, technology, engineering, and mathematics (STEM jobs, science educators must implement innovative approaches to pique precollege student’s interests in these careers. Pharmacology remains a relevant and engaging platform to teach biology and chemistry concepts, and this strategy applied over several months in the formal classroom increases science literacy in high school students. In order to improve the affordability and accessibility of this educational approach, we developed and assessed the impact of a short-term pharmacology day camp, ‘Pills, Potions, and Poisons’ (PPP, on high school students’ science knowledge and attitudes toward science careers. The PPP program was offered annually from 2009 through 2012, and participants spent 6 days learning about pharmacology and careers in the biomedical sciences. All PPP student participants (n=134 completed surveys assessing their basic science knowledge and science attitudes before and after the program. Students achieved significant gains in their science knowledge by the end (Day 6 of the PPP program (from 41% mean test score to 65%; p<0.001. In addition, the majority of participants agreed or strongly agreed that the PPP program positively impacted their attitudes toward science (p<0.001. This study provides evidence that a short-term pharmacology-centered science enrichment program can achieve significant gains in participant’s science knowledge as well as motivation and confidence towards science careers. Moreover, we report benefits experienced by the undergraduate, graduate, and professional pharmacy student teaching assistants (TAs, n=10 who reported improved communication skills and an increased interest in future educational work.   Type: Original Research

  17. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  18. Girls on Ice: An Inquiry-Based Wilderness Science Education Program

    Science.gov (United States)

    Pettit, E. C.; Koppes, M. N.

    2001-12-01

    We developed a wilderness science education program for high school girls. The program offers opportunities for students to explore and learn about mountain glaciers and the alpine landscape through scientific field studies with geologists and glaciologists. Our purpose is to give students a feeling for the natural processes that create the alpine world and provide an environment that fosters the critical thinking necessary to all scientific inquiry. The program is currently being offered through the North Cascades Institute, a non-profit organization offering outdoor education programs for the general public. We lead eight girls for a weeklong expedition to the remote USGS South Cascade Glacier Research Station in Washington's North Cascades. For four days, we explore the glacier and the nearby alpine valleys. We encourage the girls to observe and think like scientists through making observations and inferences. They develop their own experiments to test ideas about glacier dynamics and geomorphology. In addition to scientific exploration, we engage the students in discussions about the philosophy of science and its role in our everyday lives. Our program exemplifies the success of hands-on, inquiry-based teaching in small groups for science education in the outdoors. The wilderness setting and single gender field team inspires young women's interest in science and provides a challenging environment that increases their physical and intellectual self-confidence.

  19. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  20. Teens-as-teachers nutrition program increases interest in science among schoolchildren and fosters self-efficacy in teens

    Directory of Open Access Journals (Sweden)

    Virginia L.J. Bolshakova

    2018-04-01

    Full Text Available The Healthy Living Ambassador Program brings health, teen leadership, and teamwork to California's elementary school gardens through interdisciplinary UC Cooperative Extension collaboration, community-based partnerships and teen teaching. During spring 2015, teen ambassadors trained by Extension educators and volunteers at UC Elkus Ranch in San Mateo County taught nutrition science, food cultivation and healthy living skills in an 8-week, garden-based, after-school nutrition and physical education program for elementary school children in an urban setting. We conducted a pilot study using a mixed-methods approach to measure and explore the program's impact on children's vegetable selection and consumption preferences, as well as perceived self-efficacy in teen healthy living behavior. The children trended toward an increased preference for gardening, cooking and science, and teens displayed an increase in perceived health self-efficacy.

  1. EIROForum science goes to school

    CERN Multimedia

    CERN Bulletin

    The first EIROForum school was held at CERN last week. In about four days, 35 teachers from 15 countries were able to get a flavour of the science done in four of the seven organizations participating in EIROForum. This was a chance for them to feel part of top-level European scientific research.   The 35 teachers participating in thefirst EIROForum school organized at CERN. Inspiring teachers to motivate students: the formula is well-known at CERN. Here, more than 20 schools for science teachers are organized every year. Some of them are attended by teachers from all over Europe, others are organized for national groups. The successful experience of CERN has served as a model to the other six international organizations that are members of EIROForum (sea box). “The title of this first common school is ‘The evolution of the Universe’”, explains Rolf Landua, head of the CERN Education group and organizer of the school. “The programme of lectures ...

  2. Engaging High School Science Teachers in Field-Based Seismology Research: Opportunities and Challenges

    Science.gov (United States)

    Long, M. D.

    2015-12-01

    Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the

  3. School Wellness Programs: Magnitude and Distribution in New York City Public Schools

    Science.gov (United States)

    Stiefel, Leanna; Elbel, Brian; Prescott, Melissa Pflugh; Aneja, Siddhartha; Schwartz, Amy Ellen

    2016-01-01

    BACKGROUND Public schools provide students with opportunities to participate in many discretionary, unmandated wellness programs. Little is known about the number of these programs, their distribution across schools, and the kinds of students served. We provide evidence on these questions for New York City (NYC) public schools. METHODS Data on wellness programs were collected from program websites, NYC’s Office of School Food and Wellness, and direct contact with program sponsors for 2013. Programs were grouped into categories, nutrition, fitness, and comprehensive, and were combined with data on school characteristics available from NYC’s Department of Education. Numbers of programs and provision of programs were analyzed for relationships with demographic and school structural characteristics, using descriptive statistics and multiple regression. RESULTS Discretionary wellness programs are numerous, at 18 programs. Little evidence supports inequity according to student race/ethnicity, income, or nativity, but high schools, new schools, co-located schools, small schools, and schools with larger proportions of inexperienced teachers are less likely to provide wellness programs. CONCLUSIONS Opportunities exist to further the reach of wellness programs in public schools by modifying them for high school adoption and building capacity in schools less likely to have the administrative support to house them. PMID:27917485

  4. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  5. Advanced high school biology in an era of rapid change: a summary of the biology panel report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools.

    Science.gov (United States)

    Wood, William B

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.

  6. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  7. A Marketing Plan for Recruiting Students into Pharmacy School-based Graduate Programs. A Report.

    Science.gov (United States)

    Holdford, David A.; Stratton, Timothy P.

    2000-01-01

    Outlines a marketing plan for recruiting students into pharmacy school-based graduate programs, particularly into social and administrative sciences. Addresses challenges and opportunities when recruiting, the need to clearly define the "product" that graduate programs are trying to sell to potential students, types of students…

  8. Evaluation of the Academy of Math, Science, and Engineering at Luther Burbank High School During the 1984-85 School Year. Evaluation Report No. 21.

    Science.gov (United States)

    Sacramento City Unified School District, CA.

    The Academy of Math, Science, and Engineering was established at the Luther Burbank High School of Sacramento, California as a rigorous and competitive academic alternative program. This report contains an evaluation of the second year (1984-85) of the program. Program accomplishments are reviewed in the categories of: (1) student enrollment; (2)…

  9. The perspectives and experiences of African American students in an informal science program

    Science.gov (United States)

    Bulls, Domonique L.

    Science, technology, engineering, and mathematics (STEM) fields are the fastest growing sectors of the economy, nationally and globally. In order for the United States (U.S.) to maintain its competitiveness, it is important to address STEM experiences at the precollege level. In early years, science education serves as a foundation and pipeline for students to pursue STEM in college and beyond. Alternative approaches to instruction in formal classrooms have been introduced to engage more students in science. One alternative is informal science education. Informal science education is an avenue used to promote science education literacy. Because it is less regulated than science teaching in formal classroom settings, it allows for the incorporation of culture into science instruction. Culturally relevant science teaching is one way to relate science to African American students, a population that continually underperforms in K-12 science education. This study explores the science perspectives and experiences of African American middle school students participating in an informal science program. The research is framed by the tenets of culturally relevant pedagogy and shaped by the following questions: (1) What specific aspects of the Carver Program make it unique to African American students? (2) How is culturally relevant pedagogy incorporated into the informal science program? (3) How does the incorporation of culturally relevant pedagogy into the informal science program influence African American students' perceptions about science? The findings to the previously stated questions add to the limited research on African American students in informal science learning environments and contribute to the growing research on culturally relevant science. This study is unique in that it explores the cultural components of an informal science program.

  10. Discover the Cosmos - Bringing Cutting Edge Science to Schools across Europe

    Science.gov (United States)

    Doran, Rosa

    2015-03-01

    The fast growing number of science data repositories is opening enormous possibilities to scientists all over the world. The emergence of citizen science projects is engaging in science discovery a large number of citizens globally. Astronomical research is now a possibility to anyone having a computer and some form of data access. This opens a very interesting and strategic possibility to engage large audiences in the making and understanding of science. On another perspective it would be only natural to imagine that soon enough data mining will be an active part of the academic path of university or even secondary schools students. The possibility is very exciting but the road not very promising. Even in the most developed nations, where all schools are equipped with modern ICT facilities the use of such possibilities is still a very rare episode. The Galileo Teacher Training Program GTTP, a legacy of IYA2009, is participating in some of the most emblematic projects funded by the European Commission and targeting modern tools, resources and methodologies for science teaching. One of this projects is Discover the Cosmos which is aiming to target this issue by empowering educators with the necessary skills to embark on this innovative path: teaching science while doing science.

  11. Should we establish a North American school of global health sciences?

    Science.gov (United States)

    Hotez, Peter J

    2004-08-01

    Since 1997, an unprecedented amount of American philanthropy from both private and federal sources has been directed toward research and control programs for the major tropical infectious diseases of developing countries. The US and Canadian capacity to respond to these new initiatives might prove inadequate, however, as tropical disease research and training infrastructures have deteriorated at most North American academic health centers over the last three decades. Training opportunities in clinical tropical medicine, parasitology laboratory diagnostics, vector control, and public health practice are especially depleted and portend a lost generation of experts in these areas. In addition, unlike some of the European schools of tropical medicine, no North American medical or public health school currently boasts a comprehensive faculty in the global health sciences, with expertise that spans laboratory investigation, clinical and translational research, health policy, and international development. To meet the challenge presented by the new philanthropy targeting the global diseases of poverty, a North American school of global health sciences should be established. The North American school, possibly in association with one of the existing schools of medicine or public health, would provide interdisciplinary training to produce a new generation of global health scientists.

  12. 78 FR 79567 - National School Lunch Program and School Breakfast Program: Nutrition Standards for All Foods...

    Science.gov (United States)

    2013-12-31

    ... Program: Nutrition Standards for All Foods Sold in Schools as Required by the Healthy, Hunger-Free Kids... interim rule entitled National School Lunch Program and School Breakfast Program: Nutrition Standards for..., 2013 / Rules and Regulations [[Page 79567

  13. Science is Cool with NASA's "Space School Musical"

    Science.gov (United States)

    Asplund, S.

    2011-12-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery Program collaborated with KidTribe to create "Space School Musical," an innovative approach to teaching about the solar system that combines science content with music, fun lyrics, and choreography. It's an educational "hip-hopera" that moves and grooves its way into the minds and memories of students and educators alike. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. "Space School Musical" captures students attention as it brings the solar system to life, introducing the planets, moons, asteroids and more. The musical uses many different learning styles, helping to assure retention. Offering students an engaging, creative, and interdisciplinary learning opportunity helps them remember the content and may lead them to wonder about the universe around them and even inspire children to want to learn more, to dare to consider they can be the scientists, technologists, engineers or mathematicians of tomorrow. The unique Activity Guide created that accompanies "Space School Musical" includes 36 academic, fitness, art, and life skills lessons, all based on the content in the songs. The activities are designed to be highly engaging while helping students interact with the information. Whether students absorb information best with their eyes, ears, or body, each lesson allows for their learning preferences and encourages them to interact with both the content and each other. A guide on How to Perform the Play helps instructors lead students in performing their own version of the musical. The guide has suggestions to help with casting, auditions, rehearsing, creating the set and costumes, and performing. The musical is totally flexible - the entire play can be performed or just a few selected numbers; students can sing to the karaoke versions or lip-sync to the original cast. After learning about

  14. Science and technology disclosure in the state of Queretaro: Science and Technology for Children program

    Science.gov (United States)

    Contreras Flores, Rubén; Villeda Muñoz, Gabriel

    2007-03-01

    Science and technology disclosure is an integral part of our scientific work as researches; it is an induction process for children, young people and teachers of primary and secondary schools in the state of Queretaro. Education must be offered in a clear and objective way, it allows to the students apply the acquired knowledge to understand the world and improve his quality of life. Nowadays, the Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada of the Instituto Politecnico Nacional Unidad Queretaro (CICATA-IPN Queretaro) together with the Consejo de Ciencia y Tecnologia del Estado de Queretaro (CONCYTEQ) have implemented the "Science and Technology for Children" program (Ciencia y Tecnologia para Ninos - CTN), it allows to the educative sector obtain information through the CONCYTEQ web page. The fist stage of the program was the development of two subjects: the brochure titled "Petroleum, Nonrenewable Natural Resource that Moves the World" and the manual "Experiments of Physics". At the moment we are working with the second stage of the program, it is about the energy generation using renewable sources such as: geothermal, aeolian, solar and biomass. The CTN program allows to students and teachers to create conscience about the importance of the development of the science of technology in our country.

  15. Faculty Development Program Models to Advance Teaching and Learning Within Health Science Programs

    Science.gov (United States)

    Lancaster, Jason W.; Stein, Susan M.; MacLean, Linda Garrelts; Van Amburgh, Jenny

    2014-01-01

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school. PMID:24954939

  16. Faculty development program models to advance teaching and learning within health science programs.

    Science.gov (United States)

    Lancaster, Jason W; Stein, Susan M; MacLean, Linda Garrelts; Van Amburgh, Jenny; Persky, Adam M

    2014-06-17

    Within health science programs there has been a call for more faculty development, particularly for teaching and learning. The primary objectives of this review were to describe the current landscape for faculty development programs for teaching and learning and make recommendations for the implementation of new faculty development programs. A thorough search of the pertinent health science databases was conducted, including the Education Resource Information Center (ERIC), MEDLINE, and EMBASE, and faculty development books and relevant information found were reviewed in order to provide recommendations for best practices. Faculty development for teaching and learning comes in a variety of forms, from individuals charged to initiate activities to committees and centers. Faculty development has been effective in improving faculty perceptions on the value of teaching, increasing motivation and enthusiasm for teaching, increasing knowledge and behaviors, and disseminating skills. Several models exist that can be implemented to support faculty teaching development. Institutions need to make informed decisions about which plan could be most successfully implemented in their college or school.

  17. The Adopt-a-School Service-Learning Program: Igniting Comprehensive School Physical Activity Programs through School and University Partnerships

    Science.gov (United States)

    Linker, Jenny M.; Ford, Kristen M.; Knutson, Julie M.; Goplen, Hailey A.

    2018-01-01

    Physical educators have been identified as ideal school champions to lead comprehensive school physical activity program (CSPAP) efforts within their schools. As such, they should be adequately prepared to take on this role. Faculty from three physical and health education teacher education programs have collaboratively developed the…

  18. The effectiveness of a head-heart-hands model for natural and environmental science learning in urban schools.

    Science.gov (United States)

    Jagannathan, Radha; Camasso, Michael J; Delacalle, Maia

    2018-02-01

    We describe an environmental and natural science program called Nurture thru Nature (NtN) that seeks to improve mathematics and science performance of students in disadvantaged communities, and to increase student interest in Science, Technology, Engineering and Mathematics (STEM) careers. The program draws conceptual guidance from the Head-Heart-Hands model that informs the current educational movement to foster environmental understanding and sustainability. Employing an experimental design and data from seven cohorts of students, we find some promising, albeit preliminary, indications that the program can increase students' science knowledge and grades in mathematics, science and language arts. We discuss the special adaptations that environmental and sustainability education programs need to incorporate if they are to be successful in today's resource depleted urban schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Understanding science teacher enhancement programs: Essential components and a model

    Science.gov (United States)

    Spiegel, Samuel Albert

    Researchers and practioners alike recognize that "the national goal that every child in the United States has access to high-quality school education in science and mathematics cannot be realized without the availability of effective professional development of teachers" (Hewson, 1997, p. 16). Further, there is a plethora of reports calling for the improvement of professional development efforts (Guskey & Huberman, 1995; Kyle, 1995; Loucks-Horsley, Hewson, Love, & Stiles, 1997). In this study I analyze a successful 3-year teacher enhancement program, one form of professional development, to: (1) identify essential components of an effective teacher enhancement program; and (2) create a model to identify and articulate the critical issues in designing, implementing, and evaluating teacher enhancement programs. Five primary sources of information were converted into data: (1) exit questionnaires, (2) exit surveys, (3) exit interview transcripts, (4) focus group transcripts, and (5) other artifacts. Additionally, a focus group was used to conduct member checks. Data were analyzed in an iterative process which led to the development of the list of essential components. The Components are categorized by three organizers: Structure (e.g., science research experience, a mediator throughout the program), Context (e.g., intensity, collaboration), and Participant Interpretation (e.g., perceived to be "safe" to examine personal beliefs and practices, actively engaged). The model is based on: (1) a 4-year study of a successful teacher enhancement program; (2) an analysis of professional development efforts reported in the literature; and (3) reflective discussions with implementors, evaluators, and participants of professional development programs. The model consists of three perspectives, cognitive, symbolic interaction, and organizational, representing different viewpoints from which to consider issues relevant to the success of a teacher enhancement program. These

  20. Science Alive!: Connecting with Elementary Students through Science Exploration

    Directory of Open Access Journals (Sweden)

    Aarti Raja

    2016-05-01

    Full Text Available A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  1. Science Alive!: Connecting with Elementary Students through Science Exploration.

    Science.gov (United States)

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  2. Evaluation of the Science, Technology, and Engineering Leadership Program, Year Two

    Science.gov (United States)

    Wolanin, Natalie L.; Wade, Julie H.

    2013-01-01

    The Office of Shared Accountability (OSA) conducted an evaluation of the implementation of the second year (2011-2012) of the Science, Technology, and Engineering Leadership Program (STELP) in Montgomery County (Maryland) Public Schools (MCPS). Funding for STELP, including the evaluation study, is provided by a grant from the Howard Hughes Medical…

  3. Evaluation of the Science, Technology, and Engineering Leadership Program, Year Three

    Science.gov (United States)

    Wolanin, Natalie; Wade, Julie

    2014-01-01

    The Office of Shared Accountability conducted an evaluation of the implementation of the third and final year (2012-2013) of the "Science, Technology, and Engineering Leadership Program" (STELP) in Montgomery County (Maryland) Public Schools (MCPS). Funding for STELP, including the evaluation study, is provided by a grant from the Howard…

  4. Development of inquiry-based planetary science resources for Canadian schools

    Science.gov (United States)

    Osinski, G. R.; Gilbert, A.; Brown, P.

    2011-12-01

    The Centre for Planetary Science and Exploration (CPSX - http://cpsx.uwo.ca) at The University of Western Ontario has initiated a comprehensive outreach and education program focusing on planetary science and exploration. The goal is to use planetary science to raise general interest in science. Currently, the activities being preformed by the centre can be divided into three broad categories: (1) educational/curriculum based activities, (2) outreach/community based activities, and (3) training. The first is where the push for an increase in interest for science is really critical and is the focus here. In partnership with the Thames Valley District School Board and by using inquiry-based teaching methods, students study various topics under the guidance of a CPSX graduate students and faculty. The educational activities that have taken place are all based on the Ontario curriculum and have been developed with the support of the local school board and teachers. An annual teacher workshop provides a hands-on opportunity for the teachers to interact with CPSX members. The first activity to be developed was on meteorite impact craters. The CPSX web page also contains the lesson plans and activity work sheets for this Cratering Activity, as well as additional activities. As the Cratering Activity is available online, teachers can perform the experiment independently or request the support from a CPSX outreach member. The activity is designed with the following structure: (1) The teacher gives a background presentation (provided by CPSX) which describes crater processes throughout our solar system (specifically comparing Earth to other planets), the consequences of impacts on Earth, the origins of impactors (small bodies) in our solar system, and the mechanical process of an impact. (2) The teacher demonstrates an impact event. Students are to make observations in their lab handout, and sketch what they see. (3) Students (either individually or as a group, based on

  5. Encouraging more women into computer science: Initiating a single-sex intervention program in Sweden

    Science.gov (United States)

    Brandell, Gerd; Carlsson, Svante; Ekblom, Håkan; Nord, Ann-Charlotte

    1997-11-01

    The process of starting a new program in computer science and engineering, heavily based on applied mathematics and only open to women, is described in this paper. The program was introduced into an educational system without any tradition in single-sex education. Important observations made during the process included the considerable interest in mathematics and curiosity about computer science found among female students at the secondary school level, and the acceptance of the single-sex program by the staff, administration, and management of the university as well as among male and female students. The process described highlights the importance of preparing the environment for a totally new type of educational program.

  6. Walking school bus programs in U.S. public elementary schools.

    Science.gov (United States)

    Turner, Lindsey; Chriqui, Jamie F; Chaloupka, Frank J

    2013-07-01

    Active transportation to school provides an important way for children to meet physical activity recommendations. The "walking school bus" (WSB) is a strategy whereby adults walk with a group of children to and from school along a fixed route. This study assessed whether school-organized WSB programs varied by school characteristics, district policies, and state laws. School data were gathered by mail-back surveys in nationally representative samples of U.S. public elementary schools during the 2008-2009 and 2009-2010 school years (n = 632 and 666, respectively). Corresponding district policies and state laws were obtained. Nationwide, 4.2% of schools organized a WSB program during 2008-2009, increasing to 6.2% by 2009-2010. Controlling for demographic covariates, schools were more likely to organize a WSB program where there was a strong district policy pertaining to safe active routes to school (OR = 2.14, P law requiring crossing guards around schools (OR = 2.72, P laws are associated with an increased likelihood of elementary schools organizing these programs. Policymaking efforts may encourage schools to promote active transportation.

  7. A private school leadership perspective on highly qualified middle school science teachers

    Science.gov (United States)

    Bogaski, Carolyn Siniscalchi

    The purpose of this study was to determine how Florida (FL) private, middle school (MS) leaders define highly qualified (HQ) MS science teachers, and how congruent their definitions are. The study also determines how congruent these leaders' definitions are with FL, national, and National Science Teachers Association (NSTA) definitions. Lastly, the study determines the major challenges these private MS leaders have in hiring MS science teachers who meet the NSTA definition of HQ. A convergent mixed methods survey design (Creswell, 2014) was used, in which qualitative and quantitative data were collected in parallel, analyzed separately, and then merged. Participants in the survey consisted of 119 leaders. A congruency rubric separated responses by religious affiliation and socioeconomic status (SES) level and matched responses with the percentage of congruency with the existing FL, national, and NSTA definitions of HQ. Descriptive statistics, paired samples t-test, and chi-squared test were used to analyze the quantitative and qualitative data. Qualitative data were coded into preliminary and final codes. Final codes were converted into magnitude codes, which allowed the researcher to analyze further the qualitative data statistically. Survey responses received were definitely congruent, except in ranking the importance of a candidate having an out-of-field degree with state certification, and in ranking the importance of a candidate being fully qualified to teach science in their state with a strong knowledge of science content. Segregating the survey responses into registered religious affiliations and SES levels found that the definition of a HQ MS science teacher was mostly congruent among all demographics, with only a couple of exceptions. The study found that these private school leaders' common definition of a HQ MS science teacher is one with adequate science content knowledge, pedagogy including engagement in laboratory activities, ability to relate to

  8. A qualitative study of middle school students' perceptions of factors facilitating the learning of science: Grounded theory and existing theory

    Science.gov (United States)

    Spector, Barbara S.; Gibson, Charles W.

    The purpose of this study was to explore middle school students' perceptions of what factors facilitated their learning of science. Florida's Educational Reform Act of 1983 funded programs providing the state's precollege students with summer learning opportunities in science. mathematics, and computers. The programs were intended to encourage the development of creative approaches to the teaching of these disciplines. Under this program, between 50 and 60 high-achieving middle school students were in residence on the University of South Florida campus for 12 consecutive days of study in the World of Water (WOW) program. There were two sessions per summer involving a total of 572 participants. Eighi specially trained teachers were in residence with the students. Between 50 and 70 experts from the university, government. business, and industry interacted with the students each year in an innovative science/technology/society (STS) program. An assignment toward the close of the program asked students to reflect on their experiences in residence at the university and write an essay comparing learning in the WOW program to learning in their schools. Those essays were the base for this study. This was a qualitative study using a discursive approach to emergent design to generate grounded theory. Document review, participant observation, and open-ended interviews were used to gather and triangulate data in five phases. Some of the factors that middle school students perceived as helpful to learning science were (a) experiencing the situations about which they were learning; (b) having live presentations by professional experts; (c) doing hands-on activities: (d) being active learners; (e) using inductive reasoning to generate new knowledge; (f) exploring transdisciplinary approaches to problem solving; (g) having adult mentors; (h) interacting with peers and adults; (i) establishing networks; (j) having close personal friends who shared their interest in learning; (k

  9. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    Science.gov (United States)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type

  10. Enhancing Middle School Science Lessons with Playground Activities: A Study of the Impact of Playground Physics

    Science.gov (United States)

    Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng

    2017-01-01

    Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…

  11. Earth Science Principles Pertinent to the General Education Programs in Junior High Schools

    Science.gov (United States)

    Henson, Kenneth Tyrone

    1970-01-01

    Presents the procedures, and findings of a study designed to identify principles in astronomy, geology, meterology, oceanography and physical geography pertinent to general education programs in junior high schools. (LC)

  12. An urban area minority outreach program for K-6 children in space science

    Science.gov (United States)

    Morris, P.; Garza, O.; Lindstrom, M.; Allen, J.; Wooten, J.; Sumners, C.; Obot, V.

    The Houston area has minority populations with significant school dropout rates. This is similar to other major cities in the United States and elsewhere in the world where there are significant minority populations from rural areas. The student dropout rates are associated in many instances with the absence of educational support opportuni- ties either from the school and/or from the family. This is exacerbated if the student has poor English language skills. To address this issue, a NASA minority university initiative enabled us to develop a broad-based outreach program that includes younger children and their parents at a primarily Hispanic inner city charter school. The pro- gram at the charter school was initiated by teaching computer skills to the older chil- dren, who in turn taught parents. The older children were subsequently asked to help teach a computer literacy class for mothers with 4-5 year old children. The computers initially intimidated the mothers as most had limited educational backgrounds and En- glish language skills. To practice their newly acquired computer skills and learn about space science, the mothers and their children were asked to pick a space project and investigate it using their computer skills. The mothers and their children decided to learn about black holes. The project included designing space suits for their children so that they could travel through space and observe black holes from a closer proxim- ity. The children and their mothers learned about computers and how to use them for educational purposes. In addition, they learned about black holes and the importance of space suits in protecting astronauts as they investigated space. The parents are proud of their children and their achievements. By including the parents in the program, they have a greater understanding of the importance of their children staying in school and the opportunities for careers in space science and technology. For more information on our overall

  13. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    Science.gov (United States)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction

  14. Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.

    1992-04-21

    Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students who will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.

  15. Youth Engagement through Science (YES!) - Engaging Underrepresented Minorities in Science through High School Internships at the National Museum of Natural History

    Science.gov (United States)

    Robertson, G.; Cruz, E.; Selvans, M. M.

    2014-12-01

    The Smithsonian's Youth Engagement through Science (YES!) program at the National Museum of Natural History gives young people from the Washington, D.C. area the opportunity to engage in science out of school through 16-week internships. We will present the program's successful strategies and lessons learned around recruiting and engaging young people from underserved communities, and maintaining relationships that help to support their pursuit of STEM and other career paths. The YES! program connects Smithsonian collections, experts, and training with local DC youth from communities traditionally underrepresented in science careers. YES! is now in its fifth year and has directly served 122 students; demographics of alumni are 67% female, and 51% Latino, 31% African-American, 7% Asian, 5% Caucasian and 6% other. The program immerses students in science research by giving them the opportunity to work side-by-side with scientists and staff from the Smithsonian's National Museum of Natural History, Air and Space Museum, Smithsonian Gardens, and National Zoo. In addition to working on a research project, students have college preparatory courses, are trained in science communication, and apply their skills by interacting with the public on the exhibit floor.

  16. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    Science.gov (United States)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  17. School Library Media Specialists Inform Technology Preparation of Library Science Students: An Evidence-Based Discussion

    Science.gov (United States)

    Snyder, Donna L.; Miller, Andrea L.

    2009-01-01

    What is the relative importance of current and emerging technologies in school library media programs? In order to answer this question, in Fall 2007 the authors administered a survey to 1,053 school library media specialists (SLMSs) throughout the state of Pennsylvania. As a part of the MSLS degree with Library Science K-12 certification, Clarion…

  18. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  19. College-Mentored Polymer/Materials Science Modules for Middle and High School Students

    Science.gov (United States)

    Lorenzini, Robert G.; Lewis, Maurica S.; Montclare, Jin Kim

    2011-01-01

    Polymers are materials with vast environmental and economic ramifications, yet are generally not discussed in secondary education science curricula. We describe a program in which college mentors develop and implement hands-on, polymer-related experiments to supplement a standard, state regents-prescribed high school chemistry course, as well as a…

  20. USSTRIDE program is associated with competitive Black and Latino student applicants to medical school

    OpenAIRE

    Campbell, Kendall M.; Berne-Anderson, Thesla; Wang, Aihua; Dormeus, Guy; Rodríguez, José E.

    2014-01-01

    Purpose: We compared MCAT scores, grade point averages (GPAs), and medical school acceptance rates of Black and Latino students in an outreach program called Undergraduate Science Students Together Reaching Instructional Diversity and Excellence (USSTRIDE) to non-USSTRIDE students. We hypothesized that Black and Latino participants in USSTRIDE had higher acceptance rates to medical school, higher MCAT scores, and college GPAs when compared to other Black and Latino medical school applicants f...

  1. An Assessment of Need for Instructional Professional Development for Middle School Science Teachers Using Interactive Lessons

    Science.gov (United States)

    Burton, Amanda

    Numerous studies on the impact of interactive lessons on student learning have been conducted, but there has been a lack of professional development (PD) programs at a middle school focusing on ways to incorporate interactive lessons into the science classroom setting. The purpose of this case study was to examine the instructional practices of science teachers to determine whether the need for an interactive lessons approach to teaching students exists. This qualitative case study focused on teachers' perceptions and pedagogy to determine whether the need to use interactive lessons to meet the needs of all students is present. The research question focused on identifying current practices and determining whether a need for interactive lessons is present. Qualitative data were gathered from science teachers at the school through interviews, lesson plans, and observations, all of which were subsequently coded using an interpretative analysis. The results indicated the need for a professional development (PD) program centered on interactive science lessons. Upon completion of the qualitative study, a detailed PD program has been proposed to increase the instructional practices of science teachers to incorporate interactive lessons within the science classroom. Implications for positive social change include improved teaching strategies and lessons that are more student-centered resulting in better understanding and comprehension, as well as performance on state-mandated tests.

  2. Science in the General Educational Development (GED) curriculum: Analyzing the science portion of GED programs and exploring adult students' attitudes toward science

    Science.gov (United States)

    Hariharan, Joya Reena

    The General Educational Development (GED) tests enable people to earn a high school equivalency diploma and help them to qualify for more jobs and opportunities. Apart from this main goal, GED courses aim at enabling adults to improve the condition of their lives and to cope with a changing society. In today's world, science and technology play an exceedingly important role in helping people better their lives and in promoting the national goals of informed citizenship. Despite the current efforts in the field of secondary science education directed towards scientific literacy and the concept of "Science for all Americans", the literature does not reflect any corresponding efforts in the field of adult education. Science education research appears to have neglected a population that could possibly benefit from it. The purpose of this study is to explore: the science component of GED programs, significant features of the science portion of GED curricula and GED science materials, and adult learners' attitudes toward various aspects of science. Data collection methods included interviews with GED students and instructors, content analysis of relevant materials, and classroom observations. Data indicate that the students in general feel that the science they learn should be relevant to their lives and have direct applications in everyday life. Student understanding of science and interest in it appears to be contingent to their perceiving it as relevant to their lives and to society. Findings indicate that the instructional approaches used in GED programs influence students' perceptions about the relevance of science. Students in sites that use strategies such as group discussions and field trips appear to be more aware of science in the world around them and more enthusiastic about increasing this awareness. However, the dominant strategy in most GED programs is individual reading. The educational strategies used in GED programs generally focus on developing reading

  3. Businesses assisting K--12 science instruction: Four case studies of long-term school partnerships

    Science.gov (United States)

    van Trieste, Lynne M.

    Businesses lack enough qualified applicants to fill the increasing need for scientists and engineers while educators lack many resources for science programs in K-12 schools. This series of case studies searched for successful collaborations between the two in four geographic locations: Boise, Idaho; Dallas, Texas; Los Angeles County, California, and Orange County, California. These science education partnerships were investigated to gain an understanding of long-term partnership structure, functioning and evaluation methods. Forty-nine individual interviews with representatives from the groups of stakeholders these programs impact were also conducted. Stakeholder groups included students, teachers, parents, school administrators, business liaisons, and non-profit representatives. Several recurring themes in these partnerships reinforced the existing literature research findings. Collaboration and communication between partners, teacher professional development, the need for more minority and female representation in physical science careers, and self-efficacy in relation to how people come to view their scientific abilities, are among these themes. Topics such as program replication, the importance of role models, programs using "hands-on" activities, reward systems for program participants, and program outcome measurement also emerged from the cases investigated. Third-party assistance by a non-profit entity is occurring within all of these partnerships. This assistance ranges from a service providing material resources such as equipment, lesson plans and meeting space, to managing the partnership fundraising, program development and evaluations. Discussions based upon the findings that support or threaten sustainment of these four partnerships, what a "perfect" partnership might look like, and areas in need of further investigation conclude this study.

  4. An Engineering Research Program for High School Science Teachers: Year Two Changes and Results

    Science.gov (United States)

    DeJong, Brian P.; Yelamarthi, Kumar; Kaya, Tolga

    2016-01-01

    The research experiences for teachers program at Central Michigan University was initiated to team in-service and pre-service teachers with undergraduate engineering students and engineering faculty, in an engineering research setting. During the six-week program, teachers learn engineering concepts and develop high-school instructional material…

  5. A case study exploring science competence and science confidence of middle school girls from marginalized backgrounds

    Science.gov (United States)

    Garcia, Yeni Violeta

    The inclusion of learners from underrepresented background in biology field research experiences has not been widely explored in the literature. Increased access and equity to experiences for groups historically underrepresented in science, technology, engineering, and mathematics (STEM) has been identified as a priority for many, yet little is known about the components these experiences should have and what types of transformations participants undergo as a result of these experiences. This dissertation explored the systemic creation of an intervention purposely designed to serve middle school girls from underrepresented backgrounds, the implementation of such intervention, and effect on the girls' science competence and science confidence. El Espejo, Spanish for "The Mirror," was an ongoing field ecology research program for middle schools girls founded in 2009 at a local interdisciplinary learning center. Girls from all walks of life had the opportunity to be apprentice researchers and to work with scientists and science educators from the local community. All activities were strategically designed to promote student-led inquiry, career awareness, cultural awareness, and opportunities for research and mentorship for girls from underrepresented backgrounds. An increased understanding of if, how, and why this experience was perceived by the girls to be life changing was of importance to add to the conversations that seek ways to inspire and prepare this generation of students to be the next generation of scientists. The study built on systems theory, and on theories that were embedded in the participants' system: critical race theory, identity theory, and experiential learning theory, grounded in the context of the lived experiences of girls from underrepresented backgrounds. The girls' experiences were captured through journals, observer participant notes, photo-documentation, artifacts (posters, videos) created by the girls, and by using science perception

  6. GeoBus: sharing science research with schools

    Science.gov (United States)

    Roper, Kathryn; Robinson, Ruth; Moorhouse, Ben

    2016-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is currently sponsored by industry, NERC, The Crown Estate, and the Scottish Government. The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have little or no experience in teaching this subject. This is, in part, done through the sharing of new science research outcomes and the experiences of young researchers with school pupils to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, over 40,000 pupils will have been involved in experiential Earth science learning activities in 190 different schools (over 400 separate visits) across the length and breadth of Scotland: many of these schools are in remote and disadvantaged regions. A new GeoBus project is under development within the Department of Earth Sciences at UCL in London. A key aim of GeoBus is to incorporate new research into our workshops with the main challenge being the development of appropriate resources that incorporate the key learning aims and requirements of the science and geography curricula. GeoBus works closely with researchers, teachers and educational practitioners to tailor the research outcomes to the curricula as much as possible. Over the past four years, GeoBus has developed 17 workshops, 5 challenge events and extensive field trips and each of these activities are trialled and evaluated within the university, and adjustments are made before the activities are delivered in schools. Activities are continually reviewed and further developments are made in response to both teacher and pupil feedback. This critical reflection of the project's success and impact is important to insure a positive and significant contribution to the science learning in

  7. Creating Next Generation Teacher Preparation Programs to Support Implementation of the Next Generation Science Standards and Common Core State Standards in K-12 Schools: An Opportunity for the Earth and Space Sciences

    Science.gov (United States)

    Geary, E. E.; Egger, A. E.; Julin, S.; Ronca, R.; Vokos, S.; Ebert, E.; Clark-Blickenstaff, J.; Nollmeyer, G.

    2015-12-01

    A consortium of two and four year Washington State Colleges and Universities in partnership with Washington's Office of the Superintendent of Public Instruction (OSPI), the Teachers of Teachers of Science, and Teachers of Teachers of Mathematics, and other key stakeholders, is currently working to improve science and mathematics learning for all Washington State students by creating a new vision for STEM teacher preparation in Washington State aligned with the Next Generation Science Standards (NGSS) and the Common Core State Standards (CCSS) in Mathematics and Language Arts. Specific objectives include: (1) strengthening elementary and secondary STEM Teacher Preparation courses and curricula, (2) alignment of STEM teacher preparation programs across Washington State with the NGSS and CCSS, (3) development of action plans to support implementation of STEM Teacher Preparation program improvement at Higher Education Institutions (HEIs) across the state, (4) stronger collaborations between HEIs, K-12 schools, government agencies, Non-Governmental Organizations, and STEM businesses, involved in the preparation of preservice STEM teachers, (5) new teacher endorsements in Computer Science and Engineering, and (6) development of a proto-type model for rapid, adaptable, and continuous improvement of STEM teacher preparation programs. A 2015 NGSS gap analysis of teacher preparation programs across Washington State indicates relatively good alignment of courses and curricula with NGSS Disciplinary Core Ideas and Scientific practices, but minimal alignment with NGSS Engineering practices and Cross Cutting Concepts. Likewise, Computer Science and Sustainability ideas and practices are not well represented in current courses and curricula. During the coming year teams of STEM faculty, education faculty and administrators will work collaboratively to develop unique action plans for aligning and improving STEM teacher preparation courses and curricula at their institutions.

  8. Solar for Schools program

    Energy Technology Data Exchange (ETDEWEB)

    Egles, D.; Lee, A. [Carmanah Technologies Corp., Victoria, BC (Canada)

    2005-07-01

    Carmanah Technologies proposed a nation wide program to bring photovoltaic (PV) power to secondary schools across Canada in 2004.The objectives of the Solar 4 Schools program were to improve awareness of energy issues within schools and to increase the acceptance of PV power through visibility in the community. The British Columbia Ministry of Energy and Mines provided a $300,000 grant to install the first 2 systems; one in Fort Nelson and one in Vernon, British Columbia. This paper described the 2 installed and fully functional 10 KW PV power systems and their expected electrical contributions to the schools. It also described the Internet based production monitoring software developed as part of the program. The incentives for renewable energy technologies stem from the increased demand for energy at a time when conventional energy supplies are declining. Another incentive is to reduce greenhouse gas (GHG) emissions associated with the combustion of fossil fuel. It is expected that PV technology will be competitive with fossil fuel generated electricity in Canada within the next decade. Currently, PV is cost effective in Canada at about 25 cents per kilowatt-hour. Cost projections and the cost of future electrical energy in Canada were presented. The Solar 4 Schools program raises awareness that there are viable alternatives to fossil fuel for producing electricity. At completion, the program anticipates to see PV power used by 1000 schools across Canada with an addition of 10 MW of solar capacity to Canada's current 7 MW. The program would deliver GHG offsets of about 12,000 tons of carbon dioxide equivalent per year if fossil fuel was the primary energy source. In addition to the energy savings that schools will gain from this program, other benefits will be gained by students, the community, industry and Canada, which currently lags behind most industrialized nations in the installation of renewable energy. 2 refs., 1 tab., 5 figs.

  9. A longitudinal study of the educational and career trajectories of female participants of an urban informal science education program

    Science.gov (United States)

    Fadigan, Kathleen A.; Hammrich, Penny L.

    2004-10-01

    The purpose of this longitudinal case study is to describe the educational trajectories of a sample of 152 young women from urban, low-income, single-parent families who participated in the Women in Natural Sciences (WINS) program during high school. Utilizing data drawn from program records, surveys, and interviews, this study also attempts to determine how the program affected the participants' educational and career choices to provide insight into the role informal science education programs play in increasing the participation of women and minorities in science, math, engineering, and technology (SMET)-related fields. Findings revealed 109 participants (93.16%) enrolled in a college program following high school completion. Careers in medical or health-related fields followed by careers in SMET emerged as the highest ranking career paths with 24 students (23.76%) and 21 students (20.79%), respectively, employed in or pursuing careers in these areas. The majority of participants perceived having staff to talk to, the job skills learned, and having the museum as a safe place to go as having influenced their educational and career decisions. These findings reflect the need for continued support of informal science education programs for urban girls and at-risk youth.

  10. Project NANO (nanoscience and nanotechnology outreach): a STEM training program that brings SEM's and stereoscopes into high-school and middle-school classrooms

    Science.gov (United States)

    Cady, Sherry L.; Blok, Mikel; Grosse, Keith; Wells, Jennifer

    2014-09-01

    The program Project NANO (Nanoscience and Nanotechnology Outreach) enables middle and high school students to discover and research submicroscopic phenomena in a new and exciting way with the use of optical and scanning electron microscopes in the familiar surroundings of their middle or high school classrooms. Project NANO provides secondary level professional development workshops, support for classroom instruction and teacher curriculum development, and the means to deliver Project NANO toolkits (SEM, stereoscope, computer, supplies) to classrooms with Project NANO trained teachers. Evaluation surveys document the impact of the program on student's attitudes toward science and technology and on the learning outcomes for secondary level teachers. Project NANO workshops (offered for professional development credit) enable teachers to gain familiarity using and teaching with the SEM. Teachers also learn to integrate new content knowledge and skills into topic-driven, standards-based units of instruction specifically designed to support the development of students' higher order thinking skills that include problem solving and evidence-based thinking. The Project NANO management team includes a former university science faculty, two high school science teachers, and an educational researcher. To date, over 7500 students have experienced the impact of the Project NANO program, which provides an exciting and effective model for engaging students in the discovery of nanoscale phenomena and concepts in a fun and engaging way.

  11. Computers, Education and the Library at The Bronx High School of Science.

    Science.gov (United States)

    Nachbar, Sondra; Sussman, Valerie

    1988-01-01

    Describes the services and programs offered by the library at The Bronx High School of Science. Topics discussed include the library collection; a basic library skills mini-course for freshmen and incoming sophomores; current uses of the library's computer system; and plans to automate the library's card catalog and circulation records.…

  12. Profile of graduates of Israeli medical schools in 1981--2000: educational background, demography and evaluation of medical education programs.

    Science.gov (United States)

    Bitterman, Noemi; Shalev, Ilana

    2005-05-01

    In light of changes in the medical profession, the different requirements placed on physicians and the evolving needs of the healthcare system, the need arose to examine the medical education curriculum in Israel. This survey, conducted by the Samuel Neaman Institute for Science and Technology, summarizes 20 years of medical education in Israel's four medical schools, as the first stage in mapping the existing state of medical education in Israel and providing a basis for decision-making on future medical education programs. To characterize the academic background of graduates, evaluate their attitudes towards current and alternative medical education programs, and examine subgroups among graduates according to gender, medical school, high school education, etc. The survey included graduates from all four Israeli medical schools who graduated between the years 1981 and 2000 in a sample of 1:3. A questionnaire and stamped return envelope were sent to every third graduate; the questionnaire included open and quantitative questions graded on a scale of 1 to 5. The data were processed for the entire graduate population and further analyzed according to subgroups such as medical schools, gender, high school education, etc. The response rate was 41.3%. The survey provided a demographic profile of graduates over a 20 year period, their previous educational and academic background, additional academic degrees achieved, satisfaction, and suggestions for future medical education programs. The profile of the medical graduates in Israel is mostly homogenous in terms of demographics, with small differences among the four medical schools. In line with recommendations of the graduates, and as an expression of the changing requirements in the healthcare system and the medical profession, the medical schools should consider alternative medical education programs such as a bachelor's degree in life sciences followed by MD studies, or education programs that combine medicine with

  13. The Potential Impact of Social Science Research on Legal Issues Surrounding Single-Sex Classrooms and Schools

    Science.gov (United States)

    Eckes, Suzanne Elizabeth; McCall, Stephanie D.

    2014-01-01

    Purpose: This article examines the role social science has played in litigation involving public single-sex educational programs. It also explores a body of social science research related to gender and education that we believe could assist the courts and school leaders in better examining the possibilities and the limitations of single-sex…

  14. H2O: A Hampton University-Hampton School District Outreach Program

    Science.gov (United States)

    Gueye, Paul; Young, William

    2011-04-01

    For many years, Hampton University (HU, Hampton, VA) has been collaborating with local schools of the Hampton City School District (HCS) in various areas that foster science education. This partnership between an HBCU and a local school district has been extended to a new level through a novel K-12 initiative:Hampton University-Hampton School District Outreach (H2O) program. This effort will target 9 schools out of the 34 schools from HCS, involve a total of 25 graduate students (5/year), 25 junior and senior undergraduate students (5/year) and 102 teachers (3/school). Faculty and students from seven STEM fields at HU will contribute by reaching out to Departments offering MS and PhD degrees in these areas. In addition to providing teaching experience to students, H2O will infuse research within the classrooms and offer a teacher professional development program, G5-12 students will present some research conducted throughout the year at a dedicated conference at HU and at the National Society of Black Physicists annual meeting, and a dedicated 2-day workshop in the fall with K-12 educators will provide a platform to share some outcomes of H2O. This program has reached out to several societies (NSBP, NSHP, APS, AAPT and AAPM) as a vehicle for teacher professional training, along with including an international component with Canada, France and Senegal. A review of recent collaborations and outcomes from this partnership will be provided and the status of the H2O program will be presented.

  15. After-school enrichment and the activity theory: How can a management service organization assist schools with reducing the achievement gap among minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours?

    Science.gov (United States)

    Flowers, Reagan D.

    The primary purpose of this study was to investigate how a management service organization can assist schools with reducing the achievement gap between minority and non-minority students in science, technology, engineering, and mathematics (STEM) during the after-school hours. Developing a strategic plan through creating a program that provides support services for the implementation of hands-on activities in STEM for children during the after-school hours was central to this purpose. This Project Demonstrating Excellence (PDE), a social action project, also presents historical and current after-school program developments in the nation. The study is quantitative and qualitative in nature. Surveys were utilized to quantitatively capture the opinions of participants in the social action project on three specific education related issues: (1) disparity in academic motivation of students to participate in after-school STEM enrichment programs; (2) whether teachers and school administrators saw a need for STEM after-school enrichment; and (3) developing STEM after-school programs that were centered on problem-solving and higher-order thinking skills to develop students' interest in STEM careers. The sample consisted of 50 participants comprised of students, teachers, and administrators. The focus groups and interviews provided the qualitative data for the study. The qualitative sample consisted of 14 participants comprised of students, parents and teachers, administrators, an education consultant, and a corporate sponsor. The empirical data obtained from the study survey, focus groups, and interviews provided a comprehensive profile on the current views and future expectations of STEM after-school enrichment, student and school needs, and community partnerships with STEM companies. Results of the study and review of the implementation of the social action project, C-STEM (communication, science, technology, engineering, and mathematics) Teacher and Student Support

  16. Instructional decision making of high school science teachers

    Science.gov (United States)

    Carver, Jeffrey S.

    The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step

  17. Examining the relationship between school district size and science achievement in Texas including rural school administrator perceptions of challenges and solutions

    Science.gov (United States)

    Mann, Matthew James

    Rural and small schools have almost one-third of all public school enrollment in America, yet typically have the fewest financial and research based resources. Educational models have been developed with either the urban or suburban school in mind, and the rural school is often left with no other alternative except this paradigm. Rural based educational resources are rare and the ability to access these resources for rural school districts almost non-existent. Federal and state based education agencies provide some rural educational based programs, but have had virtually no success in answering rural school issues. With federal and state interest in science initiatives, the challenge that rural schools face weigh in. To align with that focus, this study examined Texas middle school student achievement in science and its relationship with school district enrollment size. This study involved a sequential transformative mixed methodology with the quantitative phase driving the second qualitative portion. The quantitative research was a non-experimental causal-comparative study conducted to determine whether there is a significant difference between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8 th grade science results and school district enrollment size. The school districts were distributed into four categories by size including: a) small districts (32-550); b) medium districts (551-1500); c) large districts (1501-6000); and d) mega-sized districts (6001-202,773). A one-way analysis of variance (ANOVA) was conducted to compare the district averages from the 2010 TAKS 8th grade science assessment results and the four district enrollment groups. The second phase of the study was qualitative utilizing constructivism and critical theory to identify the issues facing rural and small school administrators concerning science based curriculum and development. These themes and issues were sought through a case study method and through use of semi

  18. `I Actually Contributed to Their Research': The influence of an abbreviated summer apprenticeship program in science and engineering for diverse high-school learners

    Science.gov (United States)

    Burgin, Stephen R.; McConnell, William J.; Flowers, Alonzo M., III

    2015-02-01

    This study describes an investigation of a research apprenticeship program that we developed for diverse high-school students often underrepresented in similar programs and in science, technology, engineering, and math (STEM) professions. Through the apprenticeship program, students spent 2 weeks in the summer engaged in biofuels-related research practices within working university chemistry and engineering laboratories. The experience was supplemented by discussions and activities intended to impact nature of science (NOS) and inquiry understandings and to allow for an exploration of STEM careers and issues of self-identity. Participants completed a NOS questionnaire before and after the experience, were interviewed multiple times, and were observed while working in the laboratories. Findings revealed that as a result of the program, participants (1) demonstrated positive changes in their understandings of certain NOS aspects many of which were informed by their laboratory experiences, (2) had an opportunity to explore and strengthen STEM-related future plans, and (3) examined their self-identities. A majority of participants also described a sense of belonging within the laboratory groups and believed that they were making significant contributions to the ongoing work of those laboratories even though their involvement was necessarily limited due to the short duration of the program. For students who were most influenced by the program, the belonging they felt was likely related to issues of identity and career aspirations.

  19. Secondary School Students' Predictors of Science Attitudes

    Science.gov (United States)

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  20. Science, Technology, Engineering and Math Readiness: Ethno-linguistic and gender differences in high-school course selection patterns

    Science.gov (United States)

    Adamuti-Trache, Maria; Sweet, Robert

    2014-03-01

    The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.

  1. The Language Demands of Science Reading in Middle School

    Science.gov (United States)

    Fang, Zhihui

    2006-04-01

    The language used to construct knowledge, beliefs, and worldviews in school science is distinct from the social language that students use in their everyday ordinary life. This difference is a major source of reading difficulty for many students, especially struggling readers and English-language learners. This article identifies some of the linguistic challenges involved in reading middle-school science texts and suggests several teaching strategies to help students cope with these challenges. It is argued that explicit attention to the unique language of school science should be an integral part of science literacy pedagogy.

  2. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  3. Reducing School Violence: School-Based Curricular Programs and School Climate

    Science.gov (United States)

    Greene, Michael B.

    2008-01-01

    This article examines two different, but interrelated approaches to reduce school violence: school-based curricular programs and efforts to change school climate. The state of the research for each is reviewed and the relationship between them is explored.

  4. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    Science.gov (United States)

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  5. Science education policy for emergency, conflict, and post-conflict: An analysis of trends and implications for the science education program in Uganda

    Science.gov (United States)

    Udongo, Betty Pacutho

    This study analyzes the impact of armed conflicts on the development of education policy and particularly science education program in Uganda. Since independence from the British colonial rule, Uganda has experienced a series of armed conflicts, with the most devastating being the 21 years of conflict in Northern Uganda. The research study was guided by the following questions: (1) What is the level of government funding towards improving science education program in Uganda? (2) Have recent initiatives, such as free Primary and Secondary education, compulsory science, and 75% sponsorship for science-based courses, had a measurable impact on the proportion of students from the conflict-affected regions who enter tertiary institutions to pursue science and technology programs? (3) To what extent do the Ugandan Education Policy and, in particular, the Science Education Policy effectively address the educational needs of students affected by armed conflicts? The study employed a mixed method design where both quantitative and qualitative data were collected and analyzed. Quantitative data were obtained from a comprehensive search of policy documents and content analysis of literature on education policy, science education programs, and impact of conflicts on educational delivery. Qualitative data were obtained from surveys and interviews distributed to policy makers, central government and the local government officials, teachers, and students from the war-ravaged Northern Uganda. Analysis of policy documents and respondents' views revealed that Uganda does not have a science education policy, and the present education policy does not fully address the educational needs of students studying in conflict-affected regions. It was further observed that fewer students from the conflict-affected regions qualify for government scholarship to study science courses in higher institutions of learning. The study recommended the following policy interventions: (a) affirmative

  6. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    Science.gov (United States)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  7. Elementary school children's science learning from school field trips

    Science.gov (United States)

    Glick, Marilyn Petty

    This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.

  8. Materials Sciences Programs

    International Nuclear Information System (INIS)

    1977-01-01

    A compilation and index of the ERDA materials sciences program is presented. This compilation is intended for use by administrators, managers, and scientists to help coordinate research and as an aid in selecting new programs

  9. High School Science Teachers' Views on Science Process Skills

    Science.gov (United States)

    Gultepe, Nejla

    2016-01-01

    The current research is a descriptive study in which a survey model was used. The research involved chemistry (n = 26), physics (n = 27), and biology (n = 29) teachers working in Science High Schools and Anatolian High Schools in Turkey. An inventory that consisted of seven questions was designed to ascertain what teachers' think about the…

  10. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2014-09-01

    Full Text Available Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  11. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge.

    Science.gov (United States)

    Rangel, Carolina Netto; Nunn, Rebecca; Dysarz, Fernanda; Silva, Elizabete; Fonseca, Alexandre Brasil

    2014-09-01

    Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE) projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  12. UCSF partnership to enrich science teaching for sixth graders in San Francisco's schools.

    Science.gov (United States)

    Doyle, H J

    1999-04-01

    Increasing the diversity of students entering the health professions is a challenging goal for medical schools. One approach to this goal is to share the enthusiasm and energy of medical students with younger students, who may pursue medical education in the future. The MedTeach program, established in 1989 and coordinated by the Science & Health Education Partnership of the University of California, San Francisco (UCSF), does so by partnering volunteer medical students from UCSF with sixth-grade classes studying the human body. In 1997-98, around 350 sixth-graders in the San Francisco Schools benefitted from the program. Each team of medical student's visits its class ten to 12 times a year to present engaging, hands-on lessons on body systems and health. The medical students are also role models for the middle-school students. In addition, the diverse student population of San Francisco public schools provides a rich environment for the medical students to improve their communication and teaching skills.

  13. Analysis of students’ science motivation and nature of science comprehension in middle school

    Directory of Open Access Journals (Sweden)

    Azizul Ghofar Candra Wicaksono

    2018-03-01

    Full Text Available The purpose of this study was to explore the pattern of science motivation and nature of science (NoS and the relationship between science motivation and nature of science in middle school students located in Semarang, Central Java, Indonesia. The design of this study was survey followed by the correlation study to discover the relationship between science motivation level and nature of science comprehension. This research included 113 students as sample. The instrument used for data collection was SMQ and seven essay test from NoS indicator. This study revealed that the students had a median score of science motivation and the low score in nature of science comprehension. There were students’ science motivation and nature of science comprehension urgently need to be improved. It can be done by developing learning process and any support from school or family.

  14. SHPPS 2006: School Health Policies and Programs Study--Foods and Beverages Sold Outside of the School Meals Programs

    Science.gov (United States)

    Centers for Disease Control and Prevention, 2007

    2007-01-01

    The School health Policies and Programs Study (SHPPS) is a national survey periodically conducted to assess school health policies and programs at the state, district, school, and classroom levels. This brief reports study results in the area of foods and beverages sold outside of the school meals program. (Contains 3 tables, 1 figure, and 2…

  15. The key factors affecting students' individual interest in school science lessons

    Science.gov (United States)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.

  16. African American perspectives: A qualitative study of an informal science enrichment program

    Science.gov (United States)

    Simpson, Jamila Rashida

    The purposes of this study were to determine what program characteristics African American parents consider when they enroll their children into an informal science education enrichment program, the parents' evaluation of a program called Jordan Academy in which they enrolled their children, and the alignment of the parents' perspectives with Black Cultural Ethos (BCE). BCE refers to nine dimensions posited by Wade Boykin, a psychologist, as comprising African American culture. Participants were parents of students that attended Jordan Academy, an informal science enrichment program designed for third through sixth grade students from underserved populations. Qualitative methodologies were utilized to perform a thorough assessment of parents' perspectives. Data sources included classroom observations, student surveys, academy curriculum, photos and video-taped class sessions. Data included teachers and parents' responses to semi-structured, audio recorded interviews and students' written responses to open-ended items on the program's evaluation instrument. The data were analyzed for themes and the findings compared to Black Cultural Ethos. Findings revealed that the participants believed that informal science education offered their children opportunities not realized in the formal school setting - a means of impacting their children holistically. The parents expressed the academic, cultural, and personal development of their children in their characterizations of the ideal informal science education experience and in their evaluations of Jordan Academy. Overall, the parents' views emphasized the BCE values of harmony, affect, verve, movement, orality and communalism. The study has important implications for practices within and research on informal science education.

  17. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    , during which their mentors aid them in finalizing their mission design and instrument suite, and in making the necessary trade-offs to stay within the cost cap. Tours of JPL facilities highlight the end-to-end life cycle of a mission. At week's end, students present their Concept Study to a "proposal review board" of JPL scientists and engineers and NASA Headquarters executives, who feed back the strengths and weaknesses of their proposal and mission design. A survey of Planetary Science Summer School alumni administered in summer of 2011 provides information on the program's impact on students' career choices and leadership roles as they pursue their employment in planetary science and related fields. Preliminary results will be discussed during the session. Almost a third of the approximately 450 Planetary Science Summer School alumni from the last 10 years of the program are currently employed by NASA or JPL. The Planetary Science Summer School is implemented by the JPL Education Office in partnership with JPL's Team X Project Design Center.

  18. How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?

    Science.gov (United States)

    Aslan, Oktay

    2015-01-01

    An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…

  19. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    Science.gov (United States)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  20. Adolescents' goal orientations for science in single-gender Israeli religious schools

    Science.gov (United States)

    Fortus, David; Daphna, Limor

    2017-01-01

    Israeli students and their families can choose between state-funded secular, religious, orthodox, and other alternative schools (e.g., Waldorf, Montessori, democratic). Earlier studies showed that the motivation to engage with science differs greatly between Israeli students in secular schools and democratic schools, with these differences being attributed to differences in school culture rather than home influence (Vedder-Weiss & Fortus, 2011, 2012). In this study we extend earlier studies by looking at religious state-funded schools that serve 18% of Israel's Jewish population. These schools provide a unique research environment since from grade 6 they are gender-separated. We examined the science-related mastery, performance-approach, and performance-avoid goal orientations, perceptions of the science teachers, parents, schools, and peers' goal emphases in relation to science of the students in these schools. We compared between students in religious schools (newly collected data) and secular schools (data reported in prior studies), and found that there is a distinct difference between these two populations that is associated with differing attitudes toward gender and science at these schools. This study provides additional evidence for the influence of culture on students' motivation to engage with science, suggests mechanisms by which this influence may occur.

  1. The Inquiry Based Science and Technology Education Program (IN-STEP): The Evaluation of the First Year

    Science.gov (United States)

    Corcoran, Thomas B.

    2008-01-01

    This is the first report on the evaluation of the Inquiry Based Science and Technology Education Program (IN-STEP), an innovative and ambitious science education initiative for lower secondary schools being undertaken by a public-private partnership in Thailand funded by MSD-Thailand, an affiliate of Merck & Co. IN-STEP is a public-private…

  2. A mixed-age science collaborative between elementary and high school physics students: A study of attitude toward school science and inquiry skill

    Science.gov (United States)

    Blain, Mary Perron

    Grade three students had significant improvements in inquiry ability and attitude toward school science as a function of their participation in mixed-age dyads completing inquiry-based science experiments with a high school physics partner. The social interaction between the 'more capable other' (Vygotsky, 1978) with the grade three student in the mixed-age problem solving team indicates a contributing factor in this improvement. This study employed a quasi-experimental design with intact groups of non-random assignment. The non-parametric Wilcoxon test (p = 0.025) was used to analyze scores for each academic achievement group for significant differences pre- and post-collaborative in "Inquiry" skill and "Attitude" toward school science scores. Three grade three classrooms from one elementary school and one high school physics class from the same school district were involved in the study. The high school physics class teamed with one intact grade three class as the mixed-age dyad performing the "hands-on" experiments (treatment). The two grade three classes teamed as same-age peer dyads (comparison group) to perform the same experiments on the same day. Using methods patterned after the way scientists investigate their world, the dyads performed experiments considered for future grade three national assessments (NAEP, 1994), i.e. "Which paper towel holds the most water?"; "Which magnet is stronger?"; "Which type of sugar, cubed or loose, dissolves best in warm water?" Trained raters scored the written lab reports using standardized scoring guides and characteristic benchmark responses to determine the "Inquiry" skill score for each subject. The "Attitude" toward school science score for each subject was determined from the Likert scale survey, Individual and Group Attitudes Toward Science and the open-ended Sentence Completion Test (SCT) (Piburn & Sidlick, 1992). Three raters scored the SCT survey for each subject. This study showed that for a grade three student

  3. Neuroscience in middle schools: a professional development and resource program that models inquiry-based strategies and engages teachers in classroom implementation.

    Science.gov (United States)

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J; Dubinsky, Janet M

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5-8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to "inquiry-based" teaching versus "lecture-based teaching." Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities.

  4. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  5. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    Science.gov (United States)

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  6. The Prenatal Care at School Program

    Science.gov (United States)

    Griswold, Carol H.; Nasso, Jacqueline T.; Swider, Susan; Ellison, Brenda R.; Griswold, Daniel L.; Brooks, Marilyn

    2013-01-01

    School absenteeism and poor compliance with prenatal appointments are concerns for pregnant teens. The Prenatal Care at School (PAS) program is a new model of prenatal care involving local health care providers and school personnel to reduce the need for students to leave school for prenatal care. The program combines prenatal care and education…

  7. Promotion of Influenza Prevention Beliefs and Behaviors through Primary School Science Education.

    Science.gov (United States)

    Koep, T H; Jenkins, S; M Hammerlund, M E; Clemens, C; Fracica, E; Ekker, S C; Enders, F T; Huskins, W C; Pierret, C

    2016-06-01

    School-based campaigns to improve student health have demonstrated short-term success across various health topics. However, evidence of the effectiveness of programs in promoting healthy beliefs and behaviors is limited. We hypothesized that educational curricula teaching the science behind health promotion would increase student knowledge, beliefs and adherence to healthy behaviors, in this case related to influenza. Integrated Science Education Outreach is a successful education intervention in Rochester, Minnesota public schools that has demonstrated improvements in student learning. Within this program, we designed novel curricula and assessments to determine if gains in knowledge extended to influenza prevention. Further, we coupled InSciEd Out programming with a clinical intervention, Influenza Prevention Prescription Education (IPPE), to compare students' attitudes, intentions and healthy behaviors utilizing surveys and hand hygiene monitoring equipment. 95 students participated in (IPPE) in the intervention school. Talking drawings captured improvement in influenza prevention understanding related to hand washing [pre n=17(43%); post n=30(77%)] and vaccination [pre n=2(5%); post n=15(38%)]. Findings from 1024 surveys from 566 students revealed strong baseline understanding and attitudes related to hand washing and cough etiquette (74% or greater positive responses). Automated hand hygiene monitoring in school bathrooms and classrooms estimated compliance for both soap (overall median 63%, IQR 38% to 100%) and hand sanitizer use (0.04 to 0.24 uses per student per day) but did not show significant pre/ post IPPE differences. Student understanding of principles of influenza prevention was reasonably high. Even with this baseline, InSciEd Out and IPPE improved students' unprompted knowledge of behaviors to prevent influenza, as reflected by talking drawings. This novel metric may be more sensitive in capturing knowledge among students than traditional

  8. The Deep River Science Academy: a unique and innovative program for engaging students in science

    International Nuclear Information System (INIS)

    Turner, C.W.; Didsbury, R.; Ingram, M.

    2014-01-01

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  9. The Deep River Science Academy: a unique and innovative program for engaging students in science

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W., E-mail: carlrhonda.turner@sympatico.ca [Deep River Science Academy, Deep River, Ontario (Canada); Didsbury, R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Ingram, M. [Deep River Science Academy, Deep River, Ontario (Canada)

    2014-06-15

    For 28 years, the Deep River Science Academy (DRSA) has been offering high school students the opportunity to engage in the excitement and challenge of professional scientific research to help nurture their passion for science and to provide them with the experience and the knowledge to make informed decisions regarding possible future careers in the fields of science, technology, engineering, and mathematics (STEM). The venue for the DRSA program has been a six-week summer science camp where students, working in pairs under the guidance of a university undergraduate tutor, contribute directly to an on-going research program under the supervision of a professional scientist or engineer. This concept has been expanded in recent years to reach students in classrooms year round by engaging students via the internet over a 12-week term in a series of interactive teaching sessions based on an on-going research project. Although the research projects for the summer program are offered primarily from the laboratories of Atomic Energy of Canada Limited at its Chalk River Laboratories site, projects for the year-round program can be based, in principle, in laboratories at universities and other research institutes located anywhere in Canada. This paper will describe the program in more detail using examples illustrating how the students become engaged in the research and the sorts of contributions they have been able to make over the years. The impact of the program on the students and the degree to which the DRSA has been able to meet its objective of encouraging students to choose careers in the fields of STEM and equipping them with the skills and experience to be successful will be assessed based on feedback from the students themselves. Finally, we will examine the program in the context of how well it helps to address the challenges faced by educators today in meeting the demands of students in a world where the internet provides instant access to information. (author)

  10. The Rural Girls in Science Project: from Pipelines to Affirming Science Education

    Science.gov (United States)

    Ginorio, Angela B.; Huston, Michelle; Frevert, Katie; Seibel, Jane Bierman

    The Rural Girls in Science (RGS) program was developed to foster the interest in science, engineering, and mathematics among rural high school girls in the state of Washington. Girls served include American Indians, Latinas, and Whites. This article provides an overview of the program and its outcomes not only for the participants (girls, teachers, counselors, and schools) but the researchers. Lessons learned from and about the participants are presented, and lessons learned from the process are discussed to illustrate how RGS moved from a focus on individuals to a focus on the school. The initial guiding concepts (self-esteem and scientific pipeline) were replaced by “possible selves” and our proposed complementary concepts: science-affirming and affirming science education.

  11. Ignatius of Loyola on medical education. Or: Should today's Jesuits continue to run health sciences schools?

    Science.gov (United States)

    Welie, Jos V M

    2003-01-01

    There are present 28 Jesuit colleges and universities in the United States, which together offer more than 50 health sciences degree programs. But as the Society's membership is shrinking and the financial risks involved in sponsoring health sciences education are rising, the question arises whether the Society should continue to sponsor health sciences degree programs. In fact, at least eight Jesuit health sciences schools have already closed their doors. This paper attempts to contribute to the resolution of this urgent question by reexamining Ignatius own views on health sciences education and, more specifically, his prohibition of the Society's sponsoring medical education. It concludes on the basis of an historical analysis of Ignatius' views that there is insufficient support for today's Jesuits to maintain their engagement in medical and health care education.

  12. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  13. Supporting Struggling Readers in Secondary School Science Classes

    Science.gov (United States)

    Roberts, Kelly D.; Takahashi, Kiriko; Park, Hye-Jin; Stodden, Robert A.

    2012-01-01

    Many secondary school students struggle to read complex expository text such as science textbooks. This article provides step-by-step guidance on how to foster expository reading for struggling readers in secondary school science classes. Two strategies are introduced: Text-to-Speech (TTS) Software as a reading compensatory strategy and the…

  14. The "Generacion Diez" after-school program and Latino parent involvement with schools.

    Science.gov (United States)

    Riggs, Nathaniel R; Medina, Carmen

    2005-11-01

    The current study examines associations between participation in after-school programs and change in Latino parent involvement with schools. Hierarchical linear regression analyses demonstrated that parents of children who had higher after-school program attendance rates were significantly more likely to report increases in the quality of relationships with their children's teachers, frequency of parent-teacher contact, and engagement with their children's schooling over a two-year period. However, greater home educator contacts were related to decreases in quality and quantity of parent-school involvement. A primary implication is that attendance in school-based after-school programs may draw parents into children's regular-day school context. Editors' Strategic Implications The authors illustrate the promising practice of using after-school programs to promote parent involvement and to help integrate the often disparate family and school contexts for Latino children.

  15. Assessment of Changes in School Nutrition Programs and the School Environment as a Result of Following the HealthierUS School Challenge Program

    Science.gov (United States)

    Brown, Jennifer S.; Bednar, Carolyn; DiMarco, Nancy M.; Connors, Priscilla L.

    2012-01-01

    Purpose/Objectives: The purpose of this study was to determine changes in school nutrition programs and the school environment as reported by school nutrition directors who are following the U.S. Department of Agriculture's HealthierUS School Challenge (HUSSC) program. The objective was to determine before and after changes in the average lunch…

  16. The Case of the Royal School of Library and Information Science

    DEFF Research Database (Denmark)

    Borlund, Pia

    2010-01-01

    The present paper forms the basis of the invited talk to be given by the author at the International Symposium on the Transformation and Innovation of Library and Information Science, November 16-17, 2010, Taipei, Taiwan. The paper introduces the Royal School of Library and Information Science......, Denmark, as a European School of Library and Information Science and a member of iSchool Caucus. The paper outlines some of the current challenges of the Royal School of Library and Information Science and how these challenges are met, including how the membership of the iSchool movement is considered...

  17. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    Science.gov (United States)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  18. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    Science.gov (United States)

    Ferreira, Jose Leonardo

    2016-07-01

    UnB and of the Museum of Science and Technology of Brasilia destinate to converge public communication of science. In their facilities will be possible to conceive, plan, develop, encourage and support scientific activities (playful and interactive) in schools and communities in the Federal District and surrounding areas of Brasilia, focusing on different aspects of science and technology and their relationship with society through investigative practices involving, particularly students and teachers of basic education and the community in General. The project will act even in the promotion of events, courses, workshops and scientific-cultural experiences, production of radio and TV programs aimed at promoting initiation into Science and environmental awareness on basic education.

  19. NASA's Student Launch Projects: A Government Education Program for Science and Engineering

    Science.gov (United States)

    Shepherd, Christena C.

    2009-01-01

    Among the many NASA education activities, the Student Launch projects are examples of how one agency has been working with students to inspire math, science and engineering interest. There are two Student Launch projects: Student Launch Initiative (SLI) for middle and high school students and the University Student Launch Initiative (USLI) for college students. The programs are described and website links are provided for further information. This document presents an example of how an agency can work with its unique resources in partnership with schools and communities to bring excitement to the classroom.

  20. Comprehensive School Alienation Program, Guidelines.

    Science.gov (United States)

    Hawaii State Dept. of Education, Honolulu. Office of Instructional Services.

    This document presents guidelines developed by the Hawaii State Department of Education's Comprehensive School Alienation Program to consolidate and strengthen the delivery of services to alienated students. It is intended to assist district staff, school administrators, and project personnel in planning and implementing program activities and…

  1. High-school Student Teams in a National NASA Microgravity Science Competition

    Science.gov (United States)

    DeLombard, Richard; Hodanbosi, Carol; Stocker, Dennis

    2003-01-01

    The Dropping In a Microgravity Environment or DIME competition for high-school-aged student teams has completed the first year for nationwide eligibility after two regional pilot years. With the expanded geographic participation and increased complexity of experiments, new lessons were learned by the DIME staff. A team participating in DIME will research the field of microgravity, develop a hypothesis, and prepare a proposal for an experiment to be conducted in a NASA microgravity drop tower. A team of NASA scientists and engineers will select the top proposals and then the selected teams will design and build their experiment apparatus. When completed, team representatives will visit NASA Glenn in Cleveland, Ohio to operate their experiment in the 2.2 Second Drop Tower and participate in workshops and center tours. NASA participates in a wide variety of educational activities including competitive events. There are competitive events sponsored by NASA (e.g. NASA Student Involvement Program) and student teams mentored by NASA centers (e.g. For Inspiration and Recognition of Science and Technology Robotics Competition). This participation by NASA in these public forums serves to bring the excitement of aerospace science to students and educators.Researchers from academic institutions, NASA, and industry utilize the 2.2 Second Drop Tower at NASA Glenn Research Center in Cleveland, Ohio for microgravity research. The researcher may be able to complete the suite of experiments in the drop tower but many experiments are precursor experiments for spaceflight experiments. The short turnaround time for an experiment's operations (45 minutes) and ready access to experiment carriers makes the facility amenable for use in a student program. The pilot year for DIME was conducted during the 2000-2001 school year with invitations sent out to Ohio- based schools and organizations. A second pilot year was conducted during the 2001-2002 school year for teams in the six-state region

  2. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  3. A culturally appropriate program that works: Native Americans in Marine and Space Sciences

    Science.gov (United States)

    Vergun, J. R.

    2001-05-01

    For more than ten years, the College of Oceanic and Atmospheric Sciences at Oregon State University has carried out the Native Americans in Marine and Space Sciences (NAMSS) Program. Its long-term goal is to increase the number of American Indian and Native Alaskan undergraduates in science who complete degrees, continue to graduate school and enter the professional scientific work force. Ninety-eight percent of NAMSS students have earned BS degrees and almost forty percent have continued in graduate school. These are impressive results considering the high national drop-out rate for Native American studentsaround 70% according to the Chronicle of Higher Education (26 May 1993, page A29). Most often, Native students wishing to earn degrees in science find few programs that fit with their traditional sense of place and community. Most programs are narrowly focused and do not support or nurture Native views of interrelationship of all things. While Western science's recent ecological systems thinking approach more closely resembles the traditional Native view, Traditional Ecological Knowledge is often perceived as anecdotal or storytelling and not real science. This is a problem for Native students who are strongly underrepresented in the U.S. scientific community as a whole and nearly absent from the marine sciences. Undergraduates from this group are without scientific career models or mentors from their ethnic group and experience difficulty establishing contacts with majority scientists. They have limited access to opportunities to explore career possibilities in the sciences through research participation. Once on campus they have difficulty establishing a sense of belonging in the University community and do not have an organized way to enter into the scientific activities that initially attracted them. Representation of Native Americans in the ranks of U.S. scientists will not be increased without special efforts to retain them as undergraduates and to recruit

  4. Evaluating a Graduate Professional Development Program for Informal Science Educators

    Science.gov (United States)

    Lake, Jeremy Paul

    generated content, I was able to piece through the many layers of this two year long program to examine the growth of these individuals over time. While all participants showed growth completing the certificate program, those who could fully invest themselves in the experiences seemed to have gained the most. These cases indicate the Informal Science Institutions Environmental Education Graduate Certificate Program was effective at enhancing the careers of formal and informal science educators. Additionally, it suggests informal science educators, although busy with their professional obligations and personal lives, can be successful in a formal graduate program designed to meet ISE needs as explicated in Learning Science in Informal Environments: People, Places, and Pursuits (Bell, Lewenstein, Shouse, & Feder, 2009). The emergent model indicating connections among a person's personal life, professional life, and graduate study may also have implications for other professionals desiring to enroll in graduate school. For example, science teachers in university graduate programs may also benefit from applying this model to their lives.

  5. In the Footsteps of Roger Revelle: Seagoing Oceanography for Middle School Science

    Science.gov (United States)

    Brice, D.; Foley, S.; Knox, R. A.; Mauricio, P.

    2007-12-01

    Now in its fourth year, "In the Footsteps of Roger Revelle" (IFRR) is a middle school science education program that draws student interest, scientific content and coherence with National Science Standards from real-time research at sea in fields of physical science. As a successful collaboration involving Scripps Institution of Oceanography (SIO), Woods Hole Oceanographic Institution (WHOI), National Oceanic and Atmospheric Administration (NOAA), Office of Naval Research (ONR), National Science Foundation (NSF), San Diego County Office of Education (SDCOE), and San Marcos Middle School (SMMS), IFRR brings physical oceanography and related sciences to students at the San Marcos Middle School in real-time from research vessels at sea using SIO's HiSeasNet satellite communication system. With their science teacher on the ship as an education outreach specialist or ashore guiding students in their interactions with selected scientists at sea, students observe shipboard research being carried out live via videoconference, daily e-mails, interviews, digital whiteboard sessions, and web interaction. Students then research, design, develop, deploy, and field-test their own data-collecting physical oceanography instruments in their classroom. The online interactive curriculum encourages active inquiry with intellectually stimulating problem-solving, enabling students to gain critical insight and skill while investigating some of the most provocative questions of our time, and seeing scientists as role- models. Recent science test scores with IFRR students have shown significant increases in classes where this curriculum has been implemented as compared to other classes where the traditional curriculum has been used. IFRR has provided students in the San Diego area with a unique opportunity for learning about oceanographic research, which could inspire students to become oceanographers or at least scientifically literate citizens - a benefit for a country that depends

  6. Education and Outreach Programs Offered by the Center for High Pressure Research and the Consortium for Materials Properties Research in Earth Sciences

    Science.gov (United States)

    Richard, G. A.

    2003-12-01

    Major research facilities and organizations provide an effective venue for developing partnerships with educational organizations in order to offer a wide variety of educational programs, because they constitute a base where the culture of scientific investigation can flourish. The Consortium for Materials Properties Research in Earth Sciences (COMPRES) conducts education and outreach programs through the Earth Science Educational Resource Center (ESERC), in partnership with other groups that offer research and education programs. ESERC initiated its development of education programs in 1994 under the administration of the Center for High Pressure Research (CHiPR), which was funded as a National Science Foundation Science and Technology Center from 1991 to 2002. Programs developed during ESERC's association with CHiPR and COMPRES have targeted a wide range of audiences, including pre-K, K-12 students and teachers, undergraduates, and graduate students. Since 1995, ESERC has offered inquiry-based programs to Project WISE (Women in Science and Engineering) students at a high school and undergraduate level. Activities have included projects that investigated earthquakes, high pressure mineral physics, and local geology. Through a practicum known as Project Java, undergraduate computer science students have developed interactive instructional tools for several of these activities. For K-12 teachers, a course on Long Island geology is offered each fall, which includes an examination of the role that processes in the Earth's interior have played in the geologic history of the region. ESERC has worked with Stony Brook's Department of Geosciences faculty to offer courses on natural hazards, computer modeling, and field geology to undergraduate students, and on computer programming for graduate students. Each summer, a four-week residential college-level environmental geology course is offered to rising tenth graders from the Brentwood, New York schools in partnership with

  7. Swiss Life Sciences - a science communication project for both schools and the wider public led by the foundation Science et Cité.

    Science.gov (United States)

    Röthlisberger, Michael

    2012-01-01

    The foundation Science et Cité was founded 1998 with the aim to inform the wider Swiss public about current scientific topics and to generate a dialogue between science and society. Initiated as an independent foundation by the former State Secretary for Science and Research, Dr. Charles Kleiber, Science et Cité is now attached to the Swiss Academies of Arts and Sciences as a competence center for dialogue with the public. Due to its branches in all language regions of the country, the foundation is ideally suited to initiate and implement communication projects on a nationwide scale. These projects are subdivided into three categories: i) science communication for children/adolescents, ii) establishing a dialogue between science and the wider public, and iii) conducting the role of a national center of competence and networking in science communication. Swiss Life Sciences is a project that fits into all of these categories: a year-round program for schools is complemented with an annual event for the wider public. With the involvement of most of the major Swiss universities, the Swiss National Science Foundation, the foundation Gen Suisse and many other partners, Swiss Life Sciences also sets an example of national networking within the science communication community.

  8. Academic dreamers to leaders: The emergence of the mathematics and science for minority students ((MS)(2)) program at Philips Academy Andover

    Science.gov (United States)

    Beckham, Jerrell K.

    (MS)2 is a summer program for high achieving minority students interested in math and science careers. It was started in 1977. The Program is located at Phillips Academy in Andover Massachusetts. Phillips Academy is one of the nation's oldest college preparatory schools. The school was founded in 1778. Current U.S. President George Bush attended Phillips Academy and his father before him. The students in (MS)2 attend Phillips Academy in the summertime, along with regular Summer Session students. The (MS)2 Program represents about a fifth of the students at Phillips Academy Summer Session. At present the program is made up of African Americans, Latinos, and Native American students who attend a number of different public schools throughout the nation. This dissertation explores the experiences of students in this program spanning nearly a quarter of a central. My research seeks to understand and shred additional light on how certain outreach programs might help along the pipeline in regard to improving minority representation in mathematics and science fields. Also, this narrative hopes to not only paints a more complex pictures of the experiences of minorities in schools, but seeks to serve the larger public interest by challenging some of the popular renditions and myths of the failure of Blacks, Latino/as, and Native Americans in schooling (Ogbu 2003), as oppose to certain aspects of schooling and society continuing to failing them.

  9. School 2.0: The Science Leadership Academy

    Science.gov (United States)

    Lehmann, Christopher

    2007-01-01

    This article features the Science Leadership Academy, a new public partnership school in Philadelphia that incorporates core values of inquiry, research, collaboration, presentation, and reflection. Founded by the School District of Philadelphia and The Franklin Institute, SLA is one of four partnership high schools that opened in September 2006…

  10. Influence of science and technology magnet middle schools on students' motivation and achievement in science

    Science.gov (United States)

    Allen, David

    Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.

  11. WVU--community partnership that provides science and math enrichment for underrepresented high school students.

    Science.gov (United States)

    Rye, J A; Chester, A L

    1999-04-01

    In response to the need to help West Virginia secondary school students overcome educational and economic barriers and to increase the number of health professionals in the state, the Health Sciences and Technology Academy (hereafter, "the Academy") was established in 1994. The Academy is a partnership between West Virginia University (WVU)--including the Robert C. Byrd Health Sciences Center, Eberly College of Arts and Sciences, and the College of Human Resources and Education--and members of the community, including secondary-school teachers, health care professionals, and other community leaders. The Academy targets students from underrepresented groups (mainly African Americans and financially disadvantaged whites) in grades nine through 12. By November 1997, 290 students (69% girls and 33% African American) from 17 counties were Academy participants. Funding is from the W. K. Kellogg Foundation, Howard Hughes Medical Institute, the National Institutes of Health, the Coca-Cola Foundation, and other sources. Academy programs are an on-campus summer institute and community-based clubs, where students engage in activities for science and math enrichment, leadership development, and health careers awareness. In the Academy's clubs, students carry out extended investigations of problems related to human health and local communities. Most students report that the Academy has increased their interest in health care careers, and almost all who have continued to participate in Academy programs through their senior year have been accepted into college.

  12. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    Science.gov (United States)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  13. Summer High School Apprenticeship Research Program (SHARP) of the National Aeronautics and Space Administration

    Science.gov (United States)

    1984-01-01

    A total of 125 talented high school students had the opportunity to gain first hand experience about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the fifth year of operation for NASA's Summer High School Apprenticehsip Research Program (SHARP). Ferguson Bryan served as the SHARP contractor and worked closely with NASA staff at Headquarters and the eight participating sites to plan, implement, and evaluate the Program. The main objectives were to strengthen SHARP and expand the number of students in the Program. These eight sites participated in the Program: Ames Research Center North, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallops Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center.

  14. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  15. Developing Mentors: Adult participation, practices, and learning in an out-of-school time STEM program

    Science.gov (United States)

    Scipio, Deana Aeolani

    This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In

  16. Variation in school health policies and programs by demographic characteristics of US schools, 2006.

    Science.gov (United States)

    Balaji, Alexandra B; Brener, Nancy D; McManus, Tim

    2010-12-01

    To identify whether school health policies and programs vary by demographic characteristics of schools, using data from the School Health Policies and Programs Study (SHPPS) 2006. This study updates a similar study conducted with SHPPS 2000 data and assesses several additional policies and programs measured for the first time in SHPPS 2006. SHPPS 2006 assessed the status of 8 components of the coordinated school health model using a nationally representative sample of public, Catholic, and private schools at the elementary, middle, and high school levels. Data were collected from school faculty and staff using computer-assisted personal interviews and then linked with extant data on school characteristics. Results from a series of regression analyses indicated that a number of school policies and programs varied by school type (public, Catholic, or private), urbanicity, school size, discretionary dollars per pupil, percentage of white students, percentage of students qualifying for free lunch funds, and, among high schools, percentage of college-bound students. Catholic and private schools, smaller schools, and those with low discretionary dollars per pupil did not have as many key school health policies and programs as did schools that were public, larger, and had higher discretionary dollars per pupil. However, no single type of school had all key components of a coordinated school health program in place. Although some categories of schools had fewer policies and programs in place, all had both strengths and weaknesses. Regardless of school characteristics, all schools have the potential to implement a quality school health program. © Published 2010. This article is a US Government work and is in the public domain in the USA.

  17. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    Science.gov (United States)

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  18. The formation of science choices in secondary school

    Science.gov (United States)

    Cleaves, Anna

    2005-04-01

    In this paper I examine the formation of post-16 choices over 3 years among higher achieving students with respect to enrolment in post-compulsory science courses. Transcripts from four interviews carried out over 3 years with 72 secondary school students were qualitatively analysed. Students were found to shape their choices for science in a variety of ways across time. The situation regarding science choices hinges on far more dynamic considerations than the stereotypical image of the potential advanced science student, committed to becoming a scientist from an early age. There is an interplay of self-perception with respect to science, occupational images of working scientists, relationship with significant adults and perceptions of school science The findings are informative for science educators and for career guidance professionals who may need to take into account the complexity of young people's choices.

  19. University of New Hampshire's Project SMART 2017: Marine and Environmental Science for High School Students

    Science.gov (United States)

    Goelzer, J.; Varner, R. K.; Levergood, R.; Sullivan, F.; Palace, M. W.; Haney, J. F.; Rock, B. N.; Smith, C. W.

    2017-12-01

    The month long residential Marine and Environmental Science research program for high school students at the University of New Hampshire connects students with university researchers. This educational program provides upper level high school students who are considering majors in the earth and environmental sciences with the opportunity to perform field work and conduct authentic research. This year's program introduced students to four modules exploring topics ranging from forest ecology to island ecosystems. The unifying theme between modules was the use of spectroscopy and remote sensing as a method of assessing the characteristics of ecosystems. Students constructed their own photometers utilizing eight specific Light Emitting Diodes (LEDs) spanning a wavelength range from 400 to 1200 nm. An Ultra Violet (UV) LED, four visible LEDs, and three different infrared LEDs were selected to detect light reflected by plant pigments and tissues. Students collected data using their photometers and compared results to an actual Analytical Spectral Device (ASD) reflectance data, mounted eight photometers on an unmanned aerial system (UAS) to collect forest canopy data and collected data from island rock pools. The students compared their photometer readings to data collected using a fluorometer to identify the presence of phycocyanin produced by cyanobacteria and chlorophyll produced by algae in the rock pools. Students found that the photometer data were comparable to the ASD data for several wavelengths, but recommended several changes. It was determined that to be useful for forest health assessment, two of the three infrared LEDs had the incorrect gain settings, and that for rock pool studies, the infrared LEDs were not necessary. Based on the student findings, we will refine the photometers for next year's program. The photometers constructed this summer will be utilized in high schools classes during the 2017-2018 school year. This low cost project will bring what is

  20. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    Science.gov (United States)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  1. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  2. Improving the critical thinking skills of junior high school students on Earth and Space Science (ESS) materials

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2018-05-01

    Critical thinking skills need to be developed in students. With critical thinking skills, students will be able to understand the concept with more depth easily, be sensitive with problems that occur, understand and solve problems that occur in their surroundings, and apply the concepts in different situations. Earth and Space Science (ESS) material is part of the science subjects given from elementary school to college. This research is a test of research program with quantitative method. This study aims to investigate the improvement of critical thinking skills of students through training of science teachers in junior high school in designing learning media for teaching ESS. With samples of 24 science teachers and 32 students of grade 7th in junior high school which are chosen by purposive sampling in a school in Ogan Ilir District, South Sumatra, obtained average pre-test and post-test scores of students’ critical thinking skills are 52.26 and 67.06 with an average N-gain of 0.31. A survey and critical thinking skills based-test were conducted to get the data. The results show positive impact and an increase in students’ critical thinking skills on the ESS material.

  3. The school evaluation program

    International Nuclear Information System (INIS)

    Fisher, E.; Harrison, J.; Turner, W.

    1990-01-01

    This paper reports on a pilot program to provide classroom and field training to school facility operators that was implemented by the U.S. Environmental Protection Agency's Office of Radiation Programs in 1989. This program consisted of two phases. The first phase developed and delivered a three-day workshop in Nashville, Tennessee. As a result of the workshop a second phase was initiated. The second phase investigated several school buildings with elevated indoor radon levels in the Western United States. Radon entry mechanisms were identified. Measurements to evaluate soil depressurization as a radon control method were made and HVAC systems were characterized. Measurements were made to evaluate HVAC modification as a radon control method. Building shell tightness measurements were made and information was collected to judge the suitability of potential sites for additional EPA sponsored 'hands on' school training. Physical and institutional problem areas were identified

  4. Developing science talent in minority students: Perspectives of past participants in a summer mentorship program

    Science.gov (United States)

    Schimmel, Dale Bishop

    The underrepresentation of women and ethnic minorities in science has been well documented. Research efforts are directed toward understanding the high attrition rate in science course selection as students advance through high school and college. The attrition rate is especially high for females and minority students. Since 1980 the Department of Biological Sciences at the University of Connecticut has conducted a "Minority Research Apprentice Program" to attract students by expanding their knowledge of research and technology. The goal of the program is to encourage students from underrepresented groups to eventually select careers in the field of science. This qualitative study of past participants explored factors that related to students' decisions to pursue or not to pursue careers in science. Descriptive statistics and qualitative data collected from surveys and interviews of twenty former apprentices, along with comparative case studies of four selected individuals, revealed the educational interventions, personal traits and social supports that helped guide students' eventual career choice decisions. Participation in gifted programs, advanced placement courses, and talented high school science teachers all played a critical role in assisting these individuals in developing their potential interest. Qualitative data revealed the role of the Minority Research Apprentice Program played in helping talented individuals gain an appreciation of the nature of scientific research through apprenticeship and involvement with authentic projects. For all those involved, it assisted them in clarifying their eventual career choices. Individuals identified the lack of challenge of the introductory science courses, the commitment science requires, and the nature of laboratory work as reasons for leaving the field. Females who left science switched majors more frequently than males. Qualitative data revealed the dilemma that multipotentiality and lack of career counseling

  5. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    Science.gov (United States)

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  6. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  7. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  8. Mini-med school for Aboriginal youth: experiential science outreach to tackle systemic barriers

    Directory of Open Access Journals (Sweden)

    Rita I. Henderson

    2015-12-01

    Full Text Available Introduction: Addressing systemic barriers experienced by low-income and minority students to accessing medical school, the University of Calgary's Cumming School of Medicine has spearheaded a year-round, mini-med school outreach initiative for Aboriginal students. Method: Junior and senior high school youth generally attend the half-day program in classes or camps of 15–25, breaking into small groups for multisession activities. Undergraduate medical education students mentor the youth in stations offering experiential lessons in physical examination, reading x-rays, and anatomy. All resources from the medical school are offered in-kind, including a pizza lunch at midday, whereas community partners organize transportation for the attendees. Results: Opening the medical school and its resources to the community offers great benefits to resource-constrained schools often limited in terms of science education resources. The model is also an effort to address challenges among the medical professions around attracting and retaining students from underserved populations. Conclusion: The prospect of increasing admission rates and successful completion of medical education among students from marginalized communities poses a real, though difficult-to-measure, possibility of increasing the workforce most likely to return to and work in such challenging contexts. A mini-medical school for Aboriginal youth highlights mutual, long-term benefit for diverse partners, encouraging medical educators and community-based science educators to explore the possibilities for deepening partnerships in their own regions.

  9. The 1985 National Aeronautics and Space Administration's Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    1985-01-01

    In 1985, a total of 126 talented high school students gained first hand knowledge about science and engineering careers by working directly with a NASA scientist or engineer during the summer. This marked the sixth year of operation for NASA's Summer High School Apprenticeship Research Program (SHARP). The major priority of maintaining the high standards and success of prior years was satisfied. The following eight sites participated in the Program: Ames Research Center, Ames' Dryden Flight Research Facility, Goddard Space Flight Center, Goddard's Wallop Flight Facility, Kennedy Space Center, Langley Research Center, Lewis Research Center, and Marshall Space Flight Center. Tresp Associates served as the SHARP contractor and worked closely with NASA staff at headquarters and the sites just mentioned to plan, implement, and evaluate the program.

  10. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    Science.gov (United States)

    Llerandi Roman, Pablo Antonio

    . Some participants successfully integrated inquiry-based lessons on the nature of science and earth science at their schools, but were unsuccessful in integrating field trips. The lack of teacher education programs and the inadequacy of earth science conceptual and pedagogical understanding held by in-service teachers are the main barriers for effective earth science teaching in Puerto Rico. This study established a foundation for future earth science education projects for Latino teachers. Additionally, as a result of this investigation various recommendations were made to effectively implement earth science teacher education programs in Puerto Rico and internationally.

  11. Standards for School Guidance Programs in Maryland.

    Science.gov (United States)

    Maryland State Dept. of Education, Baltimore. Div. of Compensatory, Urban, and Supplementary Programs.

    This brochure is a checklist to rate school compliance with the standards for school guidance programs in Maryland, which were developed by the Maryland State Department of Education. The first set of standards addresses the philosophy and goals of school guidance programs in Maryland and the extent to which program goals and objectives are…

  12. STEM Out-of-School Time Programs for Girls. Highlights from the Out-of-School Time Database. Research Update, No. 5

    Science.gov (United States)

    Chun, Katie; Harris, Erin

    2011-01-01

    Increasing interest in science, technology, engineering, and mathematics (STEM) has become part of education reform efforts in recent years in order to prepare students for the challenges of the twenty-first century global economy. Out-of-school time (OST) programs that focus on girls' involvement in STEM can play an essential role in improving…

  13. "Comets, Origins, and Life:” Promoting Interdisciplinary Science in Secondary and Middle Schools in the Washington, DC and Saint Louis, MO Metro Areas

    Science.gov (United States)

    Bonev, Boncho; Gibb, E. L.; Brewer, G.; Novak, R.; Mandell, A. M.; Seaton, P.; Price, J.; Long, T.; Bahar, S.; Edwards, S. S.

    2010-10-01

    Developing a full-year program to support secondary and middle school science education is a key part of the "broader impact” component of NSF Grant AST- 0807939 (PI/Co-PI Bonev/Gibb). This program is realized at two stages: (1) a professional development course for teachers is offered during the summer; (2) during the subsequent academic year we collaborate with educators in lessons planning or curriculum development as demanded in their particular schools. We successfully offered the course “ Comets, Origins, and Life: Interdisciplinary Science in the Secondary Classroom ” (45 contact hours; 3 credits) in the summers of 2009 and 2010 at the Catholic University of America. This class demonstrates how a complex hypothesis - for the delivery of water and prebiotic organic matter to early Earth - is being tested by integrating astronomy, physics, chemistry, biology, and Earth and planetary science. Collaborations with participants from the 2009 class include curriculum development within the Earth Science program in Prince Georges county, MD and strengthening science in Washington DC public schools. Our next step is to offer our class in the Saint Louis, MO area. The main challenge in our work with educators is not to present them with "interesting information", but to fit what we offer within the very particular curriculum expectations of their school districts. These curriculum expectations often vary from district to district and sometimes from year to year. We gratefully acknowledge the support by the NSF, allowing to fully integrate our research area into education. We also gratefully acknowledge our collaborations with the Goddard Center for Astrobiology and the Howard B. Owens Science Center (both in MD) in developing our class curriculum. Educators interested in this program can contact Boncho Bonev (bonev@cua.edu; for the Washington DC and Baltimore, MD areas) and Erika Gibb (gibbe@umsl.edu; for the Saint Louis, MO area).

  14. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  15. High School Computer Science Education Paves the Way for Higher Education: The Israeli Case

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2014-01-01

    The gap between enrollments in higher education computing programs and the high-tech industry's demands is widely reported, and is especially prominent for women. Increasing the availability of computer science education in high school is one of the strategies suggested in order to address this gap. We look at the connection between exposure to…

  16. Education in nuclear science at IPEN - CNEN, Sao Paulo, Brazil. Advanced School of Nuclear Energy-EAEN

    International Nuclear Information System (INIS)

    Semmler, R.; Catharino, M.G.M.; Vasconcellos, M.B.A.

    2012-01-01

    EAEN (Advanced School of Nuclear Energy, 2010) is an annual school that consists of a week of activities in the area of Nuclear Physics, Radiochemistry and uses of Nuclear Energy for a public made of high school students. The EAEN project represents a pioneering program on science education and dissemination of knowledge, conducted by researchers and focused mainly on high school and scientific education for the population in general. The school's priority is to explore the failures and the lack of education in the dissemination of nuclear energy for high school students as well as to attract prospective students with great potential for graduate courses of IPEN and other institutions in Sao Paulo and in Brazil. (author)

  17. The efficacy beliefs of preservice science teachers in professional development school and traditional school settings

    Science.gov (United States)

    Newsome, Demetria Lynn

    Teachers' efficacy beliefs have been shown to correlate positively with to the successful implementation of science reform measures (National Research Council, 1996) and are context specific (Koul & Rubba, 1999). Studies on teacher efficacy in specific contexts have been conducted including the availability of resources and parent support (Tschannen-Moran & Hoy, 2002), classroom management (Emmer & Hickman, 1990; Raudenbush, Rowen, & Cheong, 1992); and institutional climate and behavior of the principal (Hoy & Woolfolk, 1993). The purpose of this study was to compare the science teaching efficacy beliefs of teacher interns prepared in professional development schools with those of student teachers prepared in traditional school settings. Other variables examined included academic level, academic major, and area of science concentration. Preservice science teacher efficacy beliefs were measured using the Science Teaching Efficacy Beliefs Instrument for Preservice Science Teachers, STEBI Form B (Enoch & Riggs, 1990) with demographic information being collected by an accompanying questionnaire. Analyses included scoring the surveys on two scales, Personal Science Teaching Efficacy Beliefs Scale and the Outcome Expectancy Scale, calculating descriptive statistics, as well as performing MANOVAS and correlations. Results indicate that preservice science teachers working in professional development schools exhibit higher personal science teaching efficacy beliefs. This finding corroborates previous studies on the efficacy beliefs of preservice teachers working in PDS schools (Long, 1996; Sandholtz & Dadlez, 2000). Results also show a strong correlation between the personal science teaching efficacy beliefs and the setting where student teaching takes place. In addition, significant differences were found in the personal science teaching efficacy beliefs between elementary education majors and science majors, science education majors, and secondary education majors

  18. Cooperative learning in science: intervention in the secondary school

    Science.gov (United States)

    Topping, K. J.; Thurston, A.; Tolmie, A.; Christie, D.; Murray, P.; Karagiannidou, E.

    2011-04-01

    The use of cooperative learning in secondary school is reported - an area of considerable concern given attempts to make secondary schools more interactive and gain higher recruitment to university science courses. In this study the intervention group was 259 pupils aged 12-14 years in nine secondary schools, taught by 12 self-selected teachers. Comparison pupils came from both intervention and comparison schools (n = 385). Intervention teachers attended three continuing professional development days, in which they received information, engaged with resource packs and involved themselves in cooperative learning. Measures included both general and specific tests of science, attitudes to science, sociometry, self-esteem, attitudes to cooperative learning and transferable skills (all for pupils) and observation of implementation fidelity. There were increases during cooperative learning in pupil formulation of propositions, explanations and disagreements. Intervened pupils gained in attainment, but comparison pupils gained even more. Pupils who had experienced cooperative learning in primary school had higher pre-test scores in secondary education irrespective of being in the intervention or comparison group. On sociometry, comparison pupils showed greater affiliation to science work groups for work, but intervention pupils greater affiliation to these groups at break and out of school. Other measures were not significant. The results are discussed in relation to practice and policy implications.

  19. From Nothing to Something: The Nuts and Bolts of Building a Mentoring Program in a Health Sciences College

    Science.gov (United States)

    Franko, Debra L.

    2016-01-01

    In this paper, I report the development of a mentoring program in a College of Health Sciences comprised of schools of nursing, pharmacy, and health professions (which include physical therapy, speech pathology and audiology, applied psychology, and physician assistant programs) at a large private university. Although university-wide mentoring…

  20. The Annual Neutron School: Program and Facility for Nuclear Science and Technology

    International Nuclear Information System (INIS)

    Dingle, C.A.M.; Bautista, U.M.; Jecong, J.F.M.; Hila, F.C.; Astronomo, A.A.; Olivares, R.U.; Guillermo, N.R.D.; Ramo, M.E.S.K.V.; Saligan, P.P.

    2015-01-01

    The core realization of the mandate of the Philippine Nuclear Research Institute (PNRI) is the establishment and utilization of major nuclear facilities in lieu of the decommissioned research reactor. To address the need for manpower in the future, the applied physics research section (APRS) of the PNRI has initiated capacity building in the use and operation of small neutron sources which attempts to re-establish, develop and sustain expertise in nuclear science and technology. These activities have provided the theoretical and experimental training of young professionals and scientist of the institute which, consequently, resulted in the conceptualization of the Annual Neutron School (ANS).The ANS provides training and teaching environments for the young generation who will operate, utilize and regulate future nuclear facilities. More importantly, it demonstrates and presents the acquired knowledge and research outputs by the staff via “train a trainer” concept to an audience of junior undergraduate students. The successful implementation of the ANS has been participated by selected universities within Metro Manila and was able to train a number of students since its establishment in 2013. The program offers training, education, and R & D in the basic nuclear instrumentation and techniques which includes (1) characterization of different neutron sources – AmBe, PuBe and Cf-252; (2) development of Neutron Activation Analysis (NAA) technique using a portable neutron source for non-destructive elemental analysis; (3) utilization of MCNP (Monte Carlo N-Particle) code for verification of experimental data on neutron characterization, radiation dosimetry, detector design, calibration and efficiency and TRIGA fuel assembly configuration for sub-critical experiments. (author)

  1. 75 FR 65711 - High School Equivalency Program and College Assistance Migrant Program, The Federal TRIO Programs...

    Science.gov (United States)

    2010-10-26

    ... Math and Science (UBMS), and Veterans Upward Bound (VUB)) Sec. 646.4 (SSS), and Sec. 647.4 (McNair) to... school after the cohort completes the last grade level offered by the school at which the cohort began to... whom English is a second language, individuals pursing science, technology, engineering and math...

  2. Member Perceptions of Informal Science Institution Graduate Certificate Program: Case Study of a Community of Practice

    Science.gov (United States)

    Ball, Lois A.

    This research attempted to understand the experiences of a cohort of informal and formal science educators and informal science institution (ISI) community representatives during and after completion of a pilot graduate certificate program. Informal science educators (ISEs) find limited opportunities for professional development and support which influence their contributions to America's science literacy and school science education. This emergent design nested case study described how an innovative program provided professional development and enabled growth in participants' abilities to contribute to science literacy. Data were collected through interviews, participant observations, and class artifacts. The program by design and constituency was the overarching entity that accounted for members' experiences. Three principal aspects of the ISI certificate program and cohort which influenced perceptions and reported positive outcomes were (1) the cohort's composition and their collaborative activities which established a vigorous community of practice and fostered community building, mentoring, and networking, (2) long term program design and implementation which promoted experiential learning in a generative classroom, and (3) ability of some members who were able to be independent or autonomous learners to embrace science education reform strategies for greater self-efficacy and career advancement. This research extends the limited literature base for professional development of informal science educators and may benefit informal science institutions, informal and formal science educators, science education reform efforts, and public education and science-technology-society understanding. The study may raise awareness of the need to establish more professional development opportunities for ISEs and to fund professional development. Further, recognizing and appreciating informal science educators as a diverse committed community of professionals who positively

  3. The Journey of a Science Teacher: Preparing Female Students in the Training Future Scientists after School Program

    Science.gov (United States)

    Robinson-Hill, Rona M.

    2013-01-01

    What affect does female participation in the Training Future Scientist (TFS) program based on Vygotsky's sociocultural theory and Maslow's Hierarchies of Needs have on female adolescents' achievement levels in science and their attitude toward science and interest in science-based careers? The theoretical framework for this study was developed…

  4. Factors that Influence Participation of Students in Secondary Science and Mathematics Subjects in IB Schools Outside of the United States and Canada

    Science.gov (United States)

    Straffon, Elizabeth

    The purpose of this study was to investigate factors that affect the extent of international secondary students' participation in International Baccalaureate science and mathematics courses. The factors examined were gender, home region, size, percent host culture and age of the program, and coeducational and legal status of the school. Participation in math and science subjects was determined by analyzing the level and number of courses taken by students taking International Baccalaureate exams in 2010. Chi-Square and Cramer's V analysis were used to measure the effect of categorical variables on student participation and One-Way ANOVA and Bonferroni comparison of means were used to analyze the quantitative variables. All categorical variables were statistically significant (p<.01). Home region was the most important factor affecting participation in both math and science. Students from East, Southeast and South-Central Asia; and Eastern Europe have greater participation in math. The highest science participation came from students in East, Southern and Western Africa; and Southeast Asia. Top participators in science came from Australia/New Zealand, Northern Europe, East Africa and South-Central and Western Asia. State schools showed higher math and science participation. Science and math participation was also greater in all-male schools though associations were weak. Boys participated more than girls, especially in math. All quantitative variables were statistically significant. The program size had the largest effect size for both math and science with larger programs showing more participation at the higher level. A decreasing trend for age of the program and percent host culture was found for math participation. Three years of participation data were collected from an international school in Western Europe (n = 194). Variables included the influence of parent occupation, math preparedness (PSAT-Math), student achievement (GPA), and the importance of

  5. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  6. Materials sciences programs, Fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Division of Materials Sciences is responsible for basic research and research facilities in materials science topics important to the mission of the Department of Energy. The programmatic divisions under the Office of Basic Energy Sciences are Chemical Sciences, Engineering and Geosciences, and Energy Biosciences. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship among synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences subfields include: physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 517 research programs including 255 at 14 DOE National Laboratories, 262 research grants (233 of which are at universities), and 29 Small Business Innovation Research Grants. Five cross-cutting indices located at the rear of this book identify all 517 programs according to principal investigator(s), materials, techniques, phenomena, and environment.

  7. Using a Science Centre as a School Lab ? a Case Story

    DEFF Research Database (Denmark)

    Sørensen, Helene

    2004-01-01

    responsibility for their own learning committed themselves to learn the scientific language. The study shows that in school science there has to be scaffolding around a project to insure that all students gain experience with science as a learning process in an environment with self-motivated, self......The study has the overall goal of finding suggestions for improving school visits to Science Centres and similar places. One such centre (Experimentarium) has established a partnership with a nearby school to investigate possibilities for cooperation. This case story tells about a project where...... tenth graders were trained to become museum ?explainers? as part of their science education. The objectives were to investigate if it was possible to obtain a quality out-of?school experience using the Experimentarium as a science lab. The intention of the study was to look at science learning...

  8. 76 FR 12719 - Safe Schools/Healthy Students Program; Office of Safe and Drug-Free Schools; Safe Schools/Healthy...

    Science.gov (United States)

    2011-03-08

    ... DEPARTMENT OF EDUCATION Safe Schools/Healthy Students Program; Office of Safe and Drug- Free Schools; Safe Schools/Healthy Students Program; Catalog of Federal Domestic Assistance (CFDA) Numbers: 84... priorities, requirements, and definitions under the Safe Schools/Healthy Students (SS/HS) program. Since...

  9. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  10. Science and Mathematics Teaching Efficacy Beliefs of Pre-School Teachers

    Science.gov (United States)

    Aydogdu, Bülent; Peker, Murat

    2016-01-01

    The aim of this research was to examine science and mathematics teaching efficacy beliefs of pre-school teachers in terms of some variables. The sample of the study was comprised of 191 pre-school teachers working in a city in Aegean Region of Turkey. Since it attempted to define self-efficacy beliefs of pre-school teachers toward science and…

  11. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  12. Filling the Gap: Integrating STEM into Career and Technical Education Middle School Programs

    Science.gov (United States)

    Wu-Rorrer, Ray

    2017-01-01

    The field of STEM education is an educational framework that has surged in application over the past decade. Science, Technology, Engineering, and Math (STEM) is infused in nearly every facet of our society. Filling the gap of current research in middle school career and technical education (CTE) and STEM programs is important as traditional CTE…

  13. Increase in Science Research Commitment in a Didactic and Laboratory-Based Program Targeted to Gifted Minority High-School Students

    Science.gov (United States)

    Fraleigh-Lohrfink, Kimberly J.; Schneider, M. Victoria; Whittington, Dawayne; Feinberg, Andrew P.

    2013-01-01

    Underrepresentation of ethnic minorities in science, technology, engineering, and mathematics (STEM) fields has been a growing concern. Efforts to ameliorate this have often been directed at college-level enrichment. However, mentoring in the sciences at a high-school age level may have a greater impact on career choices. The Center Scholars…

  14. If We Build It, We Will Come: Impacts of a Summer Robotics Program on Regular Year Attendance in Middle School. Policy Brief

    Science.gov (United States)

    Mac Iver, Martha Abele; Mac Iver, Douglas J.

    2014-01-01

    Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…

  15. Career transition and dental school faculty development program.

    Science.gov (United States)

    Hicks, Jeffery L; Hendricson, William D; Partida, Mary N; Rugh, John D; Littlefield, John H; Jacks, Mary E

    2013-11-01

    Academic dentistry, as a career track, is not attracting sufficient numbers of new recruits to maintain a corps of skilled dental educators. The Faculty Development Program (FDP) at the University of Texas Health Science Center at San Antonio Dental School received federal funds to institute a 7-component program to enhance faculty recruitment and retention and provide training in skills associated with success in academics including:(1) a Teaching Excellence and Academic Skills (TExAS)Fellowship, (2) training in research methodology,evidence-based practice research, and information management, (3) an annual dental hygiene faculty development workshop for dental hygiene faculty, (4) a Teaching Honors Program and Academic Dental Careers Fellowship to cultivate students' interest in educational careers, (5) an Interprofessional Primary Care Rotation,(6) advanced education support toward a master's degree in public health, and (7) a key focus of the entire FDP, an annual Career Transition Workshop to facilitate movement from the practice arena to the educational arm of the profession.The Career Transition Workshop is a cap stone for the FDP; its goal is to build a bridge from practice to academic environment. It will provide guidance for private practice, public health, and military dentists and hygienists considering a career transition into academic dentistry. Topics will be addressed including: academic culture, preparation for the academic environment,academic responsibilities, terms of employment,compensation and benefits, career planning, and job search / interviewing. Instructors for the workshop will include dental school faculty who have transitioned from the practice, military, and public health sectors into dental education.Objectives of the Overall Faculty Development Program:• Provide training in teaching and research skills,career planning, and leadership in order to address faculty shortages in dental schools and under representation of minority

  16. Collaboration between research scientists and educators in implementation of a Masters program for training new Earth Science teachers in New York State

    Science.gov (United States)

    Nadeau, P. A.; Flores, K. E.; Zirakparvar, N. A.; Grcevich, J.; Ustunisik, G. K.; Kinzler, R. J.; Macdonald, M.; Mathez, E. A.; Mac Low, M.

    2012-12-01

    Educators and research scientists at the American Museum of Natural History are collaborating to implement a teacher education program with the goal of addressing a critical shortage of qualified Earth Science teachers in New York State (NYS), particularly in high-needs schools with diverse populations. This pilot program involves forging a one-of-a-kind partnership between a world-class research museum and high-needs schools in New York City. By placing teaching candidates in such schools, the project has potential to engage, motivate, and improve Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. The program, which is part of the state's Race to the Top initiative, is approved by the NYS Board of Regents and will prepare a total of 50 candidates in two cohorts to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The museum is in a unique position of being able to break traditional educational barriers as a result of a long history of interdisciplinary collaborations between educators and research scientists, as well as being the only stand-alone science graduate degree-granting museum in the United States. The intensive 15-month curriculum for MAT candidates comprises one summer of museum teaching residency, a full academic year of residency in high-needs public schools, one summer of science research residency, and concurrent graduate-level courses in Earth and space sciences, pedagogy, and adolescent psychology. We emphasize field-based geological studies and experiential learning, in contrast to many traditional teacher education programs. In an effort to ensure that MAT candidates have a robust knowledge base in Earth science, and per NYS Department of Education requirements, we selected candidates with strong

  17. Growing Community Roots for the Geosciences in Miami, Florida, A Program Aimed at High School and Middle School Students to Increase Awareness of Career and Educational Opportunities in the Geosciences

    Science.gov (United States)

    Whitman, D.; Hickey-Vargas, R.; Gebelein, J.; Draper, G.; Rego, R.

    2013-12-01

    Growing Community Roots for the Geosciences is a 2-year pilot recruitment project run by the Department of Earth and Environment at Florida International University (FIU) and funded by the NSF OEDG (Opportunities for Enhancing Diversity in the Geosciences) program. FIU, the State University of Florida in Miami is a federally recognized Minority Serving Institution with over 70% of the undergraduate population coming from groups underrepresented in the geoscience workforce. The goal of this project is to inform students enrolled in the local middle and high schools to career opportunities in the geosciences and to promote pathways for underrepresented groups to university geoscience degree programs. The first year's program included a 1-week workshop for middle school teachers and a 2-week summer camp aimed at high school students in the public school system. The teacher workshop was attended by 20 teachers who taught comprehensive and physical science in grades 6-8. It included lectures on geoscience careers, fundamental concepts of solid earth and atmospheric science, hands on exercises with earth materials, fossils and microscopy, interpretation of landform with Google Earth imagery, and a field trip to a local working limestone quarry. On the first day of the workshop, participants were surveyed on their general educational background in science and their familiarity and comfort with teaching basic geoscience concepts. On the final day, the teachers participated in a group discussion where we discussed how to make geoscience topics and careers more visible in the school curriculum. The 2-week summer camp was attended by 21 students entering grades 9-12. The program included hands on exercises on geoscience and GIS concepts, field trips to local barrier islands, the Everglades, a limestone quarry and a waste to energy facility, and tours of the NOAA National Hurricane Center and the FIU SEM lab. Participants were surveyed on their general educational background

  18. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  19. The Key Factors Affecting Students' Individual Interest in School Science Lessons

    Science.gov (United States)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The…

  20. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    Science.gov (United States)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  1. Constructing Your Self in School Science

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2016-01-01

    of school science. Classrooms together with the new technological tools that are being used are places that fabricate and (re)align how young people see themselves in science and form their subjectivity in relation to society’s core values and rationalities and are embodied in primary science education...... in science classrooms. The findings suggest that digital tools used in classrooms expand not only the means of teaching and learning science but represent spaces for the emergence, negotiation and struggle of different forms of subjectivities.......It has been repeatedly argued that young people need to acquire science knowledge, skills and competencies, so that future economies can maintain social welfare, economic growth and international competitiveness. However, the attainment of understanding in science is not the only importance...

  2. NASA-Ames Summer High School Apprenticeship Research Program (SHARP)

    Science.gov (United States)

    Powell, P.

    1983-01-01

    The function of SHARP is to recognize high school juniors who have demonstrated unusually high promise for sucess in mathemtics and science. Twenty academically talented students who will be seniors in high school in September were chosen to participate in SHARP 83. Mentors were selected to provide students with first-hand experiences in a research and development environment in order that each student might try out his or her tentative professional career choice. Some special features of SHARP included field trips to private industries doing similar and related research, special lectures on topics of research here at ARC, individual and group counseling sessions, written research papers and oral reports, and primarily the opportunity to be exposed to the present frontiers in space exploration and research. The long-range goal of SHARP is to contribute to the future recruitment of needed scientists and engineers. This final report is summary of all the phases of the planning and implemenation of the 1983 Summer High School Apprenticeship Research Program (SHARP).

  3. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  4. Program summaries for 1979: energy sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    This report describes the objectives of the various research programs being conducted by the Chemical Sciences, Metallurgy and Materials Science, and Process Science divisions of the BNL Dept. of Energy and Environment. Some of the more significant accomplishments during 1979 are also reported along with plans for 1980. Some of the topics under study include porphyrins, combustion, coal utilization, superconductors, semiconductors, coal, conversion, fluidized-bed combustion, polymers, etc. (DLC)

  5. Solar Fireworks - Integrating an Exhibit on Solar Physics and Space Science into the Science and Astronomy Curriculum of High-School and College Students

    Science.gov (United States)

    Denker, C.; Wang, H.; Conod, K. D.; Wintemberg, T.; Calderon, I.

    2005-05-01

    Astronomers at The Newark Museum's Alice and Leonard Dreyfuss Planetarium teamed up with the New Jersey Institute of Technology's (NJIT) Center for Solar-Terrestrial Research (CSTR) and the Big Bear Solar Observatory in presenting Solar Fireworks. The exhibit opened on May 15, 2004 and features two exhibition kiosks with interactive touch screen displays, where students and other visitors can take "virtual tours" in the fields of solar physics, solar activity, Sun-Earth connection, and geo-sciences. Planetarium and museum visits are an integral part of the introductory physics and astronomy classes at NJIT and the exhibition has been integrated in the astronomy curriculum. For example, NJIT students of the Astronomy Club and regular astronomy courses were closely involved in the design and development of the exhibit. The exhibit is the latest addition to the long-running natural science exhibit "Dynamic Earth: Revealing Nature's Secrets" at the museum. More than 30,000 people per year attend various programs offered by the planetarium including public shows, more than a dozen programs for school groups, after school activities, portable planetarium outreach, outdoor sky watches, solar observing and other family events. More than 1,000 high school students visited the planetarium in 2004. The exhibit is accompanied by a yearly teacher workshop (the first one was held on October 18-20, 2004) to enhance the learning experience of classes visiting the Newark Museum. The planetarium and museum staff has been working with teachers of Newark high schools and has presented many workshops for educators on a wide range of topics from astronomy to zoology. At the conclusion of the exhibit in December 2005, the exhibit will go "on the road" and will be made available to schools or other museums. Finally, the exhibit will find its permanent home at the new office complex of CSTR at NJIT. Acknowledgements: Solar Fireworks was organized by The Newark Museum and the New Jersey

  6. Association between scores in high school, aptitude and achievement exams and early performance in health science college

    Directory of Open Access Journals (Sweden)

    Al-Alwan Ibrahim

    2009-01-01

    Full Text Available This retrospective study was carried out to assess the correlation between admi-ssion criteria to health science colleges, namely, final high school grade and Saudi National Apti-tude and Achievement exams, and early academic performance in these colleges. The study inclu-ded 91 male students studying in the two-year pre-professional program at the King Saud bin Abdulaziz University for Health Sciences (KSAU-HS, Riyadh, Saudi Arabia. Records of these students were used to extract relevant information and their academic performance (based on the grade point average achieved at the end of the first semester of the pre-professional program, which were analytically studied. Pearson correlation coefficient was used to assess the associa-tions between the different scores. SPSS statistical program (version 12.0 was used for data ana-lyses. We found a strong correlation between the academic performance and the Achievement Exam, Aptitude Exam and high school final grade, with Pearson Correlation Coefficients of 0.96, 0.93, 0.87, respectively. The Saudi National Achievement Exam showed the most significant correla-tion. Our results indicate that academic performance showed good correlation with the admission criteria used, namely final high school grade, Saudi National Aptitude and Achievement Exams.

  7. Incorporating Hot Topics in Ocean Sciences to Outreach Activities in Marine and Environmental Science Education

    Science.gov (United States)

    Bergondo, D. L.; Mrakovcich, K. L.; Vlietstra, L.; Tebeau, P.; Verlinden, C.; Allen, L. A.; James, R.

    2016-02-01

    The US Coast Guard Academy, an undergraduate military Academy, in New London CT, provides STEM education programs to the local community that engage the public on hot topics in ocean sciences. Outreach efforts include classroom, lab, and field-based activities at the Academy as well as at local schools. In one course, we partner with a STEM high school collecting fish and environmental data on board a research vessel and subsequently students present the results of their project. In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops In another course, cadets develop and present interactive demonstrations of marine science to local school groups. In addition, the Academy develops and/or participates in outreach programs including Science Partnership for Innovation in Learning (SPIL), Women in Science, Physics of the Sea, and the Ocean Exploration Trust Honors Research Program. As part of the programs, instructors and cadets create interactive and collaborative activities that focus on hot topics in ocean sciences such as oil spill clean-up, ocean exploration, tsunamis, marine biodiversity, and conservation of aquatic habitats. Innovative science demonstrations such as real-time interactions with the Exploration Vessel (E/V) Nautilus, rotating tank simulations of ocean circulation, wave tank demonstrations, and determining what materials work best to contain and clean-up oil, are used to enhance ocean literacy. Children's books, posters and videos are some creative ways students summarize their understanding of ocean sciences and marine conservation. Despite time limitations of students and faculty, and challenges associated with securing funding to keep these programs sustainable, the impact of the programs is overwhelmingly positive. We have built stronger relationships with local community, enhanced ocean literacy, facilitated communication and mentorship between young

  8. Farm-to-School Programs: Perspectives of School Food Service Professionals

    Science.gov (United States)

    Izumi, Betty T.; Alaimo, Katherine; Hamm, Michael W.

    2010-01-01

    Objective: This qualitative study used a case study approach to explore the potential of farm-to-school programs to simultaneously improve children's diets and provide farmers with viable market opportunities. Design: Semistructured interviews were the primary data collection strategy. Setting: Seven farm-to-school programs in the Upper Midwest…

  9. Play Therapy Training among School Psychology, Social Work, and School Counseling Graduate Training Programs

    Science.gov (United States)

    Pascarella, Christina Bechle

    2012-01-01

    This study examined play therapy training across the nation among school psychology, social work, and school counseling graduate training programs. It also compared current training to previous training among school psychology and school counseling programs. A random sample of trainers was selected from lists of graduate programs provided by…

  10. Out-of-School Activities Related to Science and Technology

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez Alonso

    2007-05-01

    Full Text Available Artificial and natural environments constitute an extensive educational resource in whose framework the basic experiences that contribute to the development process of human beings occur. These experiences are the source of previous knowledge that students bring to school and that are key for building scientific school learning. This article reports the results of a study that addresses out-of-school experiences related to science and technology, through the application of an inventory list to a sample of students who were in their last year of compulsory education. The results show a relatively low overall frequency of experiences, characterized by some qualitative and quantitative differences according to a few grouping variables such as gender, the choice of an elective science subject, and different scientific topics and disciplines. In spite of its importance for learning, the school curriculum often ignores students’ previous experiences. Finally, we discuss the relevance of these results for developing a more equitable science and technology curriculum, from a perspective of a universal, humanistic science education.

  11. DPS Planetary Science Graduate Programs Database for Students and Advisors

    Science.gov (United States)

    Klassen, David R.; Roman, Anthony; Meinke, Bonnie K.

    2017-10-01

    Planetary science is a topic that covers an extremely diverse set of disciplines; planetary scientists are typically housed in a departments spanning a wide range of disciplines. As such it is difficult for undergraduate students to find programs that will give them a degree and research experience in our field as Department of Planetary Science is a rare sighting, indeed. Not only can this overwhelm even the most determined student, it can even be difficult for many undergraduate advisers.Because of this, the DPS Education committee decided several years ago that it should have an online resource that could help undergraduate students find graduate programs that could lead to a PhD with a focus in planetary science. It began in 2013 as a static page of information and evolved from there to a database-driven web site. Visitors can browse the entire list of programs or create a subset listing based on several filters. The site should be of use not only to undergraduates looking for programs, but also for advisers looking to help their students decide on their future plans. We present here a walk-through of the basic features as well as some usage statistics from the collected web site analytics. We ask for community feedback on additional features to make the system more usable for them. We also call upon those mentoring and advising undergraduates to use this resource, and for program admission chairs to continue to review their entry and provide us with the most up-to-date information.The URL for our site is http://dps.aas.org/education/graduate-schools.

  12. Obesity Prevention Interventions in US Public Schools: Are Schools Using Programs That Promote Weight Stigma?

    Science.gov (United States)

    Kenney, Erica L; Wintner, Suzanne; Lee, Rebekka M; Austin, S Bryn

    2017-12-28

    Despite substantial research on school-based obesity prevention programs, it is unclear how widely they are disseminated. It is also unknown whether schools use obesity programs that inadvertently promote weight stigma or disordered weight-control behaviors. In spring 2016, we distributed an online survey about school wellness programming to a simple random sample of US public school administrators (N = 247 respondents; 10.3% response rate). We analyzed survey responses and conducted immersion/crystallization analysis of written open-ended responses. Slightly less than half (n = 117, 47.4%) of schools offered any obesity prevention program. Only 17 (6.9%) reported using a predeveloped program, and 7 (2.8%) reported using a program with evidence for effectiveness. Thirty-seven schools (15.0%) reported developing intervention programs that focused primarily on individual students' or staff members' weight rather than nutrition or physical activity; 28 schools (11.3% of overall) used staff weight-loss competitions. School administrators who reported implementing a program were more likely to describe having a program champion and adequate buy-in from staff, families, and students. Lack of funding, training, and time were widely reported as barriers to implementation. Few administrators used educational (n = 12, 10.3%) or scientific (n = 6, 5.1%) literature for wellness program decision making. Evidence-based obesity prevention programs appear to be rarely implemented in US schools. Schools may be implementing programs lacking evidence and programs that may unintentionally exacerbate student weight stigma by focusing on student weight rather than healthy habits. Public health practitioners and researchers should focus on improving support for schools to implement evidence-based programs.

  13. Impact of Informal Science Education on Children's Attitudes About Science

    Science.gov (United States)

    Wulf, Rosemary; Mayhew, Laurel M.; Finkelstein, Noah D.

    2010-10-01

    The JILA Physics Frontier Center Partnerships for Informal Science Education in the Community (PISEC) provides informal afterschool inquiry-based science teaching opportunities for university participants with children typically underrepresented in science. We focus on the potential for this program to help increase children's interest in science, mathematics, and engineering and their understanding of the nature of science by validating the Children's Attitude Survey, which is based on the Colorado Learning Attitudes about Science Survey [1] and designed to measure shifts in children's attitudes about science and the nature of science. We present pre- and post-semester results for several semesters of the PISEC program, and demonstrate that, unlike most introductory physics courses in college, our after-school informal science programs support and promote positive attitudes about science.

  14. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  15. The distinctiveness and effectiveness of science teaching in the Malaysian `Smart school'

    Science.gov (United States)

    Tek Ong, Eng; Ruthven, Kenneth

    2010-04-01

    A recent reform initiative in the Malaysian educational system has sought to develop 'Smart schools', intended to better prepare students for adult life in a developing economy and to increase the flow of young people prepared for scientific and technological careers. The study reported in this paper examined lower-secondary science teaching, comparing two Smart schools officially judged to be successfully implementing the reform, with two neighbouring mainstream schools. Through analysis of classroom observation, supported by teacher interview and student report, the distinctive features of science teaching in the Smart schools were found to be use of ICT-based resources and of student-centred approaches, often intertwined to provide extended support for learning; accompanied by a near absence of the note giving and copying prevalent in the mainstream schools. Through analysis of measures of student attitude to science, science process skills and general science attainment, science teaching in Smart schools was found to be relatively effective overall. However, while the positive attitude effect was general, both academic effects were much weaker amongst students who had been of lower attainment on entry to secondary school.

  16. The Effect of School Culture on Science Education at an Ideologically Innovative Elementary Magnet School: An Ethnographic Case Study

    Science.gov (United States)

    Meier, Lori T.

    2012-11-01

    This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant teachers were interviewed to explore their personal beliefs and values, teaching, access to materials, and views of the adopted integrated thematic curriculum model and magnet structure. The resulting data, triangulated with informal observation and artifact collection, were analyzed using a theoretical framework that emphasized five interdependent school culture indicators (values, beliefs, practices, materials, and problems). Findings suggest that the school's culture adversely influenced the treatment of science.

  17. Mediating equity in shared water between community and industry: The effects of an after school program that addresses adolescents' knowledge, attitudes, and perceptions of water science and environmental issues

    Science.gov (United States)

    Patton, Mary Chandler

    This critical ethnography deconstructs how one participant researcher came to understand young adults' changing knowledge about water science and environmental issues in an after school program in Colombia. The program intended to empower self-identified young community leaders by teaching participants to engage community members in discourse related to how environmental factors impact one's level of health and quality of life. The data presented in this study illustrate how student participants responded to long-term teacher engagement and to particular curricular components that included hands-on science teaching and social justice coaching. I assessed how student interest in and knowledge of local water ecology and sanitation infrastructure changed throughout the program. Students' responses to the use of technology and digital media were also included in the analysis. The data demonstrates a dramatic change in student's attitudes and perceptions related to their environment and how they feel about their ability to make positive changes in their community.

  18. At-risk high school seniors: Science remediation for Georgia's High School Graduation Test

    Science.gov (United States)

    Carroll, Carolyn M.

    State departments of education have created a system of accountability for the academic achievement of students under the mandate of the No Child Left Behind Act of 2001. The Georgia Department of Education established the Georgia High School Graduation Test (GHSGT) as their method of evaluating the academic achievement of high school students. The GHSGT consist of five sections and students must pass all five sections before students they are eligible to receive a diploma. The purpose of the study was to examine the effects of teacher-lead and computer based remediation for a group of high school seniors who have been unsuccessful in passing the science portion of the GHSGT. The objectives of this study include (a) Identify the most effective method of remediation for at-risk students on the science section of the GHSGT, and (b) evaluate the methods of remediation for at-risk students on the science section of GHSGT available to high school students. The participants of this study were at-risk seniors enrolled in one high school during the 2007-2008 school year. The findings of this research study indicated that at-risk students who participated in both types of remediation, teacher-led and computer-based, scored significantly higher than the computer-based remediation group alone. There was no significant relationship between the test scores and the number of times the students were tested.

  19. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  20. Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study

    Directory of Open Access Journals (Sweden)

    Ingo eRoden

    2012-12-01

    Full Text Available This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 minutes sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests for three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children's socio-economic background, age and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills.

  1. Effects of a school-based instrumental music program on verbal and visual memory in primary school children: a longitudinal study.

    Science.gov (United States)

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 min sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children's socio-economic background, age, and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills.

  2. Effects of a School-Based Instrumental Music Program on Verbal and Visual Memory in Primary School Children: A Longitudinal Study

    Science.gov (United States)

    Roden, Ingo; Kreutz, Gunter; Bongard, Stephan

    2012-01-01

    This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 min sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children’s socio-economic background, age, and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills. PMID:23267341

  3. The association between school-to-work programs and school performance.

    Science.gov (United States)

    Welsh, Erin C; Appana, Savi; Anderson, Henry A; Zierold, Kristina M

    2014-02-01

    The School-to-Work (STW) Opportunities Act was passed to aid students in transitioning from education to employment by offering work-based learning opportunities. In the United States, 72% of high schools offer work-based learning opportunities for credit. This is the first study to describe school performance and school-based behaviors among students enrolled in STW programs and compare them with nonworking and other-working students. In 2003, a questionnaire was administered to five school districts and one large urban school in Wisconsin. Between 2008 and 2010, analyses were completed to characterize STW students and compare them with other students. Of the 6,519 students aged 14-18 years included in the analyses, 461 were involved in an STW program (7%), 3,108 were non-working (48%), and 2,950 were other-working students (45%). Compared with other students, STW students were less likely to have a grade point average >2.0, more likely to have three or more unexcused absences from school, and more likely to spend performance. School-to-Work students reported poorer academic performance and more unhealthy school-related behaviors compared with nonworking students and other-working students. Whereas many factors have a role in why students perform poorly in school, more research on students enrolled in STW programs is needed to understand whether participating has a negative impact on students' academic achievement. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  4. Satisfaction with the program of school bullying prevention and mental health promotion - cross sectional study among primary school pupils in Mostar.

    Science.gov (United States)

    Černi Obrdalj, Edita; Zadro, Kristina; Batić-Mujanović, Olivera; Zalihić, Amra

    2014-01-01

    The aim of this study was to assess the frequency of experience in school bullying and family violence, satisfaction with the preventive-promotional program, knowledge about methods for opposing violence and attitudes toward the role of the family physician in bullying prevention. The project was conducted by family physicians, nurses and sixth year medical students. The target group were 5th to 8th grade pupils of two primary schools randomly selected by computer. Basic information about the presence and types of bullying, the long-term consequences of violence and methods to oppose violent behavior was given as an interactive lecture to large groups of pupils. After the lecture, pupils received questionnaires about their experience of school violence, satisfaction with the program and their opinion about the role of the family physician in bullying prevention. The results of the short term outcome evaluation of the program show that younger pupils evaluate the program better than older ones. Furthermore, we found that the frequency of experienced violence is not connected with satisfaction with the program. Most students have never experienced violence in schools and families, 5th and 6th grade students showed greater satisfaction with training, better knowledge of help in case of violence and a more positive attitude towards medical help. We found no significant differences in pupil's satisfaction with the program, knowledge about methods of opposing violence and attitudes towards the role of the family physician in bullying prevention, in relation to the frequency of experience of family violence and school violence. Copyright © 2014 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  5. The DOE/NREL Environmental Science Program

    International Nuclear Information System (INIS)

    Douglas R. Lawson; Michael Gurevich

    2001-01-01

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects

  6. The DOE/NREL Environmental Science Program

    Energy Technology Data Exchange (ETDEWEB)

    Douglas R. Lawson; Michael Gurevich

    2001-05-14

    This paper summarizes the several of the studies in the Environmental Science Program being sponsored by DOE's Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of the Environmental Science Program is to understand atmospheric impacts and potential health effects that may be caused by the use of petroleum-based fuels and alternative transportation fuels from mobile sources. The Program is regulatory-driven, and focuses on ozone, airborne particles, visibility and regional haze, air toxics, and health effects of air pollutants. Each project in the Program is designed to address policy-relevant objectives. Current projects in the Environmental Science Program have four areas of focus: improving technology for emissions measurements; vehicle emissions measurements; emission inventory development/improvement; ambient impacts, including health effects.

  7. PROGRAMMING IS GOOD FOR CHILDREN? A CRITICAL VIEW ABOUT TEACHING PROGRAMMING IN SCHOOLS

    Directory of Open Access Journals (Sweden)

    Wendell Bento Geraldes

    2014-12-01

    Full Text Available This article presents reflections on teaching programming in schools and the positive and negative impact of this new methodology today. The study also discusses the initiatives relating to teaching programming in schools, considering also the opinion of experts on the subject. The following questions are addressed: Is it good for children to learn to program computers in schools? Can all people learn to program computers? What is the importance of learning for today's society? The pros and cons regarding teaching programming in schools will be discussed in search of answers to these questions.

  8. Environmental Management Science Program Workshop. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-07-01

    The Department of Energy Office of Environmental Management (EM), in partnership with the Office of Energy Research (ER), designed, developed, and implemented the Environmental Management Science Program as a basic research effort to fund the scientific and engineering understanding required to solve the most challenging technical problems facing the government's largest, most complex environmental cleanup program. The intent of the Environmental Management Science Program is to: (1) Provide scientific knowledge that will revolutionize technologies and cleanup approaches to significantly reduce future costs, schedules, and risks. (2) Bridge the gap between broad fundamental research that has wide-ranging applications such as that performed in the Department's Office of Energy Research and needs-driven applied technology development that is conducted in Environmental Management's Office of Science and Technology. (3) Focus the nation's science infrastructure on critical Department of Energy environmental problems. In an effort to share information regarding basic research efforts being funded by the Environmental Management Science Program and the Environmental Management/Energy Research Pilot Collaborative Research Program (Wolf-Broido Program), this CD includes summaries for each project. These project summaries, available in portable document format (PDF), were prepared in the spring of 1998 by the principal investigators and provide information about their most recent project activities and accomplishments.

  9. Rx for a Healthy School Nutrition Program

    Science.gov (United States)

    Boettger, Julie

    2009-01-01

    School nutrition directors face challenges on many fronts, from changing nutrition standards to addressing community interest in sustainability and local food sourcing. Programs are constantly changing to meet these new demands. How does a school business administrator know which changes will affect his/her school nutrition program positively? The…

  10. An Educational Program for Underserved Middle School Students to Encourage Pursuit of Pharmacy and Other Health Science Careers.

    Science.gov (United States)

    Goldsmith, Carroll-Ann; Tran, Thao T; Tran, Linh

    2014-11-15

    To develop and implement an active, hands-on program for underrepresented minority (URM) seventh grade students and to determine if participation in the program increased interest in health care careers and understanding of pharmacy and physician assistant (PA) professions. A hands-on educational program was developed in conjunction with local middle school administrators and staff for URM 7th grade students. The program was designed to be hands-on and focus on pharmacy and PA laboratory skills. A discussion component was included, allowing participants to interact personally with pharmacy and PA students and faculty members. Students' responses to survey questions about interest in health care careers and knowledge about health professions were compared before and after 2 separate offerings of the program. After the program, significant increases were seen in participants' understanding of the pharmacy and PA professions. An increased percentage of participants reported interest in health care careers after the program than before the program. Introducing middle school-aged URM students to the pharmacy and PA professions through a hands-on educational program increased interest in, and knowledge of, these professions.

  11. An examination of the perceived teaching competencies of novice alternatively licensed and traditionally licensed high school science teachers

    Science.gov (United States)

    Shea, Kathleen A.

    In most states, there are two routes to teacher licensure; traditional and alternative. The alternative route provides an accelerated entry into the classroom, often without the individual engaging in education coursework or a practicum. No matter the route, teaching skills continue to be learned by novice teachers while in the classroom with the guidance of a school-based mentor. In this study, the perceptions of mentor teachers of traditionally and alternatively licensed high school science teachers were compared with respect to mentees' science teaching competency. Further, the study explored the novice teachers' self-perception of their teaching competency. A survey, consisting of 56 Likert-type questions, was completed by mentors (N = 79) and novice high school science teachers (N = 83) in six northeastern states. The results revealed a statistically significant difference in the perceptions of the mentors of traditionally and alternatively licensed novice high school science teachers in the areas of general pedagogical knowledge, pedagogical content knowledge and professional growth, with more favorable perceptions recorded by mentors of traditionally licensed science teachers. There were no differences in the perceptions of the mentors with respect to novice high school teachers' content knowledge. There was no statistical difference in the self-perceptions of competency of the novice teachers. While alternative routes to licensure in science may be a necessity, the results of this study indicate that the lack of professional preparation may need to be addressed at the school level through the agency of the mentor. This study indicates that mentors must be prepared to provide alternatively licensed novice teachers with different assistance to that given to traditionally licensed novice teachers. School districts are urged to develop mentoring programs designed to develop the teaching competency of all novice teachers regardless of the route that led them

  12. Inquiry-Based Science and Technology Enrichment Program: Green Earth Enhanced with Inquiry and Technology

    Science.gov (United States)

    Kim, Hanna

    2011-12-01

    This study investigated the effectiveness of a guided inquiry integrated with technology, in terms of female middle-school students' attitudes toward science/scientists and content knowledge regarding selective science concepts (e.g., Greenhouse Effect, Air/Water Quality, Alternative Energy, and Human Health). Thirty-five female students who were entering eighth grade attended an intensive, 1-week Inquiry-Based Science and Technology Enrichment Program which used a main theme, "Green Earth Enhanced with Inquiry and Technology." We used pre- and post-attitude surveys, pre- and post-science content knowledge tests, and selective interviews to collect data and measure changes in students' attitudes and content knowledge. The study results indicated that at the post-intervention measures, participants significantly improved their attitudes toward science and science-related careers and increased their content knowledge of selected science concepts ( p < .05).

  13. Mentoring program design and implementation in new medical schools

    Science.gov (United States)

    Fornari, Alice; Murray, Thomas S.; Menzin, Andrew W.; Woo, Vivian A.; Clifton, Maurice; Lombardi, Marion; Shelov, Steven

    2014-01-01

    Purpose Mentoring is considered a valuable component of undergraduate medical education with a variety of programs at established medical schools. This study presents how new medical schools have set up mentoring programs as they have developed their curricula. Methods Administrators from 14 US medical schools established since 2006 were surveyed regarding the structure and implementation of their mentoring programs. Results The majority of new medical schools had mentoring programs that varied in structure and implementation. Although the programs were viewed as valuable at each institution, challenges when creating and implementing mentoring programs in new medical schools included time constraints for faculty and students, and lack of financial and professional incentives for faculty. Conclusions Similar to established medical schools, there was little uniformity among mentoring programs at new medical schools, likely reflecting differences in curriculum and program goals. Outcome measures are needed to determine whether a best practice for mentoring can be established. PMID:24962112

  14. THE ROLE OF SCHOOL TECHNICIANS IN PROMOTING SCIENCE THROUGH PRACTICAL WORK

    Directory of Open Access Journals (Sweden)

    Anne T. Helliar

    2011-11-01

    Full Text Available This is a review of the role of practical work in UK’s secondary school science lessons, the impact that practical work has in the promotion of science, the challenges created through use of non-specialist science teachers and a possible additional role for science technicians. The paper considers how improved deployment of suitably experienced school science technicians and their recognition, by schools’ management, for their involvement in the delivery of training in the use of practical work, for less experienced teachers, could benefit schools and their students. This together with its companion paper endeavours to show how the more effective use of practical work and technicians can encourage more students to select science at higher, non-compulsory levels.

  15. Assessing Prinary School; Second Cycle Social Science Textbooks ...

    African Journals Online (AJOL)

    Assessing Prinary School; Second Cycle Social Science Textbooks in ... second cycle primary level social science textbooks vis-à-vis the principles of multiculturalism. ... Biases were disclosed in gender, economic and occupational roles.

  16. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  17. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    Science.gov (United States)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  18. Changes in Student Science Interest from Elementary to Middle School

    Science.gov (United States)

    Coutts, Trudi E.

    This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for

  19. School Breakfast Program and School Performance

    OpenAIRE

    J Gordon Millichap

    1989-01-01

    The effects of participation in the school breakfast program by low income children on academic achievement and rates of absence and tardiness are reported from the Department of Pediatrics, Boston City Hospital, Boston, MA.

  20. Enhancing the Math and Science Experiences of Latinas and Latinos: A Study of the Joaquin Bustoz Math-Science Honors Program

    Science.gov (United States)

    Escontrias, Gabriel, Jr.

    Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other

  1. Reflection after teaching a lesson: Experiences of secondary school science teachers

    Science.gov (United States)

    Halstead, Melissa A.

    Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.

  2. Quality Science Teacher Professional Development and Student Achievement

    Science.gov (United States)

    Dubner, J.

    2007-12-01

    Studies show that socio-economic background and parental education accounts for 50-60 percent of a child's achievement in school. School, and other influences, account for the remaining 40-50 percent. In contrast to most other professions, schools require no real apprenticeship training of science teachers. Overall, only 38 percent of United States teachers have had any on-the-job training in their first teaching position, and in some cases this consisted of a few meetings over the course of a year between the beginning teacher and the assigned mentor or master teacher. Since individual teachers determine the bulk of a student's school experiences, interventions focused on teachers have the greatest likelihood of affecting students. To address this deficiency, partnerships between scientists and K-12 teachers are increasingly recognized as an excellent method for improving teacher preparedness and the quality of science education. Columbia University's Summer Research Program for Science Teachers' (founded in 1990) basic premise is simple: teachers cannot effectively teach science if they have no firsthand experience doing science, hence the Program's motto, "Practice what you teach." Columbia University's Summer Research Program for Science Teachers provides strong evidence that a teacher research program is a very effective form of professional development for secondary school science teachers and has a direct correlation to increased student achievement in science. The author will present the methodology of the program's evaluation citing statistically significant data. The author will also show the economic benefits of teacher participation in this form of professional development.

  3. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  4. School Oral Health Program in Kuwait.

    Science.gov (United States)

    Ariga, Jitendra; Al-Mutawa, Sabiha; Nazar, Huda

    2014-01-01

    The School Oral Health Program (SOHP), Kuwait, is a joint venture between the Ministry of Health, Kuwait, and Forsyth Institute, Cambridge, Mass., USA. This program provides oral health education, prevention and treatment to almost 280,000 public school children in Kuwait. Services are delivered through a system of center- and school-based clinics and preventive mobile teams. One of the recent developments is the effective use of portable dental units for the delivery of preventive care to children in schools without the need for children to go to dental clinics. Preventive procedures performed under this program are the biannual application of fluoride varnish and the placement of pit and fissure sealants on newly erupted permanent molars and premolars. During recent years, the SOHP has improved its coverage of children, with prevention up to 80%. This has resulted in a considerable reduction in treatment needs, which is evident from the reduced number of composite restorations performed under this program during the last 6 years. This indicates that the disease level is on a decline, which can be confirmed from the results of the ongoing National Oral Health Survey on Kuwaiti school children. © 2013 S. Karger AG, Basel.

  5. The Effect of Enrollment in Middle School Challenge Courses on Advanced Placement Exams in Social Studies and Science

    Science.gov (United States)

    Glaude-Bolte, Katherine

    Educators seek to guide students through appropriate programs and courses that prepare them for future success, in more advanced coursework and in other challenges of life. Some middle schools offer Challenge, or honors, courses for students who have demonstrated high ability. High schools often offer Advanced Placement (AP) courses, which are taught at the college level. This study examined the correlation between enrollment in middle school Challenge courses and subsequent AP exam category scores in social studies and science in a suburban school district. The independent variables were the number of years of enrollment in middle school social studies or science Challenge courses. The dependent variables were the AP exam category scores in the eight social studies AP courses or the six science AP courses. The sample sizes were limited to the number of students who took an AP social studies or science exam and also attended the middle school of study. The null hypothesis was that there was no relationship between the two variables. This study included eight social studies AP courses and six science AP courses. A significant positive correlation was indicated in only two of the courses, U.S. Government and Comparative Government, supporting the claim that enrollment in middle school Challenge social studies was correlated with success, at least on these two AP exams. In the remaining 12 courses, there was not enough evidence to reject the null hypothesis. Therefore, enrollment in middle school Challenge science and social studies courses generally did not seem to correlate with AP exam category scores. Results of this study call into question the validity of the claim by the district that enrollment in Challenge courses helps prepare students for rigorous coursework in high school. Several factors, including student readiness, teacher training, familiarity with course content, and previous AP experience may contribute more to a student's AP exam category score

  6. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  7. The Effects of School-Based Maum Meditation Program on the Self-Esteem and School Adjustment in Primary School Students

    Science.gov (United States)

    Yoo, Yang Gyeong; Lee, In Soo

    2013-01-01

    Self-esteem and school adjustment of children in the lower grades of primary school, the beginning stage of school life, have a close relationship with development of personality, mental health and characters of children. Therefore, the present study aimed to verify the effect of school-based Maum Meditation program on children in the lower grades of primary school, as a personality education program. The result showed that the experimental group with application of Maum Meditation program had significant improvements in self-esteem and school adjustment, compared to the control group without the application. In conclusion, since the study provides significant evidence that the intervention of Maum Meditation program had positive effects on self-esteem and school adjustment of children in the early stage of primary school, it is suggested to actively employ Maum Meditation as a school-based meditation program for mental health promotion of children in the early school ages, the stage of formation of personalities and habits. PMID:23777717

  8. Connecting Scientists, College Students, Middle School Students & Elementary Students through Intergenerational Afterschool STEM Programming

    Science.gov (United States)

    Ali, N. A.; Paglierani, R.; Raftery, C. L.; Romero, V.; Harper, M. R.; Chilcott, C.; Peticolas, L. M.; Hauck, K.; Yan, D.; Ruderman, I.; Frappier, R.

    2015-12-01

    The Multiverse education group at UC Berkeley's Space Sciences Lab created the NASA-funded "Five Stars Pathway" model in which five "generations" of girls and women engage in science together in an afterschool setting, with each generation representing one stage in the pathway of pursuing a career in science, technology, engineering, or math (STEM). The five stages are: elementary-age students, middle-school-age students, undergraduate-level college students, graduate-level college students and professional scientists. This model was field-tested at two Girls Inc. afterschool locations in the San Francisco Bay Area and distributed to Girls Inc. affiliates and other afterschool program coordinators nationwide. This presentation will explore some of the challenges and success of implementing a multigenerational STEM model as well as distributing the free curriculum for interested scientists and college students to use with afterschool programs.

  9. School Wellness Programs: Magnitude and Distribution in New York City Public Schools

    Science.gov (United States)

    Stiefel, Leanna; Elbel, Brian; Pflugh Prescott, Melissa; Aneja, Siddhartha; Schwartz, Amy E.

    2017-01-01

    Background: Public schools provide students with opportunities to participate in many discretionary, unmandated wellness programs. Little is known about the number of these programs, their distribution across schools, and the kinds of students served. We provide evidence on these questions for New York City (NYC) public schools. Methods: Data on…

  10. Adding SPICE to Science

    Science.gov (United States)

    Levey, Douglas

    2005-01-01

    In this article, the author would like to raise awareness of GK?12 programs by sharing experiences from SPICE (Science Partners in Inquiry-based Collaborative Education), a partnership between the University of Florida and Alachua County Public Schools. SPICE pairs nine graduate student fellows with nine middle school science teachers. Each…

  11. The survey of the nuclear sciences in the curricula of senior high schools

    International Nuclear Information System (INIS)

    Ujeno, Yowri; Okamura, Seizo; Inaoka, Mariko; Nakase, Yoshiaki.

    1994-01-01

    To know senior high school education and recognition of nuclear science, questionnaire survey was made in a total of 619 university, college or occupational school students who graduated from senior high schools before 1993. Female students accounted for 95% (n=589) because females are believed to more strongly affect the next generation than males. Of these students, 92.7% had graduated from the ordinary course of senior high school. Students who majored in physical science accounted for 38.6%. In the physical science curriculum, nuclear science had been selected in 27.8% of the students. Among the students who majored in physical science, 38.1% did not memorize the learning of basic physical science at all, and only 25% memorized the learning. These results suggest that the learning of physical science is extremely insufficient. However, such an unfamiliar phenomenon of physical science seems to be closely related to the examination system to universities and colleges. The reason why few people give a debate upon atomic power generation is that people have no accurate knowledge because of their insufficient school learning of nuclear science. Only 19.1% had taken lessons of atomic power generation in the curriculum of social science. Serious problems of the senior high school educational system are pointed out. (N.K.)

  12. Core Principles and Test Item Development for Advanced High School and Introductory University Level Food Science

    Science.gov (United States)

    Laing-Kean, Claudine A. M.

    2010-01-01

    Programs supported by the Carl D. Perkins Act of 2006 are required to operate under the state or national content standards, and are expected to carry out evaluation procedures that address accountability. The Indiana high school course, "Advanced Life Science: Foods" ("ALS: Foods") operates under the auspices of the Perkins…

  13. A Review of Research on Technology-Assisted School Science Laboratories

    Science.gov (United States)

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  14. SSR: What's in "School Science Review" for "PSR" Readers?

    Science.gov (United States)

    Lakin, Liz

    2004-01-01

    This article summarises ideas and developments in teaching and learning in science of relevance to "Primary Science Review" ("PSR") readers from three recent issues (309, 310, and 311) of "School Science Review" ("SSR"), the ASE journal for science education 11-19. The themes running through these are: ICT, the implications for science education…

  15. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  16. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    Science.gov (United States)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  17. A Model for Undergraduate and High School Student Research in Earth and Space Sciences: The New York City Research Initiative

    Science.gov (United States)

    Scalzo, F.; Johnson, L.; Marchese, P.

    2006-05-01

    The New York City Research Initiative (NYCRI) is a research and academic program that involves high school students, undergraduate and graduate students, and high school teachers in research teams that are led by college/university principal investigators of NASA funded projects and/or NASA scientists. The principal investigators are at 12 colleges/universities within a 50-mile radius of New York City (NYC and surrounding counties, Southern Connecticut and Northern New Jersey), as well as the NASA Goddard Institute of Space Studies (GISS). This program has a summer research institute component in Earth Science and Space Science, and an academic year component that includes the formulation and implementation NASA research based learning units in existing STEM courses by high school and college faculty. NYCRI is a revision and expansion of the Institute on Climate and Planets at GISS and is funded by NASA MURED and the Goddard Space Flight Center's Education Office.

  18. IVth Azores International Advanced School in Space Sciences

    CERN Document Server

    Santos, Nuno; Monteiro, Mário

    2018-01-01

    This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.

  19. The National Ocean Sciences Bowl: An Effective Model for Engaging High School Students in Ocean Science

    Science.gov (United States)

    Holloway, A. E.

    2016-02-01

    The National Ocean Sciences Bowl (NOSB) is an informal high school education program that engages students in ocean and environmental science and exposes them to the breadth of ocean-related careers. The NOSB strives to train the next generation of interdisciplinary capable scientists and build a STEM-literate society that harnesses the power of ocean and climate science to address environmental, economic, and societal issues. Through the NOSB, students not only learn scientific principles, but also apply them to compelling real-world problems. The NOSB provides a richer STEM education and exposes students to ocean science topics they may not otherwise study through classroom curriculum. A longitudinal study that began in 2007 has shown that NOSB participants have an enhanced interest in ocean-related hobbies and environmental stewardship and an increasing number of these students have remained in the STEM pipeline and workforce.While the NOSB is primarily an academic competition, it has evolved since its creation in 1998 to include a variety of practical and professional development components. One of the program enhancements, the Scientific Expert Briefing (SEB), gives students the opportunity to apply what they have studied and think critically about current and ongoing ocean science challenges. The SEB helps students connect their knowledge of ocean science with current and proposed policy initiatives. Students gain significant research, writing, and presentation skills, while enhancing their ability for collaboration and consensus building, all vital workforce skills. Ultimately, the SEB teaches students how to communicate complex scientific research into digestible information for decision-makers and the general public.This poster will examine the impact of the NOSB and its role in strengthening the workforce pipeline through a combination of independent learning, competition, and opportunities for communication skills development.

  20. Formative and summative assessment of science in English primary schools: evidence from the Primary Science Quality Mark

    Science.gov (United States)

    Earle, Sarah

    2014-05-01

    Background:Since the discontinuation of Standard Attainment Tests (SATs) in science at age 11 in England, pupil performance data in science reported to the UK government by each primary school has relied largely on teacher assessment undertaken in the classroom. Purpose:The process by which teachers are making these judgements has been unclear, so this study made use of the extensive Primary Science Quality Mark (PSQM) database to obtain a 'snapshot' (as of March 2013) of the approaches taken by 91 English primary schools to the formative and summative assessment of pupils' learning in science. PSQM is an award scheme for UK primary schools. It requires the science subject leader (co-ordinator) in each school to reflect upon and develop practice over the course of one year, then upload a set of reflections and supporting evidence to the database to support their application. One of the criteria requires the subject leader to explain how science is assessed within the school. Sample:The data set consists of the electronic text in the assessment section of all 91 PSQM primary schools which worked towards the Quality Mark in the year April 2012 to March 2013. Design and methods:Content analysis of a pre-existing qualitative data set. Text in the assessment section of each submission was first coded as describing formative or summative processes, then sub-coded into different strategies used. Results:A wide range of formative and summative approaches were reported, which tended to be described separately, with few links between them. Talk-based strategies are widely used for formative assessment, with some evidence of feedback to pupils. Whilst the use of tests or tracking grids for summative assessment is widespread, few schools rely on one system alone. Enquiry skills and conceptual knowledge were often assessed separately. Conclusions:There is little consistency in the approaches being used by teachers to assess science in English primary schools. Nevertheless

  1. Materials sciences programs, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects

  2. Materials sciences programs: Fiscal year 1994

    Science.gov (United States)

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  3. Materials sciences programs, fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Division of Materials Sciences is located within the DOE in the Office of Basic Energy Sciences. The Division of Materials Sciences is responsible for basic research and research facilities in strategic materials science topics of critical importance to the mission of the Department and its Strategic Plan. Materials Science is an enabling technology. The performance parameters, economics, environmental acceptability and safety of all energy generation, conversion, transmission and conservation technologies are limited by the properties and behavior of materials. The Materials Sciences programs develop scientific understanding of the synergistic relationship amongst the synthesis, processing, structure, properties, behavior, performance and other characteristics of materials. Emphasis is placed on the development of the capability to discover technologically, economically, and environmentally desirable new materials and processes, and the instruments and national user facilities necessary for achieving such progress. Materials Sciences sub-fields include physical metallurgy, ceramics, polymers, solid state and condensed matter physics, materials chemistry, surface science and related disciplines where the emphasis is on the science of materials. This report includes program descriptions for 458 research programs including 216 at 14 DOE National Laboratories, 242 research grants (233 for universities), and 9 Small Business Innovation Research (SBIR) Grants. The report is divided into eight sections. Section A contains all Laboratory projects, Section B has all contract research projects, Section C has projects funded under the SBIR Program, Section D describes the Center of Excellence for the Synthesis and Processing of Advanced Materials and E has information on major user facilities. F contains descriptions of other user facilities; G, a summary of funding levels; and H, indices characterizing research projects.

  4. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  5. Engaging a Rural Community with Science through a Science Café

    Science.gov (United States)

    Adams, P. E.

    2012-12-01

    Public awareness about science and science issues is often lacking in the general community; in a rural community there are even fewer options for an interested person to engage with others on science topics. One approach to address this issue is through the use of the Science Café model of citizen science at the local level. The Science Café concept, for the United States, originated in Boston (http://www.sciencecafes.org/). Science Café events are held in informal settings, such as restaurants, pubs, or coffee houses with presentations being provided by experts on the subject. The format is designed to promote discussion and questions. Fort Hays State University Science and Mathematics Institute (SMEI), located in Hays, KS, is now in its fifth year of hosting a science café in a community of 20,000 people. The program in Hays started as a grassroots effort from an area high school teacher asking SMEI to organize and support the program. Attendance at the Science Café has range from 14 to 75 people (fire code capacity!), with an average attendance of 30 people. The audience for our Science Café has been citizens, college students, high school students, and university faculty. The presenters at the Hays Science Café have ranged from scientists to engineers, high school students to hobbyists. Our topics have ranged from searching for life in the universe, wind energy, paleo-life in Kansas, climate change, honey bees, and planetary science. The program has developed a strong following in the community and has led to the formation of additional Science Café programs in Kansas. Selection of topics is based on community interest and timeliness. Publicity occurs through posters, e-mail, and social media outlets. Participants have found the sessions to be of interest and a place to learn more about the world and become informed about issues in the news. The Science Café in Hays has had a positive impact on the community.

  6. The InterCon network: a program for education partnerships at the University of Texas-Houston Health Science Center.

    Science.gov (United States)

    Castro, G A; Bouldin, P A; Farver, D W; Maugans, L A; Sanders, L C; Booker, J

    1999-04-01

    The University of Texas-Houston Health Science Center (UT-Houston) has created programs and activities to address the state's pressing needs in minority education. Through InterCon, a network of universities and K-12 schools, UT-Houston works with its partners to identify competitive candidates in the current pool of minority graduates with bachelor's degrees and to help them--along with their non-minority counterparts--progress in their education. Another objective is to expand the pool of minorities underrepresented in medicine who complete high school and go to college. In 1994 UT-Houston and Prairie View A&M University created a collaborative venture to provide new educational opportunities at UT-Houston for Prairie View's predominantly African American students. A three-track summer internship program--a result of that collaboration--has since been expanded to partnerships with other minority and majority universities throughout Texas. In 1998, for example, 108 undergraduate students from these universities (and 40 other universities nationwide) participated in research, professional, and administrative summer internships at UT-Houston. The InterCon network also has partnerships with K-12 schools. UT-Houston works with inner-city, suburban, and rural school districts to develop education models that can be transferred throughout the state. The partnerships deal with helping to teach basic academic skills and computer literacy, improve science-related instruction, meet demands for health promotion materials and information for school-initiated health and wellness programs, and develop distance-learning paradigms. UT-Houston views InterCon as a program helping Texas institutions to engage and adapt to the socioeconomic factors, demographic changes, and technology explosion that currently challenge public education.

  7. Young science journalism: writing popular scientific articles may contribute to an increase of high-school students' interest in the natural sciences

    Science.gov (United States)

    Simon, Uwe K.; Steindl, Hanna; Larcher, Nicole; Kulac, Helga; Hotter, Annelies

    2016-03-01

    Far too few high-school students choose subjects from the natural sciences (NaSc) for their majors in many countries. Even fewer study biology, chemistry or physics at university. Those, that do, often lack training to present and discuss scientific results and ideas in texts. To meet these challenges the center for didactics of biology of Graz University has set up the program Young Science Journalism. This new workshop-based interdisciplinary concept was tested in an exploratory study with grade 10 students of one Austrian high school, engaging both the biology and the German teacher of the class. It was our aim to raise students' interest in the NaSc by encouraging them to write popular scientific articles about self-chosen topics, and to help them improve their writing competence. In this paper we focus on interest development through writing. Results from this pilot study were promising. Using a mixed-method approach (comparing pre- and post-test questionnaires and semi-structured interviews from different time points analyzed qualitatively), we found that almost all students valued the project-related work highly. Most of them showed higher interest in the NaSc at project end with girls, in average, seeming to profit more from project participation. We thus recommend integrating such writing tasks into school curricula to increase students' interest in NaSc or to even create new interest. Additionally, we introduce a network presentation of questionnaire data as a powerful tool to visualize the effect of an intervention on individual students and student profile groups. This paper is part of a series accompanying the Austrian Young Science Journalism program. Additional Supporting Information may be found in the online version of this article at the publisher's web-site.

  8. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    Science.gov (United States)

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  9. Preparing Pre-Service School Librarians for Science-Focused Collaboration with Pre-Service Elementary Teachers: The Design and Impact of a Cross-Class Assignment

    Science.gov (United States)

    Rawson, Casey H.

    2015-01-01

    Numerous authors in the library and information science (LIS) field have called for more authentic collaborative experiences for students in school librarian education programs, particularly experiences that partner school library students with pre-service teachers to collaboratively design instruction. The first-iteration, design-based study…

  10. Santa Fe Alliance for Science: The First Eight Years

    Science.gov (United States)

    Eisenstein, Robert A.

    2013-04-01

    The Santa Fe Alliance for Science (SFAFS) was founded in May, 2005. SFAFS exists to provide assistance in K-14 math and science education in the greater Santa Fe area. It does this via extensive programs (1) in math and science tutoring at Santa Fe High School, Santa Fe Community College and to a lesser degree at other schools, (2) science fair advising and judging, (3) its ``Santa Fe Science Cafe for Young Thinkers'' series, (4) a program of professional enrichment for K-12 math and science teachers, and (5) a fledging math intervention program in middle school math. Well over 150 STEM professionals, working mostly as volunteers, have contributed since our beginning. Participation by students, parents and teachers has increased dramatically over the years, leading to much more positive views of math and science, especially among elementary school students and teachers. Support from the community and from local school districts has been very strong. I will present a brief status report on SFAFS activities, discuss some of the lessons learned along the way and describe briefly some ideas for the future. More information can be found at the SFAFS website, www.sfafs.org.

  11. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  12. Science Education at Arts-Focused Colleges

    Science.gov (United States)

    Oswald, W. Wyatt; Ritchie, Aarika; Murray, Amy Vashlishan; Honea, Jon

    2016-01-01

    Many arts-focused colleges and universities in the United States offer their undergraduate students coursework in science. To better understand the delivery of science education at this type of institution, this article surveys the science programs of forty-one arts-oriented schools. The findings suggest that most science programs are located in…

  13. Trends in Behavioral Sciences Education in Dental Schools, 1926 to 2016.

    Science.gov (United States)

    Centore, Linda

    2017-08-01

    This article outlines the journey of behavioral sciences education from a multidisciplinary array of topics to a discipline with a name, core identity, and mission in dental schools' curricula. While not exhaustive, it covers pivotal events from the time of the Gies report in 1926 to the present. Strengths and weaknesses of current behavioral sciences instruction in dental schools are discussed, along with identification of future opportunities and potential threats. Suggestions for future directions for behavioral sciences and new roles for behavioral sciences faculty in dental schools are proposed. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  14. Zero Waste: A Realistic Sustainability Program for Schools

    Science.gov (United States)

    Schumpert, Kary; Dietz, Cyndra

    2012-01-01

    Eco-Cycle, one of the nation's oldest and largest nonprofit recycling organizations, has coordinated recycling services and environmental education programs for the two Boulder area public school districts (80 schools) since 1987. In 2005, Eco-Cycle launched the Green Star Schools program in four pilot elementary schools with the goal of moving…

  15. Inspiring Instructional Change in Elementary School Science: The Relationship Between Enhanced Self-efficacy and Teacher Practices

    Science.gov (United States)

    Sandholtz, Judith Haymore; Ringstaff, Cathy

    2014-10-01

    This longitudinal study examined the extent to which teachers' participation in a 3-year professional development program enhanced their self-efficacy and prompted changes in science instruction in the early elementary grades. The study used a mixed-methods design, and included 39 teachers who taught in kindergarten, first grade, or second grade classrooms in rural school districts. Data sources, administered pre-program and at the end of each year, included a self-efficacy assessment and teacher survey. Interviews and classroom observations provided corroborating data about teachers' beliefs and science instruction. Results showed significant increases in teachers' overall self-efficacy in teaching science, personal efficacy, and outcome expectancy efficacy during the 3 years. Gains in self-efficacy were correlated with changes in reported instructional practices, particularly student participation activities. However, changes in self-efficacy tended not to be correlated with changes in instructional time. Contextual factors beyond teachers' direct control, such as curricular and testing requirements in mathematics and language arts influenced time allotted to science instruction.

  16. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  17. Innovative Noyce Program for Preparing High School Physics Teachers.

    Science.gov (United States)

    Hagedorn, Eric; Kosheleva, Olga; Wagler, Amy; Wagler, Ron

    2011-10-01

    The ``Robert Noyce Scholarships for Teaching Miners'' program at the University of Texas at El Paso currently consists of 14 mathematics majors minoring in secondary education, most of whom are preparing for the Mathematics-Physics Certification. From the time of their selection (junior year), till after they begin teaching, participants in this program will have financial support consisting of a 10,000 per year scholarship during the last two years in college. Programmatic support during these two years consists of four, half-day workshops emphasizing: 1) inquiry-based teaching, 2) mathematics & science integration, and 3) actual inquiry in the form of a senior research project. The workshops are facilitated by a team of university faculty and school district partners (EPISD and YISD). These district partners help with the workshops, but also mentor the scholars when placed at their classroom observation and student teacher sites. Once the scholars graduate and receive certification, they will experience unique induction year support: being hired in pairs or small groups and placed together in the same school. This placement with classmates combined with the mentoring of the same district personnel with whom they are familiar is hypothesized to be uniquely effective.

  18. Cultivation of science identity through authentic science in an urban high school classroom

    Science.gov (United States)

    Chapman, Angela; Feldman, Allan

    2017-06-01

    This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as well as their perceptions about who can do science. We found that the students believed the experience to be one of authentic science, that their science identity was positively influenced by participation in the experience, and that they demonstrated a shift in perceptions from stereotypical to more diverse views of scientists. Implications for science education are discussed.

  19. Schools and Informal Science Settings: Collaborate, Co-Exist, or Assimilate?

    Science.gov (United States)

    Adams, Jennifer D.; Gupta, Preeti; DeFelice, Amy

    2012-01-01

    In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school…

  20. School Psychology Research: Combining Ecological Theory and Prevention Science

    Science.gov (United States)

    Burns, Matthew K.

    2011-01-01

    The current article comments on the importance of theoretical implications within school psychological research, and proposes that ecological theory and prevention science could provide the conceptual framework for school psychology research and practice. Articles published in "School Psychology Review" should at least discuss potential…

  1. Critical Consciousness and Schooling: The Impact of the Community as a Classroom Program on Academic Indicators

    Directory of Open Access Journals (Sweden)

    D. Gavin Luter

    2017-02-01

    Full Text Available The present study investigates the extent to which a program guided by the principles of critical pedagogy, which seeks to develop critical consciousness, is associated with the improved academic performance of students attending a low-performance middle-school in Buffalo, New York. The students were enrolled in an in-school academic support program called the Community as Classroom, which used critical project-based learning to show students how to improve neighborhood conditions. The study found that the Community as Classroom program bolstered student engagement as reflected in improved attendance, on-time-arrival at school, and reduced suspensions. Although class grades did not improve, standardized scores, particularly in Math and Science, dramatically improved for these students from the lowest scoring categories. We suspect that given increased student engagement and dramatically improved standardized test scores, teacher bias might be the cause of no improvements in class grades. We conclude that critical pedagogy, which leads to increased critical consciousness, is a tool that can lead to improved academic performance of students. Such a pedagogy, we argue, should be more widely used in public schools, with a particular emphasis on their deployment in Community Schools.

  2. Evaluation of a statewide science inservice and outreach program: Teacher and student outcomes

    Science.gov (United States)

    Lott, Kimberly Hardiman

    Alabama Science in Motion (ASIM) is a statewide in-service and outreach program designed to provide in-service training for teachers in technology and content knowledge. ASIM is also designed to increase student interest in science and future science careers. The goals of ASIM include: to complement, enhance and facilitate implementation of the Alabama Course of Study: Science, to increase student interest in science and scientific careers, and to provide high school science teachers with curriculum development and staff development opportunities that will enhance their subject-content expertise, technology background, and instructional skills. This study was conducted to evaluate the goals and other measurable outcomes of the chemistry component of ASIM. Data were collected from 19 chemistry teachers and 182 students that participated in ASIM and 6 chemistry teachers and 42 students that do not participate in ASIM using both surveys and student records. Pre-treatment Chi-Square tests revealed that the teachers did not differ in years of chemistry teaching experience, major in college, and number of classes other than chemistry taught. Pre-treatment Chi-Square tests revealed that the students did not differ in age, ethnicity, school classification, or school type. The teacher survey used measured attitudes towards inquiry-based teaching, frequency of technology used by teacher self-report and perceived teaching ability of chemistry topics from the Alabama Course of Study-Science. The student surveys used were the Test of Science Related Attitudes (TOSRA) and a modified version of the Test of Integrated Process Skills (TIPS). The students' science scores from the Stanford Achievement Test (SAT-9) were also obtained from student records. Analysis of teacher data using a MANOVA design revealed that participation in ASIM had a significantly positive effect on teacher attitude towards inquiry-based teaching and the frequency of technology used; however, there was no

  3. Middle School Science Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents (1) suggestions on teaching volume and density in the elementary school; (2) ideas for teaching about floating and sinking; (3) a simple computer program on color addition; and (4) an illustration of Newton's second law of motion. (JN)

  4. Developing successful extra curricular programs for the K-12 grades: Interfacing scientists with schools

    Science.gov (United States)

    Chandrasekhar, Meera

    2000-09-01

    Early familiarity is regarded as one of the keys to attracting female students to traditionally male professions. I will describe four different extra curricular programs that my collaborators in the local school district and I have developed for students in grades 5-12. These programs are part of a project entitled "Promoting Young Women in the Physical sciences", which also includes teacher training and programs in which parents participate with the child. Through these sustained and broad-based interventions, we provide early experiences that we expect will prove positive to students. I will also address the successes and difficulties in starting and sustaining these programs.

  5. Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival

    Science.gov (United States)

    Morgan, Anne-Marie

    2012-01-01

    A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…

  6. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    Science.gov (United States)

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  7. MCTP Summer Research Internship Program. Research Presentation Day: Experience Mathematics and Science in the Real World

    Science.gov (United States)

    1996-01-01

    This paper presents the summaries of the MCTP Summer Research Internship Program. Technological areas discussed include: Mathematical curriculum development for real world problems; Rain effects on air-water gas exchange; multi-ring impact basins on mars; developing an interactive multimedia educational cd-rom on remote sensing; a pilot of an activity for for the globe program; fossils in maryland; developing children's programming for the american horticultural society at river farm; children's learning, educational programs of the national park service; a study of climate and student satisfaction in two summer programs for disadvantaged students interested in careers in mathematics and science; the maryland governor's academy, integrating technology into the classroom; stream sampling with the maryland biological stream survey (MBSS); the imaging system inspection software technology, the preparation and detection of nominal and faulted steel ingots; event-based science, the development of real-world science units; correlation between anxiety and past experiences; environmental education through summer nature camp; enhancing learning opportunities at the Salisbury zoo; plant growth experiment, a module for the middle school classroom; the effects of proxisome proliferators in Japanese medaka embryos; development of a chapter on birth control and contraceptive methodologies as part of an interactive computer-based education module on hiv and aids; excretion of gentamicin in toadfish and goldfish; the renaissance summer program; and Are field trips important to the regional math science center?

  8. Project based, Collaborative, Algorithmic Robotics for High School Students: Programming Self Driving Race Cars at MIT

    Science.gov (United States)

    2017-02-19

    new high-school STEM program in robotics. The program utilizes state -of-the- art sensors and embedded computers for mobile robotics. These...software. Students do not engage in hardware design or development. They are given a hardware kit that includes state -of-the- art sensors and... Engineering and Computer Science (under course number 6.141) and the Department of Aeronautics and Astronautics (under course number 16.405). Let us

  9. Profiling interest of students in science: Learning in school and beyond

    Science.gov (United States)

    Dierks, Pay O.; Höffler, Tim N.; Parchmann, Ilka

    2014-05-01

    Background:Interest is assumed to be relevant for students' learning processes. Many studies have investigated students' interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose:The aim of this study is to obtain a precise image of secondary school students' interest for school and out-of-school learning opportunities, both formal and informal. The study is part of a larger project on measuring the students' Individual Concept about the Natural Sciences (ICoN), including self-efficacy, beliefs and achievements next to interest variables. Sample:Next to regular school students, a specific cohort will be analyzed as well: participants of science competitions who are regarded as having high interest, and perhaps different interest profiles than regular students. In the study described here, participants of the International Junior Science Olympiad (N = 133) and regular students from secondary schools (N = 305), age cohorts 10 to 17 years, participated. Design and methods:We adapted Holland's well-established RIASEC-framework to analyze if and how it can also be used to assess students' interest within science and in-school and out-of-school (leisure-time and enrichment) activities. The resulting questionnaire was piloted according to quality criteria and applied to analyze profiles of different groups (boys - girls, contest participants - non-participants). Results:The RIASEC-adaption to investigate profiles within science works apparently well for school and leisure-time activities. Concerning the interest in fostering measures, different emphases seem to appear. More research in this field needs to be done to adjust measures better to students' interests and other pre-conditions in the future. Contrasting different groups like gender and participation in a junior science contest uncovered specific interest profiles. Conclusions:The instrument seems to offer a promising approach to

  10. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  11. Research Experiences for Science Teachers: The Impact On Their Students

    Science.gov (United States)

    Dubner, J.

    2005-12-01

    Deficiencies in science preparedness of United States high school students were recognized more than two decades ago, as were some of their underlying causes. Among the primary causes are the remoteness of the language, tools, and concepts of science from the daily experiences of teachers and students, and the long-standing national shortage of appropriately prepared science teachers. Secondary school science teachers are challenged each school year by constantly changing content, new technologies, and increasing demands for standards-based instruction. A major deficiency in the education of science teachers was their lack of experience with the practice of science, and with practicing scientists. Providing teachers with opportunities to gain hands-on experience with the tools and materials of science under the guidance and mentorship of leading scientists in an environment attuned to professional development, would have many beneficial effects. They would improve teachers' understanding of science and their ability to develop and lead inquiry- and standards-based science classes and laboratories. They would enable them to communicate the vitality and dynamism of science to their students and to other teachers. They would enhance their ability to motivate and guide students. From its inception, Columbia University's Summer Research Program for Science Teacher's goal has been to enhance interest and improve performance in science of students in New York City area schools. The program seeks to achieve this goal by increasing the professional competence of teachers. Our ongoing program evaluation shows that following completion of the program, the teachers implement more inquiry-based classroom and laboratory exercises, increase utilization of Internet resources, motivate students to participate in after school science clubs and Intel-type science projects; and create opportunities for students to investigate an area of science in greater depth and for longer periods

  12. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    Science.gov (United States)

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  13. The Los Alamos Space Science Outreach (LASSO) Program

    Science.gov (United States)

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  14. MAGMADIM: Young Explainers Program

    International Nuclear Information System (INIS)

    Paltiel, Z.

    2005-01-01

    Full Text:Physics teachers and educators constantly face the problem of inspiring their students to major in physics. On the other hand, science museums are designed to provide a pleasant environment which will stimulate and encourage a science associated experience to the general public. Typically, there is no intention to teach science as such in science museums. One may, however, use the science museum to teach and inspire certain groups of students in a much deeper sense. In fact they may actually enthusiastically learn much of the school physics curriculum at the museum. This report discusses the Magmadim program through which 10th graders are trained to be young explainers at the Weizmann Institutes Clore Garden of Science. To this end they study the physics underlying its exhibits in an after-school course. The ultimate goal is for the 'magmadim' to become the best possible explainers and be able to face all sorts of museum visitors. Along with learning how to instruct visitors, they must learn the physics behind the exhibits to give a full explanation of the exhibit and be able to answer any question that may arise. Our 5 year experience with the program shows that its self-selected participants not only study a lot of science, but also like it and learn how to explain the content to other people. This program, along with similar programs at the Bloomfield Science Museum and the Madatzim (young physics tutors) program of Ort, help in promoting the interest in science in general and physics in particular among school students. Various ways to expand the programs will also be discussed

  15. Predictors and Outcomes of Parental Involvement with High School Students in Science

    Science.gov (United States)

    Shumow, Lee; Lyutykh, Elena; Schmidt, Jennifer A.

    2011-01-01

    Demographic and psychological predictors of parent involvement with their children's science education both at home and at school were examined during high school. Associations between both types of parent involvement and numerous academic outcomes were tested. Data were collected from 244 high school students in 12 different science classrooms…

  16. A rural math, science, and technology elementary school tangled up in global networks of practice

    Science.gov (United States)

    Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina

    2010-06-01

    This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced the school's science curriculum, the ways the school promoted itself to the community, and the implicit meanings of science held by school staff, parents and community members. Main sources of data were the county's newspaper articles from 2003 to 2006, the school's, town's, and business leaders' promotional materials, and interviews with school staff, parents, and community members. A key finding was the school's dual promotion of science education and character education. We make sense of this "science with character" curriculum by unpacking the school and community's entanglements with historical (cultural preservation), political (conservative politics, concerns for youth depravity), and economic (globalization) networks. We describe the ways those entanglements enabled certain reproductive meanings of school science (as add-on, suspect, and elitist) and other novel meanings of science (empathetic, nurturing, place-based). This study highlights the school as a site of struggle, entangled in multiple networks of practice that influence in positive, negative, and unpredictable ways, the enacted science curriculum.

  17. Extracurricular Physical Activity Programs in California Private Secondary Schools.

    Science.gov (United States)

    Kahan, David; McKenzie, Thomas L

    2017-12-01

    Interscholastic, intramural, and club physical activity (PA) programs can be important contributors to student PA accrual at schools. Few studies have assessed factors related to the provision of these extracurricular PA programs, especially in private schools. We used a 16-item questionnaire to assess the associations and influences of selected factors relative to extracurricular PA program policies and practices in 450 private California secondary schools. Associations were evaluated using contingency table analyses (i.e., chi-squared, effect size, and post-hoc analyses). Six factors were associated with schools providing extracurricular PA programs: school location, level, enrollment, and religious classification and whether the physical education (PE) program met state PE time standards and was taught by PE specialists. Both static factors (e.g., school location, level, enrollment, and religious affiliation) and modifiable factors (e.g., meeting PE standards and employing specialists) affect the provision of extracurricular PA programs. As education is state-mandated, additional study is recommended to assess the generalizability of these findings to other states and to public schools.

  18. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  19. After-school programs for low-income children: promise and challenges.

    Science.gov (United States)

    Halpern, R

    1999-01-01

    Children's out-of-school time, long a low-level source of public concern, has recently emerged as a major social issue. This, in turn, has heightened interest in the heterogeneous field of after-school programs. This article provides a profile of after-school programs for low-income children, focusing on supply and demand, program emphases, and program sponsors and support organizations. It also discusses the major challenges facing the field in the areas of facilities, staffing, and financing. Details and examples are drawn from the ongoing evaluation of a specific after-school program initiative called MOST (Making the Most of Out-of-School Time), which seeks to strengthen after-school programs in Boston, Chicago, and Seattle. Looking ahead, the article highlights the pros and cons of options for increasing coverage to reach more low-income children, strengthening programs, expanding funding, and articulating an appropriate role for after-school programs to fill in the lives of low-income children.

  20. The University of Texas Science and Engineering Apprentice Program as a Model for an REU Site

    Science.gov (United States)

    Davis, M. B.; Blankenship, D. D.; Ellins, K. E.

    2004-12-01

    The University of Texas Institute for Geophysics at (UTIG) is one of five research labs in the Austin area that hosts recent high school graduates for summer research projects through the Applied Research Lab Science and Engineering Apprenticeship Program (SEAP). The SEAP is a program designed to provide summer research opportunities to recent high school undergraduates who excel in science and math. UTIG has been a large proponent of the SEAP and has typically mentored two to four students each year and a total alumni of about twenty. The program has successfully targeted groups that are typically underrepresented in sciences and engineering. Current statistics show that 25% of past SEAP students are members of an ethnic minority and 80% of SEAP students are female. Many of these students have stayed on after the summer program and continued to work part-time or return during summers to UTIG while completing their undergraduate careers. A significant portion of these students present results at professional meetings and ultimately commit to careers in science and engineering, both in industry and academia. SEAP students at UTIG work alongside scientists and graduate students as part of a team, and, through this interaction, improve their scientific knowledge and problem solving skills. Both graduate and undergraduate students involved in NSF-funded research grants mentor the SEAP students, giving them the opportunity to work on their own research problem while contributing data and interpretation to a more fundamental research problem. By uniting student research under the umbrella of Antarctic ice sheet research, students learn how their individual research projects relate to the more unifying science problem centered on ice sheet variability, and Antarctic continental evolution. They also gain an understanding of how research is carried out. At the same time, scientists and graduate students learn how to communicate their knowledge so that it is interesting and