WorldWideScience

Sample records for school integrated science

  1. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  2. Rural School Math and Science Teachers' Technology Integration Familiarization

    Science.gov (United States)

    Kalonde, Gilbert

    2017-01-01

    This study explored the significance of technology integration familiarization and the subsequent PD provided to rural middle school teachers with several opportunities to gain technological skills for technology use in rural middle school math and science classrooms. In order to explore the use of technology in rural schools, this study surveyed…

  3. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    Science.gov (United States)

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  4. Integrating E-Books into Science Teaching by Preservice Elementary School Teachers

    Science.gov (United States)

    Lai, Ching-San

    2016-01-01

    This study aims to discuss the issues of integrating e-books into science teaching by preservice elementary school teachers. The study adopts both qualitative and quantitative research methods. In total, 24 preservice elementary school teachers participated in this study. The main sources of research data included e-books produced by preservice…

  5. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  6. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    Science.gov (United States)

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  7. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  8. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  9. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  10. Promoting of Thematic-Based Integrated Science Learning on the Junior High School

    Science.gov (United States)

    Pursitasari, Indarini Dwi; Nuryanti, Siti; Rede, Amran

    2015-01-01

    This study was conducted to explain the effect of thematic based integrated science learning to the student's critical thinking skills and character. One group pretest-posttest design is involving thirty students in one of the junior high school in the Palu city. A sample was taken using purposive sampling. Data of critical thinking skills…

  11. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  12. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  13. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  14. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  15. The Implementation of Integrated Science Technology, Engineering and Mathematics (STEM) Instruction Using Robotics in the Middle School Science Classroom

    Science.gov (United States)

    Ntemngwa, Celestin; Oliver, J. Steve

    2018-01-01

    The research study reported here was conducted to investigate the implementation of integrated STEM lessons within courses that have a single subject science focus. The purpose also included development of a pedagogical theory. This technology-based teaching was conceptualized by school administrators and teachers in order to provide middle school…

  16. Constructing "Authentic" Science: Results from a University/High School Collaboration Integrating Digital Storytelling and Social Networking

    Science.gov (United States)

    Olitsky, Stacy; Becker, Elizabeth A.; Jayo, Ignacio; Vinogradov, Philip; Montcalmo, Joseph

    2018-02-01

    This study explores the implications of a redesign of a college course that entailed a new partnership between a college neuroscience classroom and a high school. In this course, the college students engaged in original research projects which included conducting brain surgery and behavioural tests on rats. They used digital storytelling and social networking to communicate with high school students and were visited by the students during the semester. The aims of the redesign were to align the course with science conducted in the field and to provide opportunities to disseminate scientific knowledge through emerging technologies. This study investigates the impact of these innovations on the college and high school students' perceptions of authentic science, including their relationship with science-centred communities. We found that these collaborative tools increased college students' perceptions that authentic science entailed communication with the general public, in addition to supporting prior perceptions of the importance of conducting experiments and presenting results to experts. In addition, the view of science as high-status knowledge was attenuated as students integrated non-formal communication practices into presentations, showing the backstage process of learning, incorporating music and youth discourse styles, and displaying emotional engagement. An impact of these hybrid presentation approaches was an increase in the high school students' perceptions of the accessibility of laboratory science. We discuss how the use of technologies that are familiar to youth, such as iPads, social networking sites, and multimedia presentations, has the potential to prioritize students' voices and promote a more inclusive view of science.

  17. Integrating ICTs into the Environmental Science Primary School Classroom in Chegutu District, Zimbabwe: Problems and Solutions

    Science.gov (United States)

    Shadreck, Mandina

    2015-01-01

    This study investigated primary school teachers' perceptions of the barriers and challenges preventing them from integrating ICTs in the environmental science classroom. The study adopted a qualitative research approach that is in line with the phenomenological perspective as it sought to acquire knowledge through understanding the direct…

  18. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  19. Integrated Schools: Finding a New Path

    Science.gov (United States)

    Orfield, Gary; Frankenberg, Erica; Siegel-Hawley, Genevieve

    2010-01-01

    Research shows that schools remain a powerful tool for shoring up individual opportunity and for attaining a thriving, multiracial democratic society. The authors point to social science evidence that demonstrates how segregated schooling limits the prospects of both minority and majority students and how integrated education can close the…

  20. The Complexity integrated-Instruments components media of IPA at Elementary School

    Directory of Open Access Journals (Sweden)

    Angreni Siska

    2018-01-01

    Full Text Available This research aims at describing the complexity of Integrated Instrument Components media (CII in learning of science at Elementary schools in District Siulak Mukai and at Elementary schools in District Siulak. The research applied a descriptive method which included survey forms. Instruments used were observation sheets. The result of the research showed Integrated Instrument Components media (CII natural science that complexity at primary school district Siulak was more complex compared with that at primary school district Siulak Mukai. is better than from primary school district Mukai

  1. The Language Demands of Science Reading in Middle School

    Science.gov (United States)

    Fang, Zhihui

    2006-04-01

    The language used to construct knowledge, beliefs, and worldviews in school science is distinct from the social language that students use in their everyday ordinary life. This difference is a major source of reading difficulty for many students, especially struggling readers and English-language learners. This article identifies some of the linguistic challenges involved in reading middle-school science texts and suggests several teaching strategies to help students cope with these challenges. It is argued that explicit attention to the unique language of school science should be an integral part of science literacy pedagogy.

  2. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  3. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  4. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  5. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  6. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  7. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  8. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  9. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  10. A New Approach to A Science Magnet School - Classroom and Museum Integration

    Science.gov (United States)

    Franklin, Samuel

    2009-03-01

    The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.

  11. Middle school science curriculum design and 8th grade student achievement in Massachusetts public schools

    Science.gov (United States)

    Clifford, Betsey A.

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used teaching middle school science: integrated and discipline-based. In the proposed standards, the Massachusetts DESE uses grade-by-grade standards using an integrated approach. It was not known if there is a statistically significant difference in student achievement on the 8th grade science MCAS assessment for students taught with an integrated or discipline-based approach. The results on the 8th grade science MCAS test from six public school districts from 2010 -- 2013 were collected and analyzed. The methodology used was quantitative. Results of an ANOVA showed that there was no statistically significant difference in overall student achievement between the two curriculum models. Furthermore, there was no statistically significant difference for the various domains: Earth and Space Science, Life Science, Physical Science, and Technology/Engineering. This information is useful for districts hesitant to make the change from a discipline-based approach to an integrated approach. More research should be conducted on this topic with a larger sample size to better support the results.

  12. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  13. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  14. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  15. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  16. FORMATION OF THE HUMAN CAPITAL IN MODEL OF INTEGRATION OF HIGH SCHOOL SCIENCE IN INDUSTRY

    Directory of Open Access Journals (Sweden)

    Sergey N. Mityakov

    2013-01-01

    Full Text Available Analyzed the problems of reproduction of human resources in the scientific and educational cooperation and collaboration of university research with industry. Proposed a model integration high school science to industry of the region, including the internal and external levels. On the internal level, proposed a scheme of transfer technology in a technical university, where the formation of human capital is produced in two related areas: training of competitive labor market specialists with higher education, as well as consolidation in the universities of highly qualified personnel. On the external level, proposed creation of an integrated research and education production cluster, which brings together the personnel and technological capabilities of the industrial region.

  17. The Effect of School Culture on Science Education at an Ideologically Innovative Elementary Magnet School: An Ethnographic Case Study

    Science.gov (United States)

    Meier, Lori T.

    2012-11-01

    This ethnographic case study investigated the science practices of teachers at one public elementary magnet school in light of how school culture influenced science curriculum design and instruction. The purpose of the study was to address how school culture impacted the school's overall treatment of science as a viable content area. Key informant teachers were interviewed to explore their personal beliefs and values, teaching, access to materials, and views of the adopted integrated thematic curriculum model and magnet structure. The resulting data, triangulated with informal observation and artifact collection, were analyzed using a theoretical framework that emphasized five interdependent school culture indicators (values, beliefs, practices, materials, and problems). Findings suggest that the school's culture adversely influenced the treatment of science.

  18. Solar Fireworks - Integrating an Exhibit on Solar Physics and Space Science into the Science and Astronomy Curriculum of High-School and College Students

    Science.gov (United States)

    Denker, C.; Wang, H.; Conod, K. D.; Wintemberg, T.; Calderon, I.

    2005-05-01

    Astronomers at The Newark Museum's Alice and Leonard Dreyfuss Planetarium teamed up with the New Jersey Institute of Technology's (NJIT) Center for Solar-Terrestrial Research (CSTR) and the Big Bear Solar Observatory in presenting Solar Fireworks. The exhibit opened on May 15, 2004 and features two exhibition kiosks with interactive touch screen displays, where students and other visitors can take "virtual tours" in the fields of solar physics, solar activity, Sun-Earth connection, and geo-sciences. Planetarium and museum visits are an integral part of the introductory physics and astronomy classes at NJIT and the exhibition has been integrated in the astronomy curriculum. For example, NJIT students of the Astronomy Club and regular astronomy courses were closely involved in the design and development of the exhibit. The exhibit is the latest addition to the long-running natural science exhibit "Dynamic Earth: Revealing Nature's Secrets" at the museum. More than 30,000 people per year attend various programs offered by the planetarium including public shows, more than a dozen programs for school groups, after school activities, portable planetarium outreach, outdoor sky watches, solar observing and other family events. More than 1,000 high school students visited the planetarium in 2004. The exhibit is accompanied by a yearly teacher workshop (the first one was held on October 18-20, 2004) to enhance the learning experience of classes visiting the Newark Museum. The planetarium and museum staff has been working with teachers of Newark high schools and has presented many workshops for educators on a wide range of topics from astronomy to zoology. At the conclusion of the exhibit in December 2005, the exhibit will go "on the road" and will be made available to schools or other museums. Finally, the exhibit will find its permanent home at the new office complex of CSTR at NJIT. Acknowledgements: Solar Fireworks was organized by The Newark Museum and the New Jersey

  19. The Relationship between Student's Quantitative Skills, Application of Math, Science Courses, and Science Marks at Single-Sex Independent High Schools

    Science.gov (United States)

    Cambridge, David

    2012-01-01

    For independent secondary schools who offer rigorous curriculum to attract students, integration of quantitative skills in the science courses has become an important definition of rigor. However, there is little research examining students' quantitative skills in relation to high school science performance within the single-sex independent school…

  20. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    Science.gov (United States)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  1. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  2. ICT Integration in Science and Mathematics Lessons: Teachers ...

    African Journals Online (AJOL)

    The study reported in this paper used Guskey's model (Guskey, 2000) to systematically investigate teachers' experiences about the professional development programme on ICT integration in teaching and learning of Science and Mathematics in secondary schools. The study employed survey research design and an ...

  3. The academic and nonacademic characteristics of science and nonscience majors in Yemeni high schools

    Science.gov (United States)

    Anaam, Mahyoub Ali

    The purposes of this study were: (a) to identify the variables associated with selection of majors; (b) to determine the differences between science and nonscience majors in general, and high and low achievers in particular, with respect to attitudes toward science, integrated science process skills, and logical thinking abilities; and (c) to determine if a significant relationship exists between students' majors and their personality types and learning styles. Data were gathered from 188 twelfth grade male and female high school students in Yemen, who enrolled in science (45 males and 47 females) and art and literature (47 males and 49 females) tracks. Data were collected by the following instruments: Past math and science achievement (data source taken from school records), Kolb's Learning Styles Inventory (1985), Integrated Science Process Skills Test, Myers-Briggs Type Indicator, Attitude Toward Science in School Assessment, Group Assessment of Logical Thinking, Yemeni High School Students Questionnaire. The Logistic Regression Model and the Linear Discriminant Analysis identified several variables that are associated with selection of majors. Moreover, some of the characteristics of science and nonscience majors that were revealed by these models include the following: Science majors seem to have higher degrees of curiosity in science, high interest in science at high school level, high tendency to believe that their majors will help them to find a potential job in the future, and have had higher achievement in science subjects, and have rated their math teachers higher than did nonscience majors. In contrast, nonscience majors seem to have higher degrees of curiosity in nonscience subjects, higher interest in science at elementary school, higher anxiety during science lessons than did science majors. In addition, General Linear Models allow that science majors generally demonstrate more positive attitudes towards science than do nonscience majors and they

  4. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  5. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  6. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  7. Integration of ICTs into the Basic Curriculum in Primary Schools in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integration of ICTs into the Basic Curriculum in Primary Schools in Sénégal - Phase II ... for integrating ICTs at various stages of the teaching and learning process. ... première cohorte de chercheuses en science des changements climatiques.

  8. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes towards Integration

    Science.gov (United States)

    McHugh, Luisa

    2016-01-01

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to…

  9. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  10. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  11. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  12. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  13. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    Science.gov (United States)

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  14. READINESS Of ELEMENTARY SCHOOL TEACHERS IN IMPLEMENTING CHARACTERS INTEGRATED LEARNING IN THE SCIENCE SUBJECT

    Directory of Open Access Journals (Sweden)

    N. Hindarto

    2015-01-01

    Full Text Available Many problems that arise in today's society are rooted in the issue of morality as a result of the marginalization of the values of character. To solve this problem, need to be enforced the values of good character on every member of the community, and the proper way is through the educational process, including through education in schools ranging from elementary education to higher education. To find out whether the teachers in elementary schools are ready to take this work, the research conducted to determine the readiness of teachers and the problems associated with its implementation. Through a questionnaire calculated in descriptive percentage on a sample of elementary school teachers who are spread in Semarang, Semarang District and Temanggung, it can be concluded that in teachers’ view it is very important to integrate the learning of characters in the lesson. However, they need guidance /examples to develop learning model with its features, which integrate the values of the characters in the science subject.Banyak persoalan yang timbul di masyarakat dewasa ini berakar pada persoalan moralitas sebagai akibat terpinggirkannya nilai-nilai karakter, Untuk mengatasi persoalan ini, perlu ditegakkan lagi nilai nilai karakter yang baik pada setiap anggota masyarakat, dan cara yang tepat adalah melalui proses pendidikan, di antaranya melalui pendidikan di sekolah mulai dari pendidikan dasar sampai pendidikan tinggi. Untuk mengetahui apakah para guru pada Sekolah Dasar siap mengemban tugas ini, maka diadakan penelitian untuk mengetahui kesiapan para guru dan masalah-masalah yang terkait dengan pelaksanaannya. Melalui angket yang kemudian diolah secara deskriptive persentasi pada sampel guru SD yang tersebar di Kota Semarang, Kabupaten Semarang dan Kabupaten Temanggung, dapat diketahui bahwa para guru menganggap sangat penting untuk mengintegrasikan pembelajaran karakter dalam matapelajaran IPA. Namun demikian mereka membutuhkan bimbingan

  15. Analysis of Science Process Skills in West African Senior Secondary School Certificate Physics Practical Examinations in Nigeria

    Directory of Open Access Journals (Sweden)

    A.O. Akinbobola

    2010-06-01

    Full Text Available This study analyzes the science process skills in West African senior secondary school certificate physics practical examinations in Nigeria for a period of 10 years (1998-2007. Ex-post facto design was adopted for the study. The 5 prominent science process skills identified out of the 15 used in the study are: manipulating (17%, calculating (14%, recording (14%, observing (12% and communicating (11%. The results also show high percentage rate of basic (lower order science process skills (63% as compared to the integrated (higher order science process skills (37%. The results also indicate that the number of basic process skills is significantly higher than the integrated process skills in the West African senior secondary school certificate physics practical examinations in Nigeria. It is recommended that the examination bodies in Nigeria should include more integrated science process skills into the senior secondary school physics practical examinations so as to enable the students to be prone to creativity, problem solving, reflective thinking, originality and invention which are vital ingredients for science and technological development of any nation.

  16. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  17. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    Science.gov (United States)

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  18. Story - Science - Solutions: A new middle school science curriculum that promotes climate-stewardship

    Science.gov (United States)

    Cordero, E.; Centeno Delgado, D. C.

    2017-12-01

    Over the last five years, Green Ninja has been developing educational media to help motivate student interest and engagement around climate science and solutions. The adoption of the Next Generation Science Standards (NGSS) offers a unique opportunity where schools are changing both what they teach in a science class and how they teach. Inspired by the new emphasis in NGSS on climate change, human impact and engineering design, Green Ninja developed a technology focused, integrative, and yearlong science curriculum (6th, 7th and 8th grade) focused broadly around solutions to environmental problems. The use of technology supports the development of skills valuable for students, while also offering real-time metrics to help measure both student learning and environmental impact of student actions. During the presentation, we will describe the design philosophy around our middle school curriculum and share data from a series of classes that have created environmental benefits that transcend the traditional classroom. The notion that formal education, if done correctly, can be leveraged as a viable climate mitigation strategy will be discussed.

  19. Impact of Texas high school science teacher credentials on student performance in high school science

    Science.gov (United States)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  20. Interactive Whiteboard Use in High-Tech Science Classrooms: Patterns of Integration

    Directory of Open Access Journals (Sweden)

    Rena Stroud

    2014-10-01

    Full Text Available Interactive whiteboard (IWB use has been associated with increased student motivation, engagement, and achievement, though many studies ignore the role of the teacher in effecting those positive changes. The current study followed the practice of 28 high school science teachers as they integrated the IWB into their regular classroom activities. The extent of teachers’ adoption and integration fell along a continuum, from the technologically confident “early adopter” to the low-use “resistant adopter.” Patterns of use are explored by extracting data from representative teachers’ practice. Science-specific benefits of IWB use, barriers to integration, and lessons learned for professional development are discussed.

  1. Promoting Academic Achievement in the Middle School Classroom: Integrating Effective Study Skills Instruction

    Science.gov (United States)

    Thorpe, Christin

    2010-01-01

    This study aimed to discover what study skills are most useful for middle school students, as well as strategies for integrating study skills instruction into the four main content area classrooms (English, math, science, and social studies) at the middle school level. Twenty-nine in-service middle school teachers participated in the study by…

  2. A comparative analysis of Science-Technology-Society standards in elementary, middle and high school state science curriculum frameworks

    Science.gov (United States)

    Tobias, Karen Marie

    An analysis of curriculum frameworks from the fifty states to ascertain the compliance with the National Science Education Standards for integrating Science-Technology-Society (STS) themes is reported within this dissertation. Science standards for all fifty states were analyzed to determine if the STS criteria were integrated at the elementary, middle, and high school levels of education. The analysis determined the compliance level for each state, then compared each educational level to see if the compliance was similar across the levels. Compliance is important because research shows that using STS themes in the science classroom increases the student's understanding of the concepts, increases the student's problem solving skills, increases the student's self-efficacy with respect to science, and students instructed using STS themes score well on science high stakes tests. The two hypotheses for this study are: (1) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school levels. (2) There is no significant difference in the degree of compliance to Science-Technology-Society themes (derived from National Science Education Standards) between the elementary, middle, and high school level when examined individually. The Analysis of Variance F ratio was used to determine the variance between and within the three educational levels. This analysis addressed hypothesis one. The Analysis of Variance results refused to reject the null hypothesis, meaning there is significant difference in the compliance to STS themes between the elementary, middle and high school educational levels. The Chi-Square test was the statistical analysis used to compare the educational levels for each individual criterion. This analysis addressed hypothesis two. The Chi-Squared results showed that none of the states were equally compliant with each

  3. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  4. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  5. Instructional Management Strategy: A Multi-Sites Study on Science Teaching for Islamic School

    Directory of Open Access Journals (Sweden)

    Abdul Ghofur

    2017-12-01

    Full Text Available This paper describes how management strategies in science learning are done by teachers in Islamic schools. This is motivated by the ranking of Indonesia which 87 percent of the population of Muslims always occupy the lowest position for the ability of science literacy. This research was conducted for four months using descriptive qualitative design with data collection technique of interview, observation and documentation. The subjects of the study were six Islamic schools in Lamongan, East Java. The six Islamic schools were chosen by purposive sampling. The results showed that the learning activities of science more dominated by teachers, students heard more explanation than the practice in verifying the process of science. The majority of teachers use lecture, question and answer methods, and assignments, and occasionally apply discussion and demonstration methods. Science laboratories in schools have not been maximally used, some have limited tools and materials, some of which lack laboratory space and even two schools without a science laboratory. Assessment of student learning progress done through pretest, posttest, daily test, question and answer during lessons, UTS and UAS. Teacher's strategy in managing student learning motivation by using animated video as apperception, integrating science materials with Islamic religious values.

  6. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  7. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  8. Developing Greek Primary School Students' Critical Thinking through an Approach of Teaching Science which Incorporates Aspects of History of Science

    Science.gov (United States)

    Malamitsa, Katerina; Kasoutas, Michael; Kokkotas, Panagiotis

    2009-01-01

    In this paper, the development of sixth grade students' critical thinking skills in science courses is discussed relatively to the contribution of the integration of aspects of History of Science into instruction. Towards this direction a project on electromagnetism was designed and implemented aiming to engage primary school students in a…

  9. School of Political Science

    Directory of Open Access Journals (Sweden)

    A. D. Voskresensky

    2014-01-01

    Full Text Available Out of all the departments of political sciences in Russia - the Department at MGIMO-University is probably the oldest one. In fact it is very young. While MGIMO-University is celebrating its 70th anniversary the Department of Political Sciences turns 15. Despite the fact that political analyst is a relatively new profession in Russia, it acquired a legal standing only in the 1990s, the political science school at MGIMO-University is almost as old as the university itself. Unlike many other universities, focused on the training teachers of political science or campaign managers MGIMO-University has developed its own unique political science school of "full cycle", where students grow into political sciences from a zero level up to the highest qualifications as teachers and researchers, and campaign managers, consultants and practitioners. The uniqueness of the school of political science at MGIMO-University allows its institutional incarnation -the Department of Political Science - to offer prospective studentsa training in a wide range of popular specialties and specializations, while ensuring a deep theoretical and practical basis of the training. Studying at MGIMO-University traditionally includes enhanced linguistic component (at least two foreign languages. For students of international relations and political science learning foreign languages is particularly important.It allows not only to communicate, but also to produce expertise and knowledge in foreign languages.

  10. Techniques and Measurements. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 1.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) introduce students to and familiarize them with working in the school laboratory;…

  11. Towards a pragmatic science in schools

    Science.gov (United States)

    Segal, Gilda

    1997-06-01

    This paper contrasts naive beliefs about the nature of science, with science as it appears from sociological and philosophical study, feminist critique and insights from multicultural education. I draw implications from these informed views to suggest how school science might be modified to project a pragmatic view of science to its students that allows students to know science and its relationships to themselves and society in multi-faceted ways. From these perspectives, pragmatic school science is situated within a values framework that questions how we know. Pragmatic school science also requires that the naive inductivist views that permeate school science inquiry methods at present be modified to recognise that observations and inquiry are guided by prior knowledge and values; that new knowledge is tentative; that some knowledge has high status, as it has been constructed consensually over a long period; but that even high status knowledge can be challenged. For implementation of these reforms, yet still to embrace the need for some students to appropriate understanding of discipline knowledge required for advanced science education, a broad set of aims is required.

  12. Designing an Earthquake-Proof Art Museum: An Arts- and Engineering-Integrated Science Lesson

    Science.gov (United States)

    Carignan, Anastasia; Hussain, Mahjabeen

    2016-01-01

    In this practical arts-integrated science and engineering lesson, an inquiry-based approach was adopted to teach a class of fourth graders in a Midwest elementary school about the scientific concepts of plate tectonics and earthquakes. Lessons were prepared following the 5 E instructional model. Next Generation Science Standards (4-ESS3-2) and the…

  13. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  14. Teachers' professional development needs and current practices at the Alexander Science Center School

    Science.gov (United States)

    Gargus, Gerald Vincent

    This investigation represents an in-depth understanding of teacher professional development at the Alexander Science Center School, a dependent charter museum school established through a partnership between the California Science Center and Los Angeles Unified School District. Three methods of data collection were used. A survey was distributed and collected from the school's teachers, resulting in a prioritized list of teacher professional development needs, as well as a summary of teachers' opinions about the school's existing professional development program. In addition, six key stakeholders in the school's professional development program were interviewed for the study. Finally, documents related to the school's professional development program were analyzed. Data collected from the interviews and documents were used to develop an understand various components of the Alexander Science Center School's professional development program. Teachers identified seven areas that had a high-priority for future professional development including developing skills far working with below-grade-level students, improving the analytical skills of student in mathematics, working with English Language Learners, improving students' overall reading ability levels, developing teachers' content-area knowledge for science, integrating science across the curriculum, and incorporating hands-on activity-based learning strategies to teach science. Professional development needs identified by Alexander Science Center School teachers were categorized based on their focus on content knowledge, pedagogical content knowledge, or curricular knowledge. Analysis of data collected through interviews and documents revealed that the Alexander Science Center School's professional development program consisted of six venues for providing professional development for teachers including weekly "banked time" sessions taking place within the standard school day, grade-level meetings, teacher support

  15. Art-science integration: Portrait of a residency

    Science.gov (United States)

    Feldman, Rhoda Lynn

    This dissertation is based on a year-long study of an arts integration residency at Hampton, a public elementary school in the Midwest. The study examined residency curriculum and pedagogies, factors facilitating and constraining the integration, and the perception of the artist, teachers, and students of the program and arts integration within it. The Hampton residency, "Art and Science: A Shared Evolution," represented a historical approach to the linking of the two disciplines within the framework of a survey extending from the origins of the universe to relativity theory, from cave paintings to Picasso. Findings indicate that integration encompassed more than issues of curriculum and pedagogy---that it was closely linked to the nature and extent of artist-teacher collaboration (importance of the interpersonal element); that multiple factors seemed to militate against integration and collaboration, including differing expectations of teachers and artist for the residency and integration, the lack of sustained professional development to support the integration of disciplines and collaboration of participants, and the pressure upon teachers of high stakes testing; that a common prep period was a necessary but not sufficient condition for collaboration to occur; and that the pedagogy of the artist while at Hampton was different than while at another school with similar demographics. The experience at Hampton seems to support conceiving of integration as a partnership capitalizing on the strengths of each partner, including teachers in the planning and development of curriculum, establishing structures to support teachers and artists in integrating curriculum and building/sustaining collaborative relationships, and insuring alignment of residency units with subject-area teaching. The study revealed that while integration in theory can offer an antidote for fragmentation of the school curriculum, in practice it is difficult to execute in a way that is meaningful to

  16. Proposed School of Earth And Space Sciences, Hyderabad, India

    Science.gov (United States)

    Aswathanarayana, U.

    2004-05-01

    The hallmarks of the proposed school in the University of Hyderabad, Hyderabad,India, would be synergy, inclusivity and globalism. The School will use the synergy between the earth (including oceanic and atmospheric realms), space and information sciences to bridge the digital divide, and promote knowledge-driven and job-led economic development of the country. It will endeavour to (i) provide the basic science underpinnings for Space and Information Technologies, (ii) develop new methodologies for the utilization of natural resources (water, soils, sediments, minerals, biota, etc.)in ecologically-sustainable, employment-generating and economically-viable ways, (iii) mitigate the adverse consequences of natural hazards through preparedness systems,etc. The School will undertake research in the inter-disciplinary areas of earth and space sciences (e.g. climate predictability, satellite remote sensing of soil moisture) and linking integrative science with the needs of the decision makers. It will offer a two-year M.Tech. (four semesters, devoted to Theory, Tools, Applications and Dissertation, respectively ) course in Earth and Space Sciences. The Applications will initially cover eight course clusters devoted to Water Resources Management, Agriculture, Ocean studies, Energy Resources, Urban studies, Environment, Natural Hazards and Mineral Resources Management. The School will also offer a number of highly focused short-term refresher courses / supplementary courses to enable cadres to update their knowledge and skills. The graduates of the School would be able to find employment in macro-projects, such as inter-basin water transfers, and Operational crop condition assessment over large areas, etc. as well as in micro-projects, such as rainwater harvesting, and marketing of remote sensing products to stake-holders (e.g. precision agricultural advice to the farmers, using the large bandwidth of thousands of kilometres of unlit optical fibres). As the School is highly

  17. Bringing science education in and out of school closer together - (Symposium) SBBq Brazil

    OpenAIRE

    Dillon, J.; King’s College London, United Kingdom

    2013-01-01

    Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities  to expand their experiences and understanding of science. Programmes include supplementary classroom experiences; integrated core academic curricula; student science learning communities located in afterschool, summer, and weekend programmes; teacher professional development opp...

  18. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  19. Integration of Culturally Relevant Pedagogy Into the Science Learning Progression Framework

    Science.gov (United States)

    Bernardo, Cyntra

    This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and students involved in science courses in public high school. Through a qualitative intrinsic case study, data were collected and analyzed using traditional methods. Data from primary participants (educators) were analyzed through identification of big ideas, open coding, and themes. Through this process, patterns and emergent ideas were reported. Outcomes of this study demonstrated that educators lack knowledge about research-based academic frameworks and multicultural education strategies, but benefit through institutionally-based professional development. Students from diverse cultures responded positively to culturally-based instruction. Their progress was further manifested in better communication and discourse with their teacher and peers, and increased academic outcomes. This study has postulated and provided an exemplar for science teachers to expand and improve multicultural knowledge, ultimately transferring these skills to their pedagogical practice.

  20. The observation of biology implemented by integrated religion values in integrated Islamic school (Decriptive Study in X Integrated Senior Hight School Tasikmalaya)

    Science.gov (United States)

    Nurjanah, E.; Adisendjaja, Y. H.; Kusumastuti, M. N.

    2018-05-01

    The learning Integrated Religious value is one of the efforts to increase the motivation of learning and building the student character. This study aims to describe the application of Biology learning integrated religion values in Integrated Islamic School. Research methods used in this research is descriptive. Participants in this study involved the headmaster, headmaster of curriculum, biology teachers, boarding school teachers, the lead of boarding schools, and students. The instruments used are interview, observation and the student questionnaire about learning biology. The results showed that learning in X school consists of two curriculums, there was the curriculum of national education and curriculum of boarding school. The curriculum of national education referred to 2013 curriculum and boarding school curriculum referred to the curriculum of Salafi boarding school (Kitab Kuning). However, in its learning process not delivered integrated. The main obstacle to implementing the learning integrated religious values are 1) the background of general teacher education did not know of any connection between biology subject and subject that are studied in boarding school; 2) schools did not form the teaching team; 3) unavailability of materials integrated religious values.

  1. Access to Science and Literacy through Inquiry and School Yard Habitats

    Science.gov (United States)

    Cox-Petersen, Anne; Spencer, Brenda

    2006-01-01

    In this article, the authors describe an integrated science and literacy instructional model in which students build background knowledge by engaging in free-choice learning options during an investigation of school yard habitats. Students interact with their peers while inquiring, discussing findings, and using print resources to enhance learning.

  2. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    Science.gov (United States)

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  3. Motivating Students with Authentic Science Experiences: Changes in Motivation for School Science

    Science.gov (United States)

    Hellgren, Jenny M.; Lindberg, Stina

    2017-01-01

    Background: Students' motivation for science declines over the early teenage years, and students often find school science difficult and irrelevant to their everyday lives. This paper asks whether creating opportunities to connect school science to authentic science can have positive effects on student motivation. Purpose: To understand how…

  4. Marine Technology for Teachers and Students: A Multi-modal Approach to Integrate Technology and Ocean Sciences Instruction

    Science.gov (United States)

    Gingras, A.; Knowlton, C. W.; Scowcroft, G. A.; Babb, I.; Coleman, D.; Morin, H.

    2016-02-01

    The Marine Technology for Teachers and Students (MaTTS) Project implements a year-long continuum of activities beginning with educators reading and reporting on peer-reviewed publications, followed by face-to-face, hands-on weekend workshops and virtual professional development activities. Teams of teacher and student leaders then participate in an intensive, residential Summer Institute (SI) that emphasizes hands-on building of marine related technologies and exposure to career pathways through direct interactions with ocean scientists and engineers. During the school year, teachers integrate ocean science technology and data into their classrooms and participate, along with colleagues and students from their schools, in science cafes and webinars. Student leaders transfer knowledge gained by engaging their district's middle school students in ocean science activities and technologies by serving as hosts for live broadcasts that connect classrooms with ocean scientists and engineers though the Inner Space Center, a national ocean science telecommunications hub. Communication technologies bridge formal and informal learning environments, allowing MaTTS participants to interact with their fellow cohort members, scientists, and engineers both during and outside of school. Evaluation results indicate that for teachers both the weekend workshops and SI were most effective in preparing them to integrate ocean science and technology in STEM curricula and increase their ocean science content knowledge and leadership characteristics. For students the SI and the middle school interactions supported gains in knowledge, awareness, leadership skills and interest in ocean sciences and technologies, and related STEM careers. In particular, the connections made by working directly with scientists have positively impacted both student and teacher leaders. This presentation will provide an overview of the MaTTS model and early evaluation results.

  5. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  6. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  7. Technology integrated teaching in Malaysian schools: GIS, a SWOT analysis

    Directory of Open Access Journals (Sweden)

    Habibah Lateh, vasugiammai muniandy

    2011-08-01

    Full Text Available Geographical Information System (GIS has been introduced and widely used in schools in various countries. The year 1990 onwards, the implementation of GIS in schools showed an increase. This is due to the drastic changes and reforms in the education system. Even though the name GIS suits well to the Geography subject, but it is widely integrated in various subjects such as History, Chemistry, Physics and Science. In Malaysia, GIS is common in fields such as risk management, architecture, town planning and municipal department. Anyhow, it is still unknown in the school education system. Even upper secondary students are not familiar with GIS. The Ministry of Education in Malaysia has been continuously reforming the education towards the aim of creating a society based on economic fundamentals and knowledge. The Master Plan for Educational Development with the aim of developing individual potential with well-integrated and balanced education is already on field. Recently, Malaysia invested 18 % of the annual national budget towards upgrading its education system. The computer in education program started in 1999. Three hundred and twenty two schools were chosen as ‘break a way’ from conventional teaching method towards technology integrated teaching. Projects such as New Primary School Curriculum (KBSR, Integrated Secondary School Curriculum (KBSM, Smart School Project, School Access Centre were introduced constantly. Teacher as the cogwheel of innovations in schools were given courses in aim to develop their ICT knowledge and skill. To this date, the technology integration in subjects is not equal and it disperses through subjects. Geography is one of the ‘dry’ subjects in schools with less technology which is not preferable among students. Geographical Information System (GIS is foremost the best Geographical Information Technology (GIT to be implied in geography subject. In Malaysian Education System, GIS is still exposed just in papers

  8. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    Science.gov (United States)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  9. Chemistry, the Central Science? The History of the High School Science Sequence

    Science.gov (United States)

    Sheppard, Keith; Robbins, Dennis M.

    2005-01-01

    Chemistry became the ''central science'' not by design but by accident in the US high schools. The three important factors, which had their influence on the high school science, are sequenced and their impact on the development of US science education, are mentioned.

  10. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  11. The Global Systems Science High School Curriculum

    Science.gov (United States)

    Gould, A. D.; Sneider, C.; Farmer, E.; Erickson, J.

    2015-12-01

    Global Systems Science (GSS), a high school integrated interdisciplinary science project based at Lawrence Hall of Science at UC Berkeley, began in the early 1990s as a single book "Planet at Risk" which was only about climate change. Federal grants enabled the project to enlist about 150 teachers to field test materials in their classes and then meeting in summer institutes to share results and effect changes. The result was a series of smaller modules dealing not only with climate change, but other related topics including energy flow, energy use, ozone, loss of biodiversity, and ecosystem change. Other relevant societal issues have also been incorporated including economics, psychology and sociology. The course has many investigations/activities for student to pursue, interviews with scientists working in specific areas of research, and historical contexts. The interconnectedness of a myriad of small and large systems became an overarching theme of the resulting course materials which are now available to teachers for free online at http://www.globalsystemsscience.org/

  12. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  13. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Box Cello Middle School Science Clubs

    Science.gov (United States)

    Vandegrift, Guy

    1998-10-01

    The Box Cello is a middle school science club which is attempting to (1) understand the cello and (2) design a low-cost starter instrument. We can support and justify this research by adding a third goal: (3) to help supply local science classes with equipment. My policy of spending one entire day each week away from the university, out in a local school is essential to this project. This schedule also permits me to conduct lessons on optics and music in the schools. And, it permits circulation of tools and equipment. A simple calculation demonstrates the great economy achieved by combining science clubs with academic year school visits. Consider the cost of letting 10,000 students in 10 middle schools each learn about and play with a pair of "upside-down" glasses for one hour. A visit to each school for three consecutive weeks would easily permit such a circulation if only 30 pairs were constructed. Assume rhetorically, that the construction of 30 pairs of glasses were to consume the entire estimated annual budget of $100,000. The cost per student would be only ten dollars! The visits, guest lectures, and equipment loans permit informal networking (including lunch) with math, science and music teachers in 10 schools. For more information, visit the http://www.utep.edu/boxcello/

  15. Implementation Science: New Approaches to Integrating Quality and Safety Education for Nurses Competencies in Nursing Education.

    Science.gov (United States)

    Dolansky, Mary A; Schexnayder, Julie; Patrician, Patricia A; Sales, Anne

    Although quality and safety competencies were developed and disseminated nearly a decade ago by the Quality and Safety Education for Nurses (QSEN) project, the uptake in schools of nursing has been slow. The use of implementation science methods may be useful to accelerate quality and safety competency integration in nursing education. The article includes a definition and description of implementation science methods and practical implementation strategies for nurse educators to consider when integrating the QSEN competencies into nursing curriculum.

  16. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  17. A program to enhance k-12 science education in ten rural New York school districts.

    Science.gov (United States)

    Goodell, E; Visco, R; Pollock, P

    1999-04-01

    The Rural Partnership for Science Education, designed by educators and scientists in 1991 with funding from the National Institutes of Health, works in two rural New York State counties with students and their teachers from kindergarten through grade 12 to improve pre-college science education. The Partnership is an alliance among ten rural New York school districts and several New York State institutions (e.g., a regional academic medical center; the New York Academy of Sciences; and others), and has activities that involve around 4,800 students and 240 teachers each year. The authors describe the program's activities (e.g., summer workshops for teachers; science exploration camps for elementary and middle-school students; enrichment activities for high school students). A certified science education specialist directs classroom demonstrations throughout the academic year to support teachers' efforts to integrate hands-on activities into the science curriculum. A variety of evaluations over the years provides strong evidence of the program's effectiveness in promoting students' and teachers' interest in science. The long-term goal of the Partnership is to inspire more rural students to work hard, learn science, and enter the medical professions.

  18. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  19. The Courts, Social Science, and School Desegregation.

    Science.gov (United States)

    Levin, Betsy, Ed.; Hawley, Willis D., Ed.

    A conference on the courts, social science, and school desegregation attempted to clarify how social science research has been used and possibly misused in school desegregation litigation. The symposium issue addressed in this book is a product of that conference. First, the judicial evolution of the law of school desegregation from Brown V. the…

  20. Teacher Design in Teams as a Professional Development Arrangement for Developing Technology Integration Knowledge and Skills of Science Teachers in Tanzania

    Science.gov (United States)

    Kafyulilo, Ayoub; Fisser, Petra; Voogt, Joke

    2016-01-01

    This study investigated the impact of teacher design teams as a professional development arrangement for developing technology integration knowledge and skills among in-service science teachers. The study was conducted at a secondary school in Tanzania, where 12 in-service science teachers participated in a workshop about technology integration in…

  1. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    Science.gov (United States)

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  2. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  3. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  4. Integrating school-based and therapeutic conflict management models at schools.

    Science.gov (United States)

    D'Oosterlinck, Franky; Broekaert, Eric

    2003-08-01

    Including children with emotional and behavioral needs in mainstream school systems leads to growing concern about the increasing number of violent and nonviolent conflicts. Schools must adapt to this evolution and adopt a more therapeutic dimension. This paper explores the possibility of integrating school-based and therapeutic conflict management models and compares two management models: a school-based conflict management program. Teaching Students To Be Peacemakers; and a therapeutic conflict management program, Life Space Crisis Intervention. The authors conclude that integration might be possible, but depends on establishing a positive school atmosphere, the central position of the teacher, and collaborative and social learning for pupils. Further implementation of integrated conflict management models can be considered but must be underpinned by appropriate scientific research.

  5. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  6. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  7. EIROForum science goes to school

    CERN Multimedia

    CERN Bulletin

    The first EIROForum school was held at CERN last week. In about four days, 35 teachers from 15 countries were able to get a flavour of the science done in four of the seven organizations participating in EIROForum. This was a chance for them to feel part of top-level European scientific research.   The 35 teachers participating in thefirst EIROForum school organized at CERN. Inspiring teachers to motivate students: the formula is well-known at CERN. Here, more than 20 schools for science teachers are organized every year. Some of them are attended by teachers from all over Europe, others are organized for national groups. The successful experience of CERN has served as a model to the other six international organizations that are members of EIROForum (sea box). “The title of this first common school is ‘The evolution of the Universe’”, explains Rolf Landua, head of the CERN Education group and organizer of the school. “The programme of lectures ...

  8. In a Time of Change: Integrating the Arts and Humanities with Climate Change Science in Alaska

    Science.gov (United States)

    Leigh, M.; Golux, S.; Franzen, K.

    2011-12-01

    The arts and humanities have a powerful capacity to create lines of communication between the public, policy and scientific spheres. A growing network of visual and performing artists, writers and scientists has been actively working together since 2007 to integrate scientific and artistic perspectives on climate change in interior Alaska. These efforts have involved field workshops and collaborative creative processes culminating in public performances and a visual art exhibit. The most recent multimedia event was entitled In a Time of Change: Envisioning the Future, and challenged artists and scientists to consider future scenarios of climate change. This event included a public performance featuring original theatre, modern dance, Alaska Native Dance, poetry and music that was presented concurrently with an art exhibit featuring original works by 24 Alaskan visual artists. A related effort targeted K12 students, through an early college course entitled Climate Change and Creative Expression, which was offered to high school students at a predominantly Alaska Native charter school and integrated climate change science, creative writing, theatre and dance. Our program at Bonanza Creek Long Term Ecological Research (LTER) site is just one of many successful efforts to integrate arts and humanities with science within and beyond the NSF LTER Program. The efforts of various LTER sites to engage the arts and humanities with science, the public and policymakers have successfully generated excitement, facilitated mutual understanding, and promoted meaningful dialogue on issues facing science and society. The future outlook for integration of arts and humanities with science appears promising, with increasing interest from artists, scientists and scientific funding agencies.

  9. Planetary Science Educational Materials for Out-of-School Time Educators

    Science.gov (United States)

    Barlow, Nadine G.; Clark, Joelle G.

    2017-10-01

    Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning (CSTL) and Department of Physics and Astronomy (P&A) at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center (USGS ASC), and the Museum of Science Boston (MoS) are partners in developing, piloting, and researching the impact of three out-of-school time units. Planetary scientists at USGS ASC and P&A have developed two units for middle grades youth and one for upper elementary aged youth. The two middle school units focus on greywater recycling and remote sensing of planetary surfaces while the elementary unit centers on exploring space hazards. All units are designed for small teams of ~4 youth to work together to investigate materials, engineer tools to assist in the explorations, and utilize what they have learned to solve a problem. Youth participate in a final share-out with adults and other youth of what they learned and their solution to the problem. Curriculum pilot testing of the two middle school units has begun with out-of-school time educators. A needs assessment has been conducted nationwide among educators and evaluation of the curriculum units is being conducted by CSTL during the pilot testing. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices

  10. Safety in Schools: An Integral Approach

    Science.gov (United States)

    Gairin, Joaquin; Castro, Diego

    2011-01-01

    The present paper summarizes a research project into integral safety in schools. The aims of this particular research are, firstly, to evaluate the degree of integral safety in schools, secondly, to propose means for improving prevention and integral safety systems and thirdly, to identify the characteristics of safety culture. The field work was…

  11. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  12. Science Education at Riverside Middle School A Case Study

    Science.gov (United States)

    Smiley, Bettie Ann Pickens

    For more than thirty years the gender gap in science and related careers has been a key concern of researchers, teachers, professional organizations, and policy makers. Despite indicators of progress for women and girls on some measures of achievement, course enrollment patterns, and employment, fewer women than men pursue college degrees and careers in science, technology, engineering, and mathematics. According to the results of national assessments, the gender gap in science achievement begins to be evident in the middle school years. Gender and school science achievement involve a complex set of factors associated with schools and child/family systems that may include school leadership, institutional practices, curriculum content, teacher training programs, teacher expectations, student interests, parental involvement, and cultural values. This ethnographic case study was designed to explore the context for science education reform and the participation of middle school girls. The study analyzed and compared teaching strategies and female student engagement in sixth, seventh, and eighth grade science classrooms. The setting was a middle school situated in a district that was well-known for its achievement in reading, math, and technology. Findings from the study indicated that while classroom instruction was predominantly organized around traditional school science, the girls were more disciplined and outperformed the boys. The size of the classrooms, time to prepare for hands-on activities, and obtaining resources were identified as barriers to teaching science in ways that aligned with recent national science reform initiatives. Parents who participated in the study were very supportive of their daughters' academic progress and career goals. A few of the parents suggested that the school's science program include more hands-on activities; instruction designed for the advanced learner; and information related to future careers. Overall the teachers and

  13. Social Representations of the Integrated High School Students about Astronomy

    Science.gov (United States)

    Barbosa, Jose Isnaldo de Lima; Voelzke, Marcos Rincon

    2017-07-01

    Astronomy issues are not always adequately handled in the formal education system, as well as, their dissemination in the media is often loaded with sensationalism. However, in this context the students are forming their explanations about it. Therefore, this work has the objective of identifying the possible social representations of students from the Integrated High School on the inductor term Astronomy. It is basically a descriptive research, therefore, a quali-qualitative approach was adopted. The procedures for obtaining the data occurred in the form of a survey, and they involved 653 subjects students from the Integrated High School. The results indicate that the surveyed students have social representations of the object Astronomy, which are based on elements from the formal education space, and also disclosed in the media. In addition, they demonstrate that the students have information about Astronomy, and a value judgment in relation to this science.

  14. Inspiring careers in STEM and healthcare fields through medical simulation embedded in high school science education.

    Science.gov (United States)

    Berk, Louis J; Muret-Wagstaff, Sharon L; Goyal, Riya; Joyal, Julie A; Gordon, James A; Faux, Russell; Oriol, Nancy E

    2014-09-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K-12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted. Copyright © 2014 The American Physiological Society.

  15. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  16. Teaching the science of safety in US colleges and schools of pharmacy.

    Science.gov (United States)

    Holdford, David A; Warholak, Terri L; West-Strum, Donna; Bentley, John P; Malone, Daniel C; Murphy, John E

    2011-05-10

    This paper provides baseline information on integrating the science of safety into the professional degree curriculum at colleges and schools of pharmacy. A multi-method examination was conducted that included a literature review, key informant interviews of 30 individuals, and in-depth case studies of 5 colleges and schools of pharmacy. Educators believe that they are devoting adequate time to science of safety topics and doing a good job teaching students to identify, understand, report, manage, and communicate medication risk. Areas perceived to be in need of improvement include educating pharmacy students about the Food and Drug Administration's (FDA's) role in product safety, how to work with the FDA in post-marketing surveillance and other FDA safety initiatives, teaching students methods to improve safety, and educating students to practice in interprofessional teams. The report makes 10 recommendations to help pharmacy school graduates be more effective in protecting patients from preventable drug-related problems.

  17. Multicultural science education in Lesotho high school biology classrooms

    Science.gov (United States)

    Nthathakane, Malefu Christina

    2001-12-01

    This study investigated how Basotho high school biology students responded to a multicultural science education (MCSE) approach. Students' home language---Sesotho---and cultural experiences were integrated into the teaching of a unit on alcohol, tobacco and other drugs (ATOD) abuse. The focus was on students whose cultural background is African and who are English second language users. The study was conducted in three high school biology classrooms in Lesotho where the ATOD unit was taught using MCSE. A fourth biology classroom was observed for comparison purposes. In this classroom the regular biology teacher taught ATOD using typical instructional strategies. The study was framed by the general question: How does a multicultural science education approach affect Basotho high school biology students? More specifically: How does the use of Sesotho (or code-switching between Sesotho and English) and integration of Basotho students' cultural knowledge and experiences with respect to ATOD affect students' learning? In particular how does the approach affect students' participation and academic performance? A qualitative research method was used in this study. Data were drawn from a number of different sources and analyzed inductively. The data sources included field-notes, transcripts of ATOD lessons, research assistant lesson observation notes and interviews, regular biology teachers' interviews and notes from observing a few of their lessons, students' interviews and pre and posttest scripts, and other school documents that recorded students' performance throughout the year. Using the students' home language---Sesotho---was beneficial in that it enabled them to share ideas, communicate better and understand each other, the teacher and the material that was taught. Integrating students' cultural and everyday experiences was beneficial because it enabled students to anchor the new ATOD ideas in what was familiar and helped them find the relevance of the unit by

  18. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  19. Integrating the Teaching of Space Science, Planetary Exploration And Robotics In Elementary And Middle School with Mars Rover Models

    Science.gov (United States)

    Bering, E. A.; Ramsey, J.; Smith, H.; Boyko, B. S.; Peck, S.; Arcenaux, W. H.

    2005-05-01

    The present aerospace engineering and science workforce is ageing. It is not clear that the US education system will produce enough qualified replacements to meet the need in the near future. Unfortunately, by the time many students get to high school, it is often too late to get them pointed toward an engineering or science career. Since some college programs require 6 units of high school mathematics for admission, students need to begin consciously preparing for a science or engineering curriculum as early as 6th or 7th grade. The challenge for educators is to convince elementary school students that science and engineering are both exciting, relevant and accessible career paths. This paper describes a program designed to help provide some excitement and relevance. It is based on the task of developing a mobile robot or "Rover" to explore the surface of Mars. There are two components to the program, a curriculum unit and a contest. The curriculum unit is structured as a 6-week planetary science unit for elementary school (grades 3-5). It can also be used as a curriculum unit, enrichment program or extracurricular activity in grades 6-8 by increasing the expected level of scientific sophistication in the mission design. The second component is a citywide competition to select the most outstanding models that is held annually at a local college or University. Primary (Grades 3-5) and middle school (Grades 6-8) students interested in science and engineering will design and build of a model of a Mars Rover to carry out a specific science mission on the surface of Mars. The students will build the models as part of a 6-week Fall semester classroom-learning or homework project on Mars. The students will be given design criteria for a rover, and be required to do basic research on Mars that will determine the operational objectives and structural features of their rover. This module may be used as part of a class studying general science, earth science, solar system

  20. Using AN Essea Earth Systems Science Course in a Web-Enhanced Setting for Pre-Service Middle School Teachers

    Science.gov (United States)

    Slattery, W.

    2003-12-01

    The ESSEA Middle School course was originally designed as an asynchronous on-line tool for teacher professional development. The ESSEA course uses real world events such as deforestation, volcanic eruptions and hurricanes to develop content understandings of Earth systems processes and to model pedagogical best practices appropriate for middle school students. The course is structured as multiple three-week learning cycles. During week one of each cycle, participants are formed into Sphere groups to study the impact of the event under consideration on the atmosphere, biosphere, hydrosphere, or lithosphere. During week two, Event teams are formed to include members from each of the previous week's Sphere groups. Together they develop interactions between the different spheres and the event. During week three, teachers develop classroom applications and post them on-line for other participants to comment upon. On-going assessment suggests that in-service teacher participants of the on-line course are more likely to infuse inquiry-based science instruction into their classroom settings and to teach science as a subject integrating Physical science, Life science, and Earth/Space science in their own classrooms It is imperative to develop such characteristics in pre-service teachers as well. Wright State University's undergraduate Middle School teacher preparation program requires that undergraduates seeking Middle Childhood Licensure by the State of Ohio take a course in Earth Systems science that is aligned with the national and state science education standards. Towards this end the ESSEA course has been adapted for use in a web-enhanced setting. Weeks one and two (Sphere and Event study) of the ESSEA Middle School course are used as an integral component of this Earth Systems science course. In this way content knowledge and pedagogical strategies are modeled just as they are in the fully on-line course. Questions raised on-line are the topic of research or

  1. Urban school leadership for elementary science instruction: Identifying and activating resources in an undervalued school subject

    Science.gov (United States)

    Spillane, James P.; Diamond, John B.; Walker, Lisa J.; Halverson, Rich; Jita, Loyiso

    2001-10-01

    This article explores school leadership for elementary school science teaching in an urban setting. We examine how school leaders bring resources together to enhance science instruction when there appear to be relatively few resources available for it. From our study of 13 Chicago elementary (K-8) schools' efforts to lead instructional change in mathematics, language arts, and science education, we show how resources for leading instruction are unequally distributed across subject areas. We also explore how over time leaders in one school successfully identified and activated resources for leading change in science education. The result has been a steady, although not always certain, development of science as an instructional area in the school. We argue that leading change in science education involves the identification and activation of material resources, the development of teachers' and school leaders' human capital, and the development and use of social capital.

  2. Listening to their voices: Exploring mathematics-science identity development of African American males in an urban school community

    Science.gov (United States)

    Wilson, Kimi Leemar

    National data continues to show an underrepresentation of African American males pursuing science, technology, engineering and mathematics (STEM) majors, careers and professions in the United States. Whites and Asian Americans are continuously positioned as the face of STEM education and participation. And while research has provided ways to support mathematics and science learning for African American males, there still remains a gap in understanding how their formed mathematics-science identities in K-12 public schooling influences STEM participation. The research undertaken in this study explores this gap, and uses an integrative identity framework to understand mathematics-science identity development which goes beyond personal identity, and explores the relational, collective and material components of identity. Specifically, this research seeks to answer the following research questions: What are the shared lived experiences that exist between a group of African American male students developing a mathematics-science identity, and how these shared lived experiences shape their mathematics-science identity development? Therefore, by analyzing African American males lived experiences employing an integrative identity framework fosters a greater understanding of how mathematics-science identity is formed in K-12 public schools, which impacts STEM education and participation. The high school aged youth featured in this study consist of four African American males, who live in a moderate size city in California. Data for this study consists of observations, phenomenological interviews, and policy document analysis that took place over six months. Data has been analyzed to describe and interpret the young men's mathematics and science experiences, as revealed in their K-12 public school education. This inquiry sought to make meaning of how African American males experience mathematics and science teaching and learning within K-12 public schooling and how these

  3. Integrating School-Based and Therapeutic Conflict Management Models at School.

    Science.gov (United States)

    D'Oosterlinck, Franky; Broekaert, Eric

    2003-01-01

    Explores the possibility of integrating school-based and therapeutic conflict management models, comparing two management models: a school-based conflict management program, "Teaching Students To Be Peacemakers"; and a therapeutic conflict management program, "Life Space Crisis Intervention." The paper concludes that integration might be possible…

  4. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  5. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  6. Positive Impact of Integrating Histology and Physiology Teaching at a Medical School in China

    Science.gov (United States)

    Sherer, Renslow; Wan, Yu; Dong, Hongmei; Cooper, Brian; Morgan, Ivy; Peng, Biwen; Liu, Jun; Wang, Lin; Xu, David

    2014-01-01

    To modernize its stagnant, traditional curriculum and pedagogy, the Medical School of Wuhan University in China adopted (with modifications) the University of Chicago's medical curriculum model. The reform effort in basic sciences was integrating histology and physiology into one course, increasing the two subjects' connection to clinical…

  7. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2014-09-01

    Full Text Available Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  8. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge.

    Science.gov (United States)

    Rangel, Carolina Netto; Nunn, Rebecca; Dysarz, Fernanda; Silva, Elizabete; Fonseca, Alexandre Brasil

    2014-09-01

    Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE) projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  9. GeoBus: sharing science research with schools

    Science.gov (United States)

    Roper, Kathryn; Robinson, Ruth; Moorhouse, Ben

    2016-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is currently sponsored by industry, NERC, The Crown Estate, and the Scottish Government. The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have little or no experience in teaching this subject. This is, in part, done through the sharing of new science research outcomes and the experiences of young researchers with school pupils to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, over 40,000 pupils will have been involved in experiential Earth science learning activities in 190 different schools (over 400 separate visits) across the length and breadth of Scotland: many of these schools are in remote and disadvantaged regions. A new GeoBus project is under development within the Department of Earth Sciences at UCL in London. A key aim of GeoBus is to incorporate new research into our workshops with the main challenge being the development of appropriate resources that incorporate the key learning aims and requirements of the science and geography curricula. GeoBus works closely with researchers, teachers and educational practitioners to tailor the research outcomes to the curricula as much as possible. Over the past four years, GeoBus has developed 17 workshops, 5 challenge events and extensive field trips and each of these activities are trialled and evaluated within the university, and adjustments are made before the activities are delivered in schools. Activities are continually reviewed and further developments are made in response to both teacher and pupil feedback. This critical reflection of the project's success and impact is important to insure a positive and significant contribution to the science learning in

  10. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  11. Using Technology to Facilitate Differentiated High School Science Instruction

    Science.gov (United States)

    Maeng, Jennifer L.

    2017-10-01

    This qualitative investigation explored the beliefs and practices of one secondary science teacher, Diane, who differentiated instruction and studied how technology facilitated her differentiation. Diane was selected based on the results of a previous study, in which data indicated that Diane understood how to design and implement proactively planned, flexible, engaging instructional activities in response to students' learning needs better than the other study participants. Data for the present study included 3 h of semi-structured interview responses, 37.5 h of observations of science instruction, and other artifacts such as instructional materials. This variety of data allowed for triangulation of the evidence. Data were analyzed using a constant comparative approach. Results indicated that technology played an integral role in Diane's planning and implementation of differentiated science lessons. The technology-enhanced differentiated lessons employed by Diane typically attended to students' different learning profiles or interest through modification of process or product. This study provides practical strategies for science teachers beginning to differentiate instruction, and recommendations for science teacher educators and school and district administrators. Future research should explore student outcomes, supports for effective formative assessment, and technology-enhanced readiness differentiation among secondary science teachers.

  12. Evolution of the New Pathway curriculum at Harvard Medical School: the new integrated curriculum.

    Science.gov (United States)

    Dienstag, Jules L

    2011-01-01

    In 1985, Harvard Medical School adopted a "New Pathway" curriculum, based on active, adult learning through problem-based, faculty-facilitated small-group tutorials designed to promote lifelong skills of self-directed learning. Despite the successful integration of clinically relevant material in basic science courses, the New Pathway goals were confined primarily to the preclinical years. In addition, the shifting balance in the delivery of health care from inpatient to ambulatory settings limited the richness of clinical education in clinical clerkships, creating obstacles for faculty in their traditional roles as teachers. In 2006, Harvard Medical School adopted a more integrated curriculum based on four principles that emerged after half a decade of self-reflection and planning: (1) integrate the teaching of basic/population science and clinical medicine throughout the entire student experience; (2) reestablish meaningful and intensive faculty-student interactions and reengage the faculty; (3) develop a new model of clinical education that offers longitudinal continuity of patient experience, cross-disciplinary curriculum, faculty mentoring, and student evaluation; and (4) provide opportunities for all students to pursue an in-depth, faculty-mentored scholarly project. These principles of our New Integrated Curriculum reflect our vision for a curriculum that fosters a partnership between students and faculty in the pursuit of scholarship and leadership.

  13. The relationship of mentoring on middle school girls' science-related attitudes

    Science.gov (United States)

    Clark, Lynette M.

    This quantitative study examined the science-related attitudes of middle school girls who attended a science-focused mentoring program and those of middle school girls who attended a traditional mentoring program. Theories related to this study include social cognitive theory, cognitive development theory, and possible selves' theory. These theories emphasize social and learning experiences that may impact the science-related attitudes of middle school girls. The research questions examined the science-related attitudes of middle school girls who participate in a science-related mentoring program. The hypotheses suggested that there are significant differences that exist between the attitudes of middle school female participants in a science-related mentoring program and female participants in a traditional mentoring program. The quantitative data were collected through a survey entitled the Test of Science-Related Attitudes (TOSRA) which measures science-related attitudes. The population of interest for this study is 11-15 year old middle school girls of various racial and socio-economic backgrounds. The sample groups for the study were middle school girls participating in either a science-focused mentoring program or a traditional mentoring program. Results of the study indicated that no significant difference existed between the science-related attitudes of middle school girls in a science-related mentoring program and the attitudes of those in a traditional mentoring program. The practical implications for examining the concerns of the study would be further investigations to increase middle school girls' science-related attitudes.

  14. Effects of Engineering Design-Based Science on Elementary School Science Students' Engineering Identity Development across Gender and Grade

    Science.gov (United States)

    Capobianco, Brenda M.; Yu, Ji H.; French, Brian F.

    2015-04-01

    The integration of engineering concepts and practices into elementary science education has become an emerging concern for science educators and practitioners, alike. Moreover, how children, specifically preadolescents (grades 1-5), engage in engineering design-based learning activities may help science educators and researchers learn more about children's earliest identification with engineering. The purpose of this study was to examine the extent to which engineering identity differed among preadolescents across gender and grade, when exposing students to engineering design-based science learning activities. Five hundred fifty preadolescent participants completed the Engineering Identity Development Scale (EIDS), a recently developed measure with validity evidence that characterizes children's conceptions of engineering and potential career aspirations. Data analyses of variance among four factors (i.e., gender, grade, and group) indicated that elementary school students who engaged in the engineering design-based science learning activities demonstrated greater improvements on the EIDS subscales compared to those in the comparison group. Specifically, students in the lower grade levels showed substantial increases, while students in the higher grade levels showed decreases. Girls, regardless of grade level and participation in the engineering learning activities, showed higher scores in the academic subscale compared to boys. These findings suggest that the integration of engineering practices in the science classroom as early as grade one shows potential in fostering and sustaining student interest, participation, and self-concept in engineering and science.

  15. The effects of hands-on-science instruction on the science achievement of middle school students

    Science.gov (United States)

    Wiggins, Felita

    Student achievement in the Twenty First Century demands a new rigor in student science knowledge, since advances in science and technology require students to think and act like scientists. As a result, students must acquire proficient levels of knowledge and skills to support a knowledge base that is expanding exponentially with new scientific advances. This study examined the effects of hands-on-science instruction on the science achievement of middle school students. More specifically, this study was concerned with the influence of hands-on science instruction versus traditional science instruction on the science test scores of middle school students. The subjects in this study were one hundred and twenty sixth-grade students in six classes. Instruction involved lecture/discussion and hands-on activities carried out for a three week period. Specifically, the study ascertained the influence of the variables gender, ethnicity, and socioeconomic status on the science test scores of middle school students. Additionally, this study assessed the effect of the variables gender, ethnicity, and socioeconomic status on the attitudes of sixth grade students toward science. The two instruments used to collect data for this study were the Prentice Hall unit ecosystem test and the Scientific Work Experience Programs for Teachers Study (SWEPT) student's attitude survey. Moreover, the data for the study was treated using the One-Way Analysis of Covariance and the One-Way Analysis of Variance. The following findings were made based on the results: (1) A statistically significant difference existed in the science performance of middle school students exposed to hands-on science instruction. These students had significantly higher scores than the science performance of middle school students exposed to traditional instruction. (2) A statistically significant difference did not exist between the science scores of male and female middle school students. (3) A statistically

  16. Using hierarchical linear models to test differences in Swedish results from OECD’s PISA 2003: Integrated and subject-specific science education

    Directory of Open Access Journals (Sweden)

    Maria Åström

    2012-06-01

    Full Text Available The possible effects of different organisations of the science curriculum in schools participating in PISA 2003 are tested with a hierarchical linear model (HLM of two levels. The analysis is based on science results. Swedish schools are free to choose how they organise the science curriculum. They may choose to work subject-specifically (with Biology, Chemistry and Physics, integrated (with Science or to mix these two. In this study, all three ways of organising science classes in compulsory school are present to some degree. None of the different ways of organising science education displayed statistically significant better student results in scientific literacy as measured in PISA 2003. The HLM model used variables of gender, country of birth, home language, preschool attendance, an economic, social and cultural index as well as the teaching organisation.

  17. Integration of Character Values in School Culture at Elementary Schools in Jakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Arita - Marini

    2017-04-01

    Full Text Available Character values can be integrated not only in the classroom, but also in the school culture. Some teachers are not familiar with the ways of integrating these values in the school culture. The purpose of this study was to find out about implementation of character values integration in school culture at elementary schools in Jakarta. This research was conducted in Jakarta, the capital city of Indonesia. A quantitatively descriptive method was used for this study. Questionnaires related to integration of character values in school culture consists of religious, honesty, discipline, clean and healthy, tolerance, working ethos, and nationalism culture. A total of 63 principals from 63 elementary schools in Jakarta were involved in the study. The result showed that means of character values integration in religious, honesty, discipline, clean and healthy, tolerance, working ethos, and nationalism culture were achieved 13.40, 6.16, 17.71, 13.24, 11.81, 12.33, and 10.49 or 83.75 %, 68.44 %, 98.39 %, 88.27 %, 98.42 %, 94.85 %, and 95.36 % from theoretically maximum scores. This study concludes that character values has already been integrated effectively in religious, discipline, clean and healthy, tolerance, working ethos, and nationalism culture at 63 elementary schools in Jakarta.  On the other hand, integration of character values in honesty culture hasn’t been effective at 63 elementary schools in Jakarta.

  18. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  19. Secondary School Students' Predictors of Science Attitudes

    Science.gov (United States)

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  20. Providing Middle School Students With Science Research Experiences Through Community Partnerships

    Science.gov (United States)

    Rodriguez, D.

    2007-12-01

    Science research courses have been around for years at the university and high school level. As inquiry based learning has become more and more a part of the science teacher's vocabulary, many of these courses have adopted an inquiry model for studying science. Learners of all ages benefit from learning through the natural process of inquiry. I participated in the CIRES Earthworks program for science teachers (Colorado University) in the summer of 2007 and experienced, first hand, the value of inquiry learning. With the support and vision of my school administration, and with the support and commitment of community partners, I have developed a Middle School Science Research Program that is transforming how science is taught to students in my community. Swift Creek Middle School is located in Tallahassee, Florida. There are approximately 1000 students in this suburban public school. Students at Swift Creek are required to take one science class each year through 8th grade. As more emphasis is placed on learning a large number of scientific facts and information, in order to prepare students for yearly, standardized tests, there is a concern that less emphasis may be placed on the process and nature of science. The program I developed draws from the inquiry model followed at the CIRES Earthworks program, utilizes valuable community partnerships, and plays an important role in meeting that need. There are three major components to this Middle School Research Program, and the Center for Integrated Research and Learning (CIRL) at the National High Magnetic Field Lab (NHMFL) at Florida State University is playing an important role in all three. First, each student will develop their own research question and design experiments to answer the question. Scientists from the NHMFL are serving as mentors, or "buddy scientists," to my students as they work through the process of inquiry. Scientists from the CIRES - Earthworks program, Florida State University, and other

  1. Nuclear science summer school for high scholl students

    International Nuclear Information System (INIS)

    Foster, D.E.; Stone, C.A.

    1997-01-01

    We have developed a two-week summer lecture and laboratory course that introduces hihg school students to concepts in nuclear science. The program has operated at the San Jose State University Nuclear Science Facility for two years. Experienced high school science teachers run the summer scholl, assisted by other science teachers. Students consider the program to be effective. Its popularity is shown by numerous requests for reservations and the necessity to offer multiple sections in 1997. (author)

  2. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  3. Middle School Students' Attitudes toward Science, Scientists, Science Teachers and Classes

    Science.gov (United States)

    Kapici, Hasan Özgür; Akçay, Hakan

    2016-01-01

    It is an indispensable fact that having a positive attitude towards science is one of the important factors that promotes students for studying in science. The study is a kind of national study that aims to investigate middle school students', from different regions of Turkey, attitudes toward science, scientists and science classes. The study was…

  4. Teachers' Perspectives on Online Virtual Labs vs. Hands-On Labs in High School Science

    Science.gov (United States)

    Bohr, Teresa M.

    This study of online science teachers' opinions addressed the use of virtual labs in online courses. A growing number of schools use virtual labs that must meet mandated laboratory standards to ensure they provide learning experiences comparable to hands-on labs, which are an integral part of science curricula. The purpose of this qualitative case study was to examine teachers' perceptions of the quality and effectiveness of high school virtual labs. The theoretical foundation was constructivism, as labs provide student-centered activities for problem solving, inquiry, and exploration of phenomena. The research questions focused on experienced teachers' perceptions of the quality of virtual vs. hands-on labs. Data were collected through survey questions derived from the lab objectives of The Next Generation Science Standards . Eighteen teachers rated the degree of importance of each objective and also rated how they felt virtual labs met these objectives; these ratings were reported using descriptive statistics. Responses to open-ended questions were few and served to illustrate the numerical results. Many teachers stated that virtual labs are valuable supplements but could not completely replace hands-on experiences. Studies on the quality and effectiveness of high school virtual labs are limited despite widespread use. Comprehensive studies will ensure that online students have equal access to quality labs. School districts need to define lab requirements, and colleges need to specify the lab experience they require. This study has potential to inspire positive social change by assisting science educators, including those in the local school district, in evaluating and selecting courseware designed to promote higher order thinking skills, real-world problem solving, and development of strong inquiry skills, thereby improving science instruction for all high school students.

  5. Elementary school children's science learning from school field trips

    Science.gov (United States)

    Glick, Marilyn Petty

    This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.

  6. High School Science Teachers' Views on Science Process Skills

    Science.gov (United States)

    Gultepe, Nejla

    2016-01-01

    The current research is a descriptive study in which a survey model was used. The research involved chemistry (n = 26), physics (n = 27), and biology (n = 29) teachers working in Science High Schools and Anatolian High Schools in Turkey. An inventory that consisted of seven questions was designed to ascertain what teachers' think about the…

  7. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  8. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  9. Analysis of students’ science motivation and nature of science comprehension in middle school

    Directory of Open Access Journals (Sweden)

    Azizul Ghofar Candra Wicaksono

    2018-03-01

    Full Text Available The purpose of this study was to explore the pattern of science motivation and nature of science (NoS and the relationship between science motivation and nature of science in middle school students located in Semarang, Central Java, Indonesia. The design of this study was survey followed by the correlation study to discover the relationship between science motivation level and nature of science comprehension. This research included 113 students as sample. The instrument used for data collection was SMQ and seven essay test from NoS indicator. This study revealed that the students had a median score of science motivation and the low score in nature of science comprehension. There were students’ science motivation and nature of science comprehension urgently need to be improved. It can be done by developing learning process and any support from school or family.

  10. The key factors affecting students' individual interest in school science lessons

    Science.gov (United States)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.

  11. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  12. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  13. The Fusion of Modern and Indigenous Science and Technology ...

    African Journals Online (AJOL)

    kofimereku

    In this paper, the benefits of integrating community science and technology ... school, indigenous, informal and formal), each of which constitutes a group with shared ... integration of school and community science and technology education for.

  14. How Do Turkish Middle School Science Coursebooks Present the Science Process Skills?

    Science.gov (United States)

    Aslan, Oktay

    2015-01-01

    An important objective in science education is the acquisition of science process skills (SPS) by the students. Therefore, science coursebooks, among the main resources of elementary science curricula, are to convey accurate SPS. This study is a qualitative study based on the content analysis of the science coursebooks used at middle schools. In…

  15. Transformative Multicultural Science curriculum: A case study of middle school robotics

    Science.gov (United States)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  16. Adolescents' goal orientations for science in single-gender Israeli religious schools

    Science.gov (United States)

    Fortus, David; Daphna, Limor

    2017-01-01

    Israeli students and their families can choose between state-funded secular, religious, orthodox, and other alternative schools (e.g., Waldorf, Montessori, democratic). Earlier studies showed that the motivation to engage with science differs greatly between Israeli students in secular schools and democratic schools, with these differences being attributed to differences in school culture rather than home influence (Vedder-Weiss & Fortus, 2011, 2012). In this study we extend earlier studies by looking at religious state-funded schools that serve 18% of Israel's Jewish population. These schools provide a unique research environment since from grade 6 they are gender-separated. We examined the science-related mastery, performance-approach, and performance-avoid goal orientations, perceptions of the science teachers, parents, schools, and peers' goal emphases in relation to science of the students in these schools. We compared between students in religious schools (newly collected data) and secular schools (data reported in prior studies), and found that there is a distinct difference between these two populations that is associated with differing attitudes toward gender and science at these schools. This study provides additional evidence for the influence of culture on students' motivation to engage with science, suggests mechanisms by which this influence may occur.

  17. A mixed-age science collaborative between elementary and high school physics students: A study of attitude toward school science and inquiry skill

    Science.gov (United States)

    Blain, Mary Perron

    Grade three students had significant improvements in inquiry ability and attitude toward school science as a function of their participation in mixed-age dyads completing inquiry-based science experiments with a high school physics partner. The social interaction between the 'more capable other' (Vygotsky, 1978) with the grade three student in the mixed-age problem solving team indicates a contributing factor in this improvement. This study employed a quasi-experimental design with intact groups of non-random assignment. The non-parametric Wilcoxon test (p = 0.025) was used to analyze scores for each academic achievement group for significant differences pre- and post-collaborative in "Inquiry" skill and "Attitude" toward school science scores. Three grade three classrooms from one elementary school and one high school physics class from the same school district were involved in the study. The high school physics class teamed with one intact grade three class as the mixed-age dyad performing the "hands-on" experiments (treatment). The two grade three classes teamed as same-age peer dyads (comparison group) to perform the same experiments on the same day. Using methods patterned after the way scientists investigate their world, the dyads performed experiments considered for future grade three national assessments (NAEP, 1994), i.e. "Which paper towel holds the most water?"; "Which magnet is stronger?"; "Which type of sugar, cubed or loose, dissolves best in warm water?" Trained raters scored the written lab reports using standardized scoring guides and characteristic benchmark responses to determine the "Inquiry" skill score for each subject. The "Attitude" toward school science score for each subject was determined from the Likert scale survey, Individual and Group Attitudes Toward Science and the open-ended Sentence Completion Test (SCT) (Piburn & Sidlick, 1992). Three raters scored the SCT survey for each subject. This study showed that for a grade three student

  18. Environmental Science for All? Considering Environmental Science for Inclusion in the High School Core Curriculum

    Science.gov (United States)

    Edelson, Daniel C.

    2007-01-01

    With the dramatic growth of environmental science as an elective in high schools over the last decade, educators have the opportunity to realistically consider the possibility of incorporating environmental science into the core high school curriculum. Environmental science has several characteristics that make it a candidate for the core…

  19. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    Science.gov (United States)

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  20. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    Science.gov (United States)

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  1. Exploring Connections Between Earth Science and Biology - Interdisciplinary Science Activities for Schools

    Science.gov (United States)

    Vd Flier-Keller, E.; Carolsfeld, C.; Bullard, T.

    2009-05-01

    To increase teaching of Earth science in schools, and to reflect the interdisciplinary nature and interrelatedness of science disciplines in today's world, we are exploring opportunities for linking Earth science and Biology through engaging and innovative hands-on science activities for the classroom. Through the NSERC-funded Pacific CRYSTAL project based at the University of Victoria, scientists, science educators, and teachers at all levels in the school system are collaborating to research ways of enriching the preparation of students in math and science, and improving the quality of science education from Kindergarten to Grade 12. Our primary foci are building authentic, engaging science experiences for students, and fostering teacher leadership through teacher professional development and training. Interdisciplinary science activities represent an important way of making student science experiences real, engaging and relevant, and provide opportunities to highlight Earth science related topics within other disciplines, and to expand the Earth science taught in schools. The Earth science and Biology interdisciplinary project builds on results and experiences of existing Earth science education activities, and the Seaquaria project. We are developing curriculum-linked activities and resource materials, and hosting teacher workshops, around two initial areas; soils, and marine life and the fossil record. An example activity for the latter is the hands-on examination of organisms occupying the nearshore marine environment using a saltwater aquarium and touch tank or beach fieldtrip, and relating this to a suite of marine fossils to facilitate student thinking about representation of life in the fossil record e.g. which life forms are typically preserved, and how are they preserved? Literacy activities such as fossil obituaries encourage exploration of paleoenvironments and life habits of fossil organisms. Activities and resources are being tested with teachers

  2. Supporting Struggling Readers in Secondary School Science Classes

    Science.gov (United States)

    Roberts, Kelly D.; Takahashi, Kiriko; Park, Hye-Jin; Stodden, Robert A.

    2012-01-01

    Many secondary school students struggle to read complex expository text such as science textbooks. This article provides step-by-step guidance on how to foster expository reading for struggling readers in secondary school science classes. Two strategies are introduced: Text-to-Speech (TTS) Software as a reading compensatory strategy and the…

  3. The effects of a professional development geoscience education institute upon secondary school science teachers in Puerto Rico

    Science.gov (United States)

    Llerandi Roman, Pablo Antonio

    . Some participants successfully integrated inquiry-based lessons on the nature of science and earth science at their schools, but were unsuccessful in integrating field trips. The lack of teacher education programs and the inadequacy of earth science conceptual and pedagogical understanding held by in-service teachers are the main barriers for effective earth science teaching in Puerto Rico. This study established a foundation for future earth science education projects for Latino teachers. Additionally, as a result of this investigation various recommendations were made to effectively implement earth science teacher education programs in Puerto Rico and internationally.

  4. A Comparative Study of Hawaii Middle School Science Student Academic Achievement

    Science.gov (United States)

    Askew Cain, Peggy

    The problem was middle-grade students with specific learning disabilities (SWDs) in reading comprehension perform less well than their peers on standardized assessments. The purpose of this quantitative comparative study was to examine the effect of electronic concept maps on reading comprehension of eighth grade students with SWD reading comprehension in a Hawaii middle school Grade 8 science class on the island of Oahu. The target population consisted of Grade 8 science students for school year 2015-2016. The sampling method was a purposeful sampling with a final sample size of 338 grade 8 science students. De-identified archival records of grade 8 Hawaii standardized science test scores were analyzed using a one way analysis of variance (ANOVA) in SPSS. The finding for hypothesis 1 indicated a significant difference in student achievement between SWDs and SWODs as measured by Hawaii State Assessment (HSA) in science scores (p reading comprehension. Recommendations for practice were for educational leadership and noted: (a) teachers should practice using concept maps with SWDs as a specific reading strategy to support reading comprehension in science classes, (b) involve a strong focus on vocabulary building and concept building during concept map construction because the construction of concept maps sometimes requires frontloading of vocabulary, and (c) model for teachers how concept maps are created and to explain their educational purpose as a tool for learning. Recommendations for future research were to conduct (a) a quantitative comparative study between groups for academic achievement of subtests mean scores of SWDs and SWODs in physical science, earth science, and space science, and (b) a quantitative correlation study to examine relationships and predictive values for academic achievement of SWDs and concept map integration on standardized science assessments.

  5. Integration of Research Into Science-outreach (IRIS): A Video and Web-based Approach

    Science.gov (United States)

    Clay, P. L.; O'Driscoll, B.

    2013-12-01

    The development of the IRIS (Integration of Research Into Science-outreach) initiative is aimed at using field- and laboratory- based videos and blog entries to enable a sustained outreach relationship between university researchers and local classrooms. IRIS seeks to communicate complex, cutting-edge scientific research in the Earth and Planetary sciences to school-aged children in a simple and interesting manner, in the hope of ameliorating the overall decline of children entering into science and engineering fields in future generations. The primary method of delivery IRIS utilizes is the media of film, ';webinars' and blog entries. Filmed sequences of laboratory work, field work, science demos and mini webinars on current and relevant material in the Earth and Planetary sciences are ';subscribed' to by local schools. Selected sequences are delivered in 20-30 minute film segments with accompanying written material. The level at which the subject matter is currently geared is towards secondary level school-aged children, with the purpose of inspiring and encouraging curiosity, learning and development in scientific research. The video broadcasts are supplemented by a hands-on visit 1-2 times per year by a group of scientists participating in the filmed sequences to the subscribing class, with the objective of engaging and establishing a natural rapport between the class and the scientists that they see in the broadcasts. This transgresses boundaries that traditional 'one off' outreach platforms often aren't able to achieve. The initial results of the IRIS outreach initiative including successes, problems encountered and classroom feedback will be reported.

  6. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  7. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  8. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  9. The Case of the Royal School of Library and Information Science

    DEFF Research Database (Denmark)

    Borlund, Pia

    2010-01-01

    The present paper forms the basis of the invited talk to be given by the author at the International Symposium on the Transformation and Innovation of Library and Information Science, November 16-17, 2010, Taipei, Taiwan. The paper introduces the Royal School of Library and Information Science......, Denmark, as a European School of Library and Information Science and a member of iSchool Caucus. The paper outlines some of the current challenges of the Royal School of Library and Information Science and how these challenges are met, including how the membership of the iSchool movement is considered...

  10. NATURAL SCIENCE AT SCHOOL: MODERN APPROACHES TO THE DIFFERENTIATED STUDY

    Directory of Open Access Journals (Sweden)

    Dechtyarenko S.G.

    2015-08-01

    Full Text Available The article analyzes the possibility of differentiated study natural science at school on the basis of ecological educational process. Natural science is the science about nature as a single unity or totality of the natural sciences, which constituting a single unit. The main aim of the course is to develop student’s natural science competence through integrated mastering system knowledge about nature and man, the basics of environmental knowledge, ways of improving teaching and learning activities, development of value orientations in relation to the nature. There is strong need to review approaches to teaching nature science at schools, taking into account the general trend of greening of the educational process. The aim of the work is to analyze the possibility of practical application of modern approaches to differentiated teaching of the nature science at school greening within the educational process. In our view, the environmental component may be a basis to the formation and differentiated teaching in general. The environmental component of the educational sector has been aimed to the student’s environmental consciousness and compliance with rules of environmentally safe behavior in the environment. The learning of the integrated knowledge about nature and man can be submitted through the prism of action of the environmental factors according classic approach to their classification: abiotic, biotic and anthropogenic factors. In parallel, it is reasonable to raise the issues of practical importance as some natural objects and actions of each of these factors. The new degree of the studying of the environment has been provided by the beginning of the systematization of knowledge about natural objects and structure of the universe, by the formation of primary concepts about the relationship between the world of the living and inanimate nature, between organisms and between human activities and changes that has been occurred in the

  11. The concepts of nanotechnology as a part of physics education in high school and in interactive science museum

    Science.gov (United States)

    Kolářová, Lucie; Rálišová, Ema

    2017-01-01

    The advancements in nanotechnology especially in medicine and in developing new materials offer interesting possibilities for our society. It is not only scientists and engineers who need a better understanding of these new technologies but it is also important to prepare the young people and the general public on impact of nanotechnology on their life. Knowledge from this field likewise provides the opportunities to engage and motivate high school students for the study of science. Although, the concepts of nanoscience and nanotechnology are not a part of Czech high school physics curriculum they can be successfully integrated into regular curriculum in appropriate places. Because it is an interdisciplinary field, it also provides an opportunity for the interdisciplinary connections of physics, chemistry and biology. Many concepts for understanding the nanoworld can be shown by the simple activities and experiments and it is not a problem to demonstrate these experiments in each classroom. This paper presents the proposal for integration of the concepts of nanoscience and nanotechnologies into the high school physics curriculum, and the involvement of some of these concepts into the instructional program for middle and high school students which was realized in interactive science museum Fort Science in Olomouc. As a part of the program there was a quantitative questionnaire and its goal was to determine the effectiveness of the program and how students are satisfied with it.

  12. Examining Teacher Framing, Student Reasoning, and Student Agency in School-Based Citizen Science

    Science.gov (United States)

    Harris, Emily Mae

    This dissertation presents three interrelated studies examining opportunities for student learning through contributory citizen science (CS), where students collect and contribute data to help generate new scientific knowledge. I draw on sociocultural perspectives of learning to analyze three cases where teachers integrated CS into school science, one third grade, one fourth grade, and one high school Marine Biology classroom. Chapter 2 is a conceptual investigation of the opportunities for students to engage in scientific reasoning practices during CS data collection activities. Drawing on science education literature and vignettes from case studies, I argue that the teacher plays an important role in mediating opportunities for students to engage in investigative, explanatory, and argumentative practices of science through CS. Chapter 3 focuses on teacher framing of CS, how teachers perceive what is going on (Goffman, 1974) and how they communicate that to students as they launch CS tasks. Through analysis of videos and interviews of two upper elementary school teachers, I found that teachers frame CS for different purposes. These framings were influenced by teachers' goals, orientations towards science and CS, planning for instruction, and prior knowledge and experience. Chapter 4 examines how students demonstrate agency with environmental science as they explore their personal interests across their third grade classroom, school garden, and science lab contexts, through the lens of social practice theory (Holland, Lachicotte, Skinner, & Cain, 1998). Through analysis of classroom observations, student interviews, teacher interviews and important moments for three focal students, I found that student agency was enabled and constrained by the different cultures of the classroom, garden, and science lab. Despite affordances of the garden and science lab, the teachers' epistemic authority in the classroom permeated all three contexts, constraining student agency. In

  13. Examining Thai high school students' developing STEM projects

    Science.gov (United States)

    Teenoi, Kultida; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Like others, Thailand education strongly focused on STEM education. This paper aimed to examine existing Thai high school students' integrated knowledge about science, technology, engineering, and mathematics (STEM) in their developing science project. The participants included 49 high school students were studying the subject of individual study (IS) in Khon Kaen wittayayon school, Khon Kaen, Thailand. The IS was provided to gradually enhance students to know how to do science project starting from getting start to do science projects, They enrolled to study the individual study of science project for three year in roll. Methodology was qualitative research. Views of students' integrated knowledge about STEM were interpreted through participant observation, interview, and students' science projects. The first author as participant observation has taught this group of students for 3 years. It found that 16 science projects were developed. Views of students' integrated knowledge about STEM could be categorized into three categories. These included (1) completely indicated integration of knowledge about science, technology, engineering, and mathematics, (2) partial indicated integration of knowledge about science, technology, engineering, and mathematics, and (3) no integration. The findings revealed that majority of science projects could be categorized as completely indicated integration of knowledge about science, technology, engineering, and mathematics. The paper suggested some ideas of enhancing students to applying STEM for developing science projects.

  14. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  15. Delaware GK-12: Improvement of Science Education in Vocational Technical High Schools Through Collaborative Learning and Coteaching

    Science.gov (United States)

    Madsen, J.; Skalak, K.; Watson, G.; Scantlebury, K.; Allen, D.; Quillen, A.

    2006-12-01

    With funding from the National Science Foundation, the University of Delaware (UD) in partnership with the New Castle County Vocational Technical School District (NCCoVoTech) in Delaware has initiated a GK-12 Program. In each of year this program, nine full time UD graduate students in the sciences, who have completed all or most of their coursework, will be selected to serve as fellows. Participation in the GK-12 program benefits the graduate fellows in many ways. In addition to gaining general insight into current issues of science education, the fellows enhance their experience as scientific researchers by directly improving their ability to effectively communicate complex quantitative and technical knowledge to an audience with multiple and diverse learning needs. In the first year of this project, fellows have been paired with high school science teachers from NCCoVoTech. These pairs, along with the principal investigators (PIs) of this program have formed a learning community that is taking this opportunity to examine and to reflect on current issues in science education while specifically addressing critical needs in teaching science in vocational technical high schools. By participating in summer workshops and follow-up meetings facilitated by the PIs, the fellows have been introduced to a number of innovative teaching strategies including problem-based learning (PBL). Fellow/teacher pairs have begun to develop and teach PBL activities that are in agreement with State of Delaware science standards and that support student learning through inquiry. Fellows also have the opportunity to engage in coteaching with their teacher partner. In this "teaching at the elbow of another", fellows will gain a better understanding of and appreciation for the complexities and nuances of teaching science in vocational technical high schools. While not taught as a stand-alone course in NCCoVoTech high schools, earth science topics are integrated into the science curriculum at

  16. How to implement the Science Fair Self-Help Development Program in schools

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D.

    1994-01-01

    This manual is intended to act as a working guide for setting up a Science Fair Volunteer Support Committee at your school. The Science Fair Volunteer Support Committee, or SFVSC, is the key component of the Science Fair Self-Help program, which was developed by Sandia National Laboratories and is designed to support a school`s science activities. The SFVSC is a team of parents and community volunteers who work in concert with a school`s teaching staff to assist and manage all areas of a school Science and Engineering Fair. The main advantage of creating such a committee is that it frees the science teachers from the organizational aspects of the fair and lets them concentrate on their job of teaching science. This manual is based on information gained through a Self-Help Development pilot program that was developed by Sandia National Laboratories during the 1991--92 school year at three Albuquerque, NM, middle schools. The manual describes the techniques that were successful in the pilot program and discusses how these techniques might be implemented in other schools. This manual also discusses problems that may be encountered, including suggestions for how they might be resolved.

  17. School 2.0: The Science Leadership Academy

    Science.gov (United States)

    Lehmann, Christopher

    2007-01-01

    This article features the Science Leadership Academy, a new public partnership school in Philadelphia that incorporates core values of inquiry, research, collaboration, presentation, and reflection. Founded by the School District of Philadelphia and The Franklin Institute, SLA is one of four partnership high schools that opened in September 2006…

  18. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  19. Influence of science and technology magnet middle schools on students' motivation and achievement in science

    Science.gov (United States)

    Allen, David

    Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.

  20. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  1. Inspiring Careers in STEM and Healthcare Fields through Medical Simulation Embedded in High School Science Education

    Science.gov (United States)

    Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell; Oriol, Nancy E.

    2014-01-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school…

  2. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  3. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    Science.gov (United States)

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  4. The formation of science choices in secondary school

    Science.gov (United States)

    Cleaves, Anna

    2005-04-01

    In this paper I examine the formation of post-16 choices over 3 years among higher achieving students with respect to enrolment in post-compulsory science courses. Transcripts from four interviews carried out over 3 years with 72 secondary school students were qualitatively analysed. Students were found to shape their choices for science in a variety of ways across time. The situation regarding science choices hinges on far more dynamic considerations than the stereotypical image of the potential advanced science student, committed to becoming a scientist from an early age. There is an interplay of self-perception with respect to science, occupational images of working scientists, relationship with significant adults and perceptions of school science The findings are informative for science educators and for career guidance professionals who may need to take into account the complexity of young people's choices.

  5. National standards in pathology education: developing competencies for integrated medical school curricula.

    Science.gov (United States)

    Sadofsky, Moshe; Knollmann-Ritschel, Barbara; Conran, Richard M; Prystowsky, Michael B

    2014-03-01

    Medical school education has evolved from department-specific memorization of facts to an integrated curriculum presenting knowledge in a contextual manner across traditional disciplines, integrating information, improving retention, and facilitating application to clinical practice. Integration occurs throughout medical school using live data-sharing technologies, thereby providing the student with a framework for lifelong active learning. Incorporation of educational teams during medical school prepares students for team-based patient care, which is also required for pay-for-performance models used in accountable care organizations. To develop learning objectives for teaching pathology to medical students. Given the rapid expansion of basic science knowledge of human development, normal function, and pathobiology, it is neither possible nor desirable for faculty to teach, and students to retain, this vast amount of information. Courses teaching the essentials in context and engaging students in the learning process enable them to become lifelong learners. An appreciation of pathobiology and the role of laboratory medicine underlies the modern practice of medicine. As such, all medical students need to acquire 3 basic competencies in pathology: an understanding of disease mechanisms, integration of mechanisms into organ system pathology, and application of pathobiology to diagnostic medicine. We propose the development of 3 specific competencies in pathology to be implemented nationwide, aimed at disease mechanisms/processes, organ system pathology, and application to diagnostic medicine. Each competency will include learning objectives and a means to assess acquisition, integration, and application of knowledge. The learning objectives are designed to be a living document managed (curated) by a group of pathologists representing Liaison Committee on Medical Education-accredited medical schools nationally. Development of a coherent set of learning objectives will

  6. Education and Professional Outreach as an Integrated Component of Science and Graduate Education

    Science.gov (United States)

    Staudigel, H.; Koppers, A. A.

    2007-12-01

    Education and Professional Outreach (EPO) is increasingly becoming a substantive and much needed activity for scientists. Significant efforts are expended to satisfy funding agency requirements, but such requirements may also develop into a mutually beneficial collaboration between scientists and K-16 educators with a minimal impact on science productivity. We focus here on two particularly high impact EPO opportunities, hosting of high school interns and the inclusion of an educational component to a graduate student's&pthesis work. We emphasize the importance of hands-on collaboration with teachers and teacher-educators, and the substantive benefits of highly leveraged customized internet-distribution. We will present two examples for how we integrated this K-12 EPO into our university-based science and education efforts, what types of products emerged from these activities, and how such products may be widely produced by any scientist and disseminated to the educational community. High school seniors offer a unique resource to university EPO because some of them can substantively contribute to the science, and they can be very effective peer-mentors for high and middle schools. Extended internships may be built easily into the schedule of many senior high school student programs, and we were able to involve such interns into a three-week seagoing expedition. The seniors were responsible for our EPO by maintaining a cruise website and video conferencing with their high school. They added substantially to the science outcome, through programming and participating in a range of shipboard science chores. Graduate theses may be augmented with an educational component that places the main theme of the thesis into an educational setting. We designed and supervised such a Master's graduate thesis with an educational component on the geochronology of hot spot volcanoes, including a high school lesson plan, enactment in the classroom and preparation of a wide range of web

  7. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  8. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    Science.gov (United States)

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  9. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  10. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  11. Evaluating Junior Secondary Science Textbook Usage in Australian Schools

    Science.gov (United States)

    McDonald, Christine V.

    2016-08-01

    A large body of research has drawn attention to the importance of providing engaging learning experiences in junior secondary science classes, in an attempt to attract more students into post-compulsory science courses. The reality of time and resource constraints, and the high proportion of non-specialist science teachers teaching science, has resulted in an overreliance on more transmissive pedagogical tools, such as textbooks. This study sought to evaluate the usage of junior secondary science textbooks in Australian schools. Data were collected via surveys from 486 schools teaching junior secondary (years 7-10), representing all Australian states and territories. Results indicated that most Australian schools use a science textbook in the junior secondary years, and textbooks are used in the majority of science lessons. The most highly cited reason influencing choice of textbook was layout/colour/illustrations, and electronic technologies were found to be the dominant curricula material utilised, in addition to textbooks, in junior secondary science classes. Interestingly, the majority of respondents expressed high levels of satisfaction with their textbooks, although many were keen to stress the subsidiary role of textbooks in the classroom, emphasising the textbook was `one' component of their teaching repertoire. Importantly, respondents were also keen to stress the benefits of textbooks in supporting substitute teachers, beginning teachers, and non-specialist science teachers; in addition to facilitating continuity of programming and staff support in schools with high staff turnover. Implications from this study highlight the need for high quality textbooks to support teaching and learning in Australian junior secondary science classes.

  12. The efficacy beliefs of preservice science teachers in professional development school and traditional school settings

    Science.gov (United States)

    Newsome, Demetria Lynn

    Teachers' efficacy beliefs have been shown to correlate positively with to the successful implementation of science reform measures (National Research Council, 1996) and are context specific (Koul & Rubba, 1999). Studies on teacher efficacy in specific contexts have been conducted including the availability of resources and parent support (Tschannen-Moran & Hoy, 2002), classroom management (Emmer & Hickman, 1990; Raudenbush, Rowen, & Cheong, 1992); and institutional climate and behavior of the principal (Hoy & Woolfolk, 1993). The purpose of this study was to compare the science teaching efficacy beliefs of teacher interns prepared in professional development schools with those of student teachers prepared in traditional school settings. Other variables examined included academic level, academic major, and area of science concentration. Preservice science teacher efficacy beliefs were measured using the Science Teaching Efficacy Beliefs Instrument for Preservice Science Teachers, STEBI Form B (Enoch & Riggs, 1990) with demographic information being collected by an accompanying questionnaire. Analyses included scoring the surveys on two scales, Personal Science Teaching Efficacy Beliefs Scale and the Outcome Expectancy Scale, calculating descriptive statistics, as well as performing MANOVAS and correlations. Results indicate that preservice science teachers working in professional development schools exhibit higher personal science teaching efficacy beliefs. This finding corroborates previous studies on the efficacy beliefs of preservice teachers working in PDS schools (Long, 1996; Sandholtz & Dadlez, 2000). Results also show a strong correlation between the personal science teaching efficacy beliefs and the setting where student teaching takes place. In addition, significant differences were found in the personal science teaching efficacy beliefs between elementary education majors and science majors, science education majors, and secondary education majors

  13. Cooperative learning in science: intervention in the secondary school

    Science.gov (United States)

    Topping, K. J.; Thurston, A.; Tolmie, A.; Christie, D.; Murray, P.; Karagiannidou, E.

    2011-04-01

    The use of cooperative learning in secondary school is reported - an area of considerable concern given attempts to make secondary schools more interactive and gain higher recruitment to university science courses. In this study the intervention group was 259 pupils aged 12-14 years in nine secondary schools, taught by 12 self-selected teachers. Comparison pupils came from both intervention and comparison schools (n = 385). Intervention teachers attended three continuing professional development days, in which they received information, engaged with resource packs and involved themselves in cooperative learning. Measures included both general and specific tests of science, attitudes to science, sociometry, self-esteem, attitudes to cooperative learning and transferable skills (all for pupils) and observation of implementation fidelity. There were increases during cooperative learning in pupil formulation of propositions, explanations and disagreements. Intervened pupils gained in attainment, but comparison pupils gained even more. Pupils who had experienced cooperative learning in primary school had higher pre-test scores in secondary education irrespective of being in the intervention or comparison group. On sociometry, comparison pupils showed greater affiliation to science work groups for work, but intervention pupils greater affiliation to these groups at break and out of school. Other measures were not significant. The results are discussed in relation to practice and policy implications.

  14. Physiology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  15. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  16. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  17. Using a Science Centre as a School Lab ? a Case Story

    DEFF Research Database (Denmark)

    Sørensen, Helene

    2004-01-01

    responsibility for their own learning committed themselves to learn the scientific language. The study shows that in school science there has to be scaffolding around a project to insure that all students gain experience with science as a learning process in an environment with self-motivated, self......The study has the overall goal of finding suggestions for improving school visits to Science Centres and similar places. One such centre (Experimentarium) has established a partnership with a nearby school to investigate possibilities for cooperation. This case story tells about a project where...... tenth graders were trained to become museum ?explainers? as part of their science education. The objectives were to investigate if it was possible to obtain a quality out-of?school experience using the Experimentarium as a science lab. The intention of the study was to look at science learning...

  18. Improving pupils’ conceptual understanding by a connected in-school and out-of-school science program: a multiple case study

    NARCIS (Netherlands)

    Geveke, Carla; Steenbeek, Henderien; Doornenbal, Jeannette; van Geert, Paul

    2016-01-01

    The number of out-of-school science programs, which refers to science education at outside school environments, is gradually increasing. Although out-of-school programs are generally considered to be important for the development of pupils’ science knowledge and skills, more evidence concerning the

  19. Science and Mathematics Teaching Efficacy Beliefs of Pre-School Teachers

    Science.gov (United States)

    Aydogdu, Bülent; Peker, Murat

    2016-01-01

    The aim of this research was to examine science and mathematics teaching efficacy beliefs of pre-school teachers in terms of some variables. The sample of the study was comprised of 191 pre-school teachers working in a city in Aegean Region of Turkey. Since it attempted to define self-efficacy beliefs of pre-school teachers toward science and…

  20. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  1. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  2. The Key Factors Affecting Students' Individual Interest in School Science Lessons

    Science.gov (United States)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The…

  3. Constructing Your Self in School Science

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2016-01-01

    of school science. Classrooms together with the new technological tools that are being used are places that fabricate and (re)align how young people see themselves in science and form their subjectivity in relation to society’s core values and rationalities and are embodied in primary science education...... in science classrooms. The findings suggest that digital tools used in classrooms expand not only the means of teaching and learning science but represent spaces for the emergence, negotiation and struggle of different forms of subjectivities.......It has been repeatedly argued that young people need to acquire science knowledge, skills and competencies, so that future economies can maintain social welfare, economic growth and international competitiveness. However, the attainment of understanding in science is not the only importance...

  4. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  5. Middle school girls: Experiences in a place-based education science classroom

    Science.gov (United States)

    Shea, Charlene K.

    The middle school years are a crucial time when girls' science interest and participation decrease (Barton, Tan, O'Neill, Bautista-Guerra, & Brecklin, 2013). The purpose of this study was to examine the experiences of middle school girls and their teacher in an eighth grade place-based education (PBE) science classroom. PBE strives to increase student recognition of the importance of educational concepts by reducing the disconnection between education and community (Gruenewald, 2008; Smith, 2007; Sobel, 2004). The current study provides two unique voices---the teacher and her students. I describe how this teacher and her students perceived PBE science instruction impacting the girls' participation in science and their willingness to pursue advanced science classes and science careers. The data were collected during the last three months of the girls' last year of middle school by utilizing observations, interviews and artifacts of the teacher and her female students in their eighth grade PBE science class. The findings reveal how PBE strategies, including the co-creation of science curriculum, can encourage girls' willingness to participate in advanced science education and pursue science careers. The implications of these findings support the use of PBE curricular strategies to encourage middle school girls to participate in advance science courses and science careers.

  6. Teaching planetary sciences to elementary school teachers: Programs that work

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  7. Learning Science and English: How School Reform Advances Scientific Learning for Limited English Proficient Middle School Students

    OpenAIRE

    Minicucci, Catherine

    1996-01-01

    This article presents findings from the School Reform and Student Diversity Study, a 4-year project to locate and analyze schools offering exemplary science and mathematics programs to middle school students with limited proficiency in English. In contrast to the vast majority of schools, the four schools described in this article give these students access to stimulating science and mathematics curricula by instructing them either in the students' primary language or in English using shelter...

  8. School Science and the Language Arts

    Science.gov (United States)

    Ediger, Marlow

    2014-01-01

    An integrated science curriculum assists pupils to retain learnings better than to separate academic disciplines. Too frequently, science teachers teach each academic discipline as separate entities. However, there is much correlating of science with language, for example which might well be implemented in teaching and learning situations. Thus,…

  9. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  10. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  11. U.S. Dental Schools' Preparation for the Integrated National Board Dental Examination.

    Science.gov (United States)

    Duong, Mai-Ly T; Cothron, Annaliese E; Lawson, Nathaniel C; Doherty, Eileen H

    2018-03-01

    An Integrated National Board Dental Examination (INBDE) combining basic, behavioral, and clinical sciences will be implemented in 2020 to replace the current two-part National Board Dental Examination required for all candidates who seek to practice dentistry in the U.S. The aims of this study were to determine how U.S. dental schools are preparing for implementation of the INBDE and to assess their top administrators' attitudes about the new exam. A total of 150 deans, academic deans, and other administrators at all 64 U.S. dental schools with graduating classes in 2016 were emailed a 19-question electronic survey. The survey questions addressed the respondents' level of support, perceived benefits and challenges, and planned preparation strategies for the INBDE. The individual response rate was 59%, representing 57 of the 64 schools. Approximately 60% of the respondents either agreed or strongly agreed that they support the integrated exam, while roughly 25% either somewhat or strongly disagreed. While most respondents (72%) reported that their institutions would be prepared for the INBDE, 74% reported that the merged exam created additional strain for their institutions. Respondents reported viewing content integration and clinical applicability as benefits of the INBDE, while required curriculum changes and student preparedness and stress were seen as challenges. Most of the respondents reported their schools were currently employing strategies to prepare for the INBDE including meetings with faculty and students and changes to curricula and course content. The beginning of the fourth year and the end of the third year were the most frequently reported times when schools planned to require students to take the INBDE, although almost half of the respondents did not yet know what it would be required at their school. Several schools were reconsidering using the boards as a passing requirement. This study found that support for the INBDE was not universal, but

  12. Out-of-School Activities Related to Science and Technology

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez Alonso

    2007-05-01

    Full Text Available Artificial and natural environments constitute an extensive educational resource in whose framework the basic experiences that contribute to the development process of human beings occur. These experiences are the source of previous knowledge that students bring to school and that are key for building scientific school learning. This article reports the results of a study that addresses out-of-school experiences related to science and technology, through the application of an inventory list to a sample of students who were in their last year of compulsory education. The results show a relatively low overall frequency of experiences, characterized by some qualitative and quantitative differences according to a few grouping variables such as gender, the choice of an elective science subject, and different scientific topics and disciplines. In spite of its importance for learning, the school curriculum often ignores students’ previous experiences. Finally, we discuss the relevance of these results for developing a more equitable science and technology curriculum, from a perspective of a universal, humanistic science education.

  13. The distinctiveness and effectiveness of science teaching in the Malaysian `Smart school'

    Science.gov (United States)

    Tek Ong, Eng; Ruthven, Kenneth

    2010-04-01

    A recent reform initiative in the Malaysian educational system has sought to develop 'Smart schools', intended to better prepare students for adult life in a developing economy and to increase the flow of young people prepared for scientific and technological careers. The study reported in this paper examined lower-secondary science teaching, comparing two Smart schools officially judged to be successfully implementing the reform, with two neighbouring mainstream schools. Through analysis of classroom observation, supported by teacher interview and student report, the distinctive features of science teaching in the Smart schools were found to be use of ICT-based resources and of student-centred approaches, often intertwined to provide extended support for learning; accompanied by a near absence of the note giving and copying prevalent in the mainstream schools. Through analysis of measures of student attitude to science, science process skills and general science attainment, science teaching in Smart schools was found to be relatively effective overall. However, while the positive attitude effect was general, both academic effects were much weaker amongst students who had been of lower attainment on entry to secondary school.

  14. A phenomenological study on middle-school science teachers' perspectives on utilization of technology in the science classroom and its effect on their pedagogy

    Science.gov (United States)

    Rajbanshi, Roshani

    With access to technology and expectation by the mainstream, the use of technology in the classroom has become essential these days. However, the problem in science education is that with classrooms filled with technological equipment, the teaching style is didactic, and teachers employ traditional teacher-centered methods in the classroom. In addition, results of international assessments indicate that students' science learning needs to be improved. The purpose of this study is to analyze and document the lived experience of middle-school science teachers and their use of technology in personal, professional lives as well as in their classroom and to describe the phenomenon of middle-school science teachers' technological beliefs for integration of digital devices or technology as an instructional delivery tool, knowledge construction tool and learning tool. For this study, technology is defined as digital devices such as computer, laptops, digital camera, iPad that are used in the science classroom as an instructional delivery tool, as a learning tool, and as a knowledge construction tool. Constructivism is the lens, the theoretical framework that guides this qualitative phenomenological research. Observation, interview, personal journal, photo elicitation, and journal reflection are used as methods of data collection. Data was analyzed based on a constructivist theoretical framework to construct knowledge and draw conclusion. MAXQDA, a qualitative analysis software, was also used to analyze the data. The findings indicate that middle-school science teachers use technology in various ways to engage and motivate students in science learning; however, there are multiple factors that influence teachers' technology use in the class. In conclusion, teacher, students, and technology are the three sides of the triangle where technology acts as the third side or the bridge to connect teachers' content knowledge to students through the tool with which students are

  15. At-risk high school seniors: Science remediation for Georgia's High School Graduation Test

    Science.gov (United States)

    Carroll, Carolyn M.

    State departments of education have created a system of accountability for the academic achievement of students under the mandate of the No Child Left Behind Act of 2001. The Georgia Department of Education established the Georgia High School Graduation Test (GHSGT) as their method of evaluating the academic achievement of high school students. The GHSGT consist of five sections and students must pass all five sections before students they are eligible to receive a diploma. The purpose of the study was to examine the effects of teacher-lead and computer based remediation for a group of high school seniors who have been unsuccessful in passing the science portion of the GHSGT. The objectives of this study include (a) Identify the most effective method of remediation for at-risk students on the science section of the GHSGT, and (b) evaluate the methods of remediation for at-risk students on the science section of GHSGT available to high school students. The participants of this study were at-risk seniors enrolled in one high school during the 2007-2008 school year. The findings of this research study indicated that at-risk students who participated in both types of remediation, teacher-led and computer-based, scored significantly higher than the computer-based remediation group alone. There was no significant relationship between the test scores and the number of times the students were tested.

  16. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  17. Determination of in-service needs of Turkish high school science teachers in Istanbul

    Science.gov (United States)

    Ogan, Feral

    The purposes of this study were to identify the in-service needs of high school science teachers in Istanbul, Turkey according to the subgroups such as school type and gender and determine the priority obstacles preventing these science teachers from attendance at in-service programs. Moreover, this study aimed to find the other greatest needs of high school science teachers that are not mentioned in the survey instrument. The data for this research was gathered by conducting a survey in Istanbul, Turkey in Fall 2001 and Spring 2002 Semesters. Turkish translation of the modified version of a science teacher's needs inventory, Science Teacher Inventory of Need (STIN), entitled STIN-2 was used as the survey instrument. The subjects consisted of 75 high school science teachers who were selected from 369 high schools by using stratified random sampling in grades nine through eleven. By personally administering the survey, 422 science teachers from 75 high schools completed the survey and a 97% response rate was achieved. The results obtained in this study show that Turkish high school science teachers in Istanbul have a number of shared needs. One other indication is that they also have a number of needs, which are specific to subgroups of those science teachers.

  18. THE ROLE OF SCHOOL TECHNICIANS IN PROMOTING SCIENCE THROUGH PRACTICAL WORK

    Directory of Open Access Journals (Sweden)

    Anne T. Helliar

    2011-11-01

    Full Text Available This is a review of the role of practical work in UK’s secondary school science lessons, the impact that practical work has in the promotion of science, the challenges created through use of non-specialist science teachers and a possible additional role for science technicians. The paper considers how improved deployment of suitably experienced school science technicians and their recognition, by schools’ management, for their involvement in the delivery of training in the use of practical work, for less experienced teachers, could benefit schools and their students. This together with its companion paper endeavours to show how the more effective use of practical work and technicians can encourage more students to select science at higher, non-compulsory levels.

  19. Assessing Prinary School; Second Cycle Social Science Textbooks ...

    African Journals Online (AJOL)

    Assessing Prinary School; Second Cycle Social Science Textbooks in ... second cycle primary level social science textbooks vis-à-vis the principles of multiculturalism. ... Biases were disclosed in gender, economic and occupational roles.

  20. Pre-Eminent Curriculum in Islamic Basic School Integrated Comparative Studies in Islamic Basic School Integrated Al-Izzah Serang and Al-Hanif Cilegon, Banten, Indonesia

    Science.gov (United States)

    Fauz, Anis; Hasbullah

    2016-01-01

    Compare to General SD (Primary school), the superiority of SD Islam Terpadu (Integrated Islamic Primary School) lies on the development of the curriculum and learning that is more emphasize on integrated curriculum and integrated learning. Curriculum model applied in Sekolah Dasar Islam Terpadu (SDIT) is integrated curriculum. This curriculum is…

  1. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  2. Impact of Science Tutoring on African Americans' Science Scores on the High School Students' Graduation Examination

    Science.gov (United States)

    Davis, Edward

    This study investigated the relationship between an after-school tutorial program for African American high school students at a Title I school and scores on the science portion of the High School Graduation Examination (HSGE). Passing the examination was required for graduation. The target high school is 99% African American and the passing rate of the target high school was 42%---lower than the state average of 76%. The purpose of the study was to identify (a) the relationship between a science tutorial program and scores on the science portion of the HSGE, (b) the predictors of tutoring need by analyzing the relationship between biology grades and scores on the science portion of the HSGE, and (c) the findings between biology grades and scores on the science portion of the HSGE by analyzing the relationship between tutorial attendance and HSGE scores. The study was based on Piaget's cognitive constructivism, which implied the potential benefits of tutorials on high-stakes testing. This study used a 1-group pretest-posttest, quantitative methodology. Results showed a significant relationship between tutoring and scores on the biology portion of the HSGE. Results found no significant relationship between the tutorial attendance and the scores on the biology portion of the HSGE or between the biology grades and scores on the biology portion of the HSGE before tutoring. It has implications for positive social change by providing educational stakeholders with empirically-based guidance in determining the potential benefit of tutorial intervention strategies on high school graduation examination scores.

  3. Scientist-teacher collaboration: Integration of real data from a coastal wetland into a high school life science ecology-based research project

    Science.gov (United States)

    Hagan, Wendy L.

    Project G.R.O.W. is an ecology-based research project developed for high school biology students. The curriculum was designed based on how students learn and awareness of the nature of science and scientific practices so that students would design and carry out scientific investigations using real data from a local coastal wetland. This was a scientist-teacher collaboration between a CSULB biologist and high school biology teacher. Prior to implementing the three-week research project, students had multiple opportunities to practice building requisite skills via 55 lessons focusing on the nature of science, scientific practices, technology, Common Core State Standards of reading, writing, listening and speaking, and Next Generation Science Standards. Project G.R.O.W. culminated with student generated research papers and oral presentations. Outcomes reveal students struggle with constructing explanations and the use of Excel to create meaningful graphs. They showed gains in data organization, analysis, teamwork and aspects of the nature of science.

  4. Changes in Student Science Interest from Elementary to Middle School

    Science.gov (United States)

    Coutts, Trudi E.

    This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for

  5. Teaching of science and language by elementary teachers who emphasize the integrated language approach: A descriptive study

    Science.gov (United States)

    Blouch, Kathleen Kennedy

    This research involved investigating the nature of science and language instruction in 13 elementary classrooms where teachers have restructured their language programs to reflect an integrated or holistic view of language instruction. The teachers were identified by school administrators and other professionals as teachers who have implemented instructional reforms described in the Pennsylvania Framework for Reading, Writing and Speaking Across the Curriculum (PCRPII), (Lytle & Botel, 1900). The instruction utilized by these teachers was described as atypical when compared to that of teachers utilizing the more traditional didactic skills oriented approach to language literacy. The research involved observing, recording and categorizing teaching behaviors during both science and language instruction. Videotaped observations were followed by analyses and descriptions of these behaviors. Interviews were also conducted to ascertain the basis for selection of the various instructional approaches. The instruction was compared on four dimensions: participation patterns, time the behaviors were practiced, type of tasks and levels of questioning. The instruction was then described in light of constructivist teaching practices: student collaboration, student autonomy, integration and higher order thinking. Constructivist practices differed among teachers for science and language instruction. During science instruction teachers spent more time involved in teacher-whole group participation patterns with more direct questioning as compared to language instruction in which children participated alone or in groups and had opportunity to initiate conversations and questions. Student inquiry was evidenced during language instruction more so than during science. The 13 teachers asked a variety of levels and types of questions both in science and language instruction. More hands-on science experiences were observed when science was taught separately compared to when integrated with

  6. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  7. Technology Integration and Technology Leadership in Schools as Learning Organizations

    Science.gov (United States)

    Cakir, Recep

    2012-01-01

    The purpose of this study was to investigate technology integration in primary schools from the perspective of leadership in learning organizations. To that end, the study examines two groups: school administrators who play effective roles in technology integration in schools and computer teachers who are mainly responsible for schools' technology…

  8. INQUIRY-BASED SCIENCE COMIC PHYSICS SERIES INTEGRATED WITH CHARACTER EDUCATION

    Directory of Open Access Journals (Sweden)

    D Yulianti

    2016-04-01

    Full Text Available This study aimed to test the level of readability and feasibility of science comic, to knowcharacter development through a small test in some schools. The research design was Research & Development, trials were using quasi-experimental pre-test-post-test experimental design. The instruments to measure attitudes were: a questionnaire and observation sheet, a test used to measure comprehension of the material. The results showed that learning science by inquiry-based science comic can improvecharacters and cognitive achievement of primary school students. Results in the form of inquiry-based science comic can be utilized in learning science as a companion teaching materials.

  9. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  10. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  11. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  12. Integration of School Features into Taiwanese Elementary School New English Curriculum

    Science.gov (United States)

    Chien, Chin-Wen

    2014-01-01

    Elementary school English activation curriculum, an additional two culture classes, has been implemented only in New Taipei City in Taiwan starting from 2010, so only a few studies focus on it. This is a case study of an English teacher's integration of a school's features into the activation curriculum in a rural elementary school. This study…

  13. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  14. Managing racial integration in South African public schools: In ...

    African Journals Online (AJOL)

    The paper explores what racial integration is. Furthermore, it scrutinises how racial integration is currently managed in South African Public schools. The main argument of the paper defends a deliberative conception of managing racial integration in South African public schools. In light of this, there is some form of hope to ...

  15. Boundedness for Marcinkiewicz integrals associated with ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Boundedness for Marcinkiewicz integrals associated with Schrödinger operators. WENHUA GAO1 and LIN TANG2. 1School of Applied Mathematics, Beijing Normal University Zhuhai, Zhuhai 519085,. People's Republic of China. 2LMAM, School of Mathematical Sciences, Peking University, ...

  16. The survey of the nuclear sciences in the curricula of senior high schools

    International Nuclear Information System (INIS)

    Ujeno, Yowri; Okamura, Seizo; Inaoka, Mariko; Nakase, Yoshiaki.

    1994-01-01

    To know senior high school education and recognition of nuclear science, questionnaire survey was made in a total of 619 university, college or occupational school students who graduated from senior high schools before 1993. Female students accounted for 95% (n=589) because females are believed to more strongly affect the next generation than males. Of these students, 92.7% had graduated from the ordinary course of senior high school. Students who majored in physical science accounted for 38.6%. In the physical science curriculum, nuclear science had been selected in 27.8% of the students. Among the students who majored in physical science, 38.1% did not memorize the learning of basic physical science at all, and only 25% memorized the learning. These results suggest that the learning of physical science is extremely insufficient. However, such an unfamiliar phenomenon of physical science seems to be closely related to the examination system to universities and colleges. The reason why few people give a debate upon atomic power generation is that people have no accurate knowledge because of their insufficient school learning of nuclear science. Only 19.1% had taken lessons of atomic power generation in the curriculum of social science. Serious problems of the senior high school educational system are pointed out. (N.K.)

  17. A Review of Research on Technology-Assisted School Science Laboratories

    Science.gov (United States)

    Wang, Chia-Yu; Wu, Hsin-Ka; Lee, Silvia Wen-Yu; Hwang, Fu-Kwun; Chang, Hsin-Yi; Wu, Ying-Tien; Chiou, Guo-Li; Chen, Sufen; Liang, Jyh-Chong; Lin, Jing-Wen; Lo, Hao-Chang; Tsai, Chin-Chung

    2014-01-01

    Studies that incorporate technologies into school science laboratories have proliferated in the recent two decades. A total of 42 studies published from 1990 to 2011 that incorporated technologies to support school science laboratories are reviewed here. Simulations, microcomputer-based laboratories (MBLs), and virtual laboratories are commonly…

  18. Pharmacology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  19. SSR: What's in "School Science Review" for "PSR" Readers?

    Science.gov (United States)

    Lakin, Liz

    2004-01-01

    This article summarises ideas and developments in teaching and learning in science of relevance to "Primary Science Review" ("PSR") readers from three recent issues (309, 310, and 311) of "School Science Review" ("SSR"), the ASE journal for science education 11-19. The themes running through these are: ICT, the implications for science education…

  20. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  1. National Science Resources Center Project to Improve Science Teaching in Elementary Schools with Special Emphasis on Department of Defense Dependents Schools and Other Schools Serving Children of Military Personnel

    Science.gov (United States)

    1992-10-01

    2555. NCTM to Publish Resource Directory ANNOUNCEMENTS The National Council of Teachers of Mathematics ’ ( NCTM ) Committee for a Coin- Coalition Launches...science and mathematics education: • DOD Apprenticeship Programs * DOD Teacher Internship Programs * DOD Partnership Programs * DOD Dependents Schools...elementary school teachers . The units also link science with other curriculum areas, including mathematics , language arts, social studies, and art. In

  2. IVth Azores International Advanced School in Space Sciences

    CERN Document Server

    Santos, Nuno; Monteiro, Mário

    2018-01-01

    This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.

  3. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  4. Formative and summative assessment of science in English primary schools: evidence from the Primary Science Quality Mark

    Science.gov (United States)

    Earle, Sarah

    2014-05-01

    Background:Since the discontinuation of Standard Attainment Tests (SATs) in science at age 11 in England, pupil performance data in science reported to the UK government by each primary school has relied largely on teacher assessment undertaken in the classroom. Purpose:The process by which teachers are making these judgements has been unclear, so this study made use of the extensive Primary Science Quality Mark (PSQM) database to obtain a 'snapshot' (as of March 2013) of the approaches taken by 91 English primary schools to the formative and summative assessment of pupils' learning in science. PSQM is an award scheme for UK primary schools. It requires the science subject leader (co-ordinator) in each school to reflect upon and develop practice over the course of one year, then upload a set of reflections and supporting evidence to the database to support their application. One of the criteria requires the subject leader to explain how science is assessed within the school. Sample:The data set consists of the electronic text in the assessment section of all 91 PSQM primary schools which worked towards the Quality Mark in the year April 2012 to March 2013. Design and methods:Content analysis of a pre-existing qualitative data set. Text in the assessment section of each submission was first coded as describing formative or summative processes, then sub-coded into different strategies used. Results:A wide range of formative and summative approaches were reported, which tended to be described separately, with few links between them. Talk-based strategies are widely used for formative assessment, with some evidence of feedback to pupils. Whilst the use of tests or tracking grids for summative assessment is widespread, few schools rely on one system alone. Enquiry skills and conceptual knowledge were often assessed separately. Conclusions:There is little consistency in the approaches being used by teachers to assess science in English primary schools. Nevertheless

  5. Computer Science in High School Graduation Requirements. ECS Education Trends (Updated)

    Science.gov (United States)

    Zinth, Jennifer

    2016-01-01

    Allowing high school students to fulfill a math or science high school graduation requirement via a computer science credit may encourage more student to pursue computer science coursework. This Education Trends report is an update to the original report released in April 2015 and explores state policies that allow or require districts to apply…

  6. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  7. The quest for balanced curriculum: The perceptions of secondary students and teachers who experienced an integrated art and science curriculum

    Science.gov (United States)

    Schramm, Susan Lynn

    The purpose of this study was to describe how an integrated high school curriculum unit connecting the different subject areas of art and science could be used to give students a voice in the decisions about learning. Through the data generated I examined the obstacles of integrating curriculum in a traditionally subject-centered high school. Forty-one students, nineteen biology students in the ninth grade, and twenty-two art students ranging from the tenth grade through the twelfth grade, along with their two teachers and a student teacher, were the subjects of the research. An integrated curricular unit, "Genetic Robotics," was designed specifically for this research to enable students to integrate scientific and artistic processes such as communication skills, problem-solving, critical thinking, creativity and responsiveness to the aesthetic; thus empowering them for future learning. Semi-structured interviews, surveys, questionnaires, informal conversations, reaction journals, field observations, video tapes, and official documents from the school, provided the data for this research. Data were collected using a strategy of participant-observation. The constant comparative analysis method was employed to explore emerging themes. Oak Park students' adaptability to an integrated art and science unit was found to be limited because of their inability to conceptualize curricular structures that are different from the traditional ones to which they are accustomed. Students typically scored high on standardized proficiency tests and college entrance exams. Therefore, for them to experience an innovation that is not based on the memorize-and-recall mode of learning is to risk failure and many are unwilling to do so, especially the high achieving students.

  8. Moving to higher ground: Closing the high school science achievement gap

    Science.gov (United States)

    Mebane, Joyce Graham

    The purpose of this study was to examine the perceptions of West High School constituents (students, parents, teachers, administrators, and guidance counselors) about the readiness and interest of African American students at West High School to take Advanced Placement (AP) and International Baccalaureate (IB) science courses as a strategy for closing the achievement gap. This case study utilized individual interviews and questionnaires for data collection. The participants were selected biology students and their parents, teachers, administrators, and guidance counselors at West High School. The results of the study indicated that just over half the students and teachers, most parents, and all guidance counselors thought African American students were prepared to take AP science courses. Only one of the three administrators thought the students were prepared to take AP science courses. Between one-half and two-thirds of the students, parents, teachers, and administrators thought students were interested in taking an AP science course. Only two of the guidance counselors thought there was interest among the African American students in taking AP science courses. The general consensus among the constituents about the readiness and interest of African American students at West High School to take IB science courses was that it is too early in the process to really make definitive statements. West is a prospective IB school and the program is new and not yet in place. Educators at the West High School community must find reasons to expect each student to succeed. Lower expectations often translate into lower academic demands and less rigor in courses. Lower academic demands and less rigor in courses translate into less than adequate performance by students. When teachers and administrators maintain high expectations, they encourage students to aim high rather than slide by with mediocre effort (Lumsden, 1997). As a result of the study, the following suggestions should

  9. The Implementation of Integrated Natural Science Textbook of Junior High School be Charged on Character-based Shared Models to Improve the Competence of Learners' Knowledge

    Science.gov (United States)

    Rahmiwati, S.; Ratnawulan; Yohandri

    2018-04-01

    The process of science learning can take place if there is an attempt to create an active learning atmosphere and can improve the knowledge competence of learners. One of the efforts made is to use learning resources. Textbooks are a learning resource used by learners. This study aims to describe the increase of knowledge’s competence of learners with integrated Natural Science (IPA) textbook of Junior High School (SMP) be charged on character-based shared model. The method used pre-test, post-test design with one group using the class as a research subject. Pre-test was given before treatment to measure student’s initial understanding of the problem, while the post-test was given to measure student’s final understanding.The subject of this research is students of class VII SMP N 13 Padang. Result of gain score is 0,73. The result showed competence student’s knowledge increased significantly and high categorized.

  10. Science as Interests but Not for Career: Understanding High School Students' Engagement in Science in Abu Dhabi

    Science.gov (United States)

    Yang, Guang; Badri, Masood; Al-Mazroui, Karima; Al-Rashedi, Asma; Nai, Peng

    2017-01-01

    Understanding high school students' engagement in science is important for the Emirate of Abu Dhabi. Drawing on data from the ROSE Survey conducted in Abu Dhabi schools in 2013, this paper used a multi-dimensional framework to explore associations between high school students' engagement in science and a range of student psychosocial and…

  11. Guiding students towards sensemaking: teacher questions focused on integrating scientific practices with science content

    Science.gov (United States)

    Benedict-Chambers, Amanda; Kademian, Sylvie M.; Davis, Elizabeth A.; Palincsar, Annemarie Sullivan

    2017-10-01

    Science education reforms articulate a vision of ambitious science teaching where teachers engage students in sensemaking discussions and emphasise the integration of scientific practices with science content. Learning to teach in this way is complex, and there are few examples of sensemaking discussions in schools where textbook lessons and teacher-directed discussions are the norm. The purpose of this study was to characterise the questioning practices of an experienced teacher who taught a curricular unit enhanced with educative features that emphasised students' engagement in scientific practices integrated with science content. Analyses indicated the teacher asked four types of questions: explication questions, explanation questions, science concept questions, and scientific practice questions, and she used three questioning patterns including: (1) focusing students on scientific practices, which involved a sequence of questions to turn students back to the scientific practice; (2) supporting students in naming observed phenomena, which involved a sequence of questions to help students use scientific language; and (3) guiding students in sensemaking, which involved a sequence of questions to help students learn about scientific practices, describe evidence, and develop explanations. Although many of the discussions in this study were not yet student-centred, they provide an image of a teacher asking specific questions that move students towards reform-oriented instruction. Implications for classroom practice are discussed and recommendations for future research are provided.

  12. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Science.gov (United States)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  13. Young Engineers and Sciences (YES) - Mentoring High School Students

    Science.gov (United States)

    Boice, Daniel C.; Asbell, E.; Reiff, P. H.

    2008-09-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of two parts: 1) an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year; and 2) a collegial mentorship where students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  14. Trends in Behavioral Sciences Education in Dental Schools, 1926 to 2016.

    Science.gov (United States)

    Centore, Linda

    2017-08-01

    This article outlines the journey of behavioral sciences education from a multidisciplinary array of topics to a discipline with a name, core identity, and mission in dental schools' curricula. While not exhaustive, it covers pivotal events from the time of the Gies report in 1926 to the present. Strengths and weaknesses of current behavioral sciences instruction in dental schools are discussed, along with identification of future opportunities and potential threats. Suggestions for future directions for behavioral sciences and new roles for behavioral sciences faculty in dental schools are proposed. This article was written as part of the project "Advancing Dental Education in the 21 st Century."

  15. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  16. MOOC Integration into Secondary School Courses

    Science.gov (United States)

    Najafi, Hedieh; Evans, Rosemary; Federico, Christopher

    2014-01-01

    We investigated how high school students taking a university preparatory economics course would engage with the learning and assessment components of a Behavioural Economics MOOC that was integrated into their school-based course. Students were divided into two groups, MOOC-only, with no teacher support, and blended-mode, with weekly tutorials.…

  17. Integrating "Ubunifu," Informal Science, and Community Innovations in Science Classrooms in East Africa

    Science.gov (United States)

    Semali, Ladislaus M.; Hristova, Adelina; Owiny, Sylvia A.

    2015-01-01

    This study examines the relationship between informal science and indigenous innovations in local communities in which students matured. The discussion considers methods for bridging the gap that exists between parents' understanding of informal science ("Ubunifu") and what students learn in secondary schools in Kenya, Tanzania, and…

  18. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  19. Cultivation of science identity through authentic science in an urban high school classroom

    Science.gov (United States)

    Chapman, Angela; Feldman, Allan

    2017-06-01

    This study examined how a contextually based authentic science experience affected the science identities of urban high school students who have been marginalized during their K-12 science education. We examined students' perceptions of the intervention as an authentic science experience, how the experience influenced their science identity, as well as their perceptions about who can do science. We found that the students believed the experience to be one of authentic science, that their science identity was positively influenced by participation in the experience, and that they demonstrated a shift in perceptions from stereotypical to more diverse views of scientists. Implications for science education are discussed.

  20. Schools and Informal Science Settings: Collaborate, Co-Exist, or Assimilate?

    Science.gov (United States)

    Adams, Jennifer D.; Gupta, Preeti; DeFelice, Amy

    2012-01-01

    In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school…

  1. School Psychology Research: Combining Ecological Theory and Prevention Science

    Science.gov (United States)

    Burns, Matthew K.

    2011-01-01

    The current article comments on the importance of theoretical implications within school psychological research, and proposes that ecological theory and prevention science could provide the conceptual framework for school psychology research and practice. Articles published in "School Psychology Review" should at least discuss potential…

  2. Approaching multidimensional forms of knowledge through Personal Meaning Mapping in science integrating teaching outside the classroom

    DEFF Research Database (Denmark)

    Hartmeyer, Rikke; Bolling, Mads; Bentsen, Peter

    2017-01-01

    knowledge dimensions is important, especially in science teaching outside the classroom, where “hands-on” approaches and experiments are often part of teaching and require procedural knowledge, among other things. Therefore, this study investigates PMM as a method for exploring specific knowledge dimensions......Current research points to Personal Meaning Mapping (PMM) as a method useful in investigating students’ prior and current science knowledge. However, studies investigating PMM as a method for exploring specific knowledge dimensions are lacking. Ensuring that students are able to access specific...... in formal science education integrating teaching outside the classroom. We applied a case study design involving two schools and four sixth-grade classes. Data were collected from six students in each class who constructed personal meaning maps and were interviewed immediately after natural science...

  3. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  4. Instructional leadership in elementary science: How are school leaders positioned to lead in a next generation science standards era?

    Science.gov (United States)

    Winn, Kathleen Mary

    The Next Generation Science Standards (NGSS) are the newest K-12 science content standards created by a coalition of educators, scientists, and researchers available for adoption by states and schools. Principals are important actors during policy implementation especially since principals are charged with assuming the role of an instructional leader for their teachers in all subject areas. Science poses a unique challenge to the elementary curricular landscape because traditionally, elementary teachers report low levels of self-efficacy in the subject. Support in this area therefore becomes important for a successful integration of a new science education agenda. This study analyzed self-reported survey data from public elementary principals (N=667) to address the following three research questions: (1) What type of science backgrounds do elementary principals have? (2) What indicators predict if elementary principals will engage in instructional leadership behaviors in science? (3) Does self-efficacy mediate the relationship between science background and a capacity for instructional leadership in science? The survey data were analyzed quantitatively. Descriptive statistics address the first research question and inferential statistics (hierarchal regression analysis and a mediation analysis) answer the second and third research questions.The sample data show that about 21% of elementary principals have a formal science degree and 26% have a degree in a STEM field. Most principals have not had recent experience teaching science, nor were they every exclusively a science teacher. The analyses suggests that demographic, experiential, and self-efficacy variables predict instructional leadership practices in science.

  5. Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival

    Science.gov (United States)

    Morgan, Anne-Marie

    2012-01-01

    A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…

  6. A Network for Integrated Science and Mathematics Teaching and Learning Conference Plenary Papers. NSF/SSMA Wingspread Conference (Racine, Wisconsin, April 1991). School Science and Mathematics Association Topics for Teachers Series Number 7.

    Science.gov (United States)

    Berlin, Donna F., Ed.

    The integration of mathematics and science is not a new concept. However, during recent years it has been a major focus in education reform. A Wingspread conference promoted discussion regarding the integration of mathematics and science and explored ways to improve science and mathematics education in grades K-12. Papers from the conference…

  7. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    Science.gov (United States)

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  8. Profiling interest of students in science: Learning in school and beyond

    Science.gov (United States)

    Dierks, Pay O.; Höffler, Tim N.; Parchmann, Ilka

    2014-05-01

    Background:Interest is assumed to be relevant for students' learning processes. Many studies have investigated students' interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose:The aim of this study is to obtain a precise image of secondary school students' interest for school and out-of-school learning opportunities, both formal and informal. The study is part of a larger project on measuring the students' Individual Concept about the Natural Sciences (ICoN), including self-efficacy, beliefs and achievements next to interest variables. Sample:Next to regular school students, a specific cohort will be analyzed as well: participants of science competitions who are regarded as having high interest, and perhaps different interest profiles than regular students. In the study described here, participants of the International Junior Science Olympiad (N = 133) and regular students from secondary schools (N = 305), age cohorts 10 to 17 years, participated. Design and methods:We adapted Holland's well-established RIASEC-framework to analyze if and how it can also be used to assess students' interest within science and in-school and out-of-school (leisure-time and enrichment) activities. The resulting questionnaire was piloted according to quality criteria and applied to analyze profiles of different groups (boys - girls, contest participants - non-participants). Results:The RIASEC-adaption to investigate profiles within science works apparently well for school and leisure-time activities. Concerning the interest in fostering measures, different emphases seem to appear. More research in this field needs to be done to adjust measures better to students' interests and other pre-conditions in the future. Contrasting different groups like gender and participation in a junior science contest uncovered specific interest profiles. Conclusions:The instrument seems to offer a promising approach to

  9. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  10. Rural Elementary School Teachers' Technology Integration

    Science.gov (United States)

    Howley, Aimee; Wood, Lawrence; Hough, Brian

    2011-01-01

    Based on survey responses from more than 500 third-grade teachers, this study addressed three research questions relating to technology integration and its impact in rural elementary schools. The first analyses compared rural with non-rural teachers, revealing that the rural teachers had more positive attitudes toward technology integration. Then…

  11. A systemic model for differentiating school technology integration

    Directory of Open Access Journals (Sweden)

    Tel Amiel

    2016-07-01

    Full Text Available School technology integration rarely begins with school or educator choice. It is part of a wider context where external and internal factors have direct influence on the goals and tools that are adopted over time. The objective of this study is to investigate the systemic conditions that contribute or inhibit the development of different activities by teachers making use of new media. We compiled a list of well-known conditions for technology integration success and mapped these in the historical and culturally bound perspective of activity theory (cultural historical activity theory. We conducted a multiple case study analysis of four schools, public and private. The results point to unique and distinctive scenarios even when homogeneity would be expected, reinforcing the argument that material conditions do not determine pedagogical outcomes nor do they determine changes in practice. Beyond this, the study proposes a methodology that can help elicit tensions in technology integration, pointing to avenues for school development.

  12. Predictors and Outcomes of Parental Involvement with High School Students in Science

    Science.gov (United States)

    Shumow, Lee; Lyutykh, Elena; Schmidt, Jennifer A.

    2011-01-01

    Demographic and psychological predictors of parent involvement with their children's science education both at home and at school were examined during high school. Associations between both types of parent involvement and numerous academic outcomes were tested. Data were collected from 244 high school students in 12 different science classrooms…

  13. A rural math, science, and technology elementary school tangled up in global networks of practice

    Science.gov (United States)

    Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina

    2010-06-01

    This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced the school's science curriculum, the ways the school promoted itself to the community, and the implicit meanings of science held by school staff, parents and community members. Main sources of data were the county's newspaper articles from 2003 to 2006, the school's, town's, and business leaders' promotional materials, and interviews with school staff, parents, and community members. A key finding was the school's dual promotion of science education and character education. We make sense of this "science with character" curriculum by unpacking the school and community's entanglements with historical (cultural preservation), political (conservative politics, concerns for youth depravity), and economic (globalization) networks. We describe the ways those entanglements enabled certain reproductive meanings of school science (as add-on, suspect, and elitist) and other novel meanings of science (empathetic, nurturing, place-based). This study highlights the school as a site of struggle, entangled in multiple networks of practice that influence in positive, negative, and unpredictable ways, the enacted science curriculum.

  14. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  15. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  16. Science and Technology Education in the STES Context in Primary Schools: What Should It Take?

    Science.gov (United States)

    Zoller, Uri

    2011-10-01

    Striving for sustainability requires a paradigm shift in conceptualization, thinking, research and education, particularly concerning the science-technology-environment-society (STES) interfaces. Consequently, `STES literacy' requires the development of students' question asking, critical, evaluative system thinking, decision making and problem solving capabilities, in this context, via innovative implementable higher-order cognitive skills (HOCS)-promoting teaching, assessment and learning strategies. The corresponding paradigms shift in science and technology education, such as from algorithmic teaching to HOCS-promoting learning is unavoidable, since it reflects the social pressure, worldwide, towards more accountable socially- and environmentally-responsible sustainable development. Since most of the STES- and, recently STEM (science-technology-engineering-mathematics)-related research in science education has been focused on secondary and tertiary education, it is vital to demonstrate the relevance of this multifaceted research to the science and technology teaching in primary schools. Our longitudinal STES education-related research and curriculum development point to the very little contribution, if any, of the traditional science teaching to "know", to the development of students' HOCS capabilities. On the other hand, there appears to be a `general agreement', that the contemporary dominant lower-order cognitive skills (LOCS) teaching and assessment strategies applied in science and technology education are, in fact, restraining the natural curiosity and creativity of primary school (and younger?) pupils/children. Since creative thinking as well as evaluative system thinking, decision making, problem solving and … transfer constitute an integral part of the HOCS conceptual framework, the appropriateness of "HOCS promoting" teaching, and the relevance of science and technology, to elementary education in the STES context, is apparent. Therefore, our

  17. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  18. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  19. Representations of Nature of Science in Selected Histories of Science in

    Science.gov (United States)

    Wei, Bing; Li, Yue; Chen, Bo

    2013-01-01

    This study aimed to examine the representations of nature of science (NOS) in the eight histories of science selected from three series of integrated science textbooks used in junior high school in China. Ten aspects of NOS were adopted in the analytical framework. It was found that NOS had not been well treated in the selected histories of…

  20. The Impact of a Geospatial Technology-Supported Energy Curriculum on Middle School Students' Science Achievement

    Science.gov (United States)

    Kulo, Violet; Bodzin, Alec

    2013-02-01

    Geospatial technologies are increasingly being integrated in science classrooms to foster learning. This study examined whether a Web-enhanced science inquiry curriculum supported by geospatial technologies promoted urban middle school students' understanding of energy concepts. The participants included one science teacher and 108 eighth-grade students classified in three ability level tracks. Data were gathered through pre/posttest content knowledge assessments, daily classroom observations, and daily reflective meetings with the teacher. Findings indicated a significant increase in the energy content knowledge for all the students. Effect sizes were large for all three ability level tracks, with the middle and low track classes having larger effect sizes than the upper track class. Learners in all three tracks were highly engaged with the curriculum. Curriculum effectiveness and practical issues involved with using geospatial technologies to support science learning are discussed.

  1. Canisius College Summer Science Camp: Combining Science and Education Experts to Increase Middle School Students' Interest in Science

    Science.gov (United States)

    Sheridan, Phillip M.; Szczepankiewicz, Steven H.; Mekelburg, Christopher R.; Schwabel, Kara M.

    2011-01-01

    The Canisius College Summer Science Camp is a successful and effective annual outreach program that specifically targets middle school students in an effort to increase their interest in science. Five broadly defined science topics are explored in a camp-like atmosphere filled with hands-on activities. A 2010 module focused on chemistry topics of…

  2. Foundations in Science and Mathematics Program for Middle School and High School Students

    Science.gov (United States)

    Desai, Karna Mahadev; Yang, Jing; Hemann, Jason

    2016-01-01

    The Foundations in Science and Mathematics (FSM) is a graduate student led summer program designed to help middle school and high school students strengthen their knowledge and skills in mathematics and science. FSM provides two-week-long courses over a broad spectrum of disciplines including astronomy, biology, chemistry, computer programming, geology, mathematics, and physics. Students can chose two types of courses: (1) courses that help students learn the fundamental concepts in basic sciences and mathematics (e.g., "Precalculus"); and (2) knowledge courses that might be excluded from formal schooling (e.g., "Introduction to Universe"). FSM has served over 500 students in the Bloomington, IN, community over six years by acquiring funding from Indiana University and the Indiana Space Grant Consortium. FSM offers graduate students the opportunity to obtain first hand experience through independent teaching and curriculum design as well as leadership experience.We present the design of the program, review the achievements, and explore the challenges we face. We are open to collaboration with similar educational outreach programs. For more information, please visit http://www.indiana.edu/~fsm/ .

  3. High School Physical Sciences Teachers' Competence in Some ...

    African Journals Online (AJOL)

    Teachers' lack of competence in cognitive skills and strategies would be an important limiting factor in the successful implementation of the Physical Sciences curriculum. An urgent need ... Keywords: Cognitive skills, thinking skills, questions testing skills, problem solving, teacher training, high school physical science ...

  4. Economic School Integration: An Update. The Century Foundation Issue Brief Series.

    Science.gov (United States)

    Kahlenberg, Richard D.

    In 2000, an Idea Brief asserted that the best way to improve education would be to give every schoolchild the opportunity to attend a middle class public school (economic school integration). This brief reviews recent research and policy developments regarding economic school integration, noting that school segregation based on socioeconomic…

  5. Big Data and Data Science: Opportunities and Challenges of iSchools

    Directory of Open Access Journals (Sweden)

    Il-Yeol Song

    2017-08-01

    Full Text Available Due to the recent explosion of big data, our society has been rapidly going through digital transformation and entering a new world with numerous eye-opening developments. These new trends impact the society and future jobs, and thus student careers. At the heart of this digital transformation is data science, the discipline that makes sense of big data. With many rapidly emerging digital challenges ahead of us, this article discusses perspectives on iSchools’ opportunities and suggestions in data science education. We argue that iSchools should empower their students with “information computing” disciplines, which we define as the ability to solve problems and create values, information, and knowledge using tools in application domains. As specific approaches to enforcing information computing disciplines in data science education, we suggest the three foci of user-based, tool-based, and application-based. These three foci will serve to differentiate the data science education of iSchools from that of computer science or business schools. We present a layered Data Science Education Framework (DSEF with building blocks that include the three pillars of data science (people, technology, and data, computational thinking, data-driven paradigms, and data science lifecycles. Data science courses built on the top of this framework should thus be executed with user-based, tool-based, and application-based approaches. This framework will help our students think about data science problems from the big picture perspective and foster appropriate problem-solving skills in conjunction with broad perspectives of data science lifecycles. We hope the DSEF discussed in this article will help fellow iSchools in their design of new data science curricula.

  6. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  7. Dreaming of science: Undocumented Latin[a]s' testimonios across the borderlands of high school science

    Science.gov (United States)

    Aguilar-Valdez, Jean Rockford

    This qualitative study uncovers the voices of five Latin students who are high-"achieving" and undocumented and have strong aspirations in science, in a Southern, Title I high school. Through critical race methodology and these students' testimonios/counter-stories, these students' struggles and successes reveal their crossing of cultural and political borderlands and negotiating structures of schooling and science. The students dream of someday pursuing a trajectory in the field of science despite racial, ethnic, and political barriers due to their undocumented status. I use three key theoretical approaches--Borderlands/Anzalduan theory (Anzaldua, 2007), Loving Playfulness/World Traveling (Lugones, 2003), and Latino Critical Race Theory (in which many Latin/Chican studies contribute)--to put a human face on the complex political and educational situations which the students in this study traverse. Data were collected during a full school year with follow-up contact into the present, with over 133 hours immersed in the field, involving 22 individual student interviews, six student focus group interviews, 14 teacher interviews, field notes from over 79 contact hours with participants in formal and informal science education settings, and document review. This study reveals high-"achieving" students flourishing in formal school science and informal science settings, starting a STEM (Science, Technology, Engineering, and Math) club and the first community garden in a Title I high school in their state, to benefit their immigrant-rich community. Each student professes agentic desire to follow a science trajectory but testifies to their struggle with racism, nativism, and state policies of restricted college access. Students persevere in spite of the additional obstacles they face, to "prove" their "worth" and rise above deficit narratives in the public discourse regarding students of their ethnicity and undocumented status, and hold onto hope for legislation such as

  8. How do the high school biology textbooks introduce the nature of science?

    Science.gov (United States)

    Lee, Young H.

    2007-05-01

    Although helping students to achieve an adequate understanding of the nature of science has been a consistent goal for science education for over half a century, current research reveals that the majority of students and teachers have naive views of the nature of science (Abd-El-khalick & Akerson, 2004; Bianchini & Colburn, 2000). This problem could be attributed not only to the complex nature of science, but also to the way the nature of science is presented to students during instruction. Thus, research must be conducted to examine how the science is taught, especially in science textbooks, which are a major instructional resource for teaching science. The aim of this study was to conduct a content analysis of the first chapter of four high school biology textbooks, which typically discusses "What is science?" and "What is biology?" This research used a content analysis technique to analyze the four high school biology textbooks, using a conceptual framework that has been used often for science textbook analysis. This conceptual framework consists of four themes of the nature of science: (a) science as a body of knowledge, (b) science as a way of thinking, (c) science as a way of investigating, and (d) the interaction of science, technology, and society. For this study, the four-theme-framework was modified to incorporate descriptors from national-level documents, such as Science for All Americans (AAAS, 1990) Benchmarks for Science Literacy (AAAS, 1993) and the National Science Education Standards (NRC, 1996), as well as science education research reports. A scoring procedure was used that resulted in good to excellent intercoder agreement with Cohen's kappa (k) ranging from .63 to .96. The findings show that the patterns of presentation of the four themes of the nature of science in the four high school biology textbooks are similar across the different locations of data, text, figures, and assessments. On the other hand, the pattern of presentation of the four

  9. Locus of Control, Interest in Schooling and Science Achievement of Some Deaf and Typical Secondary School Students in Nigeria

    Science.gov (United States)

    Olatoye, R. Ademola; Aanu, E. Mosunmola

    2010-01-01

    This study compared locus of control, interest in school and science achievement of typical and deaf secondary school students. The study also investigated influence of students' locus of control and interest in school on general science achievement. Seventy two (72) deaf and 235 typical children were purposively selected from eight secondary…

  10. The implementation of a discovery-oriented science education program in a rural elementary school

    Science.gov (United States)

    Liddell, Martha Sue

    2000-10-01

    This study focused on the implementation of a discovery-oriented science education program at a rural elementary school in Mississippi. The instructional leadership role of the principal was examined in the study through identification and documentation of processes undertaken by the principal to implement a discovery-oriented science education program school. The goal of the study was to develop a suggested approach for implementing a discovery-oriented science education program for principals who wish to become instructional leaders in the area of science education at their schools. Mixed methods were used to collect, analyze, and interpret data. Subjects for the study consisted of teachers, students, and parents. Data were collected through field observation; observations of science education being taught by classroom teachers; examination of the principal's log describing actions taken to implement a discovery-oriented science education program; conducting semi-structured interviews with teachers as the key informants; and examining attitudinal data collected by the Carolina Biological Supply Company for the purpose of measuring attitudes of teachers, students, and parents toward the proposed science education program and the Science and Technology for Children (STC) program piloted at the school. To develop a suggested approach for implementing a discovery-oriented science education program, data collected from field notes, classroom observations, the principal's log of activities, and key informant interviews were analyzed and group into themes pertinent to the study. In addition to descriptive measures, chi-square goodness-of-fit tests were used to determine whether the frequency distribution showed a specific pattern within the attitudinal data collected by the Carolina Biological Supply Company. The pertinent question asked in analyzing data was: Are the differences significant or are they due to chance? An alpha level of .01 was selected to determine

  11. Students' perceptions about science: The impact of transition from primary to secondary school

    Science.gov (United States)

    Speering, Wendy; Rennie, Léonie

    1996-09-01

    As students move through school, attitudes to school in general, and science in particular, become less positive. This paper reports on a longitudinal study which mapped, from the students' point of view, the transition between primary and secondary school in Western Australia. The study focused on the subject of science, and used both quantitative and qualitative methods. During the transition, there is a considerable change in the organisation of the school, the curriculum and the teacherstudent relationship. Students in this study, especially the girls, were generally disenchanted with the teaching strategies used in their secondary science classrooms, and regretted the loss of the close teacher-student relationship of their primary school years. Their perceptions were that science in secondary school was not what they had expected, and this experience may have long term implications for their subject and career choices.

  12. "Comets, Origins, and Life:” Promoting Interdisciplinary Science in Secondary and Middle Schools in the Washington, DC and Saint Louis, MO Metro Areas

    Science.gov (United States)

    Bonev, Boncho; Gibb, E. L.; Brewer, G.; Novak, R.; Mandell, A. M.; Seaton, P.; Price, J.; Long, T.; Bahar, S.; Edwards, S. S.

    2010-10-01

    Developing a full-year program to support secondary and middle school science education is a key part of the "broader impact” component of NSF Grant AST- 0807939 (PI/Co-PI Bonev/Gibb). This program is realized at two stages: (1) a professional development course for teachers is offered during the summer; (2) during the subsequent academic year we collaborate with educators in lessons planning or curriculum development as demanded in their particular schools. We successfully offered the course “ Comets, Origins, and Life: Interdisciplinary Science in the Secondary Classroom ” (45 contact hours; 3 credits) in the summers of 2009 and 2010 at the Catholic University of America. This class demonstrates how a complex hypothesis - for the delivery of water and prebiotic organic matter to early Earth - is being tested by integrating astronomy, physics, chemistry, biology, and Earth and planetary science. Collaborations with participants from the 2009 class include curriculum development within the Earth Science program in Prince Georges county, MD and strengthening science in Washington DC public schools. Our next step is to offer our class in the Saint Louis, MO area. The main challenge in our work with educators is not to present them with "interesting information", but to fit what we offer within the very particular curriculum expectations of their school districts. These curriculum expectations often vary from district to district and sometimes from year to year. We gratefully acknowledge the support by the NSF, allowing to fully integrate our research area into education. We also gratefully acknowledge our collaborations with the Goddard Center for Astrobiology and the Howard B. Owens Science Center (both in MD) in developing our class curriculum. Educators interested in this program can contact Boncho Bonev (bonev@cua.edu; for the Washington DC and Baltimore, MD areas) and Erika Gibb (gibbe@umsl.edu; for the Saint Louis, MO area).

  13. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  14. The kids at Hamilton Elementary School: Purposes and practices for co-opting science

    Science.gov (United States)

    Ortiz, Loaiza

    The purpose of this study was to explore youth's purposes and motivations for engaging in science through the lens of science practices. The construct of science practices allowed me to see science in youths' lives in a holistic way, shaped by social, political, historical, economic and cultural forces. The framework for understanding urban youths' science practices is grounded in the intersections of critical and feminist theory, sociocultural learning theories, especially as applied in research in urban science education, and recent work in critical literacy studies. As I explored the answers to my research questions---(1) When 5th grade youth, living in predominantly Latino communities struggling with urban poverty, engage in science how and why do they co-opt science in ways that result in changes in participation in science? (2) What are the science practices that facilitate youths' coopting of science? And how are those practices framed by context (school, out-of-school), content (LiFE curriculum), and funds of knowledge? (3) In what ways are science practices expressions of youths' scientific literacy? And (4) In what ways do youth use science practices as tools for expressing identities and agency?---I engaged in feminist ethnography with embedded case studies. Data were collected in 2004 in school and in out of school settings. I recorded numerous informal conversations, interviews, and observations both during after-school and students' regular science and non-science classes. Findings describe how and why students co-opted science for purposes that make sense for their lives. These purposes included gaining and activating resources, building and maintaining social relationships, bridging home and school knowledge, positioning themselves with authority, and constructing science identities. Findings also explored what practices facilitated youth's co-opting of science. I highlighted three practices: making ideas public, storytelling and prioritizing and

  15. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  16. Talking about science: An interpretation of the effects of teacher talk in a high school science classroom

    Science.gov (United States)

    Moje, Elizabeth B.

    This paper builds on research in science education, secondary education, and sociolinguistics by arguing that high school classrooms can be considered speech communities in which language may be selectively used and imposed on students as a means of fostering academic speech community identification. To demonstrate the ways in which a high school teacher's language use may encourage subject area identification, the results of an interactionist analysis of data from a 2-year ethnographic study of one high school chemistry classroom are presented. Findings indicate that this teacher's uses of language fell into three related categories. These uses of language served to foster identification with the academic speech community of science. As a result of the teacher's talk about science according to these three patterns, students developed or reinforced particular views of science. In addition, talking about science in ways that fostered identity with the discipline promoted the teacher as expert and built classroom solidarity or community. These results are discussed in light of sociolinguistic research on classroom competence and of the assertions of science educators regarding social and ideologic implications of language use in science instruction.Received: 23 September 1993; Revised: 15 September 1994;

  17. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    2014-01-01

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit…

  18. Can the implementation of aerospace science in elementary school help girls maintain their confidence and engagement in science as they transition to middle school?

    Science.gov (United States)

    Solberg, Margot

    2018-06-01

    There is a global crisis due to a lack of qualified applicants entering STEM careers, especially in science. Add the fact that women are greatly underrepresented in science, and the solution becomes obvious. Go to the source, and find out why girls as young as 12 years old are losing an interest in scientific endeavors that they once found to be captivating. This action research project sought to find out if the implementation of aerospace science, embedded both in the classroom and in an after school Space Club, could assist girls in maintaining their confidence and engagement in science overall as they transition to middle school. Furthermore, girls in fifth through seventh grade, who had previously been the teacher researcher's students, were included in the study in order to discover if their previous participation in a variety of authentic and ongoing aerospace activities had any impact upon their engagement in science as they entered the notable years of declined interest. The research took place at an international American school, Academia Cotopaxi, in Quito, Ecuador from September 2015 through April 2016. Data was collected through both qualitative and quantitative sources, and included attitude surveys, parent questionnaires, a writing prompt, photos, video, interviews and observations. Additionally, a control group was utilized in grades five to seven for purposes of comparison. Innovative activities included engaging and first-hand experiences with the Ecuadorian Civilian Space Agency (EXA), the National Aeronautics Space Administration (NASA), Space X and the Canadian Space Agency (CSA). Inquiry-based activities included, but were not limited to, experiences with: speaking live with both astronauts and cosmonauts on the International Space Station, robotics, rocketry, Skype chats with aerospace professionals, utilizing the Design Process, online resources and more. Findings suggested that embedding aerospace science in grade four, both during and after

  19. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    Science.gov (United States)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  20. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  1. The influence of extracurricular activities on middle school students' science learning in China

    Science.gov (United States)

    Zhang, Danhui; Tang, Xing

    2017-07-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science achievement. Structural equation modelling was used to investigate the influence of students' self-chosen and school-organised extracurricular activities on science achievement through mediating interests and the academic self-concept. Chi-square tests were used to determine whether there was an opportunity gap in the student's engagement in extracurricular activities. The students' volunteer and school-organised participation in extracurricular science activities had a positive and indirect influence on their science achievement through the mediating variables of their learning interests and academic self-concept. However, there were opportunity gaps between different groups of students in terms of school location, family background, and especially the mother's education level. Students from urban areas with better-educated mothers or higher socioeconomic status are more likely to access diverse science-related extracurricular activities.

  2. Gender differences in tenth-grade students' attitudes toward science: The effect of school type

    Science.gov (United States)

    Ndakwah, Ernestine Ajame

    The focus of this mixed methods study was on 10th grade students' attitudes towards science. Its purpose was to examine the effect of gender and school-type on attitudes toward science. Research on attitudes toward science has focused on gender, school level, and classroom environment. Relatively little has been done on the effect of school type. In the present study, school type refers to the following variables; private vs. public, single-sex vs. coeducational and high vs. low-achieving schools. The quantitative component of the study allowed the researcher to determine whether there are gender differences in attitudes toward science based on the school type variables being investigated. The Test of Science Related Attitudes (TOSRA) was the instrument used to provide quantitative data for this aspect of the study. TOSRA is a Likert scale consisting of seven subscales measuring different aspects of science attitudes. The qualitative component, on the other hand, explored students' perspectives on the factors, which were influential in the development of the attitudes that they hold. The events and experiences of their lives in and out-of-school, with respect to science, and the meanings that they make of these provided the data from which their attitudes toward science could be gleaned. Data for this component of the study was gathered by means of in-depth focus group interviews. The method of constant comparative analysis was used to analyze the interview transcripts. Statistical treatment of the questionnaire data involved the use of t tests and ANOVA. Findings did not reveal any gender differences on the total attitude scores although there were some differences on some of the subscales. School type did not appear to be a significant variable in students' attitudes to science. The results of both quantitative and qualitative components show that instructional strategy and teacher characteristics, both of which are components of the classroom environment are

  3. High school Physical Sciences teachers' competence in some basic cognitive skills

    OpenAIRE

    Selvaratnam, Mailoo

    2011-01-01

    The successful implementation of the national high school Physical Sciences curriculum in South Africa, which places strong emphasis on critical thinking and reasoning abilities of students, would need teachers who are competent in cognitive skills and strategies. The main objectives of this study were to test South African high school Physical Sciences teachers' competence in the cognitive skills and strategies needed for studying Physical Sciences effectively and also to identify possible r...

  4. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  5. Modeling stability of growth between mathematics and science achievement during middle and high school.

    Science.gov (United States)

    Ma, Xin; Ma, Lingling

    2004-04-01

    In this study, the authors introduced a multivariate multilevel model to estimate the consistency among students and schools in the rates of growth between mathematics and science achievement during the entire middle and high school years with data from the Longitudinal Study of American Youth (LSAY). There was no evident consistency in the rates of growth between mathematics and science achievement among students, and this inconsistency was not much influenced by student characteristics and school characteristics. However, there was evident consistency in the average rates of growth between mathematics and science achievement among schools, and this consistency was influenced by student characteristics and school characteristics. Major school-level variables associated with parental involvement did not show any significant impacts on consistency among either students or schools. Results call for educational policies that promote collaboration between mathematics and science departments or teachers.

  6. Individual and Collective Leadership in School Science Departments

    Science.gov (United States)

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  7. What Is Science? Some Research from Primary Schools

    Science.gov (United States)

    Crompton, Zoe

    2013-01-01

    By the end of primary school, we might expect children to be able to give a reasonable description of what science is. In their response to the question "What is science?", Eshach and Fried (2005) distinguish between conceptual and procedural knowledge and understanding. They explain that children's conceptual knowledge is developed…

  8. Droning on about the Weather: Meteorological Science on a School-Friendly Scale

    Science.gov (United States)

    Murphy, Phil; O'Neill, Ashley; Brown, Abby

    2016-01-01

    Meteorology is an important branch of science that offers exciting career opportunities and yet is not usually included in school curricula. The availability of multi-rotor model aircraft (drones) offers an exciting opportunity to bring meteorology into school science.

  9. The pathways of high school science teachers and policy efforts to alter the pipeline

    Science.gov (United States)

    Sass, Tim

    2012-03-01

    There is currently much interest in improving the quality of science education in K-12 schools and encouraging more students, particularly minorities and women, to pursue careers in STEM fields. Two interrelated issues are at the forefront: the quality of science teachers and the supply of science teachers. Education research in general finds that the single most important school-based factor affecting student achievement is teacher quality. While there is little evidence that teacher credentials matter for student achievement in the lower grades, there is at least some evidence that content knowledge is an important determinant of teacher quality in middle and secondary schools. However, little is known about the pre-service preparation of high school science teachers and how the training of science teachers affects their performance in the classroom. While there are many efforts underway to increase the supply of science teachers, little is known about the supply of science teachers from different pathways and the factors that lead science teachers to leave the profession. In this presentation I discuss recent work on the supply of teachers from alternative pathways, focusing on high school science teachers. I also summarize the literature on teacher quality and attrition, emphasizing the current state of knowledge on secondary school teachers. Finally, I present current policy initiatives and discuss the likelihood of their success given current research findings.

  10. The Graduate School of Climate Sciences, University of Bern

    Science.gov (United States)

    Martin, L.

    2012-04-01

    The Graduate School of Climate Sciences, University of Bern, offers a specialised M.Sc. and a Ph.D. study programme in climate sciences. The graduate school has a highly interdisciplinary profile involving not only natural sciences, but also humanities/history, economics and law. The ten participating institutes with a total of 45 academics provide expertise in long-term climate variability, climate modelling, climate reconstruction, predictability of the future climate and extreme events, the impact of climate change on ecosystems and climate risks for society and economy. The graduate school is fully compliant with the Bologna Accords and collaborates closely with the sister institution C2SM at ETH Zurich by, e.g., jointly organised lectures. There are currently 23 master and 37 doctoral students in the programme. These originate from the University of Bern (28 %), from other Swiss universities (30 %) and from foreign universities (42 %). Comprehensive information about the Graduate School of Climate Sciences is available at http://www.climatestudies.unibe.ch . The M.Sc. in Climate Sciences programme (120 ECTS credits) is designed to attract students from all disciplines in natural sciences and offers them a tailor-made curriculum to reach their career aspirations. The students make their own course selection according to their profile envisaged (specialised versus broad education) and ideally already guided by a job perspective. Selecting the courses and the topic of the master thesis they specialise in one of five fields: climate and earth system science; atmospheric science; economics; economic, social and environmental history; statistics. Several courses are organised jointly with public authorities and the private industry, e.g. from experts working in the insurance business, in weather forecasting or in environmental pollution control. This provides the students hands-on experience and contacts to future employers. The master thesis (60 ECTS) involves the

  11. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. JOHNSON

    2011-11-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  12. Improving middle and high school students' comprehension of science texts

    Directory of Open Access Journals (Sweden)

    Brandi E. Johnson

    2011-10-01

    Full Text Available Throughout the United States, many middle and high school students struggle to comprehend science texts for a variety of reasons. Science texts are frequently boring, focused on isolated facts, present too many new concepts at once, and lack the clarity and organization known to improve comprehension. Compounding the problem is that many adolescent readers do not possess effective comprehension strategies, particularly for difficult expository science texts. Some researchers have suggested changing the characteristics of science texts to better assist adolescent readers with understanding, while others have focused on changing the strategies of adolescent readers. In the current paper, we review the literature on selected strategy instruction programs used to improve science text comprehension in middle and high school students and suggest avenues for future research.

  13. Urban School Choice and Integration: The Effect of Charter Schools in Little Rock

    Science.gov (United States)

    Ritter, Gary W.; Jensen, Nathan C.; Kisida, Brian; Bowen, Daniel H.

    2016-01-01

    We examine the impact of charter schools on school integration in the Little Rock, Arkansas metropolitan area. We find that charters are less likely to be hyper-segregated than traditional public schools (TPS), but TPS have compositions more closely reflecting the region. However, differences in each case are slight. Using student-level data to…

  14. Science choices and preferences of middle and secondary school students in Utah

    Science.gov (United States)

    Baird, J. Hugh; Lazarowitz, Reuven; Allman, Verl

    This research sought to answer two questions: (1) What are Utah junior and senior high school students' preferences and choices regarding science subjects? (2) Could preferences and choices be related to the type of school, age or gender? Two thousand students from grades six through twelve participated in this study. Findings show that zoology and human anatomy and physiology were most preferred. Ecology was least prefered. Topics in the physical sciences were also low. There was a trend among girls to prefer natural sciences such as botany while boys tended to prefer the physical sciences. Generally, students' choices were limited to those subjects presently taught in the formal school curriculum. They appeared unaware of the many science related subjects outside the texts or the approved course of study.

  15. The Artful Teacher: A Conceptual Model for Arts Integration in Schools

    Science.gov (United States)

    Chemi, Tatiana

    2014-01-01

    This article addresses specific issues within arts-integration experiences in schools. Focusing on the relationship between positive emotions, learning, and the Arts, the article discusses empirical data that has been drawn from a research study, Making the Ordinary Extraordinary: Adopting Artfulness in Danish Schools. When schools integrate the…

  16. Literature and Science Create an Engaging Combination.

    Science.gov (United States)

    Brabham, Edna Greene

    1997-01-01

    Discusses programs and research that support the integration of literature and science. Reviews literature selections across a range of genres that complement topics included in middle school science, including science fiction and poetry. Considers resources educators can use to find additional science-related material. (JPB)

  17. Learning Physics with Digital Game Simulations in Middle School Science

    Science.gov (United States)

    Anderson, Janice L.; Barnett, Mike

    2013-12-01

    The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with middle school students. To this end, we explored the impact of using a game called Supercharged! on middle school students' understanding of electromagnetic concepts compared to students who conducted a more traditional inquiry-oriented investigation of the same concepts. This study was a part of a larger design experiment examining the pedagogical potential of Supercharged! The control group learned through a series of guided inquiry methods while the experimental group played Supercharged! during the laboratory sections of the science course. There was significant difference, F(2,91) = 3.6, p hands-on activities are integrated, with each activity informing the other, could be a very powerful technique for supporting student scientific understanding. Further, our findings suggest that game designers should embed meta-cognitive activities such as reflective opportunities into educational video games in order to provide scaffolds for students and to reinforce that they are engaged in an educational learning experience.

  18. Exploring science teachers' perceptions of experimentation: implications for restructuring school practical work

    Science.gov (United States)

    Wei, Bing; Li, Xiaoxiao

    2017-09-01

    It is commonly recognised that practical work has a distinctive and central role in science teaching and learning. Although a large number of studies have addressed the definitions, typologies, and purposes of practical work, few have consulted practicing science teachers. This study explored science teachers' perceptions of experimentation for the purpose of restructuring school practical work in view of science practice. Qualitative interviews were conducted with 87 science teachers at the secondary school level. In the interviews, science teachers were asked to make a comparison between students' experiments and scientific experiments. Eight dimensions of experimentation were generated from the qualitative data analysis, and the distributions of these eight dimensions between the two types of experiments were compared and analysed. An ideal model of practical work was suggested for restructuring practical work at the secondary school level, and some issues related to the effective enactment of practical work were discussed.

  19. Opinions of Secondary School Science and Mathematics Teachers on STEM Education

    Science.gov (United States)

    Yildirim, Bekir; Türk, Cumhur

    2018-01-01

    In this study, the opinions of middle school science teachers and mathematics teachers towards STEM education were examined. The research was carried out for 30 hours with 28 middle school science and mathematics teachers who were working in Istanbul during the spring semester of 2016-2017 academic year. 75% of these teachers are female teachers…

  20. The Supply of Science Teachers to Secondary Schools in Ondo ...

    African Journals Online (AJOL)

    Male science teachers were in greater numbers than female science teachers in the schools. The number of science teachers supplied from higher institutions outside the State was greater than the number supplied from higher institutions within the State The supply of science teachers did not match the demand for them in ...

  1. Girls in Engineering, Mathematics and Science, GEMS: A Science Outreach Program for Middle-School Female Students

    Science.gov (United States)

    Dubetz, Terry A.; Wilson, Jo Ann

    2013-01-01

    Girls in Engineering, Mathematics and Science (GEMS) is a science and math outreach program for middle-school female students. The program was developed to encourage interest in math and science in female students at an early age. Increased scientific familiarity may encourage girls to consider careers in science and mathematics and will also help…

  2. Integrated Management of Structural Pests in Schools.

    Science.gov (United States)

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  3. What Kills Science in School?: Lessons from Pre-Service Teachers' Responses to Urban children's Science Inquiries.

    Science.gov (United States)

    Matusov, Eugene

    2018-06-01

    This opportunistic case-study highlights striking differences in 6 urban children's and 12 preservice suburban middle-class teachers' perception of science and discuss consequences of science education and beyond. I found that all of the interviewed urban children demonstrated scientific inquiries and interests outside of the school science education that can be characterized by diverse simultaneous discourses from diverse practices, i.e., "heterodiscoursia" (Matusov in Culture & Psychology, 17(1), 99-119, 2011b), despite their diverse, positive and negative, attitudes toward school science. In contrast to the urban children's mixed attitudes to science, the preservice teachers view science negatively. They could not see science inquiries in the videotaped interviews of the urban children. There seemed to be many reasons for that. One of the possible reasons for that was that the preservice teachers tried to purify the science practice. Another reason was that they did not see a necessity to be interested and engaged in the curriculum that they are going to teach in future. The pedagogical consequences and remedies are discussed.

  4. Urban school leadership for elementary science education: Meeting the needs of English Language Learners

    Science.gov (United States)

    Alarcon, Maricela H.

    Science education reform and state testing accountability call upon principals to become instructional leaders in science. Specifically, elementary school principals must take an active role in science instruction to effectively improve science education for all students including English Language Learners. As such, the research questioned posed in this study centered on How are elementary school principals addressing the academic needs of Latino Spanish-speaking English language learners within science education? This study employed a qualitative research design to identify the factors contributing to the exemplary performance in science, as measured by the Texas Assessment of Knowledge and Skills (TAKS), for English Language Learner students in three high poverty bilingual elementary schools based on a multiple case study. As part of the data collection process, interviews were conducted with three school principals, three science academic support teachers, and two 5th grade bilingual teachers. Additionally, observations were acquired through school principal shadowing. The findings revealed four attributes necessary for effective instructional leadership in science education. First, Positive School Culture was defined as the core that linked the other three instructional leadership attributes and thus increased their effectiveness. Second, Clear Goals and Expectations were set by making science a priority and ensuring that English language learners were transitioning from Spanish to English instruction by the fifth grade. Third, Critical Resourcing involved hiring a science academic support teacher, securing a science classroom on campus, and purchasing bilingual instructional materials. Fourth, principal led and supported Collaboration in which teachers met to discuss student performance based data in addition to curriculum and instruction. These research findings are vital because by implementing these best practices of elementary school principals, educators

  5. Going Beyond Academic Integrity Might Broaden our Understanding of Plagiarism in Science Education: A Perspective from a Study in Brazil.

    Science.gov (United States)

    Santos, Christiane C; Santos, Patrícia S Dos; Sant'ana, Maurício C; Masuda, Hatisaburo; Barboza, Monica B; Vasconcelos, Sonia M R

    2017-05-01

    Fostering innovation and creativity is a priority in the science and education policy agenda of most countries, which have advocated that innovative minds and processes will boost scientific and economic growth. While our knowledge society has embraced this view, fostering creativity is among the major challenges faced by educators and policymakers. For example, plagiarism, which may be considered a form of imitation and repetition, is a global concern at schools and universities. However, most discussions focus on academic integrity, which, we believe, leaves some gaps in the approach to the problem. As part of an ongoing project on plagiarism, science and education policy, we show results from a survey sent to 143 high-school science teachers at one of the most highly regarded federal schools in Brazil. Among respondents (n=42), about 50% admit that students plagiarize in assignments. Additionally, many of these educators suggest that the way biology, chemistry and physics are taught at school stimulates more repetition than creativity. Our findings are consistent with the need for a broader perspective on plagiarism and with initiatives to stimulate creativity and critical thinking among students. Although we offer a perspective from Brazil, it may illuminate current discussions on plagiarism, particularly in emerging countries.

  6. Going Beyond Academic Integrity Might Broaden our Understanding of Plagiarism in Science Education: A Perspective from a Study in Brazil

    Directory of Open Access Journals (Sweden)

    CHRISTIANE C. SANTOS

    Full Text Available ABSTRACT Fostering innovation and creativity is a priority in the science and education policy agenda of most countries, which have advocated that innovative minds and processes will boost scientific and economic growth. While our knowledge society has embraced this view, fostering creativity is among the major challenges faced by educators and policymakers. For example, plagiarism, which may be considered a form of imitation and repetition, is a global concern at schools and universities. However, most discussions focus on academic integrity, which, we believe, leaves some gaps in the approach to the problem. As part of an ongoing project on plagiarism, science and education policy, we show results from a survey sent to 143 high-school science teachers at one of the most highly regarded federal schools in Brazil. Among respondents (n=42, about 50% admit that students plagiarize in assignments. Additionally, many of these educators suggest that the way biology, chemistry and physics are taught at school stimulates more repetition than creativity. Our findings are consistent with the need for a broader perspective on plagiarism and with initiatives to stimulate creativity and critical thinking among students. Although we offer a perspective from Brazil, it may illuminate current discussions on plagiarism, particularly in emerging countries.

  7. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  9. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    Science.gov (United States)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  10. Science for the People: High School Students Investigate Community Air Quality

    Science.gov (United States)

    Marks-Block, Tony

    2011-01-01

    Over a year, a small group of high school students risked their afternoons and summer to participate in a science program that was "much different from science class." This was one of several after-school programs in Oakland and Richmond that the author was leading as an instructor with the East Bay Academy for Young Scientists (EBAYS). Students…

  11. How science teachers balance religion and evolution in the science classroom: A case study of science classes in a Florida Public School District

    Science.gov (United States)

    Willems, Pierre Dominique

    The purpose of this case study was to research how science teachers balance both religion and evolution in the science classroom with as little controversy as possible. In this study I attempted to provide some insight on how teachers are currently teaching evolution in their science classes in light of the religious beliefs of the students as well as their own. The case study was conducted in a school district in Florida where I attempted to answer the following questions: (a) How do science teachers in the Florida School District (FSD) approach the religion--evolution issue in preparing students for a career in a field of science? (b) How do science teachers in the FSD reconcile the subject of evolution with the religious views of their students? (c) How do science teachers in the FSD reconcile their own religious views with the teaching of evolution? (d) How do science teachers in the FSD perceive the relationship between religion and science? The data was collected through interviews with two high school teachers, and one middle school teacher, by observing each participant teach, by collecting site documents and by administering an exploratory survey to student volunteers. Analysis was conducted by open coding which produced four themes from which the research questions were answered and the survey answers were counted to produce the percentages displayed in the tables in chapter four. The teachers avoided discussion on religiously oriented questions or statements by the students and did not reveal their own religious orientation. The topic of microevolution appeared to reduce stress in the classroom environment, as opposed to addressing macroevolution.

  12. Secondary School Students' Interests, Attitudes and Values Concerning School Science Related to Environmental Issues in Finland

    Science.gov (United States)

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Byman, Reijo; Meisalo, Veijo

    2011-01-01

    This paper explores the relationship between students' interests in environmental issues, attitudes to environmental responsibility and biocentric values in school science education. The factors were investigated within the framework of three moderators: gender, school and residential area of the school. The survey was carried out using the…

  13. The Effects of "Girls in Science Day" on Middle School Girls' Attitudes and Interests in Science

    Science.gov (United States)

    Dixon, Carmen S.

    Because of the underrepresentation of women in STEM fields, many organizations are hosting days to promote middle school girls' interest in science. The purpose of this dissertation examines one of these days, and is three-fold: Number one, to determine if the event "Girls in Science Day [GIS]" affected the interests and attitudes of the middle school girls who attend. Number two, to examine how GIS affected their interests and attitudes in science, and number three, to examine if there is a long time impact on the girls who attend GIS in middle school by interviewing them when they are older and determine if attending GIS made lasting impressions on their lives. It utilizes a mixed-methods approach by using a quantitative Likert-type scale to determine the first purpose mentioned, pre- and post- attendance interviews to examine purpose two, and longitudinal interviews of past participants to determine purpose three. These methods are then combined using meta-inference and results and implications are examined. Future research is then recommended to improve the status of women in science careers.

  14. Rethinking School Bullying: Towards an Integrated Model

    Science.gov (United States)

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  15. Integrating SQ4R Technique with Graphic Postorganizers in the Science Learning of Earth and Space

    OpenAIRE

    Djudin, Tomo; Amir, R

    2018-01-01

    This study examined the effect of integrating SQ4R reading technique with graphic post organizers on the students' Earth and Space Science learning achievement and development of metacognitive knowledge. The pretest-posttest non-equivalent control group design was employed in this quasi-experimental method. The sample which consists of 103 seventh grade of secondary school students of SMPN 1 Pontianak was drawn by using intact group random sampling technique. An achievement test and a questio...

  16. Emotions and elementary school science teaching: Postmodernism in practice

    Science.gov (United States)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  17. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  18. Visit of Professor Shigehiko Hasumi. President of Tokyo University, Japan, Professor Kazuo Okamoto, Head of Graduate School of Mathematical Sciences, Professor Toshiteru Matsuura, Head of Graduate School of Arts and Sciences

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    Visit of Professor Shigehiko Hasumi. President of Tokyo University, Japan, Professor Kazuo Okamoto, Head of Graduate School of Mathematical Sciences, Professor Toshiteru Matsuura, Head of Graduate School of Arts and Sciences

  19. Shunning the Bird's Eye View: General Science in the Schools of Ontario and Quebec

    Science.gov (United States)

    Hoffman, Michelle

    2013-04-01

    This paper considers the adoption of general science courses in two Canadian provinces, Ontario and Quebec, during the 1930s. In Ontario, a few science teachers had followed the early general science movements in the United States and Britain with interest. During the 1930s, several developments made the cross-disciplinary, applied thrust of general science particularly appealing to Ontario educationists. These developments included a new demand for vocational education, renewed reservations about pedagogical rationales based on transfer of training, and a growing professional divide between high school science teachers and university scientists. Around the same time, scientists in the Quebec's French-language universities were engaged in a concerted campaign to expand the place of science in the province's francophone secondary schools. The province's prestigious classical colleges, which were the scientists' principal target for reform, privileged an inductive view of science that had little in common with the applied, cross-disciplinary emphasis of the general science courses gaining support in English-speaking school systems. In 1934, however, a popular American general science textbook was adopted in a workers' cooperative devoted to adult education. Comparing the fate of general science within these two education systems draws attention to the fact that general science made inroads in francophone Quebec but had little influence in public and private schools. In light of the growing support general science enjoyed elsewhere, we are led to explore why general science met with little overt interest by Quebec scientists pushing for school science reform during the 1930s.

  20. Pharmaceutical science faculty publication records at research-intensive pharmacy colleges and schools.

    Science.gov (United States)

    Thompson, Dennis F; Nahata, Milap C

    2012-11-12

    To determine yearly (phase 1) and cumulative (phase 2) publication records of pharmaceutical science faculty members at research-intensive colleges and schools of pharmacy. The publication records of pharmaceutical science faculty members at research-intensive colleges and schools of pharmacy were searched on Web of Science. Fifty colleges and schools of pharmacy were randomly chosen for a search of 1,042 individual faculty members' publications per year from 2005 to 2009. A stratified random sample of 120 faculty members also was chosen, and cumulative publication counts were recorded and bibliometric indices calculated. The median number of publications per year was 2 (range, 0-34). Overall, 22% of faculty members had no publications in any given year, but the number was highly variable depending on the faculty members' colleges or schools of pharmacy. Bibliometric indices were higher for medicinal chemistry and pharmaceutics, with pharmacology ranking third and social and administrative sciences fourth. Higher bibliometric indices were also observed for institution status (ie, public vs private) and academic rank (discipline chairperson vs non-chairperson and professor vs junior faculty member) (ppharmaceutical science disciplines and academic ranks within research-intensive colleges and schools of pharmacy. These data may be important for benchmarking purposes.

  1. Exploring Ivorian Perspectives on the Effectiveness of the Current Ivorian Science Curriculum in Addressing Issues Related to HIV/AIDS

    Science.gov (United States)

    Ado, Gustave Firmin

    2014-01-01

    School-based HIV/AIDS science education has the potential to impact students when integrated into the science curriculum. However, this mixed method study shows that school-based HIV/AIDS science education is often not infused into career subjects such as science education but integrated into civics education and taught by teachers who lack the…

  2. Science Teachers' Utilisation of Innovative Strategies for Teaching Senior School Science in Ilorin, Nigeria

    Science.gov (United States)

    Oyelekan, Oloyede Solomon; Igbokwe, Emoyoke Faith; Olorundare, Adekunle Solomon

    2017-01-01

    Efforts have been made to improve science teaching in secondary schools in Nigeria, yet, students continue to perform poorly in science subjects. Many innovative teaching strategies have been developed by educators and found to impact significantly on students' academic performance when utilised. Hence, this study was aimed at examining science…

  3. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  4. Equity in Science at South African Schools: A pious platitude or an achievable goal?

    Science.gov (United States)

    Dewnarain Ramnarain, Umesh

    2011-07-01

    The apartheid policies in South Africa had a marked influence on the accessibility and quality of school science experienced by the different race groups. African learners in particular were seriously disadvantaged in this regard. The issues of equity and redress were foremost in transformation of the education system, and the accompanying curriculum reform. This paper reports on equity in terms of equality of outputs and equality of inputs in South African school science, with a particular focus on the implementation of practical science investigations. This was a qualitative case study of two teachers on their implementation of science investigations at two schools, one a township school, previously designated for black children, and the other a former Model C school, previously reserved for white children. My study was guided by the curriculum implementation framework by Rogan and Grayson in trying to understand the practice of these teachers at schools located in contextually diverse communities. The framework helped profile the implementation of science investigations and also enabled me to explore the factors which are able to support or hinder this implementation.

  5. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    2017-01-01

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within…

  6. Effective science teaching in a high poverty middle school: A case study

    Science.gov (United States)

    Meyer, Georgette Wright

    This qualitative case study described the characteristics of science teachers in a high poverty urban middle school whose 2010 scores on South Carolina's Palmetto Assessment of State Standards (PASS) ranked second in the state. Data was obtained through classroom observations, open-ended interviews, school documents, and photographs taken inside the school from ten participants, who were seven science teachers, a science coach, and two administrators. Findings revealed a school culture that pursued warm and caring relationships with students while communicating high expectations for achievement, strong central leadership who communicated their vision and continuously checked for its implementation through informal conversations, frequent classroom observations, and test score analysis. A link between participants' current actions and their perception of prior personal and professional experiences was found. Participants related their classroom actions to the lives of the students outside of school, and evidenced affection for their students.

  7. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  8. School effectiveness in science in Sweden and Norway viewed from a TIMSS perspective

    Directory of Open Access Journals (Sweden)

    Marie Wiberg

    2013-11-01

    Full Text Available Declining achievement in various core subjects has led to a debate on strategies to enhance student achievement. Identifying factors in the school environment that affect student performance in science, are therefore, of vital importance. The aim of this study is to identify school-level factors that are associated with eighth-grade students’ achievement in science based on results from TIMSS (Trends in International Mathematics and Science Study 2003 and 2007. Because the TIMSS data includes school-level factors at two different time points, we expected to find factors that influence science performance by Swedish and Norwegian students. Multilevel analysis was used, and this framework allowed us to account for the influence of the students’ home backgrounds. After controlling for student background, our results show that there are only a few school-level factors that are associated with student achievement in science, and the influence of these factors differ between Sweden and Norway.

  9. The Future Curriculum for School Science: What Can Be Learnt from the Past?

    Science.gov (United States)

    Fensham, Peter J.

    2016-01-01

    In the 1960s, major reforms of the curriculum for school science education occurred that set a future for school science education that has been astonishingly robust at seeing off alternatives. This is not to say that there are not a number of good reasons for such alternative futures. The sciences, their relation to the socio-scientific context,…

  10. Secondary School Science and Mathematics Teachers, Characteristics and Service Loads.

    Science.gov (United States)

    Mills, Thomas J.

    Determined were the educational and professional backgrounds, and some aspects of the operational environment of teachers of secondary school science and mathematics (Grades 7-12) in the public and private schools of the United States during the school year 1960-61. A stratified random sampling method was used to ensure proportional representation…

  11. Rocking Your Writing Program: Integration of Visual Art, Language Arts, & Science

    Science.gov (United States)

    Poldberg, Monique M.,; Trainin, Guy; Andrzejczak, Nancy

    2013-01-01

    This paper explores the integration of art, literacy and science in a second grade classroom, showing how an integrative approach has a positive and lasting influence on student achievement in art, literacy, and science. Ways in which art, science, language arts, and cognition intersect are reviewed. Sample artifacts are presented along with their…

  12. Sublime science: Teaching for scientific sublime experiences in middle school classrooms

    Science.gov (United States)

    Cavanaugh, Shane

    Due to a historical separation of cognition and emotion, the affective aspects of learning are often seen as trivial in comparison to the more 'essential' cognitive qualities - particularly in the domain of science. As a result of this disconnect, feelings of awe, wonder, and astonishment as well as appreciation have been largely ignored in the working lives of scientists. In turn, I believe that science education has not accurately portrayed the world of science to our students. In an effort to bring the affective qualities of science into the science classroom, I have drawn on past research in the field of aesthetic science teaching and learning as well as works by, Burke, Kant, and Dewey to explore a new construct I have called the "scientific sublime". Scientific sublime experiences represent a sophisticated treatment of the cognitive as well as affective qualities of science learning. The scientific sublime represents feelings of awe, wonder, and appreciation that come from a deep understanding. It is only through this understanding of a phenomenon that we can appreciate its true complexity and intricacies, and these understandings when mixed with the emotions of awe and reverence, are sublime. Scientific sublime experiences are an attempt at the re-integration of cognition and feeling. The goal of this research was twofold: to create and teach a curriculum that fosters scientific sublime experiences in middle school science classes, and to better understand how these experiences are manifested in students. In order to create an approach to teaching for scientific sublime experiences, it was first necessary for me to identify key characteristics of such an experience and a then to create a pedagogical approach, both of which are described in detail in the dissertation. This research was conducted as two studies in two different middle schools. My pedagogical approach was used to create and teach two five-week 7 th grade science units---one on weather

  13. Using constructivist teaching strategies in high school science classrooms to cultivate positive attitudes toward science

    Science.gov (United States)

    Heron, Lory Elen

    This study investigated the premise that the use of constructivist teaching strategies (independent variable) in high school science classrooms can cultivate positive attitudes toward science (dependent variable) in high school students. Data regarding the relationship between the use of constructivist strategies and change in student attitude toward science were collected using the Science Attitude Assessment Tool (SAAT) (Heron & Beauchamp, 1996). The format of this study used the pre-test, post-test, control group-experimental group design. The subjects in the study were high school students enrolled in biology, chemistry, or environmental science courses in two high schools in the western United States. Ten teachers and twenty-eight classes, involving a total of 249 students participated in the study. Six experimental group teachers and four control group teachers were each observed an average of six times using the Science Observation Guide (Chapman, 1995) to measure the frequency of observed constructivist behaviors. The mean for the control group teachers was 12.89 and the mean for experimental group teachers was 20.67; F(1, 8) = 16.2, p =.004, revealing teaching behaviors differed significantly between the two groups. After a four month experimental period, the pre-test and post-test SAAT scores were analyzed. Students received a score for their difference in positive attitude toward science. The null hypothesis stating there would be no change in attitude toward science as a subject, between students exposed to constructivist strategies, and students not exposed to constructivist strategies was rejected F(1, 247) = 8.04, p =.005. The control group had a generally higher reported grade in their last science class than the experimental group, yet the control group attitude toward science became more negative (-1.18) while attitude toward science in the experimental group became more positive (+1.34) after the four-month period. An analysis of positive

  14. Successfully Integrating Climate Change Education into School System Curriculum

    Science.gov (United States)

    Scallion, M.

    2017-12-01

    Maryland's Eastern Shore is threatened by climate change driven sea level rise. By working with school systems, rather than just with individual teachers, educators can gain access to an entire grade level of students, assuring that all students, regardless of socioeconomic background or prior coursework have an opportunity to explore the climate issue and be part of crafting community level solutions for their communities. We will address the benefits of working with school system partners to achieve a successful integration of in-school and outdoor learning by making teachers and administrators part of the process. We will explore how, through the Maryland and Delaware Climate Change Education, Assessment, and Research Project, teachers, content supervisors and informal educators worked together to create a climate curriculum with local context that effectively meets Common Core and Next Generation Science Standards. Over the course of several weeks during the year, students engage in a series of in-class and field activities directly correlated with their science curriculum. Wetlands and birds are used as examples of the local wildlife and habitat being impacted by climate change. Through these lessons led by Pickering Creek Audubon Center educators and strengthened by material covered by classroom teachers, students get a thorough introduction to the mechanism of climate change, local impacts of climate change on habitats and wildlife, and actions they can take as a community to mitigate the effects of climate change. The project concludes with a habitat and carbon stewardship project that gives students and teachers a sense of hope as they tackle this big issue on a local scale. We'll explore how the MADE-CLEAR Informal Climate Change Education (ICCE) Community of Practice supports Delaware and Maryland environmental educators in collaboratively learning and expanding their programming on the complex issue of climate change. Participants will learn how to

  15. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-01-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning,…

  16. The droso4schools project: Long-term scientist-teacher collaborations to promote science communication and education in schools.

    Science.gov (United States)

    Patel, Sanjai; DeMaine, Sophie; Heafield, Joshua; Bianchi, Lynne; Prokop, Andreas

    2017-10-01

    Science communication is becoming an increasingly important part of a scientist's remit, and engaging with primary and secondary schools is one frequently chosen strategy. Here we argue that science communication in schools will be more effective if based on good understanding of the realities of school life, which can be achieved through structured participation and/or collaboration with teachers. For example, the Manchester Fly Facility advocates the use of the fruit fly Drosophila as an important research strategy for the discovery processes in the biomedical sciences. To communicate this concept also in schools, we developed the 'droso4schools' project as a refined form of scientist-teacher collaboration that embraces the expertise and interests of teachers. Within this project, we place university students as teaching assistants in university partner schools to collaborate with teachers and develop biology lessons with adjunct support materials. These lessons teach curriculum-relevant biology topics by making use of the profound conceptual understanding existing in Drosophila combined with parallel examples taken from human biology. By performing easy to implement experiments with flies, we bring living organisms into these lessons, thus endeavouring to further enhance the pupil's learning experience. In this way, we do not talk about flies but rather work with flies as powerful teaching tools to convey mainstream curriculum biology content, whilst also bringing across the relevance of Drosophila research. Through making these lessons freely available online, they have the potential to reach out to teachers and scientists worldwide. In this paper, we share our experiences and strategies to provide ideas for scientists engaging with schools, including the application of the droso4schools project as a paradigm for long-term school engagement which can be adapted also to other areas of science. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All

  17. Instructional strategies in science classrooms of specialized secondary schools for the gifted

    Science.gov (United States)

    Poland, Donna Lorraine

    This study examined the extent to which science teachers in Academic Year Governor's Schools were adhering to the national standards for suggested science instruction and providing an appropriate learning environment for gifted learners. The study asked 13 directors, 54 instructors of advanced science courses, and 1190 students of advanced science courses in 13 Academic Year Governor's Schools in Virginia to respond to researcher-developed surveys and to participate in classroom observations. The surveys and classroom observations collected demographic data as well as instructors' and students' perceptions of the use of various instructional strategies related to national science reform and gifted education recommendations. Chi-square analyses were used to ascertain significant differences between instructors' and students' perceptions. Findings indicated that instructors of advanced science classes in secondary schools for the gifted are implementing nationally recognized gifted education and science education instructional strategies with less frequency than desired. Both students and instructors concur that these strategies are being implemented in the classroom setting, and both concur as to the frequency with which the implementation occurs. There was no significant difference between instructors' and students' perceptions of the frequency of implementation of instructional strategies. Unfortunately, there was not a single strategy that students and teachers felt was being implemented on a weekly or daily basis across 90% of the sampled classrooms. Staff development in gifted education was found to be minimal as an ongoing practice. While this study offers some insights into the frequency of strategy usage, the study needs more classroom observations to support findings; an area of needed future research. While this study was conducted at the secondary level, research into instructional practices at the middle school and elementary school gifted science

  18. Factors Affecting the Retention of First-career and Second-career Science Teachers in Urban High Schools

    Science.gov (United States)

    Rak, Rosemary C.

    The turnover of high school science teachers is an especially troubling problem in urban schools with economically disadvantaged students. Because high teacher turnover rates impede effective instruction, the persistence of teacher attrition is a serious concern. Using an online survey and interviews in a sequential mixed-methods approach, this study investigates the perceptions of high school science teachers regarding factors that contribute to their employment decisions. The study also compares first-career and second-career science teachers' perceptions of retention and attrition factors and identifies conditions that urban school leaders can establish to support the retention of their science teachers. A purposeful sample of 138 science teachers from urban area New England public high schools with 50% or more Free and Reduced Price Lunch-eligible students participated in the survey. Twelve survey respondents were subsequently interviewed. In accord with extant research, this study's results suggest that school leadership is essential to fostering teacher retention. The findings also reveal the importance of autonomy, professional community, and adequate resources to support science instruction. Although mentoring and induction programs receive low importance ratings in this study, career-changers view these programs as more important to their retention than do first-career science teachers. Second-career interviewees, in particular, voice the importance of being treated as professionals by school leaders. Future research may examine the characteristics of mentoring and induction programs that make them most responsive to the needs of first-career and second-career science teachers. Future studies may also investigate the aspects of school leadership and professional autonomy that are most effective in promoting science teacher retention. Keywords: career-changers; school leaders; science teachers; second-career teachers; teacher retention; teacher turnover

  19. MOBI: a marine and earth science interpretation and qualification program for out-of-school environment and natural heritage interpreters and other science communicators in Germany

    Science.gov (United States)

    Schneider, S.; Ellger, C.

    2017-12-01

    As a contribution to Germany's "Science Year 2016*17 - Seas and Oceans", a large science outreach program organized and financed by the National Ministry for Education and Research, GeoUnion, the umbrella organization of Earth science associations and institutions in Germany, has conducted a series of advance level workshops for out-of-school educators and interpreters in Germany. The workshops were organized in co-operation with geoparks, biosphere reserve areas and other environmental management institutions all over Germany. The goal was to convey various perspectives of modern marine sciences to inland venues, linking important present-day marine themes with the presentation of marine phases in the geological history of the host region. The workshops were designed for park rangers, museum educationalists and other science communicators, initiating a broader impact on target groups such as school classes, (geo-)tourists and stakeholder groups. Our approach has been to combine lectures by top-level scientists (on both ocean literacy aspects and regional geology) with discussions and an on-the-spot learning-and-presenting module based on prepared text and visual material. Beyond earth science issues we have integrated economy, ecology, social sciences as well as arts and humanities aspects. One central topic was the role of the world ocean in climate change; other themes highlighted sea level rise, the thermohaline circulation, sea-floor spreading, coral reefs, over-fishing, various marine species and the problem of plastic waste in the ocean. We had anticipated that marine issues are actually very rarely discussed in inland Germany. A structured presentation of ocean literacy elements has proved to be a new range of topical issues from earth and environmental sciences highly appreciated by the participants.

  20. Position of the American Dietetic Association: local support for nutrition integrity in schools.

    Science.gov (United States)

    Bergman, Ethan A; Gordon, Ruth W

    2010-08-01

    It is the position of the American Dietetic Association (ADA) that schools and communities have a shared responsibility to provide students with access to high-quality, affordable, nutritious foods and beverages. School-based nutrition services, including the provision of meals through the National School Lunch Program and the School Breakfast Program, are an integral part of the total education program. Strong wellness policies promote environments that enhance nutrition integrity and help students to develop lifelong healthy behaviors. ADA actively supported the 2004 and proposed 2010 Child Nutrition reauthorization which determines school nutrition policy. ADA believes that the Dietary Guidelines for Americans should serve as the foundation for all food and nutrition assistance programs and should apply to all foods and beverages sold or served to students during the school day. Local wellness policies are mandated by federal legislation for all school districts participating in the National School Lunch Program. These policies support nutrition integrity,including a healthy school environment. Nutrition integrity also requires coordinating nutrition education and promotion and funding research on program outcomes. Registered dietitians and dietetic technicians, registered, and other credentialed staff, are essential for nutrition integrity in schools to perform in policy-making, management, education, and community building roles. A healthy school environment can be achieved through adequate funding of school meals programs and through implementation and evaluation of strong local wellness policies.

  1. Data Driven Professional Development Design for Out-of-School Time Educators Using Planetary Science and Engineering Educational Materials

    Science.gov (United States)

    Clark, J.; Bloom, N.

    2017-12-01

    Data driven design practices should be the basis for any effective educational product, particularly those used to support STEM learning and literacy. Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) is a five-year NASA-funded (NNX16AC53A) interdisciplinary and cross-institutional partnership to develop and disseminate STEM out-of-school time (OST) curricular and professional development units that integrate planetary science, technology, and engineering. The Center for Science Teaching and Learning at Northern Arizona University, the U.S. Geological Survey Astrogeology Science Center, and the Museum of Science Boston are partners in developing, piloting, and researching the impact of three out of school time units. Two units are for middle grades youth and one is for upper elementary aged youth. The presentation will highlight the data driven development process of the educational products used to provide support for educators teaching these curriculum units. This includes how data from the project needs assessment, curriculum pilot testing, and professional support product field tests are used in the design of products for out of school time educators. Based on data analysis, the project is developing and testing four tiers of professional support for OST educators. Tier 1 meets the immediate needs of OST educators to teach curriculum and include how-to videos and other direct support materials. Tier 2 provides additional content and pedagogical knowledge and includes short content videos designed to specifically address the content of the curriculum. Tier 3 elaborates on best practices in education and gives guidance on methods, for example, to develop cultural relevancy for underrepresented students. Tier 4 helps make connections to other NASA or educational products that support STEM learning in out of school settings. Examples of the tiers of support will be provided.

  2. Promotion of Influenza Prevention Beliefs and Behaviors through Primary School Science Education.

    Science.gov (United States)

    Koep, T H; Jenkins, S; M Hammerlund, M E; Clemens, C; Fracica, E; Ekker, S C; Enders, F T; Huskins, W C; Pierret, C

    2016-06-01

    School-based campaigns to improve student health have demonstrated short-term success across various health topics. However, evidence of the effectiveness of programs in promoting healthy beliefs and behaviors is limited. We hypothesized that educational curricula teaching the science behind health promotion would increase student knowledge, beliefs and adherence to healthy behaviors, in this case related to influenza. Integrated Science Education Outreach is a successful education intervention in Rochester, Minnesota public schools that has demonstrated improvements in student learning. Within this program, we designed novel curricula and assessments to determine if gains in knowledge extended to influenza prevention. Further, we coupled InSciEd Out programming with a clinical intervention, Influenza Prevention Prescription Education (IPPE), to compare students' attitudes, intentions and healthy behaviors utilizing surveys and hand hygiene monitoring equipment. 95 students participated in (IPPE) in the intervention school. Talking drawings captured improvement in influenza prevention understanding related to hand washing [pre n=17(43%); post n=30(77%)] and vaccination [pre n=2(5%); post n=15(38%)]. Findings from 1024 surveys from 566 students revealed strong baseline understanding and attitudes related to hand washing and cough etiquette (74% or greater positive responses). Automated hand hygiene monitoring in school bathrooms and classrooms estimated compliance for both soap (overall median 63%, IQR 38% to 100%) and hand sanitizer use (0.04 to 0.24 uses per student per day) but did not show significant pre/ post IPPE differences. Student understanding of principles of influenza prevention was reasonably high. Even with this baseline, InSciEd Out and IPPE improved students' unprompted knowledge of behaviors to prevent influenza, as reflected by talking drawings. This novel metric may be more sensitive in capturing knowledge among students than traditional

  3. After Installation: Ubiquitous Computing and High School Science in Three Experienced, High-Technology Schools

    Science.gov (United States)

    Drayton, Brian; Falk, Joni K.; Stroud, Rena; Hobbs, Kathryn; Hammerman, James

    2010-01-01

    There are few studies of the impact of ubiquitous computing on high school science, and the majority of studies of ubiquitous computing report only on the early stages of implementation. The present study presents data on 3 high schools with carefully elaborated ubiquitous computing systems that have gone through at least one "obsolescence cycle"…

  4. High school and college introductory science education experiences: A study regarding perceptions of university students persisting in science as a major area of study

    Science.gov (United States)

    Fredrick, L. Denise

    The focus of this study was to investigate college students' perception of high school and college introductory science learning experiences related to persistence in science as a major area of study in college. The study included students' perceptions of the following areas of science education: (1) teacher interpersonal relationship with students, (2) teacher personality styles, (3) teacher knowledge of the content, (4) instructional methods, and (5) science course content. A survey research design was employed in the investigative study to collect and analyze data. One hundred ninety two students participated in the research study. A survey instrument entitled Science Education Perception Survey was used to collect data. The researcher sought to reject or support three null hypotheses as related to participants' perceptions of high school and college introductory science education experiences. Using binomial regression analysis, this study analyzed differences between students persisting in science and students not persisting in science as a major. The quantitative research indicated that significant differences exist between persistence in science as a major and high school science teacher traits and college introductory science instructional methods. Although these variables were found to be significant predictors, the percent variance was low and should be considered closely before concluded these as strong predictors of persistence. Major findings of the qualitative component indicated that students perceived that: (a) interest in high school science course content and high school science teacher personality and interpersonal relationships had the greatest effect on students' choice of major area of study; (b) interest in college introductory science course content had the greatest effect on students' choice of major area of study; (c) students recalled laboratory activities and overall good teaching as most meaningful to their high school science

  5. Integrating Neuropsychology and School Psychology: Potential and Pitfalls

    Science.gov (United States)

    Jantz, Paul B.; Plotts, Cynthia A.

    2014-01-01

    The neurological basis of learning disabilities (LD), and other handicapping conditions commonly found in school-age children, makes the integration of neuropsychology and school psychology plausible. However, there has been longstanding debate over the required level of education, training, supervision, and credentialing needed for the practice…

  6. The Incorporation of the USA "Science Made Sensible" Programme in South African Primary Schools: A Cross-Cultural Approach to Science Education

    Science.gov (United States)

    de Villiers, Rian; Plantan, Tiffany; Gaines, Michael

    2016-01-01

    The Science Made Sensible (SMS) programme began as a partnership between the University of Miami (UM), Florida, USA, and some public schools in Miami. In this programme, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of…

  7. How Technicians Can Lead Science Improvements in Any School: A Small-Scale Study in England

    Science.gov (United States)

    Jones, Beth; Quinnell, Simon

    2015-01-01

    This article describes how seven schools in England improved their science provision by focusing on the professional development of their science technicians. In September 2013, the Gatsby Charitable Foundation funded the National Science Learning Centre to lead a project connecting secondary schools with experienced senior science technicians…

  8. Improving the primary school science learning unit about force and motion through lesson study

    Science.gov (United States)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  9. Secondary School Students' Perceptions of Working Life Skills in Science-Related Careers

    Science.gov (United States)

    Salonen, Anssi; Hartikainen-Ahia, Anu; Hense, Jonathan; Scheersoi, Annette; Keinonen, Tuula

    2017-01-01

    School students demonstrate a lack of interest in choosing science studies and science-related careers. To better understand the underlying reasons, this study aims to examine secondary school students' perceptions of working life skills and how these perceptions relate to the skills of the twenty-first century. The participants in this study were…

  10. Multicultural and multilingual approach: Mathematics, science, and engineering education for junior high school minority students and high school administrators. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crumbly, I.J.; Hodges, J.

    1994-09-01

    During the 1993 school year, LLNL and the US Department of Energy`s San Francisco Field Office provided funds through grant {number_sign}DE-FG03-93SF20045/A000 to assist Cooperative Developmental Energy Program (CDEP) with its network coalition of high school counselors from 19 states and with its outreach and early intervention program in mathematics, science and engineering for minority junior high school students. The program for high school counselors is called the National Educators Orientation Program (NEOP) and the outreach program for minority junior high school students is called the Mathematics, Science and Engineering Academy (MSEA). A total of 35 minority and female rising eighth grade students participated in the Second Annual Mathematics, Science, and Engineering Academy sponsored by the Cooperative Developmental Energy Program of Fort Valley State College (FVSC). There were 24 students from the middle Georgia area, 4 students from Oakland, California, and 7 students from Portland, Oregon. Each student was selected by counselor in his or her respective school. The selection criteria were based on the students` academic performance in science and mathematics courses.

  11. Improving the Science Curriculum with Bioethics.

    Science.gov (United States)

    Lundmark, Cathy

    2002-01-01

    Explains the importance of integrating bioethics into the science curriculum for student learning. Introduces a workshop designed for middle and high school science teachers teaching bioethics, its application to case studies, and how teachers can fit bioethics into their classroom. (YDS)

  12. An Assessment of Factors Relating to High School Students' Science Self-Efficacy

    Science.gov (United States)

    Gibson, Jakeisha Jamice

    This mixed-methods case study examined two out-of-school (OST) Science, Technology, Engineering and Math (STEM) programs at a science-oriented high school on students' Self-Efficacy. Because STEM is a key for future innovation and economic growth, Americans have been developing a variety of approaches to increase student interest in science within the school curriculum and in OST programs. Nationwide, many OST programs are offered for students but few have engaged in an in-depth assessment. This study included an assessment of two different types of OST programs and direct observations by the researcher. This study involved two advisors (one male, one female), 111 students, and their parents during 2016. Student participants completed two standardized surveys, one to determine their Science Self-Efficacy and another to assess their engagement in science during their OST programs. Parents described their parental involvement and their child's interest in the OST program(s). The OST program advisors participated in lengthy interviews. Additionally, the advisors rated their perceived interest level of the enrolled students and recorded attendance data. Bandura's Social Cognitive Theory (1997a) provided the theoretical framework. This theory describes the multidirectional influence of behavioral factors, personal factors, and environmental factors have on a student's Self-Efficacy. Compiled data from the teachers, students, and parents were used to determine the relationship of selected variables on Science Self-Efficacy of students. A correlational analysis revealed that students who participated in these OST programs possessed a high Mindset for the Enjoyment of science and that teacher ratings were also positively correlated to Mindset and Enjoyment of Science. Descriptive analyses showed that (a) girls who chose to participate in these OST programs possessed higher school grades in their in-school coursework than boys, (b) that parents of girls participated in more

  13. Effects of an intensive middle school science experience on the attitude toward science, self-esteem, career goal orientation, and science achievement of eighth-grade female students

    Science.gov (United States)

    Williams, Tammy Kay

    The purpose of this investigation was to examine the effects of a year long intensive extracurricular middle school science experience on the self-esteem, career goal orientation, and attitude toward science of eighth grade female students using both quantitative and qualitative methods. Sixteen self-selected eighth grade female students participated in extracurricular science experiences such as camping, rock climbing, specimen collecting and hiking, as well as meeting and interacting with female science role models. Data was collected using pre- and posttest methods using the Children's Attitude Toward Science Survey, the Coopersmith Self-Esteem Inventory, and the Self-Directed Search (SDS) Career Explorer. End of year science course grades were examined for seventh and eighth grades and compared to first semester high school grades. Qualitative data was in the form of: (1) focus group interviews conducted prior to field experiences, at the end of all field experiences, and at the end of the first semester of high school, and (2) journal entries from throughout the project. Qualitative data was examined for changes in student perceptions of science as a discipline, self as scientist, women in science, and social comparison of self in science.

  14. A multimedia educational program that increases science achievement among inner-city non-Asian minority middle-school students.

    Science.gov (United States)

    Murray, Nancy G; Opuni, Kwame A; Reininger, Belinda; Sessions, Nathalie; Mowry, Melanie M; Hobbs, Mary

    2009-06-01

    To test the effectiveness of a middle school, multimedia health sciences educational program called HEADS UP in non-Asian-minority (Hispanic and African American), inner-city students. The program designers hope to increase the number of these students entering the health sciences pipeline. The program includes video role-model stories featuring minority scientists and students, hands-on activities, and teacher resources. Collaborators from The University of Texas Health Science Center at Houston, Spring Branch Independent School District, and the Health Museum developed the modules. From 2004 to 2007, the authors used a quasi-experimental, two-group pretest/posttest design to assess program effects on students' performance and interest in science, their science self-efficacy, their fear of science, and their science-related careers self-efficacy. An independent third party matched the intervention school to a comparison school by test scores, school demographics, and student demographics and then matched pairs of sixth-grade students (N = 428) by fifth-grade science scores, gender, ethnicity, and participation in the free or reduced lunch program. The authors collected data on these students for three years. At eighth grade (2007), the intervention school students scored significantly higher (F = 12.38, P science and reported higher interest in science (F = 11.08, P school pairs. Students in neither group reported an increase in their confidence to choose a science-related career, but students in one high-implementing teacher's class reported decreased fear of science. HEADS UP shows potential for improving inner-city, non-Asian-minority middle school students' performance and interest in science.

  15. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  16. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    Science.gov (United States)

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  17. Factors significantly related to science achievement of Malaysian middle school students: An analysis of TIMSS 1999 data

    Science.gov (United States)

    Mokshein, Siti Eshah

    The importance of science and technology in the global economy has led to growing emphasis on math and science achievement all over the world. In this study, I seek to identify variables at the student-level and school-level that account for the variation in science achievement of the eighth graders in Malaysia. Using the Third International Math and Science Study (TIMSS) 1999 for Malaysia, a series of HLM analysis was performed. Results indicate that (1) variation in overall science achievement is greater between schools than within schools; (2) both the selected student-level and school-level factors are Important in explaining the variation in the eight graders' achievement In science; (3) the selected student-level variables explain about 13% of the variation in students' achievement within schools, but as an aggregate, they account for a much larger proportion of the between-school variance; (4) the selected school-level variables account for about 55% of the variation between schools; (5) within schools, the effects of self-concept In science, awareness of the social implications of science, gender, and home educational resources are significantly related to achievement; (6) the effects of self-concept in science and awareness of social implications of science are significant even after controlling for the effects of SES; (7) between schools, the effects of the mean of home educational resources, mean of parents' education, mean of awareness of the social implications of science, and emphasis on conducting experiments are significantly related to achievement; (8) the effects of SES variables explain about 50% of the variation in the school means achievement; and (9) the effects of emphasis on conducting experiments on achievement are significant even after controlling for the effects of SES. Since it is hard to change the society, it is recommended that efforts to Improve science achievement be focused more at the school-level, concentrating on variables that

  18. Pathways from parental stimulation of children's curiosity to high school science course accomplishments and science career interest and skill

    Science.gov (United States)

    Eskeles Gottfried, Adele; Johnson Preston, Kathleen Suzanne; Gottfried, Allen W.; Oliver, Pamella H.; Delany, Danielle E.; Ibrahim, Sirena M.

    2016-08-01

    Curiosity is fundamental to scientific inquiry and pursuance. Parents are important in encouraging children's involvement in science. This longitudinal study examined pathways from parental stimulation of children's curiosity per se to their science acquisition (SA). A latent variable of SA was indicated by the inter-related variables of high school science course accomplishments, career interest, and skill. A conceptual model investigated parental stimulation of children's curiosity as related to SA via science intrinsic motivation and science achievement. The Fullerton Longitudinal Study provided data spanning school entry through high school (N = 118). Parental stimulation of curiosity at age 8 years comprised exposing children to new experiences, promoting curiosity, encouraging asking questions, and taking children to a museum. Intrinsic motivation was measured at ages 9, 10, and 13 years, and achievement at ages 9, 10, and 11 years. Structural equation modelling was used for analyses. Controlling for socio-economic status, parental stimulation of curiosity bore positive and significant relations to science intrinsic motivation and achievement, which in turn related to SA. Gender neither related to stimulation of curiosity nor contributed to the model. Findings highlight the importance of parental stimulation of children's curiosity in facilitating trajectories into science, and relevance to science education is discussed.

  19. Sensors, Circuits, and Satellites - NGSS at it's best: the integration of three dimensions with NASA science

    Science.gov (United States)

    Butcher, G. J.; Roberts-Harris, D.

    2013-12-01

    A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these

  20. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre

  1. Investigation of 9th Grade High School Students’ Attitudes towards Science Course

    Directory of Open Access Journals (Sweden)

    Orhan Karamustafaoglu

    2017-12-01

    Full Text Available In this study, ninth grade students’ attitudes towards science were investigated in terms of self-regulation strategies, motivational beliefs and gender variables. The sample of this study includes 322 male and 296 female in total 618 students from 3 different high schools (Science high school, Anatolian high school, and Vocational high school in center district of Amasya city. To collect the data, the researchers employed “Motivated Strategies for Learning Questionnaire” which has been developed by Pintrich and De Groot in 1990, adapted into Turkish by Uredi in 2005 and consists of 44 items and “Colorado Learning Attitudes about Science Survey (CLASS” has been developed by Adams and others in 2006, adapted into Turkish by Bayar and Karamustafaoğlu in 2015 and consists of 36 items. For data analysis, mean, standard deviation, independent t-test and correlation were addressed. The results of this study show that there are statistically significant relationships between 9th grade students’ attitudes towards science and self-regulation strategies, motivational beliefs, and gender.

  2. One-to-one iPad technology in the middle school mathematics and science classrooms

    Science.gov (United States)

    Bixler, Sharon G.

    Science, technology, engineering, and mathematics (STEM) education has become an emphasized component of PreK-12 education in the United States. The US is struggling to produce enough science, mathematics, and technology experts to meet its national and global needs, and the mean scores of science and mathematics students are not meeting the expected levels desired by our leaders (Hossain & Robinson, 2011). In an effort to improve achievement scores in mathematics and science, school districts must consider many components that can contribute to the development of a classroom where students are engaged and growing academically. Computer technology (CT) for student use is a popular avenue for school districts to pursue in their goal to attain higher achievement. The purpose of this study is to examine the use of iPads in a one-to-one setting, where every student has his own device 24/7, to determine the effects, if any, on academic achievement in the areas of mathematics and science. This comparison study used hierarchical linear modeling (HLM) to examine three middle schools in a private school district. Two of the schools have implemented a one-to-one iPad program with their sixth through eighth grades and the third school uses computers on limited occasions in the classroom and in a computer lab setting. The questions addressed were what effect, if any, do the implementation of a one-to-one iPad program and a teacher's perception of his use of constructivist teaching strategies have on student academic achievement in the mathematics and science middle school classrooms. The research showed that although the program helped promote the use of constructivist activities through the use of technology, the one-to-one iPad initiative had no effect on academic achievement in the middle school mathematics and science classrooms.

  3. Schools, science, social justice, and the role of violence

    Science.gov (United States)

    Weinstein, Matthew

    2012-09-01

    This article is a response to Carolina Castano's article "Extending the purposes of science education." Drawing on personal memories of life in Bogotá, I raise questions about the nature of violence in Colombia broadly, and ask how the intervention Castano proposes changes the ecology of violence in that country. It also ponders the relationship between schools, science, and violence. In conclusion it urges that science educators follow Castano's recommendation to make science education responsive to local community needs rather than standardized visions of education.

  4. Understanding understanding in secondary school science: An interpretive study

    Science.gov (United States)

    O'Neill, Maureen Gail

    This study investigated the teaching of secondary school science with an emphasis on promoting student understanding. In particular, I focused on two research questions: What are the possible meanings of teaching for understanding? And, how might one teach secondary school science for understanding? After semi-structured interviews were conducted with 13 secondary school science teachers, grounded theory methodology was used to interpret the data. As a result of the selective coding process, I was able to identify 14 connected components of teaching for understanding (TfU). The process of TfU involves: puzzle-solving, a specific pedagogy and a conscious decision. The teacher must be a reflective practitioner who has some knowledge of the facets of understanding. The teacher comes to a critical incident or crisis in his or her pedagogy and adopts a mindset which highlights TfU as a personal problematic. Teachers operate with student-centred rather than teacher-centred metaphors. TfU requires a firm belief in and passion for the process, a positive attitude and excellent pedagogical content knowledge. It hinges on a performance view of understanding and demands risk-taking in the science classroom. Abstracting these ideas to a theory led me to the notion of Purposive Teaching . In their purposive-driven role as pedagogues, these teachers have placed TfU at the core of their daily practice. Constraints and challenges facing TfU as well as implications of the findings are discussed. Keywords. science teaching, teaching for understanding, purposive teaching, constructivism, understanding, pedagogy, pedagogical content knowledge, memorization, meaningful learning, reflective practice.

  5. Teachers' Perception of African American Middle School Girls' Interest in Mathematics and Science

    Science.gov (United States)

    Best, Bonnie M.

    Research into African American female underrepresentation in science, technology, engineering, and mathematics (STEM) fields has become an area of interest due to the fact that a majority of African American middle school females do not possess the high levels of mathematics and science knowledge because of social and cultural barriers both inside and outside school that challenge their academic success. The purpose of this qualitative interpretative phenomenological study was to explore teachers' shared, lived experiences of teaching mathematics and science to African American middle school girls. Delgado and Stefancic's critical race theory, Pratt-Clarke's critical race feminism, and Baker-Miller's relational-cultural theory were used to guide this study. Research questions focused on the perceptions and experiences of teachers' lived experiences teaching mathematics and science to African American middle school females. Criterion, purposive, and maximum variation sampling techniques were used to recruit 10 teachers who have 3 or more years' experience teaching African American middle school girls. Semistructured face-to-face interviews were the primary data collection source. First cycle and second cycle coding methods were used to support the analysis of this study. Findings suggest that there is a connection between a positive student-teacher relationship and academic success. The results of this study contribute to positive social change by providing empirical evidence policymakers and teachers can use to improve the mathematics and science instruction and practices that are needed to meet the needs of African American middle school females and reduce the underrepresentation and underachievement of African American females in mathematics and science.

  6. A private school leadership perspective on highly qualified middle school science teachers

    Science.gov (United States)

    Bogaski, Carolyn Siniscalchi

    The purpose of this study was to determine how Florida (FL) private, middle school (MS) leaders define highly qualified (HQ) MS science teachers, and how congruent their definitions are. The study also determines how congruent these leaders' definitions are with FL, national, and National Science Teachers Association (NSTA) definitions. Lastly, the study determines the major challenges these private MS leaders have in hiring MS science teachers who meet the NSTA definition of HQ. A convergent mixed methods survey design (Creswell, 2014) was used, in which qualitative and quantitative data were collected in parallel, analyzed separately, and then merged. Participants in the survey consisted of 119 leaders. A congruency rubric separated responses by religious affiliation and socioeconomic status (SES) level and matched responses with the percentage of congruency with the existing FL, national, and NSTA definitions of HQ. Descriptive statistics, paired samples t-test, and chi-squared test were used to analyze the quantitative and qualitative data. Qualitative data were coded into preliminary and final codes. Final codes were converted into magnitude codes, which allowed the researcher to analyze further the qualitative data statistically. Survey responses received were definitely congruent, except in ranking the importance of a candidate having an out-of-field degree with state certification, and in ranking the importance of a candidate being fully qualified to teach science in their state with a strong knowledge of science content. Segregating the survey responses into registered religious affiliations and SES levels found that the definition of a HQ MS science teacher was mostly congruent among all demographics, with only a couple of exceptions. The study found that these private school leaders' common definition of a HQ MS science teacher is one with adequate science content knowledge, pedagogy including engagement in laboratory activities, ability to relate to

  7. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  8. Engaging high school students as plasma science outreach ambassadors

    Science.gov (United States)

    Wendt, Amy; Boffard, John

    2017-10-01

    Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.

  9. Exploring the impact of an industrial volunteer/school science partnership on elementary teaching strategies and attitudes about future science study: A case study

    Science.gov (United States)

    White, Michael Robert

    This study reports the results of research designed to explore the impact of industrial volunteer/school partnerships on elementary science teaching behaviors and students' attitudes about future science study. Since these partnerships involved teachers and students in hands-on or laboratory-type science experiences, the study will add an elementary school component to a series of other studies conducted through the Science Education Program at Temple University that have addressed how to improve the learning outcomes from these experiences. Three suburban elementary schools were randomly selected by a single school district's science supervisor to be involved in this study. Two of the buildings were designated as the experimental schools and teachers worked directly with the researcher as an industrial partner. The third school served as a control with no organized industrial partner. An additional school building in a second suburban school district was selected to serve as a comparison school and a second scientist participated as an industrial volunteer. Unlike the researcher, this scientist had no formal training in science education. Each phase of the study included instruments piloted and reviewed by experienced elementary teachers for appropriateness or by objective experts in the field of education. A student attitude survey and selected tasks from the Inventory of Piagetian Developmental Tasks were administered to all students involved in the study. Empirical data collected through videotaped analysis using the validated Modified-Revised Vickery Science Teacher Behavior Inventory led to the development of a pattern of the most frequently used behaviors during elementary science instruction. A profile of each participating teacher was developed through the use of a validated attitude survey, notes taken during classroom interactions and from information collected during ethnographic interviews. A major conclusion drawn from this study is that neither type

  10. Home and school environmental determinants of science ...

    African Journals Online (AJOL)

    Determinants of educational achievement extend beyond the school environment to include the home environment. Both environments provide tangible and intangible resources to students that can influence science achievement. South Africa provides a context where inequalities in socio-economic status are vast, thus the ...

  11. Schooling girls in a rural community: An examination of female science identity and science career choices

    Science.gov (United States)

    Fowler, Melisa Diane Creasy

    There is a gap in existence between the number of males and females entering science careers. Research has begun to focus largely on how identity impacts the selection of such careers. While much research has been done to examine the factors that impact student identity, little work has been done to examine what happens to female students who have been successful in science in a rural K-12 school once they leave high school and enter the world of academia. Thus, this study examined the following questions: (1) How do three recent female high school graduates from rural K-12 high schools narrate their identity? (2) How do the females narrate their experiences in a rural community and high school in relation to their science identity? (3) What do the participants describe as influencing their academic and career choices as they transition into the life of a college student? This study involved three female participants from a small rural community in a southeastern state. Each female has lived their entire life in the community and has attended only one K-12 school. All three females ranked in the top ten of their senior class and excelled in their science coursework. Additionally, each female elected to attend college locally and to live at home. The study utilized the qualitative methodology of interpretive biography. The researcher used a guided interview protocol with participants which served as the basis for the creation of their narrative biographies. The biographies were then analyzed for emergent themes. Sociocultural theory, identity theory, and critical feminism provided the theoretical frameworks utilized in data analysis. Findings from this study suggested that there were many differing factors influencing the science identity and career choices of the females under study. However, the most salient factor impacting their choices was their desire to remain in their hometown. Directions for future research suggestions involve exploring female students who

  12. The Educational Governance of German School Social Science: The Example of Globalization

    Directory of Open Access Journals (Sweden)

    Andrea Szukala

    2016-10-01

    Full Text Available Purpose: This article challenges the outsiders' views on European school social science adopting genuine cosmopolitan views, when globalisation is treated in social science classrooms. Method: The article is based on the theoretical framework of educational governance analysis and on qualitative corpus analysis of representative German Laenders' social science curricula from 1994-2014 (n=13. Findings: The article highlights tendencies of renationalisation of the global learning agenda and the problematisation of democracy in contexts of globalisation studies at German schools.

  13. Income-Based Disparities in Early Elementary School Science Achievement

    Science.gov (United States)

    Curran, F. Chris

    2017-01-01

    This study documents gaps in kindergarten and first-grade science achievement by family income and explores the degree to which such gaps can be accounted for by student race/ethnicity, out-of-school activities, parental education, and school fixed effects. In doing so, it expands on prior research that documents disparate rates of science…

  14. Middle School Science Teachers' Perceptions of Social Justice: A Study of Two Female Teachers

    Science.gov (United States)

    Upadhyay, Bhaskar

    2010-01-01

    The focus of this qualitative study is to document two middle school science teachers' perceptions of social justice and how these teachers implement various aspects of social justice in their science instruction. The two teachers teach science in an urban school that serves students from low-income, immigrant, and ethnic minority families. The…

  15. Young science journalism: writing popular scientific articles may contribute to an increase of high-school students' interest in the natural sciences

    Science.gov (United States)

    Simon, Uwe K.; Steindl, Hanna; Larcher, Nicole; Kulac, Helga; Hotter, Annelies

    2016-03-01

    Far too few high-school students choose subjects from the natural sciences (NaSc) for their majors in many countries. Even fewer study biology, chemistry or physics at university. Those, that do, often lack training to present and discuss scientific results and ideas in texts. To meet these challenges the center for didactics of biology of Graz University has set up the program Young Science Journalism. This new workshop-based interdisciplinary concept was tested in an exploratory study with grade 10 students of one Austrian high school, engaging both the biology and the German teacher of the class. It was our aim to raise students' interest in the NaSc by encouraging them to write popular scientific articles about self-chosen topics, and to help them improve their writing competence. In this paper we focus on interest development through writing. Results from this pilot study were promising. Using a mixed-method approach (comparing pre- and post-test questionnaires and semi-structured interviews from different time points analyzed qualitatively), we found that almost all students valued the project-related work highly. Most of them showed higher interest in the NaSc at project end with girls, in average, seeming to profit more from project participation. We thus recommend integrating such writing tasks into school curricula to increase students' interest in NaSc or to even create new interest. Additionally, we introduce a network presentation of questionnaire data as a powerful tool to visualize the effect of an intervention on individual students and student profile groups. This paper is part of a series accompanying the Austrian Young Science Journalism program. Additional Supporting Information may be found in the online version of this article at the publisher's web-site.

  16. Integration of Place-Based Education Into Science Classes From Prekindergarten Through Grade 5

    Science.gov (United States)

    Wade-Lyles, Terri A.

    In a large urban district in Ohio, 29.2% of Grade 5, 28.7% of Grade 8, and 45.7% of Grade 10 students passed the state test in science. School district administrators formed a community partnership with local science institutions in order to provide students with hands-on place-based learning experiences intended to improve science academic achievement in PK-Grade 5. The purpose of this qualitative program evaluation was to determine the level of implementation of that place-based program by examining the efficacy of the teachers' embedded professional development and their experiences with the training components. Bruner's theory of cognitive development was used to examine teachers' needs in facilitating the program. A stratified random sample of 659 PK-Grade 5 teachers from 73 district elementary schools was selected, and 57 teachers responded to an anonymous online survey of 5 open-ended questions. Data were analyzed using thematic analysis to identity factors that enhanced or impeded the implementation of place-based education programming based on their professional development. The key findings indicated that over half of the participants viewed resources as lacking, training as limited, and planning that is too time consuming, and complicated. Participants expressed the need for clarity regarding resources and more training on how to plan for and integrate the placed-based approach. The resulting project was an executive summary and interactive workshop for program stakeholders, such as administrators, teachers, and ultimately students, who would benefit from this project by improving the place-based program.

  17. Perceptions of selected science careers by African American high school males

    Science.gov (United States)

    Ijames, Erika Denise

    Research indicates that internal and external factors such as role models, stereotypes, and pressures placed on African American males by their family and friends influence their perceptions of science careers (Assibey-Mensah, 1997; Hess & Leal, 1997; Jacobowitz, 1983; Maple & Stage, 1991; Thomas, 1989; Ware & Lee, 1988). The purpose of this research was to investigate the perceptions of African American high school males about selected science careers based on apparent internal and external factors. Two questions guided this research: (1) What are high school African American males' perceptions of science careers? (2) What influences high school African American males' perceptions of science careers? This research was based on a pilot study in which African American college males perceived a selection of science careers along racial and gender lines. The follow-up investigation was conducted at Rockriver High School in Acorn County, and the participants were three college-bound African American males. The decision to choose males was based on the concept of occupational niching along gender lines. In biology, niching is defined as the role of a particular species regarding space and reproduction, and its interactions with other factors. During the seven-week period of the students' senior year, they met with the researcher to discuss their perceptions of science careers. An ethnographic approach was used to allow a richer and thicker narrative to occur. Critical theory was used to describe and interpret the voices of the participants from a social perspective. The data collected were analyzed using a constant comparative analysis technique. The participants revealed role models, negative stereotypes, peer pressure, social pressures, and misconceptions as some of the factors that influenced their perceptions of science careers. Results of this research suggest that by dispelling the misconceptions, educators can positively influence the attitudes and perceptions of

  18. The Effect of Physical Activity on Science Competence and Attitude towards Science Content

    Science.gov (United States)

    Klinkenborg, Ann Maria

    This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.

  19. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    Directory of Open Access Journals (Sweden)

    Olopade FE

    2016-07-01

    Full Text Available Funmilayo Eniola Olopade,1 Oluwatosin Adekunle Adaramoye,2 Yinusa Raji,3 Abiodun Olubayo Fasola,4 Emiola Oluwabunmi Olapade-Olaopa5 1Department of Anatomy, 2Department of Biochemistry, 3Department of Physiology, 4Department of Oral Pathology, 5Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria Abstract: The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula

  20. Climate change science education across schools, campuses, and centers: strategies and successes

    Science.gov (United States)

    Merrill, J.; Harcourt, P.; Rogers, M.; Buttram, J.; Petrone, C.; Veron, D. E.; Sezen-Barrie, A.; Stylinski, C.; Ozbay, G.

    2016-02-01

    With established partnerships in higher education, K-12, and informal science education communities across Delaware and Maryland, the NSF-funded MADE CLEAR project (Maryland Delaware Climate Change Education, Assessment, and Research) has instituted a suite of professional development strategies to bring climate change science into science education methods courses, K-12 classrooms, university lecture halls, and public park facilities. MADE CLEAR partners have provided consistent climate literacy topics (mechanisms, human contributions, local and global impacts, mitigation and adaptation) while meeting the unique needs of each professional community. In-person topical lectures, hands-on work with classroom materials, seed funding for development of new education kits, and on-line live and recorded sessions are some of the tools employed by the team to meet those needs and build enduring capacity for climate change science education. The scope of expertise of the MADE CLEAR team, with climate scientists, educators, learning scientists, and managers has provided not only PD tailored for each education audience, but has also created, fostered, and strengthened relationships across those audiences for long-term sustainability of the newly-built capacity. Specific examples include new climate change programs planned for implementation across Delaware State Parks that will be consistent with middle school curriculum; integration of climate change topics into science methods classes for pre-service teachers at four universities; and active K-12 and informal science education teams working to cooperatively develop lessons that apply informal science education techniques and formal education pedagogy. Evaluations by participants highlight the utility of personal connections, access to experts, mentoring and models for developing implementation plans.

  1. Enseignement intégré de science et technologie, quels enjeux ?

    Directory of Open Access Journals (Sweden)

    ALICE DELSERIEYS-PEDREGOSA

    2010-07-01

    Full Text Available Many countries are engaged in renovating science and technology teaching in secondary schools. In order to give more coherence to the content taught, the place and definition of the school subjects involved tend to be reexamined. In France, an integrated science and technology teaching program is being tested since 2006. A first analysis of the program and the way participating teachers view it has been done from the definition of several strategies to bring disciplines together. Four dimensions of school disciplinary integration have been identified to structure our reflexion. The analysis of posters produced by the teachers reveals an incomplete vision of integration and a dominant place given to notional knowledge.

  2. Science Education and the Material Culture of the Nineteenth-Century Classroom: Physics and Chemistry in Spanish Secondary Schools

    Science.gov (United States)

    Simon, Josep; Cuenca-Lorente, Mar

    2012-02-01

    Although a large number of Spanish secondary schools have preserved an important scientific heritage, including large scientific instrument collections, this heritage has never been officially protected. Their current state is very diverse, and although several research projects have attempted to initiate their recovery and use, their lack of coordination and wide range of methodological approaches has limited their impact. This paper presents a case-study integrated in a new project supported by the Catalan Scientific Instrument Commission (COMIC) whose final aim is the establishment of a research hub for the preservation, study and use of Spanish scientific instrument collections. Major aims in this project are promoting a better coordination of Spanish projects in this field, and furthering international research on science pedagogy and the material culture of science. The major focus of COMIC is currently the recovery of secondary school collections. This paper provides first, a historical account of the development of secondary education in Spain, and the contemporary establishment of physics and chemistry school collections. Second, we focus on a case-study of three Spanish schools (Valencia, Castellón, and Alicante). Finally, we provide a brief overview of current projects to preserve Spanish school collections, and discuss how COMIC can contribute to help to coordinate them, and to take a step forward interdisciplinary research in this context.

  3. The level of new science leadership behaviors of school principals: A scale development

    Directory of Open Access Journals (Sweden)

    Akpil Şerife

    2016-01-01

    Full Text Available Einstein’s theory of relativity and quantum physics opened Newton physics up for discussion, thus triggering the new science at the beginning of the 20th century. Philosophy of science, which was named as the new science in the 20th century, caused fundamental changes in research methods and paradigms. The methods and set of values brought by the new science affected social sciences as well. In conjunction with this mentioned change and development, the field of education and the view of schools were influenced. In the same vein, identifying the thoughts of school principals on leadership styles based on new science was considered as a primary need and set the objective of this research. In this regard, a “The Levels of New Science Leadership Behaviors of School Principals Scale” was developed. Following the literature review, the scale with 54 items was prepared and underwent expert review. Finally it was applied to 200 school principals who were working in primary and secondary schools in the Anatolian side of Istanbul. The data acquired were analyzed through SPSS 15.0 and Lisrel 8.51 programs. The results of the analysis revealed that the scale was comprised of a total of 27 items and had 5 factors (dimensions. The reliability analysis indicated internal consistency value (Cronbach Alpha as .94. Confirmatory factor analysis was carried out in Lisrel program. According to results of confirmatory factor analysis, the X2/df ratio was calculated as 2, 24 which showed that the measurement model was in accord with the data.

  4. Gender Stereotyping and Affective Attitudes Towards Science in Chinese Secondary School Students

    Science.gov (United States)

    Liu, Mingxin; Hu, Weiping; Jiannong, Shi; Adey, Philip

    2010-02-01

    This study explores explicit and implicit gender-science stereotypes and affective attitudes towards science in a sample of Chinese secondary school students. The results showed that (1) gender-science stereotyping was more and more apparent as the specialization of science subjects progresses through secondary school, becoming stronger from the 10th grade; girls were more inclined to stereotype than boys while this gender difference decreased with increasing grade; (2) girls tend to have an implicit science-unpleasant/humanities-pleasant association from the 8th grade, while boys showed a negative implicit attitude towards science up to the 11th grade. In self-report, girls preferred humanities to science, while boys preferred science to humanities; (3) implicit affective attitude was closely related to implicit stereotype. In particular, implicit affective attitude has a stronger predictive power on stereotype than the other way around, the result of which may have more significance for girls.

  5. Growth Mindset and Motivation: A Study into Secondary School Science Learning

    Science.gov (United States)

    Bedford, Susannah

    2017-01-01

    Motivation in science in school is a national issue but is often overlooked in educational reform (Usher, A., and N. Kober. 2012. "Student motivation -- An overlooked piece of school reform". Centre on Education Policy, Graduate School of Education and Human Development. The George Washington University). Despite new curriculum content…

  6. An Investigation of Turkish Middle School Science Teachers' Pedagogical Orientations Towards Direct and Inquiry Instructional Approaches

    Science.gov (United States)

    Sahingoz, Selcuk

    One of the most important goals of science education is preparing effective science teachers which includes the development of a science pedagogical orientation. Helping in-service science teachers improve their orientations toward science teaching begins with identifying their current orientations. While there are many aspects of an effective science teaching orientation, this study specifically focuses on effective pedagogy. The interest of this study is to clarify pedagogical orientations of middle school science teachers in Turkey toward the teaching of science conceptual knowledge. It focuses on what instructional preferences Turkish middle school science teachers have in theory and practice. The purpose of this study is twofold: 1) to elucidate teacher pedagogical profiles toward direct and inquiry instructional approaches. For this purpose, quantitative profile data, using a Turkish version of the Pedagogy of Science Teaching Test (POSTT-TR) assessment instrument, was collected from 533 Turkish middle school science teachers; 2) to identify teaching orientations of middle school science teachers and to identify their reasons for preferring specific instructional practices. For this purpose, descriptive qualitative, interview data was collected from 23 teachers attending a middle school science teacher workshop in addition to quantitative data using the POSTT-TR. These teachers sat for interviews structured by items from the POSTT-TR. Thus, the research design is mixed-method. The design provides a background profile on teacher orientations along with insights on reasons for pedagogical choices. The findings indicate that instructional preference distributions for the large group and smaller group are similar; however, the smaller workshop group is more in favor of inquiry instructional approaches. The findings also indicate that Turkish middle school science teachers appear to have variety of teaching orientations and they have varied reasons. Moreover, the

  7. Facilitating interest and out-of-school engagement in science in secondary school girls: Increasing the effectiveness of the teaching for transformative experience in science model through parental involvement

    Science.gov (United States)

    Heddy, Benjamin Charles

    This study investigated the impact of adding a parental involvement intervention to the Teaching for Transformative Experience in Science (TTES) model in science courses (biology and chemistry) in an all-girl middle and high school (N = 89). Specifically, the goal was to increase out-of-school engagement, interest, parental involvement, and achievement. Analysis showed that TTES with the addition of a parent intervention (TTES+PI) facilitated more out-of-school engagement and parent involvement than a comparison. Furthermore, a high initial level of situational and individual interest was maintained in the TTES+PI condition; whereas both forms of interest decreased in the comparison. A content analysis of transformative experience journal entries suggested that when parents showed value for science concepts, students' experiential value increased. The results provide evidence that the addition of a parent intervention may increase the effectiveness of TTES and maintain girl's interest in science, which has theoretical and practical implications.

  8. Integrating Various Apps on BYOD (Bring Your Own Device) into Seamless Inquiry-Based Learning to Enhance Primary Students' Science Learning

    Science.gov (United States)

    Song, Yanjie; Wen, Yun

    2018-04-01

    Despite that BYOD (Bring Your Own Device) technology model has been increasingly adopted in education, few studies have been reported on how to integrate various apps on BYOD into inquiry-based pedagogical practices in primary schools. This article reports a case study, examining what apps on BYOD can help students enhance their science learning, and how students develop their science knowledge in a seamless inquiry-based learning environment supported by these apps. A variety of qualitative data were collected and analyzed. The findings show that the affordances of the apps on BYOD could help students improve their science knowledge without time and place constraints and gain a better sense of ownership in learning.

  9. Psychology as an Evolving, Interdisciplinary Science: Integrating Science in Sensation and Perception from Fourier to Fluid Dynamics

    Science.gov (United States)

    Ebersole, Tela M.; Kelty-Stephen, Damian G.

    2017-01-01

    This article outlines the theoretical rationale and process for an integrated-science approach to teaching sensation and perception (S&P) to undergraduate psychology students that may also serve as an integrated-science curriculum. The course aimed to introduce the interdisciplinary evolution of this psychological field irrespective of any…

  10. Identifying Pre-High School Students' Science Class Motivation Profiles to Increase Their Science Identification and Persistence

    Science.gov (United States)

    Chittum, Jessica R.; Jones, Brett D.

    2017-01-01

    One purpose of this study was to determine whether patterns existed in pre-high school students' motivation-related perceptions of their science classes. Another purpose was to examine the extent to which these patterns were related to their science identification, gender, grade level, class effort, and intentions to persist in science. We…

  11. Teaching science to English Language Learners: Instructional approaches of high school teachers

    Science.gov (United States)

    Frank, Betty-Vinca N.

    Students who are English Language Learners (ELLs) form the fastest growing segment of the American school population. Prompted by the call for scientific literacy for all citizens, science educators too have investigated the intersection of language and science instruction of ELLs. However these studies have typically been conducted with elementary students. Few studies have explored how high school science teachers, particularly those who have not received any special training, approach science instruction of ELLs and what supports them in this endeavor. This was a qualitative case study conducted with five science teachers in one small urban high school that predominantly served ELLs. The purpose of this study was to examine instructional approaches used by teachers to make science accessible to ELLs and the factors that supported or inhibited them in developing their instructional approaches. This goal encompassed the following questions: (a) how teachers viewed science instruction of ELLs, (b) how teachers designed a responsive program to teach science to ELLs, (c) what approaches teachers used for curriculum development and instruction, (d) how teachers developed classroom learning communities to meet the needs of ELLs. Seven instructional strategies and five perceived sources of support emerged as findings of this research. In summary, teachers believed that they needed to make science more accessible for their ELL students while promoting their literacy skills. Teachers provided individualized attention to students to provide relevant support. Teachers engaged their students in various types of active learning lessons in social contexts, where students worked on both hands-on and meaning-making activities and interacted with their peers and teachers. Teachers also created classroom communities and learning spaces where students felt comfortable to seek and give help. Finally, teachers identified several sources of support that influenced their instructional

  12. Bringing science education in and out of school closer together - (Symposium SBBq Brazil

    Directory of Open Access Journals (Sweden)

    J. Dillon

    2013-05-01

    Full Text Available Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities  to expand their experiences and understanding of science. Programmes include supplementary classroom experiences; integrated core academic curricula; student science learning communities located in afterschool, summer, and weekend programmes; teacher professional development opportunities and communities; and even district infrastructure efforts around issues such as standards and assessment development or teacher preparation. Throughout the world, thesecollaborations have allowed students, and also teachers, to explore, understand, and care about a wide range of natural settings, phenomena, and cultural and historical objects. They have helped students to notice, consider, and investigate relationships between human social behavior and environmental consequences. They have  provided contexts, materials, rationales, and support for students and teachers to engage deeply in scientific inquiry processes of learning. These experiences—with an array of real-life settings, plants, animals, professional science communities, objects, scientific instrumentation, and current research and data—have been shown to spark curiosity, generate questions, and lead to a depth of understanding andcommitment in ways that are often less possible when the same material is encountered in books or on screens. This paper draws on theoretical perspectives as well as practical examples, focusing on inquiry-based science education, to show that formal-informal collaborations fall within the core activities  of both schools and organisations working in informal contexts including museums, youth programmes, and libraries. The paper argues that what is needed are more intentional and strategic deployments of resources, leading to

  13. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    Science.gov (United States)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  14. Using blended learning and out-of-school visits: pedagogies for effective science teaching in the twenty-first century

    Science.gov (United States)

    Coll, Sandhya Devi; Coll, Richard Kevin

    2018-04-01

    Background: Recent research and curriculum reforms have indicated the need for diversifying teaching approaches by drawing upon student interest and engagement in ways which makes learning science meaningful. Purpose: This study examines the integration of informal/free choice learning which occurred during learning experiences outside school (LEOS) with classroom learning using digital technologies. Specifically, the digital technologies comprised a learning management system (LMS), Moodle, which fits well with students' lived experiences and their digital world. Design and Method: This study examines three out-of-school visits to Informal Science Institutes (ISI) using a digitally integrated fieldtrip inventory (DIFI) Model. Research questions were analysed using thematic approach emerging along with semi-structured interviews, before, during and after the visit, and assessing students' learning experiences. Data comprised photographs, field notes, and unobtrusive observations of the classroom, wiki postings, student work books and teacher planning diaries. Results: We argue, that pre- and post-visit planning using the DIFI Model is more likely to engage learners, and the use of a digital learning platform was even more likely to encourage collaborative learning. The conclusion can also be drawn that students' level of motivation for collaborative learning positively correlates with their improvement in academic achievement.

  15. Representational Inquiry competences in Science Games

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2009-01-01

    to support work with genuine scientific inquiry and to meet the seventh- to tenth grade curriculum objectives for science and Danish education in Danish schools. This paper comprises a presentation of the results of a long-term empirical study done of four school classes who have played the game. The chapter......This chapter concerns the enactment of competences in a particular science learning game Homicide, which is played in lower secondary schools. Homicide is a forensic investigation game in which pupils play police experts solving criminal cases in the space of one week. The game is designed......, transform and criticize visual representations as an integrated part of conducting an inquiry in the science game...

  16. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  17. Developing Pre-service Teachers' Technology Integration ...

    African Journals Online (AJOL)

    Developing Pre-service Teachers' Technology Integration Competencies in Science and Mathematics Teaching: Experiences from Tanzania and Uganda. ... This study investigated the ICT integration practices in pre-service teacher education in the School of Education at Makerere University (College of Education and ...

  18. Young African American children constructing identities in an urban integrated science-literacy classroom

    Science.gov (United States)

    Kane, Justine M.

    This is a qualitative study of identities constructed and enacted by four 3rd-grade African American children (two girls and two boys) in an urban classroom that engaged in a year-long, integrated science-literacy project. Juxtaposing narrative and discursive identity lenses, coupled with race and gender perspectives, I examined the ways in which the four children saw and performed themselves as students and as science students in their classroom. Interview data were used for the narrative analysis and classroom Discourse and artifacts were used for the discursive analysis. A constructivist grounded theory framework was adopted for both analyses. The findings highlight the diversity and richness of perspectives and forms of engagement these young children shared and enacted, and help us see African American children as knowers, doers, and talkers of science individually and collectively. In their stories about themselves, all the children identified themselves as smart but they associated with smartness different characteristics and practices depending on their strengths and preferences. Drawing on the children's social, cultural, and ethnolinguistic resources, the dialogic and multimodal learning spaces facilitated by their teacher allowed the children to explore, negotiate, question, and learn science ideas. The children in this study brought their understandings and ways of being into the "lived-in" spaces co-created with classmates and teacher and influenced how these spaces were created. At the same time, each child's ways of being and understandings were shaped by the words, actions, behaviors, and feelings of peers and teacher. Moreover, as these four children engaged with science-literacy activities, they came to see themselves as competent, creative, active participants in science learning. Although their stories of "studenting" seemed dominated by following rules and being well-behaved, their stories of "sciencing" were filled with exploration, ingenuity

  19. An Integrated Pest Management Tool for Evaluating Schools

    Science.gov (United States)

    Bennett, Blake; Hurley, Janet; Merchant, Mike

    2016-01-01

    Having the ability to assess pest problems in schools is essential for a successful integrated pest management (IPM) program. However, such expertise can be costly and is not available to all school districts across the United States. The web-based IPM Calculator was developed to address this problem. By answering questions about the condition of…

  20. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  1. Vocational students' meaning-making in school science - negotiating authenticity through multimodal mobile learning :

    OpenAIRE

    Nordby, Mette; Knain, Erik; Jonsdottir, Gudrun

    2017-01-01

    This article presents a qualitative study focusing school science in two vocational classes, upper secondary school, Norway. The fact that many vocational students find little meaning in school science forms the backdrop. The students were introduced to teaching combining an excursion to a district heating plant and classroom lessons, with the use of mobile phones for documentation. Thematic analysis is used to explore the students’ experiences by analysing their behaviour and utterances. A m...

  2. Integrating Literacy, Math, and Science to Make Learning Come Alive

    Science.gov (United States)

    Bintz, William P.; Moore, Sara D.; Hayhurst, Elaine; Jones, Rubin; Tuttle, Sherry

    2006-01-01

    In this article, the authors who are an interdisciplinary team of middle school educators collaboratively developed and implemented an interdisciplinary unit designed to help middle school students: (1) think like mathematicians and scientists; (2) develop specific areas of expertise in math and science; and (3) use literature as a tool to learn…

  3. Choosing Science: A Mixed-Methods Study of Factors Predicting Latino and Latina High School Students' Decisions to Pursue Science Degrees

    Science.gov (United States)

    Stein, Rachel S.

    Latino/as are an increasingly large subset of the United States population; however, they continue to be underrepresented in science careers. Because of this increase, research regarding Latino/as has improved, but there are still many gaps in regards to gender-specific predictors to pursue science careers. To address this lack of literature, the purpose of this study is to extend previous research and to develop a model of variables that significantly contribute to science career choice among Latino and Latina students when they graduate from high school. In particular the study addressed the following research questions: (1) What are the differences in science outcomes for Latino and Latina students? (2) What are the differences in factors involved in science outcomes for Latino and Latina students? (3) For Latino and Latina students what are the differences in the factors that predict students' choice to pursue a science degree and/or high scores on the Future Plans in Science Scale? (4) What are the differences in how Latino and Latina students experience science, which account for high achieving students to choose to pursue a science major? This study utilized an explanatory mixed-method approach to examine how cognitive, institutional, and motivational factors may be interrelated and play a role in Latino/as choice to pursue science. The first phase of the study incorporated the collection of survey and database information from 12th grade students at two Southern California high schools. The second phase of the study utilized follow-up focus group interviews to explore the specific differential experiences and views of Latino and Latina students. The results of the study demonstrated multiple significant predictors. Science self-concept and views towards science outside of school were the most significant predictors of students' choice to pursue science. Male students also had major predictors of Spanish proficiency, teacher encouragement, religious views

  4. Science curiosity in learning environments: developing an attitudinal scale for research in schools, homes, museums, and the community

    Science.gov (United States)

    Weible, Jennifer L.; Toomey Zimmerman, Heather

    2016-05-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science Curiosity in Learning Environments (SCILE) scale was created and validated as a 12-item scale to measure scientific curiosity in youth. The scale was developed through (a) adapting the language of the Curiosity and Exploration Inventory-II [Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of Research in Personality, 43(6), 987-998] for youth and (b) crafting new items based on scientific practices drawn from U.S. science standards documents. We administered a preliminary set of 30 items to 663 youth ages 8-18 in the U.S.A. Exploratory and confirmatory factor analysis resulted in a three-factor model: stretching, embracing, and science practices. The findings indicate that the SCILE scale is a valid measure of youth's scientific curiosity for boys and girls as well as elementary, middle school, and high school learners.

  5. Working with Science Teachers to Transform the Opportunity Landscape for Regional and Rural Youth: A Qualitative Evaluation of the Science in Schools Program

    Science.gov (United States)

    Sheehan, Grania R.; Mosse, Jennifer

    2013-01-01

    This article reports on a qualitative evaluation of the Science in Schools program; a suite of science based activities delivered by staff of a regional university campus and designed to provide professional development for science teachers working in non-metropolitan schools in a socioeconomically disadvantaged region of Australia. The research…

  6. Using immersive healthcare simulation for physiology education: initial experience in high school, college, and graduate school curricula.

    Science.gov (United States)

    Oriol, Nancy E; Hayden, Emily M; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A

    2011-09-01

    In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and graduate school science class work. Our experience is based on work with hundreds of high school, college, and graduate students enrolled in traditional science classes in which mannequin simulators were used to teach physiological principles. Specific case scenarios were integrated into the curriculum as problem-solving exercises chosen to accentuate the basic science objectives of the course. This report also highlights the historic and theoretical basis for the use of mannequin simulators as an important physiology education tool and outlines how the authors' experience in healthcare education has been effectively translated to nonclinical student populations. Particular areas of focus include critical-thinking and problem-solving behaviors and student reflections on the impact of the teaching approach.

  7. System understanding as a basis for sustainable decision-making. A science - school collaboration within the Sparkling Science project "Traisen w3"

    Science.gov (United States)

    Poppe, Michaela; Böck, Kerstin; Loach, Andreas; Scheikl, Sigrid; Zitek, Andreas; Heidenreich, Andrea; Kurz-Aigner, Roman; Schrittwieser, Martin; Muhar, Susanne

    2016-04-01

    Equipping young people with the skills to participate successfully in increasingly complex environments and societies is a central issue of policy makers around the world. Only the understanding of complex socio-environmental systems establishes a basis for making decisions leading to sustainable development. However, OECD Pisa studies indicated, that only a low percentage of 15-year-old students was able to solve straightforward problems. Additionally, students get less interested in natural science education. In Austria "Sparkling Science" projects funded by the Federal Ministry of Science, Research and Economy in Austria target at integrating science with school learning by involving young people into scientific research for the purpose of developing new and engaging forms of interactive, meaningful learning. Within the Sparkling Science Project "Traisen.w3" scientists work together with 15 to 18-year-old students of an Austrian Secondary School over two years to identify and evaluate ecosystem services within the catchment of the river Traisen. One of the aims of the project is to foster system understanding of the youths by multi-modal school activities. To support the development of causal systems thinking, students developed qualitative causal models on processes in the catchment of the river Traisen with an interactive, hierarchically structured learning environment that was developed within the EU-FP7 project "DynaLearn" (http://www.dynalearn.eu) based on qualitative reasoning. Students worked in small groups and were encouraged to interlink entities, processes and simulate the results of the proposed interactions of hydrological, biological, ecological, spatial and societal elements. Within this setting collaborative problem solving competency through sharing knowledge, understanding and different perspectives was developed. Additionally, in several school workshops the ecosystem services concept was used as communication tool to show the

  8. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  9. Empowering Rural Appalachian Youth Through Integrated Inquiry-based Earth Science

    Science.gov (United States)

    Cartwright, T. J.; Hogsett, M.

    2009-05-01

    Science education must be relevant and inspiring to keep students engaged and receptive to learning. Reports suggest that science education reform can be advanced by involving students in active research (NSF 1996). Through a 2-year Geoscience Education award from the National Science Foundation, a program called IDGE (Integrated Design for Geoscience Education) has targeted low-income, under-represented, and minority high school students in rural Appalachia in inquiry-based projects, international collaboration, and an international environmental expedition incorporating the GLOBE program protocols. This program targeted Upward Bound students at Marshall University in Huntington, West Virginia. The Upward Bound is a federally-supported program targeting low-income, under-represented, and minority students for inclusion in a summer academic- enrichment program. IDGE builds on the mission of Upward Bound by encouraging underprivileged students to investigate science and scientific careers. This outreach has proven to be successful in enhancing positive attitudes and understanding about science and increasing the number of students considering science careers. IDGE has found that students must be challenged to observe the world around them and to consider how their decisions affect the future of our planet, thus making geoscience relevant and interesting to the students. By making the geoscience course inquiry-based and incorporating field research that is relevant to local environmental issues, it becomes possible for students to bridge the gap between science in theory and science in practice while remaining engaged. Participants were able to broaden environmental connections through an ecological expedition experience to Costa Rica, serving as an opportunity to broaden the vision of students as members of an international community of learners and scientists through their experiences with a diverse natural environment. This trip, in coordination with the inclusion

  10. Developpement et evaluation d'un environnement informatise d'apprentissage pour faciliter l'integration des sciences et de la technologie

    Science.gov (United States)

    Saliba, Marie-Therese

    2011-12-01

    Through this research we will fully assess the benefits brought by the ExAO (Computer Assisted Experimentation) in school laboratories of science and technology in Lebanon. We would also like to mention its contribution in a tangible way in laboratory research of Pedagogic Robotic from Montreal University, particularly in the development of ExAO mulaboratory. We wanted to test the capabilities of the ExAO, its use in the classroom such as: 1. A replacement of a traditional laboratory in the use of the experimental method. 2. A scientific investigation tool. 3. An integration tool of experimental sciences and mathematics. 4. An integration tool of experimental sciences, mathematics and technology in the technoscientific learning. To do so, we have mobilized 13 group classes, designated teachers to experiment themselves along with their students in order to assess, in a more realistic way, the benefits of implementing this micro computer laboratory at school. Different testing, evaluated using the results of learning activities undertaken by students, their responses to a questionnaire and feedback from teachers, show that: 1. The replacement of a traditional laboratory with an ExAO mulaboratory does not seem to pose problem, expected that students have adapted to it in only ten minutes, indicating that the speed with which data were graphed was more productive. 2. In order to investigate a physical phenomenon, the usability of the tutorial associated with the ability to amplify the phenomenon before its graph representation, has allowed students to design and implement quickly and independently an experiment to verify their prediction. 3. The integration of mathematics into an experimental approach can quickly grasp the phenomenon. In addition, it gives more autonomy and a meaning to the graphs and algebraic representations allowing to use them as a cognitive tool to interpret this phenomenon. 4. The approach made by the students to design and construct a

  11. MARGINALIZATION OF DEPARTMENTS OF SOCIAL SCIENCES AND LANGUAGES IN SENIOR HIGH SCHOOL IN DENPASAR

    Directory of Open Access Journals (Sweden)

    I Wayan Winaja

    2013-02-01

    Full Text Available Learning should be focused on the social and cultural development of intellectual ability, and encourage the learner’s comprehension and knowledge in order to produce intelligent and educated society. From the data collected from Public Senior High School 1 Denpasar and Dwijendra Senior High School Denpasar, it was found that the departments of social sciences and languages were seriously marginalized, indicated by the time allocated for social sciences and languages. The time allocated for Natural Sciences such as chemistry, physics, and biology averaged three hours a week. The additional ‘extra’ time allocated for Natural Sciences made the overall time allocated for them double the overall time allocated for Social Sciences such as economics, history sociology, and geography. Furthermore, the time allocated for one of them was one hour a week. The knowledge presented by the books of Natural Sciences was highly “instrumentalist-positivistic”; unlike the books of social sciences which only provided academic normative information. The modernity contained in “instrumentative positivism” was the philosophy which gave more priority to practical things and hard work with financial success as the main criterion. It was concluded that the marginalization of the departments of social sciences and languages in Public Senior High School 1 Denpasar and Dwijendra Senior High School Denpasar resulted from modernism, the culture of image, and the image that natural sciences were more advantageous than social sciences and languages.

  12. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  13. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  14. CERN as a Non-School Resource for Science Education

    CERN Document Server

    Ellis, Jonathan Richard

    2000-01-01

    As a large international research laboratory, CERN feels it has a special responsibility for outreach, and has many activities directed towards schools, including organized visits, an on-site museum, hands-on experiments, a Summer intern programme for high-school teachers, lecture series and webcasts. Ongoing activities and future plans are reviewed, and some ideas stimulated by this workshop are offered concerning the relevance of CERN's experience to Asia, and the particular contribution that CERN can make as a non-school resource for science education.

  15. Student achievement in science: A longitudinal look at individual and school differences

    Science.gov (United States)

    Martinez, Alina

    The importance of science in today's technological society necessitates continued attention to students' experiences in science and specifically their achievement in science. There is a need to look at gender and race/ethnicity simultaneously when studying students' experiences in science and to explore factors related to higher achievement among students. Using data from the Longitudinal Study of American Youth, this study contributes to existing literature on student achievement in science by simultaneously exploring the effects of race/ethnicity and gender. Capitalizing on the availability of yearly science achievement scores, I present trajectories of student achievement from 7th to 12th grade. This study also includes an exploration of school effects. Overall, student achievement in science increases from 7th to 12th grade, although some leveling is seen in later grades. Growth in achievement differs by both gender and race/ethnicity, but racial/ethnic differences are larger than gender differences. Hispanic, Black, Asian, and White males score higher, on average, throughout the secondary grades than their female counterparts. Achievement scores of Asian students are consistently higher than White students, who in turn score higher than Hispanic and finally Black students. Both background and science-related factors help explain variation in achievement status and growth in achievement. Parental education is positively associated with achievement status among all groups except Black students for whom there is no effect of parental education. Science related resources in the home are positively associated with student achievement and the effect of these resources increases in later grades. Student achievement in science is also positively related to student course taking and attitude toward science. Furthermore, both the negative effect of viewing science as a male domain, which exists for males and females, and the positive effect of parental support for

  16. Improvement in Student Science Proficiency Through InSciEd Out

    Science.gov (United States)

    Sonju, James D.; Leicester, Jean E.; Hoody, Maggie; LaBounty, Thomas J.; Frimannsdottir, Katrin R.; Ekker, Stephen C.

    2012-01-01

    Abstract Integrated Science Education Outreach (InSciEd Out) is a collaboration formed between Mayo Clinic, Winona State University, and Rochester Public Schools (MN) with the shared vision of achieving excellence in science education. InSciEd Out employs an equitable partnership model between scientists, teachers, education researchers, and the community. Teams of teachers from all disciplines within a single school experience cutting-edge science using the zebrafish model system, as well as current pedagogical methods, during a summer internship at the Mayo Clinic. Within the internship, the teachers produce new curriculum that directly addresses opportunities for science education improvement at their own school. Zebrafish are introduced within the new curriculum to support a living model of the practice of science. Following partnership with the InSciEd Out program and 2 years of implementation in the classroom, teacher-interns from a K–8 public school reported access to local scientific technology and expertise they had not previously recognized. Teachers also reported improved integration of other disciplines into the scientific curriculum and a flow of concepts vertically from K through 8. Students more than doubled selection of an Honors science track in high school to nearly 90%. 98% of students who took the Minnesota Comprehensive Assessments in their 5th and 8th grade year (a span that includes 2 years of InSciEd Out) showed medium or high growth in science proficiency. These metrics indicate that cooperation between educators and scientists can result in positive change in student science proficiency and demonstrate that a higher expectation in science education can be achieved in US public schools. PMID:23244687

  17. Examining the relationship between school district size and science achievement in Texas including rural school administrator perceptions of challenges and solutions

    Science.gov (United States)

    Mann, Matthew James

    Rural and small schools have almost one-third of all public school enrollment in America, yet typically have the fewest financial and research based resources. Educational models have been developed with either the urban or suburban school in mind, and the rural school is often left with no other alternative except this paradigm. Rural based educational resources are rare and the ability to access these resources for rural school districts almost non-existent. Federal and state based education agencies provide some rural educational based programs, but have had virtually no success in answering rural school issues. With federal and state interest in science initiatives, the challenge that rural schools face weigh in. To align with that focus, this study examined Texas middle school student achievement in science and its relationship with school district enrollment size. This study involved a sequential transformative mixed methodology with the quantitative phase driving the second qualitative portion. The quantitative research was a non-experimental causal-comparative study conducted to determine whether there is a significant difference between student achievement on the 2010 Texas Assessment of Knowledge and Skills 8 th grade science results and school district enrollment size. The school districts were distributed into four categories by size including: a) small districts (32-550); b) medium districts (551-1500); c) large districts (1501-6000); and d) mega-sized districts (6001-202,773). A one-way analysis of variance (ANOVA) was conducted to compare the district averages from the 2010 TAKS 8th grade science assessment results and the four district enrollment groups. The second phase of the study was qualitative utilizing constructivism and critical theory to identify the issues facing rural and small school administrators concerning science based curriculum and development. These themes and issues were sought through a case study method and through use of semi

  18. Creating opportunities for science PhDs to pursue careers in high school education.

    Science.gov (United States)

    Doyle, Kari M H; Vale, Ronald D

    2013-11-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K-12 education, a recent National Research Council report (Successful K-12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K-12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education.

  19. Creating opportunities for science PhDs to pursue careers in high school education

    Science.gov (United States)

    Doyle, Kari M. H.; Vale, Ronald D.

    2013-01-01

    The United States is confronting important challenges at both the early and late stages of science education. At the level of K–12 education, a recent National Research Council report (Successful K–12 STEM Education) proposed a bold restructuring of how science is taught, moving away from memorizing facts and emphasizing hands-on, inquiry-based learning and a deeper understanding of the process of science. At higher levels of training, limited funding for science is leading PhDs to seek training and careers in areas other than research. Might science PhDs play a bigger role in the future of K–12 education, particularly at the high school level? We explore this question by discussing the roles that PhDs can play in high school education and the current and rather extensive barriers to PhDs entering the teaching profession and finally suggest ways to ease the entrance of qualified PhDs into high school education. PMID:24174464

  20. High school students' implicit theories of what facilitates science learning

    Science.gov (United States)

    Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael

    2011-11-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think

  1. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  2. Anatomy Integration Blueprint: A Fourth-Year Musculoskeletal Anatomy Elective Model

    Science.gov (United States)

    Lazarus, Michelle D.; Kauffman, Gordon L., Jr.; Kothari, Milind J.; Mosher, Timothy J.; Silvis, Matthew L.; Wawrzyniak, John R.; Anderson, Daniel T.; Black, Kevin P.

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of…

  3. A Case Study of a School Science Department: A Site for Workplace Learning?

    OpenAIRE

    Heighes, Deborah Anne

    2017-01-01

    This descriptive and illuminative case study of one science department in a successful, urban, secondary school in the south of England considers the science department as a site of workplace learning and the experience of beginning teachers in this context. Policy change in initial teacher training (ITT) has given schools a major role in the recruitment of trainees and emphasized the schools’ role in their training. Additionally, there continue to be significant challenges to recruit science...

  4. Excluded from school: Autistic students’ experiences of school exclusion and subsequent re-integration into school

    Directory of Open Access Journals (Sweden)

    Janina Brede

    2017-11-01

    Full Text Available Background and aims All children have the right to receive an education and to be included in school. Yet young people on the autism spectrum, who are already vulnerable to poor health and social outcomes, are at increased risk of school exclusion. The current study sought to understand the key factors surrounding the school exclusion experiences of a group of autistic students with particularly complex needs, and their subsequent re-integration into education. Method We interviewed nine intellectually able students (eight male, one female; M age = 13.3 years, all with a diagnosis of autism and the majority with a history of demand avoidant behaviour. We also interviewed their parents and teaching staff about the students’ past and current school experiences. All students were currently being educated within an ‘Inclusive Learning Hub’, specially designed to re-integrate excluded, autistic students back into school, which was situated within a larger autism special school. Results Young people and their parents gave overwhelmingly negative accounts of the students’ previous school experiences. Children’s perceived unmet needs, as well as inappropriate approaches by previous school staff in dealing with children’s difficulties, were felt to cause decline in children’s mental health and behaviour and, ultimately, led to their exclusion from school. Four key factors for successful reintegration into school were identified, including (i making substantial adjustments to the physical environment, (ii promoting strong staff–student relationships, (iii understanding students’ specific needs, and (iv targeted efforts towards improving students’ wellbeing. Conclusion The culmination – and escalation – of challenges students experienced in the students’ previous placements could suggest that the educational journey to exclusion from school is an inevitable consequence for at least some autistic children, including those with

  5. The Integration of New Media in Schools: Comparing Policy with Practice

    Science.gov (United States)

    Ismail, Nurzali

    2015-01-01

    Beyond policy, this paper investigates the actual practice related to the integration of new media in schools. Despite continuous government effort to integrate new media in schools, the use of digital technologies for teaching and learning in the classroom remains limited. This study suggests that, apart from the issue related to the state of…

  6. Science teacher learning for MBL-supported student-centered science education in the context of secondary education in Tanzania

    NARCIS (Netherlands)

    Voogt, Joke; Tilya, F.; van den Akker, Jan

    2009-01-01

    Science teachers from secondary schools in Tanzania were offered an in-service arrangement to prepare them for the integration of technology in a student-centered approach to science teaching. The in-service arrangement consisted of workshops in which educative curriculum materials were used to

  7. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  8. The use of Gowin’s “V” in elementary school science teacher’s education

    Directory of Open Access Journals (Sweden)

    Henri Araujo Leboeuf

    2013-12-01

    Full Text Available This work investigates the use of the heuristic instrument, known as Gowin’s “V” Diagram, in elementary school teachers pre-service education. It is part of a research that aimed to investigate possible contributions of a potentially meaningful teaching approach that integrates conceptual and methodological issues in teacher’s education. The didactic approach was based on the Theory of Meaningful Learning, and integrated conceptual, historical and experimental contents of the topic Optics of Vision in a course on science teaching embedded in a pedagogy course. The "V" diagram was used during the process as a learning facilitator, assessment tool, and data collection. We analyzed the diagrams built by students from the first contact with this instrument until its use during the course activities. Considerations are made on the potential use of this instrument in teacher education.

  9. Bioinformatics in High School Biology Curricula: A Study of State Science Standards

    Science.gov (United States)

    Wefer, Stephen H.; Sheppard, Keith

    2008-01-01

    The proliferation of bioinformatics in modern biology marks a modern revolution in science that promises to influence science education at all levels. This study analyzed secondary school science standards of 49 U.S. states (Iowa has no science framework) and the District of Columbia for content related to bioinformatics. The bioinformatics…

  10. In Defense of Societal Issues as Organizers for School Science.

    Science.gov (United States)

    Yager, Robert E.

    1983-01-01

    Offers a defense of societal issues as organizers for school science programs in response to criticisms of this thesis discussed in SE 534 649. Indicates that there appears to be no evidence that using nontraditional topics as organizers will make science more subject to manipulation and perversion. (JN)

  11. A quantitative analysis of factors influencing the professional longevity of high school science teachers in Florida

    Science.gov (United States)

    Ridgley, James Alexander, Jr.

    This dissertation is an exploratory quantitative analysis of various independent variables to determine their effect on the professional longevity (years of service) of high school science teachers in the state of Florida for the academic years 2011-2012 to 2013-2014. Data are collected from the Florida Department of Education, National Center for Education Statistics, and the National Assessment of Educational Progress databases. The following research hypotheses are examined: H1 - There are statistically significant differences in Level 1 (teacher variables) that influence the professional longevity of a high school science teacher in Florida. H2 - There are statistically significant differences in Level 2 (school variables) that influence the professional longevity of a high school science teacher in Florida. H3 - There are statistically significant differences in Level 3 (district variables) that influence the professional longevity of a high school science teacher in Florida. H4 - When tested in a hierarchical multiple regression, there are statistically significant differences in Level 1, Level 2, or Level 3 that influence the professional longevity of a high school science teacher in Florida. The professional longevity of a Floridian high school science teacher is the dependent variable. The independent variables are: (Level 1) a teacher's sex, age, ethnicity, earned degree, salary, number of schools taught in, migration count, and various years of service in different areas of education; (Level 2) a school's geographic location, residential population density, average class size, charter status, and SES; and (Level 3) a school district's average SES and average spending per pupil. Statistical analyses of exploratory MLRs and a HMR are used to support the research hypotheses. The final results of the HMR analysis show a teacher's age, salary, earned degree (unknown, associate, and doctorate), and ethnicity (Hispanic and Native Hawaiian/Pacific Islander); a

  12. Making the case for STEM integration at the upper elementary level: A mixed methods exploration of opportunity to learn math and science, teachers' efficacy and students' attitudes

    Science.gov (United States)

    Miller, Brianna M.

    Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math

  13. Predictors of School Garden Integration: Factors Critical to Gardening Success in New York City.

    Science.gov (United States)

    Burt, Kate Gardner; Burgermaster, Marissa; Jacquez, Raquel

    2018-03-01

    The purpose of this study was to determine the level of integration of school gardens and identify factors that predict integration. 211 New York City schools completed a survey that collected demographic information and utilized the School Garden Integration Scale. A mean garden integration score was calculated, and multiple regression analysis was conducted to determine independent predictors of integration and assess relationships between individual integration characteristics and budget. The average integration score was 34.1 (of 57 points) and ranged from 8 to 53. Operating budget had significant influence on integration score, controlling for all other factors ( p integrated, as budget is a modifiable factor. When adequate funding is secured, a well-integrated garden may be established with proper planning and sound implementation.

  14. Enhancing Postgraduate Learning and Teaching: Postgraduate Summer School in Dairy Science

    Directory of Open Access Journals (Sweden)

    Pietro Celi

    2014-01-01

    Full Text Available Dairy science is a multidisciplinary area of scientific investigation and Ph.D. students aiming to do research in the field of animal and/or veterinary sciences must be aware of this. Ph.D. students often have vast spectra of research interests, and it is quite challenging to satisfy the expectation of all of them. The aim of this study was to establish an international Ph.D. training program based on research collaboration between the University of Sydney and the University of Padova. The core component of this program was a two-week Postgraduate Summer School in Dairy Science, which was held at the University of Padova, for Ph.D. students of both universities. Therefore, we designed a program that encompassed seminars, workshops, laboratory practical sessions, and farm visits. Participants were surveyed using a written questionnaire. Overall, participants have uniformly praised the Summer School calling it a rewarding and valuable learning experience. The Ph.D. Summer School in Dairy Science provided its participants a positive learning experience, provided them the opportunity to establish an international network, and facilitated the development of transferable skills.

  15. Normal Science Education and Its Dangers: The Case of School Chemistry.

    Science.gov (United States)

    Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert

    2000-01-01

    Attempts to solve the problem of hidden structure in school chemistry. Argues that normal chemistry education is isolated from common sense, everyday life and society, the history and philosophy of science, technology, school physics, and chemical research. (Author/CCM)

  16. Understanding motivational structures that differentially predict engagement and achievement in middle school science

    Science.gov (United States)

    Lee, Christine S.; Hayes, Kathryn N.; Seitz, Jeffery; DiStefano, Rachelle; O'Connor, Dawn

    2016-01-01

    Middle school has been documented as the period in which a drop in students' science interest and achievement occurs. This trend indicates a lack of motivation for learning science; however, little is known about how different aspects of motivation interact with student engagement and science learning outcomes. This study examines the relationships among motivational factors, engagement, and achievement in middle school science (grades 6-8). Data were obtained from middle school students in the United States (N = 2094). The theoretical relationships among motivational constructs, including self-efficacy, and three types of goal orientations (mastery, performance approach, and performance avoid) were tested. The results showed that motivation is best modeled as distinct intrinsic and extrinsic factors; lending evidence that external, performance based goal orientations factor separately from self-efficacy and an internal, mastery based goal orientation. Second, a model was tested to examine how engagement mediated the relationships between intrinsic and extrinsic motivational factors and science achievement. Engagement mediated the relationship between intrinsic motivation and science achievement, whereas extrinsic motivation had no relationship with engagement and science achievement. Implications for how classroom practice and educational policy emphasize different student motivations, and in turn, can support or hinder students' science learning are discussed.

  17. Looking at Life. Study Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  18. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  19. A Cooperative Learning Group Procedure for Improving CTE and Science Integration

    Science.gov (United States)

    Spindler, Matt

    2016-01-01

    The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…

  20. The effects of experience and attrition for novice high-school science and mathematics teachers.

    Science.gov (United States)

    Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C

    2012-03-02

    Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.

  1. Science Alive!: Connecting with Elementary Students through Science Exploration

    Directory of Open Access Journals (Sweden)

    Aarti Raja

    2016-05-01

    Full Text Available A novel program called Science Alive! was developed by undergraduate faculty members, K–12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  2. Science Alive!: Connecting with Elementary Students through Science Exploration.

    Science.gov (United States)

    Raja, Aarti; Lavin, Emily Schmitt; Gali, Tamara; Donovan, Kaitlin

    2016-05-01

    A novel program called Science Alive! was developed by undergraduate faculty members, K-12 school teachers, and undergraduate students to enrich science, technology, engineering, and mathematics (STEM) literacy at community schools located near the university. The ultimate goal of the program is to bolster the scientific knowledge and appreciation of local area students and community members and serve as a model for similar programs. Through the program, we observed that elementary school students made gains toward learning their grade-level science curricula after a hands-on learning experience and had fun doing these hands-on activities. Through the program, undergraduate students, working with graduate students and alumni, build scientific learning modules using explanatory handouts and creative activities as classroom exercises. This helps better integrate scientific education through a collaborative, hands-on learning program. Results showed that elementary school students made the highest learning gains in their performance on higher-level questions related to both forces and matter as a result of the hands-on learning modules. Additionally, college students enjoyed the hands-on activities, would consider volunteering their time at such future events, and saw the service learning program as a benefit to their professional development through community building and discipline-specific service. The science modules were developed according to grade-level curricular standards and can be used year after year to teach or explain a scientific topic to elementary school students via a hands-on learning approach.

  3. Crumpled Molecules and Edible Plastic: Science Learning Activation in Out-of-School Time

    Science.gov (United States)

    Dorph, Rena; Schunn, Christian D.; Crowley, Kevin

    2017-01-01

    The Coalition for Science After School highlights the dual nature of outcomes for science learning during out-of- school time (OST): Learning experiences should not only be positive in the moment, but also position youth for future success. Several frameworks speak to the first set of immediate outcomes--what youth learn, think, and feel as the…

  4. A comparison of rural high school students in Germany with rural Tennessee high school students' mathematics and science achievement

    Science.gov (United States)

    Harding, R. Fredrick

    This descriptive study compared the science and mathematics aptitudes and achievement test scores for the final school year students in rural White County and Van Buren County, Tennessee with rural county students in Germany. In accordance with the previous research literature (Stevenson, 2002), German students outperformed U.S. students on The International Trends in Math and Science test (TIMSS). As reform in the U.S. education system has been underway, this study intended to compare German county student final school year performance with White County and Van Buren County (Grade 12) performance in science and mathematics. The entire populations of 176 White and Van Buren Counties senior high final school year students were compared with 120 school final year students from two rural German county high schools. The student responses to identical test and questionnaire items were compared using the t-test statistical analysis. In conclusion after t-test analyses, there was no significant difference (p>.05 level) in student attitudes on the 27 problem achievement and the 35 TIMSS questionnaire items between the sampled population of 120 German students compared with the population of 176 White and Van Buren students. Also, there was no statistically significant difference (p>.05 level) between the German, White, and Van Buren County rural science and math achievement in the TIMSS problem section of the final year test. Based on the research, recommendations to improve U.S. student scores to number one in the world include making changes in teaching methodology in mathematics and science; incorporating pamphlet lessons rather than heavily reliance on textbooks; focusing on problem solving; establishing an online clearinghouse for effective lessons; creating national standards in mathematics and science; matching students' course choices to job aspirations; tracking misbehaving students rather than mainstreaming them into the regular classroom; and designing

  5. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    Science.gov (United States)

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  6. Leadership that promotes teacher empowerment among urban middle school science teachers

    Science.gov (United States)

    Howard-Skipper, Joni

    In this study, the focus was on determining leadership strategies that promote teacher empowerment among urban middle school science teachers. The purpose of the paper was to determine if leadership strategies are related to teacher empowerment. The emphasis was on various forms of leadership and the empowerment of teachers in context in restructuring the democratic structure. An effective leadership in science education entails empowering others, especially science teachers. In this regard, no published studies had examined this perspective on empowering teachers and school leadership. Therefore, this study determined if a relationship exists between leadership strategy actions and teacher empowerment. The significance of the study is to determine a relationship between leadership strategies and teacher empowerment as a positive approach toward developing successful schools. Empowerment is essential for implementing serious improvements. Empowering others in schools must form a major component of an effective principal's agenda. It is becoming clearer in research literature that complex changes in education sometimes require active initiation. For this study, a quantitative methodology was used. Primary data enabled the research questions to be answered. The reliability and validity of the research were ensured. The results of this study showed that 40% of the administrators establish program policies with teachers, and 53% of teachers make decisions about new programs in schools. Furthermore, the findings, their implications, and recommendations are discussed.

  7. What Teachers Want: Supporting Primary School Teachers in Teaching Science

    Science.gov (United States)

    Fitzgerald, Angela; Schneider, Katrin

    2013-01-01

    Impending change can provide us with the opportunity to rethink and renew the things that we do. The first phase of the Australian Curriculum implementation offers primary school teachers the chance to examine their approaches to science learning and teaching. This paper focuses on the perceptions of three primary school teachers regarding what…

  8. Achievement, School Integration, and Self-Efficacy in Single-Sex and Coeducational Parochial High Schools

    Science.gov (United States)

    Micucci, Kara Hanson

    2014-01-01

    A structural model for prior achievement, school integration, and self-efficacy was developed using Tinto's theory of student attrition and Bandura's self-efficacy theory. The model was tested and revised using a sample of 1,452 males and females from single-sex and coeducational parochial high schools. Results indicated that the theoretically…

  9. Single-gender mathematics and science classes and the effects on urban middle school boys and girls

    Science.gov (United States)

    Sudler, Dawn M.

    This study compared the differences in the Criterion-Referenced Competency Test (CRCT) mathematics and science achievement scores of boys and girls in Grade 7 at two urban middle schools. The data allowed the researcher to determine to what degree boys and girls in Grade 7 differ in their mathematics and science achievements within a single-gender environment versus a coeducational learning environment. The study compared any differences between boys and girls in Grade 7 within a single-gender environment in the subjects of mathematics and science, as measured by the CRCT assessments. The study also compared differences between boys and girls in Grade 7 within a coeducational environment in the subjects of mathematics and science, as measured by the CRCT assessments. Two middle schools were used within the study. One middle school was identified as a single-gender school (Middle School A); the other was identified as a coeducational school (Middle School B). This quantitative study applied the use of a descriptive research design. In addition, CRCT scores for the subjects of mathematics and science were taken during the spring of 2008 from both middle schools. Data were measured using descriptive statistics and independent t test calculations. The frequency statistics proceeded to compare each sample performance levels. The data were described in means, standard deviations, standard error means, frequency, and percentages. This method provided an excellent description of a sample scored on the spring 2008 CRCT mathematics and science assessments.

  10. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  11. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  12. Toward the Integration of Cultural Values and Alternative School Models: Challenges in Japan

    Science.gov (United States)

    Chesky, Aimi Kono

    2013-01-01

    The project development school idea in Japan started in the late 1970s. Both public and private schools can become project schools. Public schools' districts and private schools' boards develop the project plan and submit the application to the Ministry of Education, Culture, Sports, Science and Technology (MEXT). Once approved, the project school…

  13. GeoBus: bringing experiential Earth science learning to secondary schools in the UK

    Science.gov (United States)

    Pike, C. J.; Robinson, R. A. J.; Roper, K. A.

    2014-12-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Over 30,000 pupils will have been involved in experiential Earth science learning activities by December 2014, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning in Scotland and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. Three potentially unsurprising observations hold true for all the schools that GeoBus visits: young learners like to experiment and use unfamiliar equipment to make measurements, the element of competition stimulates learners to ask questions and maintain focus and enthusiasum

  14. Comprehension with Instructional Media for Middle School Science: Holistic Performative Design Strategy and Cognitive Load

    Science.gov (United States)

    Peterson, Matthew Owen

    This study identifies three distinct levels of text-image integration in page design in a linear relationship of lesser to greater integration: prose primary, prose subsumed, and fully integrated strategies. Science textbook pages were redesigned according to these holistic design strategies for 158 7th-grade students. There were three separate treatment tests, as well as a pre-test and post-test, and pilot tests with both undergraduate students and the subjects themselves. Subjects found the fully integrated strategy to produce the most visually interesting designs and the prose primary strategy to produce the least interesting, with prose subsumed definitively in between (according to 95% confidence intervals). The strategy employed significantly altered interest in science subject matter in one of three treatments (ANOVA, P=0.0446), where a Student's t-test revealed that the prose subsumed strategy produced higher interest in subject matter than prose primary. The strategy employed significantly altered comprehension of abstract relationships in one of three treatments (ANOVA, P=0.0202), where a Student's t-test revealed that the fully integrated strategy resulted in greater comprehension than prose primary. For the same treatment condition significant differences were found through ANOVA for factual-level knowledge (P=0.0289) but not conceptual-level knowledge ( P=0.0586). For factual-level knowledge prose primary resulted in lesser comprehension than both prose subsumed and fully integrated. Comprehension is defined according to cognitive load theory. No strategy impact on perception of task difficulty was found. This study was approved by North Carolina State University's Institutional Review Board and Wake County Public School System's Research Review Committee.

  15. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    Science.gov (United States)

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  16. Tipping Points and Balancing Acts: Grand Challenges and Synergistic Opportunities of Integrating Research and Education, Science and Solutions

    Science.gov (United States)

    McCaffrey, M. S.; Stroeve, J. C.

    2011-12-01

    thousands of US high schools that integrate climate science and solutions in a way that inspires and informs youth, and similar programs exist internationally. Other approaches to prepare vulnerable communities, especially young people, for natural hazards and human-induced environmental change include programs such as Plan International's "Child Centered Disaster Risk Reduction- Building Resilience Through Participation," and their "Weathering the Storm" project, focusing on integrating the needs of teenage girls with climate change adaptation and risk reduction. While minimizing global environmental and climate change is crucial, these and related programs that weave research with education, science with solutions offer the potential for addressing the "Grand Challenges" by better preparing for societal and environmental tipping points through a more balanced and integrated approach to addressing change."

  17. After-School Spaces: Looking for Learning in All the Right Places

    Science.gov (United States)

    Schnittka, Christine G.; Evans, Michael A.; Won, Samantha G. L.; Drape, Tiffany A.

    2016-01-01

    After-school settings provide youth with homework support, social outlets and fun activities, and help build self-confidence. They are safe places for forming relationships with caring adults. More after-school settings are starting to integrate Science, Technology, Engineering, and Mathematics (STEM) topics. What science skills and concepts might…

  18. Examining the Relationship among High-School Teachers' Technology Self-Efficacy, Attitudes towards Technology Integration, and Quality of Technology Integration

    Science.gov (United States)

    Gonzales, Stacey

    2013-01-01

    This quantitative study explored the relationships among high-school teachers' (n = 74) technology self-efficacy, teachers' attitudes towards technology integration, and quality of teachers' technology integration into instruction. This study offered the unique perspectives of in-service high-school teachers as they have first-hand experience…

  19. Gender and Middle School Science: An Examination of Intrinsic and Extrinsic Factors Affecting Achievement

    Science.gov (United States)

    Austin, Jennifer

    Gender differences in middle school science were examined utilizing a mixed-methods approach. The intrinsic and extrinsic experiences of male and female non-gifted high-achieving students were investigated through the administration of the CAIMI, student interviews, teacher questionnaires, observations, and document examination. Male and female students were selected from a rural Northeast Georgia school district based on their high performance and high growth during middle school science. Eighty-three percent of the student participants were white and 17% were Hispanic. Half of the male participants and one third of the female participants were eligible for free and reduced meals. Findings revealed that male participants were highly motivated, whereas female participants exhibited varying levels of motivation in science. Both male and female students identified similar instructional strategies as external factors that were beneficial to their success. Due to their selection by both genders, these instructional strategies were considered to be gender-neutral and thereby useful for inclusion within coeducational middle school science classrooms.

  20. Astronomy: social background of students of the integrated high school

    Science.gov (United States)

    Voelzke, M. R.; Barbosa, J. I. L.

    2017-07-01

    Astronomy-related contents exist in almost all levels of basic education in Brazil and are also frequently disseminated through mass media. Thus, students form their own explanations about the phenomena studied by this science. Therefore, this work has the objective of identifying the possible social background of the Integrated High School students on the term Astronomy. It is a research of a basic nature, descriptive, and for that reason a quali-quantitative approach was adopted; the procedures to obtain the data were effected in the form of a survey. The results show that the tested students have a social background about the object Astronomy, which is on the one hand fortified by elements they have made or which is part of the experience lived by the respondents within the formal space of education, and on the other hand based on elements possibly disseminated through the mass media.

  1. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Integrated Ph. D. Programme in Biological, Chemical and Physical Sciences at Indian Institute of Sciences Introductory Summer School on Astronomy and Astrophysics. Information and Announcements Volume 1 Issue 2 February 1996 pp 121- ...

  2. Astronomy and Space Science On The School - An Outreach Project for Elementary and High School Students of Brasilia

    Science.gov (United States)

    Ferreira, Jose Leonardo

    2016-07-01

    This project aims to develop interdisciplinary actions, articulated and convergence in the field of education, dissemination and popularization of science and technology in Brasilia-DF, the Federal District of Brazil. These actions are also been carried out at DF surroundings areas. Since 2015 linked convergent actions are focused on the development of space science and astronomy teaching with hands on experimental activities. Workshops, short basic astronomy courses, expositions and planetarium show are been carried out by a team of professors, graduate and under graduate students from University of Brasilia- UnB. At the same time upgrade actions are been done in order to modernize The Luiz Cruls Astronomical Observatory located at the far campus of UnB, named Fazenda Água Limpa. It is now a Center for research and space science dissemination and popularization not only for students but also for the whole community of Brasilia. Working toghether with the Physics Institute of UnB we have the recently created Museum of Science and Technology of Brasilia, also located at the UnB campus. The Museum is responsible for contac with schools and Brasilia community and for the organization of the activities of the Science on the School Project. Science on the School is an educational, scientific and cultural proposal approved and financed by the brazillian national research council (CNPq) and by the Science and Technology Reseach Foundation of Brasilia. Besides science dissemination for the brazillian society the project is also developing theoretical and experimental research in the area of Space Science and Astronomy. The project also aim to transform the Museum in a strong Science Education Center for the Brazil central region population, It is going to be a cultural environment and leisure for the Federal District and surrounding areas of Brasilia. In this work we will describe the coordinate actions of The Luiz Cruls Astronomical Observatory the Physics Institute of

  3. Barriers to Asthma Management for School Nurses: An Integrative Review

    Science.gov (United States)

    Hanley Nadeau, Ellen; Toronto, Coleen E.

    2016-01-01

    Childhood asthma is a growing health concern. Asthma is the most common chronic illness of childhood and a leading cause of emergency room visits, hospitalizations, and school absenteeism. School nurses play a valuable role in asthma management. The purpose of this integrative review is to examine barriers to asthma management for school nurses in…

  4. Religious Justification, Elitist Outcome: Are Religious Schools Being Used to Avoid Integration?

    Science.gov (United States)

    Harel Ben Shahar, Tammy; Berger, Eyal

    2018-01-01

    Despite ongoing efforts to promote ethnic, racial and socio-economic integration, segregation continues to challenge education administrators and legal scholars. Privileged parents seeking to avoid integration employ various strategies such as attending private schools or buying houses in neighbourhoods with good school. This paper offers a…

  5. THE INCORPORATION OF THE USA ‘SCIENCE MADE SENSIBLE’ PROGRAM IN SOUTH AFRICAN PRIMARY SCHOOLS: A CROSS-CULTURAL APPROACH TO SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    Rian de Villiers

    2016-02-01

    Full Text Available The Science Made Sensible (SMS program began as a partnership between the University of Miami (UM, Florida, USA, and some public schools in Miami. In this program, postgraduate students from UM work with primary school science teachers to engage learners in science through the use of inquiry-based, hands-on activities. Due to the success of the SMS program in Miami, it was extended internationally. The SMS team (two Miami Grade 6/7 science teachers and two UM postgraduate students, 195 learners, and five South African teachers at two primary schools in Pretoria, South Africa, participated in this study. A quantitative research design was employed, and learners, teachers and UM postgraduate students used questionnaires to evaluate the SMS program. The results show that the SMS team was successful in reaching the SMS goals in these South African schools. More than 90% of the learners are of opinion that the SMS team from the USA made them more interested in the natural sciences and fostered an appreciation for the natural sciences. All the South African teachers plan to adopt and adapt some of the pedagogical strategies they learned from the SMS team. This article includes a discussion about the benefits of inquiry-based learning and the similarities and dissimilarities of USA and South Africa’s teaching methods in the science classrooms.

  6. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    Science.gov (United States)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  7. Offering a Forensic Science Camp to Introduce and Engage High School Students in Interdisciplinary Science Topics

    Science.gov (United States)

    Ahrenkiel, Linda; Worm-Leonhard, Martin

    2014-01-01

    In this article, we present details of a one-week interdisciplinary science camp for high school students in Denmark, "Criminal Camp". We describe the use of forensic science and simulated crimes as a common foundation for teaching the theory and practice of concepts in chemistry, physics, and medicine or biology. The main goal of the…

  8. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    Science.gov (United States)

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  9. Against integration - Why evolution cannot unify the social sciences

    NARCIS (Netherlands)

    Derksen, M

    A lack of integration is often identified as a fundamental problem in psychology and the social sciences. It is thought that only through increased cooperation among the various disciplines and subdisciplines, and integration of their different theoretical approaches, can psychology and the social

  10. High school science teacher perceptions of the science proficiency testing as mandated by the State of Ohio Board of Education

    Science.gov (United States)

    Jeffery, Samuel Shird

    There is a correlation between the socioeconomic status of secondary schools and scores on the State of Ohio's mandated secondary science proficiency tests. In low scoring schools many reasons effectively explain the low test scores as a result of the low socioeconomics. For example, one reason may be that many students are working late hours after school to help with family finances; parents may simply be too busy providing family income to realize the consequences of the testing program. There are many other personal issues students face that may cause them to score poorly an the test. The perceptions of their teachers regarding the science proficiency test program may be one significant factor. These teacher perceptions are the topic of this study. Two sample groups ware established for this study. One group was science teachers from secondary schools scoring 85% or higher on the 12th grade proficiency test in the academic year 1998--1999. The other group consisted of science teachers from secondary schools scoring 35% or less in the same academic year. Each group of teachers responded to a survey instrument that listed several items used to determine teachers' perceptions of the secondary science proficiency test. A significant difference in the teacher' perceptions existed between the two groups. Some of the ranked items on the form include teachers' opinions of: (1) Teaching to the tests; (2) School administrators' priority placed on improving average test scores; (3) Teacher incentive for improving average test scores; (4) Teacher teaching style change as a result of the testing mandate; (5) Teacher knowledge of State curriculum model; (6) Student stress as a result of the high-stakes test; (7) Test cultural bias; (8) The tests in general.

  11. Path Not Found: Disparities in Access to Computer Science Courses in California High Schools

    Science.gov (United States)

    Martin, Alexis; McAlear, Frieda; Scott, Allison

    2015-01-01

    "Path Not Found: Disparities in Access to Computer Science Courses in California High Schools" exposes one of the foundational causes of underrepresentation in computing: disparities in access to computer science courses in California's public high schools. This report provides new, detailed data on these disparities by student body…

  12. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  13. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, L [The Ottawa Hospital Cancer Ctr., Ottawa, ON (Canada)

    2016-06-15

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  14. SU-F-E-08: Medical Physics as a Teaching Tool for High School Science Curriculum

    International Nuclear Information System (INIS)

    Buckley, L

    2016-01-01

    Purpose: Delivering high school science curriculum in a timely manner and in way that is accessible to all students is a challenge for teachers. Although many high schools offer career workshops, these are typically directed at senior students and do not relate directly to details of the curriculum. The objective of this initiative was to create a series of lectures that use medical physics to relate many aspects of the high school science curriculum to tangible clinical applications and to introduce students to alternate pathways into a career in health sciences. Methods: A series of lectures has been developed based on the Ontario High School Science Curriculum. Each lecture uses a career in radiotherapy medical physics as the framework for discussion of topics specific to the high school course being addressed. Results: At present, these lectures have been delivered in five area high schools to students ranging from sophomores to seniors. Survey documents are given to the students before and after the lecture to assess their awareness of careers in health care, applications of physics and their general interest in the subject areas. As expected, students have limited up front awareness of the wide variety of health related career paths. The idea of combining a career lecture with topics specific to the classroom curriculum has been well-received by teachers and students alike. Conclusion: Career talks for high school students are useful for students contemplating their post- secondary career path. Relating career discussion with direct course curriculum makes their studies more relevant and engaging. Students aspiring to a career in health sciences often focus their studies on life sciences due to limited knowledge of potential careers. An early introduction to medical physics presents them with an alternate path through the physical sciences into health care.

  15. High school science teachers' perceptions of telecommunications utilizing a Concerns-Based Adoption Model (CBAM)

    Science.gov (United States)

    Slough, Scott Wayne

    The purpose of this study was to describe high school science teachers' perceptions of telecommunications. The data were collected through open-ended ethnographic interviews with 24 high school science teachers from five different high schools in a single suburban school district who had been in an emerging telecommunications-rich environment for two and one-half years. The interview protocol was adapted from Honey and Henriquez (1993), with the Concerns-Based Adoption Model (CBAM) (Bailey & Palsha, 1992) providing a conceptual framework for data analysis. For this study, the emerging telecommunications-rich environment included a district-wide infrastructure that had been in place for two and one-half years that included a secure district-wide Intranet, 24 network connections in each classroom, full Internet access from the network, four computers per classroom, and a variety of formal and informal professional development opportunities for teachers. Categories of results discussed include: (a) teacher's profession use of telecommuunications; (b) teachers' perceptions of student's use of telecommunications; (c) teachers' perceptions of barriers to the implementation of telecommunications; (d) teachers' perceptions of supporting conditions for the implementation of telecommunications; (e) teachers' perceptions of the effect of telecommunications on high school science instruction; (f) teachers' perceptions of the effect of telecommunications on student's learning in high school science; and (g) the demographic variables of the sex of the teacher, years of teaching experience, school assignment within the district, course assignment(s), and academic preparation. Implications discussed include: (a) telecommunications can be implemented successfully in a variety of high school science classrooms with adequate infrastructure support and sufficient professional development opportunities, including in classes taught by females and teachers who were not previously

  16. The long-term impact of a math, science and technology program on grade school girls

    Science.gov (United States)

    Sullivan, Sandra Judd

    The purpose of this study was to determine if a math, science, and technology intervention program improved grade school girls' attitudes and stereotypes toward science and scientists, as well as participation levels in science-related activities, two years after their participating in the program. The intervention program evaluated was Operation SMART, developed by Girls Incorporated. Participants were recruited from the 6th and 7th grades from two public middle schools in Northern California. One hundred twenty-seven girls signed up for the survey and were assigned to either the SMART group (previous SMART participants) or Non-SMART group (no previous experience with SMART). The survey consisted of five parts: (1) a background information sheet, (2) the Modified Attitudes Toward Science Inventory, (3) the What Do You Do? survey, (4) the Draw-A-Scientist Test-Revised, and (5) a career interests and role models/influencer survey. Results indicated that there were no significant differences between the SMART and Non-SMART groups on any of the test measures. However, middle school attended did have a significant effect on the outcome variables. Girls from Middle School A reported more positive attitudes toward science, while girls from Middle School B reported higher participation levels in extracurricular science activities. Possible explanations for these findings suggest too much time had passed between treatment effect and time of measurement as well as the strong influence of teacher and school environment on girls' attitudes and stereotypes. Recommendations for future research are discussed.

  17. Hands-on earth science with students at schools for the Deaf

    Science.gov (United States)

    Cooke, M. L.

    2011-12-01

    Earth science teachers at schools for the Deaf face a variety of challenges. This community of students has a wide range of language skills, teaching resources can be limited and often teachers are not trained in geosciences. An NSF CAREER grant provided an opportunity to make a difference to this community and foster earth science learning at 8 schools for the Deaf around the country. We designed hands-on deformational sandboxes for the teachers and provided accompanying curriculum materials. The sandbox is a physical model of crustal deformation that students can manipulate to test hypotheses. The visual nature of the sandbox was well-suited for the spatial grammar of American Sign Language used by these students. Furthermore, language skills were enhanced by scaffolded observation, sketch, annotation, discussion, interpretation assignments. Geoscience training of teachers was strengthened with workshops and three 5-day field trips for teachers and selected students to Utah, western New England and southern California. The field trips provided opportunity for students to work as geoscientists observing, interpreting, discussing and presenting their investigations. Between field trips, we set up videoconferences from the UMass experimental lab with the high school earth science classrooms. These sessions facilitated dialog between students and researchers at UMass. While the project set out to provide geoscience learning opportunities for students at Schools for the Deaf, the long lasting impact was the improved geoscience training of teachers, most of whom had limited post-secondary earth science training. The success of the project also rested on the dedication of the teachers to their students and their willingness to try new approaches and experiences. By tapping into a community of 6 teachers, who already shared curriculum and had fantastic leadership, the project was able to have significant impact and exceed the initial goals. The project has led to a

  18. Academic attainment and the high school science experiences among high-achieving African American males

    Science.gov (United States)

    Trice, Rodney Nathaniel

    This study examines the educational experiences of high achieving African American males. More specifically, it analyzes the influences on their successful navigation through high school science. Through a series of interviews, observations, questionnaires, science portfolios, and review of existing data the researcher attempted to obtain a deeper understanding of high achieving African American males and their limitations to academic attainment and high school science experiences. The investigation is limited to ten high achieving African American male science students at Woodcrest High School. Woodcrest is situated at the cross section of a suburban and rural community located in the southeastern section of the United States. Although this investigation involves African American males, all of whom are successful in school, its findings should not be generalized to this nor any other group of students. The research question that guided this study is: What are the limitations to academic attainment and the high school science experiences of high achieving African American males? The student participants expose how suspension and expulsion, special education placement, academic tracking, science instruction, and teacher expectation influence academic achievement. The role parents play, student self-concept, peer relationships, and student learning styles are also analyzed. The anthology of data rendered three overarching themes: (1) unequal access to education, (2) maintenance of unfair educational structures, and (3) authentic characterizations of African American males. Often the policies and practices set in place by school officials aid in creating hurdles to academic achievement. These policies and practices are often formed without meaningful consideration of the unintended consequences that may affect different student populations, particularly the most vulnerable. The findings from this study expose that high achieving African American males face major

  19. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    Science.gov (United States)

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  20. Communicating the Benefits of a Full Sequence of High School Science Courses

    Science.gov (United States)

    Nicholas, Catherine Marie

    High school students are generally uninformed about the benefits of enrolling in a full sequence of science courses, therefore only about a third of our nation's high school graduates have completed the science sequence of Biology, Chemistry and Physics. The lack of students completing a full sequence of science courses contributes to the deficit in the STEM degree production rate needed to fill the demand of the current job market and remain competitive as a nation. The purpose of the study was to make a difference in the number of students who have access to information about the benefits of completing a full sequence of science courses. This dissertation study employed qualitative research methodology to gain a broad perspective of staff through a questionnaire and document review and then a deeper understanding through semi-structured interview protocol. The data revealed that a universal sequence of science courses in the high school district did not exist. It also showed that not all students had access to all science courses; students were sorted and tracked according to prerequisites that did not necessarily match the skill set needed for the courses. In addition, the study showed a desire for more support and direction from the district office. It was also apparent that there was a disconnect that existed between who staff members believed should enroll in a full sequence of science courses and who actually enrolled. Finally, communication about science was shown to occur mainly through counseling and peers. A common science sequence, detracking of science courses, increased communication about the postsecondary and academic benefits of a science education, increased district direction and realistic mathematics alignment were all discussed as solutions to the problem.