WorldWideScience

Sample records for school human physiology

  1. Knowledge on the subject of human physiology among Polish high school students--a cross-sectional study.

    Science.gov (United States)

    Zwinczewska, Helena; Rozwadowska, Joanna; Traczyk, Anna; Majda, Szymon; Wysocki, Michał; Grabowski, Kamil; Kopeć, Sylwia; Głowacki, Roman; Węgrzyn, Katarzyna; Tomaszewski, Krzysztof A; Walocha, Jerzy A

    2014-01-01

    In most cases the only knowledge an individual will receive with regards to their own body and its proper functioning is during their high school education. The aim of this study was to evaluate high school students' knowledge about basic physiology. The research was carried out in five, randomly chosen high schools in Krakow, Poland. Young people in the age of 17-19 years were asked to fill in the questionnaire designed by the authors. The first part of the survey included personal data. The second part contained 20 close-ended questions assessing students' knowledge about the basics of human physiology. Question difficulty varied from easy through average, and up to difficult. The maximum number of points to achieve was 20. One-thousand-and eighty-three (out of 1179 invited--91.86%) Polish high school students (63.25% female) filled in a 20-item questionnaire constructed by the authors regarding basic human physiology. The mean age of the group was 17.66 ± 0.80 years. The mean score among the surveyed was 10.15 ± 3.48 (range 0-20). Only 26.04% of students achieved a grade of 60% or more, and only one person obtained the highest possible score. Females achieved significantly better scores than males (10.49 ± 3.38 vs. 9.56 ± 3.56; p physiology, obtained better results than those in their third year who had already finished the biology course (10.70 ± 3.27 vs. 9.81 ± 3.74 respectively; p physiology (10.70 ± 3.27 vs. 9.63 ± 2.74 respectively; p = 0.003). Over 23% of students did not know that mature red blood cells do not have cell nuclei and a similar number of them answered that humans have 500,000 erythrocytes in 1 mm3 of blood. Over 32% believed that plasma does not participate in the transport of respiratory gases, and 31% believed that endocrine glands secrete hormones within their immediate vicinity and into the blood. Our research has shown that young people, especially men, often lack basic physiological knowledge needed to make conscious and

  2. Human physiology in space

    Science.gov (United States)

    Vernikos, J.

    1996-01-01

    The universality of gravity (1 g) in our daily lives makes it difficult to appreciate its importance in morphology and physiology. Bone and muscle support systems were created, cellular pumps developed, neurons organised and receptors and transducers of gravitational force to biologically relevant signals evolved under 1g gravity. Spaceflight provides the only microgravity environment where systematic experimentation can expand our basic understanding of gravitational physiology and perhaps provide new insights into normal physiology and disease processes. These include the surprising extent of our body's dependence on perceptual information, and understanding the effect and importance of forces generated within the body's weightbearing structures such as muscle and bones. Beyond this exciting prospect is the importance of this work towards opening the solar system for human exploration. Although both appear promising, we are only just beginning to taste what lies ahead.

  3. Stimulating Student Interest in Physiology: The Intermedical School Physiology Quiz

    Science.gov (United States)

    Cheng, Hwee-Ming

    2010-01-01

    The Intermedical School Physiology Quiz (IMSPQ) was initiated in 2003 during the author's last sabbatical from the University of Malaya. At this inaugural event, there were just seven competing teams from Malaysian medical schools. The challenge trophy for the IMSPQ is named in honor of Prof. A. Raman, who was the first Malaysian Professor of…

  4. Electronic Textbook in Human Physiology.

    Science.gov (United States)

    Broering, Naomi C.; Lilienfield, Lawrence S.

    1994-01-01

    Describes the development of an electronic textbook in human physiology at the Georgetown University Medical Center Library that was designed to enhance learning and visualization through a prototype knowledge base of core instructional materials stored in digital format on Macintosh computers. The use of computers in the medical curriculum is…

  5. 2016 High School Honors Human Anatomy and Physiology Curriculum Investigation for College Board Advanced Placement Classification Validity

    Directory of Open Access Journals (Sweden)

    Jeanine Siebold

    2017-02-01

    Full Text Available Four sections of senior Honors Human Anatomy and Physiology (A&P students are representative of sixty-five nations. These classes participated in a yearlong investigation pursuant of innovative learning, and grading modalities to introduce a 21st century curriculum for A&P to become a College Board Advanced Placement (AP course. All enrollees began the year by taking a self-assessment based on Howard Gardner's Multiple Intelligences. This data was evaluated for the design of learning approaches identifying student uniqueness that could better implement the Next Generation Science Standards (NGSS, and present State of Tennessee Human Anatomy and Physiology Learning Standards laying the groundwork to write the AP curriculum. Component curriculum rubrics were used, and modified to enable students to self-evaluate their performance in certain areas. Students participated in teams represented as Center for Disease Control and Prevention (CDC 'Intern Teams' investigating various diseases. The students, also, researched health equity, and disparity issues from variables based on survey questions they designed that could affect the health care treatment of patients suffering from their investigated disease. They then proposed a 2016 CDC Educational Campaign revamping public health education for the disease, including brochure, and public service announcement (PSA.

  6. Virtual physiological human: training challenges.

    Science.gov (United States)

    Lawford, Patricia V; Narracott, Andrew V; McCormack, Keith; Bisbal, Jesus; Martin, Carlos; Bijnens, Bart; Brook, Bindi; Zachariou, Margarita; Freixa, Jordi Villà I; Kohl, Peter; Fletcher, Katherine; Diaz-Zuccarini, Vanessa

    2010-06-28

    The virtual physiological human (VPH) initiative encompasses a wide range of activities, including structural and functional imaging, data mining, knowledge discovery tool and database development, biomedical modelling, simulation and visualization. The VPH community is developing from a multitude of relatively focused, but disparate, research endeavours into an integrated effort to bring together, develop and translate emerging technologies for application, from academia to industry and medicine. This process initially builds on the evolution of multi-disciplinary interactions and abilities, but addressing the challenges associated with the implementation of the VPH will require, in the very near future, a translation of quantitative changes into a new quality of highly trained multi-disciplinary personnel. Current strategies for undergraduate and on-the-job training may soon prove insufficient for this. The European Commission seventh framework VPH network of excellence is exploring this emerging need, and is developing a framework of novel training initiatives to address the predicted shortfall in suitably skilled VPH-aware professionals. This paper reports first steps in the implementation of a coherent VPH training portfolio.

  7. Design Projects in Human Anatomy & Physiology

    Science.gov (United States)

    Polizzotto, Kristin; Ortiz, Mary T.

    2008-01-01

    Very often, some type of writing assignment is required in college entry-level Human Anatomy and Physiology courses. This assignment can be anything from an essay to a research paper on the literature, focusing on a faculty-approved topic of interest to the student. As educators who teach Human Anatomy and Physiology at an urban community college,…

  8. Human physiological models of insomnia.

    Science.gov (United States)

    Richardson, Gary S

    2007-12-01

    Despite the wide prevalence and important consequences of insomnia, remarkably little is known about its pathophysiology. Available models exist primarily in the psychological domain and derive from the demonstrated efficacy of behavioral treatment approaches to insomnia management. However, these models offer little specific prediction about the anatomic or physiological foundation of chronic primary insomnia. On the other hand, a growing body of data on the physiology of sleep supports a reasonably circumscribed overview of possible pathophysiological mechanisms, as well as the development of physiological models of insomnia to guide future research. As a pragmatic step, these models focus on primary insomnia, as opposed to comorbid insomnias, because the latter is by its nature a much more heterogeneous presentation, reflecting the effects of the distinct comorbid condition. Current understanding of the regulation of sleep and wakefulness in mammalian brain supports four broad candidate areas: 1) disruption of the sleep homeostat; 2) disruption of the circadian clock; 3) disruption of intrinsic systems responsible for the expression of sleep states; or 4) disruption (hyperactivity) of extrinsic systems capable of over-riding normal sleep-wake regulation. This review examines each of the four candidate pathophysiological mechanisms and the available data in support of each. While studies that directly test the viability of each model are not yet available, descriptive data on primary insomnia favor the involvement of dysfunctional extrinsic stress-response systems in the pathology of primary chronic insomnia.

  9. Human factors estimation methods using physiological informations

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Nakasa, Hiroyasu

    1984-01-01

    To enhance the operational safety in the nuclear power plant, it is necessary to decrease abnormal phenomena due to human errors. Especially, it is essential to basically understand human behaviors under the work environment for plant maintenance workers, inspectors, and operators. On the above stand point, this paper presents the results of literature survey on the present status of human factors engineering technology applicable to the nuclear power plant and also discussed the following items: (1) Application fields where the ergonomical evaluation is needed for workers safety. (2) Basic methodology for investigating the human performance. (3) Features of the physiological information analysis among various types of ergonomical techniques. (4) Necessary conditions for the application of in-situ physiological measurement to the nuclear power plant. (5) Availability of the physiological information analysis. (6) Effectiveness of the human factors engineering methodology, especially physiological information analysis in the case of application to the nuclear power plant. The above discussions lead to the demonstration of high applicability of the physiological information analysis to nuclear power plant, in order to improve the work performance. (author)

  10. Impact of human emotions on physiological characteristics

    Science.gov (United States)

    Partila, P.; Voznak, M.; Peterek, T.; Penhaker, M.; Novak, V.; Tovarek, J.; Mehic, Miralem; Vojtech, L.

    2014-05-01

    Emotional states of humans and their impact on physiological and neurological characteristics are discussed in this paper. This problem is the goal of many teams who have dealt with this topic. Nowadays, it is necessary to increase the accuracy of methods for obtaining information about correlations between emotional state and physiological changes. To be able to record these changes, we focused on two majority emotional states. Studied subjects were psychologically stimulated to neutral - calm and then to the stress state. Electrocardiography, Electroencephalography and blood pressure represented neurological and physiological samples that were collected during patient's stimulated conditions. Speech activity was recording during the patient was reading selected text. Feature extraction was calculated by speech processing operations. Classifier based on Gaussian Mixture Model was trained and tested using Mel-Frequency Cepstral Coefficients extracted from the patient's speech. All measurements were performed in a chamber with electromagnetic compatibility. The article discusses a method for determining the influence of stress emotional state on the human and his physiological and neurological changes.

  11. Human Physiology The Urban Health Crisis: Strategies for Health for ...

    African Journals Online (AJOL)

    comes its English equivalent, Human Physiology. Though ... Summary of Human Physiology would have been a more appropriate ... This crisis has its origins in the interaction between .... The construction, layout and printing of the book are as.

  12. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  13. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  14. [Physiological features of skin ageing in human].

    Science.gov (United States)

    Tikhonova, I V; Tankanag, A V; Chemeris, N K

    2013-01-01

    The issue deals with the actual problem of gerontology, notably physiological features of human skin ageing. In the present review the authors have considered the kinds of ageing, central factors, affected on the ageing process (ultraviolet radiation and oxidation stress), as well as the research guidelines of the ageing changes in the skin structure and fuctions: study of mechanical properties, microcirculation, pH and skin thickness. The special attention has been payed to the methods of assessment of skin blood flow, and to results of investigations of age features of peripheral microhemodynamics. The laser Doppler flowmetry technique - one of the modern, noninvasive and extensively used methods for the assessmant of skin blood flow microcirculation system has been expanded in the review. The main results of the study of the ageing changes of skin blood perfusion using this method has been also presented.

  15. Human physiologically based pharmacokinetic model for propofol

    Directory of Open Access Journals (Sweden)

    Schnider Thomas W

    2005-04-01

    Full Text Available Abstract Background Propofol is widely used for both short-term anesthesia and long-term sedation. It has unusual pharmacokinetics because of its high lipid solubility. The standard approach to describing the pharmacokinetics is by a multi-compartmental model. This paper presents the first detailed human physiologically based pharmacokinetic (PBPK model for propofol. Methods PKQuest, a freely distributed software routine http://www.pkquest.com, was used for all the calculations. The "standard human" PBPK parameters developed in previous applications is used. It is assumed that the blood and tissue binding is determined by simple partition into the tissue lipid, which is characterized by two previously determined set of parameters: 1 the value of the propofol oil/water partition coefficient; 2 the lipid fraction in the blood and tissues. The model was fit to the individual experimental data of Schnider et. al., Anesthesiology, 1998; 88:1170 in which an initial bolus dose was followed 60 minutes later by a one hour constant infusion. Results The PBPK model provides a good description of the experimental data over a large range of input dosage, subject age and fat fraction. Only one adjustable parameter (the liver clearance is required to describe the constant infusion phase for each individual subject. In order to fit the bolus injection phase, for 10 or the 24 subjects it was necessary to assume that a fraction of the bolus dose was sequestered and then slowly released from the lungs (characterized by two additional parameters. The average weighted residual error (WRE of the PBPK model fit to the both the bolus and infusion phases was 15%; similar to the WRE for just the constant infusion phase obtained by Schnider et. al. using a 6-parameter NONMEM compartmental model. Conclusion A PBPK model using standard human parameters and a simple description of tissue binding provides a good description of human propofol kinetics. The major advantage of a

  16. Physiological determinants of human acute hypoxia tolerance.

    Science.gov (United States)

    2013-11-01

    AbstractIntroduction. We investigated possible physiological determinants of variability in hypoxia tolerance in subjects given a 5-minute normobaric exposure to 25,000 ft equivalent. Physiological tolerance to hypoxia was defined as the magnitude of...

  17. Physiology and culture of the human blastocyst.

    Science.gov (United States)

    Gardner, David K; Lane, Michelle; Schoolcraft, William B

    2002-01-01

    The human embryo undergoes many changes in physiology during the first 4 days of life as it develops and differentiates from a fertilized oocyte to the blastocyst stage. Concomitantly, the embryo is exposed to gradients of nutrients within the female reproductive tract and exhibits changes in its own nutrient requirements and utilization. Determining the nature of such nutrient gradients in the female tract and the changing requirements of the embryo has facilitated the formulation of stage-specific culture media designed to support embryo development throughout the preimplantation period. Resultant implantation rates attained with the culture and transfer of human blastocysts are higher than those associated with the transfer of cleavage stage embryos to the uterus. Such increases in implantation rates have facilitated the establishment of high pregnancy rates while reducing the number of embryos transferred. With the introduction of new scoring systems for the blastocyst and the non-invasive assessment of metabolic activity of individual embryos, it should be possible to move to single blastocyst transfer for the majority of patients.

  18. Physiological basis for human autonomic rhythms

    Science.gov (United States)

    Eckberg, D. L.

    2000-01-01

    Oscillations of arterial pressures, heart periods, and muscle sympathetic nerve activity have been studied intensively in recent years to explore otherwise obscure human neurophysiological mechanisms. The best-studied rhythms are those occurring at breathing frequencies. Published evidence indicates that respiratory fluctuations of muscle sympathetic nerve activity and electrocardiographic R-R intervals result primarily from the action of a central 'gate' that opens during expiration and closes during inspiration. Parallel respiratory fluctuations of arterial pressures and R-R intervals are thought to be secondary to arterial baroreflex physiology: changes in systolic pressure provoke changes in the R-R interval. However, growing evidence suggests that these parallel oscillations result from the influence of respiration on sympathetic and vagal-cardiac motoneurones rather than from baroreflex physiology. There is a rapidly growing literature on the use of mathematical models of low- and high-frequency (respiratory) R-R interval fluctuations in characterizing instantaneous 'sympathovagal balance'. The case for this approach is based primarily on measurements made with patients in upright tilt. However, the strong linear relation between such measures as the ratio of low- to high-frequency R-R interval oscillations and the angle of the tilt reflects exclusively the reductions of the vagal (high-frequency) component. As the sympathetic component does not change in tilt, the low- to high-frequency R-R interval ratio provides no proof that sympathetic activity increases. Moreover, the validity of extrapolating from measurements performed during upright tilt to measurements during supine rest has not been established. Nonetheless, it is clear that measures of heart rate variability provide important prognostic information in patients with cardiovascular diseases. It is not known whether reduced heart rate variability is merely a marker for the severity of disease or a

  19. The Virtual Physiological Human ToolKit.

    Science.gov (United States)

    Cooper, Jonathan; Cervenansky, Frederic; De Fabritiis, Gianni; Fenner, John; Friboulet, Denis; Giorgino, Toni; Manos, Steven; Martelli, Yves; Villà-Freixa, Jordi; Zasada, Stefan; Lloyd, Sharon; McCormack, Keith; Coveney, Peter V

    2010-08-28

    The Virtual Physiological Human (VPH) is a major European e-Science initiative intended to support the development of patient-specific computer models and their application in personalized and predictive healthcare. The VPH Network of Excellence (VPH-NoE) project is tasked with facilitating interaction between the various VPH projects and addressing issues of common concern. A key deliverable is the 'VPH ToolKit'--a collection of tools, methodologies and services to support and enable VPH research, integrating and extending existing work across Europe towards greater interoperability and sustainability. Owing to the diverse nature of the field, a single monolithic 'toolkit' is incapable of addressing the needs of the VPH. Rather, the VPH ToolKit should be considered more as a 'toolbox' of relevant technologies, interacting around a common set of standards. The latter apply to the information used by tools, including any data and the VPH models themselves, and also to the naming and categorizing of entities and concepts involved. Furthermore, the technologies and methodologies available need to be widely disseminated, and relevant tools and services easily found by researchers. The VPH-NoE has thus created an online resource for the VPH community to meet this need. It consists of a database of tools, methods and services for VPH research, with a Web front-end. This has facilities for searching the database, for adding or updating entries, and for providing user feedback on entries. Anyone is welcome to contribute.

  20. Quantitative Circulatory Physiology: an integrative mathematical model of human physiology for medical education.

    Science.gov (United States)

    Abram, Sean R; Hodnett, Benjamin L; Summers, Richard L; Coleman, Thomas G; Hester, Robert L

    2007-06-01

    We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.

  1. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    Science.gov (United States)

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  2. ACTUAL ASPECTS OF SCHOOL MEALS, AGE APPROPRIATE PHYSIOLOGICAL NEEDS

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2014-01-01

    Full Text Available Analysis of the current state of school meals, determination of ways of optimization for food, biological values and balanced school meals relevant age-related physiological needs. The greatest contribution to the optimization of school meals can make enriched products of mass consumption, first of necessity, the need and favorite products to children. In this regard, the fol-lowing tasks were defined: analysis of normative documents on creation of school meals , the relevant age-related physiological needs for nutrients and energy for protein, carbohydrates, fats, vitamins, minerals, dietary fiber and organic acids; definition of the balance of the products of the school menu categories for children aged 7-11 years, 11 - 17; study of the composition of food school menu; comparison of total deviation calorie Breakfast, lunch and development of measures on optimization of the system of school nutrition. In the structure of nutrition of children and adolescents major role bread, drinks, confectionery products as are the sources of energy and nutrients (carbohydrates, proteins, vitamins, macro - and microelements, organic acids, including polyunsaturated fatty CI slot, Therefore one of the ways of solving of optimization problems of preschool and school meals are of great TRANS-perspective bakery and confectionery products, drinks of high food and biological value and coordination and composition, as on the basic structural elements and micronutrients obtained innovative technology complex processing of raw sources with maximum preservation of their original nutritional value. TA-thus, the performed literature analysis found that rational nutrition of schoolchildren aimed at prevention of alimentary (cardiovascular, gastrointestinal, allergic diseases that meet energy, plastic and other needs of the body, provides the necessary level of metabolism.

  3. subjective approach to subjective approach to human physiological

    African Journals Online (AJOL)

    eobe

    the only physiological variables that influence the heat balance [4]. Yao et al [2] .... between the human responses and outdoor climate. 4.1 Subjective Response ... months seem to be influenced by cloud cover rather than the altitude.

  4. Human Adaptation to Space: Space Physiology and Countermeasures

    Science.gov (United States)

    Fogarty, Jennifer

    2009-01-01

    This viewgraph presentation reviews human physiological responses to spaceflight, and the countermeasures taken to prevent adverse effects of manned space flight. The topics include: 1) Human Spaceflight Experience; 2) Human Response to Spaceflight; 3) ISS Expeditions 1-16; 4) Countermeasure; and 5) Biomedical Data;

  5. Physiological and Psychological Effects on High School Students of Viewing Real and Artificial Pansies

    Directory of Open Access Journals (Sweden)

    Miho Igarashi

    2015-02-01

    Full Text Available The relaxation effects of gardening have attracted attention; however, very few studies have researched its physiological effects on humans. This study aimed to clarify the physiological and psychological effects on high school students of viewing real and artificial pansies. Forty high school students (male: 19, female: 21 at Chiba Prefectural Kashiwanoha Senior High School, Japan, participated in this experiment. The subjects were presented with a visual stimulation of fresh yellow pansies (Viola x wittrockiana “Nature Clear Lemon” in a planter for 3 min. Artificial yellow pansies in a planter were used as the control. Heart rate variability was used as a physiological measurement and the modified semantic differential method was used for subjective evaluation. Compared with artificial pansies, visual stimulation with real flowers resulted in a significant decrease in the ratio of low- to high-frequency heart rate variability component, which reflects sympathetic nerve activity. In contrast, high frequency, which reflects parasympathetic nerve activity, showed no significant difference. With regard to the psychological indices, viewing real flowers resulted in “comfortable”, “relaxed”, and “natural” feelings. The findings indicate that visual stimulation with real pansies induced physiological and psychological relaxation effects in high school students.

  6. [Human physiology: images and practices of the reflex].

    Science.gov (United States)

    Wübben, Yvonne

    2010-01-01

    The essay examines the function of visualizations and practices in the formation of the reflex concept from Thomas Willis to Marshall Hall. It focuses on the specific form of reflex knowledge that images and practices can contain. In addition, the essay argues that it is through visual representations and experimental practices that technical knowledge is transferred to the field of human reflex physiology. When using technical metaphors in human physiology authors often seem to feel obliged to draw distinctions between humans, machines and animals. On closer scrutiny, these distinctions sometimes fail to establish firm borders between the human and the technical.

  7. Human Physiology in an Aquatic Environment.

    Science.gov (United States)

    Pendergast, David R; Moon, Richard E; Krasney, John J; Held, Heather E; Zamparo, Paola

    2015-09-20

    Water covers over 70% of the earth, has varying depths and temperatures and contains much of the earth's resources. Head-out water immersion (HOWI) or submersion at various depths (diving) in water of thermoneutral (TN) temperature elicits profound cardiorespiratory, endocrine, and renal responses. The translocation of blood into the thorax and elevation of plasma volume by autotransfusion of fluid from cells to the vascular compartment lead to increased cardiac stroke volume and output and there is a hyperperfusion of some tissues. Pulmonary artery and capillary hydrostatic pressures increase causing a decline in vital capacity with the potential for pulmonary edema. Atrial stretch and increased arterial pressure cause reflex autonomic responses which result in endocrine changes that return plasma volume and arterial pressure to preimmersion levels. Plasma volume is regulated via a reflex diuresis and natriuresis. Hydrostatic pressure also leads to elastic loading of the chest, increasing work of breathing, energy cost, and thus blood flow to respiratory muscles. Decreases in water temperature in HOWI do not affect the cardiac output compared to TN; however, they influence heart rate and the distribution of muscle and fat blood flow. The reduced muscle blood flow results in a reduced maximal oxygen consumption. The properties of water determine the mechanical load and the physiological responses during exercise in water (e.g. swimming and water based activities). Increased hydrostatic pressure caused by submersion does not affect stroke volume; however, progressive bradycardia decreases cardiac output. During submersion, compressed gas must be breathed which introduces the potential for oxygen toxicity, narcosis due to nitrogen, and tissue and vascular gas bubbles during decompression and after may cause pain in joints and the nervous system. Copyright © 2015 John Wiley & Sons, Inc.

  8. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Drawing on student knowledge in human anatomy and physiology

    Science.gov (United States)

    Slominski, Tara Nicole

    Prior to instruction, students may have developed alternative conceptions about the mechanics behind human physiology. To help students re-shape these ideas into correct reasoning, the faulty characteristics reinforcing the alternative conceptions need to made explicit. This study used student-generated drawings to expose alternative conceptions Human Anatomy and Physiology students had prior to instruction on neuron physiology. Specifically, we investigated how students thought about neuron communication across a synapse (n=355) and how neuron activity can be modified (n=311). When asked to depict basic communication between two neurons, at least 80% of students demonstrated incorrect ideas about synaptic transmission. When targeting spatial and temporal summation, only eleven students (3.5%) were able to accurately depict at least one form of summation. In response to both drawing questions, student drawings revealed multiple alternative conceptions that resulted in a deeper analysis and characterization of the wide variation of student ideas.

  10. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    Science.gov (United States)

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  11. Novel biotransformation and physiological properties of norursodeoxycholic acid in humans

    NARCIS (Netherlands)

    Hofmann, AF; Zakko, SF; Lira, M; Clerici, C; Hagey, LR; Lambert, KK; Steinbach, JH; Schteingart, CD; Olinga, P; Groothuis, GMM

    2005-01-01

    Experiments were performed in 2 volunteers to define the biotransformation and physiological properties of norursodeoxycholic acid (norUDCA), the C(23) (C(24)-nor) homolog of UDCA. To complement the in vivo studies, the biotransformation of norUDCA ex vivo using precision-cut human liver slices was

  12. The Physiology and Physical Changes of Human Aging ...

    African Journals Online (AJOL)

    Ageing is associated with a decline in body functions, an accompanying change in structure, loss of lean mass and a relative increase in fat mass over time. This article looked into the physiology and physical changes associated with human ageing through journal and book review. Research over the past several decades ...

  13. An emerging paradigm for teaching human anatomy and physiology

    African Journals Online (AJOL)

    Rabab El-Sayed Hassan El-Sayed

    2013-03-15

    Mar 15, 2013 ... information about the anatomy and physiology of human ... tional curriculum in a range of teaching fields that are based ..... et al.,47 who were studying the acceptance and benefits of vi- .... Foreign language teaching methods: Culture lesson 3: the case for .... vations in integrating ICT in education, vol. 3.

  14. Linking adult hippocampal neurogenesis with human physiology and disease.

    Science.gov (United States)

    Bowers, Megan; Jessberger, Sebastian

    2016-07-01

    We here review the existing evidence linking adult hippocampal neurogenesis and human brain function in physiology and disease. Furthermore, we aim to point out where evidence is missing, highlight current promising avenues of investigation, and suggest future tools and approaches to foster the link between life-long neurogenesis and human brain function. Developmental Dynamics 245:702-709, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Evolutionary change in physiological phenotypes along the human lineage.

    Science.gov (United States)

    Vining, Alexander Q; Nunn, Charles L

    2016-01-01

    Research in evolutionary medicine provides many examples of how evolution has shaped human susceptibility to disease. Traits undergoing rapid evolutionary change may result in associated costs or reduce the energy available to other traits. We hypothesize that humans have experienced more such changes than other primates as a result of major evolutionary change along the human lineage. We investigated 41 physiological traits across 50 primate species to identify traits that have undergone marked evolutionary change along the human lineage. We analysed the data using two Bayesian phylogenetic comparative methods. One approach models trait covariation in non-human primates and predicts human phenotypes to identify whether humans are evolutionary outliers. The other approach models adaptive shifts under an Ornstein-Uhlenbeck model of evolution to assess whether inferred shifts are more common on the human branch than on other primate lineages. We identified four traits with strong evidence for an evolutionary increase on the human lineage (amylase, haematocrit, phosphorus and monocytes) and one trait with strong evidence for decrease (neutrophilic bands). Humans exhibited more cases of distinct evolutionary change than other primates. Human physiology has undergone increased evolutionary change compared to other primates. Long distance running may have contributed to increases in haematocrit and mean corpuscular haemoglobin concentration, while dietary changes are likely related to increases in amylase. In accordance with the pathogen load hypothesis, human monocyte levels were increased, but many other immune-related measures were not. Determining the mechanisms underlying conspicuous evolutionary change in these traits may provide new insights into human disease. The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  16. Physiological correlates and emotional specificity of human piloerection.

    Science.gov (United States)

    Benedek, Mathias; Kaernbach, Christian

    2011-03-01

    Piloerection is known as an indicator of strong emotional experiences. However, little is known about the physiological and emotional specificity of this psychophysiological response. In the presented study, piloerection was elicited by audio stimuli taken from music and film episodes. The physiological response accompanying the incidence of piloerection was recorded with respect to electrodermal, cardiovascular and respiratory measures and compared to a matched control condition. The employment of an optical recording system allowed for a direct and objective assessment of visible piloerection. The occurrence of piloerection was primarily accompanied by an increase of phasic electrodermal activity and increased respiration depth as compared to a matched control condition. This physiological response pattern is discussed in the context of dominant theories of human piloerection. Consideration of all available evidence suggests that emotional piloerection represents a valuable indicator of the state of being moved or touched. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. The physiology of the normal human breast: an exploratory study.

    Science.gov (United States)

    Mills, Dixie; Gordon, Eva J; Casano, Ashley; Lahti, Sarah Michelle; Nguyen, Tinh; Preston, Alex; Tondre, Julie; Wu, Kuan; Yanase, Tiffany; Chan, Henry; Chia, David; Esfandiari, Mahtash; Himmel, Tiffany; Love, Susan M

    2011-12-01

    The physiology of the nonlactating human breast likely plays a key role in factors that contribute to the etiology of breast cancer and other breast conditions. Although there has been extensive research into the physiology of lactation, few reports explore the physiology of the resting mammary gland, including mechanisms by which compounds such as hormones, drugs, and potential carcinogens enter the breast ducts. The purpose of this study was to explore transport of exogenous drugs into ductal fluid in nonlactating women and determine if their concentrations in the fluid are similar to those observed in the breast milk of lactating women. We selected two compounds that have been well characterized during lactation, caffeine and cimetidine. Caffeine passively diffuses into breast milk, but cimetidine is actively transported and concentrated in breast milk. After ingestion of caffeine and cimetidine, 14 nonlactating subjects had blood drawn and underwent ductal lavage at five time points over 12 h to measure drug levels in the fluid and blood. The concentrations of both caffeine and cimetidine in lavage fluid were substantially less than those observed in breast milk. Our results support recent evidence that the cimetidine transporter is not expressed in the nonlactating mammary gland, and highlight intriguing differences in the physiology and molecular transport of the lactating and nonlactating breast. The findings of this exploratory study warrant further exploration into the physiology of the nonlactating mammary gland to elucidate factors involved in disease initiation and progression.

  18. Human Physiological Responses to Acute and Chronic Cold Exposure

    Science.gov (United States)

    Stocks, Jodie M.; Taylor, Nigel A. S.; Tipton, Michael J.; Greenleaf, John E.

    2001-01-01

    When inadequately protected humans are exposed to acute cold, excessive body heat is lost to the environment and unless heat production is increased and heat loss attenuated, body temperature will decrease. The primary physiological responses to counter the reduction in body temperature include marked cutaneous vasoconstriction and increased metabolism. These responses, and the hazards associated with such exposure, are mediated by a number of factors which contribute to heat production and loss. These include the severity and duration of the cold stimulus; exercise intensity; the magnitude of the metabolic response; and individual characteristics such as body composition, age, and gender. Chronic exposure to a cold environment, both natural and artificial, results in physiological alterations leading to adaptation. Three quite different, but not necessarily exclusive, patterns of human cold adaptation have been reported: metabolic, hypothermic, and insulative. Cold adaptation has also been associated with an habituation response, in which there is a desensitization, or damping, of the normal response to a cold stress. This review provides a comprehensive analysis of the human physiological and pathological responses to cold exposure. Particular attention is directed to the factors contributing to heat production and heat loss during acute cold stress, and the ability of humans to adapt to cold environments.

  19. Molecular and physiological manifestations and measurement of aging in humans.

    Science.gov (United States)

    Khan, Sadiya S; Singer, Benjamin D; Vaughan, Douglas E

    2017-08-01

    Biological aging is associated with a reduction in the reparative and regenerative potential in tissues and organs. This reduction manifests as a decreased physiological reserve in response to stress (termed homeostenosis) and a time-dependent failure of complex molecular mechanisms that cumulatively create disorder. Aging inevitably occurs with time in all organisms and emerges on a molecular, cellular, organ, and organismal level with genetic, epigenetic, and environmental modulators. Individuals with the same chronological age exhibit differential trajectories of age-related decline, and it follows that we should assess biological age distinctly from chronological age. In this review, we outline mechanisms of aging with attention to well-described molecular and cellular hallmarks and discuss physiological changes of aging at the organ-system level. We suggest methods to measure aging with attention to both molecular biology (e.g., telomere length and epigenetic marks) and physiological function (e.g., lung function and echocardiographic measurements). Finally, we propose a framework to integrate these molecular and physiological data into a composite score that measures biological aging in humans. Understanding the molecular and physiological phenomena that drive the complex and multifactorial processes underlying the variable pace of biological aging in humans will inform how researchers assess and investigate health and disease over the life course. This composite biological age score could be of use to researchers seeking to characterize normal, accelerated, and exceptionally successful aging as well as to assess the effect of interventions aimed at modulating human aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Knowledge environments representing molecular entities for the virtual physiological human.

    Science.gov (United States)

    Hofmann-Apitius, Martin; Fluck, Juliane; Furlong, Laura; Fornes, Oriol; Kolárik, Corinna; Hanser, Susanne; Boeker, Martin; Schulz, Stefan; Sanz, Ferran; Klinger, Roman; Mevissen, Theo; Gattermayer, Tobias; Oliva, Baldo; Friedrich, Christoph M

    2008-09-13

    In essence, the virtual physiological human (VPH) is a multiscale representation of human physiology spanning from the molecular level via cellular processes and multicellular organization of tissues to complex organ function. The different scales of the VPH deal with different entities, relationships and processes, and in consequence the models used to describe and simulate biological functions vary significantly. Here, we describe methods and strategies to generate knowledge environments representing molecular entities that can be used for modelling the molecular scale of the VPH. Our strategy to generate knowledge environments representing molecular entities is based on the combination of information extraction from scientific text and the integration of information from biomolecular databases. We introduce @neuLink, a first prototype of an automatically generated, disease-specific knowledge environment combining biomolecular, chemical, genetic and medical information. Finally, we provide a perspective for the future implementation and use of knowledge environments representing molecular entities for the VPH.

  1. The biology of human sexuality: evolution, ecology and physiology

    Directory of Open Access Journals (Sweden)

    PW Bateman

    2006-09-01

    Full Text Available Many evolutionary biologists argue that human sexual behaviour can be studied in exactly the same way as that of other species. Many sociologists argue that social influences effectively obscure, and are more important than, a reductionist biological approach to human sexual behaviour. Here,we authors attempt to provide a broad introduction to human sexual behaviour from a biological standpoint and to indicate where the ambiguous areas are. We outline the evolutionary selective pressures that are likely to have influenced human behaviour and mate choice in the past and in the present; ecological features that influence such things as degree of parental care and polygamy; and the associated physiology of human sexuality. Then they end with a discussion of �abnormal� sexuality.

  2. Misconceptions Highlighted among Medical Students in the Annual International Intermedical School Physiology Quiz

    Science.gov (United States)

    Cheng, Hwee-Ming; Durairajanayagam, Damayanthi

    2012-01-01

    The annual Intermedical School Physiology Quiz (IMSPQ), initiated in 2003, is now an event that attracts a unique, large gathering of selected medical students from medical schools across the globe. The 8th IMSPQ, in 2010, hosted by the Department of Physiology, University of Malaya, in Kuala Lumpur, Malaysia, had 200 students representing 41…

  3. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  4. DigitalHuman (DH): An Integrative Mathematical Model ofHuman Physiology

    Science.gov (United States)

    Hester, Robert L.; Summers, Richard L.; lIescu, Radu; Esters, Joyee; Coleman, Thomas G.

    2010-01-01

    Mathematical models and simulation are important tools in discovering the key causal relationships governing physiological processes and improving medical intervention when physiological complexity is a central issue. We have developed a model of integrative human physiology called DigitalHuman (DH) consisting of -5000 variables modeling human physiology describing cardiovascular, renal, respiratory, endocrine, neural and metabolic physiology. Users can view time-dependent solutions and interactively introduce perturbations by altering numerical parameters to investigate new hypotheses. The variables, parameters and quantitative relationships as well as all other model details are described in XML text files. All aspects of the model, including the mathematical equations describing the physiological processes are written in XML open source, text-readable files. Model structure is based upon empirical data of physiological responses documented within the peer-reviewed literature. The model can be used to understand proposed physiological mechanisms and physiological interactions that may not be otherwise intUitively evident. Some of the current uses of this model include the analyses of renal control of blood pressure, the central role of the liver in creating and maintaining insulin resistance, and the mechanisms causing orthostatic hypotension in astronauts. Additionally the open source aspect of the modeling environment allows any investigator to add detailed descriptions of human physiology to test new concepts. The model accurately predicts both qualitative and more importantly quantitative changes in clinically and experimentally observed responses. DigitalHuman provides scientists a modeling environment to understand the complex interactions of integrative physiology. This research was supported by.NIH HL 51971, NSF EPSCoR, and NASA

  5. Human reconstructed skin xenografts on mice to model skin physiology.

    Science.gov (United States)

    Salgado, Giorgiana; Ng, Yi Zhen; Koh, Li Fang; Goh, Christabelle S M; Common, John E

    Xenograft models to study skin physiology have been popular for scientific use since the 1970s, with various developments and improvements to the techniques over the decades. Xenograft models are particularly useful and sought after due to the lack of clinically relevant animal models in predicting drug effectiveness in humans. Such predictions could in turn boost the process of drug discovery, since novel drug compounds have an estimated 8% chance of FDA approval despite years of rigorous preclinical testing and evaluation, albeit mostly in non-human models. In the case of skin research, the mouse persists as the most popular animal model of choice, despite its well-known anatomical differences with human skin. Differences in skin biology are especially evident when trying to dissect more complex skin conditions, such as psoriasis and eczema, where interactions between the immune system, epidermis and the environment likely occur. While the use of animal models are still considered the gold standard for systemic toxicity studies under controlled environments, there are now alternative models that have been approved for certain applications. To overcome the biological limitations of the mouse model, research efforts have also focused on "humanizing" the mice model to better recapitulate human skin physiology. In this review, we outline the different approaches undertaken thus far to study skin biology using human tissue xenografts in mice and the technical challenges involved. We also describe more recent developments to generate humanized multi-tissue compartment mice that carry both a functioning human immune system and skin xenografts. Such composite animal models provide promising opportunities to study drugs, disease and differentiation with greater clinical relevance. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  6. Is Lutein a Physiologically Important Ligand for Transthyretin in Humans?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liwei [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Lutein and zeaxanthin are the only carotenoids accumulated in the macula of the human retina and are known as the macular pigments (MP). These pigments account for the yellow color of the macula and appear to play an important role in protecting against age-related macular degeneration (AMD). The uptake of lutein and zeaxanthin in human eyes is remarkably specific. It is likely that specific transport or binding proteins are involved. The objective is to determine whether transthyretin (TTR) is a transport protein in human plasma and could thus deliver lutein from the blood to the retina. In this study, they used a biosynthetic 13C-lutein tracer and gas chromatography-combustion interfaced-isotope ratio mass spectrometry (GCC-IRMS) to gain the requisite sensitivity to detect the minute amounts of lutein expected as a physiological ligand for human transthyretin. The biosynthetic 13C-labeled lutein tracer was purified from algae. Healthy women (n = 4) each ingested 1 mg of 13C-labeled lutein daily for 3 days and a blood sample was collected 24 hours after the final dose. Plasma TTR was isolated by retinol-binding protein (RBP)-sepharose affinity chromatography and extracted with chloroform. The 13C/12C ratio in the TTR extract was measured by GCC-IRMS. There was no 13C-lutein enrichment in the pure TTR extract. This result indicated that lutein is not associated with TTR in human plasma after ingestion in physiological amounts. Some hydrophobic compounds with yellow color may bind to human TTR in the plasma. However, this association needs to be further proved by showing specificity. The study provides a new approach for carotenoid-binding protein studies using a stable isotope tracer method combined with the high precision of GCC-IRMS. The mechanism of selective transport, uptake, and accumulation of lutein in human macula remain to be determined.

  7. Emerging role of mitophagy in human diseases and physiology.

    Science.gov (United States)

    Um, Jee-Hyun; Yun, Jeanho

    2017-06-01

    Mitophagy is a process of selective removal of damaged or unnecessary mitochondria using autophagic machinery. Mitophagy plays an essential role in maintaining mitochondrial quality control and homeostasis. Mitochondrial dysfunctions and defective mitophagy in neurodegenerative diseases, cancer, and metabolic diseases indicate a close link between human disease and mitophagy. Furthermore, recent studies showing the involvement of mitophagy in differentiation and development, suggest that mitophagy may play a more active role in controlling cellular functions. A better understanding of mitophagy will provide insights about human disease and offer novel chance for treatment. This review mainly focuses on the recent implications for mitophagy in human diseases and normal physiology. [BMB Reports 2017; 50(6): 299-307].

  8. Physiologically Based Pharmacokinetic Model for Terbinafine in Rats and Humans

    Science.gov (United States)

    Hosseini-Yeganeh, Mahboubeh; McLachlan, Andrew J.

    2002-01-01

    The aim of this study was to develop a physiologically based pharmacokinetic (PB-PK) model capable of describing and predicting terbinafine concentrations in plasma and tissues in rats and humans. A PB-PK model consisting of 12 tissue and 2 blood compartments was developed using concentration-time data for tissues from rats (n = 33) after intravenous bolus administration of terbinafine (6 mg/kg of body weight). It was assumed that all tissues except skin and testis tissues were well-stirred compartments with perfusion rate limitations. The uptake of terbinafine into skin and testis tissues was described by a PB-PK model which incorporates a membrane permeability rate limitation. The concentration-time data for terbinafine in human plasma and tissues were predicted by use of a scaled-up PB-PK model, which took oral absorption into consideration. The predictions obtained from the global PB-PK model for the concentration-time profile of terbinafine in human plasma and tissues were in close agreement with the observed concentration data for rats. The scaled-up PB-PK model provided an excellent prediction of published terbinafine concentration-time data obtained after the administration of single and multiple oral doses in humans. The estimated volume of distribution at steady state (Vss) obtained from the PB-PK model agreed with the reported value of 11 liters/kg. The apparent volume of distribution of terbinafine in skin and adipose tissues accounted for 41 and 52%, respectively, of the Vss for humans, indicating that uptake into and redistribution from these tissues dominate the pharmacokinetic profile of terbinafine. The PB-PK model developed in this study was capable of accurately predicting the plasma and tissue terbinafine concentrations in both rats and humans and provides insight into the physiological factors that determine terbinafine disposition. PMID:12069977

  9. Physiological effects of light on the human circadian pacemaker

    Science.gov (United States)

    Shanahan, T. L.; Czeisler, C. A.

    2000-01-01

    The physiology of the human circadian pacemaker and its influence and on the daily organization of sleep, endocrine and behavioral processes is an emerging interest in science and medicine. Understanding the development, organization and fundamental properties underlying the circadian timing system may provide insight for the application of circadian principles to the practice of clinical medicine, both diagnostically (interpretation of certain clinical tests are dependent on time of day) and therapeutically (certain pharmacological responses vary with the time of day). The light-dark cycle is the most powerful external influence acting upon the human circadian pacemaker. It has been shown that timed exposure to light can both synchronize and reset the phase of the circadian pacemaker in a predictable manner. The emergence of detectable circadian rhythmicity in the neonatal period is under investigation (as described elsewhere in this issue). Therefore, the pattern of light exposure provided in the neonatal intensive care setting has implications. One recent study identified differences in both amount of sleep time and weight gain in infants maintained in a neonatal intensive care environment that controlled the light-dark cycle. Unfortunately, neither circadian phase nor the time of day has been considered in most clinical investigations. Further studies with knowledge of principles characterizing the human circadian timing system, which governs a wide array of physiological processes, are required to integrate these findings with the practice of clinical medicine.

  10. Pulpal status of human primary teeth with physiological root resorption.

    Science.gov (United States)

    Monteiro, Joana; Day, Peter; Duggal, Monty; Morgan, Claire; Rodd, Helen

    2009-01-01

    The overall aim of this study was to determine whether any changes occur in the pulpal structure of human primary teeth in association with physiological root resorption. The experimental material comprised 64 sound primary molars, obtained from children requiring routine dental extractions under general anaesthesia. Pulp sections were processed for indirect immunofluorescence using combinations of: (i) protein gene product 9.5 (a general neuronal marker); (ii) leucocyte common antigen CD45 (a general immune cell marker); and (iii) Ulex europaeus I lectin (a marker of vascular endothelium). Image analysis was then used to determine the percentage area of staining for each label within both the pulp horn and mid-coronal region. Following measurement of the greatest degree of root resorption in each sample, teeth were subdivided into three groups: those with physiological resorption involving less than one-third, one-third to two-thirds, and more than two-thirds of their root length. Wide variation was evident between different tooth samples with some resorbed teeth showing marked changes in pulpal histology. Decreased innervation density, increased immune cell accumulation, and increased vascularity were evident in some teeth with advanced root resorption. Analysis of pooled data, however, did not reveal any significant differences in mean percentage area of staining for any of these variables according to the three root resorption subgroups (P > 0.05, analysis of variance on transformed data). This investigation has revealed some changes in pulpal status of human primary teeth with physiological root resorption. These were not, however, as profound as one may have anticipated. It is therefore speculated that teeth could retain the potential for sensation, healing, and repair until advanced stages of root resorption.

  11. Flexible and wearable electronic silk fabrics for human physiological monitoring

    Science.gov (United States)

    Mao, Cuiping; Zhang, Huihui; Lu, Zhisong

    2017-09-01

    The development of textile-based devices for human physiological monitoring has attracted tremendous interest in recent years. However, flexible physiological sensing elements based on silk fabrics have not been realized. In this paper, ZnO nanorod arrays are grown in situ on reduced graphene oxide-coated silk fabrics via a facile electro-deposition method for the fabrication of silk-fabric-based mechanical sensing devices. The data show that well-aligned ZnO nanorods with hexagonal wurtzite crystalline structures are synthesized on the conductive silk fabric surface. After magnetron sputtering of gold electrodes, silk-fabric-based devices are produced and applied to detect periodic bending and twisting. Based on the electric signals, the deformation and release processes can be easily differentiated. Human arterial pulse and respiration can also be real-time monitored to calculate the pulse rate and respiration frequency, respectively. Throat vibrations during coughing and singing are detected to demonstrate the voice recognition capability. This work may not only help develop silk-fabric-based mechanical sensing elements for potential applications in clinical diagnosis, daily healthcare monitoring and voice recognition, but also provide a versatile method for fabricating textile-based flexible electronic devices.

  12. Coupling of the Models of Human Physiology and Thermal Comfort

    Science.gov (United States)

    Pokorny, J.; Jicha, M.

    2013-04-01

    A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  13. Coupling of the Models of Human Physiology and Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Jicha M.

    2013-04-01

    Full Text Available A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus–FE [1]. In the paper validation of the model for very light physical activities (1 met indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.

  14. THERMOREGULATION AND HUMAN PERFORMANCE: PHYSIOLOGICAL AND BIOLOGICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Frank E Marino

    2008-12-01

    Full Text Available Vol 53 (Medicine & Sport Science This collection on the latest interpretation of research data about the relationship between thermoregulation, exercise performance and fatigue is published as the 53rd volume of Medicine and Sport Science Journal. PURPOSE The book aims to explain how the advances in technology and methodology allowed studying the affects of the changing body temperature on metabolism and the role played by the nervous system in shaping human performance under challenging thermal situations. FEATURES This publication provides different interpretations of recent research for a better understanding of the limitations of thermoregulation in nine titles. The presented titles are: The Evolutionary Basis of Thermoregulation and Exercise Performance; Comparative Thermoregulation and the Quest for Athletic Supremacy; Thermoregulation, Fatigue and Exercise Modality; Neuromuscular Response to Exercise Heat Stress; Intestinal Barrier Dysfunction, Endotoxemia and Gastrointestinal Symptoms: The 'Canary in the Coal Mine' during Exercise-Heat Stress?; Effects of Peripheral Cooling on Characteristics of Local Muscle; Cooling Interventions for the Protection and Recovery of Exercise Performance from Exercise-Induced Heat Stress; Ethnicity and Temperature Regulation; Exercise Heat Stress and Metabolism. The evidence for the human's ability to adjust their performance according to the thermal limits in order to preserve cellular homeostasis is particularly noteworthy. AUDIENCE This is a fundamental book for any students and/or researchers involved in the fields of medicine, exercise physiology and human performance with special reference to thermal regulation. ASSESSMENT This publication is a must-read text for all those working in thermal medicine, exercise physiology and human performance fields

  15. Physiological and Biomechanical Mechanisms of Distance Specific Human Running Performance.

    Science.gov (United States)

    Thompson, M A

    2017-08-01

    Running events range from 60-m sprints to ultra-marathons covering 100 miles or more, which presents an interesting diversity in terms of the parameters for successful performance. Here, we review the physiological and biomechanical variations underlying elite human running performance in sprint to ultramarathon distances. Maximal running speeds observed in sprint disciplines are achieved by high vertical ground reaction forces applied over short contact times. To create this high force output, sprint events rely heavily on anaerobic metabolism, as well as a high number and large cross-sectional area of type II fibers in the leg muscles. Middle distance running performance is characterized by intermediates of biomechanical and physiological parameters, with the possibility of unique combinations of each leading to high-level performance. The relatively fast velocities in mid-distance events require a high mechanical power output, though ground reaction forces are less than in sprinting. Elite mid-distance runners exhibit local muscle adaptations that, along with a large anaerobic capacity, provide the ability to generate a high power output. Aerobic capacity starts to become an important aspect of performance in middle distance events, especially as distance increases. In distance running events, V˙O2max is an important determinant of performance, but is relatively homogeneous in elite runners. V˙O2 and velocity at lactate threshold have been shown to be superior predictors of elite distance running performance. Ultramarathons are relatively new running events, as such, less is known about physiological and biomechanical parameters that underlie ultra-marathon performance. However, it is clear that performance in these events is related to aerobic capacity, fuel utilization, and fatigue resistance. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology 2017. This work is written by US Government employees and is in

  16. Relationship between sociability toward humans and physiological stress in dogs.

    Science.gov (United States)

    Shin, Yoon-Joo; Shin, Nam-Shik

    2017-07-28

    Sociability is an essential trait for dogs to successfully interact with humans. In this study, the relationship between sociability and physiological stress was examined. Additionally, whether differences exist between companion dogs (C group) and shelter dogs (S group) was examined. Overall, healthy 37 dogs (C group=21 and S group=16) were examined. After 5 min of walking, the dog and the owner (or the chief manager) rested freely in the experimental location for 5 min. The behavioral test with 6 categories was conducted to evaluate sociability over 4 min. The establishment of two groups (H group=dogs with high sociability; L group=dogs with low sociability) was supported by the statistical results of the behavioral tests. Saliva was collected before (P1) and after the test period (P2), and salivary cortisol levels were determined and statistically analyzed. The cortisol concentrations at P2 and the differences in concentrations between P1 and P2 (P2-P1) in the groups with high sociability were significantly lower than those in the groups with low sociability. These results may demonstrate that sociable dogs adapt more comfortably to strangers and unfamiliar situations. Meanwhile, there were significant differences in hormonal results between the C and S groups. For this reason, their sociability should be evaluated using behavioral and physiological assessments before re-adoption to ensure their successful adaptation.

  17. How consumer physical activity monitors could transform human physiology research.

    Science.gov (United States)

    Wright, Stephen P; Hall Brown, Tyish S; Collier, Scott R; Sandberg, Kathryn

    2017-03-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O 2 , and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. Copyright © 2017 the American Physiological Society.

  18. Developing the Immunology Book for Animal and Human Physiology Subject

    Directory of Open Access Journals (Sweden)

    Zuni Mitasari

    2017-07-01

    Full Text Available he objective of the study was to develop an immunology book for Animal and Human Physiology subject. This book was developed based on the Thiagarajan development model which was modified of: Define, Design, Develop, dan Disseminate (4D. The data expert validation instrument was questionnaire using Likert scales, comments, and recommendation sheets. Expert appraisal was done by material expert and media and design learning expert. The developmental testing was conducted using questionnaire to test the readibility. The expert validation was conducted by material expert as well as design and media learning expert validator; meanwhile, the field test was done to measure the readability. The validity test results were: the material expert state that the material is valid (97.14%, as well as the design and learning media expert (84.88% and field test by students (88.17%.

  19. Physiological markers of motor inhibition during human behavior

    Science.gov (United States)

    Duque, Julie; Greenhouse, Ian; Labruna, Ludovica; Ivry, Richard B.

    2017-01-01

    Transcranial magnetic stimulation (TMS) studies in humans have shown that many behaviors engage processes that suppress excitability within the corticospinal tract. Inhibition of the motor output pathway has been extensively studied in the context of action stopping, where a planned movement needs to be abruptly aborted. Recent TMS work has also revealed markers of motor inhibition during the preparation of movement. Here, we review the evidence for motor inhibition during action stopping and action preparation, focusing on studies that have used TMS to monitor changes in the excitability of the corticospinal pathway. We discuss how these physiological results have motivated theoretical models of how the brain selects actions, regulates movement initiation and execution, and switches from one state to another. PMID:28341235

  20. Physiological Health Challenges for Human Missions to Mars

    Science.gov (United States)

    Norsk, Peter

    2015-01-01

    During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.

  1. Family Life and Human Development (Sex Education): The Prince George's County Public Schools Experience.

    Science.gov (United States)

    Schaffer, Michael J.

    1981-01-01

    The Prince George's County schools' sex education program for grades K-12 was developed and implemented in the late 1960s and has three focus areas: family life and interpersonal relationships; the physiological and personality changes during puberty; and advanced physiology and psychology of human sexual behavior. The program augments what the…

  2. Human pathogens in plant biofilms: Formation, physiology, and detection.

    Science.gov (United States)

    Ximenes, Eduardo; Hoagland, Lori; Ku, Seockmo; Li, Xuan; Ladisch, Michael

    2017-07-01

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria can form biofilms or otherwise populate plant tissues, thereby using plants as vectors to infect animal hosts. The life cycle of the bacteria in plants differs from those in animals or humans and results in altered physiochemical and biological properties (e.g., physiology, immunity, native microflora, physical barriers, mobility, and temperature). Mechanisms by which healthy plants may become contaminated by microorganisms, develop biofilms, and then pass on their pathogenic burden to people are explored in the context of hollow fiber microfiltration by which plant-derived microorganisms may be recovered and rapidly concentrated to facilitate study of their properties. Enzymes, when added to macerated plant tissues, hydrolyze or alter macromolecules that would otherwise foul hollow-fiber microfiltration membranes. Hence, microfiltration may be used to quickly increase the concentration of microorganisms to detectable levels. This review discusses microbial colonization of vegetables, formation and properties of biofilms, and how hollow fiber microfiltration may be used to concentrate microbial targets to detectable levels. The use of added enzymes helps to disintegrate biofilms and minimize hollow fiber membrane fouling, thereby providing a new tool for more time effectively elucidating mechanisms by which biofilms develop and plant tissue becomes contaminated with human pathogens. Biotechnol. Bioeng. 2017;114: 1403-1418. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Physiology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  4. Singularity now: using the ventricular assist device as a model for future human-robotic physiology.

    Science.gov (United States)

    Martin, Archer K

    2016-04-01

    In our 21 st century world, human-robotic interactions are far more complicated than Asimov predicted in 1942. The future of human-robotic interactions includes human-robotic machine hybrids with an integrated physiology, working together to achieve an enhanced level of baseline human physiological performance. This achievement can be described as a biological Singularity. I argue that this time of Singularity cannot be met by current biological technologies, and that human-robotic physiology must be integrated for the Singularity to occur. In order to conquer the challenges we face regarding human-robotic physiology, we first need to identify a working model in today's world. Once identified, this model can form the basis for the study, creation, expansion, and optimization of human-robotic hybrid physiology. In this paper, I present and defend the line of argument that currently this kind of model (proposed to be named "IshBot") can best be studied in ventricular assist devices - VAD.

  5. Matters of taste: bridging molecular physiology and the humanities.

    Science.gov (United States)

    Rangachari, P K; Rangachari, Usha

    2015-12-01

    Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple evaluation procedures were used: problem summaries and problem-solving exercises (tripartite problem-solving exercise) for the problem-based learning component and group tasks and individual exercises for the cultural issues. Self-selected groups chose specific tasks from a prescribed list of options (setting up a journal in molecular gastronomy, developing an electronic tongue, designing a restaurant for synesthetes, organizing a farmers' market, marketing a culinary tour, framing hedonic scales, exploring changing tastes through works of art or recipe books, and crafting beers for space travel). Individual tasks were selected from a menu of options (book reviews, film reviews, conversations, creative writing, and oral exams). A few guest lecturers (wine making, cultural anthropology, film analysis, and nutritional epidemiology) added more flavor. The course was rated highly for its learning value (8.5 ± 1.2, n = 62) and helped students relate biological mechanisms to cultural issues (9.0 ± 0.9, n = 62). Copyright © 2015 The American Physiological Society.

  6. Effects of Weightlessness on Human Fluid and Electrolyte Physiology

    Science.gov (United States)

    Leach, Carolyn S.; Johnson, Philip C., Jr.

    1991-01-01

    The changes that occur in human fluid and electrolyte physiology during the acute and adaptive phases of adaptation to spaceflight are summarized. A number of questions remain to be answered. At a time when plasma volume and extracellular fluid volume are contracted and salt and water intake is unrestricted. ADH does not correct the volume deficit and serum sodium decreases. Change in secretion or activity of a natriuretic factor during spaceflight is one possible explanation. Recent identification of a polypeptide hormone produced in cardiac muscle cells which is natiuretic, is hypotensive, and has an inhibitory effect on renin and aldosterone secretion has renewed interest in the role of a natriuretic factor. The role of this atrial natriuretic factor (ANF) in both long- and short-term variation in extracellular volumes and in the inability of the kidney to bring about an escape from the sodium-retaining state accompanying chronic cardiac dysfunction makes it reasonable to look for a role of ANF in the regulation of sodium during exposure to microgravity. Prostaglandin-E is another hormone that may antagonize the action of ADH. Assays of these hormones will be performed on samples from crew members in the future.

  7. HuPSON: the human physiology simulation ontology.

    Science.gov (United States)

    Gündel, Michaela; Younesi, Erfan; Malhotra, Ashutosh; Wang, Jiali; Li, Hui; Zhang, Bijun; de Bono, Bernard; Mevissen, Heinz-Theodor; Hofmann-Apitius, Martin

    2013-11-22

    Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain. We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.The ontology is freely available at: http://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/downloads.html (owl files) and http://bishop.scai.fraunhofer.de/scaiview/ (browser). HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.

  8. How consumer physical activity monitors could transform human physiology research

    Science.gov (United States)

    Hall Brown, Tyish S.; Collier, Scott R.; Sandberg, Kathryn

    2017-01-01

    A sedentary lifestyle and lack of physical activity are well-established risk factors for chronic disease and adverse health outcomes. Thus, there is enormous interest in measuring physical activity in biomedical research. Many consumer physical activity monitors, including Basis Health Tracker, BodyMedia Fit, DirectLife, Fitbit Flex, Fitbit One, Fitbit Zip, Garmin Vivofit, Jawbone UP, MisFit Shine, Nike FuelBand, Polar Loop, Withings Pulse O2, and others have accuracies similar to that of research-grade physical activity monitors for measuring steps. This review focuses on the unprecedented opportunities that consumer physical activity monitors offer for human physiology and pathophysiology research because of their ability to measure activity continuously under real-life conditions and because they are already widely used by consumers. We examine current and potential uses of consumer physical activity monitors as a measuring or monitoring device, or as an intervention in strategies to change behavior and predict health outcomes. The accuracy, reliability, reproducibility, and validity of consumer physical activity monitors are reviewed, as are limitations and challenges associated with using these devices in research. Other topics covered include how smartphone apps and platforms, such as the Apple ResearchKit, can be used in conjunction with consumer physical activity monitors for research. Lastly, the future of consumer physical activity monitors and related technology is considered: pattern recognition, integration of sleep monitors, and other biosensors in combination with new forms of information processing. PMID:28052867

  9. Physiological characterisation of human iPS-derived dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hartfield

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD, in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2, representative of the A9 population of substantia nigra pars compacta (SNc neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3 receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+ which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.

  10. Physiological stress reactivity in human pregnancy--a review.

    NARCIS (Netherlands)

    Weerth, C. de; Buitelaar, J.K.

    2005-01-01

    Prenatal maternal stress has been found to have long-lasting effects on the behavioral and physiological development of the offspring. These programming effects on the fetus would be physiologically mediated through heightened and/or abnormal activity of the maternal sympathetic-adrenal-medullary

  11. Physiological stress reactivity in human pregnancy - a review

    NARCIS (Netherlands)

    Weerth, C. de; Buitelaar, J.K.

    2005-01-01

    Prenatal maternal stress has been found to have long-lasting effects on the behavioral and physiological development of the offspring. These programming effects on the fetus would be physiologically mediated through heightened and/or abnormal activity of the maternal sympathetic-adrenal-medullary

  12. Human thermal physiological and psychological responses under different heating environments.

    Science.gov (United States)

    Wang, Zhaojun; Ning, Haoran; Ji, Yuchen; Hou, Juan; He, Yanan

    2015-08-01

    Anecdotal evidence suggests that many residents of severely cold areas of China who use floor heating (FH) systems feel warmer but drier compared to those using radiant heating (RH) systems. However, this phenomenon has not been verified experimentally. In order to validate the empirical hypothesis, and research the differences of human physiological and psychological responses in these two asymmetrical heating environments, an experiment was designed to mimic FH and RH systems. The subjects participating in the experiment were volunteer college-students. During the experiment, the indoor air temperature, air speed, relative humidity, globe temperature, and inner surface temperatures were measured, and subjects' heart rate, blood pressure and skin temperatures were recorded. The subjects were required to fill in questionnaires about their thermal responses during testing. The results showed that the subjects' skin temperatures, heart rate and blood pressure were significantly affected by the type of heating environment. Ankle temperature had greatest impact on overall thermal comfort relative to other body parts, and a slightly cool FH condition was the most pleasurable environment for sedentary subjects. The overall thermal sensation, comfort and acceptability of FH were higher than that of RH. However, the subjects of FH felt drier than that of RH, although the relative humidity in FH environments was higher than that of the RH environment. In future environmental design, the thermal comfort of the ankles should be scrutinized, and a FH cool condition is recommended as the most comfortable thermal environment for office workers. Consequently, large amounts of heating energy could be saved in this area in the winter. The results of this study may lead to more efficient energy use for office or home heating systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Molecular clocks and the human condition: approaching their characterization in human physiology and disease.

    Science.gov (United States)

    Fitzgerald, G A; Yang, G; Paschos, G K; Liang, X; Skarke, C

    2015-09-01

    Molecular clockworks knit together diverse biological networks and compelling evidence from model systems infers their importance in metabolism, immunological and cardiovascular function. Despite this and the diurnal variation in many aspects of human physiology and the phenotypic expression of disease, our understanding of the role and importance of clock function and dysfunction in humans is modest. There are tantalizing hints of connection across the translational divide and some correlative evidence of gene variation and human disease but most of what we know derives from forced desynchrony protocols in controlled environments. We now have the ability to monitor quantitatively ex vivo or in vivo the genome, metabolome, proteome and microbiome of humans in the wild. Combining this capability, with the power of mobile telephony and the evolution of remote sensing, affords a new opportunity for deep phenotyping, including the characterization of diurnal behaviour and the assessment of the impact of the clock on approved drug function. © 2015 John Wiley & Sons Ltd.

  14. Developing Physiologic Stress Profiles for School-Age Children Who Stutter

    Science.gov (United States)

    Ortega, Aishah Y.; Ambrose, Nicoline G.

    2011-01-01

    Purpose: Physiologic reactivity profiles were generated for 9 school-age children with a history of stuttering. Utilizing salivary sampling, stress biomarkers cortisol and alpha-amylase were measured in response to normal daily stressors. Children with a history of stuttering were characterized as high or low autonomic reactors when compared to…

  15. Offering an Anatomy and Physiology Course through a High School-University Partnership: The Minnesota Model

    Science.gov (United States)

    Jensen, Murray; Mattheis, Allison; Loyle, Anne

    2013-01-01

    This article describes a one-semester anatomy and physiology course that is currently offered through the concurrent enrollment program at the University of Minnesota. The article explains how high school teachers are prepared to teach the course and describes efforts to promote program quality, student inquiry, and experiential learning.…

  16. Positive Impact of Integrating Histology and Physiology Teaching at a Medical School in China

    Science.gov (United States)

    Sherer, Renslow; Wan, Yu; Dong, Hongmei; Cooper, Brian; Morgan, Ivy; Peng, Biwen; Liu, Jun; Wang, Lin; Xu, David

    2014-01-01

    To modernize its stagnant, traditional curriculum and pedagogy, the Medical School of Wuhan University in China adopted (with modifications) the University of Chicago's medical curriculum model. The reform effort in basic sciences was integrating histology and physiology into one course, increasing the two subjects' connection to clinical…

  17. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun

    2013-01-01

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta power ratio is

  18. Physiological responses to exposure to carbon dioxide and human bioeffluents

    DEFF Research Database (Denmark)

    Zhang, Xiaojing; Wargocki, Pawel; Lian, Zhiwei

    2015-01-01

    Present paper describes physiological responses as a result of exposures to CO2 (between 500 ppm to 3,000 ppm) with and without bioeffluents. Twenty-five subjects participated. They were exposed in the climate chamber for 255 minutes in groups of five at a time. During exposure, they performed di...

  19. Study on human physiological parameters for monitoring of mental works in the nuclear power plant

    International Nuclear Information System (INIS)

    Takano, Ken-ichi; Yoshino, Kenji; Ishii, Keiichiro; Nakasa, Hiroyasu; Shigeta, Sadayoshi.

    1982-01-01

    To prevent outbreaks of the wrong operation and judgement in the nuclear power plant, human conditions of body and mind should be taken into consideration particularly for the mental works such as inspection and monitoring. To estimate human conditions quantitatively by the measurement of human physiological parameters, this paper presents the following experimental results. (1) Physiological parameters are estimated from both sides of biological meanings and the applicability to field works. (2) Time variation of the parameters is investigated in mental simulation tests in order to select a good indicator of mental fatigue. (3) Correlation analysis between mental fatigue indexes and physiological parameters shows that the heart rate is a best indicator. (author)

  20. The Virtual Physiological Human - a European initiative for in silico human modelling -.

    Science.gov (United States)

    Viceconti, Marco; Clapworthy, Gordon; Van Sint Jan, Serge

    2008-12-01

    The Virtual Physiological Human (VPH) is an initiative, strongly supported by the European Commission (EC), that seeks to develop an integrated model of human physiology at multiple scales from the whole body through the organ, tissue, cell and molecular levels to the genomic level. VPH had its beginnings in 2005 with informal discussions amongst like-minded scientists which led to the STEP project, a Coordination Action funded by the EC that began in early 2006. The STEP project greatly accelerated the progress of the VPH and proved to be a catalyst for wide-ranging discussions within Europe and for outreach activities designed to develop a broad international approach to the huge scientific and technological challenges involved in this area. This paper provides an overview of the VPH and the developments it has engendered in the rapidly expanding worldwide activities associated with the physiome. It then uses one particular project, the Living Human Project, to illustrate the type of advances that are taking place to further the aims of the VPH and similar initiatives worldwide.

  1. The pipeline of physiology courses in community colleges: to university, medical school, and beyond.

    Science.gov (United States)

    McFarland, Jenny; Pape-Lindstrom, Pamela

    2016-12-01

    Community colleges are significant in the landscape of undergraduate STEM (science technology, engineering, and mathematics) education (9), including biology, premedical, and other preprofessional education. Thirty percent of first-year medical school students in 2012 attended a community college. Students attend at different times in high school, their first 2 yr of college, and postbaccalaureate. The community college pathway is particularly important for traditionally underrepresented groups. Premedical students who first attend community college are more likely to practice in underserved communities (2). For many students, community colleges have significant advantages over 4-yr institutions. Pragmatically, they are local, affordable, and flexible, which accommodates students' work and family commitments. Academically, community colleges offer teaching faculty, smaller class sizes, and accessible learning support systems. Community colleges are fertile ground for universities and medical schools to recruit diverse students and support faculty. Community college students and faculty face several challenges (6, 8). There are limited interactions between 2- and 4-yr institutions, and the ease of transfer processes varies. In addition, faculty who study and work to improve the physiology education experience often encounter obstacles. Here, we describe barriers and detail existing resources and opportunities useful in navigating challenges. We invite physiology educators from 2- and 4-yr institutions to engage in sharing resources and facilitating physiology education improvement across institutions. Given the need for STEM majors and health care professionals, 4-yr colleges and universities will continue to benefit from students who take introductory biology, physiology, and anatomy and physiology courses at community colleges. Copyright © 2016 The American Physiological Society.

  2. Hypoxia increases the behavioural activity of schooling herring: a response to physiological stress or respiratory distress?

    DEFF Research Database (Denmark)

    Herbert, Neill A.; Steffensen, John F.

    2006-01-01

    a deviation in physiological homeostasis is associated with any change in behavioural activity, we exposed C. harengus in a school to a progressive stepwise decline in water oxygen pressure  and measured fish swimming speed and valid indicators of primary and secondary stress (i.e. blood cortisol, lactate......Atlantic herring, Clupea harengus, increase their swimming speed during low O2 (hypoxia) and it has been hypothesised that the behavioural response is modulated by the degree of "respiratory distress" (i.e. a rise in anaerobic metabolism and severe physiological stress). To test directly whether...

  3. Acute and phase-shifting effects of ocular and extraocular light in human circadian physiology

    NARCIS (Netherlands)

    Rüger, Melanie; Gordijn, Marijke C.M.; Beersma, Domien G.M.; de Vries, Bonnie; Daan, Serge

    2003-01-01

    Light can influence physiology and performance of humans in two distinct ways. It can acutely change the level of physiological and behavioral parameters, and it can induce a phase shift in the circadian oscillators underlying variations in these levels. Until recently, both effects were thought to

  4. Full Human Development And School Psychology

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    The aim of this keynote address is to show how theoretical ideas from the cultural-historical tradition have been used to address issues that fall within the scope of interest for Brazilian school psychologists. The first part of the conference discusses the idea of radical-local teaching...... which explains how this perspective was used with lower secondary school boys in Denmark who had been expelled from several schools. These two parts will be used to illustrate a perspective about full human development, expressed through cultural-historical theoretical concepts, as an orientation...... for all professional approaches to school psychology....

  5. Geo-Effective Heliophysical Variations and Human Physiological State

    Science.gov (United States)

    Dimitrova, S.

    2006-03-01

    A group of 86 volunteers was examined on each working day in autumn 2001 and in spring 2002. These periods were chosen because of maximal expected geomagnetic activity. There were 26 persons in the group on a drug treatment, mainly because of hypertension. Systolic and diastolic blood pressure and heart rate were registered. Pulse pressure was calculated. Data about subjective psycho-physiological complaints of the persons examined were also gathered. Altogether 2799 recordings were obtained and analyzed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were as follows: 1) geomagnetic activity estimated by H-component of the local geomagnetic field and divided into five levels; 2) gender - males and females; 3) presence of medication. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure, pulse pressure and the percentage of the persons in the group with subjective psycho-physiological complaints were found to increase significantly with the increase of geomagnetic activity. The maximal increment of systolic and diastolic blood pressure was 10-11% and for pulse pressure 13.6%. Analyses revealed that females and persons on a medication were more sensitive to the increase of geomagnetic activity than respectively males and persons with no medication.

  6. Inhibition of human pancreatic and biliary output but not intestinal motility by physiological intraileal lipid loads

    DEFF Research Database (Denmark)

    Keller, Jutta; Holst, Jens Juul; Layer, Peter

    2005-01-01

    Lipid perfusion into the distal ileal lumen at supraphysiological loads inhibits pancreatic exocrine secretion and gastrointestinal motility in humans. In the present study, we sought to determine the effects of physiological postprandial intraileal lipid concentrations on endogenously stimulated...

  7. Physiological correlates of stress-induced decrements in human perceptual performance.

    Science.gov (United States)

    1993-11-01

    Stress-induced changes in human performance have been thought to result from alterations in the "multidimensional arousal state" of the individual, as indexed by alterations in the physiological and psychological mechanisms controlling performance. I...

  8. Alliances in Human Biology: The Harvard Committee on Industrial Physiology, 1929-1939.

    Science.gov (United States)

    Oakes, Jason

    2015-08-01

    In 1929 the newly-reorganized Rockefeller Foundation funded the work of a cross-disciplinary group at Harvard University called the Committee on Industrial Physiology (CIP). The committee's research and pedagogical work was oriented towards different things for different members of the alliance. The CIP program included a research component in the Harvard Fatigue Laboratory and Elton May's interpretation of the Hawthorne Studies; a pedagogical aspect as part of Wallace Donham's curriculum for Harvard Business School; and Lawrence Henderson's work with the Harvard Pareto Circle, his course Sociology 23, and the Harvard Society of Fellows. The key actors within the CIP alliance shared a concern with training men for elite careers in government service, business leadership, and academic prominence. But the first communications between the CIP and the Rockefeller Foundation did not emphasize training in human biology. Instead, the CIP presented itself as a coordinating body that would be able to organize all the varied work going on at Harvard that did not fit easily into one department, and it was on this basis that the CIP became legible to the President of Harvard, A. Lawrence Lowell, and to Rockefeller's Division of Social Sciences. The members of the CIP alliance used the term human biology for this project of research, training and institutional coordination.

  9. Physiology of school burnout in medical students: Hemodynamic and autonomic functioning

    Directory of Open Access Journals (Sweden)

    Ross W. May

    2016-09-01

    Full Text Available This study investigated the relationship between burnout and hemodynamic and autonomic functioning in both medical students (N = 55 and premedical undergraduate students (N = 77. Questionnaires screened for health related issues and assessed school burnout and negative affect symptomatology (anxiety and depression. Continuous beat-to-beat blood pressure (BP through finger plethysmography and electrocardiogram (ECG monitoring was conducted during conditions of baseline and cardiac stress induced via the cold pressor task to produce hemodynamic, heart rate variability, and blood pressure variability indices. Independent sample t-tests demonstrated that medical students had significantly higher school burnout scores compared to their undergraduate counterparts. Controlling for age, BMI, anxiety and depressive symptoms, multiple regression analyses indicated that school burnout was a stronger predictor of elevated hemodynamics (blood pressure, decreased heart rate variability, decreased markers of vagal activity and increased markers of sympathetic tone at baseline for medical students than for undergraduates. Analyses of physiological values collected during the cold pressor task indicated greater cardiac hyperactivity for medical students than for undergraduates. The present study supports previous research linking medical school burnout to hemodynamic and autonomic functioning, suggests biomarkers for medical school burnout, and provides evidence that burnout may be implicated as a physiological risk factor in medical students. Study limitations and potential intervention avenues are discussed.

  10. The human cerebellum: a review of physiologic neuroanatomy.

    Science.gov (United States)

    Roostaei, Tina; Nazeri, Arash; Sahraian, Mohammad Ali; Minagar, Alireza

    2014-11-01

    The cerebellum resides in the posterior cranial fossa dorsal to the brainstem and has diverse connections to the cerebrum, brain stem, and spinal cord. It is anatomically and physiologically divided into distinct functional compartments and is composed of highly regular arrays of neuronal units, each sharing the same basic cerebellar microcircuitry. Its circuitry is critically involved in motor control and motor learning, and its role in nonmotor cognitive and affective functions is becoming increasingly recognized. This article describes the cerebellar gross and histologic neuroanatomy in relation to its function, and the relevance of cerebellar circuitry and firing patterns to motor learning. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gastrointestinal Physiology During Head Down Tilt Bedrest in Human Subjects

    Science.gov (United States)

    Vaksman, Z.; Guthienz, J.; Putcha, L.

    2008-01-01

    Introduction: Gastrointestinal (GI) motility plays a key role in the physiology and function of the GI tract. It directly affects absorption of medications and nutrients taken by mouth, in addition to indirectly altering GI physiology by way of changes in the microfloral composition and biochemistry of the GI tract. Astronauts have reported nausea, loss of appetite and constipation during space flight all of which indicate a reduction in GI motility and function similar to the one seen in chronic bed rest patients. The purpose of this study is to determine GI motility and bacterial proliferation during -6 degree head down tilt bed rest (HTD). Methods: Healthy male and female subjects between the ages of 25-40 participated in a 60 day HTD study protocol. GI transit time (GITT) was determined using lactulose breath hydrogen test and bacterial overgrowth was measured using glucose breath hydrogen test. H. Pylori colonization was determined using C13-urea breath test (UBIT#). All three tests were conducted on 9 days before HDT, and repeated on HDT days 2, 28, 58, and again on day 7 after HDT. Results: GITT increased during HTD compared to the respective ambulatory control values; GITT was significantly lower on day 7 after HTD. A concomitant increase in bacterial colonization was also noticed during HDT starting after approximately 28 days of HDT. However, H. Pylori proliferation was not recorded during HDT as indicated by UBIT#. Conclusion: GITT significantly decreased during HDT with a concomitant increase in the proliferation of GI bacterial flora but not H. pylori.

  12. Brazilian actions to promote physiology learning and teaching in secondary and high schools.

    Science.gov (United States)

    Mello-Carpes, Pâmela B; Granjeiro, Érica Maria; Montrezor, Luís Henrique; Rocha, Maria José Alves

    2016-06-01

    Members of the Education Committee of the Brazilian Society of Physiology have developed multiple outreach models to improve the appreciation of science and physiology at the precollege level. The members of this committee act in concert with important Brazilian governmental strategies to promote training of undergraduate students in the teaching environment of secondary and high schools. One of these governmental strategies, the Programa Institucional de Bolsas de Iniciação à Docência, a Brazilian public policy of teaching enhancement implemented by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) since 2007, represents a well-articulated public policy that can promote the partnership between University and Schools (7). Furthermore, the Program "Novos Talentos" (New Talents)/CAPES/Ministry of Education is another government initiative to bring together university and high-level technical training with the reality of Brazilian schools. Linked to the New Talents Program, in partnership with the British Council/Newton Fund, CAPES recently promoted the visit of some university professors that coordinate New Talents projects to formal and informal educational science spaces in the United Kingdom (Science, Technology, Engineering, and Mathematics, Brazil-United Kingdom International Cooperation Program) to qualify the actions developed in this area in Brazil, and one of us had the opportunity to participate with this. Copyright © 2016 The American Physiological Society.

  13. [Human orgasm from the physiological perspective--part I].

    Science.gov (United States)

    Gałecki, Piotr; Depko, Andrzej; Jedrzejewska, Sylwia; Talarowska, Monika

    2012-07-01

    Physiological phenomenon of sexuality occurring in both sexes that brings physical and mental satisfaction, and often affects the quality of life is an orgasm. The ability to experience regular orgasms affects relationship with partner. The definition of orgasm is not an easy task. The way of experiencing it is subjective, and the possibility of observing significantly reduced. Contemporary works on the phenomenon of orgasm are concentrated on several aspects: biological perspective (neurophysiological and biochemical determinants of orgasm), psychological perspective and on the differences in its course in both sexes. In sexology are two models of sexual response: a linear model of sexual response (by W. Masters and V. Johnson, and H. S. Kaplan) and the circular model of sexual response (created by R. Basson). The ability to experiencing an orgasm is inherent in men. In women, that phenomenon is acquired, is the consequence of further experience.

  14. Plasma catecholamine responses to physiologic stimuli in normal human pregnancy.

    Science.gov (United States)

    Barron, W M; Mujais, S K; Zinaman, M; Bravo, E L; Lindheimer, M D

    1986-01-01

    The dynamic response of the sympathoadrenal system was evaluated during and after pregnancy in 13 healthy women with a protocol that compared cardiovascular parameters and plasma catecholamine levels during the basal state, after postural maneuvers, and following isometric exercise. Plasma epinephrine and norepinephrine levels were similar during and after gestation when the women rested on their sides, but heart rate was greater in pregnancy. Ten minutes of supine recumbency produced minimal changes, but attenuation of the anticipated increases in heart rate and plasma norepinephrine levels during standing and isometric exercise were observed during pregnancy. In contrast, alterations in plasma epinephrine appeared unaffected by gestation. Plasma renin activity and aldosterone levels were, as expected, greater during pregnancy; however, increments in response to upright posture were similar in pregnant and postpartum women. To the extent that circulating catecholamines may be considered indices of sympathoadrenal function, these data suggest that normal pregnancy alters cardiovascular and sympathetic nervous system responses to physiologic stimuli.

  15. Nutrition and human physiological adaptations to space flight

    Science.gov (United States)

    Lane, H. W.; LeBlanc, A. D.; Putcha, L.; Whitson, P. A.

    1993-01-01

    Space flight provides a model for the study of healthy individuals undergoing unique stresses. This review focuses on how physiological adaptations to weightlessness may affect nutrient and food requirements in space. These adaptations include reductions in body water and plasma volume, which affect the renal and cardiovascular systems and thereby fluid and electrolyte requirements. Changes in muscle mass and function may affect requirements for energy, protein and amino acids. Changes in bone mass lead to increased urinary calcium concentrations, which may increase the risk of forming renal stones. Space motion sickness may influence putative changes in gastro-intestinal-hepatic function; neurosensory alterations may affect smell and taste. Some or all of these effects may be ameliorated through the use of specially designed dietary countermeasures.

  16. Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human Infants and Host Physiology in Rats.

    Science.gov (United States)

    Liu, Zhenmin; Roy, Nicole C; Guo, Yanhong; Jia, Hongxin; Ryan, Leigh; Samuelsson, Linda; Thomas, Ancy; Plowman, Jeff; Clerens, Stefan; Day, Li; Young, Wayne

    2016-02-01

    In the absence of human breast milk, infant and follow-on formulas can still promote efficient growth and development. However, infant formulas can differ in their nutritional value. The objective of this study was to compare the effects of human milk (HM) and infant formulas in human infants and a weanling rat model. In a 3 wk clinical randomized controlled trial, babies (7- to 90-d-old, male-to-female ratio 1:1) were exclusively breastfed (BF), exclusively fed Synlait Pure Canterbury Stage 1 infant formula (SPCF), or fed assorted standard formulas (SFs) purchased by their parents. We also compared feeding HM or SPCF in weanling male Sprague-Dawley rats for 28 d. We examined the effects of HM and infant formulas on fecal short chain fatty acids (SCFAs) and bacterial composition in human infants, and intestinal SCFAs, the microbiota, and host physiology in weanling rats. Fecal Bifidobacterium concentrations (mean log copy number ± SEM) were higher (P = 0.003) in BF (8.17 ± 0.3) and SPCF-fed infants (8.29 ± 0.3) compared with those fed the SFs (6.94 ± 0.3). Fecal acetic acid (mean ± SEM) was also higher (P = 0.007) in the BF (5.5 ± 0.2 mg/g) and SPCF (5.3 ± 2.4 mg/g) groups compared with SF-fed babies (4.3 ± 0.2 mg/g). Colonic SCFAs did not differ between HM- and SPCF-fed rats. However, cecal acetic acid concentrations were higher (P = 0.001) in rats fed HM (42.6 ± 2.6 mg/g) than in those fed SPCF (30.6 ± 0.8 mg/g). Cecal transcriptome, proteome, and plasma metabolite analyses indicated that the growth and maturation of intestinal tissue was more highly promoted by HM than SPCF. Fecal bacterial composition and SCFA concentrations were similar in babies fed SPCF or HM. However, results from the rat study showed substantial differences in host physiology between rats fed HM and SPCF. This trial was registered at Shanghai Jiào tong University School of Medicine as XHEC-C-2012-024. © 2016 American Society for Nutrition.

  17. Winter course in physiology: a successful example of continuing education for secondary school teachers in Brazil.

    Science.gov (United States)

    Café-Mendes, Cecília C; Righi, Luana L; Calil-Silveira, Jamile; Nunes, Maria Tereza; Abdulkader, Fernando

    2016-12-01

    In international surveys, Brazilian students have been consistently ranking low in science. Continuing education for secondary school teachers is certainly a way to change this situation. To update teachers and provide teaching and learning experiences for graduate students, our department organized a "Winter Course in Physiology" where schoolteachers had the opportunity to attend lectures that were offered by graduate students and participate in discussions on teaching and learning strategies and their applicability, considering different schools and student age groups. This work evaluated the ways in which the Winter Course in Physiology improves continuing education for secondary school teachers. Graduate students prepared, presented, and discussed with the audience the concepts, content, and topics of the program, which were previously presented to the organizing committee and a supervising professor. Potential participants were recruited based on their curriculum vitae and a letter of intent. During the course, they completed a questionnaire that graded different aspects of course organization and lectures. The results indicated that the Winter Course was positively evaluated. Most topics received a grade of ≥4.0, considering a range of 1.0 (low) to 5.0 (high). In a followup, both the participants and instructors reported positive impacts on their overall knowledge in physiology. Schoolteachers reported improvements in the performance and participation of their students. In conclusion, the results suggested that the Winter Course is a good way to promote continuing education for schoolteachers and promote university outreach. It also provided an important experience for graduate students to develop teaching skills. Copyright © 2016 The American Physiological Society.

  18. Biochemical and physiological effects of phenols on human health

    Directory of Open Access Journals (Sweden)

    Danuta Wojcieszyńska

    2011-03-01

    Full Text Available Introduction of phenol compounds into environment results from human activities.. Moreover plants produce polyphenols as by products of metabolism Their influence on human health is very important. It is observed, that polyphenols found in groceries are the most abundant dietary antioxidants, anti-inflammatory, anti allergic, antiarteriosclerotic and antitumour factors. Alkylphenols, chlorophenols, nitrophenols or biphenyls can be toxic for body systems and because of their similarity to ligands of steroid receptors they can influence the activity of endocrine system. Their appearance in organisms enhances the risk of developing type 2 diabetes mellitus, hypertension, dyslipidemia, cancer, problems with fertility. Moreover strong genotoxic activities of these compounds is observed. Because they influence human health in many different ways continuous monitoring of phenols content in environment seems to be very important.

  19. Positive impact of integrating histology and physiology teaching at a medical school in China.

    Science.gov (United States)

    Sherer, Renslow; Wan, Yu; Dong, Hongmei; Cooper, Brian; Morgan, Ivy; Peng, Biwen; Liu, Jun; Wang, Lin; Xu, David

    2014-12-01

    To modernize its stagnant, traditional curriculum and pedagogy, the Medical School of Wuhan University in China adopted (with modifications) the University of Chicago's medical curriculum model. The reform effort in basic sciences was integrating histology and physiology into one course, increasing the two subjects' connection to clinical medicine, and applying new pedagogies and assessment methods. This study assessed the results of the reform by comparing the attitudes and academic achievements of students in the reform curriculum (n = 41) and their traditional curriculum peers (n = 182). An attitude survey was conducted to obtain students' views of their respective histology and physiology instruction. Survey items covered lectures, laboratory teaching, case analyses and small-group case discussions, assessment of students, and overall quality of the courses and instruction. A knowledge test consisting of questions from three sources was given to measure students' mastery of topics that they had learned. Results showed that reform curriculum students were rather satisfied with their course and new teaching methods in most cases. When these students' attitudes were compared with those of their traditional curriculum peers, several significant differences favoring the reform were identified regarding physiology teaching. No other significant difference was found for physiology or histology teaching. Reform curriculum students outperformed their peers on four of five subcategories of the knowledge test questions. These findings support the benefits of integration and state-of-the-art teaching methods. Our study may offer lessons to medical schools in China and other countries whose medical education is in need of change. Copyright © 2014 The American Physiological Society.

  20. Human mini-guts: new insights into intestinal physiology and host-pathogen interactions.

    Science.gov (United States)

    In, Julie G; Foulke-Abel, Jennifer; Estes, Mary K; Zachos, Nicholas C; Kovbasnjuk, Olga; Donowitz, Mark

    2016-11-01

    The development of indefinitely propagating human 'mini-guts' has led to a rapid advance in gastrointestinal research related to transport physiology, developmental biology, pharmacology, and pathophysiology. These mini-guts, also called enteroids or colonoids, are derived from LGR5 + intestinal stem cells isolated from the small intestine or colon. Addition of WNT3A and other growth factors promotes stemness and results in viable, physiologically functional human intestinal or colonic cultures that develop a crypt-villus axis and can be differentiated into all intestinal epithelial cell types. The success of research using human enteroids has highlighted the limitations of using animals or in vitro, cancer-derived cell lines to model transport physiology and pathophysiology. For example, curative or preventive therapies for acute enteric infections have been limited, mostly due to the lack of a physiological human intestinal model. However, the human enteroid model enables specific functional studies of secretion and absorption in each intestinal segment as well as observations of the earliest molecular events that occur during enteric infections. This Review describes studies characterizing these human mini-guts as a physiological model to investigate intestinal transport and host-pathogen interactions.

  1. Human physiology as the determining factor in protective clothing design

    NARCIS (Netherlands)

    Daanen, Hein

    2014-01-01

    Protective clothing is designed to protect humans against risks like fire, chemicals or blunt impact. Although protect¡ve clothing diminishes the effects of external risks, it may hinder people in functioning and it may also introduce new (internal) risks. Manufacturers are often not aware of the

  2. Human pathogens in plant biofilms: Formation, physiology, and detection

    Science.gov (United States)

    Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria ca...

  3. PHYSIOLOGICALLY BASED PHARMACOKINETIC MODEL FOR HUMAN EXPOSURES TO METHYL TERTIARY-BUTYL ETHER

    Science.gov (United States)

    Humans can be exposed by inhalation, ingestion, or dermal absorption to methyl tertiary-butyl ether (MTBE), an oxygenated fuel additive, from contaminated water sources. The purpose of this research was to develop a physiologically based pharmacokinetic model describing in human...

  4. Study of Physiological Responses to Acute Carbon Monoxide Exposure with a Human Patient Simulator

    Science.gov (United States)

    Cesari, Whitney A.; Caruso, Dominique M.; Zyka, Enela L.; Schroff, Stuart T.; Evans, Charles H., Jr.; Hyatt, Jon-Philippe K.

    2006-01-01

    Human patient simulators are widely used to train health professionals and students in a clinical setting, but they also can be used to enhance physiology education in a laboratory setting. Our course incorporates the human patient simulator for experiential learning in which undergraduate university juniors and seniors are instructed to design,…

  5. Dental and Medical Students' Use and Perceptions of Learning Resources in a Human Physiology Course.

    Science.gov (United States)

    Tain, Monica; Schwartzstein, Richard; Friedland, Bernard; Park, Sang E

    2017-09-01

    The aim of this study was to determine the use and perceived utility of various learning resources available during the first-year Integrated Human Physiology course at the dental and medical schools at Harvard University. Dental and medical students of the Class of 2018 were surveyed anonymously online in 2015 regarding their use of 29 learning resources in this combined course. The learning resources had been grouped into four categories to discern frequency of use and perceived usefulness among the categories. The survey was distributed to 169 students, and 73 responded for a response rate of 43.2%. There was no significant difference among the learning resource categories in frequency of use; however, there was a statistically significant difference among categories in students' perceptions of usefulness. No correlation was found between frequency of use and perceived usefulness of each category. Students seemingly were not choosing the most useful resources for them. These results suggest that, in the current educational environment, where new technologies and self-directed learning are highly sought after, there remains a need for instructor-guided learning.

  6. Using immersive healthcare simulation for physiology education: initial experience in high school, college, and graduate school curricula.

    Science.gov (United States)

    Oriol, Nancy E; Hayden, Emily M; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A

    2011-09-01

    In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and graduate school science class work. Our experience is based on work with hundreds of high school, college, and graduate students enrolled in traditional science classes in which mannequin simulators were used to teach physiological principles. Specific case scenarios were integrated into the curriculum as problem-solving exercises chosen to accentuate the basic science objectives of the course. This report also highlights the historic and theoretical basis for the use of mannequin simulators as an important physiology education tool and outlines how the authors' experience in healthcare education has been effectively translated to nonclinical student populations. Particular areas of focus include critical-thinking and problem-solving behaviors and student reflections on the impact of the teaching approach.

  7. Physiology and relevance of human adaptive thermogenesis response.

    Science.gov (United States)

    Celi, Francesco S; Le, Trang N; Ni, Bin

    2015-05-01

    In homoeothermic organisms, the preservation of core temperature represents a primal function, and its costs in terms of energy expenditure can be considerable. In modern humans, the endogenous thermoregulation mechanisms have been replaced by clothing and environmental control, and the maintenance of thermoneutrality has been successfully achieved by manipulation of the micro- and macroenvironment. The rediscovery of the presence and activity of brown adipose tissue in adult humans has renewed the interest on adaptive thermogenesis (AT) as a means to facilitate weight loss and improve carbohydrate metabolism. The aim of this review is to describe the recent advancements in the study of this function, and to assess the potential and limitations of exploiting AT for environmental/behavioral, and pharmacological interventions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Human Performance: Psychological and Physiological Sex Differences (A Selected Bibliography)

    Science.gov (United States)

    1980-02-01

    Sons, 1977. 6 15. Horn, J, L. Human abilities: A review of research and theory in the early 1970’s. Annual Review of Psychology. 1976, 27^, 437...Mother-Infant Interaction, Howard A. Moss. 149. Sex of Parent X Sex of Child: Socioemotional Development, Micheal Lewis and Marsha Weinraub. 165...C. Thomas, 1971. Contents: Biology of Sex Differences. 3. Psychological Sex Differences. 12. Freudian Theory of Feminine Development. 43. The

  9. The significance of estradiol metabolites in human corpus luteum physiology.

    Science.gov (United States)

    Devoto, Luigi; Henríquez, Soledad; Kohen, Paulina; Strauss, Jerome F

    2017-07-01

    The human corpus luteum (CL) is a temporary endocrine gland derived from the ovulated follicle. Its formation and limited lifespan is critical for steroid hormone production required to support menstrual cyclicity, endometrial receptivity for successful implantation, and the maintenance of early pregnancy. Endocrine and paracrine-autocrine molecular mechanisms associated with progesterone production throughout the luteal phase are critical for the development, maintenance, regression, and rescue by hCG which sustains CL function into early pregnancy. However, the signaling systems driving the regression of the primate corpus luteum in non-conception cycles are not well understood. Recently, there has been interest in the functional roles of estradiol metabolites (EMs), mostly in estrogen-producing tissues. The human CL produces a number of EMs, and it has been postulated that the EMs acting via paracrine-autocrine pathways affect angiogenesis or LH-mediated events. The present review describes advances in understanding the role of EMs in the functional lifespan and regression of the human CL in non-conception cycles. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Changing undergraduate human anatomy and physiology laboratories: perspectives from a large-enrollment course.

    Science.gov (United States)

    Griff, Edwin R

    2016-09-01

    In the present article, a veteran lecturer of human anatomy and physiology taught several sections of the laboratory component for the first time and shares his observations and analysis from this unique perspective. The article discusses a large-enrollment, content-heavy anatomy and physiology course in relationship to published studies on learning and student self-efficacy. Changes in the laboratory component that could increase student learning are proposed. The author also points out the need for research to assess whether selective curricular changes could increase the depth of understanding and retention of learned material. Copyright © 2016 The American Physiological Society.

  11. The Contributions of Human Mini-Intestines to the Study of Intestinal Physiology and Pathophysiology.

    Science.gov (United States)

    Yu, Huimin; Hasan, Nesrin M; In, Julie G; Estes, Mary K; Kovbasnjuk, Olga; Zachos, Nicholas C; Donowitz, Mark

    2017-02-10

    The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.

  12. HUMANITIES IN A JUNIOR HIGH SCHOOL.

    Science.gov (United States)

    KNIGHT, BONNIE M.

    A HUMANITIES COURSE HAS BEEN DEVELOPED FOR ACADEMICALLY ABLE SEVENTH-GRADE STUDENTS IN BRANCIFORTE JUNIOR HIGH SCHOOL IN SANTA CRUZ, CALIFORNIA. IN A TWO-PERIOD DAILY TIME BLOCK, STUDENTS LEARN ENGLISH, LITERATURE, AND LATIN, AND INVESTIGATE TOPICS IN ARCHEOLOGY, CULTURAL ANTHROPOLOGY, LINGUISTICS, PSYCHOLOGY, PHILOSOPHY, GREEK LITERATURE AND…

  13. Human adenylate kinases – classification, structure, physiological and pathological importance

    Directory of Open Access Journals (Sweden)

    Magdalena Wujak

    2015-01-01

    Full Text Available Adenylate kinase (AK, EC 2.7.4.3 is a ubiquitous phosphotransferase which catalyzes the reversible transfer of high-energy β – and γ-phosphate groups between nucleotides. All classified AKs show a similar structure: they contain a large central CORE region, nucleoside monophosphate and triphosphate binding domains (NMPbd and NTPbd and the LID domain. Analysis of amino acid sequence similarity revealed the presence of as many as nine human AK isoenzymes, which demonstrate different organ-tissue and intercellular localization. Among these kinases, only two, AK1 and AK2, fulfill the structural and functional criterion by the highest affinity for adenine nucleotides and the utilization of only AMP or dAMP as phosphate acceptors. Human AK isoenzymes are involved in nucleotide homeostasis and monitor disturbances of cell energy charge. Participating in large regulatory protein complexes, AK supplies high energy substrates for controlling the functions of channels and transporters as well as ligands for extracellular P2 nucleotide receptors. In pathological conditions AK can take over the function of other kinases, such as creatine kinase in oxygen-depleted myocardium. Directed mutagenesis and genetic studies of diseases (such as aleukocytosis, hemolytic anemia, primary ciliary dyskinesia (PCD link the presence and activity of AK with etiology of these disturbances. Moreover, AK participates in regulation of differentiation and maturation of cells as well as in apoptosis and oncogenesis. Involvement of AK in a wide range of processes and the correlation between AK and etiology of diseases support the medical potential for the use of adenylate kinases in the diagnosis and treatment of certain diseases. This paper summarizes the current knowledge on the structure, properties and functions of human adenylate kinase.

  14. Smart sensor: a platform for an interactive human physiological state recognition study

    Directory of Open Access Journals (Sweden)

    Andrej Gorochovik

    2013-03-01

    Full Text Available This paper describes a concept of making interactive human state recognition systems based on smart sensor design. The token measures on proper ADC signal processing had significantly lowered the interference level. A more reliable way of measuring human skin temperature was offered by using Maxim DS18B20 digital thermometers. They introduced a more sensible response to temperature changes compared to previously used analog LM35 thermometers. An adaptive HR measuring algorithm was introduced to suppress incorrect ECG signal readings caused by human muscular activities. User friendly interactive interface for touch sensitive GLCD screen was developed to present real time physiological data readings both in numerals and graphics. User was granted an ability to dynamically customize data processing methods according to his needs. Specific procedures were developed to simplify physiological state recording for further analysis. The introduced physiological data sampling and preprocessing platform was optimized to be compatible with “ATmega Oscilloscope” PC data collecting and visualizing software.

  15. Dealing with noise and physiological artifacts in human EEG recordings: empirical mode methods

    Science.gov (United States)

    Runnova, Anastasiya E.; Grubov, Vadim V.; Khramova, Marina V.; Hramov, Alexander E.

    2017-04-01

    In the paper we propose the new method for removing noise and physiological artifacts in human EEG recordings based on empirical mode decomposition (Hilbert-Huang transform). As physiological artifacts we consider specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the proposed method with steps including empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing these empirical modes and reconstructing of initial EEG signal. We show the efficiency of the method on the example of filtration of human EEG signal from eye-moving artifacts.

  16. Rowing, the ultimate challenge to the human body - implications for physiological variables

    DEFF Research Database (Denmark)

    Volianitis, S.; Secher, Niels H.

    2009-01-01

    Clinical diagnoses depend on a variety of physiological variables but the full range of these variables is seldom known. With the load placed on the human body during competitive rowing, the physiological range for several variables is illustrated. The extreme work produced during rowing...... is explained by the seated position and the associated ability to increase venous return and, thus, cardiac output. This review highlights experimental work on Olympic rowing that presents a unique challenge to the human capacities, including cerebral metabolism, to unprecedented limits, and provides a unique...

  17. Examining High School Anatomy and Physiology Teacher Experience in a Cadaver Dissection Laboratory and Impacts on Practice

    Science.gov (United States)

    Mattheis, Allison; Ingram, Debra; Jensen, Murray S.; Jackson, Jon

    2015-01-01

    This article describes the results of a study that investigated the experiences of a group of high school anatomy and physiology teachers who participated in a cadaver dissection laboratory workshop organized through a university-school partnership. Teacher feedback was collected before, during, and after the workshop through pre-arrival surveys,…

  18. Functional neuroimaging insights into the physiology of human sleep.

    Science.gov (United States)

    Dang-Vu, Thien Thanh; Schabus, Manuel; Desseilles, Martin; Sterpenich, Virginie; Bonjean, Maxime; Maquet, Pierre

    2010-12-01

    Functional brain imaging has been used in humans to noninvasively investigate the neural mechanisms underlying the generation of sleep stages. On the one hand, REM sleep has been associated with the activation of the pons, thalamus, limbic areas, and temporo-occipital cortices, and the deactivation of prefrontal areas, in line with theories of REM sleep generation and dreaming properties. On the other hand, during non-REM (NREM) sleep, decreases in brain activity have been consistently found in the brainstem, thalamus, and in several cortical areas including the medial prefrontal cortex (MPFC), in agreement with a homeostatic need for brain energy recovery. Benefiting from a better temporal resolution, more recent studies have characterized the brain activations related to phasic events within specific sleep stages. In particular, they have demonstrated that NREM sleep oscillations (spindles and slow waves) are indeed associated with increases in brain activity in specific subcortical and cortical areas involved in the generation or modulation of these waves. These data highlight that, even during NREM sleep, brain activity is increased, yet regionally specific and transient. Besides refining the understanding of sleep mechanisms, functional brain imaging has also advanced the description of the functional properties of sleep. For instance, it has been shown that the sleeping brain is still able to process external information and even detect the pertinence of its content. The relationship between sleep and memory has also been refined using neuroimaging, demonstrating post-learning reactivation during sleep, as well as the reorganization of memory representation on the systems level, sometimes with long-lasting effects on subsequent memory performance. Further imaging studies should focus on clarifying the role of specific sleep patterns for the processing of external stimuli, as well as the consolidation of freshly encoded information during sleep.

  19. Thermoregulatory responses in exercising rats: methodological aspects and relevance to human physiology.

    Science.gov (United States)

    Wanner, Samuel Penna; Prímola-Gomes, Thales Nicolau; Pires, Washington; Guimarães, Juliana Bohnen; Hudson, Alexandre Sérvulo Ribeiro; Kunstetter, Ana Cançado; Fonseca, Cletiana Gonçalves; Drummond, Lucas Rios; Damasceno, William Coutinho; Teixeira-Coelho, Francisco

    2015-01-01

    Rats are used worldwide in experiments that aim to investigate the physiological responses induced by a physical exercise session. Changes in body temperature regulation, which may affect both the performance and the health of exercising rats, are evident among these physiological responses. Despite the universal use of rats in biomedical research involving exercise, investigators often overlook important methodological issues that hamper the accurate measurement of clear thermoregulatory responses. Moreover, much debate exists regarding whether the outcome of rat experiments can be extrapolated to human physiology, including thermal physiology. Herein, we described the impact of different exercise intensities, durations and protocols and environmental conditions on running-induced thermoregulatory changes. We focused on treadmill running because this type of exercise allows for precise control of the exercise intensity and the measurement of autonomic thermoeffectors associated with heat production and loss. Some methodological issues regarding rat experiments, such as the sites for body temperature measurements and the time of day at which experiments are performed, were also discussed. In addition, we analyzed the influence of a high body surface area-to-mass ratio and limited evaporative cooling on the exercise-induced thermoregulatory responses of running rats and then compared these responses in rats to those observed in humans. Collectively, the data presented in this review represent a reference source for investigators interested in studying exercise thermoregulation in rats. In addition, the present data indicate that the thermoregulatory responses of exercising rats can be extrapolated, with some important limitations, to human thermal physiology.

  20. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy.

    Science.gov (United States)

    Wang, Ai-Hua; Li, Ming; Li, Chang-Qing; Kou, Guan-Jun; Zuo, Xiu-Li; Li, Yan-Qing

    2016-02-26

    The human gut microbiota plays a pivotal role in the maintenance of health, but how the microbiota interacts with the host at the colorectal mucosa is poorly understood. We proposed that confocal laser endomicroscopy (CLE) might help to untangle this relationship by providing in vivo physiological information of the mucosa. We used CLE to evaluate the in vivo physiology of human colorectal mucosa, and the mucosal microbiota was quantified using 16 s rDNA pyrosequencing. The human mucosal microbiota agglomerated to three major clusters dominated by Prevotella, Bacteroides and Lactococcus. The mucosal microbiota clusters did not significantly correlate with the disease status or biopsy sites but closely correlated with the mucosal niche physiology, which was non-invasively revealed by CLE. Inflammation tilted two subnetworks within the mucosal microbiota. Infiltration of inflammatory cells significantly correlated with multiple components in the predicted metagenome, such as the VirD2 component of the type IV secretory pathway. Our data suggest that a close correlation exists between the mucosal microbiota and the colorectal mucosal physiology, and CLE is a clinically available tool that can be used to facilitate the study of the in vivo correlation between colorectal mucosal physiology and the mucosal microbiota.

  1. Ivan Djaja (Jean Giaja)1 and the Belgrade School of Physiology

    Science.gov (United States)

    Andjus, Pavle R.; Stojilkovic, Stanko S.; Cvijic, Gordana

    2016-01-01

    Summary The founder of physiology studies in the Balkans and the pioneer of research on hypothermia, Ivan Djaja (Jean Giaja) was born 1884 in L’Havre. Giaja gained his PhD at the Sorbonne in 1909. In 1910 he established the first Chair of Physiology in the Balkans and organized the first Serbian Institute for Physiology at the School of Philosophy of the University of Belgrade. He led this Institute for more than 40 subsequent years. His most notable papers were in the field of thermoregulation and bioenergetics. Djaja became member of the Serbian and Croatian academies of science and doctor honoris causa of Sorbonne. In 1952 for the seminal work on the behaviour of deep cooled warm blooded animals he becane associate member of the National Medical Academy in Paris. In 1955 the French Academy of Sciences elected him as associate member in place of deceased Sir Alexander Fleming. Djaja died in 1957 during a congress held in his honour. He left more than 200 scientific and other papers and the golden DaVincian credo “Nulla dies sine experimento”. His legacy was continued by several generations of researchers, the most prominent among them being Stefan Gelineo, Radoslav Andjus and Vojislav Petrović. PMID:21777022

  2. The physiological period length of the human circadian clock in vivo is directly proportional to period in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Lucia Pagani

    Full Text Available BACKGROUND: Diurnal behavior in humans is governed by the period length of a circadian clock in the suprachiasmatic nuclei of the brain hypothalamus. Nevertheless, the cell-intrinsic mechanism of this clock is present in most cells of the body. We have shown previously that for individuals of extreme chronotype ("larks" and "owls", clock properties measured in human fibroblasts correlated with extreme diurnal behavior. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we have measured circadian period in human primary fibroblasts taken from normal individuals and, for the first time, compared it directly with physiological period measured in vivo in the same subjects. Human physiological period length was estimated via the secretion pattern of the hormone melatonin in two different groups of sighted subjects and one group of totally blind subjects, each using different methods. Fibroblast period length was measured via cyclical expression of a lentivirally delivered circadian reporter. Within each group, a positive linear correlation was observed between circadian period length in physiology and in fibroblast gene expression. Interestingly, although blind individuals showed on average the same fibroblast clock properties as sighted ones, their physiological periods were significantly longer. CONCLUSIONS/SIGNIFICANCE: We conclude that the period of human circadian behaviour is mostly driven by cellular clock properties in normal individuals and can be approximated by measurement in peripheral cells such as fibroblasts. Based upon differences among sighted and blind subjects, we also speculate that period can be modified by prolonged unusual conditions such as the total light deprivation of blindness.

  3. A vision and strategy for the virtual physiological human in 2010 and beyond

    NARCIS (Netherlands)

    Hunter, P.; Coveney, P.V.; de Bono, B.; Diaz, V.; Fenner, J.; Frangi, A.F.; Harris, P.; Hose, R.; Kohl, P.; Lawford, P.; McCormack, K.; Mendes, M.; Omholt, S.; Quarteroni, A.; Skar, J.; Tegner, J.; Thomas, S.R.; Tollis, I.; Tsamardinos, I.; van Beek, J.H.G.M.; Viceconti, M.

    2010-01-01

    European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various

  4. Simulating the physiology of athletes during endurance sports events: modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    van Beek, J.H.G.M.; Supandi, F.B.; Gavai, Anand; de Graaf, A.A.; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  5. Simulating the physiology of athletes during endurance sports events: Modelling human energy conversion and metabolism

    NARCIS (Netherlands)

    Beek, J.H.G.M. van; Supandi, F.; Gavai, A.K.; Graaf, A.A. de; Binsl, T.W.; Hettling, H.

    2011-01-01

    The human physiological system is stressed to its limits during endurance sports competition events.We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We

  6. Audio-Tutorial Project: An Audio-Tutorial Approach to Human Anatomy and Physiology.

    Science.gov (United States)

    Muzio, Joseph N.; And Others

    A two course sequence on human anatomy and physiology using the audiotutorial method of instruction was developed for use by nursing students and other students in the health or medical fields at the Kingsborough Community College in New York. The project was motivated by the problems of often underprepared students coming to learn a new field and…

  7. An Investigative Laboratory Course in Human Physiology Using Computer Technology and Collaborative Writing

    Science.gov (United States)

    FitzPatrick, Kathleen A.

    2004-01-01

    Active investigative student-directed experiences in laboratory science are being encouraged by national science organizations. A growing body of evidence from classroom assessment supports their effectiveness. This study describes four years of implementation and assessment of an investigative laboratory course in human physiology for 65…

  8. Coursera's Introductory Human Physiology Course: Factors That Characterize Successful Completion of a MOOC

    Science.gov (United States)

    Engle, Deborah; Mankoff, Chris; Carbrey, Jennifer

    2015-01-01

    Since Massive Open Online Courses (MOOCs) are accessible by anyone in the world at no cost, they have large enrollments that are conducive to educational research. This study examines students in the Coursera MOOC, Introductory Human Physiology. Of the 33,378 students who accessed the course, around 15,000 students responded to items on the…

  9. Prediction of human CNS pharmacokinetics using a physiologically-based pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Yamamoto, Yumi; Valitalo, Pyry A.; Wong, Yin Cheong; Huntjens, Dymphy R.; Proost, Johannes H.; Vermeulen, An; Krauwinkel, Walter; Beukers, Margot W.; Kokki, Hannu; Kokki, Merja; Danhof, Meindert; van Hasselt, Johan G. C.; de Lange, Elizabeth C. M.

    2018-01-01

    Knowledge of drug concentration-time profiles at the central nervous system (CNS) target-site is critically important for rational development of CNS targeted drugs. Our aim was to translate a recently published comprehensive CNS physiologically-based pharmacokinetic (PBPK) model from rat to human,

  10. Research on human physiological parameters intelligent clothing based on distributed Fiber Bragg Grating

    Science.gov (United States)

    Miao, Changyun; Shi, Boya; Li, Hongqiang

    2008-12-01

    A human physiological parameters intelligent clothing is researched with FBG sensor technology. In this paper, the principles and methods of measuring human physiological parameters including body temperature and heart rate in intelligent clothing with distributed FBG are studied, the mathematical models of human physiological parameters measurement are built; the processing method of body temperature and heart rate detection signals is presented; human physiological parameters detection module is designed, the interference signals are filtered out, and the measurement accuracy is improved; the integration of the intelligent clothing is given. The intelligent clothing can implement real-time measurement, processing, storage and output of body temperature and heart rate. It has accurate measurement, portability, low cost, real-time monitoring, and other advantages. The intelligent clothing can realize the non-contact monitoring between doctors and patients, timely find the diseases such as cancer and infectious diseases, and make patients get timely treatment. It has great significance and value for ensuring the health of the elders and the children with language dysfunction.

  11. A vision and strategy for the virtual physiological human: 2012 update

    NARCIS (Netherlands)

    Hunter, P.; Chapman, T.; Coveney, P.V.; De Bono, B.; Diaz, V.; Fenner, J.; Frangi, A.F.; Harris, P.; Hose, R.; Kohl, P.; Lawford, P.; McCormack, K.; Mendes, M.; Omholt, S.; Quarteroni, A.; Shublaq, N.; Skår, J.; Stroetmann, K.; Tegner, J.; Thomas, S.R.; Tollis, I.; Tsamardinos, I.; van Beek, J.H.G.M.; Viceconti, M.

    2013-01-01

    European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various

  12. Understanding Protein Synthesis: A Role-Play Approach in Large Undergraduate Human Anatomy and Physiology Classes

    Science.gov (United States)

    Sturges, Diana; Maurer, Trent W.; Cole, Oladipo

    2009-01-01

    This study investigated the effectiveness of role play in a large undergraduate science class. The targeted population consisted of 298 students enrolled in 2 sections of an undergraduate Human Anatomy and Physiology course taught by the same instructor. The section engaged in the role-play activity served as the study group, whereas the section…

  13. Beyond diet reconstruction: stable isotope applications to human physiology, health, and nutrition.

    Science.gov (United States)

    Reitsema, Laurie J

    2013-01-01

    Analysis of stable carbon and nitrogen isotopes from soft or mineralized tissues is a direct and widely-used technique for modeling diets. In addition to its continued role in paleodiet analysis, stable isotope analysis is now contributing to studies of physiology, disease, and nutrition in archaeological and living human populations. In humans and other animals, dietary uptake and distribution of carbon and nitrogen among mineralized and soft tissue is carried out with varying efficiency due to factors of internal biology. Human pathophysiologies may lead to pathology-influenced isotopic fractionation that can be exploited to understand not just skeletal health and diet, but physiological health and nutrition. This study reviews examples from human biology, non-human animal ecology, biomedicine, and bioarchaeology demonstrating how stable isotope analyses are usefully applied to the study of physiological adaptation and adaptability. Suggestions are made for future directions in applying stable isotope analysis to the study of nutritional stress, disease, and growth and development in living and past human populations. Copyright © 2013 Wiley Periodicals, Inc.

  14. Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos).

    Science.gov (United States)

    Støen, Ole-Gunnar; Ordiz, Andres; Evans, Alina L; Laske, Timothy G; Kindberg, Jonas; Fröbert, Ole; Swenson, Jon E; Arnemo, Jon M

    2015-12-01

    Human persecution is a major cause of mortality for large carnivores. Consequently, large carnivores avoid humans, but may use human-dominated landscapes by being nocturnal and elusive. Behavioral studies indicate that certain ecological systems are "landscapes of fear", driven by antipredator behavior. Because behavior and physiology are closely interrelated, physiological assessments may provide insight into the behavioral response of large carnivores to human activity. To elucidate changes in brown bears' (Ursus arctos) behavior associated with human activity, we evaluated stress as changes in heart rate (HR) and heart rate variability (HRV) in 12 GPS-collared, free-ranging bears, 7 males and 5 females, 3-11 years old, using cardiac-monitoring devices. We applied generalized linear regression models with HR and HRV as response variables and chest activity, time of day, season, distance traveled, and distance to human settlements from GPS positions recorded every 30 min as potential explanatory variables. Bears exhibited lower HRV, an indication of stress, when they were close to human settlements and especially during the berry season, when humans were more often in the forest, picking berries and hunting. Our findings provide evidence of a human-induced landscape of fear in this hunted population of brown bears. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. An overview of artificial gravity. [effects on human performance and physiology

    Science.gov (United States)

    Stone, R. W., Jr.

    1973-01-01

    The unique characteristics of artificial gravity that affect human performance and physiology in an artificial gravity environment are reviewed. The rate at which these unique characteristics change decreases very rapidly with increasing radius of a rotating vehicle used to produce artificial gravity. Reducing their influence on human performance or physiology by increasing radius becomes a situation of very rapidly diminishing returns. A review of several elements of human performance has developed criteria relative to the sundry characteristics of artificial gravity. A compilation of these criteria indicates that the maximum acceptable rate of rotation, leg heaviness while walking, and material handling are the factors that define the minimum acceptable radius. The ratio of Coriolis force to artificial weight may also be significant. Based on current knowledge and assumptions for the various criteria, a minimum radius between 15.2 and 16.8 m seems desirable.

  16. Policy needs and options for a common approach towards modelling and simulation of human physiology and diseases with a focus on the virtual physiological human.

    Science.gov (United States)

    Viceconti, Marco; McCulloch, Andrew D

    2011-01-01

    Life is the result of an intricate systemic interaction between many processes occurring at radically different spatial and temporal scales. Every day, worldwide biomedical research and clinical practice produce a huge amount of information on such processes. However, this information being highly fragmented, its integration is largely left to the human actors who find this task increasingly and ever more demanding in a context where the information available continues to increase exponentially. Investments in the Virtual Physiological Human (VPH) research are largely motivated by the need for integration in healthcare. As all health information becomes digital, the complexity of health care will continue to evolve, translating into an ever increasing pressure which will result from a growing demand in parallel to limited budgets. Hence, the best way to achieve the dream of personalised, preventive, and participative medicine at sustainable costs will be through the integration of all available data, information and knowledge.

  17. Chronic microelectrode investigations of normal human brain physiology using a hybrid depth electrode.

    Science.gov (United States)

    Howard, M A; Volkov, I O; Noh, M D; Granner, M A; Mirsky, R; Garell, P C

    1997-01-01

    Neurosurgeons have unique access to in vivo human brain tissue, and in the course of clinical treatment important scientific advances have been made that further our understanding of normal brain physiology. In the modern era, microelectrode recordings have been used to systematically investigate the cellular properties of lateral temporal cerebral cortex. The current report describes a hybrid depth electrode (HDE) recording technique that was developed to enable neurosurgeons to simultaneously investigate normal cellular physiology during chronic intracranial EEG recordings. The HDE combines microelectrode and EEG recordings sites on a single shaft. Multiple microelectrode recordings are obtained from MRI defined brain sites and single-unit activity is discriminated from these data. To date, over 60 HDEs have been placed in 20 epilepsy surgery patients. Unique physiologic data have been gathered from neurons in numerous brain regions, including amygdala, hippocampus, frontal lobe, insula and Heschl's gyrus. Functional activation studies were carried out without risking patient safety or comfort.

  18. The cooperative economy of food: Implications for human life history and physiology.

    Science.gov (United States)

    Kramer, Karen L

    2018-04-06

    The human diet has undergone substantial modifications since the emergence of modern humans and varies considerably in today's traditional societies. Despite these changes and cross-cultural differences, the human diet can be characterized by several common elements. These include diverse, high quality foods, technological complexity to acquire and process food, and the establishment of home bases for storage, processing and consumption. Together these aspects of the human diet challenge any one individual to independently meet all of his or her daily caloric needs. Humans solve this challenge through food sharing, labor exchange and the division of labor. The cooperative nature of the human diet is associated with many downstream effects on our life history and physiology. This paper overviews the constellation of traits that likely led to a cooperative economy of food, and draws on ethnographic examples to illustrate its effects on human life history and physiology. Two detailed examples using body composition, time allocation and food acquisition data show how cooperation among Savanna Pumé hunter-gatherers affects activity levels, sexual dimorphism in body fat, maturational pace and age at first birth. Copyright © 2018. Published by Elsevier Inc.

  19. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    Science.gov (United States)

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  20. Filtration of human EEG recordings from physiological artifacts with empirical mode method

    Science.gov (United States)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Khramova, Marina V.

    2017-03-01

    In the paper we propose the new method for dealing with noise and physiological artifacts in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We consider noises and physiological artifacts on EEG as specific oscillatory patterns that cause problems during EEG analysis and can be detected with additional signals recorded simultaneously with EEG (ECG, EMG, EOG, etc.) We introduce the algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from eye-moving artifacts and show high efficiency of the method.

  1. Numerical Simulation of Hemodynamic and Physiological Responses of Human Cardiovascular and Respiratory System under Drugs Administration

    Czech Academy of Sciences Publication Activity Database

    Převorovská, Světlana; Maršík, František

    2004-01-01

    Roč. 4, č. 4 (2004), s. 295-304 ISSN 1567-8822 R&D Projects: GA ČR(CZ) GA106/03/1073; GA ČR(CZ) GA106/03/0958 Institutional research plan: CEZ:AV0Z2076919 Keywords : human cardiovascular and respiratory system * baroreflex and chemoreflex control * physiologically based pharmacokinetic model Subject RIV: BK - Fluid Dynamics

  2. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    OpenAIRE

    Rabab El-Sayed Hassan El-Sayed; Samar El-Hoseiny Abd El-Raouf El-Sayed

    2013-01-01

    Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lecture...

  3. Identifying blood biomarkers and physiological processes that distinguish humans with superior performance under psychological stress.

    Directory of Open Access Journals (Sweden)

    Amanda M Cooksey

    2009-12-01

    Full Text Available Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB, which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others.Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology.The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress.

  4. The physiology of blood loss and shock: New insights from a human laboratory model of hemorrhage.

    Science.gov (United States)

    Schiller, Alicia M; Howard, Jeffrey T; Convertino, Victor A

    2017-04-01

    The ability to quickly diagnose hemorrhagic shock is critical for favorable patient outcomes. Therefore, it is important to understand the time course and involvement of the various physiological mechanisms that are active during volume loss and that have the ability to stave off hemodynamic collapse. This review provides new insights about the physiology that underlies blood loss and shock in humans through the development of a simulated model of hemorrhage using lower body negative pressure. In this review, we present controlled experimental results through utilization of the lower body negative pressure human hemorrhage model that provide novel insights on the integration of physiological mechanisms critical to the compensation for volume loss. We provide data obtained from more than 250 human experiments to classify human subjects into two distinct groups: those who have a high tolerance and can compensate well for reduced central blood volume (e.g. hemorrhage) and those with low tolerance with poor capacity to compensate.We include the conceptual introduction of arterial pressure and cerebral blood flow oscillations, reflex-mediated autonomic and neuroendocrine responses, and respiration that function to protect adequate tissue oxygenation through adjustments in cardiac output and peripheral vascular resistance. Finally, unique time course data are presented that describe mechanistic events associated with the rapid onset of hemodynamic failure (i.e. decompensatory shock). Impact Statement Hemorrhage is the leading cause of death in both civilian and military trauma. The work submitted in this review is important because it advances the understanding of mechanisms that contribute to the total integrated physiological compensations for inadequate tissue oxygenation (i.e. shock) that arise from hemorrhage. Unlike an animal model, we introduce the utilization of lower body negative pressure as a noninvasive model that allows for the study of progressive

  5. Altered serotonin physiology in human breast cancers favors paradoxical growth and cell survival.

    Science.gov (United States)

    Pai, Vaibhav P; Marshall, Aaron M; Hernandez, Laura L; Buckley, Arthur R; Horseman, Nelson D

    2009-01-01

    The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers. Serotonin biosynthetic capacity was analyzed in human breast tumor tissue microarrays using immunohistochemistry for tryptophan hydroxylase 1 (TPH1). Serotonin receptors (5-HT1-7) were analyzed in human breast tumors using the Oncomine database. Serotonin receptor expression, signal transduction, and 5-HT effects on breast cancer cell phenotype were compared in non-transformed and transformed human breast cells. In the context of the normal mammary gland, 5-HT acts as a physiological regulator of lactation and involution, in part by favoring growth arrest and cell death. This tightly regulated 5-HT system is subverted in multiple ways in human breast cancers. Specifically, TPH1 expression undergoes a non-linear change during progression, with increased expression during malignant progression. Correspondingly, the tightly regulated pattern of 5-HT receptors becomes dysregulated in human breast cancer cells, resulting in both ectopic expression of some isoforms and suppression of others. The receptor expression change is accompanied by altered downstream signaling of 5-HT receptors in human breast cancer cells, resulting in resistance to 5-HT-induced apoptosis, and stimulated proliferation. Our data constitutes the first report of direct involvement of 5-HT in human breast cancer. Increased 5-HT biosynthetic capacity accompanied by multiple changes in 5-HT receptor expression and signaling favor malignant progression of human breast cancer cells (for example, stimulated proliferation, inappropriate cell survival). This occurs

  6. A probabilistic model of human variability in physiology for future application to dose reconstruction and QIVIVE.

    Science.gov (United States)

    McNally, Kevin; Loizou, George D

    2015-01-01

    The risk assessment of environmental chemicals and drugs is undergoing a paradigm shift in approach which seeks the full replacement of animal testing with high throughput, mechanistic, in vitro systems. This new approach will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated by in vitro, in silico, and in chemico systems can be integrated and utilized for quantitative in vitro-to-in vivo extrapolation (QIVIVE), ultimately to the human population level. Physiologically based pharmacokinetic (PBPK) models are ideally suited to this and are needed to translate in vitro concentration- response relationships to an exposure or dose, route and duration regime in human populations. Thus, a realistic description of the variation in the physiology of the human population being modeled is critical. Whilst various studies in the past decade have made progress in describing human variability, the algorithms are typically coded in computer programs and as such are unsuitable for reverse dosimetry. In this report we overcome this limitation by developing a hierarchical statistical model using standard probability distributions for the specification of a virtual US and UK human population. The work draws on information from both population databases and cadaver studies.

  7. The 4-vessel Sampling Approach to Integrative Studies of Human Placental Physiology In Vivo.

    Science.gov (United States)

    Holme, Ane M; Holm, Maia B; Roland, Marie C P; Horne, Hildegunn; Michelsen, Trond M; Haugen, Guttorm; Henriksen, Tore

    2017-08-02

    The human placenta is highly inaccessible for research while still in utero. The current understanding of human placental physiology in vivo is therefore largely based on animal studies, despite the high diversity among species in placental anatomy, hemodynamics and duration of the pregnancy. The vast majority of human placenta studies are ex vivo perfusion studies or in vitro trophoblast studies. Although in vitro studies and animal models are essential, extrapolation of the results from such studies to the human placenta in vivo is uncertain. We aimed to study human placenta physiology in vivo at term, and present a detailed protocol of the method. Exploiting the intraabdominal access to the uterine vein just before the uterine incision during planned cesarean section, we collect blood samples from the incoming and outgoing vessels on the maternal and fetal sides of the placenta. When combining concentration measurements from blood samples with volume blood flow measurements, we are able to quantify placental and fetal uptake and release of any compound. Furthermore, placental tissue samples from the same mother-fetus pairs can provide measurements of transporter density and activity and other aspects of placental functions in vivo. Through this integrative use of the 4-vessel sampling method we are able to test some of the current concepts of placental nutrient transfer and metabolism in vivo, both in normal and pathological pregnancies. Furthermore, this method enables the identification of substances secreted by the placenta to the maternal circulation, which could be an important contribution to the search for biomarkers of placenta dysfunction.

  8. A probabilistic model of human variability in physiology for future application to dose reconstruction and QIVIVE

    Directory of Open Access Journals (Sweden)

    Kevin eMcNally

    2015-10-01

    Full Text Available The risk assessment of environmental chemicals and drugs is undergoing a paradigm shift in approach which seeks the full replacement of animal testing with high throughput, mechanistic, in vitro systems. This new approach will be reliant on the measurement in vitro, of concentration-dependent responses where prolonged excessive perturbations of specific biochemical pathways are likely to lead to adverse health effects in an intact organism. Such an approach requires a framework, into which disparate data generated by in vitro, in silico and in chemico systems can be integrated and utilised for quantitative in vitro-to-in vivo extrapolation (QIVIVE, ultimately to the human population level. Physiologically based pharmacokinetic (PBPK models are ideally suited to this and are needed to translate in vitro concentration- response relationships to an exposure or dose, route and duration regime in human populations. Thus a realistic description of the variation in the physiology of the human population being modelled is critical. Whilst various studies in the past decade have made progress in describing human variability, the algorithms are typically coded in computer programs and as such are unsuitable for reverse dosimetry. In this report we overcome this limitation by developing a hierarchical statistical model using standard probability distributions for the specification of a virtual US and UK human population. The work draws on information from both population databases and cadaver studies.

  9. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Handgretinger Rupert

    2010-01-01

    Full Text Available Abstract Background Human multipotent mesenchymal stromal cells (MSC can be isolated from various tissues including bone marrow. Here, MSC participate as bone lining cells in the formation of the hematopoietic stem cell niche. In this compartment, the oxygen tension is low and oxygen partial pressure is estimated to range from 1% to 7%. We analyzed the effect of low oxygen tensions on human MSC cultured with platelet-lysate supplemented media and assessed proliferation, morphology, chromosomal stability, immunophenotype and plasticity. Results After transferring MSC from atmospheric oxygen levels of 21% to 1%, HIF-1α expression was induced, indicating efficient oxygen reduction. Simultaneously, MSC exhibited a significantly different morphology with shorter extensions and broader cell bodies. MSC did not proliferate as rapidly as under 21% oxygen and accumulated in G1 phase. The immunophenotype, however, was unaffected. Hypoxic stress as well as free oxygen radicals may affect chromosomal stability. However, no chromosomal abnormalities in human MSC under either culture condition were detected using high-resolution matrix-based comparative genomic hybridization. Reduced oxygen tension severely impaired adipogenic and osteogenic differentiation of human MSC. Elevation of oxygen from 1% to 3% restored osteogenic differentiation. Conclusion Physiologic oxygen tension during in vitro culture of human MSC slows down cell cycle progression and differentiation. Under physiological conditions this may keep a proportion of MSC in a resting state. Further studies are needed to analyze these aspects of MSC in tissue regeneration.

  10. Report of the special committee for the study of physiological effects of radon in human

    International Nuclear Information System (INIS)

    1998-01-01

    This report outlines the activities of the committee for the study of physiological effects of radon in human based on the presentation in the meetings by the members in the period, 1996-1998. The methods to estimate the exposed dose of radon (Rn) have been considerably improved now. But it is necessary to consider living conditions such as housing conditions, respiratory ratio as well as physical measurements such as Rn concentration, its balance factor, the ratio of non-absorbed component, for accurate evaluation of the physiological effects of Rn. This committee was established aiming to investigate the physiological effects of Rn in human bodies and solve the problems in this area. In a period from 1996 to 1998, meeting was held nine times by the committee. The respective main themes were as follows: the purpose of this committee and the plans of activities in future for the first meeting, indoor Rn level and balance factor for the second, outdoor Rn level and aerosol of its daughter nuclides for the third, respiratory air movement model for the 4th, Rn inhalation, epidemiological study of Rn for the 5th, epidemiological study of Rn for the 6th, problems in Rn level survey for the 7th, behaviors of Rn and its daughter nuclides in occupational environment for 9th, and variance in dose calibration factor and biological effects of α-ray for 10th. At present, dose evaluation and risk evaluation for Rn exposure include considerable uncertainty. Accurate dose evaluation for Rn is necessary to determine the limitation dose for human bodies to repress the physiological effects. (M.N.)

  11. [The physiological classification of human thermal states under high environmental temperatures].

    Science.gov (United States)

    Bobrov, A F; Kuznets, E I

    1995-01-01

    The paper deals with the physiological classification of human thermal states in a hot environment. A review of the basic systems of classifications of thermal states is given, their main drawbacks are discussed. On the basis of human functional state research in a broad range of environmental temperatures the system of evaluation and classification of human thermal states is proposed. New integral one-dimensional multi-parametric criteria for evaluation are used. For the development of these criteria methods of factor, cluster and canonical correlation analyses are applied. Stochastic nomograms capable of identification of human thermal state for different intensity of influence are given. In this case evaluation of intensity is estimated according to one-dimensional criteria taking into account environmental temperature, physical load and time of man's staying in overheating conditions.

  12. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    Science.gov (United States)

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  13. THE CAJAL SCHOOL AND THE PHYSIOLOGICAL ROLE OF ASTROCYTES: A WAY OF THINKING

    Directory of Open Access Journals (Sweden)

    Marta eNavarrete

    2014-05-01

    Full Text Available Cajal is widely recognized by the scientific community for his important contributions to our knowledge of the neuronal organization of the nervous system. His studies on neuroglial cells are less recognized, yet they are no less relevant to our current understanding of the cellular bases of brain structure. Two pioneering studies published a century ago ⎯Something about the physiological significance of neuroglia (Cajal, 1897 and A contribution to the understanding of neuroglia in the human brain (Cajal, 1913⎯ focused on glial cells and their role in brain physiology. Novel findings obtained using state-of-the-art and sophisticated technologies largely confirm many of the groundbreaking hypotheses proposed by Cajal related to the structural-functional properties of neuroglia. Here we propose to the reader a journey guided by the ideas of Cajal through the recent findings on the functional significance of astrocytes, the most abundant neuroglial cell type in the nervous system. Astrocyte-neuron interaction, which represents an emerging field in current neuroscience with important implications for our understanding of the cellular processes underlying brain function, has its roots in many of the original concepts proposed by Cajal.

  14. Delineating the Impact of Weightlessness on Human Physiology Using Computational Models

    Science.gov (United States)

    Kassemi, Mohammad

    2015-01-01

    Microgravity environment has profound effects on several important human physiological systems. The impact of weightlessness is usually indirect as mediated by changes in the biological fluid flow and transport and alterations in the deformation and stress fields of the compliant tissues. In this context, Fluid-Structural and Fluid-Solid Interaction models provide a valuable tool in delineating the physical origins of the physiological changes so that systematic countermeasures can be devised to reduce their adverse effects. In this presentation, impact of gravity on three human physiological systems will be considered. The first case involves prediction of cardiac shape change and altered stress distributions in weightlessness. The second, presents a fluid-structural-interaction (FSI) analysis and assessment of the vestibular system and explores the reasons behind the unexpected microgravity caloric stimulation test results performed aboard the Skylab. The last case investigates renal stone development in microgravity and the possible impact of re-entry into partial gravity on the development and transport of nucleating, growing, and agglomerating renal calculi in the nephron. Finally, the need for model validation and verification and application of the FSI models to assess the effects of Artificial Gravity (AG) are also briefly discussed.

  15. Latent physiological factors of complex human diseases revealed by independent component analysis of clinarrays

    Directory of Open Access Journals (Sweden)

    Chen David P

    2010-10-01

    Full Text Available Abstract Background Diagnosis and treatment of patients in the clinical setting is often driven by known symptomatic factors that distinguish one particular condition from another. Treatment based on noticeable symptoms, however, is limited to the types of clinical biomarkers collected, and is prone to overlooking dysfunctions in physiological factors not easily evident to medical practitioners. We used a vector-based representation of patient clinical biomarkers, or clinarrays, to search for latent physiological factors that underlie human diseases directly from clinical laboratory data. Knowledge of these factors could be used to improve assessment of disease severity and help to refine strategies for diagnosis and monitoring disease progression. Results Applying Independent Component Analysis on clinarrays built from patient laboratory measurements revealed both known and novel concomitant physiological factors for asthma, types 1 and 2 diabetes, cystic fibrosis, and Duchenne muscular dystrophy. Serum sodium was found to be the most significant factor for both type 1 and type 2 diabetes, and was also significant in asthma. TSH3, a measure of thyroid function, and blood urea nitrogen, indicative of kidney function, were factors unique to type 1 diabetes respective to type 2 diabetes. Platelet count was significant across all the diseases analyzed. Conclusions The results demonstrate that large-scale analyses of clinical biomarkers using unsupervised methods can offer novel insights into the pathophysiological basis of human disease, and suggest novel clinical utility of established laboratory measurements.

  16. Human age and skin physiology shape diversity and abundance of Archaea on skin.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Probst, Alexander J; Birarda, Giovanni; Auerbach, Anna; Koskinen, Kaisa; Wolf, Peter; Holman, Hoi-Ying N

    2017-06-22

    The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.

  17. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    Science.gov (United States)

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    International Nuclear Information System (INIS)

    Yang, Xiaoxia; Doerge, Daniel R.; Teeguarden, Justin G.; Fisher, Jeffrey W.

    2015-01-01

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d 6 -BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d 6 -BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d 6 -BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  19. Development of a physiologically based pharmacokinetic model for assessment of human exposure to bisphenol A

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoxia, E-mail: xiaoxia.yang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States); Teeguarden, Justin G. [Health Effects and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331 (United States); Fisher, Jeffrey W. [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079 (United States)

    2015-12-15

    A previously developed physiologically based pharmacokinetic (PBPK) model for bisphenol A (BPA) in adult rhesus monkeys was modified to characterize the pharmacokinetics of BPA and its phase II conjugates in adult humans following oral ingestion. Coupled with in vitro studies on BPA metabolism in the liver and the small intestine, the PBPK model was parameterized using oral pharmacokinetic data with deuterated-BPA (d{sub 6}-BPA) delivered in cookies to adult humans after overnight fasting. The availability of the serum concentration time course of unconjugated d{sub 6}-BPA offered direct empirical evidence for the calibration of BPA model parameters. The recalibrated PBPK adult human model for BPA was then evaluated against published human pharmacokinetic studies with BPA. A hypothesis of decreased oral uptake was needed to account for the reduced peak levels observed in adult humans, where d{sub 6}-BPA was delivered in soup and food was provided prior to BPA ingestion, suggesting the potential impact of dosing vehicles and/or fasting on BPA disposition. With the incorporation of Monte Carlo analysis, the recalibrated adult human model was used to address the inter-individual variability in the internal dose metrics of BPA for the U.S. general population. Model-predicted peak BPA serum levels were in the range of pM, with 95% of human variability falling within an order of magnitude. This recalibrated PBPK model for BPA in adult humans provides a scientific basis for assessing human exposure to BPA that can serve to minimize uncertainties incurred during extrapolations across doses and species. - Highlights: • A PBPK model predicts the kinetics of bisphenol A (BPA) in adult humans. • Serum concentrations of aglycone BPA are available for model calibration. • Model predicted peak BPA serum levels for adult humans were in the range of pM. • Model predicted 95% of human variability fell within an order of magnitude.

  20. Critical review evaluating the pig as a model for human nutritional physiology.

    Science.gov (United States)

    Roura, Eugeni; Koopmans, Sietse-Jan; Lallès, Jean-Paul; Le Huerou-Luron, Isabelle; de Jager, Nadia; Schuurman, Teun; Val-Laillet, David

    2016-06-01

    The present review examines the pig as a model for physiological studies in human subjects related to nutrient sensing, appetite regulation, gut barrier function, intestinal microbiota and nutritional neuroscience. The nutrient-sensing mechanisms regarding acids (sour), carbohydrates (sweet), glutamic acid (umami) and fatty acids are conserved between humans and pigs. In contrast, pigs show limited perception of high-intensity sweeteners and NaCl and sense a wider array of amino acids than humans. Differences on bitter taste may reflect the adaptation to ecosystems. In relation to appetite regulation, plasma concentrations of cholecystokinin and glucagon-like peptide-1 are similar in pigs and humans, while peptide YY in pigs is ten to twenty times higher and ghrelin two to five times lower than in humans. Pigs are an excellent model for human studies for vagal nerve function related to the hormonal regulation of food intake. Similarly, the study of gut barrier functions reveals conserved defence mechanisms between the two species particularly in functional permeability. However, human data are scant for some of the defence systems and nutritional programming. The pig model has been valuable for studying the changes in human microbiota following nutritional interventions. In particular, the use of human flora-associated pigs is a useful model for infants, but the long-term stability of the implanted human microbiota in pigs remains to be investigated. The similarity of the pig and human brain anatomy and development is paradigmatic. Brain explorations and therapies described in pig, when compared with available human data, highlight their value in nutritional neuroscience, particularly regarding functional neuroimaging techniques.

  1. Human Cognitive Limitations. Broad, Consistent, Clinical Application of Physiological Principles Will Require Decision Support.

    Science.gov (United States)

    Morris, Alan H

    2018-02-01

    Our education system seems to fail to enable clinicians to broadly understand core physiological principles. The emphasis on reductionist science, including "omics" branches of research, has likely contributed to this decrease in understanding. Consequently, clinicians cannot be expected to consistently make clinical decisions linked to best physiological evidence. This is a large-scale problem with multiple determinants, within an even larger clinical decision problem: the failure of clinicians to consistently link their decisions to best evidence. Clinicians, like all human decision-makers, suffer from significant cognitive limitations. Detailed context-sensitive computer protocols can generate personalized medicine instructions that are well matched to individual patient needs over time and can partially resolve this problem.

  2. Reference values for basic human anatomical and physiological characteristics for use in radiation protection

    International Nuclear Information System (INIS)

    Boecker, B.B.

    2003-01-01

    A new publication prepared by the ICRP Task Group on Reference Man. Basic anatomical and physiological data for use in radiological protection: reference values, is focused on those human characteristics that are important for dosimetric calculations. Moving from the past emphasis on a Reference Man. the new report presents a series of reference values for both male and female subjects of six different ages - newborn, 1, 5, 10, 15 y, and adult. In selecting reference values, the task group has used data on Western Europeans and North Americans because these populations have been well studied with respect to anatomy, body composition and physiology. When appropriate, comparisons are made between the chosen reference values and data from several Asian populations. The reference values for height and body mass are higher than those reported for various Asian populations. However, the reported masses of individual organs and tissues, particularly for China and Japan, are similar to the reference values. (author)

  3. Central respiratory chemosensitivity and cerebrovascular CO2 reactivity: a rebreathing demonstration illustrating integrative human physiology.

    Science.gov (United States)

    MacKay, Christina M; Skow, Rachel J; Tymko, Michael M; Boulet, Lindsey M; Davenport, Margie H; Steinback, Craig D; Ainslie, Philip N; Lemieux, Chantelle C M; Day, Trevor A

    2016-03-01

    One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations have the added benefit of being able to show multiple organ system integration. Many research techniques can also serve as effective demonstrations of integrative human physiology. The "Duffin" hyperoxic rebreathing test is often used in research settings as a test of central respiratory chemosensitivity and cerebrovascular reactivity to CO2. We aimed to demonstrate the utility of the hyperoxic rebreathing test for both respiratory and cerebrovascular responses to increases in CO2 and illustrate the integration of the respiratory and cerebrovascular systems. In the present article, methods such as spirometry, respiratory gas analysis, and transcranial Doppler ultrasound are described, and raw data traces can be adopted for discussion in a tutorial setting. If educators have these instruments available, instructions on how to carry out the test are provided so students can collect their own data. In either case, data analysis and quantification are discussed, including principles of linear regression, calculation of slope, the coefficient of determination (R(2)), and differences between plotting absolute versus normalized data. Using the hyperoxic rebreathing test as a demonstration of the complex interaction and integration between the respiratory and cerebrovascular systems provides senior undergraduate, graduate, and medical students with an advanced understanding of the integrative nature of human physiology. Copyright © 2016 The American Physiological Society.

  4. Ex Vivo Model of Human Penile Transplantation and Rejection: Implications for Erectile Tissue Physiology.

    Science.gov (United States)

    Sopko, Nikolai A; Matsui, Hotaka; Lough, Denver M; Miller, Devin; Harris, Kelly; Kates, Max; Liu, Xiaopu; Billups, Kevin; Redett, Richard; Burnett, Arthur L; Brandacher, Gerald; Bivalacqua, Trinity J

    2017-04-01

    Penile transplantation is a potential treatment option for severe penile tissue loss. Models of human penile rejection are lacking. Evaluate effects of rejection and immunosuppression on cavernous tissue using a novel ex vivo mixed lymphocyte reaction (MLR) model. Cavernous tissue and peripheral blood mononuclear cells (PBMCs) from 10 patients undergoing penile prosthesis operations and PBMCs from a healthy volunteer were obtained. Ex vivo MLRs were prepared by culturing cavernous tissue for 48h in media alone, in media with autologous PBMCs, or in media with allogenic PBMCs to simulate control, autotransplant, and allogenic transplant conditions with or without 1μM cyclosporine A (CsA) or 20nM tacrolimus (FK506) treatment. Rejection was characterized by PBMC flow cytometry and gene expression transplant array. Cavernous tissues were evaluated by histomorphology and myography to assess contraction and relaxation. Data were analyzed using two-way analysis of variance and unpaired Student t test. Flow cytometry and tissue array demonstrated allogenic PBMC activation consistent with rejection. Rejection impaired cavernous tissue physiology and was associated with cellular infiltration and apoptosis. CsA prevented rejection but did not improve tissue relaxation. CsA treatment impaired relaxation in tissues cultured without PBMCs compared with media and FK506. Study limitations included the use of penile tissue with erectile dysfunction and lack of cross-matching data. This model could be used to investigate the effects of penile rejection and immunosuppression. Additional studies are needed to optimize immunosuppression to prevent rejection and maximize corporal tissue physiology. This report describes a novel ex vivo model of human penile transplantation rejection. Tissue rejection impaired erectile tissue physiology. This report suggests that cyclosporin A might hinder corporal physiology and that other immunosuppressant agents, such as FK506, might be better suited

  5. An Individualized, Perception-Based Protocol to Investigate Human Physiological Responses to Cooling

    Science.gov (United States)

    Coolbaugh, Crystal L.; Bush, Emily C.; Galenti, Elizabeth S.; Welch, E. Brian; Towse, Theodore F.

    2018-01-01

    Cold exposure, a known stimulant of the thermogenic effects of brown adipose tissue (BAT), is the most widely used method to study BAT physiology in adult humans. Recently, individualized cooling has been recommended to standardize the physiological cold stress applied across participants, but critical experimental details remain unclear. The purpose of this work was to develop a detailed methodology for an individualized, perception-based protocol to investigate human physiological responses to cooling. Participants were wrapped in two water-circulating blankets and fitted with skin temperature probes to estimate BAT activity and peripheral vasoconstriction. We created a thermoesthesia graphical user interface (tGUI) to continuously record the subject's perception of cooling and shivering status during the cooling protocol. The protocol began with a 15 min thermoneutral phase followed by a series of 10 min cooling phases and concluded when sustained shivering (>1 min duration) occurred. Researchers used perception of cooling feedback (tGUI ratings) to manually adjust and personalize the water temperature at each cooling phase. Blanket water temperatures were recorded continuously during the protocol. Twelve volunteers (ages: 26.2 ± 1.4 years; 25% female) completed a feasibility study to evaluate the proposed protocol. Water temperature, perception of cooling, and shivering varied considerably across participants in response to cooling. Mean clavicle skin temperature, a surrogate measure of BAT activity, decreased (−0.99°C, 95% CI: −1.7 to −0.25°C, P = 0.16) after the cooling protocol, but an increase in supraclavicular skin temperature was observed in 4 participants. A strong positive correlation was also found between thermoesthesia and peripheral vasoconstriction (ρ = 0.84, P < 0.001). The proposed individualized, perception-based protocol therefore has potential to investigate the physiological responses to cold stress applied across populations with

  6. The Relationship between Human Operators' Psycho-physiological Condition and Human Errors in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Arryum; Jang, Inseok; Kang, Hyungook; Seong, Poonghyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2013-05-15

    The safe operation of nuclear power plants (NPPs) is substantially dependent on the performance of the human operators who operate the systems. In this environment, human errors caused by inappropriate performance of operator have been considered to be critical since it may lead serious problems in the safety-critical plants. In order to provide meaningful insights to prevent human errors and enhance the human performance, operators' physiological conditions such as stress and workload have been investigated. Physiological measurements were considered as reliable tools to assess the stress and workload. T. Q. Tran et al. and J. B. Brooking et al pointed out that operators' workload can be assessed using eye tracking, galvanic skin response, electroencephalograms (EEGs), heart rate, respiration and other measurements. The purpose of this study is to investigate the effect of the human operators' tense level and knowledge level to the number of human errors. For this study, the experiments were conducted in the mimic of the main control rooms (MCR) in NPP. It utilized the compact nuclear simulator (CNS) which is modeled based on the three loop Pressurized Water Reactor, 993MWe, Kori unit 3 and 4 in Korea and the subjects were asked to follow the tasks described in the emergency operating procedures (EOP). During the simulation, three kinds of physiological measurement were utilized; Electrocardiogram (ECG), EEG and nose temperature. Also, subjects were divided into three groups based on their knowledge of the plant operation. The result shows that subjects who are tense make fewer errors. In addition, subjects who are in higher knowledge level tend to be tense and make fewer errors. For the ECG data, subjects who make fewer human errors tend to be located in higher tense level area of high SNS activity and low PSNS activity. The results of EEG data are also similar to ECG result. Beta power ratio of subjects who make fewer errors was higher. Since beta

  7. On making nursing undergraduate human reproductive physiology content meaningful and relevant: discussion of human pleasure in its biological context.

    Science.gov (United States)

    McClusky, Leon Mendel

    2012-01-01

    The traditional presentation of the Reproductive Physiology component in an Anatomy and Physiology course to nursing undergraduates focuses on the broad aspects of hormonal regulation of reproduction and gonadal anatomy, with the role of the higher centres of the brain omitted. An introductory discussion is proposed which could precede the lectures on the reproductive organs. The discussion gives an overview of the biological significance of human pleasure, the involvement of the neurotransmitter dopamine, and the role of pleasure in the survival of the individual and even species. Pleasure stimuli (positive and negative) and the biological significance of naturally-induced pleasurable experiences are briefly discussed in the context of reproduction and the preservation of genetic material with an aim to foster relevancy between subject material and human behaviour in any type of society. The tenderness of this aspect of the human existence is well-understood because of its invariable association with soul-revealing human expressions such as love, infatuation, sexual flirtations, all of which are underpinned by arousal, desire and/or pleasure. Assuming that increased knowledge correlates with increased confidence, the proposed approach may provide the nurse with an adequate knowledge base to overcome well-known barriers in communicating with their patients about matters of sexual health and intimacy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Micro-patterned graphene-based sensing skins for human physiological monitoring

    Science.gov (United States)

    Wang, Long; Loh, Kenneth J.; Chiang, Wei-Hung; Manna, Kausik

    2018-03-01

    Ultrathin, flexible, conformal, and skin-like electronic transducers are emerging as promising candidates for noninvasive and nonintrusive human health monitoring. In this work, a wearable sensing membrane is developed by patterning a graphene-based solution onto ultrathin medical tape, which can then be attached to the skin for monitoring human physiological parameters and physical activity. Here, the sensor is validated for monitoring finger bending/movements and for recognizing hand motion patterns, thereby demonstrating its future potential for evaluating athletic performance, physical therapy, and designing next-generation human-machine interfaces. Furthermore, this study also quantifies the sensor’s ability to monitor eye blinking and radial pulse in real-time, which can find broader applications for the healthcare sector. Overall, the printed graphene-based sensing skin is highly conformable, flexible, lightweight, nonintrusive, mechanically robust, and is characterized by high strain sensitivity.

  9. School Health Education about Human Sexuality. Position Statement. Revised

    Science.gov (United States)

    Bradley, Beverly J.; Mancuso, Patty; Cagginello, Joan B.; Board, Connie; Clark, Sandra; Harvel, Robin; Kelts, Susan

    2012-01-01

    It is the position of the National Association of School Nurses (NASN) that age-appropriate health education about human sexuality should be included as part of a comprehensive school health education program and be accessible to all students in schools. NASN recognizes the role of parents and families as the primary source of education about…

  10. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  11. Quantification of human lung structure and physiology using hyperpolarized 129Xe.

    Science.gov (United States)

    Chang, Yulin V; Quirk, James D; Ruset, Iulian C; Atkinson, Jeffrey J; Hersman, F William; Woods, Jason C

    2014-01-01

    To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood-air barrier thickness, cannot be measured readily by any other noninvasive modality. Healthy volunteers (n = 12) were studied in 1.5T and 3T whole body human scanners using hyperpolarized xenon. Xenon uptake by lung parenchyma and blood was measured using a chemical shift saturation recovery sequence. Both dissolved-xenon peaks at 197 ppm and 217-218 ppm were fitted against a model of xenon exchange (MOXE) as functions of exchange time. Parameters related to lung function and structure can be obtained by fitting to this model. The following results were obtained from xenon uptake (averaged over all healthy volunteers): surface-area-to-volume ratio = 210 ± 50 cm(-1) ; total septal wall thickness = 9.2 ± 6.5 μm; blood-air barrier thickness = 1.0 ± 0.3 μm; hematocrit = 27 ± 4%; pulmonary capillary blood transit time = 1.3 ± 0.3 s, in good agreement with literature values from invasive experiments. More detailed fitting results are listed in the text. The initial in vivo human results demonstrate that our proposed methods can be used to noninvasively determine lung physiology by simultaneous quantification of a few important pulmonary parameters. This method is highly promising to become a versatile screening method for lung diseases. Copyright © 2013 Wiley Periodicals, Inc.

  12. Carbonic anhydrases and their functional differences in human and mouse sperm physiology.

    Science.gov (United States)

    José, O; Torres-Rodríguez, P; Forero-Quintero, L S; Chávez, J C; De la Vega-Beltrán, J L; Carta, F; Supuran, C T; Deitmer, J W; Treviño, C L

    2015-12-25

    Fertilization is a key reproductive event in which sperm and egg fuse to generate a new individual. Proper regulation of certain parameters (such as intracellular pH) is crucial for this process. Carbonic anhydrases (CAs) are among the molecular entities that control intracellular pH dynamics in most cells. Unfortunately, little is known about the function of CAs in mammalian sperm physiology. For this reason, we re-explored the expression of CAI, II, IV and XIII in human and mouse sperm. We also measured the level of CA activity, determined by mass spectrometry, and found that it is similar in non-capacitated and capacitated mouse sperm. Importantly, we found that CAII activity accounts for half of the total CA activity in capacitated mouse sperm. Using the general CA inhibitor ethoxyzolamide, we studied how CAs participate in fundamental sperm physiological processes such as motility and acrosome reaction in both species. We found that capacitated human sperm depend strongly on CA activity to support normal motility, while capacitated mouse sperm do not. Finally, we found that CA inhibition increases the acrosome reaction in capacitated human sperm, but not in capacitated mouse sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Scanpath-based analysis of objects conspicuity in context of human vision physiology.

    Science.gov (United States)

    Augustyniak, Piotr

    2007-01-01

    This paper discusses principal aspects of objects conspicuity investigated with use of an eye tracker and interpreted on the background of human vision physiology. Proper management of objects conspicuity is fundamental in several leading edge applications in the information society like advertisement, web design, man-machine interfacing and ergonomics. Although some common rules of human perception are applied since centuries in the art, the interest of human perception process is motivated today by the need of gather and maintain the recipient attention by putting selected messages in front of the others. Our research uses the visual tasks methodology and series of progressively modified natural images. The modifying details were attributed by their size, color and position while the scanpath-derived gaze points confirmed or not the act of perception. The statistical analysis yielded the probability of detail perception and correlations with the attributes. This probability conforms to the knowledge about the retina anatomy and perception physiology, although we use noninvasive methods only.

  14. Learning objects as coadjuvants in the human physiology teaching-learning process

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Lara

    2014-08-01

    Full Text Available The use of Information and Communication Technologies (ICTs in the academic environment of biomedical area has gained much importance, both for their ability to complement the understanding of the subject obtained in the classroom, is the ease of access, or makes more pleasure the learning process, since these tools are present in everyday of the students and use a simple language. Considering that, this study aims to report the experience of building learning objects in human physiology as a tool for learning facilitation, and discuss the impact of this teaching methodology

  15. Selective attention reduces physiological noise in the external ear canals of humans. II: Visual attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    Human subjects performed in several behavioral conditions requiring, or not requiring, selective attention to visual stimuli. Specifically, the attentional task was to recognize strings of digits that had been presented visually. A nonlinear version of the stimulus-frequency otoacoustic emission (SFOAE), called the nSFOAE, was collected during the visual presentation of the digits. The segment of the physiological response discussed here occurred during brief silent periods immediately following the SFOAE-evoking stimuli. For all subjects tested, the physiological-noise magnitudes were substantially weaker (less noisy) during the tasks requiring the most visual attention. Effect sizes for the differences were >2.0. Our interpretation is that cortico-olivo influences adjusted the magnitude of efferent activation during the SFOAE-evoking stimulation depending upon the attention task in effect, and then that magnitude of efferent activation persisted throughout the silent period where it also modulated the physiological noise present. Because the results were highly similar to those obtained when the behavioral conditions involved auditory attention, similar mechanisms appear to operate both across modalities and within modalities. Supplementary measurements revealed that the efferent activation was spectrally global, as it was for auditory attention. PMID:24732070

  16. Selective attention reduces physiological noise in the external ear canals of humans. I: Auditory attention

    Science.gov (United States)

    Walsh, Kyle P.; Pasanen, Edward G.; McFadden, Dennis

    2014-01-01

    In this study, a nonlinear version of the stimulus-frequency OAE (SFOAE), called the nSFOAE, was used to measure cochlear responses from human subjects while they simultaneously performed behavioral tasks requiring, or not requiring, selective auditory attention. Appended to each stimulus presentation, and included in the calculation of each nSFOAE response, was a 30-ms silent period that was used to estimate the level of the inherent physiological noise in the ear canals of our subjects during each behavioral condition. Physiological-noise magnitudes were higher (noisier) for all subjects in the inattention task, and lower (quieter) in the selective auditory-attention tasks. These noise measures initially were made at the frequency of our nSFOAE probe tone (4.0 kHz), but the same attention effects also were observed across a wide range of frequencies. We attribute the observed differences in physiological-noise magnitudes between the inattention and attention conditions to different levels of efferent activation associated with the differing attentional demands of the behavioral tasks. One hypothesis is that when the attentional demand is relatively great, efferent activation is relatively high, and a decrease in the gain of the cochlear amplifier leads to lower-amplitude cochlear activity, and thus a smaller measure of noise from the ear. PMID:24732069

  17. Implementation of School Uniform Policy and the Violation of Students’ Human Rights in Schools

    Directory of Open Access Journals (Sweden)

    Vimbi Petrus Mahlangu

    2017-05-01

    Full Text Available The paper highlights the violations of students’ human rights in schools. The problem is the incident that took place at a school in Pretoria in 2016 where Black girls protested against the School’s Code of Conduct relating to hairstyle. Qualitative approach was used to collect information through a literature review and desk-top research methods. Black girls claimed they were discriminated against and the protest serves as an example to demonstrate students’ human rights violations when schools implement school uniform policies. Inequality in schools is rife in South Africa. School uniform policies with regard to dress codes are expected to reduce school violence, prevent discipline issues, and improve in school safety. Students have rights and their rights can include issues regarding cultural, economic, and political freedoms. Students, especially adolescents, respond very negatively to school uniforms.

  18. Relationship between human physiological parameters and geomagnetic variations of solar origin

    Science.gov (United States)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  19. Reproductive physiology of a humanized GnRH receptor mouse model: application in evaluation of human-specific analogs.

    Science.gov (United States)

    Tello, Javier A; Kohout, Trudy; Pineda, Rafael; Maki, Richard A; Scott Struthers, R; Millar, Robert P

    2013-07-01

    The human GnRH receptor (GNRHR1) has a specific set of properties with physiological and pharmacological influences not appropriately modeled in laboratory animals or cell-based systems. To address this deficiency, we have generated human GNRHR1 knock-in mice and described their reproductive phenotype. Measurement of pituitary GNRHR1 transcripts from homozygous human GNRHR1 knock-in (ki/ki) mice revealed a severe reduction (7- to 8-fold) compared with the mouse Gnrhr1 in wild-type mice. ¹²⁵I-GnRH binding assays on pituitary membrane fractions corroborated reduced human GNRHR1 protein expression in ki/ki mice, as occurs with transfection of human GNRHR1 in cell lines. Female homozygous knock-in mice displayed normal pubertal onset, indicating that a large reduction in GNRHR1 expression is sufficient for this process. However, ki/ki females exhibited periods of prolonged estrous and/or metestrous and reduced fertility. No impairment was found in reproductive maturity or adult fertility in male ki/ki mice. Interestingly, the serum LH response to GnRH challenge was reduced in both knock-in males and females, indicating a reduced GNRHR1 signaling capacity. Small molecules targeting human GPCRs usually have poor activities at homologous rodent receptors, thus limiting their use in preclinical development. Therefore, we tested a human-specific GnRH1 antagonist, NBI-42902, in our mouse model and demonstrated abrogation of a GnRH1-induced serum LH rise in ki/ki mice and an absence of effect in littermates expressing the wild-type murine receptor. This novel model provides the opportunity to study the human receptor in vivo and for screening the activity of human-specific GnRH analogs.

  20. The EuroPhysiome, STEP and a roadmap for the virtual physiological human.

    Science.gov (United States)

    Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M

    2008-09-13

    Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium.

  1. The effects of gender on circadian rhythm of human physiological indexes in high temperature environment

    Science.gov (United States)

    Zheng, G. Z.; Li, K.; Bu, W. T.; Lu, Y. Z.; Wang, Y. J.

    2018-03-01

    In the context of frequent high temperature weather in recent years, peoples’ physical health is seriously threatened by the indoor high temperature. The physiological activities of human body show a certain changes of circadian rhythm. In this paper, the circadian rhythms of the physiological indexes in indoor high temperature environment were quantified and compared between the male subjects and female subjects. Ten subjects (five males and five females) were selected. The temperature conditions were set at 28°C, 32°C, 36°C and 38°C, respectively. The blood pressure, heart rate, rectal temperature, eardrum temperature, forehead temperature and mean skin temperature were measured for 24 hours continuously. The medians, amplitudes and acrophases of the circadian rhythms were obtained by the cosinor analysis method. Then the effects of gender on the circadian rhythm of the human body in high temperature environment were analyzed. The results indicate that, compared with the female subjects, the male medians of the systolic pressure and diastolic pressure were higher, and the male medians of heart rate and rectal temperature were lower, however, no significant differences were found between eardrum temperature, forehead temperature and mean skin temperature. This study can provide scientific basis for the health protection of the indoor relevant personnel.

  2. A physiologically based biokinetic model for cesium in the human body

    International Nuclear Information System (INIS)

    Leggett, R.W.; Williams, L.R.; Melo, D.R.; Lipsztein, J.L.

    2003-01-01

    A physiologically descriptive model of the biological behavior of cesium in the human body has been constructed around a detailed blood flow model. The rate of transfer from plasma into a tissue is determined by the blood perfusion rate and the tissue-specific extraction fraction of Cs during passage from arterial to venous plasma. Information on tissue-specific extraction of Cs is supplemented with information on the Cs analogues, K and Rb, and known patterns of discrimination between these metals by tissues. The rate of return from a tissue to plasma is estimated from the relative contents of Cs in plasma and the tissue at equilibrium as estimated from environmental studies. Transfers of Cs other than exchange between plasma and tissues (e.g. secretions into the gastrointestinal tract) are based on a combination of physiological considerations and empirical data on Cs or related elements. Model predictions are consistent with the sizable database on the time-dependent distribution and retention of radiocesium in the human body

  3. Video-based lectures: An emerging paradigm for teaching human anatomy and physiology to student nurses

    Directory of Open Access Journals (Sweden)

    Rabab El-Sayed Hassan El-Sayed

    2013-09-01

    Full Text Available Video-based teaching material is a rich and powerful medium being used in computer assisted learning. This paper aimed to assess the learning outcomes and student nurses’ acceptance and satisfaction with the video-based lectures versus the traditional method of teaching human anatomy and physiology courses. Data were collected from 27 students in a Bachelor of Nursing program and experimental control was achieved using an alternating-treatments design. Overall, students experienced 10 lectures, which delivered by the teacher as either video-based or PowerPoint-based lectures. Results revealed that video-based lectures offer more successes and reduce failures in the immediate and follow-up measures as compared with the traditional method of teaching human anatomy and physiology that was based on printout illustrations, but these differences were not statistically significant. Moreover, nurse students appeared positive about their learning experiences, as they rated highly all the items assessing their acceptance and satisfaction with the video-based lectures. KEYWORDS: Video-based lecture, Traditional, Print-based illustration

  4. Lead remediation and changes in human lead exposure: some physiological and biokinetic dimensions.

    Science.gov (United States)

    Mushak, Paul

    2003-02-15

    This paper presents a qualitative and quantitative analysis of the various aspects of lead remediation effectiveness with particular reference to human health risk assessment. One of the key elements of lead remediation efforts at such sites as those under the Superfund program deals with populations at elevated exposure and toxicity risk in the proximity of, or at, the site of remediation, especially remediation workers, workers at other tasks on sites that were remediated down to some action level of lead concentration in soils, and groups at risk in nearby communities. A second element has to do with how one measures or models lead exposure changes with special reference to baseline and post-remediation conditions. Various biomarkers of lead exposure can be employed, but their use requires detailed knowledge of what results using each means. The most commonly used approach is measurement of blood lead (Pb-B). Recognized limitations in the use of Pb-B has led to the use of predictive Pb exposure models, which are less vulnerable to the many behavioral, physiological, and environmental parameters that can distort isolated or 'single shot' Pb-B testings. A third aspect covered in this paper presents various physiological factors that affect the methods by which one evaluates Pb remediation effectiveness. Finally, this article offers an integrated look at how lead remediation actions directed at one lead source or pathway affect the total lead exposure picture for human populations at elevated lead exposure and toxicity risk.

  5. Variability of tissue mineral density can determine physiological creep of human vertebral cancellous bone.

    Science.gov (United States)

    Kim, Do-Gyoon; Shertok, Daniel; Ching Tee, Boon; Yeni, Yener N

    2011-06-03

    Creep is a time-dependent viscoelastic deformation observed under a constant prolonged load. It has been indicated that progressive vertebral deformation due to creep may increase the risk of vertebral fracture in the long-term. The objective of this study was to examine the relationships of creep with trabecular architecture and tissue mineral density (TMD) parameters in human vertebral cancellous bone at a physiological static strain level. Architecture and TMD parameters of cancellous bone were analyzed using microcomputerized tomography (micro-CT) in specimens cored out of human vertebrae. Then, creep and residual strains of the specimens were measured after a two-hour physiological compressive constant static loading and unloading cycle. Creep developed (3877 ± 2158 με) resulting in substantial levels of non-recoverable post-creep residual strain (1797 ± 1391 με). A strong positive linear correlation was found between creep and residual strain (r = 0.94, p creep rate. The TMD variability (GL(COV)) was the strongest correlate of creep rate (r = 0.79, p < 0.001). This result suggests that TMD variability may be a useful parameter for estimating the long-term deformation of a whole vertebral body. The results further suggest that the changes in TMD variability resulting from bone remodeling are of importance and may provide an insight into the understanding of the mechanisms underlying progressive failure of vertebral bodies and development of a clinical fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Cognitive, physical and physiological responses of school boy cricketers to a 30-over batting simulation.

    Science.gov (United States)

    Goble, David; Christie, Candice Jo-Anne

    2017-06-01

    The purpose of this study was to assess how cognitive and physical performance are affected during a prolonged, fatigue-inducing cricket-batting simulation. Fifteen amateur batters from three Eastern Cape schools in South Africa were recruited (mean ± SD: age 17 ± 0.92 years; stature 1.75 ± 0.07 m; body mass 78.3 ± 13.2 kg). Participants completed a 6-stage, 30-over batting simulation (BATEX © ). During the protocol, there were five periods of cognitive assessment (CogState brief test battery, Melbourne, Australia). The primary outcome measures from each cognitive task were speed and accuracy/error rates. Physiological (heart rate) and physical (sprint times) responses were also recorded. Sprint times deteriorated (d = 0.84; P attention and vigilance (d = 0.56; P = 0.21) and attention and working memory (d = 0.61; P = 0.11), reducing task performance after 30 overs. Therefore, prolonged batting with repeated shuttle running fatigues amateur batters and adversely affects higher-order cognitive function. This will affect decision-making, response selection, response execution and other batting-related executive processes. We recommend that training should incorporate greater proportions of centre-wicket batting with repeated, high-intensity shuttle running. This will improve batting-related skills and information processing when fatigued, making practice more representative of competition.

  7. Reflective functioning, physiological reactivity, and overcontrol in mothers: Links with school-aged children's reflective functioning.

    Science.gov (United States)

    Borelli, Jessica L; Hong, Kajung; Rasmussen, Hannah F; Smiley, Patricia A

    2017-09-01

    Theorists argue that parental reflective functioning (PRF) is activated in response to emotions, potentially supporting parenting sensitivity even when arousal is high. That is, when parents become emotionally reactive when interacting with their children, those who can use PRF to understand their children's mental states should be able to parent sensitively, which, in turn, should promote children's ability to understand their own mental states. We test this theory by examining whether, in the face of physiological reactivity, mothers' PRF inhibits one form of parenting insensitivity, overcontrol (OC), and whether this process in turn predicts children's RF. A diverse sample of school-age children (N = 106, Mage = 10.27 years) completed a standardized failure paradigm while their mothers were asked to passively observe. Following the stressor, mothers and children independently completed interviews regarding the task, which were later coded for RF with respect to children's mental states. Mothers provided saliva samples before and after the stressor, and after the interview, which were later assayed for cortisol reactivity; maternal behavior during the stressor task was coded for OC. Among mothers with low levels of RF, greater increases in cortisol were associated with more displays of OC, whereas among mothers with high PRF, greater cortisol reactivity was associated with fewer OC behaviors. For low PRF mothers, higher reactivity and OC predicted lower children's PRF for their own experiences. The findings provide initial evidence for a protective function of PRF, and may point toward the importance of promoting PRF in intervention programs to reduce parental OC. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Human Spirometry: Computerized Data Acquisition in the Undergraduate Human Physiology Laboratory.

    Science.gov (United States)

    Braun, Bradley T.; Mulstay, Richard E.

    1993-01-01

    Applies microcomputer technology to the development of a data acquisition and analysis system for the study of measuring the human lung capacity and metabolism. Discusses the chain-compensated spirometer, interfacing hardware, data acquisition hardware and software, and the applicability of the system to other biological measurements. (MDH)

  9. Implementing Children's Human Rights Education in Schools

    Science.gov (United States)

    Covell, Katherine; Howe, R. Brian; McNeil, Justin K.

    2010-01-01

    Evaluations of a children's rights education initiative in schools in Hampshire, England--consistent with previous research findings--demonstrate the effectiveness of a framework of rights for school policy, practice, and teaching, for promoting rights-respecting attitudes and behaviors among children, and for improving the school ethos. The value…

  10. Implementation of School Uniform Policy and the Violation of Students' Human Rights in Schools

    Science.gov (United States)

    Mahlangu, Vimbi Petrus

    2017-01-01

    The paper highlights the violations of students' human rights in schools. The problem is the incident that took place at a school in Pretoria in 2016 where Black girls protested against the School's Code of Conduct relating to hairstyle. Qualitative approach was used to collect information through a literature review and desk-top research methods.…

  11. Preliminary results of Physiological plant growth modelling for human life support in space

    Science.gov (United States)

    Sasidharan L, Swathy; Dussap, Claude-Gilles; Hezard, Pauline

    2012-07-01

    Human life support is fundamental and crucial in any kind of space explorations. MELiSSA project of European Space Agency aims at developing a closed, artificial ecological life support system involving human, plants and micro organisms. Consuming carbon dioxide and water from the life support system, plants grow in one of the chambers and convert it into food and oxygen along with potable water. The environmental conditions, nutrient availability and its consumption of plants should be studied and necessarily modeled to predict the amount of food, oxygen and water with respect to the environmental changes and limitations. The reliability of a completely closed system mainly depends on the control laws and strategies used. An efficient control can occur, only if the system to control is itself well known, described and ideally if the responses of the system to environmental changes are predictable. In this aspect, the general structure of plant growth model has been designed together with physiological modelling.The physiological model consists of metabolic models of leaves, stem and roots, of which concern specific metabolisms of the associated plant parts. On the basis of the carbon source transport (eg. sucrose) through stem, the metabolic models (leaf and root) can be interconnected to each other and finally coupled to obtain the entire plant model. For the first step, leaf metabolic model network was built using stoichiometric, mass and energy balanced metabolic equations under steady state approach considering all necessary plant pathways for growth and maintenance of leaves. As the experimental data for lettuce plants grown in closed and controlled environmental chambers were available, the leaf metabolic model has been established for lettuce leaves. The constructed metabolic network is analyzed using known stoichiometric metabolic technique called metabolic flux analysis (MFA). Though, the leaf metabolic model alone is not sufficient to achieve the

  12. Perfringolysin O as a useful tool to study human sperm physiology.

    Science.gov (United States)

    Pocognoni, Cristián A; De Blas, Gerardo A; Heuck, Alejandro P; Belmonte, Silvia A; Mayorga, Luis S

    2013-01-01

    To evaluate perfringolysin O, a cholesterol-dependent pore-forming cytolysin, as a tool to study several aspects of human sperm physiology. Prospective study. Basic research laboratory. Human semen samples with normal parameters obtained from healthy donors. Interaction of recombinant perfringolysin O with human spermatozoa. Assessment of perfringolysin O binding to spermatozoa, tests for acrosome and plasma membrane integrity, and acrosomal exocytosis assays. Perfringolysin O associated with human spermatozoa at 4°C. The binding was sensitive to changes in cholesterol concentrations and distribution occurring in the plasma membrane of these cells during capacitation. When perfringolysin O-treated sperm were incubated at 37°C, the plasma membrane became permeable, whereas the acrosome membrane remained intact. Permeabilized spermatozoa were able to respond to exocytic stimuli. The process was inhibited by proteins that interfere with membrane fusion, indicating that large molecules, including antibodies, were able to permeate into the spermatozoa. PFO is a useful probe to assess changes in the amount and distribution of the active sterol fraction present in the sperm plasma membrane. The toxin can be used for the efficient and selective permeabilization of this membrane, rendering a flexible experimental model suitable for studying molecular processes occurring in the sperm cytoplasm. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. The use of computers to teach human anatomy and physiology to allied health and nursing students

    Science.gov (United States)

    Bergeron, Valerie J.

    Educational institutions are under tremendous pressure to adopt the newest technologies in order to prepare their students to meet the challenges of the twenty-first century. For the last twenty years huge amounts of money have been spent on computers, printers, software, multimedia projection equipment, and so forth. A reasonable question is, "Has it worked?" Has this infusion of resources, financial as well as human, resulted in improved learning? Are the students meeting the intended learning goals? Any attempt to develop answers to these questions should include examining the intended goals and exploring the effects of the changes on students and faculty. This project investigated the impact of a specific application of a computer program in a community college setting on students' attitudes and understanding of human anatomy and physiology. In this investigation two sites of the same community college with seemingly similar students populations, seven miles apart, used different laboratory activities to teach human anatomy and physiology. At one site nursing students were taught using traditional dissections and laboratory activities; at the other site two of the dissections, specifically cat and sheep pluck, were replaced with the A.D.A.M.RTM (Animated Dissection of Anatomy for Medicine) computer program. Analysis of the attitude data indicated that students at both sites were extremely positive about their laboratory experiences. Analysis of the content data indicated a statistically significant difference in performance between the two sites in two of the eight content areas that were studied. For both topics the students using the computer program scored higher. A detailed analysis of the surveys, interviews with faculty and students, examination of laboratory materials, and observations of laboratory facilities in both sites, and cost-benefit analysis led to the development of seven recommendations. The recommendations call for action at the level of the

  14. Physiological and methodological aspects of rate of force development assessment in human skeletal muscle.

    Science.gov (United States)

    Rodríguez-Rosell, David; Pareja-Blanco, Fernando; Aagaard, Per; González-Badillo, Juan José

    2017-12-20

    Rate of force development (RFD) refers to the ability of the neuromuscular system to increase contractile force from a low or resting level when muscle activation is performed as quickly as possible, and it is considered an important muscle strength parameter, especially for athletes in sports requiring high-speed actions. The assessment of RFD has been used for strength diagnosis, to monitor the effects of training interventions in both healthy populations and patients, discriminate high-level athletes from those of lower levels, evaluate the impairment in mechanical muscle function after acute bouts of eccentric muscle actions and estimate the degree of fatigue and recovery after acute exhausting exercise. Notably, the evaluation of RFD in human skeletal muscle is a complex task as influenced by numerous distinct methodological factors including mode of contraction, type of instruction, method used to quantify RFD, devices used for force/torque recording and ambient temperature. Another important aspect is our limited understanding of the mechanisms underpinning rapid muscle force production. Therefore, this review is primarily focused on (i) describing the main mechanical characteristics of RFD; (ii) analysing various physiological factors that influence RFD; and (iii) presenting and discussing central biomechanical and methodological factors affecting the measurement of RFD. The intention of this review is to provide more methodological and analytical coherency on the RFD concept, which may aid to clarify the thinking of coaches and sports scientists in this area. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  15. Expression of Siglec-11 by human and chimpanzee ovarian stromal cells, with uniquely human ligands: implications for human ovarian physiology and pathology

    Science.gov (United States)

    Wang, Xiaoxia; Chow, Renee; Deng, Liwen; Anderson, Dan; Weidner, Noel; Godwin, Andrew K; Bewtra, Chanda; Zlotnik, Albert; Bui, Jack; Varki, Ajit; Varki, Nissi

    2011-01-01

    Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential

  16. Vitamin E in human skin: organ-specific physiology and considerations for its use in dermatology.

    Science.gov (United States)

    Thiele, Jens J; Ekanayake-Mudiyanselage, Swarna

    2007-01-01

    Vitamin E has been used for more than 50 years in experimental and clinical dermatology. While a large number of case reports were published in this time, there is still a lack of controlled clinical studies providing a rationale for well defined dosages and clinical indications. In contrast, advances in basic research on the physiology, mechanism of action, penetration, bioconversion and photoprotection of vitamin E in human skin has led to the development of numerous new formulations for use in cosmetics and skin care products. This article reviews basic mechanisms and possible cosmetic as well as clinical implications of the recent advances in cutaneous vitamin E research. Experimental evidence suggests that topical and oral vitamin E has antitumorigenic, photoprotective, and skin barrier stabilizing properties. While the current use of vitamin E is largely limited to cosmetics, controlled clinical studies for indications such as atopic dermatitis or preventions of photocarcinogenesis are needed to evaluate the clinical benefit of vitamin E.

  17. Serum Amyloid P Component (SAP) Interactome in Human Plasma Containing Physiological Calcium Levels.

    Science.gov (United States)

    Poulsen, Ebbe Toftgaard; Pedersen, Kata Wolff; Marzeda, Anna Maria; Enghild, Jan J

    2017-02-14

    The pentraxin serum amyloid P component (SAP) is secreted by the liver and found in plasma at a concentration of approximately 30 mg/L. SAP is a 25 kDa homopentamer known to bind both protein and nonprotein ligands, all in a calcium-dependent manner. The function of SAP is unclear but likely involves the humoral innate immune system spanning the complement system, inflammation, and coagulation. Also, SAP is known to bind to the generic structure of amyloid deposits and possibly to protect them against proteolysis. In this study, we have characterized the SAP interactome in human plasma containing the physiological Ca 2+ concentration using SAP affinity pull-down and co-immunoprecipitation experiments followed by mass spectrometry analyses. The analyses resulted in the identification of 33 proteins, of which 24 were direct or indirect interaction partners not previously reported. The SAP interactome can be divided into categories that include apolipoproteins, the complement system, coagulation, and proteolytic regulation.

  18. Using Noninvasive Wearable Computers to Recognize Human Emotions from Physiological Signals

    Directory of Open Access Journals (Sweden)

    Nasoz Fatma

    2004-01-01

    Full Text Available We discuss the strong relationship between affect and cognition and the importance of emotions in multimodal human computer interaction (HCI and user modeling. We introduce the overall paradigm for our multimodal system that aims at recognizing its users' emotions and at responding to them accordingly depending upon the current context or application. We then describe the design of the emotion elicitation experiment we conducted by collecting, via wearable computers, physiological signals from the autonomic nervous system (galvanic skin response, heart rate, temperature and mapping them to certain emotions (sadness, anger, fear, surprise, frustration, and amusement. We show the results of three different supervised learning algorithms that categorize these collected signals in terms of emotions, and generalize their learning to recognize emotions from new collections of signals. We finally discuss possible broader impact and potential applications of emotion recognition for multimodal intelligent systems.

  19. Development of a Human Physiologically Based Pharmacokinetic (PBPK Toolkit for Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Patricia Ruiz

    2011-10-01

    Full Text Available Physiologically Based Pharmacokinetic (PBPK models can be used to determine the internal dose and strengthen exposure assessment. Many PBPK models are available, but they are not easily accessible for field use. The Agency for Toxic Substances and Disease Registry (ATSDR has conducted translational research to develop a human PBPK model toolkit by recoding published PBPK models. This toolkit, when fully developed, will provide a platform that consists of a series of priority PBPK models of environmental pollutants. Presented here is work on recoded PBPK models for volatile organic compounds (VOCs and metals. Good agreement was generally obtained between the original and the recoded models. This toolkit will be available for ATSDR scientists and public health assessors to perform simulations of exposures from contaminated environmental media at sites of concern and to help interpret biomonitoring data. It can be used as screening tools that can provide useful information for the protection of the public.

  20. Audited credential delegation: a usable security solution for the virtual physiological human toolkit

    Science.gov (United States)

    Haidar, Ali N.; Zasada, Stefan J.; Coveney, Peter V.; Abdallah, Ali E.; Beckles, Bruce; Jones, Mike A. S.

    2011-01-01

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username–password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214

  1. Audited credential delegation: a usable security solution for the virtual physiological human toolkit.

    Science.gov (United States)

    Haidar, Ali N; Zasada, Stefan J; Coveney, Peter V; Abdallah, Ali E; Beckles, Bruce; Jones, Mike A S

    2011-06-06

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username-password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale.

  2. A vision and strategy for the virtual physiological human in 2010 and beyond.

    Science.gov (United States)

    Hunter, Peter; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Skår, John; Tegner, Jesper; Randall Thomas, S; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco

    2010-06-13

    European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE.

  3. Indoor Air Quality Assessment Based on Human Physiology - Part 1. New Criteria Proposal

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2003-01-01

    Full Text Available Human physiology research makes evident that the Weber-Fechner law applies not only to noise perception but also to the perception of other environmental components. Based on this fact, new decibel units for dor component representing indoor air quality in majority locations have been proposed: decicarbdiox dCd (for carbon dioxide CO2 and decitvoc dTv (for total volatile organic compound TVOC. Equations of these new units have been proved by application of a experimental relationships between odor intensity (representing odor perception by the human body and odor concentrations of CO2 and TVOC, b individually  measured CO2 and TVOC levels (concentrations – from these new decibel units can be calculated and their values compared with decibel units of noise measured in the same locations. The undoubted benefit of using the decibel scale is that it gives much better approximation to human perception of odor intensity compared to the CO2 and TVOC concentration scales.

  4. Identification of human zonulin, a physiological modulator of tight junctions, as prehaptoglobin-2.

    Science.gov (United States)

    Tripathi, Amit; Lammers, Karen M; Goldblum, Simeon; Shea-Donohue, Terez; Netzel-Arnett, Sarah; Buzza, Marguerite S; Antalis, Toni M; Vogel, Stefanie N; Zhao, Aiping; Yang, Shiqi; Arrietta, Marie-Claire; Meddings, Jon B; Fasano, Alessio

    2009-09-29

    Increased intestinal permeability (IP) has emerged recently as a common underlying mechanism in the pathogenesis of allergic, inflammatory, and autoimmune diseases. The characterization of zonulin, the only physiological mediator known to regulate IP reversibly, has remained elusive. Through proteomic analysis of human sera, we have now identified human zonulin as the precursor for haptoglobin-2 (pre-HP2). Although mature HP is known to scavenge free hemoglobin (Hb) to inhibit its oxidative activity, no function has ever been ascribed to its uncleaved precursor form. We found that the single-chain zonulin contains an EGF-like motif that leads to transactivation of EGF receptor (EGFR) via proteinase-activated receptor 2 (PAR(2)) activation. Activation of these 2 receptors was coupled to increased IP. The siRNA-induced silencing of PAR(2) or the use of PAR(2)(-/-) mice prevented loss of barrier integrity. Proteolytic cleavage of zonulin into its alpha(2)- and beta-subunits neutralized its ability to both activate EGFR and increase IP. Quantitative gene expression revealed that zonulin is overexpressed in the intestinal mucosa of subjects with celiac disease. To our knowledge, this is the initial example of a molecule that exerts a biological activity in its precursor form that is distinct from the function of its mature form. Our results therefore characterize zonulin as a previously undescribed ligand that engages a key signalosome involved in the pathogenesis of human immune-mediated diseases that can be targeted for therapeutic interventions.

  5. Principals: Human Capital Managers at Every School

    Science.gov (United States)

    Kimball, Steven M.

    2011-01-01

    Being a principal is more than just being an instructional leader. Principals also must manage their schools' teaching talent in a strategic way so that it is linked to school instructional improvement strategies, to the competencies needed to enact the strategies, and to success in boosting student learning. Teacher acquisition and performance…

  6. Association between human and animal thermal comfort indices and physiological heat stress indicators in dairy calves.

    Science.gov (United States)

    Kovács, L; Kézér, F L; Ruff, F; Szenci, O; Jurkovich, V

    2018-06-06

    Warm summer episodes have a significant effect on the overall health and well-being of young cattle; however, it is not known which temperature measure should be used for estimating heat stress in dairy calves. In this study, generalized linear mixed-effects models were used to estimate the relationships between thermal comfort indices and animal-based heat stress indicators in sixteen Holstein bull calves that were housed in individual calf hutches. Data were collected under continental weather characteristics over a 5-day period: day 1 (lower-temperature day), days 2 and 3 (heat stress days), and a 2-day post-stress period. Relative humidity, ambient temperature, the heat index, the humidex and five different temperature-humidity indices (THI) were used as thermal indices. Physiological variables monitored included respiratory rate, rectal temperature, ear skin temperature and heart rate. The heat index and the humidex measuring human thermal comfort were more closely associated with physiological measures than were the ambient temperature or the THIs (in case of heat index: R 2 = 0.87 for respiratory rate, R 2 = 0.63 for rectal temperature, R 2 = 0.70 for ear skin temperature, and R 2 = 0.78 for heart rate, respectively; in case of humidex: R 2 = 0.85 for respiratory rate, R 2 = 0.60 for rectal temperature, R 2 = 0.68 for ear skin temperature, and R 2 = 0.75 for heart rate, respectively). Based on our results, parameters of human outdoor comfort seem better to estimate heat stress in dairy calves in a continental region than those of THIs or ambient temperature. Copyright © 2018. Published by Elsevier Inc.

  7. A physiologically based pharmacokinetic model for ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Fennell, T R; Brown, C D

    2001-06-15

    Ethylene oxide (EO) is widely used as a gaseous sterilant and industrial intermediate and is a direct-acting mutagen and carcinogen. The objective of these studies was to develop physiologically based pharmacokinetic (PB-PK) models for EO to describe the exposure-tissue dose relationship in rodents and humans. We previously reported results describing in vitro and in vivo kinetics of EO metabolism in male and female F344 rats and B6C3F1 mice. These studies were extended by determining the kinetics of EO metabolism in human liver cytosol and microsomes. The results indicate enzymatically catalyzed GSH conjugation via cytosolic glutathione S-transferase (cGST) and hydrolysis via microsomal epoxide hydrolase (mEH) occur in both rodents and humans. The in vitro kinetic constants were scaled to account for cytosolic (cGST) and microsomal (mEH) protein content and incorporated into PB-PK descriptions for mouse, rat, and human. Flow-limited models adequately predicted blood and tissue EO levels, disposition, and elimination kinetics determined experimentally in rats and mice, with the exception of testis concentrations, which were overestimated. Incorporation of a diffusion-limited description for testis improved the ability of the model to describe testis concentrations. The model accounted for nonlinear increases in blood and tissue concentrations that occur in mice on exposure to EO concentrations greater than 200 ppm. Species differences are predicted in the metabolism and exposure-dose relationship, with a nonlinear relationship observed in the mouse as a result of GSH depletion. These models represent an essential step in developing a mechanistically based EO exposure-dose-response description for estimating human risk from exposure to EO. Copyright 2001 Academic Press.

  8. Physiological and subjective evaluation of a human-robot object hand-over task.

    Science.gov (United States)

    Dehais, Frédéric; Sisbot, Emrah Akin; Alami, Rachid; Causse, Mickaël

    2011-11-01

    In the context of task sharing between a robot companion and its human partners, the notions of safe and compliant hardware are not enough. It is necessary to guarantee ergonomic robot motions. Therefore, we have developed Human Aware Manipulation Planner (Sisbot et al., 2010), a motion planner specifically designed for human-robot object transfer by explicitly taking into account the legibility, the safety and the physical comfort of robot motions. The main objective of this research was to define precise subjective metrics to assess our planner when a human interacts with a robot in an object hand-over task. A second objective was to obtain quantitative data to evaluate the effect of this interaction. Given the short duration, the "relative ease" of the object hand-over task and its qualitative component, classical behavioral measures based on accuracy or reaction time were unsuitable to compare our gestures. In this perspective, we selected three measurements based on the galvanic skin conductance response, the deltoid muscle activity and the ocular activity. To test our assumptions and validate our planner, an experimental set-up involving Jido, a mobile manipulator robot, and a seated human was proposed. For the purpose of the experiment, we have defined three motions that combine different levels of legibility, safety and physical comfort values. After each robot gesture the participants were asked to rate them on a three dimensional subjective scale. It has appeared that the subjective data were in favor of our reference motion. Eventually the three motions elicited different physiological and ocular responses that could be used to partially discriminate them. Copyright © 2011 Elsevier Ltd and the Ergonomics Society. All rights reserved.

  9. School-based human papillomavirus vaccination: An opportunity to ...

    African Journals Online (AJOL)

    School-based human papillomavirus vaccination: An opportunity to increase knowledge about cervical cancer and improve uptake of ... Poor knowledge about cervical cancer plays a role in limiting screening uptake. HPV ... Article Metrics.

  10. The Microfoundations of Human Resources Management in US Public Schools

    Science.gov (United States)

    Pogodzinski, Ben

    2016-01-01

    Purpose: The purpose of this paper is to identify the extent to which human resources (HR) decision making is influenced by the social context of school systems. More specifically, this study draws upon organizational theory focussed on the microfoundations of organizations as a lens identify key aspects of school HR decision making at the…

  11. Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans.

    Science.gov (United States)

    Lin, Zhoumeng; Li, Mengjie; Gehring, Ronette; Riviere, Jim E

    2015-01-01

    Oxytetracycline (OTC) is a commonly used tetracycline antibiotic in veterinary and human medicine. To establish a quantitative model for predicting OTC plasma and tissue exposure, a permeability-limited multiroute physiologically based pharmacokinetic model was developed in dogs. The model was calibrated with plasma pharmacokinetic data in beagle dogs following single intravenous (5 mg/kg), oral (100 mg/kg), and intramuscular (20 mg/kg) administrations. The model predicted other available dog data well, including drug concentrations in the liver, kidney, and muscle after repeated exposure, and data in the mixed-breed dog. The model was extrapolated to humans and the human model adequately simulated measured plasma OTC concentrations after intravenous (7.14 mg/kg) and oral exposures (6.67 mg/kg). The dog model was applied to predict 24-h OTC area-under-the-curve after three therapeutic treatments. Results were 27.75, 51.76, and 64.17 μg/mL*h in the plasma, and 120.93, 225.64, and 279.67 μg/mL*h in the kidney for oral (100 mg/kg), intravenous (10 mg/kg), and intramuscular (20 mg/kg) administrations, respectively. This model can be used to predict plasma and tissue concentrations to aid in designing optimal therapeutic regimens with OTC in veterinary, and potentially, human medicine; and as a foundation for scaling to other tetracycline antibiotics and to other animal species. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:233-243, 2015. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  12. Estimated cancer risk of dioxins to humans using a bioassay and physiologically based pharmacokinetic model

    International Nuclear Information System (INIS)

    Maruyama, Wakae; Aoki, Yasunobu

    2006-01-01

    The health risk of dioxins and dioxin-like compounds to humans was analyzed quantitatively using experimental data and mathematical models. To quantify the toxicity of a mixture of three dioxin congeners, we calculated the new relative potencies (REPs) for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), and 2,3,4,7,8- pentachlorodibenzofuran (PeCDF), focusing on their tumor promotion activity. We applied a liver foci formation assay to female SD rats after repeated oral administration of dioxins. The REP of dioxin for a rat was determined using dioxin concentration and the number of the foci in rat liver. A physiologically based pharmacokinetic model (PBPK model) was used for interspecies extrapolation targeting on dioxin concentration in liver. Toxic dose for human was determined by back-estimation with a human PBPK model, assuming that the same concentration in the target tissue may cause the same level of effect in rats and humans, and the REP for human was determined by the toxic dose obtained. The calculated REPs for TCDD, PeCDD, and PeCDF were 1.0, 0.34, and 0.05 for rats, respectively, and the REPs for humans were almost the same as those for rats. These values were different from the toxic equivalency factors (TEFs) presented previously (Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., Brunstrom, B., Cook, P., Feeley, M., Giesy, J.P., Hanberg, A., Hasegawa, R., Kennedy, S.W., Kubiak, T., Larsen, J.C., Rolaf van Leeuwen, F.X., Liem, A.K.D., Nolt, C., Peterson, R.E., Poellinger. L., Safe, S., Schrenk, D., Tillitt, D, Tysklind, M., Younes, M., Waern, F., Zacharewski, T., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ. Health Perspect. 106, 775-792). The relative risk of excess liver cancer for Japanese people in general was 1.7-6.5 x 10 -7 by TCDD only, and 2.9-11 x 10 -7 by the three dioxins at the present level of contamination

  13. [The beginnings of physiology of the human brain, from antiquity to the Renaissance].

    Science.gov (United States)

    Saban, R

    1999-06-01

    For more than 3,000 years in Western civilizations, the knowledge of the human body gained very little ground at first, due to taboos. The body was regarded as sacred and Medicine only resorted to plants in order to heal. Hippocrates was not familiar with anatomy as the human body could not be dissected. He developed a theory of humors connected with the primary elements and opposing the dry and the moist. Even though he did not know the nervous system, he nonetheless pointed out that emotions stemmed from the brain and were caused ty particles (pneuma) emitted by the objects around us. Galien was one of the first to mention physiology but could only dissect animals to understand Man. He took up the theory of humors but did not reach any concrete results as he considered the brain as made up of faeces. Only in 1000 AD did Avicenne try to shape the cell theory with its three cells (the ventricles in today's parlance) in direct relation to the nerves, which he described but did not represent. Representation of the nerves was only be given in the mid-13th century by Khalifah in his ophtalmology treaty. Finally, during the Renaissance, when books started conveying both text and pictures, brain physiology emerged; Albert le Grand was its first expounder and his work was then taken up in a 1475 inculabulum in which 5 cells instead of 3 are described and represented. Leonardo da Vinci was the second one; at the end of the 15th century he dissected may corpses to understand human morphology. Unfortunately his work, which was conducted very rigorously from an anatomical point of view only surfaced at the end of the 19th century. He was the first to conduct the anatomical cross-dissection of the brain. Last came Magnus Hundt and Georg Reisch; in the early 16th century they still represented the three cells of Avicenne even though Reisch described more sophisticated connections between the organs of the senses.

  14. Effects of foliage plants on human physiological and psychological responses at different temperatures

    Science.gov (United States)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  15. A wireless capsule system with ASIC for monitoring the physiological signals of the human gastrointestinal tract.

    Science.gov (United States)

    Xu, Fei; Yan, Guozheng; Zhao, Kai; Lu, Li; Gao, Jinyang; Liu, Gang

    2014-12-01

    This paper presents the design of a wireless capsule system for monitoring the physiological signals of the human gastrointestinal (GI) tract. The primary components of the system include a wireless capsule, a portable data recorder, and a workstation. Temperature, pH, and pressure sensors; an RF transceiver; a controlling and processing application specific integrated circuit (ASIC); and batteries were applied in a wireless capsule. Decreasing capsule size, improving sensor precision, and reducing power needs were the primary challenges; these were resolved by employing micro sensors, optimized architecture, and an ASIC design that include power management, clock management, a programmable gain amplifier (PGA), an A/D converter (ADC), and a serial peripheral interface (SPI) communication unit. The ASIC has been fabricated in 0.18- μm CMOS technology with a die area of 5.0 mm × 5.0 mm. The wireless capsule integrating the ASIC controller measures Φ 11 mm × 26 mm. A data recorder and a workstation were developed, and 20 cases of human experiments were conducted in hospitals. Preprocessing in the workstation can significantly improve the quality of the data, and 76 original features were determined by mathematical statistics. Based on the 13 optimal features achieved in the evaluation of the features, the clustering algorithm can identify the patients who lack GI motility with a recognition rate reaching 83.3%.

  16. Human physiological benefits of viewing nature: EEG responses to exact and statistical fractal patterns.

    Science.gov (United States)

    Hagerhall, C M; Laike, T; Küller, M; Marcheschi, E; Boydston, C; Taylor, R P

    2015-01-01

    Psychological and physiological benefits of viewing nature have been extensively studied for some time. More recently it has been suggested that some of these positive effects can be explained by nature's fractal properties. Virtually all studies on human responses to fractals have used stimuli that represent the specific form of fractal geometry found in nature, i.e. statistical fractals, as opposed to fractal patterns which repeat exactly at different scales. This raises the question of whether human responses like preference and relaxation are being driven by fractal geometry in general or by the specific form of fractal geometry found in nature. In this study we consider both types of fractals (statistical and exact) and morph one type into the other. Based on the Koch curve, nine visual stimuli were produced in which curves of three different fractal dimensions evolve gradually from an exact to a statistical fractal. The patterns were shown for one minute each to thirty-five subjects while qEEG was continuously recorded. The results showed that the responses to statistical and exact fractals differ, and that the natural form of the fractal is important for inducing alpha responses, an indicator of a wakefully relaxed state and internalized attention.

  17. "Sebocytes' makeup": novel mechanisms and concepts in the physiology of the human sebaceous glands.

    Science.gov (United States)

    Tóth, Balázs I; Oláh, Attila; Szöllosi, Attila G; Czifra, Gabriella; Bíró, Tamás

    2011-06-01

    The pilosebaceous unit of the human skin consists of the hair follicle and the sebaceous gland. Within this "mini-organ", the sebaceous gland has been neglected by the researchers of the field for several decades. Actually, it was labeled as a reminiscence of human development ("a living fossil with a past but no future"), and was thought to solely act as a producer of sebum, a lipid-enriched oily substance which protects our skin (and hence the body) against various insults. However, due to emerging research activities of the past two decades, it has now become evident that the sebaceous gland is not only a "passive" cutaneous "relic" to establish the physico-chemical barrier function of the skin against constant environmental challenges, but it rather functions as an "active" neuro-immuno-endocrine cutaneous organ. This review summarizes recent findings of sebaceous gland research by mainly focusing on newly discovered physiological functions, novel regulatory mechanisms, key events in the pathology of the gland, and future directions in both experimental and clinical dermatology.

  18. The elite cross-country skier provides unique insights into human exercise physiology.

    Science.gov (United States)

    Holmberg, H-C

    2015-12-01

    Successful cross-country skiing, one of the most demanding of endurance sports, involves considerable physiological challenges posed by the combined upper- and lower-body effort of varying intensity and duration, on hilly terrain, often at moderate altitude and in a cold environment. Over the years, this unique sport has helped physiologists gain novel insights into the limits of human performance and regulatory capacity. There is a long-standing tradition of researchers in this field working together with coaches and athletes to improve training routines, monitor progress, and refine skiing techniques. This review summarizes research on elite cross-country skiers, with special emphasis on the studies initiated by Professor Bengt Saltin. He often employed exercise as a means to learn more about the human body, successfully engaging elite endurance athletes to improve our understanding of the demands, characteristics, and specific effects associated with different types of exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Physiological origin of biogenic magnetic nanoparticles in health and disease: from bacteria to humans

    Directory of Open Access Journals (Sweden)

    Gorobets O

    2017-06-01

    Full Text Available Oksana Gorobets,1,2 Svitlana Gorobets,1 Marceli Koralewski3 1National Technical University of Ukraine (Igor Sikorsky Kyiv Polytechnic Institute, 2Institute of Magnetism, National Academy of Sciences, Kiev, Ukraine; 3Faculty of Physics, Adam Mickiewicz University, Poznan, Poland Abstract: The discovery of biogenic magnetic nanoparticles (BMNPs in the human brain gives a strong impulse to study and understand their origin. Although knowledge of the subject is increasing continuously, much remains to be done for further development to help our society fight a number of pathologies related to BMNPs. This review provides an insight into the puzzle of the physiological origin of BMNPs in organisms of all three domains of life: prokaryotes, archaea, and eukaryotes, including humans. Predictions based on comparative genomic studies are presented along with experimental data obtained by physical methods. State-of-the-art understanding of the genetic control of biomineralization of BMNPs and their properties are discussed in detail. We present data on the differences in BMNP levels in health and disease (cancer, neurodegenerative disorders, and atherosclerosis, and discuss the existing hypotheses on the biological functions of BMNPs, with special attention paid to the role of the ferritin core and apoferritin. Keywords: biogenic magnetic nanoparticles, biomineralization, ferritin, magnetoferritin, genetic control, neurodegenerative disorders, cancer

  20. Recapitulation of physiological spatiotemporal signals promotes in vitro formation of phenotypically stable human articular cartilage

    Science.gov (United States)

    Wei, Yiyong; Zhou, Bin; Bernhard, Jonathan; Robinson, Samuel; Burapachaisri, Aonnicha; Guo, X. Edward

    2017-01-01

    Standard isotropic culture fails to recapitulate the spatiotemporal gradients present during native development. Cartilage grown from human mesenchymal stem cells (hMSCs) is poorly organized and unstable in vivo. We report that human cartilage with physiologic organization and in vivo stability can be grown in vitro from self-assembling hMSCs by implementing spatiotemporal regulation during induction. Self-assembling hMSCs formed cartilage discs in Transwell inserts following isotropic chondrogenic induction with transforming growth factor β to set up a dual-compartment culture. Following a switch in the basal compartment to a hypertrophic regimen with thyroxine, the cartilage discs underwent progressive deep-zone hypertrophy and mineralization. Concurrent chondrogenic induction in the apical compartment enabled the maintenance of functional and hyaline cartilage. Cartilage homeostasis, chondrocyte maturation, and terminal differentiation markers were all up-regulated versus isotropic control groups. We assessed the in vivo stability of the cartilage formed under different induction regimens. Cartilage formed under spatiotemporal regulation in vitro resisted endochondral ossification, retained the expression of cartilage markers, and remained organized following s.c. implantation in immunocompromised mice. In contrast, the isotropic control groups underwent endochondral ossification. Cartilage formed from hMSCs remained stable and organized in vivo. Spatiotemporal regulation during induction in vitro recapitulated some aspects of native cartilage development, and potentiated the maturation of self-assembling hMSCs into stable and organized cartilage resembling the native articular cartilage. PMID:28228529

  1. Protein Analysis in Human Cerebrospinal Fluid: Physiological Aspects, Current Progress and Future Challenges

    Directory of Open Access Journals (Sweden)

    Andreas F. Hühmer

    2006-01-01

    Full Text Available The introduction of lumbar puncture into clinical medicine over 100 years ago marks the beginning of the study of central nervous system diseases using the human cerebrospinal fluid (CSF. Ever since, CSF has been analyzed extensively to elucidate the physiological and biochemical bases of neurological disease. The proximity of CSF to the brain makes it a good target for studying the pathophysiology of brain functions, but the barrier function of the CSF also impedes its diagnostic value. Today, measurements to determine alterations in the composition of CSF are central in the differential diagnosis of specific diseases of the central nervous system (CNS. In particular, the analysis of the CSF protein composition provides crucial information in the diagnosis of CNS diseases. This enables the assessment of the physiology of the blood-CSF barrier and of the immunology of intrathecial responses. Besides those routine measurements, protein compositional studies of CSF have been extended recently to many other proteins in the expectation that comprehensive analysis of lower abundance CSF proteins will lead to the discovery of new disease markers. Disease marker discovery by molecular profiling of the CSF tissue has the enormous potential of providing many new disease relevant molecules. New developments in protein profiling techniques hold promise for the discovery and validation of relevant disease markers. In this review, we summarize the current efforts and progress in CSF protein profiling measurements using conventional and current protein analysis tools. We also discuss necessary development in methodology in order to have the highest impact on the study of the molecular composition of CSF proteins.

  2. A multi-sensor monitoring system of human physiology and daily activities.

    Science.gov (United States)

    Doherty, Sean T; Oh, Paul

    2012-04-01

    To present the design and pilot test results of a continuous multi-sensor monitoring system of real-world physiological conditions and daily life (activities, travel, exercise, and food consumption), culminating in a Web-based graphical decision-support interface. The system includes a set of wearable sensors wirelessly connected to a "smartphone" with a continuously running software application that compresses and transmits the data to a central server. Sensors include a Global Positioning System (GPS) receiver, electrocardiogram (ECG), three-axis accelerometer, and continuous blood glucose monitor. A food/medicine diary and prompted recall activity diary were also used. The pilot test involved 40 type 2 diabetic patients monitored over a 72-h period. All but three subjects were successfully monitored for the full study period. Smartphones proved to be an effective hub for managing multiple streams of data but required attention to data compression and battery consumption issues. ECG, accelerometer, and blood glucose devices performed adequately as long as subjects wore them. GPS tracking for a full day was feasible, although significant efforts are needed to impute missing data. Activity detection algorithms were successful in identifying activities and trip modes but could benefit by incorporating accelerometer data. The prompted recall diary was an effective tool for augmenting algorithm results, although subjects reported some difficulties with it. The food and medicine diary was completed fully, although end times and medicine dosages were occasionally missing. The unique combination of sensors holds promise for increasing accuracy and reducing burden associated with collecting individual-level activity and physiological data under real-world conditions, but significant data processing issues remain. Such data will provide new opportunities to explore the impacts of human geography and daily lifestyle on health at a fine spatial/temporal scale.

  3. Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response

    Science.gov (United States)

    Psikuta, Agnes; Mert, Emel; Annaheim, Simon; Rossi, René M.

    2018-02-01

    To evaluate the quality of new energy-saving and performance-supporting building and urban settings, the thermal sensation and comfort models are often used. The accuracy of these models is related to accurate prediction of the human thermo-physiological response that, in turn, is highly sensitive to the local effect of clothing. This study aimed at the development of an empirical regression model of the air gap thickness and the contact area in clothing to accurately simulate human thermal and perceptual response. The statistical model predicted reliably both parameters for 14 body regions based on the clothing ease allowances. The effect of the standard error in air gap prediction on the thermo-physiological response was lower than the differences between healthy humans. It was demonstrated that currently used assumptions and methods for determination of the air gap thickness can produce a substantial error for all global, mean, and local physiological parameters, and hence, lead to false estimation of the resultant physiological state of the human body, thermal sensation, and comfort. Thus, this model may help researchers to strive for improvement of human thermal comfort, health, productivity, safety, and overall sense of well-being with simultaneous reduction of energy consumption and costs in built environment.

  4. The emergence of Applied Physiology within the discipline of Physiology.

    Science.gov (United States)

    Tipton, Charles M

    2016-08-01

    Despite the availability and utilization of the physiology textbooks authored by Albrecht von Haller during the 18th century that heralded the modern age of physiology, not all physicians or physiologists were satisfied with its presentation, contents, or application to medicine. Initial reasons were fundamental disagreements between the "mechanists," represented by Boerhaave, Robinson, and von Haller, and the "vitalists," represented by the faculty and graduates of the Montpellier School of Medicine in France, notably, Bordeu and Barthez. Subsequently, objections originated from Europe, United Kingdom, and the United States in publications that focused not only on the teaching of physiology to medical and secondary students, but on the specific applications of the content of physiology to medicine, health, hygiene, pathology, and chronic diseases. At the turn of the 20th century, texts began to appear with applied physiology in their titles and in 1926, physician Samson Wright published a textbook entitled Applied Physiology that was intended for both medical students and the medical profession. Eleven years later, physicians Best and Taylor published The Physiological Basis of Medical Practice: A University of Toronto Texbook in Applied Physiology Although both sets of authors defined the connection between applied physiology and physiology, they failed to define the areas of physiology that were included within applied physiology. This was accomplished by the American Physiological Society (APS) Publications Committee in 1948 with the publication of the Journal of Appplied Physiology, that stated the word "applied" would broadly denote human physiology whereas the terms stress and environment would broadly include work, exercise, plus industrial, climatic and social factors. NIH established a study section (SS) devoted to applied physiology in 1964 which remained active until 2001 when it became amalgamated into other SSs. Before the end of the 20th century when

  5. High School Students' Understanding of the Human Body System

    Science.gov (United States)

    Assaraf, Orit Ben-Zvi; Dodick, Jeff; Tripto, Jaklin

    2013-01-01

    In this study, 120 tenth-grade students from 8 schools were examined to determine the extent of their ability to perceive the human body as a system after completing the first stage in their biology curriculum--"The human body, emphasizing homeostasis". The students' systems thinking was analyzed according to the STH thinking model, which roughly…

  6. A physiologically based toxicokinetic model for inhaled ethylene and ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Filser, Johannes Georg; Klein, Dominik

    2018-04-01

    Ethylene (ET) is the largest volume organic chemical. Mammals metabolize the olefin to ethylene oxide (EO), another important industrial chemical. The epoxide alkylates macromolecules and has mutagenic and carcinogenic properties. In order to estimate the EO burden in mice, rats, and humans resulting from inhalation exposure to gaseous ET or EO, a physiological toxicokinetic model was developed. It consists of the compartments lung, richly perfused tissues, kidneys, muscle, fat, arterial blood, venous blood, and liver containing the sub-compartment endoplasmic reticulum. Modeled ET metabolism is mediated by hepatic cytochrome P450 2E1, EO metabolism by hepatic microsomal epoxide hydrolase or cytosolic glutathione S-transferase in various tissues. EO is also spontaneously hydrolyzed or conjugated with glutathione. The model was validated on experimental data collected in mice, rats, and humans. Modeled were uptake by inhalation, wash-in-wash-out effect in the upper respiratory airways, distribution into tissues and organs, elimination via exhalation and metabolism, and formation of 2-hydroxyethyl adducts with hemoglobin and DNA. Simulated concentration-time courses of ET or EO in inhaled (gas uptake studies) or exhaled air, and of EO in blood during exposures to ET or EO agreed excellently with measured data. Predicted levels of adducts with DNA and hemoglobin, induced by ET or EO, agreed with reported levels. Exposures to 10000 ppm ET were predicted to induce the same adduct levels as EO exposures to 3.95 (mice), 5.67 (rats), or 0.313 ppm (humans). The model is concluded to be applicable for assessing health risks from inhalation exposure to ET or EO. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  8. Psychological and physiological human responses to simulated and real environments: A comparison between Photographs, 360° Panoramas, and Virtual Reality.

    Science.gov (United States)

    Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen

    2017-11-01

    Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Interteaching within a Human Physiology Course: A Comparison of First- and Second-Year Students' Learning Skills and Perceptions

    Science.gov (United States)

    Byrne, Bruce; Guy, Richard

    2016-01-01

    This article describes student perceptions and outcomes in relation to the use of a novel interteaching approach. The study sample (n = 260) was taken from a large human physiology class, which included both first- and second-year students. However, unlike the first-year students, the second-year students had significant prior knowledge, having…

  10. Do Targeted Written Comments and the Rubric Method of Delivery Affect Performance on Future Human Physiology Laboratory Reports?

    Science.gov (United States)

    Clayton, Zachary S.; Wilds, Gabriel P.; Mangum, Joshua E.; Hocker, Austin D.; Dawson, Sierra M.

    2016-01-01

    We investigated how students performed on weekly two-page laboratory reports based on whether the grading rubric was provided to the student electronically or in paper form and the inclusion of one- to two-sentence targeted comments. Subjects were registered for a 289-student, third-year human physiology class with laboratory and were randomized…

  11. Academic Performance in Human Anatomy and Physiology Classes: A 2-Yr Study of Academic Motivation and Grade Expectation

    Science.gov (United States)

    Sturges, Diana; Maurer, Trent W.; Allen, Deborah; Gatch, Delena Bell; Shankar, Padmini

    2016-01-01

    This project used a nonexperimental design with a convenience sample and studied the relationship between academic motivation, grade expectation, and academic performance in 1,210 students enrolled in undergraduate human anatomy and physiology (HAP) classes over a 2-yr period. A 42-item survey that included 28 items of the adapted academic…

  12. Active Learning and Flipped Classroom, Hand in Hand Approach to Improve Students Learning in Human Anatomy and Physiology

    Science.gov (United States)

    Entezari, Maria; Javdan, Mohammad

    2016-01-01

    Because Human Anatomy and Physiology (A&P), a gateway course for allied health majors, has high dropout rates nationally, it is challenging to find a successful pedagogical intervention. Reports on the effect of integration of flipped classrooms and whether it improves learning are contradictory for different disciplines. Thus many educators…

  13. A DYNAMIC PHYSIOLOGICALLY-BASED TOXICOKINETIC (DPBTK) MODEL FOR SIMULATION OF COMPLEX TOLUENE EXPOSURE SCENARIOS IN HUMANS

    Science.gov (United States)

    A GENERAL PHYSIOLOGICAL AND TOXICOKINETIC (GPAT) MODEL FOR SIMULATION OF COMPLEX TOLUENE EXPOSURE SCENARIOS IN HUMANS. E M Kenyon1, T Colemen2, C R Eklund1 and V A Benignus3. 1U.S. EPA, ORD, NHEERL, ETD, PKB, RTP, NC, USA; 2Biological Simulators, Inc., Jackson MS, USA, 3U.S. EP...

  14. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds.

    Science.gov (United States)

    Schiefner, André; Skerra, Arne

    2015-04-21

    all higher organisms, physiologically important members of this family have long been known in the human body, for example with the plasma retinol-binding protein that serves for the transport of vitamin A. This prototypic human lipocalin was the first for which a crystal structure was solved. Notably, several other lipocalins were discovered and assigned to this protein class before the term itself became familiar, which explains their diverse names in the scientific literature. To date, up to 15 distinct members of the lipocalin family have been characterized in humans, and during the last two decades the three-dimensional structures of a dozen major subtypes have been elucidated. This Account presents a comprehensive overview of the human lipocalins, revealing common structural principles but also deviations that explain individual functional features. Taking advantage of modern methods for combinatorial protein design, lipocalins have also been employed as scaffolds for the construction of artifical binding proteins with novel ligand specificities, so-called Anticalins, hence opening perspectives as a new class of biopharmaceuticals for medical therapy.

  15. Humanism vs Bureaucracy in the Schools

    Science.gov (United States)

    Guilmette, David A.

    1973-01-01

    Argues that the adoption of the bureaucratic structure, with its concomitant values, has proven to be incompatible with both intellectual and human development, that a learning environment that promotes simultaneously both intellectual development and humanism must be created, and new forms of organizational structure to achieve goals currently…

  16. Human physiology and psychology in space flight; Uchu hiko ni okeru ningen no seiri to shinri

    Energy Technology Data Exchange (ETDEWEB)

    Murai, T. [National Space Development Agency of Japan, Tokyo (Japan)

    1999-10-05

    Human beings' adaptation to space and the effects on them of a prolonged stay in space are discussed. Some effects may be detrimental to crewmen even when they are medically judged as 'normal' and 'adaptable.' Bone deliming, muscular atrophy, and hypodynamia may be physiologically 'normal' and 'adaptable' in the zero-gravity environment where no strength is required to hold a position or attitude, and they will not cause any serious problems if crewmen are to stay in the zero-gravity environment permanently. Astronauts work on conditions that they return to the earth, however, and they have to stand on their own legs when back on the ground. Such being the case, they in the space vehicle are forced to make efforts at having their bone density and muscular strength sustained. It is inevitable for a space station to be a closed, isolated system, and the crewmen have to live in multinational, multicultural, and multilingual circumstances in case the flight is an international project. They will be exposed to great social and psychological stresses, and their adaptability to such stresses presents an important task. (NEDO)

  17. Ultrasensitive, passive and wearable sensors for monitoring human muscle motion and physiological signals.

    Science.gov (United States)

    Cai, Feng; Yi, Changrui; Liu, Shichang; Wang, Yan; Liu, Lacheng; Liu, Xiaoqing; Xu, Xuming; Wang, Li

    2016-03-15

    Flexible sensors have attracted more and more attention as a fundamental part of anthropomorphic robot research, medical diagnosis and physical health monitoring. Here, we constructed an ultrasensitive and passive flexible sensor with the advantages of low cost, lightness and wearability, electric safety and reliability. The fundamental mechanism of the sensor is based on triboelectric effect inducing electrostatic charges on the surfaces between two different materials. Just like a plate capacitor, current will be generated while the distance or size of the parallel capacitors changes caused by the small mechanical disturbance upon it and therefore the output current/voltage will be produced. Typically, the passive sensor unambiguously monitors muscle motions including hand motion from stretch-clench-stretch, mouth motion from open-bite-open, blink and respiration. Moreover, this sensor records the details of the consecutive phases in a cardiac cycle of the apex cardiogram, and identify the peaks including percussion wave, tidal wave and diastolic wave of the radial pulse wave. To record subtle human physiological signals including radial pulsilogram and apex cardiogram with excellent signal/noise ratio, stability and reproducibility, the sensor shows great potential in the applications of medical diagnosis and daily health monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Metaplasticity in human primary somatosensory cortex: effects on physiology and tactile perception.

    Science.gov (United States)

    Jones, Christina B; Lulic, Tea; Bailey, Aaron Z; Mackenzie, Tanner N; Mi, Yi Qun; Tommerdahl, Mark; Nelson, Aimee J

    2016-05-01

    Theta-burst stimulation (TBS) over human primary motor cortex evokes plasticity and metaplasticity, the latter contributing to the homeostatic balance of excitation and inhibition. Our knowledge of TBS-induced effects on primary somatosensory cortex (SI) is limited, and it is unknown whether TBS induces metaplasticity within human SI. Sixteen right-handed participants (6 females, mean age 23 yr) received two TBS protocols [continuous TBS (cTBS) and intermittent TBS (iTBS)] delivered in six different combinations over SI in separate sessions. TBS protocols were delivered at 30 Hz and were as follows: a single cTBS protocol, a single iTBS protocol, cTBS followed by cTBS, iTBS followed by iTBS, cTBS followed by iTBS, and iTBS followed by cTBS. Measures included the amplitudes of the first and second somatosensory evoked potentials (SEPs) via median nerve stimulation, their paired-pulse ratio (PPR), and temporal order judgment (TOJ). Dependent measures were obtained before TBS and at 5, 25, 50, and 90 min following stimulation. Results indicate similar effects following cTBS and iTBS; increased amplitudes of the second SEP and PPR without amplitude changes to SEP 1, and impairments in TOJ. Metaplasticity was observed such that TOJ impairments following a single cTBS protocol were abolished following consecutive cTBS protocols. Additionally, consecutive iTBS protocols altered the time course of effects when compared with a single iTBS protocol. In conclusion, 30-Hz cTBS and iTBS protocols delivered in isolation induce effects consistent with a TBS-induced reduction in intracortical inhibition within SI. Furthermore, cTBS- and iTBS-induced metaplasticity appear to follow homeostatic and nonhomeostatic rules, respectively. Copyright © 2016 the American Physiological Society.

  19. An integrated approach to develop, validate and operate thermo-physiological human simulator for the development of protective clothing.

    Science.gov (United States)

    Psikuta, Agnes; Koelblen, Barbara; Mert, Emel; Fontana, Piero; Annaheim, Simon

    2017-12-07

    Following the growing interest in the further development of manikins to simulate human thermal behaviour more adequately, thermo-physiological human simulators have been developed by coupling a thermal sweating manikin with a thermo-physiology model. Despite their availability and obvious advantages, the number of studies involving these devices is only marginal, which plausibly results from the high complexity of the development and evaluation process and need of multi-disciplinary expertise. The aim of this paper is to present an integrated approach to develop, validate and operate such devices including technical challenges and limitations of thermo-physiological human simulators, their application and measurement protocol, strategy for setting test scenarios, and the comparison to standard methods and human studies including details which have not been published so far. A physical manikin controlled by a human thermoregulation model overcame the limitations of mathematical clothing models and provided a complementary method to investigate thermal interactions between the human body, protective clothing, and its environment. The opportunities of these devices include not only realistic assessment of protective clothing assemblies and equipment but also potential application in many research fields ranging from biometeorology, automotive industry, environmental engineering, and urban climate to clinical and safety applications.

  20. Using Immersive Healthcare Simulation for Physiology Education: Initial Experience in High School, College, and Graduate School Curricula

    Science.gov (United States)

    Oriol, Nancy E.; Hayden, Emily M.; Joyal-Mowschenson, Julie; Muret-Wagstaff, Sharon; Faux, Russell; Gordon, James A.

    2011-01-01

    In the natural world, learning emerges from the joy of play, experimentation, and inquiry as part of everyday life. However, this kind of informal learning is often difficult to integrate within structured educational curricula. This report describes an educational program that embeds naturalistic learning into formal high school, college, and…

  1. Using Stimulation of the Diving Reflex in Humans to Teach Integrative Physiology

    Science.gov (United States)

    Choate, Julia K.; Denton, Kate M.; Evans, Roger G.; Hodgson, Yvonne

    2014-01-01

    During underwater submersion, the body responds by conserving O[subscript 2] and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be…

  2. Human and Inhuman Capital, and Schooling

    Directory of Open Access Journals (Sweden)

    Primož Krašovec

    2014-06-01

    Full Text Available Theories of human capital are becoming an increasingly common reference in both newer pedagogical theories as well as political documents, outlining the plans for reforms of science and education. As a part of broader ideology of knowledge society, human capital theories represent ideological legitimation of neoliberal trends in science and education policies. Increased investment in human capital on both social and individual level is supposed to increase the competitiveness of the economy as a whole as well as employability and welfare of individuals. In the first part of the article, we sketch the intellectual history and the socio-political context of the development of theories of human capital. Second part is dedicated to a critique of characteristically neoliberal equalization of labor with capital and of a theory, according to which investment in human capital brings profits to individual workers. In the third part, we outline a general socio-historical dynamics of the development of high-tech capitalism and show that “investments in human capital” and economic innovations do not bring about increased social welfare. In the fourth, final part, we analyze in detail how current educational reforms impact the learning process and working conditions at public universities.

  3. Review of the physiology of human thermal comfort while exercising in urban landscapes and implications for bioclimatic design

    Science.gov (United States)

    Vanos, Jennifer K.; Warland, Jon S.; Gillespie, Terry J.; Kenny, Natasha A.

    2010-07-01

    This review comprehensively examines scientific literature pertaining to human physiology during exercise, including mechanisms of heat formation and dissipation, heat stress on the body, the importance of skin temperature monitoring, the effects of clothing, and microclimatic measurements. This provides a critical foundation for microclimatologists and biometeorologists in the understanding of experiments involving human physiology. The importance of the psychological aspects of how an individual perceives an outdoor environment are also reviewed, emphasizing many factors that can indirectly affect thermal comfort (TC). Past and current efforts to develop accurate human comfort models are described, as well as how these models can be used to develop resilient and comfortable outdoor spaces for physical activity. Lack of suitable spaces plays a large role in the deterioration of human health due to physical inactivity, leading to higher rates of illness, heart disease, obesity and heat-related casualties. This trend will continue if urban designers do not make use of current knowledge of bioclimatic urban design, which must be synthesized with physiology, psychology and microclimatology. Increased research is required for furthering our knowledge on the outdoor human energy balance concept and bioclimatic design for health and well-being in urban areas.

  4. A cross-sectional survey on the inclusion of tobacco prevention/cessation, nutrition/ diet, and exercise physiology/fitness education in medical school curricula.

    Science.gov (United States)

    Torabi, Mohammad R; Tao, Ran; Jay, Stephen J; Olcott, Courtney

    2011-05-01

    Chronic diseases are currently the major cause of death and disability worldwide. Addressing the main causes of chronic diseases from a preventive perspective is imperative for half ing a continual increase in premature deaths. Physicians occupy a unique position to assist individuals with chronic disease prevention. Hence, medical school is an opportunity to prepare physicians for preventive interventions with patients at risk for developing chronic diseases. This study asserts that education on chronic disease prevention that targets tobacco cessation/prevention, nutrition/ diet, and exercise physiology/fitness is a key aspect of medical school curricula. However, many US medical schools do not include all 3 components in their curricula. This study investigates the extent to which medical school curricula include the above 3 areas. Two methods were utilized for the study: (1) a cross-sectional survey was given to the associate dean of academic affairs of 129 US medical schools and (2) relevant data were retrieved from the Association of American Medical Colleges. Findings support the notion that medical schools are in need of increased curricula covering tobacco prevention/cessation, nutrition/diet, and exercise physiology/fitness. Results indicate that exercise physiology/fitness was the area receiving the least attention in medical schools. Ultimately, this study's purpose was to provide a basis for determining whether inclusion of these 3 subjects in medical school curricula has any significant effect on training future doctors to meet the needs of growing numbers of individuals with chronic disease.

  5. Red palm oil: nutritional, physiological and therapeutic roles in improving human wellbeing and quality of life.

    Science.gov (United States)

    Oguntibeju, O O; Esterhuyse, A J; Truter, E J

    2009-01-01

    The link between dietary fats and cardiovascular disease has created a growing interest in dietary red palm oil research. Also, the link between nutrition and health, oxidative stress and the severity or progression of disease has stimulated further interest in the potential role of red palm oil (a natural antioxidant product) to improve oxidative status by reducing oxidative stress in patients with cardiovascular disease, cancer and other chronic diseases. In spite of its level of saturated fatty acid content (50%), red palm oil has not been found to promote atherosclerosis and/or arterial thrombosis. This is probably due to the ratio of its saturated fatty acid to unsaturated fatty acid content and its high concentration of antioxidants such as beta-carotene, tocotrienols, tocopherols and vitamin E. It has also been reported that the consumption of red palm oil reduces the level of endogenous cholesterol, and this seems to be due to the presence of the tocotrienols and the peculiar isomeric position of its fatty acids. The benefits of red palm oil to health include a reduction in the risk of arterial thrombosis and/or atherosclerosis, inhibition of endogenous cholesterol biosynthesis, platelet aggregation, a reduction in oxidative stress and a reduction in blood pressure. It has also been shown that dietary red palm oil, taken in moderation in animals and humans, promotes the efficient utilisation of nutrients, activates hepatic drug metabolising enzymes, facilitates the haemoglobinisation of red blood cells and improves immune function. This review provides a comprehensive overview of the nutritional, physiological and biochemical roles of red palm oil in improving wellbeing and quality of life.

  6. Opportunities for learning in an introductory undergraduate human anatomy and physiology course

    Science.gov (United States)

    Montplaisir, Lisa Marie

    2003-10-01

    The purpose of this study was to explore the course conditions that support the development of meaningful student learning in an introductory undergraduate human anatomy and physiology course. The study was conducted during an 8-week summer-session at a small mid-western university. Classroom observations and taped recordings of class sessions were used to determine content episodes within the instructional unit, opportunities for learning created by the instructor, demonstrations of information processing by the students, and the ways in which the instructor used the Personal Response System (PRS). Student interviews were used to determine students' level of understanding of pre-test and post-test items. Student interviews and a questionnaire were used to determine students' perceptions of the PRS as a learning tool. Findings reveal that the instructor had different expectations of students when posing verbal questions in-class than he had when posing PRS questions. The use of verbal questions did not permit demonstrations of student understanding; however, the use of the PRS did result in demonstrations of student understanding. Questions posed via the use of the PRS were categorized according to cognitive level. The cognitive level of the questions increased with time over the instructional unit and within the content episodes. Students demonstrated deeper understanding of the topics after instruction than they did before instruction. Students reported more in-class thinking about the content, more discussion of the content with their neighbors, more regular class attendance, more opportunities for deeper learning, and a general preference for the PRS over traditional lectures. Findings of the study indicate that the instructional decisions about the use of questions influences the opportunities for students to process information and demonstrate their understanding of the content and that students valued these opportunities. A better understanding of the

  7. A vision and strategy for the virtual physiological human: 2012 update.

    Science.gov (United States)

    Hunter, Peter; Chapman, Tara; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco

    2013-04-06

    European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595-2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally.

  8. Physiologically Based Simulations of Deuterated Glucose for Quantifying Cell Turnover in Humans

    Directory of Open Access Journals (Sweden)

    Christoph Niederalt

    2017-04-01

    Full Text Available In vivo [6,6-2H2]-glucose labeling is a state-of-the-art technique for quantifying cell proliferation and cell disappearance in humans. However, there are discrepancies between estimates of T cell proliferation reported in short (1-day versus long (7-day 2H2-glucose studies and very-long (9-week 2H2O studies. It has been suggested that these discrepancies arise from underestimation of true glucose exposure from intermittent blood sampling in the 1-day study. Label availability in glucose studies is normally approximated by a “square pulse” (Sq pulse. Since the body glucose pool is small and turns over rapidly, the availability of labeled glucose can be subject to large fluctuations and the Sq pulse approximation may be very inaccurate. Here, we model the pharmacokinetics of exogenous labeled glucose using a physiologically based pharmacokinetic (PBPK model to assess the impact of a more complete description of label availability as a function of time on estimates of CD4+ and CD8+ T cell proliferation and disappearance. The model enabled us to predict the exposure to labeled glucose during the fasting and de-labeling phases, to capture the fluctuations of labeled glucose availability caused by the intake of food or high-glucose beverages, and to recalculate the proliferation and death rates of immune cells. The PBPK model was used to reanalyze experimental data from three previously published studies using different labeling protocols. Although using the PBPK enrichment profile decreased the 1-day proliferation estimates by about 4 and 7% for CD4 and CD8+ T cells, respectively, differences with the 7-day and 9-week studies remained significant. We conclude that the approximations underlying the “square pulse” approach—recently suggested as the most plausible hypothesis—only explain a component of the discrepancy in published T cell proliferation rate estimates.

  9. Baroreflex and neurovascular responses to skeletal muscle mechanoreflex activation in humans: an exercise in integrative physiology.

    Science.gov (United States)

    Drew, Rachel C

    2017-12-01

    Cardiovascular adjustments to exercise resulting in increased blood pressure (BP) and heart rate (HR) occur in response to activation of several neural mechanisms: the exercise pressor reflex, central command, and the arterial baroreflex. Neural inputs from these feedback and feedforward mechanisms integrate in the cardiovascular control centers in the brain stem and modulate sympathetic and parasympathetic neural outflow, resulting in the increased BP and HR observed during exercise. Another specific consequence of the central neural integration of these inputs during exercise is increased sympathetic neural outflow directed to the kidneys, causing renal vasoconstriction, a key reflex mechanism involved in blood flow redistribution during increased skeletal muscle work. Studies in humans have shown that muscle mechanoreflex activation inhibits cardiac vagal outflow, decreasing the sensitivity of baroreflex control of HR. Metabolite sensitization of muscle mechanoreceptors can lead to reduced sensitivity of baroreflex control of HR, with thromboxane being one of the metabolites involved, via greater inhibition of cardiac vagal outflow without affecting baroreflex control of BP or baroreflex resetting. Muscle mechanoreflex activation appears to play a predominant role in causing renal vasoconstriction, both in isolation and in the presence of local metabolites. Limited investigations in older adults and patients with cardiovascular-related disease have provided some insight into how the influence of muscle mechanoreflex activation on baroreflex function and renal vasoconstriction is altered in these populations. However, future research is warranted to better elucidate the specific effect of muscle mechanoreflex activation on baroreflex and neurovascular responses with aging and cardiovascular-related disease. Copyright © 2017 the American Physiological Society.

  10. Application of morphological and physiological parameters representative of a sample Brazilian population in the human respiratory tract model

    International Nuclear Information System (INIS)

    Reis, A.A.; Cardoso, J.C.S.; Lourenco, M.C.

    2005-01-01

    Full text: The Human Respiratory Tract Model (HRTM) proposed in ICRP Publication 66 account for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. These changing characteristics can influence the rates and the sites of deposition. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The HRTM model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. lt is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends for a reliable evaluation of the regional deposition the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined in ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The respiratory values at different levels of activity for ages varying from

  11. Beginning Teachers' Perceptions of School Human Resource Practices

    Science.gov (United States)

    Kwan, Paula

    2009-01-01

    Human resource (HR) management is defined as the sum of activities employed by an organization to attract, develop, and retain people with the appropriate knowledge and skills for effectively and efficiently achieving organizational goals. An understanding of the HR practices in schools is important, as the assembly of a team of qualified and…

  12. Regulation of hemoglobin AIc formation in human erythrocytes in vitro. Effects of physiologic factors other than glucose.

    OpenAIRE

    Smith, R J; Koenig, R J; Binnerts, A; Soeldner, J S; Aoki, T T

    1982-01-01

    The formation of hemoglobin AIc was studied in intact human erythrocytes in vitro. Satisfactory methods were developed for maintaining erythrocytes under physiologic conditions for greater than 8 d with less than 10% hemolysis. Hemoglobin AIc levels were determined chromatographically on erythrocyte hemolysates after removal of reversible components by incubation for 6 h at 37 degree C. Hemoglobin AIc concentration was found to increase linearly with time during 8 d of incubation. The rate of...

  13. Aberrant patterns of X chromosome inactivation in a new line of human embryonic stem cells established in physiological oxygen concentrations.

    Science.gov (United States)

    de Oliveira Georges, Juliana Andrea; Vergani, Naja; Fonseca, Simone Aparecida Siqueira; Fraga, Ana Maria; de Mello, Joana Carvalho Moreira; Albuquerque, Maria Cecília R Maciel; Fujihara, Litsuko Shimabukuro; Pereira, Lygia Veiga

    2014-08-01

    One of the differences between murine and human embryonic stem cells (ESCs) is the epigenetic state of the X chromosomes in female lines. Murine ESCs (mESCs) present two transcriptionally active Xs that will undergo the dosage compensation process of XCI upon differentiation, whereas most human ESCs (hESCs) spontaneously inactivate one X while keeping their pluripotency. Whether this reflects differences in embryonic development of mice and humans, or distinct culture requirements for the two kinds of pluripotent cells is not known. Recently it has been shown that hESCs established in physiological oxygen levels are in a stable pre-XCI state equivalent to that of mESCs, suggesting that culture in low oxygen concentration is enough to preserve that epigenetic state of the X chromosomes. Here we describe the establishment of two new lines of hESCs under physiological oxygen level and the characterization of the XCI state in the 46,XX line BR-5. We show that a fraction of undifferentiated cells present XIST RNA accumulation and single H3K27me foci, characteristic of the inactive X. Moreover, analysis of allele specific gene expression suggests that pluripotent BR-5 cells present completely skewed XCI. Our data indicate that physiological levels of oxygen are not sufficient for the stabilization of the pre-XCI state in hESCs.

  14. School-age children's fears, anxiety, and human figure drawings.

    Science.gov (United States)

    Carroll, M K; Ryan-Wenger, N A

    1999-01-01

    The purpose of this study was to identify the fears of school-age children and determine the relationship between fear and anxiety. A descriptive, correlational, secondary analysis study was conducted using a convenience sample of 90 children between the ages of 8 and 12 years. Each child was instructed to complete the Revised Children's Anxiety Scale and then answer questions from a structured interview. On completion, each child was instructed to draw a human figure drawing. Frequency charts and correlational statistics were used to analyze the data. Findings indicated that the most significant fears of the boys were in the categories of animals, safety, school, and supernatural phenomena, whereas girls were more fearful of natural phenomena. High correlations existed between anxiety scores and the number of fears and emotional indicators on human figure drawings. Because human figure drawings are reliable tools for assessing anxiety and fears in children, practitioners should incorporate these drawings as part of their routine assessments of fearful children.

  15. Physiological responses and manual performance in humans following repeated exposure to severe cold at night.

    Science.gov (United States)

    Ozaki, H; Nagai, Y; Tochihara, Y

    2001-04-01

    We evaluated human physiological responses and the performance of manual tasks during exposure to severe cold (-25 degrees C) at night (0300-0500 hours) and in the afternoon (1500-1700 hours). Thirteen male students wearing standard cold protective clothing occupied a severely cold room (-25 degrees C) for 20 min, and were then transferred to a cool room (10 degrees C) for 20 min. This pattern of exposure was repeated three times, for a total time of exposure to extreme cold of 60 min. The experiments were started either at 1500 hours or 0300 hours and measurements of rectal temperature, skin temperature, blood pressure, performance in a counting task, hand tremor, and subjective responses were made in each condition. At the end of the experiment at night the mean decrease in rectal temperature [0.68 (SEM 0.04) degree C] was significantly greater than that at the end of the experiment in the afternoon [0.55 (SEM 0.08) degree C, P second cold exposure at night the mean increase in diastolic blood pressure [90 (SEM 2.0) mmHg] was significantly greater than that at the end of the second cold exposure in the afternoon [82 (SEM 2.8) mmHg, P second cold exposure at night, mean finger skin temperature [11.8 (SEM 0.8) degrees C] was significantly higher than that at the comparable time in the afternoon [9.0 (SEM 0.7) degrees C, P second cold exposure at night [25.6 (SEM 1.5) degrees C] was significantly higher than in the afternoon [20.1 (SEM 0.8) degrees C, P < 0.01]. The increased skin temperatures in the periphery resulted in increased heat loss. Since peripheral skin temperatures were highest at night, the subjects noted diminished sensations of thermal cold and pain at that time. Manual dexterity at the end of the first cold exposure at night [mean 83.7 (SEM 3.6) times.min-1] had decreased significantly more than at the end of the first cold exposure in the afternoon [mean 89.4 (SEM 3.5) times.min-1, P < 0.01]. These findings of a lowered rectal temperature and

  16. Using stimulation of the diving reflex in humans to teach integrative physiology.

    Science.gov (United States)

    Choate, Julia K; Denton, Kate M; Evans, Roger G; Hodgson, Yvonne

    2014-12-01

    During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.

  17. Identification of differences in human and great ape phytanic acid metabolism that could influence gene expression profiles and physiological functions

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D

    2010-10-01

    Full Text Available Abstract Background It has been proposed that anatomical differences in human and great ape guts arose in response to species-specific diets and energy demands. To investigate functional genomic consequences of these differences, we compared their physiological levels of phytanic acid, a branched chain fatty acid that can be derived from the microbial degradation of chlorophyll in ruminant guts. Humans who accumulate large stores of phytanic acid commonly develop cerebellar ataxia, peripheral polyneuropathy, and retinitis pigmentosa in addition to other medical conditions. Furthermore, phytanic acid is an activator of the PPAR-alpha transcription factor that influences the expression of genes relevant to lipid metabolism. Results Despite their trace dietary phytanic acid intake, all great ape species had elevated red blood cell (RBC phytanic acid levels relative to humans on diverse diets. Unlike humans, chimpanzees showed sexual dimorphism in RBC phytanic acid levels, which were higher in males relative to females. Cultured skin fibroblasts from all species had a robust capacity to degrade phytanic acid. We provide indirect evidence that great apes, in contrast to humans, derive significant amounts of phytanic acid from the hindgut fermentation of plant materials. This would represent a novel reduction of metabolic activity in humans relative to the great apes. Conclusion We identified differences in the physiological levels of phytanic acid in humans and great apes and propose this is causally related to their gut anatomies and microbiomes. Phytanic acid levels could contribute to cross-species and sex-specific differences in human and great ape transcriptomes, especially those related to lipid metabolism. Based on the medical conditions caused by phytanic acid accumulation, we suggest that differences in phytanic acid metabolism could influence the functions of human and great ape nervous, cardiovascular, and skeletal systems.

  18. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    Science.gov (United States)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  19. Nitrogen Solubility in Adipose Tissues of Diving Animals: Implications for Human Divers and for Modeling Diving Physiology

    Science.gov (United States)

    2016-11-01

    UNC-CH ethics /privacy website so I could be approved, only to discover from a different UNC-CH administrative office that this was not needed. We...water and extracted human fat. Technical Report, USAF School of Aerospace Medicine. SAM-TR 94: 1-9. Koopman, H.N. 2007. Phylogenetic, ecological , and

  20. A biomimetic physiological model for human adipose tissue by adipocytes and endothelial cell cocultures with spatially controlled distribution

    International Nuclear Information System (INIS)

    Yao, Rui; Zhang, Renji; Lin, Feng; Du, Yanan; Luan, Jie

    2013-01-01

    An in vitro model that recapitulates the characteristics of native human adipose tissue would largely benefit pathology studies and therapy development. In this paper, we fabricated a physiological model composed of both human adipocytes and endothelial cells with spatially controlled distribution that biomimics the structure and composition of human adipose tissue. Detailed studies into the cell–cell interactions between the adipocytes and endothelial cells revealed a mutual-enhanced effect which resembles the in vivo routine. Furthermore, comparisons between planar coculture and model coculture demonstrated improved adipocyte function as well as endothelial cell proliferation under the same conditions. This research provided a reliable model for human adipose tissue development studies and potential obesity-related therapy development. (paper)

  1. Physiological parameters

    International Nuclear Information System (INIS)

    Natera, E.S.

    1998-01-01

    The physiological characteristics of man depend on the intake, metabolism and excretion of stable elements from food, water, and air. The physiological behavior of natural radionuclides and radionuclides from nuclear weapons testing and from the utilization of nuclear energy is believed to follow the pattern of stable elements. Hence information on the normal physiological processes occurring in the human body plays an important role in the assessment of the radiation dose received by man. Two important physiological parameters needed for internal dose determination are the pulmonary function and the water balance. In the Coordinated Research Programme on the characterization of Asian population, five participants submitted data on these physiological characteristics - China, India, Japan, Philippines and Viet Nam. During the CRP, data on other pertinent characteristics such as physical and dietary were simultaneously being collected. Hence, the information on the physiological characteristics alone, coming from the five participants were not complete and are probably not sufficient to establish standard values for the Reference Asian Man. Nonetheless, the data collected is a valuable contribution to this research programme

  2. A new look at the comparative physiology of insect and human hearts

    Czech Academy of Sciences Publication Activity Database

    Sláma, Karel

    2012-01-01

    Roč. 58, č. 8 (2012), s. 1072-1081 ISSN 0022-1910 Institutional support: RVO:60077344 Keywords : heartbeat reversal * anterograde heartbeat * retrograde heartbeat Subject RIV: ED - Physiology Impact factor: 2.379, year: 2012 http://www. science direct.com/ science /article/pii/S0022191012001035#

  3. Association between online social networking and depression in high school students: behavioral physiology viewpoint.

    Science.gov (United States)

    Pantic, Igor; Damjanovic, Aleksandar; Todorovic, Jovana; Topalovic, Dubravka; Bojovic-Jovic, Dragana; Ristic, Sinisa; Pantic, Senka

    2012-03-01

    Frequent use of Facebook and other social networks is thought to be associated with certain behavioral changes, and some authors have expressed concerns about its possible detrimental effect on mental health. In this work, we investigated the relationship between social networking and depression indicators in adolescent population. Total of 160 high school students were interviewed using an anonymous, structured questionnaire and Back Depression Inventory - second edition (BDI-II-II). Apart from BDI-II-II, students were asked to provide the data for height and weight, gender, average daily time spent on social networking sites, average time spent watching TV, and sleep duration in a 24-hour period. Average BDI-II-II score was 8.19 (SD=5.86). Average daily time spent on social networking was 1.86 h (SD=2.08 h), and average time spent watching TV was 2.44 h (SD=1.74 h). Average body mass index of participants was 21.84 (SD=3.55) and average sleep duration was 7.37 (SD=1.82). BDI-II-II score indicated minimal depression in 104 students, mild depression in 46 students, and moderate depression in 10 students. Statistically significant positive correlation (psocial networking. Our results indicate that online social networking is related to depression. Additional research is required to determine the possible causal nature of this relationship.

  4. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses and human performance

    DEFF Research Database (Denmark)

    Lan, Li; Wargocki, Pawel; Wyon, David Peter

    2011-01-01

    The effects of thermal discomfort on health and human performance were investigated in an office, in an attempt to elucidate the physiological mechanisms involved. Twelve subjects (six men and six women) performed neurobehavioral tests and tasks typical of office work while thermally neutral (at 22......, and were less willing to exert effort. Task performance decreased when the subjects felt warm. Their heart rate, respiratory ventilation, and end-tidal partial pressure of carbon dioxide increased significantly, and their arterial oxygen saturation decreased. Tear film quality was found to be significantly...... reduced at the higher temperature when they felt warm. No effects were observed on salivary biomarkers (alpha-amylase and cortisol). The present results imply that the negative effects on health and performance that occur when people feel thermally warm at raised temperatures are caused by physiological...

  5. The pharmacology of the human female orgasm - its biological and physiological backgrounds.

    Science.gov (United States)

    Levin, Roy J

    2014-06-01

    The female orgasm has been examined over the years by numerous scientific disciplines yet it still has many secrets to be disclosed. Because its physiology, especially its neurophysiology, is sparingly understood its pharmacology is necessarily limited based mainly on the side effects of drugs. Few published studies have used a placebo group as controls. The paucity of focussed studies is well illustrated by the fact that there still is no approved medication to treat female orgasmic dysfunction. The present brief overview examines the most important aspects of its biology and especially its physiology highlighting the many questions that need answering if we are to have a comprehensive pharmacology of the female orgasm. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. System and method for leveraging human physiological traits to control microprocessor frequency

    Energy Technology Data Exchange (ETDEWEB)

    Shye, Alex; Pan, Yan; Scholbrock, Benjamin; Miller, J. Scott; Memik, Gokhan; Dinda, Peter A; Dick, Robert P

    2014-03-25

    A system and method for leveraging physiological traits to control microprocessor frequency are disclosed. In some embodiments, the system and method may optimize, for example, a particular processor-based architecture based on, for example, end user satisfaction. In some embodiments, the system and method may determine, for example, whether their users are satisfied to provide higher efficiency, improved reliability, reduced power consumption, increased security, and a better user experience. The system and method may use, for example, biometric input devices to provide information about a user's physiological traits to a computer system. Biometric input devices may include, for example, one or more of the following: an eye tracker, a galvanic skin response sensor, and/or a force sensor.

  7. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen.

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Coppé

    2010-02-01

    Full Text Available Cellular senescence irreversibly arrests cell proliferation in response to oncogenic stimuli. Human cells develop a senescence-associated secretory phenotype (SASP, which increases the secretion of cytokines and other factors that alter the behavior of neighboring cells. We show here that "senescent" mouse fibroblasts, which arrested growth after repeated passage under standard culture conditions (20% oxygen, do not express a human-like SASP, and differ from similarly cultured human cells in other respects. However, when cultured in physiological (3% oxygen and induced to senesce by radiation, mouse cells more closely resemble human cells, including expression of a robust SASP. We describe two new aspects of the human and mouse SASPs. First, cells from both species upregulated the expression and secretion of several matrix metalloproteinases, which comprise a conserved genomic cluster. Second, for both species, the ability to promote the growth of premalignant epithelial cells was due primarily to the conserved SASP factor CXCL-1/KC/GRO-alpha. Further, mouse fibroblasts made senescent in 3%, but not 20%, oxygen promoted epithelial tumorigenesis in mouse xenographs. Our findings underscore critical mouse-human differences in oxygen sensitivity, identify conditions to use mouse cells to model human cellular senescence, and reveal novel conserved features of the SASP.

  8. Production of glycosylated physiologically normal human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector

    International Nuclear Information System (INIS)

    Garver, R.I. Jr.; Chytil, A.; Karlsson, S.

    1987-01-01

    α 2 -Antitrypsin (α 1 AT) deficiency is a hereditary disorder characterized by reduced serum levels of α 1 AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment α 1 AT levels in this disorder with physiologically normal human α 1 AT, the authors have integrated a full-length normal human α 1 AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the α 1 AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi2 and infected NIH 3T3. The clones produced three mRNA transcripts containing human α 1 AT sequences, secreted an α 1 AT molecule recognized by an anti-human α 1 AT antibody, with the same molecular mass as normal human α 1 AT and that complexed with and inhibited human neutrophil elastase. The psi2 produced α 1 AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal α 1 AT purified from human plasma and markedly longer than that of nonglycosylated human α 1 AT cDNA-directed yeast-produced α 1 AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human α 1 AT cDNA into non-α 1 AT-producing cells, resulting in the synthesis and secretion of physiologically normal α 1 AT

  9. National Implications for Urban School Systems: Strategic Planning in the Human Resource Management Department in a Large Urban School District

    Science.gov (United States)

    Johnson, Clarence; Kritsonis, William Allan

    2007-01-01

    This article addresses several key ongoing issues in a large urban school district. Literature focuses on what make a large urban school district effective in Human Resource Management. The effectiveness is addressed through recruitment and retention practices. A comparison of the school district with current research is the main approach to the…

  10. Physiological serum copper concentrations found in malignancies cause unfolding induced aggregation of human serum albumin in vitro.

    Science.gov (United States)

    Rizvi, Asim; Furkan, Mohd; Naseem, Imrana

    2017-12-15

    Malignancies are characterized by several drastic metabolic changes, one of which is a progressive rise in the levels of serum copper. This rise in serum copper is documented across all malignancies and across malignancies in several species. This study aims to explore in vitro the effect of increased copper levels on the structure of the blood protein human serum albumin. Exposure of human serum albumin to physiologically relevant copper concentrations for 21 days resulted in structural modifications in the protein which were evident by changes in the intrinsic florescence. A loss of the predominantly alpha helical structure of human serum albumin was recorded along with a tendency to form protein aggregates. This aggregation was characterized by Thioflavin T and Congo Red assays. Rayleigh light scattering and turbidity assays confirmed aggregation. The aggregates were visually confirmed using transmission electron microscopy. This is the first report implicating increased copper levels as a cause of aggregation of blood proteins in malignancies. The physiological and biochemical implications of this phenomenon are discussed. Copyright © 2017. Published by Elsevier Inc.

  11. Bridging the gap between physiology and behavior: evidence from the sSoTS model of human visual attention.

    Science.gov (United States)

    Mavritsaki, Eirini; Heinke, Dietmar; Allen, Harriet; Deco, Gustavo; Humphreys, Glyn W

    2011-01-01

    We present the case for a role of biologically plausible neural network modeling in bridging the gap between physiology and behavior. We argue that spiking-level networks can allow "vertical" translation between physiological properties of neural systems and emergent "whole-system" performance-enabling psychological results to be simulated from implemented networks and also inferences to be made from simulations concerning processing at a neural level. These models also emphasize particular factors (e.g., the dynamics of performance in relation to real-time neuronal processing) that are not highlighted in other approaches and that can be tested empirically. We illustrate our argument from neural-level models that select stimuli by biased competition. We show that a model with biased competition dynamics can simulate data ranging from physiological studies of single-cell activity (Study 1) to whole-system behavior in human visual search (Study 2), while also capturing effects at an intermediate level, including performance breakdown after neural lesion (Study 3) and data from brain imaging (Study 4). We also show that, at each level of analysis, novel predictions can be derived from the biologically plausible parameters adopted, which we proceed to test (Study 5). We argue that, at least for studying the dynamics of visual attention, the approach productively links single-cell to psychological data.

  12. Binaural beat technology in humans: a pilot study to assess psychologic and physiologic effects.

    Science.gov (United States)

    Wahbeh, Helané; Calabrese, Carlo; Zwickey, Heather

    2007-01-01

    Binaural beat technology (BBT) products are sold internationally as personal development and health improvement tools. Producers suggest benefit from regular listening to binaural beats including reduced stress and anxiety, and increased focus, concentration, motivation, confidence, and depth in meditation. Binaural beats are auditory brainstem responses that originate in the superior olivary nucleus as a result of different frequency auditory stimuli provided to each ear. Listeners to binaural beat "hear" a beat at a frequency equal to the difference between the frequencies of the applied tones. The objectives of this pilot study were to gather preliminary data on psychologic and physiologic effects of 60 days daily use of BBT for hypothesis generation and to assess compliance, feasibility, and safety for future studies. Uncontrolled pilot study. Eight healthy adults participated in the study. Participants listened to a CD with delta (0-4 Hz) binaural beat frequencies daily for 60 days. Psychologic and physiological data were collected before and after a 60-day intervention. PSYCHOLOGIC: Depression (Beck Depression Inventory-2), anxiety (State-Trait Anxiety Inventory), mood (Profile of Mood States), absorption (Tellegen Absorption Scale) and quality of Life (World Health Organization-Quality of Life Inventory). PHYSIOLOGICAL: Cortisol, dehydroepiandrosterone, melatonin, insulin-like growth factor-1, serotonin, dopamine, epinephrine, norepinephrine, weight, blood pressure, high sensitivity C-reactive protein. There was a decrease in trait anxiety (p = 0.004), an increase in quality of life (p = 0.03), and a decrease in insulin-like growth factor-1 (p = 0.01) and dopamine (p = 0.02) observed between pre- and postintervention measurements. Binaural beat technology may exhibit positive effect on self-reported psychologic measures, especially anxiety. Further research is warranted to explore the effects on anxiety using a larger, randomized and controlled trial.

  13. Human Performance: More Psychological and Physiological Sex Differences (A Selected Bibliography),

    Science.gov (United States)

    1982-07-01

    Schulman, J. L., Buist, C., Kaspar , J. C., Child, D., & Fackler, E. An objective test of speed of fine motor function. Perceptual and Motor Skills, 1969...htdirarchies in groups of early adolescents. Child Development, 1979, 50, 923-935. 91. Sewell, W. H., Hauser , R. M., & Wolf, W. C. Sex, schooling, and

  14. Micro-engineering a platform to reconstruct physiology and functionality of the human brain microvasculature in vitro

    Science.gov (United States)

    Daghighi, Yasaman; Heidari, Hossein; Taylor, Hayden

    2018-02-01

    A predominant unsolved challenge in tissue engineering is the need of a robust technique for producing vascular networks, particularly when modeling human brain tissue. The availability of reliable in vitro human brain microvasculature models would advance our understanding of its function and would provide a platform for highthroughput drug screening. Current strategies for modeling vascularized brain tissue suffer from limitations such as (1) culturing non-human cell lines, (2) limited multi-cell co-culture, and (3) the effects of neighboring physiologically unrealistic rigid polymeric surfaces, such as solid membranes. We demonstrate a new micro-engineered platform that can address these shortcomings. Specifically, we have designed and prototyped a molding system to enable the precise casting of 100μm-diameter coaxial hydrogel structures laden with the requisite cells to mimic a vascular lumen. Here we demonstrate that a fine wire with diameter 130 μm or a needle with outer diameter 300 μm can be used as a temporary mold insert, and agarose-collagen composite matrix can be cast around these inserts and thermally gelled. When the wire or needle is retracted under the precise positional control afforded by our system, a microchannel is formed which is then seeded with human microvascular endothelial cells. After seven days of culture these cells produce an apparently confluent monolayer on the channel walls. In principle, this platform could be used to create multilayered cellular structures. By arranging a fine wire and a hollow needle coaxially, three distinct zones could be defined in the model: first, the bulk gel surrounding the needle; then, after needle retraction, a cylindrical shell of matrix; and finally, after retraction of the wire, a lumen. Each zone could be independently cell-seeded. To this end, we have also successfully 3D cultured human astrocytes and SY5Y glial cells in our agarose-collagen matrix. Our approach ultimately promises scalable

  15. Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi

    2015-09-01

    Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.

  16. Human Enteroids as a Model of Upper Small Intestinal Ion Transport Physiology and Pathophysiology

    NARCIS (Netherlands)

    J. Foulke-Abel (Jennifer); J. In (Julie); Yin, J. (Jianyi); N.C. Zachos (Nicholas C.); O. Kovbasnjuk (Olga); M.K. Estes (Mary K.); H.R. de Jonge (Hugo); M. Donowitz (Mark)

    2016-01-01

    textabstractBackground & Aims Human intestinal crypt-derived enteroids are a model of intestinal ion transport that require validation by comparison with cell culture and animal models. We used human small intestinal enteroids to study neutral Na+ absorption and stimulated fluid and anion secretion

  17. Narrative review: the role of leptin in human physiology: emerging clinical applications.

    Science.gov (United States)

    Kelesidis, Theodore; Kelesidis, Iosif; Chou, Sharon; Mantzoros, Christos S

    2010-01-19

    Leptin is a hormone secreted by adipose tissue in direct proportion to amount of body fat. The circulating leptin levels serve as a gauge of energy stores, thereby directing the regulation of energy homeostasis, neuroendocrine function, and metabolism. Persons with congenital deficiency are obese, and treatment with leptin results in dramatic weight loss through decreased food intake and possible increased energy expenditure. However, most obese persons are resistant to the weight-reducing effects of leptin. Recent studies suggest that leptin is physiologically more important as an indicator of energy deficiency, rather than energy excess, and may mediate adaptation by driving increased food intake and directing neuroendocrine function to converse energy, such as inducing hypothalamic hypogonadism to prevent fertilization. Current studies investigate the role of leptin in weight-loss management because persons who have recently lost weight have relative leptin deficiency that may drive them to regain weight. Leptin deficiency is also evident in patients with diet- or exercise-induced hypothalamic amenorrhea and lipoatrophy. Replacement of leptin in physiologic doses restores ovulatory menstruation in women with hypothalamic amenorrhea and improves metabolic dysfunction in patients with lipoatrophy, including lipoatrophy associated with HIV or highly active antiretroviral therapy. The applications of leptin continue to grow and will hopefully soon be used therapeutically.

  18. Social relationships and physiological determinants of longevity across the human life span.

    Science.gov (United States)

    Yang, Yang Claire; Boen, Courtney; Gerken, Karen; Li, Ting; Schorpp, Kristen; Harris, Kathleen Mullan

    2016-01-19

    Two decades of research indicate causal associations between social relationships and mortality, but important questions remain as to how social relationships affect health, when effects emerge, and how long they last. Drawing on data from four nationally representative longitudinal samples of the US population, we implemented an innovative life course design to assess the prospective association of both structural and functional dimensions of social relationships (social integration, social support, and social strain) with objectively measured biomarkers of physical health (C-reactive protein, systolic and diastolic blood pressure, waist circumference, and body mass index) within each life stage, including adolescence and young, middle, and late adulthood, and compare such associations across life stages. We found that a higher degree of social integration was associated with lower risk of physiological dysregulation in a dose-response manner in both early and later life. Conversely, lack of social connections was associated with vastly elevated risk in specific life stages. For example, social isolation increased the risk of inflammation by the same magnitude as physical inactivity in adolescence, and the effect of social isolation on hypertension exceeded that of clinical risk factors such as diabetes in old age. Analyses of multiple dimensions of social relationships within multiple samples across the life course produced consistent and robust associations with health. Physiological impacts of structural and functional dimensions of social relationships emerge uniquely in adolescence and midlife and persist into old age.

  19. Mind and body: concepts of human cognition, physiology and false belief in children with autism or typical development.

    Science.gov (United States)

    Peterson, Candida C

    2005-08-01

    This study examined theory of mind (ToM) and concepts of human biology (eyes, heart, brain, lungs and mind) in a sample of 67 children, including 25 high functioning children with autism (age 6-13), plus age-matched and preschool comparison groups. Contrary to Baron-Cohen [1989, Journal of Autism and Developmental Disorders, 19(4), 579-600], most children with autism correctly understood the functions of the brain (84%) and the mind (64%). Their explanations were predominantly mentalistic. They outperformed typically developing preschoolers in understanding inner physiological (heart, lungs) and cognitive (brain, mind) systems, and scored as high as age-matched typical children. Yet, in line with much previous ToM research, most children with autism (60%) failed false belief, and their ToM performance was unrelated to their understanding of. human biology. Results were discussed in relation to neurobiological and social-experiential accounts of the ToM deficit in autism.

  20. Expression and proliferation profiles of PKC, JNK and p38MAPK in physiologically stretched human bladder smooth muscle cells

    International Nuclear Information System (INIS)

    Wazir, Romel; Luo, De-Yi; Dai, Yi; Yue, Xuan; Tian, Ye; Wang, Kun-Jie

    2013-01-01

    Highlights: •Stretch induces proliferation in human bladder smooth muscle cells (HBSMC). •5% Equibiaxial elongation produces maximum proliferation. •Physiologic stretch decreases apoptotic cell death. •PKC is involved in functional modulation of bladder. •JNK and p38 are not involved in proliferating HBSMC. -- Abstract: Objective: To determine protein kinase C (PKC), c-Jun NH2-Terminal Kinase (JNK) and P38 mitogen-activated protein kinases (p38MAPK) expression levels and effects of their respective inhibitors on proliferation of human bladder smooth muscle cells (HBSMCs) when physiologically stretched in vitro. Materials and methods: HBSMCs were grown on silicone membrane and stretch was applied under varying conditions; (equibiaxial elongation: 2.5%, 5%, 10%, 15%, 20%, 25%), (frequency: 0.05, 0.1, 0.2, 0.5, 1 Hz). Optimal physiological stretch was established by assessing proliferation with 5-Bromo-2-deoxyuridine (BrdU) assay and flow cytometry. PKC, JNK and p38 expression levels were analyzed by Western blot. Specificity was maintained by employing specific inhibitors; (GF109203X for PKC, SP600125 for JNK and SB203580 for p38MAPK), in some experiments. Results: Optimum proliferation was observed at 5% equibiaxial stretch (BrdU: 0.837 ± 0.026 (control) to 1.462 ± 0.023)%, (P 0.05 SP600125) and (1.461 ± 0.01, P > 0.05 SB203580). These findings show that mechanical stretch can promote magnitude-dependent proliferative modulation through PKC and possibly JNK but not via p38MAPK in hBSMCs

  1. Development of organoids from mouse and human endometrium showing endometrial epithelium physiology and long-term expandability.

    Science.gov (United States)

    Boretto, Matteo; Cox, Benoit; Noben, Manuel; Hendriks, Nikolai; Fassbender, Amelie; Roose, Heleen; Amant, Frédéric; Timmerman, Dirk; Tomassetti, Carla; Vanhie, Arne; Meuleman, Christel; Ferrante, Marc; Vankelecom, Hugo

    2017-05-15

    The endometrium, which is of crucial importance for reproduction, undergoes dynamic cyclic tissue remodeling. Knowledge of its molecular and cellular regulation is poor, primarily owing to a lack of study models. Here, we have established a novel and promising organoid model from both mouse and human endometrium. Dissociated endometrial tissue, embedded in Matrigel under WNT-activating conditions, swiftly formed organoid structures that showed long-term expansion capacity, and reproduced the molecular and histological phenotype of the tissue's epithelium. The supplemented WNT level determined the type of mouse endometrial organoids obtained: high WNT yielded cystic organoids displaying a more differentiated phenotype than the dense organoids obtained in low WNT. The organoids phenocopied physiological responses of endometrial epithelium to hormones, including increased cell proliferation under estrogen and maturation upon progesterone. Moreover, the human endometrial organoids replicated the menstrual cycle under hormonal treatment at both the morpho-histological and molecular levels. Together, we established an organoid culture system for endometrium, reproducing tissue epithelium physiology and allowing long-term expansion. This novel model provides a powerful tool for studying mechanisms underlying the biology as well as the pathology of this key reproductive organ. © 2017. Published by The Company of Biologists Ltd.

  2. Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.

    Science.gov (United States)

    Berry, Rachel; Miyagawa, Taimei; Paskaranandavadivel, Niranchan; Du, Peng; Angeli, Timothy R; Trew, Mark L; Windsor, John A; Imai, Yohsuke; O'Grady, Gregory; Cheng, Leo K

    2016-11-01

    High-resolution (HR) mapping has been used to study gastric slow-wave activation; however, the specific characteristics of antral electrophysiology remain poorly defined. This study applied HR mapping and computational modeling to define functional human antral physiology. HR mapping was performed in 10 subjects using flexible electrode arrays (128-192 electrodes; 16-24 cm 2 ) arranged from the pylorus to mid-corpus. Anatomical registration was by photographs and anatomical landmarks. Slow-wave parameters were computed, and resultant data were incorporated into a computational fluid dynamics (CFD) model of gastric flow to calculate impact on gastric mixing. In all subjects, extracellular mapping demonstrated normal aboral slow-wave propagation and a region of increased amplitude and velocity in the prepyloric antrum. On average, the high-velocity region commenced 28 mm proximal to the pylorus, and activation ceased 6 mm from the pylorus. Within this region, velocity increased 0.2 mm/s per mm of tissue, from the mean 3.3 ± 0.1 mm/s to 7.5 ± 0.6 mm/s (P human terminal antral contraction is controlled by a short region of rapid high-amplitude slow-wave activity. Distal antral wave acceleration plays a major role in antral flow and mixing, increasing particle strain and trituration. Copyright © 2016 the American Physiological Society.

  3. Physiological, biochemical, anthropometric, and biomechanical influences on exercise economy in humans

    DEFF Research Database (Denmark)

    Lundby, C; Montero, D; Gehrig, S

    2017-01-01

    and cycling EE within a single study. In 22 healthy males (VO2max range 45.5-72.1 mL·min-1·kg-1), no factor related to skeletal muscle structure (% slow-twitch fiber content, number of capillaries per fiber), mitochondrial properties (volume density, oxidative capacity, or mitochondrial efficiency...... were correlated (R2=.94; Pindividual running and cycling EE considering that during cycle ergometer exercise, the biomechanical influence on EE would be small because of the fixed......Interindividual variation in running and cycling exercise economy (EE) remains unexplained although studied for more than a century. This study is the first to comprehensively evaluate the importance of biochemical, structural, physiological, anthropometric, and biomechanical influences on running...

  4. Physiological level production of antigen-specific human immunoglobulin in cloned transchromosomic cattle.

    Directory of Open Access Journals (Sweden)

    Akiko Sano

    Full Text Available Therapeutic human polyclonal antibodies (hpAbs derived from pooled plasma from human donors are Food and Drug Administration approved biologics used in the treatment of a variety of human diseases. Powered by the natural diversity of immune response, hpAbs are effective in treating diseases caused by complex or quickly-evolving antigens such as viruses. We previously showed that transchromosomic (Tc cattle carrying a human artificial chromosome (HAC comprising the entire unrearranged human immunoglobulin heavy-chain (hIGH and kappa-chain (hIGK germline loci (named as κHAC are capable of producing functional hpAbs when both of the bovine immunoglobulin mu heavy-chains, bIGHM and bIGHML1, are homozygously inactivated (double knockouts or DKO. However, B lymphocyte development in these Tc cattle is compromised, and the overall production of hpAbs is low. Here, we report the construction of an improved HAC, designated as cKSL-HACΔ, by incorporating all of the human immunoglobulin germline loci into the HAC. Furthermore, for avoiding the possible human-bovine interspecies incompatibility between the human immunoglobulin mu chain protein (hIgM and bovine transmembrane α and β immunoglobulins (bIgα and bIgβ in the pre-B cell receptor (pre-BCR complex, we partially replaced (bovinized the hIgM constant domain with the counterpart of bovine IgM (bIgM that is involved in the interaction between bIgM and bIgα/Igβ; human IgM bovinization would also improve the functionality of hIgM in supporting B cell activation and proliferation. We also report the successful production of DKO Tc cattle carrying the cKSL-HACΔ (cKSL-HACΔ/DKO, the dramatic improvement of B cell development in these cattle and the high level production of hpAbs (as measured for the human IgG isotype in the plasma. We further demonstrate that, upon immunization by tumor immunogens, high titer tumor immunogen-specific human IgG (hIgG can be produced from such Tc cattle.

  5. Human factors approach to evaluate the user interface of physiologic monitoring.

    Science.gov (United States)

    Fidler, Richard; Bond, Raymond; Finlay, Dewar; Guldenring, Daniel; Gallagher, Anthony; Pelter, Michele; Drew, Barbara; Hu, Xiao

    2015-01-01

    As technology infiltrates more of our personal and professional lives, user expectations for intuitive design have driven many consumer products, while medical equipment continues to have high training requirements. Not much is known about the usability and user experience associated with hospital monitoring equipment. This pilot project aimed to better understand and describe the user interface interaction and user experience with physiologic monitoring technology. This was a prospective, descriptive, mixed-methods quality improvement project to analyze perceptions and task analyses of physiologic monitors. Following a survey of practice patterns and perceived abilities to accomplish key tasks, 10 voluntary experienced physician and nurse subjects were asked to perform a series of tasks in 7 domains of monitor operations on GE Monitoring equipment in a single institution. For each task analysis, data were collected on time to complete the task, the number of button pushes or clicks required to accomplish the task, economy of motion, and observed errors. Although 60% of the participants reported incorporating monitoring data into patient care, 80% of participants preferred to receive monitoring data at the point of care (bedside). Average perceived central station usability is 5.3 out of 10 (ten is easiest). High variability exists in monitoring station interaction performance among those participating in this project. Alarms were almost universally silenced without cognitive recognition of the alarm state. Education related to monitoring operations appeared largely absent in this sample. Most users perceived the interface to not be intuitive, complaining of multiple layers and steps for data retrieval. These clinicians report real-time monitoring helpful for abrupt changes in condition like arrhythmias; however, reviewing alarms is not prioritized as valuable due to frequent false alarms. Participants requested exporting monitoring data to electronic medical

  6. Outdoor thermal physiology along human pathways: a study using a wearable measurement system

    Science.gov (United States)

    Nakayoshi, Makoto; Kanda, Manabu; Shi, Rui; de Dear, Richard

    2015-05-01

    An outdoor summer study on thermal physiology along subjects' pathways was conducted in a Japanese city using a unique wearable measurement system that measures all the relevant thermal variables: ambient temperature, humidity, wind speed ( U) and short/long-wave radiation ( S and L), along with some physio-psychological parameters: skin temperature ( T skin), pulse rate, subjective thermal sensation and state of body motion. U, S and L were measured using a globe anemo-radiometer adapted use with pedestrian subjects. The subjects were 26 healthy Japanese adults (14 males, 12 females) ranging from 23 to 74 years in age. Each subject wore a set of instruments that recorded individual microclimate and physiological responses along a designated pedestrian route that traversed various urban textures. The subjects experienced varying thermal environments that could not be represented by fixed-point routine observational data. S fluctuated significantly reflecting the mixture of sunlit/shade distributions within complex urban morphology. U was generally low within urban canyons due to drag by urban obstacles such as buildings but the subjects' movements enhanced convective heat exchanges with the atmosphere, leading to a drop in T skin. The amount of sweating increased as standard effective temperature (SET*) increased. A clear dependence of sweating on gender and body size was found; males sweated more than females; overweight subjects sweated more than standard/underweight subjects. T skin had a linear relationship with SET* and a similarly clear dependence on gender and body size differences. T skin of the higher-sweating groups was lower than that of the lower-sweating groups, reflecting differences in evaporative cooling by perspiration.

  7. A Human Error Analysis with Physiological Signals during Utilizing Digital Devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Hee; Oh, Yeon Ju; Shin, Kwang Hyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-10-15

    The introduction of advanced MCR is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. There are various kinds of digital devices such as flat panel displays, touch screens, and so on. The characteristics of these digital devices give many chances to the interface management, and can be integrated into a compact single workstation in an advanced MCR so that workers can operate the plant with minimum burden during any operating condition. However, these devices may introduce new types of human errors, and thus we need a means to evaluate and prevent such error, especially those related to the digital devices. Human errors have been retrospectively assessed for accident reviews and quantitatively evaluated through HRA for PSA. However, the ergonomic verification and validation is an important process to defend all human error potential in the NPP design. HRA is a crucial part of a PSA, and helps in preparing a countermeasure for design by drawing potential human error items that affect the overall safety of NPPs. Various HRA techniques are available however: they reveal shortages of the HMI design in the digital era. - HRA techniques depend on PSFs: this means that the scope dealing with human factors is previously limited, and thus all attributes of new digital devices may not be considered in HRA. - The data used to HRA are not close to the evaluation items. So, human error analysis is not easy to apply to design by several individual experiments and cases. - The results of HRA are not statistically meaningful because accidents including human errors in NPPs are rare and have been estimated as having an extremely low probability

  8. On the role of numerical simulations in studies of reduced gravity-induced physiological effects in humans. Results from NELME.

    Science.gov (United States)

    Perez-Poch, Antoni

    Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numercial Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular archi-tecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electrical-like model of this control system, using inexpensive development frameworks, and has been tested and validated with the available experimental data. The objective of this work is to analyse and simulate long-term effects and gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairement which may put in jeopardy a long-term mission is also evaluated. . Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying continuosly from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobic ex-ercise and thermal stress simulating an extra

  9. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hidenori [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Hashimoto, Yoshiya [Department of Biomaterials, Osaka Dental University, 8-1, Hanazonocho, Kuzuha, Hirakatashi, Osaka 573-1121 (Japan); Nakada, Akira; Shigeno, Keiji [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan); Nakamura, Tatsuo, E-mail: nakamura@frontier.kyoto-u.ac.jp [Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawaharacho, Shogoin, Sakyoku, Kyoto 606-8507 (Japan)

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Very rapid generation of human iPS cells under optimized conditions. Black-Right-Pointing-Pointer Five chemical inhibitors under hypoxia boosted reprogramming. Black-Right-Pointing-Pointer We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly

  10. Accelerated generation of human induced pluripotent stem cells with retroviral transduction and chemical inhibitors under physiological hypoxia

    International Nuclear Information System (INIS)

    Shimada, Hidenori; Hashimoto, Yoshiya; Nakada, Akira; Shigeno, Keiji; Nakamura, Tatsuo

    2012-01-01

    Highlights: ► Very rapid generation of human iPS cells under optimized conditions. ► Five chemical inhibitors under hypoxia boosted reprogramming. ► We performed genome-wide DNA methylation analysis. -- Abstract: Induced pluripotent stem (iPS) cells are generated from somatic cells by the forced expression of a defined set of pluripotency-associated transcription factors. Human iPS cells can be propagated indefinitely, while maintaining the capacity to differentiate into all cell types in the body except for extra-embryonic tissues. This technology not only represents a new way to use individual-specific stem cells for regenerative medicine but also constitutes a novel method to obtain large amounts of disease-specific cells for biomedical research. Despite their great potential, the long reprogramming process (up to 1 month) remains one of the most significant challenges facing standard virus-mediated methodology. In this study, we report the accelerated generation of human iPS cells from adipose-derived stem (ADS) cells, using a new combination of chemical inhibitors under a setting of physiological hypoxia in conjunction with retroviral transduction of Oct4, Sox2, Klf4, and L-Myc. Under optimized conditions, we observed human embryonic stem (ES)-like cells as early as 6 days after the initial retroviral transduction. This was followed by the emergence of fully reprogrammed cells bearing Tra-1-81-positive and DsRed transgene-silencing properties on day 10. The resulting cell lines resembled human ES cells in many respects including proliferation rate, morphology, pluripotency-associated markers, global gene expression patterns, genome-wide DNA methylation states, and the ability to differentiate into all three of the germ layers, both in vitro and in vivo. Our method, when combined with chemical inhibitors under conditions of physiological hypoxia, offers a powerful tool for rapidly generating bona fide human iPS cells and facilitates the application of i

  11. Regulation of lipid deposition in farm animals: Parallels between agriculture and human physiology.

    Science.gov (United States)

    Bergen, Werner G; Brandebourg, Terry D

    2016-06-01

    For many years, clinically oriented scientists and animal scientists have focused on lipid metabolism and fat deposition in various fat depots. While dealing with a common biology across species, the goals of biomedical and food animals lipid metabolism research differ in emphasis. In humans, mechanisms and regulation of fat synthesis, accumulation of fat in regional fat depots, lipid metabolism and dysmetabolism in adipose, liver and cardiac tissues have been investigated. Further, energy balance and weight control have also been extensively explored in humans. Finally, obesity and associated maladies including high cholesterol and atherosclerosis, cardiovascular disease, insulin resistance, hypertension, metabolic syndrome and health outcomes have been widely studied. In food animals, the emphasis has been on regulation of fatty acid synthesis and lipid deposition in fat depots and deposition of intramuscular fat. For humans, understanding the regulation of energy balance and body weight and of prevention or treatment of obesity and associated maladies have been important clinical outcomes. In production of food animals lowering fat content in muscle foods while enhancing intramuscular fat (marbling) have been major targets. In this review, we summarize how our laboratories have addressed the goal of providing lean but yet tasty and juicy muscle food products to consumers. In addition, we here describe efforts in the development of a new porcine model to study regulation of fat metabolism and obesity. Commonalities and differences in regulation of lipid metabolism between humans, rodents and food animals are emphasized throughout this review. © 2016 by the Society for Experimental Biology and Medicine.

  12. Microbial Eco-Physiology of the human intestinal tract: a flow cytometric approach

    NARCIS (Netherlands)

    Amor, Ben K.

    2004-01-01

    This thesis describes a multifaceted approach to further enhance our view of the complex human intestinal microbial ecosystem. This approach combines me advantages of flow cyrometry (FCM), a single cell and high-throughput technology, and molecular techniques that have proven themselves to be

  13. Human experimental anxiety: actual public speaking induces more intense physiological responses than simulated public speaking.

    Science.gov (United States)

    Zuardi, Antonio Waldo; Crippa, José Alexandre de Souza; Hallak, Jaime Eduardo Cecílio; Gorayeb, Ricardo

    2013-01-01

    a) To perform a systematic and meta-analytic review to verify whether the Simulated Public Speaking Task (SPST) leads to a greater increase in self-rated anxiety than in physiological correlates of anxiety; and b) to compare the results obtained with the SPST with an actual public speaking task involving healthy volunteers. a) The PubMed and ISI Web of Knowledge databases were searched for studies involving the SPST prior to 2012. Eleven publications were eligible and provided data from 143 healthy volunteers for meta-analysis; b) 48 university students without somatic or psychiatric disorders were divided into three experimental groups of 16 subjects to undergo one of the following: SPST, real-world public speaking task (real-world), and control situation (control). The meta-analysis showed that the SPST induced a significant increase in the Visual Analogue Mood Scale (VAMS) anxiety factor, but no significant increases in systolic blood pressure or heart rate. The empirical study showed that the real-world public speaking task increased heart rate, systolic blood pressure and diastolic blood pressure significantly more than the control and SPST conditions. These results suggest that real public speaking might be better than SPST in inducing experimental anxiety.

  14. Physiological and psychological responses of humans to the index of greenness of an interior space.

    Science.gov (United States)

    Choi, Ji-Young; Park, Sin-Ae; Jung, Soo-Jin; Lee, Ji-Young; Son, Ki-Cheol; An, Youn-Joo; Lee, Sang-Woo

    2016-10-01

    The objective of this study was to identify the optimal index of greenness in terms of psychophysiological responses and subjective preference. We recruited 103 adult (51 male, 52 female) participants, who were examined individually in an interior space (lab) setting at Konkuk University, Seoul, South Korea. Participants observed plants in the space for 3min per experimental index of greenness (5%, 20%, 50%, and 80%). During this period, heart rate variability (HRV) and electroencephalographic (EEG) physiological responses were measured, and the participant's preference for index of greenness and subjective index of greenness was determined via surveys. HRV values were normal, and not significantly different, except that male participants showed higher mean variability between cardiac NN intervals and greater autonomic activity than female participants (P<0.05). EEG data were not significantly different, except that female participants had a significantly higher mean amplitude at the left occipital (O1) electrode than male participants (P<0.01). Subjectively, participants preferred the 50% index of greenness the most, though they consistently reported the subjective index of greenness to be ∼15% higher than the actual level. We conclude that given a limited interior space, even a small amount of greenery may exert a relaxing effect on people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects

    International Nuclear Information System (INIS)

    Fox, P.T.; Raichle, M.E.

    1986-01-01

    Coupling between cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO 2 ) was studied using multiple sequential administrations of 15 O-labeled radiotracers and positron emission tomography. In the resting state an excellent correlation between CBF and CMRO 2 was found when paired measurements of CBF and CMRO 2 from multiple (30-48) brain regions were tested in each of 33 normal subjects. Regional uncoupling of CBF and CMRO 2 was found, however, during neuronal activation induced by somatosensory stimulation. Stimulus-induced focal augmentation of cerebral blood flow (29% mean) far exceeded the concomitant local increase in tissue metabolic rate (mean, 5%), when resting-state and stimulated-state measurements were obtained in each of 9 subjects. Stimulus duration had no significant effect on response magnitude or on the degree of CBF-CMRO 2 uncoupling observed. Dynamic, physiological regulation of CBF by a mechanism (neuronal or biochemical) dependent on neuronal firing per se, but independent of the cerebral metabolic rate of oxygen, is hypothesized

  16. A Commentary on "Corporate Responsibility to Respect Human Rights and Business Schools' Responsibility to Teach It"

    Science.gov (United States)

    Everett, Jeff

    2013-01-01

    In this commentary on "Corporate Responsibility to Respect Human Rights and Business Schools' Responsibility to Teach It" (McPhail 2013), the author discusses how McPhail's paper examines human rights teaching principles, the question of why corporations and business schools should respect and teach human rights, and how business…

  17. Physiologic and genetic evidence links hemopexin to triglycerides in mice and humans.

    Science.gov (United States)

    Lawson, H A; Zayed, M; Wayhart, J P; Fabbrini, E; Love-Gregory, L; Klein, S; Semenkovich, C F

    2017-04-01

    Elevated triglycerides predict insulin resistance and vascular disease in obesity, but how the inert triglyceride molecule is related to development of metabolic disease is unknown. To pursue novel potential mediators of triglyceride-associated metabolic disease, we used a forward genetics approach involving inbred mice and translated our findings to human subjects. Hemopexin (HPX) was identified as a differentially expressed gene within a quantitative trait locus associated with serum triglycerides in an F 16 advanced intercross between the LG/J and SM/J strains of mice. Hpx expression was evaluated in both the reproductive fat pads and livers of mice representing three strains, LG/J (n=25), SM/J (n=27) and C57Bl/6J (n=19), on high- and low-fat diets. The effect of altered Hpx expression on adipogenesis was studied in 3T3-L1 cells. Circulating HPX protein along with HPX expression were characterized in subcutaneous white adipose tissue samples obtained from a cohort of metabolically abnormal (n=18) and of metabolically normal (n=24) obese human subjects. We further examined the relationship between HPX and triglycerides in human atherosclerotic plaques (n=18). HPX expression in mouse adipose tissue, but not in liver, was regulated by dietary fat regardless of genetic background. HPX increased in concert with adipogenesis in 3T3-L1 cells, and disruption of its expression impaired adipocyte differentiation. RNAseq data from the adipose tissue of obese humans showed differential expression of HPX based on metabolic disease status (Ptriglycerides in these subjects (r=0.33; P=0.03). HPX was also found in an unbiased proteomic screen of human atherosclerotic plaques and shown to display differential abundance based on the extent of disease and triglyceride content (Ptriglycerides and provide a framework for understanding mechanisms underlying lipid metabolism and metabolic disease.

  18. A study of student perceptions of learning transfer from a human anatomy and physiology course in an allied health program

    Science.gov (United States)

    Harrell, Leigh S.

    The purpose of this study was two-fold. First the study was designed to determine student perceptions regarding the perceived degree of original learning from a human anatomy and physiology course, and the student perception of the use of the knowledge in an allied health program. Second, the intention of the study was to establish student beliefs on the characteristics of the transfer of learning including those factors which enhance learning transfer and those that serve as barriers to learning transfer. The study participants were those students enrolled in any allied health program at a community college in a Midwest state, including: nursing, radiology, surgical technology, health information technology, and paramedic. Both quantitative and qualitative data were collected and analyzed from the responses to the survey. A sub-group of participants were chosen to participate in semi-structured formal interviews. From the interviews, additional qualitative data were gathered. The data collected through the study demonstrated student perception of successful transfer experiences. The students in the study were able to provide specific examples of learning transfer experienced from the human anatomy and physiology course in their allied health program. Findings also suggested students who earned higher grades in the human anatomy and physiology course perceived greater understanding and greater use of the course's learning objectives in their allied health program. The study found the students believed the following learning activities enhances the transfer of learning: (1) Providing application of the information or skills being learned during the instruction of the course content enhances the transfer of learning. (2) Providing resource materials and activities which allow the students to practice the content being taught facilitates the transfer of learning. The students made the following recommendations to remove barriers to the transfer of learning: (1

  19. Collaborative-group testing improves learning and knowledge retention of human physiology topics in second-year medical students.

    Science.gov (United States)

    Vázquez-García, Mario

    2018-06-01

    The present study examined the relationship between second-year medical students' group performance and individual performance in a collaborative-learning environment. In recent decades, university professors in the scientific and humanistic disciplines have successfully put into practice different modalities of collaborative approaches to teaching. Essentially, collaborative approach refers to a variety of techniques that involves the joint intellectual effort of a small group of students, which encourages interaction and discussion among students and professors. The present results show the efficacy of collaborative learning, which, furthermore, allowed students to participate actively in the physiology class. Average student's grades were significantly higher when they engaged in single-best-response, multiple-choice tests as a student team, compared with taking the same examinations individually. The method improved notably knowledge retention, as learning is more effective when performed in the context of collaborative partnership. A selected subset of questions answered wrongly in an initial test, both individually and collectively, was used on a second test to examine student retention of studied material. Grade averages were significantly improved, both individually and groupwise, when students responded to the subset of questions a second time, 1, 2, or 3 wk after the first attempt. These results suggest that the collaborative approach to teaching allowed a more effective understanding of course content, which meant an improved capacity for retention of human physiology knowledge.

  20. Physiological changes in human cardiac sympathetic innervation and activity assessed by 123I-metaiodobenzylguanidine (MIBG) imaging

    International Nuclear Information System (INIS)

    Sakata, Kazuyuki; Iida, Kei; Mochizuki, Nao; Ito, Michitoshi; Nakaya, Yoshihiro

    2009-01-01

    Physiologic changes in the human sympathetic nervous system (SNS) may be associated with cardiovascular diseases, so the present study assessed the age and gender differences in global cardiac SNS in normal subjects. The 163 subjects (74 men, 89 women; age range 40-89 years) whose coronary arteriogram was normal, and who had no other cardiac or neurohormonal diseases, and no medication affecting the autonomic nervous system were included. All study subjects underwent metaiodobenzylguanidine imaging. Both initial and delayed heart-to-mediastinum (H/M) ratios had a significant gender difference and showed a progressive decrease with aging. In addition, the initial H/M ratio had a significant positive correlation with the delayed H/M ratio (r=0.89, P<0.0001). Females (50-59 years) demonstrated significantly higher delayed H/M ratio than males of the same age. After the age of 60, the delayed H/M ratio in females progressively decreased with aging, similar to males. As for the washout rate, both genders had a significantly progressive increase with aging. In addition, there was a significant decrease in the delayed H/M ratio in 10 females with surgical menopause compared with 15 age-matched females without surgical menopause. Cardiac SNS appears to be regulated by various physiological factors. (author)

  1. Academic performance in human anatomy and physiology classes: a 2-yr study of academic motivation and grade expectation.

    Science.gov (United States)

    Sturges, Diana; Maurer, Trent W; Allen, Deborah; Gatch, Delena Bell; Shankar, Padmini

    2016-03-01

    This project used a nonexperimental design with a convenience sample and studied the relationship between academic motivation, grade expectation, and academic performance in 1,210 students enrolled in undergraduate human anatomy and physiology (HAP) classes over a 2-yr period. A 42-item survey that included 28 items of the adapted academic motivation scale for HAP based on self-determination theory was administered in class during the first 3 wk of each semester. Students with higher grade point averages, who studied for longer hours and reported to be more motivated to succeed, did better academically in these classes. There was a significant relationship between students' scores on the adapted academic motivation scale and performance. Students were more extrinsically motivated to succeed in HAP courses than intrinsically motivated to succeed, and the analyses revealed that the most significant predictor of final grade was within the extrinsic scale (introjected and external types). Students' motivations remained stable throughout the course sequence. The data showed a significant relationship between HAP students' expected grade and their final grade in class. Finally, 65.5% of students overestimated their final grade, with 29% of students overestimating by two to four letter grades. Copyright © 2016 The American Physiological Society.

  2. Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Desdoits-Lethimonier, Christèle; Mackey, Abigail L

    2018-01-01

    Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects...... with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig...... and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby...

  3. Electron Pathways through Erythrocyte Plasma Membrane in Human Physiology and Pathology: Potential Redox Biomarker?

    OpenAIRE

    Matteucci, Elena; Giampietro, Ottavio

    2007-01-01

    Erythrocytes are involved in the transport of oxygen and carbon dioxide in the body. Since pH is the influential factor in the Bohr-Haldane effect, pHi is actively maintained via secondary active transports Na+/H+ exchange and HC3 -/Cl- anion exchanger. Because of the redox properties of the iron, hemoglobin generates reactive oxygen species and thus, the human erythrocyte is constantly exposed to oxidative damage. Although the adult erythrocyte lacks protein synthesis and cannot restore dama...

  4. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  5. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  6. Physiological oxygen prevents frequent silencing of the DLK1-DIO3 cluster during human embryonic stem cells culture.

    Science.gov (United States)

    Xie, Pingyuan; Sun, Yi; Ouyang, Qi; Hu, Liang; Tan, Yueqiu; Zhou, Xiaoying; Xiong, Bo; Zhang, Qianjun; Yuan, Ding; Pan, Yi; Liu, Tiancheng; Liang, Ping; Lu, Guangxiu; Lin, Ge

    2014-02-01

    Genetic and epigenetic alterations are observed in long-term culture (>30 passages) of human embryonic stem cells (hESCs); however, little information is available in early cultures. Through a large-scale gene expression analysis between initial-passage hESCs (ihESCs, cell derivatives, possibly through attenuation of the expression and phosphorylation of p53. Furthermore, we demonstrated that 5% oxygen, instead of the commonly used 20% oxygen, is required for preserving the expression of the DLK1-DIO3 cluster. Overall, the data suggest that active expression of the DLK1-DIO3 cluster represents a new biomarker for epigenetic stability of hESCs and indicates the importance of using a proper physiological oxygen level during the derivation and culture of hESCs. © AlphaMed Press.

  7. Structures of the Streptococcus sanguinis SrpA Binding Region with Human Sialoglycans Suggest Features of the Physiological Ligand.

    Science.gov (United States)

    Loukachevitch, Lioudmila V; Bensing, Barbara A; Yu, Hai; Zeng, Jie; Chen, Xi; Sullam, Paul M; Iverson, T M

    2016-10-11

    Streptococcus sanguinis is a leading cause of bacterial infective endocarditis, a life-threatening infection of heart valves. S. sanguinis binds to human platelets with high avidity, and this adherence is likely to enhance virulence. Previous studies suggest that a serine-rich repeat adhesin termed SrpA mediates the binding of S. sanguinis to human platelets via its interaction with sialoglycans on the receptor GPIbα. However, in vitro binding assays with SrpA and defined sialoglycans failed to identify specific high-affinity ligands. To improve our understanding of the interaction between SrpA and human platelets, we determined cocrystal structures of the SrpA sialoglycan binding region (SrpA BR ) with five low-affinity ligands: three sialylated trisaccharides (sialyl-T antigen, 3'-sialyllactose, and 3'-sialyl-N-acetyllactosamine), a sialylated tetrasaccharide (sialyl-Lewis X ), and a sialyl galactose disaccharide component common to these sialoglyans. We then combined structural analysis with mutagenesis to further determine whether our observed interactions between SrpA BR and glycans are important for binding to platelets and to better map the binding site for the physiological receptor. We found that the sialoglycan binding site of SrpA BR is significantly larger than the sialoglycans cocrystallized in this study, which suggests that binding of SrpA to platelets either is multivalent or occurs via a larger, disialylated glycan.

  8. Population Physiologically-Based Pharmacokinetic Modeling for the Human Lactational Transfer of PCB 153 with Consideration of Worldwide Human Biomonitoring Results

    Energy Technology Data Exchange (ETDEWEB)

    Redding, Laurel E.; Sohn, Michael D.; McKone, Thomas E.; Wang, Shu-Li; Hsieh, Dennis P. H.; Yang, Raymond S. H.

    2008-03-01

    We developed a physiologically based pharmacokinetic model of PCB 153 in women, and predict its transfer via lactation to infants. The model is the first human, population-scale lactational model for PCB 153. Data in the literature provided estimates for model development and for performance assessment. Physiological parameters were taken from a cohort in Taiwan and from reference values in the literature. We estimated partition coefficients based on chemical structure and the lipid content in various body tissues. Using exposure data in Japan, we predicted acquired body burden of PCB 153 at an average childbearing age of 25 years and compare predictions to measurements from studies in multiple countries. Forward-model predictions agree well with human biomonitoring measurements, as represented by summary statistics and uncertainty estimates. The model successfully describes the range of possible PCB 153 dispositions in maternal milk, suggesting a promising option for back estimating doses for various populations. One example of reverse dosimetry modeling was attempted using our PBPK model for possible exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in the world.

  9. Assisting at-risk community college students' acquisition of critical thinking learning strategies in human anatomy and physiology

    Science.gov (United States)

    Arburn, Theresa Morkovsky

    1998-11-01

    The purpose of this study was to investigate whether learning thinking strategies within the context of a community college course in Human Anatomy and Physiology would result in increased academic performance and the incidence of critical thinking skills. Included in the study sample were 68 community college students, many of whom would be categorized as "at-risk," who were enrolled in four sections of a Human Anatomy and Physiology class. Two of the class sections served as the experimental group and two sections served as the control group. During the course of one semester, members of the experimental group participated in the use of a student-generated questioning technique in conjunction with lecture presentations, while members of the control group did not. All students were pretested using the Learning and Study Strategies Inventory (LASSI) and the California Critical Thinking Skills Test (CCTST). Posttesting was completed using these same instruments and an end-of-course comprehensive examination. Analysis of data revealed no significant differences between the experimental and control groups with regard to their overall achievement, their ability to process information, or their demonstration of critical thinking. It was interesting to note, however, that members of the experimental group did exhibit a change in their ability to select main ideas, apply deductive reasoning, and use inference. While the use of thinking strategies within the context of the course did not effect a significant change in academic achievement or critical thinking among at-risk community college students, it should be noted that application of a non-lecture method of class participation had no negative impact on student performance. Whether more abstruse changes have occurred with regard to the acquisition of cognitive skills remains to be elucidated.

  10. Human-derived physiological heat shock protein 27 complex protects brain after focal cerebral ischemia in mice.

    Directory of Open Access Journals (Sweden)

    Shinichiro Teramoto

    Full Text Available Although challenging, neuroprotective therapies for ischemic stroke remain an interesting strategy for countering ischemic injury and suppressing brain tissue damage. Among potential neuroprotective molecules, heat shock protein 27 (HSP27 is a strong cell death suppressor. To assess the neuroprotective effects of HSP27 in a mouse model of transient middle cerebral artery occlusion, we purified a "physiological" HSP27 (hHSP27 from normal human lymphocytes. hHSP27 differed from recombinant HSP27 in that it formed dimeric, tetrameric, and multimeric complexes, was phosphorylated, and contained small amounts of αβ-crystallin and HSP20. Mice received intravenous injections of hHSP27 following focal cerebral ischemia. Infarct volume, neurological deficit scores, physiological parameters, and immunohistochemical analyses were evaluated 24 h after reperfusion. Intravenous injections of hHSP27 1 h after reperfusion significantly reduced infarct size and improved neurological deficits. Injected hHSP27 was localized in neurons on the ischemic side of the brain. hHSP27 suppressed neuronal cell death resulting from cytochrome c-mediated caspase activation, oxidative stress, and inflammatory responses. Recombinant HSP27 (rHSP27, which was artificially expressed and purified from Escherichia coli, and dephosphorylated hHSP27 did not have brain protective effects, suggesting that the phosphorylation of hHSP27 may be important for neuroprotection after ischemic insults. The present study suggests that hHSP27 with posttranslational modifications provided neuroprotection against ischemia/reperfusion injury and that the protection was mediated through the inhibition of apoptosis, oxidative stress, and inflammation. Intravenously injected human HSP27 should be explored for the treatment of acute ischemic strokes.

  11. An examination of the effects of various noise on physiological sensibility responses by using human EEG

    International Nuclear Information System (INIS)

    Cho, W. H.; Lee, J. K.; Son, T. Y.; Hwang, S. H.; Choi, H.; Lee, M. S.

    2013-01-01

    This study investigated human stress levels based on electroencephalogram (EEG) data and carried out a subjective evaluation analysis about noise. Visual information is very important for finding human's emotional state. And relatively more previous works have been done than those using auditory stimulus. Since there are fewer previous works, we thought that using auditory stimulus is good choice for our study. Twelve human subjects were exposed to classic piano, ocean wave, army alarm, ambulance, and mosquito noises. We used two groups of comfortable and uncomfortable noises are to see the difference between the definitely different two groups to confirm usefulness of using this setting of experiment. EEG data were collected during the experimental session. The subjects were tested in a soundproof chamber and asked to minimize blinking, head movement, and swallowing during the experiment. The total time of the noise experiment included the time of the relaxation phase, during which the subjects relaxed in silence for 10 minutes. The relaxation phase was followed by a 20 -second noise exposure. The alpha band activities of the subjects were significantly decreased for the ambulance and mosquito noises, as it compared to the classic piano and ocean wave noises. The alpha band activities of the subjects decreased by 12.8 ± 2.3% for the ocean wave noise, decreased by 32.0 ± 5.4% for the army alarm noise, decreased by 34.5 ± 6.7% for the ambulance noise and decreased by 58.3 ± 9.1% for the mosquito noise compared to that of classic piano. On the other hand, their beta band activities were significantly increased for the ambulance and mosquito noises as it compared to classic piano and ocean wave. The beta band activities of the subjects increased by 7.9 ± 1.7% for the ocean wave noise, increased by 20.6 ± 5.3% for the army alarm noise, increased by 48.0 ± 7.5% for the ambulance noise and increased by 61.9 ± 11.2% for the mosquito noise, as it is compared to

  12. An examination of the effects of various noise on physiological sensibility responses by using human EEG

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W. H.; Lee, J. K.; Son, T. Y.; Hwang, S. H.; Choi, H. [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, M. S. [Hyundai Motor Company, Hwaseong (Korea, Republic of)

    2013-12-15

    This study investigated human stress levels based on electroencephalogram (EEG) data and carried out a subjective evaluation analysis about noise. Visual information is very important for finding human's emotional state. And relatively more previous works have been done than those using auditory stimulus. Since there are fewer previous works, we thought that using auditory stimulus is good choice for our study. Twelve human subjects were exposed to classic piano, ocean wave, army alarm, ambulance, and mosquito noises. We used two groups of comfortable and uncomfortable noises are to see the difference between the definitely different two groups to confirm usefulness of using this setting of experiment. EEG data were collected during the experimental session. The subjects were tested in a soundproof chamber and asked to minimize blinking, head movement, and swallowing during the experiment. The total time of the noise experiment included the time of the relaxation phase, during which the subjects relaxed in silence for 10 minutes. The relaxation phase was followed by a 20 -second noise exposure. The alpha band activities of the subjects were significantly decreased for the ambulance and mosquito noises, as it compared to the classic piano and ocean wave noises. The alpha band activities of the subjects decreased by 12.8 ± 2.3% for the ocean wave noise, decreased by 32.0 ± 5.4% for the army alarm noise, decreased by 34.5 ± 6.7% for the ambulance noise and decreased by 58.3 ± 9.1% for the mosquito noise compared to that of classic piano. On the other hand, their beta band activities were significantly increased for the ambulance and mosquito noises as it compared to classic piano and ocean wave. The beta band activities of the subjects increased by 7.9 ± 1.7% for the ocean wave noise, increased by 20.6 ± 5.3% for the army alarm noise, increased by 48.0 ± 7.5% for the ambulance noise and increased by 61.9 ± 11.2% for the mosquito noise, as it is compared

  13. Behavioral lifetime of human auditory sensory memory predicted by physiological measures.

    Science.gov (United States)

    Lu, Z L; Williamson, S J; Kaufman, L

    1992-12-04

    Noninvasive magnetoencephalography makes it possible to identify the cortical area in the human brain whose activity reflects the decay of passive sensory storage of information about auditory stimuli (echoic memory). The lifetime for decay of the neuronal activation trace in primary auditory cortex was found to predict the psychophysically determined duration of memory for the loudness of a tone. Although memory for the loudness of a specific tone is lost, the remembered loudness decays toward the global mean of all of the loudnesses to which a subject is exposed in a series of trials.

  14. Binaural beat technology in humans: a pilot study to assess neuropsychologic, physiologic, and electroencephalographic effects.

    Science.gov (United States)

    Wahbeh, Helané; Calabrese, Carlo; Zwickey, Heather; Zajdel, Dan

    2007-03-01

    When two auditory stimuli of different frequency are presented to each ear, binaural beats are perceived by the listener. The binaural beat frequency is equal to the difference between the frequencies applied to each ear. Our primary objective was to assess whether steady-state entrainment of electroencephalographic activity to the binaural beat occurs when exposed to a specific binaural beat frequency as has been hypothesized. Our secondary objective was to gather preliminary data on neuropsychologic and physiologic effects of binaural beat technology. A randomized, blinded, placebo-controlled crossover experiment in 4 healthy adult subjects. Subjects were randomized to experimental auditory stimulus of 30 minutes of binaural beat at 7 Hz (carrier frequencies: 133 Hz L; 140 Hz R) with an overlay of pink noise resembling the sound of rain on one session and control stimuli of the same overlay without the binaural beat carrier frequencies on the other session. Data were collected during two separate sessions 1 week apart. Neuropsychologic and blood pressure data were collected before and after the intervention; electroencephalographic data were collected before, during, and after listening to either binaural beats or control. Neuropsychologic measures included State Trait Anxiety Inventory, Profile of Mood States, Rey Auditory Verbal List Test, Stroop Test, and Controlled Oral Word Association Test. Spectral and coherence analysis was performed on the electroencephalogram (EEG), and all measures were analyzed for changes between sessions with and without binaural beat stimuli. There were no significant differences between the experimental and control conditions in any of the EEG measures. There was an increase of the Profile of Mood States depression subscale in the experimental condition relative to the control condition (p = 0.02). There was also a significant decrease in immediate verbal memory recall (p = 0.03) in the experimental condition compared to control

  15. Medical Humanities Teaching in North American Allopathic and Osteopathic Medical Schools.

    Science.gov (United States)

    Klugman, Craig M

    2017-11-07

    Although the AAMC requires annual reporting of medical humanities teaching, most literature is based on single-school case reports and studies using information reported on schools' websites. This study sought to discover what medical humanities is offered in North American allopathic and osteopathic undergraduate medical schools. An 18-question, semi-structured survey was distributed to all 146 (as of June 2016) member schools of the American Association of Medical Colleges and the American Association of Colleges of Osteopathic Medicine. The survey sought information on required and elective humanities content, hours of humanities instruction, types of disciplines, participation rates, and humanities administrative structure. The survey was completed by 134 schools (145 AAMC; 31 AACOM). 70.8% of schools offered required and 80.6% offered electives in humanities. Global health and writing were the most common disciplines. Schools required 43.9 mean (MD 45.4; DO 37.1) and 30 (MD 29; DO 37.5) median hours in humanities. In the first two years, most humanities are integrated into other course work; most electives are offered as stand-alone classes. 50.0% of schools report only 0-25% of students participating in humanities electives. Presence of a certificate, concentration or arts journal increased likelihood of humanities content but decreased mean hours. Schools with a medical humanities MA had a higher number of required humanities hours. Medical humanities content in undergraduate curriculum is lower than is indicated in the AAMC annual report. Schools with a formal structure have a greater humanities presence in the curriculum and are taken by more students.

  16. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...... irritation and possibly watering eyes in an additive way. Interactions were found for odor intensity (p = 0.1), perceived facial skin temperature and dryness, general well-being, tear film stability, and nasal cavity dimension. The presence of interactions implies that in the future guidelines for acceptable...

  17. The Effects of Orbital Spaceflight on Human Osteoblastic Cell Physiology and Gene Expression

    Science.gov (United States)

    Turner, R. T.

    1999-01-01

    The purpose of the proposed study is to establish whether changes in gravitational loading have a direct effect on osteoblasts to regulate TGF-6 expression. The effects of spaceflight and reloading on TGF-B MRNA and peptide levels will be studied in a newly developed line of immortalized human fetal osteoblasts (HFOB) transfected with an SV-40 temperature dependent mutant to generate proliferating, undifferentiated hFOB cells at 33-34 C and a non-proliferating, differentiated HFOB cells at 37-39'C. Unlike previous cell culture models, HFOB cells have unlimited proliferative capacity yet can be precisely regulated to differentiate into mature cells which express mature osteoblast function. If isolated osteoblasts respond to changes in mechanical loading in a manner similar to their response in animals, the cell system could provide a powerful model to investigate the signal transduction pathway for gravitational loading.

  18. Peroxisome proliferator-activated receptor gamma signaling in human sperm physiology.

    Science.gov (United States)

    Liu, Li-Li; Xian, Hua; Cao, Jing-Chen; Zhang, Chong; Zhang, Yong-Hui; Chen, Miao-Miao; Qian, Yi; Jiang, Ming

    2015-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the PPARs, which are transcription factors of the steroid receptor superfamily. PPARγ acts as an important molecule for regulating energy homeostasis, modulates the hypothalamic-pituitary-gonadal (HPG) axis, and is reciprocally regulated by HPG. In the human, PPARγ protein is highly expressed in ejaculated spermatozoa, implying a possible role of PPARγ signaling in regulating sperm energy dissipation. PPARγ protein is also expressed in Sertoli cells and germ cells (spermatocytes). Its activation can be induced during capacitation and the acrosome reaction. This mini-review will focus on how PPARγ signaling may affect fertility and sperm quality and the potential reversibility of these adverse effects.

  19. A network biology approach to understanding the importance of chameleon proteins in human physiology and pathology.

    Science.gov (United States)

    Bahramali, Golnaz; Goliaei, Bahram; Minuchehr, Zarrin; Marashi, Sayed-Amir

    2017-02-01

    Chameleon proteins are proteins which include sequences that can adopt α-helix-β-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or β-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.

  20. A new look at the comparative physiology of insect and human hearts.

    Science.gov (United States)

    Sláma, Karel

    2012-08-01

    Recent electrocardiographic (ECG) studies of insect hearts revealed the presence of human-like, involuntary and purely myogenic hearts. Certain insects, like a small light-weight species of hoverfly (Episyrphus balteatus), have evolved a very efficient cardiac system comprised of a compact heart ventricle and a narrow tube of aorta, which evolved as an adaptation to sustained hovering flights. Application of thermocardiographic and optocardiographic ECG methods revealed that adult flies of this species use the compact muscular heart chamber (heart ventricle) for intensive pumping of insect "blood" (haemolymph) into the head and thorax which is ringed all over with indirect flight musculature. The recordings of these hearts revealed extremely high, record rates of forward-directed, anterograde heartbeat (up to 10Hz), associated with extremely enhanced synchronic (not peristaltic) propagation of systolic myocardial contractions (32.2mm/s at room temperature). The relatively slow, backward-directed or retrograde cardiac contractions occurred only sporadically in the form of individual or twinned pulses replacing occasionally the resting periods. The compact heart ventricle contained bi-directional lateral apertures, whose opening and closure diverted the intracardiac anterograde "blood" streams between the abdominal haemocoelic cavity and the aortan artery, respectively. The visceral organs of this flying machine (crop, midgut) exhibited myogenic, extracardiac peristaltic pulsations similar to heartbeat, including the periodically reversed forward and backward direction of the peristaltic waves. The tubular crop contracted with a periodicity of 1Hz, both forwards and backwards, with propagation of the peristaltic waves at 4.4mm/s. The air-inflated and blindly ended midgut contracted at 0.2Hz, with a 0.9mm/s propagation of the peristaltic contraction waves. The neurogenic system of extracardiac haemocoelic pulsations, widely engaged in the regulation of circulatory and

  1. Physiological and pharmacological characterization of transmembrane acid extruders in cultured human umbilical artery smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Gunng-Shinng Chen

    2015-01-01

    Full Text Available Background: Intracellular pH (pH i is a pivotal factor for cellular functions and homeostasis. Apart from passive intracellular buffering capacity, active transmembrane transporters responsible for kinetic changes of pH i impacts. Acid extrusion transporters such as Na + /H + exchanger (NHE and Na + /HCO3− cotransporter (NBC have been found to be activated when cells are in an acidic condition in different cell types. However, such far, the pH i regulators have not been characterized in human umbilical artery smooth muscle cells (HUASMCs. Materials and Methods: We, therefore, investigated the mechanism of pH i recovery from intracellular acidosis, induced by NH 4 Cl-prepulse, using pH-sensitive fluorescence dye: 2′,7′-bis(2-carboxethyl-5(6-carboxy-fluorescein in HUASMCs. Cultured HUASMCs were derived from the segments of the human umbilical artery that were obtained from women undergoing children delivery. Results: The resting pH i is 7.23 ± 0.03 when cells in HEPES (nominally HCO 3− -free buffered solution. The resting pH i is higher as 7.27 ± 0.03 when cells in CO 2 /HCO3− -buffered solution. In HEPES-buffered solution, a pH i recovery following induced intracellular acidosis could be inhibited completely by 30 μM HOE 694 (a specific NHE inhibitor or by removing [Na +]o . In 5% CO2/HCO3− -buffered solution, 30 μM HOE 694 slowed the pH i recovery from the induced intracellular acidosis only. On the contrary, HOE 694 adding together with 0.2 mM 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (a specific NBC inhibitor or removal of [Na +]o entirely blocked the acid extrusion. By using Western blot technique, we demonstrated that four different isoforms of NBC, that is, SLC4A8 (NBCBE, SLC4A7 (NBCn1, SLC4A5 (NBCe2 and SLC4A4 (NBCe1, co-exist in the HUASMCs. Conclusions: We demonstrate, for the 1 st time, that apart from the housekeeping NHE1, another Na + couple HCO3− -transporter, that is, NBC, functionally coexists to

  2. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health

    Directory of Open Access Journals (Sweden)

    Irene Gouvinhas

    2017-11-01

    Full Text Available Olive oil displays remarkable organoleptic and nutritional features, which turn it into a foodstuff appreciated by consumers, and a basic component of the Mediterranean diet. Indeed, the noticed benefits of including olive oil in the diet have been assigned to the presence of diverse bioactive compounds with different molecular structures. These compounds confer a wide range of biological properties to this food matrix, including the prevention of distinct human diseases as well as the modulation of their severity. The most relevant bioactive compounds present in olive oil correspond to benzoic and cinnamic acids, phenolic alcohols and secoiridoids, and also flavonoids. Over the last decades, several studies, devoted to gaining a further insight into the relative contribution of the separate groups and individual compounds for their biological activities, have been conducted, providing relevant information on structure–activity relationships. Therefore, this paper critically reviews the health benefits evidenced by distinct phenolic compounds found in olive oils, thus contributing to clarify the relationship between their chemical structures and biological functions, further supporting their interest as essential ingredients of wholesome foods.

  3. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  4. RPGR: Its role in photoreceptor physiology, human disease, and future therapies.

    Science.gov (United States)

    Megaw, Roly D; Soares, Dinesh C; Wright, Alan F

    2015-09-01

    Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10-20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Menstrual cyclic changes of human physiological uterus analized by MRI (magnetic resonance imaging)

    International Nuclear Information System (INIS)

    Yasuzawa, Michio

    1989-01-01

    MRI (Magnetic Resonance Imaging) is useful facilitation to perform analysis of tissue structures with the gray scale. By use of super-conducting MRI with 0.5T resistive magnet, present study was designed to analyse characteristic features of the human uterus throughout menstrual cycle. Both T 1 and T 2 values of the endometrium, the junctional zone and the myometrium were estimated on total nine volunteers of nomal healthy women aged from 21 to 30 y.o. during menstrual cycle. MRI was taken in the mid ∼ late proliferative, the secretory, and the menstrual stage. Moreover, relative square ratio of the endometrium and the junctional zone to the corpus uteri were measured by computed image analyser (Lusex 500). Following results were obtained. 1) Both T 1 and T 2 values of the endometrium and the junctional zone were lowest in the menstrual phase. In the myometrium, T 1 values were shown as same tendency comparing with the above two layers but T 2 values were lowest in the proliferative phase and the menstrual one. 2) Proportional values of the endometrium to the corpus uteri increased from 13.8% in the proliferative phase to 17.9% in the secretory phase and decreased to 8.0% in the menstrual phase. While that in the junctional zone decreased from 26.6% to 23.4% in secretory phase and increased to 35.0% in the menstrual phase. (author)

  6. Menstrual cyclic changes of human physiological uterus analized by MRI (magnetic resonance imaging)

    Energy Technology Data Exchange (ETDEWEB)

    Yasuzawa, Michio

    1989-05-01

    MRI (Magnetic Resonance Imaging) is useful facilitation to perform analysis of tissue structures with the gray scale. By use of super-conducting MRI with 0.5T resistive magnet, present study was designed to analyse characteristic features of the human uterus throughout menstrual cycle. Both T/sub 1/ and T/sub 2/ values of the endometrium, the junctional zone and the myometrium were estimated on total nine volunteers of nomal healthy women aged from 21 to 30 y.o. during menstrual cycle. MRI was taken in the mid /similar to/ late proliferative, the secretory, and the menstrual stage. Moreover, relative square ratio of the endometrium and the junctional zone to the corpus uteri were measured by computed image analyser (Lusex 500). Following results were obtained. (1) Both T/sub 1/ and T/sub 2/ values of the endometrium and the junctional zone were lowest in the menstrual phase. In the myometrium, T/sub 1/ values were shown as same tendency comparing with the above two layers but T/sub 2/ values were lowest in the proliferative phase and the menstrual one. (2) Proportional values of the endometrium to the corpus uteri increased from 13.8% in the proliferative phase to 17.9% in the secretory phase and decreased to 8.0% in the menstrual phase. While that in the junctional zone decreased from 26.6% to 23.4% in secretory phase and increased to 35.0% in the menstrual phase. (author).

  7. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    Science.gov (United States)

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  8. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health.

    Science.gov (United States)

    Gouvinhas, Irene; Machado, Nelson; Sobreira, Carla; Domínguez-Perles, Raúl; Gomes, Sónia; Rosa, Eduardo; Barros, Ana I R N A

    2017-11-16

    Olive oil displays remarkable organoleptic and nutritional features, which turn it into a foodstuff appreciated by consumers, and a basic component of the Mediterranean diet. Indeed, the noticed benefits of including olive oil in the diet have been assigned to the presence of diverse bioactive compounds with different molecular structures. These compounds confer a wide range of biological properties to this food matrix, including the prevention of distinct human diseases as well as the modulation of their severity. The most relevant bioactive compounds present in olive oil correspond to benzoic and cinnamic acids, phenolic alcohols and secoiridoids, and also flavonoids. Over the last decades, several studies, devoted to gaining a further insight into the relative contribution of the separate groups and individual compounds for their biological activities, have been conducted, providing relevant information on structure-activity relationships. Therefore, this paper critically reviews the health benefits evidenced by distinct phenolic compounds found in olive oils, thus contributing to clarify the relationship between their chemical structures and biological functions, further supporting their interest as essential ingredients of wholesome foods.

  9. The Hidden Human Rights Curriculum of Surveillance Cameras in Schools: Due Process, Privacy and Trust

    Science.gov (United States)

    Perry-Hazan, Lotem; Birnhack, Michael

    2018-01-01

    This article explores how school principals integrate Closed Circuit TV systems (CCTVs) in educational practices and analyses the pedagogical implications of these practices through the lens of human rights. Drawing on interviews with school principals and municipality officials, we found that schools use CCTVs for three main purposes: (1)…

  10. Activist Literacies: An Analysis of the Literacy Practices of a School-Based Human Rights Club

    Science.gov (United States)

    Collin, Ross

    2012-01-01

    In this article, I examine the literacy practices of a high school-based human rights club. I investigate how the group engages in certain kinds of textual production to sponsor and arrange advisory sessions (school-wide meetings between teachers and small groups of students). More specifically, I consider how the club adapts school genres to…

  11. HUMTRN and EFFECTS: Age and sex specific dosimetric and physiological human population dynamics models for dose assessment

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Wenzel, W.J.

    1989-01-01

    A human simulation model called HUMTRN and a population risk assessment model called EFFECTS were developed at Los Alamos National Laboratory as a major component of the BIOTRAN environmental risk assessment model. HUMTRN simulates growth using dietary and physiological characteristics and kinetics of radionuclides to predict radiation doses to selected organs of both sexes in different age groups. The model called EFFECTS was interfaced with output from HUMTRN to predict cancer risks in a dynamic human population. EFFECTS is based on the National Research Council Committee on the Biological Effects of Ionizing Radiation (BEIR)-III radiation cancer mortality estimates from the U.S. population mortality and natality estimates for both sexes between the ages of 1 and 70. These models track radiation intake from air, water, and food, calculate uptake in major growing organs, and estimate cancer mortality risks. This report documents the use of an IBM Personal Computer AT to run HUMTRN and EFFECTS. Air, water, and food contaminant concentrations are provided as input to HUMTRN, which then provides input for EFFECTS. The limitations of this approach are also discussed

  12. A first-generation physiologically based pharmacokinetic (PBPK) model of alpha-tocopherol in human influenza vaccine adjuvant.

    Science.gov (United States)

    Tegenge, Million A; Mitkus, Robert J

    2015-04-01

    Alpha (α)-tocopherol is a component of a new generation of squalene-containing oil-in-water (SQ/W) emulsion adjuvants that have been licensed for use in certain influenza vaccines. Since regulatory pharmacokinetic studies are not routinely required for influenza vaccines, the in vivo fate of this vaccine constituent is largely unknown. In this study, we constructed a physiologically based pharmacokinetic (PBPK) model for emulsified α-tocopherol in human adults and infants. An independent sheep PBPK model was also developed to inform the local preferential lymphatic transfer and for the purpose of model evaluation. The PBPK model predicts that α-tocopherol will be removed from the injection site within 24h and rapidly transfer predominantly into draining lymph nodes. A much lower concentration of α-tocopherol was estimated to peak in plasma within 8h. Any systemically absorbed α-tocopherol was predicted to accumulate slowly in adipose tissue, but not in other tissues. Model evaluation and uncertainty analyses indicated acceptable fit, with the fraction of dose taken up into the lymphatics as most influential on plasma concentration. In summary, this study estimates the in vivo fate of α-tocopherol in adjuvanted influenza vaccine, may be relevant in explaining its immunodynamics in humans, and informs current regulatory risk-benefit analyses. Published by Elsevier Inc.

  13. Human immunodeficiency virus envelope protein Gp120 induces proliferation but not apoptosis in osteoblasts at physiologic concentrations.

    Directory of Open Access Journals (Sweden)

    Nathan W Cummins

    Full Text Available Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05, which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism.

  14. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  15. Humanizing the High School: The Power of Peers.

    Science.gov (United States)

    Stader, David L.; Gagnepain, F. J.

    2000-01-01

    Discusses what high schools can do to improve student relationships, highlighting a St. Louis area school's efforts to develop peer-mentoring and peer-mediation programs. Offers guidelines to help other schools develop a school culture that promotes caring, teaches constructive conflict resolution, and reduces potential for violence. (MLH)

  16. A BRIEF HISTORY OF HUMAN POWERED FLIGHT: FROM PHYSIOLOGY TO PHILOSOPHY

    Directory of Open Access Journals (Sweden)

    Pietro Enrico di Prampero

    2010-01-01

    Full Text Available The development of a scientific theory (T can be separated into successive phases: i Fantasy, to conceive T ii Analysis to couch T into formal language iii Action, to apply in practice the predictions of T. The history of human powered flight, in which case the three phases are stretched over several thousand years, allow us to better appreciate their intrinsic characteristics. Fantasy, dating back to the myth of Ikarus, must be experimentally testable, as indeed were Daedalus’ wings. Analysis must state in quantitative terms the laws governing the matter at stake. Action, from Leonardo’s unsuccessful attempts to the crossings of the British Channel in 1979 and of the arm of the sea separating Crete from mainland Greece in 1988, has the aim of shaping the world according to our will. The kernel of any “proper” T is a formal system wherein a set of operational rules allows us to manipulate a set of symbols, representing the objects of T, on the bases of a limited number of axioms. In such formal systems, “theorem” is a string of symbols that can be arrived at in a finite number of steps from the axioms, applying the canonical operational rules. However, as Kurt Gödel showed in 1931, it is possible to demonstrate that, within a sufficiently powerful formal system, there exists demonstrably true strings of symbols that are not theorems. Thus, even in an ultra-powerful theory of everything, there will still be truths that can not be arrived at within the theory.

  17. Radioimmunoassay of arginine-vasopressin in human urine and its use in physiological and pathological states

    International Nuclear Information System (INIS)

    Khokhar, A.M.; Ramaga, C.M.; Slater, J.D.H.

    1978-01-01

    A highly specific radioimmunoassay for arginine-vasopressin (AVP) in human urine has been developed with a detection limit of 2.2 fmol/ml. The mean recovery of added AVP was 99.5 +- 3.1 (S.D.) % when correction was made for the fact that an inverse relationship was observed between the recovery of AVP and the osmolarity of the urine. The intra- and interassay coefficients of variation were 3.5 - 7 and 2.5 - 10% respectively. Arginine-vasopressin remains stable in urine after repeated freezing and thawing after storage at 4 or 20 0 C for up to 7 days and at 20 0 C for more than 3 months. During unrestricted fluid intake in normal people, the mean rate of renal excretion of AVP was 95 +- 68 (SD) fmol/min. An osmotic reduction of 9% in the plasma volume increased the excretion of AVP to 259 +- 147 (SD) fmol/min. Fluid deprivation for 18 h produced a moderate but significant increase in mean excretion of AVP, to a value of 116 +- 67 (SD) fmol/min. Patients with compulsive water drinking showed a normal relationship between urine osmolarity and the rate of excretion of AVP. In pituitary diabetes insipidus, AVP was undetectable, whereas in hereditary nephrogenic diabetes insipidus a progressive increase in the rate of excretion was observed in response to dehydration. There was a wide variation in the rate of excretion of AVP (range 126 - 8704 fmol/min) in patients with unexplained hyponatraemia, presumed to be due to an inappropriate secretion of antidiuretic hormone. Despite this variation, the relationship between urine osmolarity and the rate of excretion of AVP differed from that observed in normal people. (author)

  18. Role of EG-VEGF in human placentation: Physiological and pathological implications.

    Science.gov (United States)

    Hoffmann, Pascale; Saoudi, Yasmina; Benharouga, Mohamed; Graham, Charles H; Schaal, Jean-Patrick; Mazouni, Chafika; Feige, Jean-Jacques; Alfaidy, Nadia

    2009-08-01

    Pre-eclampsia (PE), the major cause of maternal morbidity and mortality, is thought to be caused by shallow invasion of the maternal decidua by extravillous trophoblasts (EVT). Data suggest that a fine balance between the expressions of pro- and anti-invasive factors might regulate EVT invasiveness. Recently, we showed that the expression of the new growth factor endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is high in early pregnancy but falls after 11 weeks, suggesting an essential role for this factor in early pregnancy. Using human villous explants and HTR-8/SVneo, a first trimester extravillous trophoblast cell line, we showed differential expression of EG-VEGF receptors, PKR1 and PKR2, in the placenta and demonstrated that EG-VEGF inhibits EVT migration, invasion and tube-like organisation. EG-VEGF inhibitory effect on invasion was supported by a decrease in matrix metalloproteinase (MMP)-2 and MMP-9 production. Interference with PKR2 expression, using specific siRNAs, reversed the EG-VEGF-induced inhibitory effects. Furthermore, we determined EG-VEGF circulating levels in normal and PE patients. Our results showed that EG-VEGF levels were highest during the first trimester of pregnancy and decreased thereafter to non-pregnant levels. More important, EG-VEGF levels were significantly elevated in PE patients compared with age-matched controls. These findings identify EG-VEGF as a novel paracrine regulator of trophoblast invasion. We speculate that a failure to correctly down-regulate placental expression of EG-VEGF at the end of the first trimester of pregnancy might lead to PE.

  19. Effects of orbital spaceflight on human osteoblastic cell physiology and gene expression

    Science.gov (United States)

    Harris, S. A.; Zhang, M.; Kidder, L. S.; Evans, G. L.; Spelsberg, T. C.; Turner, R. T.

    2000-01-01

    During long-term spaceflight, astronauts lose bone, in part due to a reduction in bone formation. It is not clear, however, whether the force imparted by gravity has direct effects on bone cells. To examine the response of bone forming cells to weightlessness, human fetal osteoblastic (hFOB) cells were cultured during the 17 day STS-80 space shuttle mission. Fractions of conditioned media were collected during flight and shortly after landing for analyses of glucose utilization and accumulation of type I collagen and prostaglandin E(2) (PGE(2)). Total cellular RNA was isolated from flight and ground control cultures after landing. Measurement of glucose levels in conditioned media indicated that glucose utilization occurred at a similar rate in flight and ground control cultures. Furthermore, the levels of type I collagen and PGE(2) accumulation in the flight and control conditioned media were indistinguishable. The steady-state levels of osteonectin, alkaline phosphatase, and osteocalcin messenger RNA (mRNA) were not significantly changed following spaceflight. Gene-specific reductions in mRNA levels for cytokines and skeletal growth factors were detected in the flight cultures using RNase protection assays. Steady-state mRNA levels for interleukin (IL)-1alpha and IL-6 were decreased 8 h following the flight and returned to control levels at 24 h postflight. Also, transforming growth factor (TGF)-beta(2) and TGF-beta(1) message levels were modestly reduced at 8 h and 24 h postflight, although the change was not statistically significant at 8 h. These data suggest that spaceflight did not significantly affect hFOB cell proliferation, expression of type I collagen, or PGE(2) production, further suggesting that the removal of osteoblastic cells from the context of the bone tissue results in a reduced ability to respond to weightlessness. However, spaceflight followed by return to earth significantly impacted the expression of cytokines and skeletal growth factors

  20. Pharmacological and physiological assessment of serotonin formation and degradation in isolated preparations from mouse and human hearts.

    Science.gov (United States)

    Gergs, Ulrich; Jung, Franziska; Buchwalow, Igor B; Hofmann, Britt; Simm, Andreas; Treede, Hendrik; Neumann, Joachim

    2017-12-01

    Using transgenic (TG) mice that overexpress the human serotonin (5-HT) 4a receptor specifically in cardiomyocytes, we wanted to know whether 5-HT can be formed and degraded in the mammalian heart and whether this can likewise lead to inotropic and chronotropic effects in this TG model. We noted that the 5-HT precursor 5-hydroxy-tryptophan (5-HTP) can exert inotropic and chronotropic effects in cardiac preparations from TG mice but not from wild-type (WT) mice; similar results were found in human atrial preparations as well as in intact TG animals using echocardiography. Moreover, by immunohistochemistry we could detect 5-HT metabolizing enzymes and 5-HT transporters in mouse hearts as well as in human atria. Hence, in the presence of an inhibitor of aromatic l-amino acid decarboxylase, the positive inotropic effects of 5-HTP were absent in TG and isolated human atrial preparations, and, moreover, inhibitors of enzymes involved in 5-HT degradation enhanced the efficacy of 5-HT in TG atria. A releaser of neurotransmitters increased inotropy in the isolated TG atrium, and this effect could be blocked by a 5-HT 4a receptor antagonist. Fluoxetine, an inhibitor of 5-HT uptake, elevated the potency of 5-HT to increase contractility in the TG atrium. In addition, inhibitors of organic cation and monoamine transporters apparently reduced the positive inotropic potency of 5-HT in the TG atrium. Hence, we tentatively conclude that a local production and degradation of 5-HT in the mammalian heart and more specifically in mammalian myocytes probably occurs. Conceivably, this formation of 5-HT and possibly impaired degradation may be clinically relevant in cases of unexplained tachycardia and other arrhythmias. NEW & NOTEWORTHY The present work suggests that inotropically active serotonin (5-HT) can be formed in the mouse and human heart and probably by cardiomyocytes themselves. Moreover, active degradation of 5-HT seems to occur in the mammalian heart. These findings may again

  1. The Use of Team-Based, Guided Inquiry Learning to Overcome Educational Disadvantages in Learning Human Physiology: A Structural Equation Model

    Science.gov (United States)

    Rathner, Joseph A.; Byrne, Graeme

    2014-01-01

    The study of human bioscience is viewed as a crucial curriculum in allied health. Nevertheless, bioscience (and particularly physiology) is notoriously difficult for undergraduates, particularly academically disadvantaged students. So endemic are the high failure rates (particularly in nursing) that it has come to be known as "the human…

  2. The Implementation of Clay Modeling and Rat Dissection into the Human Anatomy and Physiology Curriculum of a Large Urban Community College

    Science.gov (United States)

    Haspel, Carol; Motoike, Howard K.; Lenchner, Erez

    2014-01-01

    After a considerable amount of research and experimentation, cat dissection was replaced with rat dissection and clay modeling in the human anatomy and physiology laboratory curricula at La Guardia Community College (LAGCC), a large urban community college of the City University of New York (CUNY). This article describes the challenges faculty…

  3. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 in human skeletal muscle

    DEFF Research Database (Denmark)

    Treebak, Jonas Thue; Pehmøller, Christian; Kristensen, Jonas Møller

    2014-01-01

    We investigated the phosphorylation signatures of two Rab GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers e...

  4. 31P-NMR spectroscopy in measurements of physiological parameters and response to therapy of human melanoma xenografts

    International Nuclear Information System (INIS)

    Olsen, Dag Rune

    1999-01-01

    The aim of the study was to investigate whether ''31P-NMR spectroscopy can be utilized in prediction and monitoring of response to therapy or tumours. The specific aims were: 1) To investigate possible correlations between on the one hand bio energetics status, phospholipids resonance ratios, intracellular pH and phosphorus T 1 s and on the other hand tumour blood supply and oxygenation, tumour proliferation and necrotic fraction across tumour lines. 2) Reveal possible correlations between changes in tumour bio energetics status and phosphorus T 1 s and the changes in tumour blood flow, tumour oxygenation and necrotic fraction. 3) To investigate whether irradiation and hyperthermia treatment of tumours affect bio energetics status and phosphorus T 1 s. 4) To identify the tumour physiological factors that is effected by the treatment and influence the bio energetics status and phosphorus T 1 s. The results are presented in 8 papers with titles: 1)''31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma zeno graft lines: Tumour bio energetic status and blood supply. 2) ''31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation. 3) ''31P-nuclear magnetic resonance spectroscopy in vivo of four human melanoma xenograft lines: Spin-lattice relaxation times. 4) Effect of melanin on phosphorus T 1 s in human melanoma xenografts studied by ''31P MRS 5) Spin-lattice relaxation time of inorganic phosphate in human tumour xenografts measured in vivo by ''31P-magnetic resonance spectroscopy influence of oxygen tension. 6) Effects of hyperthermia on bio energetic status and phosphorus T 1 s in human melanoma xenografts monitored by ''31P-MRS. 7) Monitoring of tumour reoxygenation following irradiation by ''31P magnetic resonance spectroscopy an experimental study of human melanoma xenografts. 8) Radiation-induced changes in phosphorus T 1 values in human melanoma xenografts studied

  5. The effect of physiological conditions on the surface structure of proteins: Setting the scene for human digestion of emulsions

    Science.gov (United States)

    Maldonado-Valderrama, J.; Gunning, A. P.; Ridout, M. J.; Wilde, P. J.; Morris, V. J.

    2009-10-01

    Understanding and manipulating the interfacial mechanisms that control human digestion of food emulsions is a crucial step towards improved control of dietary intake. This article reports initial studies on the effects of the physiological conditions within the stomach on the properties of the film formed by the milk protein ( β -lactoglobulin) at the air-water interface. Atomic force microscopy (AFM), surface tension and surface rheology techniques were used to visualize and examine the effect of gastric conditions on the network structure. The effects of changes in temperature, pH and ionic strength on a pre-formed interfacial structure were characterized in order to simulate the actual digestion process. Changes in ionic strength had little effect on the surface properties. In isolation, acidification reduced both the dilatational and the surface shear modulus, mainly due to strong repulsive electrostatic interactions within the surface layer and raising the temperature to body temperature accelerated the rearrangements within the surface layer, resulting in a decrease of the dilatational response and an increase of surface pressure. Together pH and temperature display an unexpected synergism, independent of the ionic strength. Thus, exposure of a pre-formed interfacial β -lactoglobulin film to simulated gastric conditions reduced the surface dilatational modulus and surface shear moduli. This is attributed to a weakening of the surface network in which the surface rearrangements of the protein prior to exposure to gastric conditions might play a crucial role.

  6. Physiologically based pharmacokinetics of radioiodinated human beta-endorphin in rats. An application of the capillary membrane-limited model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H.; Sugiyama, Y.; Sawada, Y.; Iga, T.; Hanano, M.

    1987-07-01

    In order to simulate the distribution and elimination of radioiodinated human beta-endorphin (/sup 125/I-beta-EP) after iv bolus injection in rats, we proposed a physiologically based pharmacokinetic model incorporating diffusional transport of /sup 125/I-beta-EP across the capillary membrane. This model assumes that the distribution of /sup 125/I-beta-EP is restricted only within the blood and the tissue interstitial fluid, and that a diffusional barrier across the capillary membrane exists in each tissue except the liver. The tissue-to-blood partition coefficients were estimated from the ratios of the concentration in tissues to that in arterial plasma at the terminal (pseudoequilibrium) phase. The total body plasma clearance (9.0 ml/min/kg) was appropriately assigned to the liver and kidney. The transcapillary diffusion clearances of /sup 125/I-beta-EP were also estimated and shown to correlate linearly with that of inulin in several tissues. Numerically solving the mass-balance differential equations as to plasma and each tissue simultaneously, simulated concentration curves of /sup 125/I-beta-EP corresponded well with the observed data. It was suggested by the simulation that the initial rapid disappearance of /sup 125/I-beta-EP from plasma after iv injection could be attributed in part to the transcapillary diffusion of the peptide.

  7. Human Resource Support for School Principals in Two, Urban School Districts: An Exploratory Study

    Science.gov (United States)

    Lochmiller, Chad R.

    2010-01-01

    School districts are increasingly focused on instructional practice in classrooms. Many urban school districts have shifted decision-making responsibility to school principals in order to improve instruction. This reform strategy has been referred to as decentralization or school-based management. Decentralization has a significant influence on…

  8. Physiological Acoustics

    Science.gov (United States)

    Young, Eric D.

    The analysis of physiological sound in the peripheral auditory system solves three important problems. First, sound energy impinging on the head must be captured and presented to the transduction apparatus in the ear as a suitable mechanical signal; second, this mechanical signal needs to be transduced into a neural representation that can be used by the brain; third, the resulting neural representation needs to be analyzed by central neurons to extract information useful to the animal. This chapter provides an overview of some aspects of the first two of these processes. The description is entirely focused on the mammalian auditory system, primarily on human hearing and on the hearing of a few commonly used laboratory animals (mainly rodents and carnivores). Useful summaries of non-mammalian hearing are available [1]. Because of the large size of the literature, review papers are referenced wherever possible.

  9. Bridging the Gap between Physiology and Behavior: Evidence from the sSoTS Model of Human Visual Attention

    Science.gov (United States)

    Mavritsaki, Eirini; Heinke, Dietmar; Allen, Harriet; Deco, Gustavo; Humphreys, Glyn W.

    2011-01-01

    We present the case for a role of biologically plausible neural network modeling in bridging the gap between physiology and behavior. We argue that spiking-level networks can allow "vertical" translation between physiological properties of neural systems and emergent "whole-system" performance--enabling psychological results to be simulated from…

  10. Corporate Responsibility to Respect Human Rights and Business Schools' Responsibility to Teach It: Incorporating Human Rights into the Sustainability Agenda

    Science.gov (United States)

    McPhail, Ken

    2013-01-01

    The Preamble to the Universal Declaration on Human Rights (UNDHR) calls on every organ of society to teach and educate for the promotion of the rights it contains. However, few if any business schools have any systematic or critical human rights content in their accounting and business curricula. This oversight is increasingly problematic as…

  11. Physiological stress responses in wild Asian elephants Elephas maximus in a human-dominated landscape in the Western Ghats, southern India.

    Science.gov (United States)

    Vijayakrishnan, Sreedhar; Kumar, Mavatur Ananda; Umapathy, G; Kumar, Vinod; Sinha, Anindya

    2018-05-16

    Increasing anthropogenic pressures on forests, especially in the tropical regions of the world, have restricted several large mammalian species such as the Asian elephant to fragmented habitats within human-dominated landscapes. In this study, we assessed the effects of an anthropogenic landscape and its associated conflict with humans on the physiological stress responses displayed by Asian elephants in the Anamalai Hills of the Western Ghats mountains in south India. We have quantified faecal glucocorticoid metabolite (FGM) concentrations in focal individual elephants within and across herds, inhabiting both anthropogenic and natural habitats, and evaluated their physiological responses to different socio-ecological situations between November 2013 and April 2014. Physiological stress responses varied significantly among the tested elephant age- and sex categories but not across different types of social organisation. Adults generally showed higher FGM concentrations, even in the absence of stressors, than did any other age category. Males also appeared to have higher stress responses than did females. Although there was no significant variation in mean stress levels between elephants on the plateau in the absence of human interactions and those in adjacent, relatively undisturbed forest habitats, FGM concentrations increased significantly for adult and subadult individuals as well as for calves following drives, during which elephants were driven off aggressively by people. Our study emphasises the general importance of understanding individual variation in physiology and behaviour within a population of a seriously threatened mammalian species, the Asian elephant, and specifically highlights the need for long-term monitoring of the stress physiology and behavioural responses of individual elephants across both human-dominated and natural landscapes. Such studies would not only provide comprehensive insights into the adaptive biology of elephants in changing

  12. Examining the Relationship between Physiological Measurements and Self-Reports of Stress and Well-Being in Middle School Teachers over One School Year

    Science.gov (United States)

    Katz, Deirdre A.; Harris, Alexis R.; Abenavoli, Rachel M.; Greenberg, Mark T.

    2013-01-01

    Educators are exposed to a variety of stressors, which can lead to poorer teaching performance, burnout, and increased student misbehavior (Jennings & Greenberg, 2009). Although self-report measures of stress are most commonly used in education research, physiological measures of stress may also contribute to the understanding of educators'…

  13. Strategic Management of Human Capital in Education: Improving Instructional Practice and Student Learning in Schools

    Science.gov (United States)

    Odden, Allan R.

    2011-01-01

    "Strategic Management of Human Capital in Education" offers a comprehensive and strategic approach to address what has become labeled as "talent and human capital." Grounded in extensive research and examples of leading edge districts, this book shows how the entire human resource system in schools--from recruitment, to selection/placement,…

  14. Constructing Self Awareness Using Education Human Value In School Culture

    Directory of Open Access Journals (Sweden)

    Wija Astawa Dewa Nyoman

    2018-01-01

    Full Text Available The big number of poverty in Indonesia impact to the hope of having a free learning service, especially education for early age and elementary school students from the less fortunate families. Many people usually ask the quality of such kinds of free of charge schools. The low price makes a low standard for the students. Sathya Sai School in Denpasar has proven that the free learning service does not mean the standard quality of the school is low. This study will explain how the teachers and the members of the foundation build the awareness of the students and parents by socializing and internalizing the value that empower their collective awareness to help the school achievement. By using local cultural approach, the school builds a program that involves the parents especially the woman.

  15. A Novel Physiology-Based Mathematical Model to Estimate Red Blood Cell Lifespan in Different Human Age Groups.

    Science.gov (United States)

    An, Guohua; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter

    2016-09-01

    Direct measurement of red blood cell (RBC) survival in humans has improved from the original accurate but limited differential agglutination technique to the current reliable, safe, and accurate biotin method. Despite this, all of these methods are time consuming and require blood sampling over several months to determine the RBC lifespan. For situations in which RBC survival information must be obtained quickly, these methods are not suitable. With the exception of adults and infants, RBC survival has not been extensively investigated in other age groups. To address this need, we developed a novel, physiology-based mathematical model that quickly estimates RBC lifespan in healthy individuals at any age. The model is based on the assumption that the total number of RBC recirculations during the lifespan of each RBC (denoted by N max) is relatively constant for all age groups. The model was initially validated using the data from our prior infant and adult biotin-labeled red blood cell studies and then extended to the other age groups. The model generated the following estimated RBC lifespans in 2-year-old, 5-year-old, 8-year-old, and 10-year-old children: 62, 74, 82, and 86 days, respectively. We speculate that this model has useful clinical applications. For example, HbA1c testing is not reliable in identifying children with diabetes because HbA1c is directly affected by RBC lifespan. Because our model can estimate RBC lifespan in children at any age, corrections to HbA1c values based on the model-generated RBC lifespan could improve diabetes diagnosis as well as therapy in children.

  16. Cosmic ray variations of solar origin in relation to human physiological state during the December 2006 solar extreme events

    Science.gov (United States)

    Papailiou, M.; Mavromichalaki, H.; Vassilaki, A.; Kelesidis, K. M.; Mertzanos, G. A.; Petropoulos, B.

    2009-02-01

    There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.

  17. Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro.

    Science.gov (United States)

    McCord, Amy M; Jamal, Muhammad; Shankavaram, Uma T; Shankavarum, Uma T; Lang, Frederick F; Camphausen, Kevin; Tofilon, Philip J

    2009-04-01

    In vitro investigations of tumor stem-like cells (TSC) isolated from human glioblastoma (GB) surgical specimens have been done primarily at an atmospheric oxygen level of 20%. To determine whether an oxygen level more consistent with in situ conditions affects their stem cell-like characteristics, we compared GB TSCs grown under conditions of 20% and 7% oxygen. Growing CD133(+) cells sorted from three GB neurosphere cultures at 7% O(2) reduced their doubling time and increased the self-renewal potential as reflected by clonogenicity. Furthermore, at 7% oxygen, the cultures exhibited an enhanced capacity to differentiate along both the glial and neuronal pathways. As compared with 20%, growth at 7% oxygen resulted in an increase in the expression levels of the neural stem cell markers CD133 and nestin as well as the stem cell markers Oct4 and Sox2. In addition, whereas hypoxia inducible factor 1alpha was not affected in CD133(+) TSCs grown at 7% O(2), hypoxia-inducible factor 2alpha was expressed at higher levels as compared with 20% oxygen. Gene expression profiles generated by microarray analysis revealed that reducing oxygen level to 7% resulted in the up-regulation and down-regulation of a significant number of genes, with more than 140 being commonly affected among the three CD133(+) cultures. Furthermore, Gene Ontology categories up-regulated at 7% oxygen included those associated with stem cells or GB TSCs. Thus, the data presented indicate that growth at the more physiologically relevant oxygen level of 7% enhances the stem cell-like phenotype of CD133(+) GB cells.

  18. Ethyl nitrite is produced in the human stomach from dietary nitrate and ethanol, releasing nitric oxide at physiological pH: potential impact on gastric motility.

    Science.gov (United States)

    Rocha, Bárbara S; Gago, Bruno; Barbosa, Rui M; Cavaleiro, Carlos; Laranjinha, João

    2015-05-01

    Nitric oxide ((∙)NO), a ubiquitous molecule involved in a plethora of signaling pathways, is produced from dietary nitrate in the gut through the so-called nitrate-nitrite-NO pathway. In the stomach, nitrite derived from dietary nitrate triggers a network of chemical reactions targeting endogenous and exogenous biomolecules, thereby producing new compounds with physiological activity. The aim of this study was to ascertain whether compounds with physiological relevance are produced in the stomach upon consumption of nitrate- and ethanol-rich foods. Human volunteers consumed a serving of lettuce (source of nitrate) and alcoholic beverages (source of ethanol). After 15 min, samples of the gastric headspace were collected and ethyl nitrite was identified by GC-MS. Wistar rats were used to study the impact of ethyl nitrite on gastric smooth muscle relaxation at physiological pH. Nitrogen oxides, produced from nitrite in the stomach, induce nitrosation of ethanol from alcoholic beverages in the human stomach yielding ethyl nitrite. Ethyl nitrite, a potent vasodilator, is produced in vivo upon the consumption of lettuce with either red wine or whisky. Moreover, at physiological pH, ethyl nitrite induces gastric smooth muscle relaxation through a cGMP-dependent pathway. Overall, these results suggest that ethyl nitrite is produced in the gastric lumen and releases (∙)NO at physiological pH, which ultimately may have an impact on gastric motility. Systemic effects may also be expected if ethyl nitrite diffuses through the gastric mucosa reaching blood vessels, therefore operating as a (∙)NO carrier throughout the body. These data pinpoint posttranslational modifications as an underappreciated mechanism for the production of novel molecules with physiological impact locally in the gut and highlight the notion that diet may fuel compounds with the potential to modulate gastrointestinal welfare. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Application of the physiological and morphological parameters of the brazilian population sample to the mathematical model of the human respiratory tract

    International Nuclear Information System (INIS)

    Reis, Arlene Alves dos

    2005-01-01

    The Human Respiratory Tract Model proposed by the ICRP Publication 66 accounts for the morphology and physiology of the respiratory tract. The characteristics of air drawn into the lungs and exhaled are greatly influenced by the morphology of the respiratory tract, which causes numerous changes in pressure, flow rate, direction and humidity as air moves into and out of the lungs. Concerning the respiratory physiological parameters the breathing characteristics influence the volume, the inhalation rate of air and the portion that enters through the nose and the mouth. These characteristics are important to determine the fractional deposition. The model uses morphological and physiological parameters from the Caucasian man to establish deposition fractions in the respiratory tract regions. It is known that the morphology and physiology are influenced by environmental, occupational and economic conditions. The ICRP recommends, for a reliable evaluation of the regional deposition, the use of parameters from a local population when information is available. The main purpose of this study is to verify the influence in using the morphology and physiology parameters representative of a sample of the Brazilian population on the deposition model of the ICRP Publication 66. The morphological and physiological data were obtained from the literature. The software EXCEL for Windows (version 2000) was used in order to implement the deposition model and also to allow the changes in parameters of interest. Initially, the implemented model was checked using the parameters defined by the ICRP and the results of the fraction deposition in the respiratory tract compartments were compared. Finally, morphological and physiological parameters from Brazilian adult male were applied and the fractional deposition calculated. The results suggest a significant variation in fractional deposition when Brazilian parameters are applied in the model. (author)

  20. Transformed human mesenchymal stem cells are more radiosensitive compared to their cells of origin in normoxia and in physiological hypoxia

    International Nuclear Information System (INIS)

    Worku, M.; Fersht, N.; Martindale, C.; Funes, J.M.; Shah, S.; Short, S.C.

    2013-01-01

    The full text of the publication follows. Purpose: The presence of hypoxic regions in tumours is associated with the recurrence of solid tumours after treatment with radiotherapy and thought to be an important element in defining the stem cell niche. We studied the effect of hypoxia on the response to radiation in sequentially transformed human mesenchymal stem cells (MSC) to investigate how the genetic events that lead to tumorigenicity influence the cellular response to radiation under hypoxic and normoxic conditions. Experimental Design: Human bone marrow derived SH2+, SH4+, Stro-1+ MSC were transformed step-wise by retroviral transfection of hTERT, HPV-16 E6 and E7, SV40 small T antigen and oncogenic H-ras. Cells were grown and irradiated with 0, 1 to 5 Gy, X-Ray at 20%, 5% and 1% oxygen tensions. Cytotoxicity, DNA double-strand break (DSB) repair and checkpoint signalling were compared between cells at three different stages of transformation and in different oxygen concentrations. Results: MSCs became more radiosensitive at each point during step-wise transformation, and this effect persisted when cells were irradiated in physiological hypoxia. Increased cytotoxicity of radiation was associated with increased residual DNA DSB at 24 post X-irradiation assessed by gamma-H2AX foci. Growth and irradiation in 1% but not 5% oxygen promoted increased radioresistance compared to growth in 20% oxygen but did not change the relative sensitivity of tumorigenic cells compared to parental cells. Activation of checkpoint signalling before and after single radiation doses is more marked in tumorigenic cells compared to parental lines, and is not altered when cells are irradiated and grown in hypoxic conditions. Conclusions: These data show that tumorigenic cells are more radiosensitive compared to non-tumorigenic parental cells in both normoxic and hypoxic conditions. 1% hypoxia promotes radioresistance in all cells. Checkpoint signalling is up-regulated in tumorigenic

  1. Rice Physiology

    Science.gov (United States)

    P.A. Counce; Davidi R. Gealy; Shi-Jean Susana Sung

    2002-01-01

    Physiology occurs tn physical space through chemical reactions constrained by anatomy and morphology, yet guided by genetics. Physiology has been called the logic of life. Genes encode structural and fimcdonal proteins. These proteins are subsequently processed to produce enzymes that direct and govern the biomechanical processes involved in the physiology of the...

  2. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    NARCIS (Netherlands)

    Silvani, A.; Calandra-Buonaura, G.; Johnson, B.D.; Helmond, N. van; Barletta, G.; Cecere, A.G.; Joyner, M.J.; Cortelli, P.

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological

  3. The Human Relations Class at Sir Winston Churchill Secondary School. Research Report.

    Science.gov (United States)

    Gilbert, Katherine J.

    Human Relations was a program offered to Grade 10 students at Churchill Secondary School during the 1971-72 school year in lieu of four courses. The emphasis of the program was on the development of students as people who were more aware of themselves, of other people, and of the environment. The class took part in a variety of activities during…

  4. School Principals' Assumptions about Human Nature: Implications for Leadership in Turkey

    Science.gov (United States)

    Sabanci, Ali

    2008-01-01

    This article considers principals' assumptions about human nature in Turkey and the relationship between the assumptions held and the leadership style adopted in schools. The findings show that school principals hold Y-type assumptions and prefer a relationship-oriented style in their relations with assistant principals. However, both principals…

  5. Investigating Stakeholder Attitudes and Opinions on School-Based Human Papillomavirus Vaccination Programs

    Science.gov (United States)

    Nodulman, Jessica A.; Starling, Randall; Kong, Alberta S.; Buller, David B.; Wheeler, Cosette M.; Woodall, W. Gill

    2015-01-01

    Background: In several countries worldwide, school-based human papillomavirus (HPV) vaccination programs have been successful; however, little research has explored US stakeholders' acceptance toward school-based HPV vaccination programs. Methods: A total of 13 focus groups and 12 key informant interviews (N?=?117; 85% females; 66% racial/ethnic…

  6. Opportunities for Increasing Human Papillomavirus Vaccine Provision in School Health Centers

    Science.gov (United States)

    Moss, Jennifer L.; Feld, Ashley L.; O'Malley, Brittany; Entzel, Pamela; Smith, Jennifer S.; Gilkey, Melissa B.; Brewer, Noel T.

    2014-01-01

    Background: Uptake of human papillomavirus (HPV) vaccine remains low among adolescents in the United States. We sought to assess barriers to HPV vaccine provision in school health centers to inform subsequent interventions. Methods: We conducted structured interviews in the fall of 2010 with staff from all 33 school health centers in North…

  7. The Investigation of Human Values Perceived from the Use of Social Media of Secondary School Students

    Science.gov (United States)

    Kara, Ahmet; Tekin, Hatice

    2017-01-01

    This research has been carried out to investigate the relation between social media usage of secondary school students and their perceived human values. The population of the research consisted of 1952 students, of which 48% were female and 52% were male, 7th and 8th grade students attending secondary schools in central Adiyaman in 2014-2015…

  8. Towards Human Rights in South African Schools: An Agenda for Research and Practice.

    Science.gov (United States)

    Kruss, Glenda

    2001-01-01

    Develops a taxonomy of four kinds of situations in which race and other grounds for discrimination become the focus of school-level controversy surrounding equality and equity. Examines the kinds of responses and discourses South African schools use to engage with the policy discourse of desegregation and human rights and establishes an agenda for…

  9. Curricular Abstinence: Examining Human Sexuality Training in School Counselor Preparation Programs

    Science.gov (United States)

    Behun, Richard Joseph; Cerrito, Julie A.; Delmonico, David L.; Campenni, Estelle

    2017-01-01

    Professional school counselors (PSCs; N = 486) rated their level of perceived preparedness acquired in their school counselor preparation program with respect to knowledge, skills, and self-awareness of five human sexuality domains (behavior, health, morality, identity, violence) across grade level (elementary vs. secondary) and three human…

  10. Influence of physiologically active complex isolated from human amnion on lipid peroxide oxidation state and antioxidant activity of blood in rats after irradiation in different doses

    International Nuclear Information System (INIS)

    Borshchevs'ka, M.Yi.; Popov, V.V.; Abramova, L.P.; Kuz'myinova, Yi.A.

    1995-01-01

    The authors have studied the influence of physiologically active complex isolated from human amnion on the state of lipid peroxide oxidation according to diene conjugate and malonic dialdehyde amount and antioxidant enzyme activity (catalase and glutationperoxidase) in the blood of the rats exposed to single total irradiation in different doses (4 and 6 Gy) was studied. Definite changes of peroxide process intensity and reduction of the enzymes activity were shown to be observed in the blood of experimental animals even at long terms after the radiation exposure. Under the background of radiation exposure, administration of physiologically active complex isolated from human amnion produced protective effect on antioxidant enzyme activity which promoted normalization of peroxidation processes within the post-radiation period

  11. Prediction of a Therapeutic Dose for Buagafuran, a Potent Anxiolytic Agent by Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling Starting from Pharmacokinetics in Rats and Human

    Directory of Open Access Journals (Sweden)

    Fen Yang

    2017-10-01

    Full Text Available Physiologically based pharmacokinetic (PBPK/pharmacodynamic (PD models can contribute to animal-to-human extrapolation and therapeutic dose predictions. Buagafuran is a novel anxiolytic agent and phase I clinical trials of buagafuran have been completed. In this paper, a potentially effective dose for buagafuran of 30 mg t.i.d. in human was estimated based on the human brain concentration predicted by a PBPK/PD modeling. The software GastroPlusTM was used to build the PBPK/PD model for buagafuran in rat which related the brain tissue concentrations of buagafuran and the times of animals entering the open arms in the pharmacological model of elevated plus-maze. Buagafuran concentrations in human plasma were fitted and brain tissue concentrations were predicted by using a human PBPK model in which the predicted plasma profiles were in good agreement with observations. The results provided supportive data for the rational use of buagafuran in clinic.

  12. SCHOOL – PLACE OF ELITISM AND HUMANISM IN SPORT

    Directory of Open Access Journals (Sweden)

    Zoran Milošević

    2010-09-01

    Full Text Available School sport is defined both by legal solutions giving form to the educational process of primary and secondary schools and by those dealing with sport issues directly. Importance of school is indicated by the fact that it is the place where sport is realized within a mass-like and humanist framework with non-commercial base. In view of high decade-long investments of institutions of the Republic and Province, especially the City of Novi Sad, into outdoor and indoor facilities for practicing physical education (sport, as well as high professional and educational level of the personnel directly involved in this process, one can rightly ask a question: IS SCHOOL A PLACE OFFERING EQUAL OPPORTUNITIES FOR SPORTS ACHIEVEMENTS TO CHILDREN AND YOUTH?

  13. Improved physiologically based pharmacokinetic model for oral exposures to chromium in mice, rats, and humans to address temporal variation and sensitive populations.

    Science.gov (United States)

    Kirman, C R; Suh, M; Proctor, D M; Hays, S M

    2017-06-15

    A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Central Respiratory Chemosensitivity and Cerebrovascular CO[subscript 2] Reactivity: A Rebreathing Demonstration Illustrating Integrative Human Physiology

    Science.gov (United States)

    MacKay, Christina M.; Skow, Rachel J.; Tymko, Michael M.; Boulet, Lindsey M.; Davenport, Margie H.; Steinback, Craig D.; Ainslie, Philip N.; Lemieux, Chantelle C. M.; Day, Trevor A.

    2016-01-01

    One of the most effective ways of engaging students of physiology and medicine is through laboratory demonstrations and case studies that combine 1) the use of equipment, 2) problem solving, 3) visual representations, and 4) manipulation and interpretation of data. Depending on the measurements made and the type of test, laboratory demonstrations…

  15. Regulation of average 24h human plasma leptin level; the influence of exercise and physiological changes in energy balance.

    NARCIS (Netherlands)

    Aggel-Leijssen, D.P.; van Baak, M.A.; Tenenbaum, R.; Campfield, L.A.; Saris, W.H.M.

    1999-01-01

    OBJECTIVE: The effects of short-term moderate physiological changes in energy flux and energy balance, by exercise and over- or underfeeding, on a 24h plasma leptin profile, were investigated. DESIGN: Subjects were studied over 24h in four randomized conditions: no exercise/energy balance (energy

  16. The calculation of human toxicity thresholds of 2,3,7,8-TCDD; A Physiologically Based Pharmacokinetic modeling approach

    NARCIS (Netherlands)

    Zeilmaker MJ; van Eijkeren JCH; LBO

    1998-01-01

    Dit rapport beschrijft de toepassing van een 'Physiologically Based PharmacoKinetic' model (PBPK model) bij het berekenen van de verwachte 'No Adverse Effect Level' van 2,3,7,8-TetraChloroDibenzo-p-Dioxine (TCDD) bij de mens. Het model houdt rekening met variabiliteit en

  17. Lack of effect of synthetic human gastric inhibitory polypeptide and glucagon-like peptide 1 [7-36 amide] infused at near-physiological concentrations on pentagastrin-stimulated gastric acid secretion in normal human subjects

    DEFF Research Database (Denmark)

    Nauck, M A; Bartels, E; Orskov, C

    1992-01-01

    -stimulated (0.1 micrograms/kg/h from -90 to 120 min) gastric volume, acid and chloride output, on separate occasions, synthetic human GIP (1 pmol/kg/min) and/or GLP-1 [7-36 amide] (0.3 pmol/kg/min) or placebo (0.9% NaCl with 1% albumin) were infused intravenously (from -30 to 120 min) in 9 healthy volunteers...... secretion). In conclusion, (penta)gastrin-stimulated gastric acid secretion is not inhibited by physiological circulating concentrations of GIP or GLP-1 [7-36 amide]. Therefore, the insulinotropic action of these intestinal hormones is physiologically more important than their possible role...

  18. Biophysics and cell physiology

    International Nuclear Information System (INIS)

    Mazur, P.

    1975-01-01

    Progress is reported on research activities in the fields of physiology and low-temperature biology of mammalian embryos; effects of sub-zero temperatures on eggs and embryos of sea urchins; survival of frozen-thawed human red cells; effects of radiation on physiology of Escherichia coli; transfer of triplet electronic energy in dinucleotides; effects of x radiation on DNA degradation; energy deposition by neutrons; photosynthesis; excision repair of uv-induced pyrimidine dimers in DNA of plant cells

  19. Promoting Respect as a Human Value in a Public School

    Science.gov (United States)

    Corzo, Josefina Quintero; Castañeda, Yeisson Soto

    2017-01-01

    This is a case study report arising from a series of daily observations of the students' behavior made in a primary public school located near to the capital city, Manizales-Colombia, where it was possible to notice the difficulties students had in order to coexist due to the lack of respect with their classmates, in group activities or actually…

  20. Effects of Human Resource Audit on Employee Performance in Secondary Schools in Kenya; a Case of Non Teaching Staff in Secondary Schools in Nyamache Sub County

    Science.gov (United States)

    Moke, Oeri Lydia; Muturi, Willy

    2015-01-01

    Human Resources Audit measures human resource outputs and effectiveness under the given circumstances and the degree of utilization of human resource skills. The purpose of the study was to assess the effect of Human resource Audit on employee performance in secondary schools in Nyamache Sub County. The specific objectives for the study included…

  1. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    Science.gov (United States)

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  2. Uniquely Human Self-Control Begins at School Age

    Science.gov (United States)

    Herrmann, Esther; Misch, Antonia; Hernandez-Lloreda, Victoria; Tomasello, Michael

    2015-01-01

    Human beings have remarkable skills of self-control, but the evolutionary origins of these skills are unknown. Here we compare children at 3 and 6 years of age with one of humans' two nearest relatives, chimpanzees, on a battery of reactivity and self-control tasks. Three-year-old children and chimpanzees were very similar in their abilities to…

  3. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans

    OpenAIRE

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D.; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G.; Joyner, Michael J.; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBR...

  4. Cognitive and physiological responses in humans exposed to a TETRA base station signal in relation to perceived electromagnetic hypersensitivity.

    Science.gov (United States)

    Wallace, Denise; Eltiti, Stacy; Ridgewell, Anna; Garner, Kelly; Russo, Riccardo; Sepulveda, Francisco; Walker, Stuart; Quinlan, Terence; Dudley, Sandra; Maung, Sithu; Deeble, Roger; Fox, Elaine

    2012-01-01

    Terrestrial Trunked Radio (TETRA) technology ("Airwave") has led to public concern because of its potential interference with electrical activity in the brain. The present study is the first to examine whether acute exposure to a TETRA base station signal has an impact on cognitive functioning and physiological responses. Participants were exposed to a 420 MHz TETRA signal at a power flux density of 10 mW/m(2) as well as sham (no signal) under double-blind conditions. Fifty-one people who reported a perceived sensitivity to electromagnetic fields as well as 132 controls participated in a double-blind provocation study. Forty-eight sensitive and 132 control participants completed all three sessions. Measures of short-term memory, working memory, and attention were administered while physiological responses (blood volume pulse, heart rate, skin conductance) were monitored. After applying exclusion criteria based on task performance for each aforementioned cognitive measure, data were analyzed for 36, 43, and 48 sensitive participants for these respective tasks and, likewise, 107,125, and 129 controls. We observed no differences in cognitive performance between sham and TETRA exposure in either group; physiological response also did not differ between the exposure conditions. These findings are similar to previous double-blind studies with other mobile phone signals (900-2100 MHz), which could not establish any clear evidence that mobile phone signals affect health or cognitive function. Copyright © 2011 Wiley Periodicals, Inc.

  5. [Functional state of various physiological systems of the human body during respiration of neon-oxygen mixture at depth up to 400 meters].

    Science.gov (United States)

    Poleshuk, I P; Genin, A M; Unku, R D; Mikhnenko, A E; Sementsov, V N; Suvorov, A V

    1991-01-01

    Hyperbaric neon-oxygen mixture has been studied for the effect of its high density under pressure of 41 ata on basic physiological functions of human organism. Typical changes of the cardiorespiratory system and tissue respiration parameters are revealed. Changes in physical working capacity are shown. Exposure to gaseous medium of high pressure and density is accompanied by the development of some compensatory-adaptive reactions. The possibility to perform mid-hard physical work is attained with overstrain of respiration and circulation function.

  6. THE MANAGEMENT OF HUMAN RESOURCE DEVELOPMENT IN AR RAIHAN BANDAR LAMPUNG JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Betti Nuraini

    2014-11-01

    Full Text Available This case study portrays the human resources development management in Junior High School Ar Raihan Bandar Lampung. It was designed into five stages, i.e. planning, designing (determining, collecting data, analyzing data, and drawing conclusion. The study found that (1 the selection process the teachers’, librarians’ and laboratory personnels’ recruitment was nil; (2 the recruitment gave priority only to teachers, counselors, and administrative staff;; (3 the employment of librarians and laboratory assistants becomes a second priority compared to teachers, counselors, and administrative staff; (5 the school gave an equal renumeration to the teachers and the education personnel; (6 the focus of human development was on teachers.

  7. Intragastric formation and modulation of N-nitrosodimethylamine in a dynamic in vitro gastrointestinal model under human physiological conditions

    NARCIS (Netherlands)

    Krul, C.A.M.; Zeilmaker, M.J.; Schothorst, R.C.; Havenaar, R.

    2004-01-01

    Human exposure to carcinogenic N-alkylnitrosamines can occur exogenously via food consumption or endogenously by formation of these compounds through nitrosation of amine precursors. Information on the intragastric formation of NDMA from complex mixtures of precursors and inhibitors in humans is not

  8. Learning Outcomes and Student-Perceived Value of Clay Modeling and Cat Dissection in Undergraduate Human Anatomy and Physiology

    Science.gov (United States)

    DeHoff, Mary Ellen; Clark, Krista L.; Meganathan, Karthikeyan

    2011-01-01

    Alternatives and/or supplements to animal dissection are being explored by educators of human anatomy at different academic levels. Clay modeling is one such alternative that provides a kinesthetic, three-dimensional, constructive, and sensory approach to learning human anatomy. The present study compared two laboratory techniques, clay modeling…

  9. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types.

    Science.gov (United States)

    Yan, Liangwen; Hu, Sijung; Alzahrani, Abdullah; Alharbi, Samah; Blanos, Panagiotis

    2017-06-21

    Different skin pigments among various ethnic group people have an impact on spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG) signals, a multi-wavelength opto-electronic patch sensor (OEPS) together with a schematic architecture of electronics were developed to overcome the drawback of present PPG sensor. To perform a better in vivo physiological measurement against skin pigments, optimal illuminations in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture a reliable physiological sign of heart rate (HR). A protocol was designed to investigate an impact of five skin types in compliance with Von Luschan's chromatic scale. Thirty-three healthy male subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the OEPS system. The results show that there is no significant difference ( p: 0.09, F = 3.0) in five group tests with the skin types across various activities throughout a series of consistent measurements. The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination characteristics, could open a path in multiple applications of different ethnic groups with cost-effective health monitoring.

  10. A Multi-Wavelength Opto-Electronic Patch Sensor to Effectively Detect Physiological Changes against Human Skin Types

    Directory of Open Access Journals (Sweden)

    Liangwen Yan

    2017-06-01

    Full Text Available Different skin pigments among various ethnic group people have an impact on spectrometric illumination on skin surface. To effectively capture photoplethysmographic (PPG signals, a multi-wavelength opto-electronic patch sensor (OEPS together with a schematic architecture of electronics were developed to overcome the drawback of present PPG sensor. To perform a better in vivo physiological measurement against skin pigments, optimal illuminations in OEPS, whose wavelength is compatible with a specific skin type, were optimized to capture a reliable physiological sign of heart rate (HR. A protocol was designed to investigate an impact of five skin types in compliance with Von Luschan’s chromatic scale. Thirty-three healthy male subjects between the ages of 18 and 41 were involved in the protocol implemented by means of the OEPS system. The results show that there is no significant difference (p: 0.09, F = 3.0 in five group tests with the skin types across various activities throughout a series of consistent measurements. The outcome of the present study demonstrates that the OEPS, with its multi-wavelength illumination characteristics, could open a path in multiple applications of different ethnic groups with cost-effective health monitoring.

  11. Human Resources Administration: A School-Based Perspective. Fourth Edition

    Science.gov (United States)

    Smith, Richard

    2009-01-01

    Enhanced and updated, this Fourth Edition of Richard E. Smith's highly successful text examines the growing role of the principal in planning, hiring, staff development, supervision, and other human resource functions. The Fourth Edition includes new sections on ethics, induction, and the role of the mentor teacher. This edition also introduces…

  12. Schooling for Humanity: When Big Brother Isn't Watching.

    Science.gov (United States)

    Solmitz, David O.

    Most educational reform initiatives of the past 20 years are geared towards ensuring that the United States dominates the emerging global economy. What is lost in this rush to the top of the materialist heap is an education for the more enduring human values: creativity, intellectual development, care, social justice, and democracy. In this book,…

  13. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media

    DEFF Research Database (Denmark)

    Madsen, Katrine D.; Sander, Camilla; Baldursdottir, Stefania

    2013-01-01

    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal...... in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were...... employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2...

  14. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-01

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s-1, the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  15. Human cold stress of strong local-wind "Hijikawa-arashi" in Japan, based on the UTCI index and thermo-physiological responses.

    Science.gov (United States)

    Ohashi, Yukitaka; Katsuta, Takumi; Tani, Haruka; Okabayashi, Taiki; Miyahara, Satoshi; Miyashita, Ryoji

    2018-03-30

    We investigated the cold stress caused by a strong local wind called "Hijikawa-arashi," through in situ vital measurements and the Universal Thermal Climate Index (UTCI). This wind is a very interesting winter phenomenon, localized in an area within 1 km of the seashore in Ozu City, Ehime Prefecture in Japan. When a strong Hijikawa-arashi (HA) occurred at 14-15 m s -1 , the UTCI decreased to - 30 °C along the bridge where commuting residents are the most exposed to strong and cold winds. On the bridge, most participants in our experiment felt "very cold" or "extremely cold." The UTCI of HA can be predicted from a multiple regression equation using wind speed and air temperature. The cold HA wind is also harmful to human thermo-physiological responses. It leads to higher blood pressure and increased heart rate, both of which act as cardiovascular stress triggers. Increases of 6-10 mmHg and 3-6 bpm for every 10 °C reduction in UTCI were seen on all observational days, including HA and non-HA days. In fact, the participants' body skin temperatures decreased by approximately 1.2 to 1.7 °C for every 10 °C reduction in UTCI. Thus, the UTCI variation due to the HA outbreak corresponded well with the cold sensation and thermo-physiological responses in humans. This result suggests that daily UTCI monitoring enables the prediction of thermo-physiological responses to the HA cold stress.

  16. Inefficient Metabolism of the Human Milk Oligosaccharides Lacto-N-tetraose and Lacto-N-neotetraose Shifts Bifidobacterium longum subsp. infantis Physiology

    Directory of Open Access Journals (Sweden)

    Ezgi Özcan

    2018-05-01

    Full Text Available Human milk contains a high concentration of indigestible oligosaccharides, which likely mediated the coevolution of the nursing infant with its gut microbiome. Specifically, Bifidobacterium longum subsp. infantis (B. infantis often colonizes the infant gut and utilizes these human milk oligosaccharides (HMOs to enrich their abundance. In this study, the physiology and mechanisms underlying B. infantis utilization of two HMO isomers lacto-N-tetraose (LNT and lacto-N-neotetraose (LNnT was investigated in addition to their carbohydrate constituents. Both LNT and LNnT utilization induced a significant shift in the ratio of secreted acetate to lactate (1.7–2.0 in contrast to the catabolism of their component carbohydrates (~1.5. Inefficient metabolism of LNnT prompts B. infantis to shunt carbon toward formic acid and ethanol secretion. The global transcriptome presents genomic features differentially expressed to catabolize these two HMO species that vary by a single glycosidic linkage. Furthermore, a measure of strain-level variation exists between B. infantis isolates. Regardless of strain, inefficient HMO metabolism induces the metabolic shift toward formic acid and ethanol production. Furthermore, bifidobacterial metabolites reduced LPS-induced inflammation in a cell culture model. Thus, differential metabolism of milk glycans potentially drives the emergent physiology of host-microbial interactions to impact infant health.

  17. Improved physiologically based pharmacokinetic model for oral exposures to chromium in mice, rats, and humans to address temporal variation and sensitive populations

    Energy Technology Data Exchange (ETDEWEB)

    Kirman, C.R., E-mail: ckirman@summittoxicology.com [Summit Toxicology, PO Box 3209, Bozeman, MT 59715 (United States); Suh, M.; Proctor, D.M. [ToxStrategies, Mission Viejo, CA (United States); Hays, S.M. [Summit Toxicology, PO Box 3209, Bozeman, MT 59715 (United States)

    2017-06-15

    A physiologically based pharmacokinetic (PBPK) model for hexavalent chromium [Cr(VI)] in mice, rats, and humans developed previously (Kirman et al., 2012, 2013), was updated to reflect an improved understanding of the toxicokinetics of the gastrointestinal tract following oral exposures. Improvements were made to: (1) the reduction model, which describes the pH-dependent reduction of Cr(VI) to Cr(III) in the gastrointestinal tract under both fasted and fed states; (2) drinking water pattern simulations, to better describe dosimetry in rodents under the conditions of the NTP cancer bioassay; and (3) parameterize the model to characterize potentially sensitive human populations. Important species differences, sources of non-linear toxicokinetics, and human variation are identified and discussed within the context of human health risk assessment. - Highlights: • An improved version of the PBPK model for Cr(VI) toxicokinetics was developed. • The model incorporates data collected to fill important data gaps. • Model predictions for specific age groups and sensitive subpopulations are provided. • Implications to human health risk assessment are discussed.

  18. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, Kyle, E-mail: saylor@vt.edu; Zhang, Chenming, E-mail: chzhang2@vt.edu

    2016-09-15

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  19. A simple physiologically based pharmacokinetic model evaluating the effect of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans

    International Nuclear Information System (INIS)

    Saylor, Kyle; Zhang, Chenming

    2016-01-01

    Physiologically based pharmacokinetic (PBPK) modeling was applied to investigate the effects of anti-nicotine antibodies on nicotine disposition in the brains of rats and humans. Successful construction of both rat and human models was achieved by fitting model outputs to published nicotine concentration time course data in the blood and in the brain. Key parameters presumed to have the most effect on the ability of these antibodies to prevent nicotine from entering the brain were selected for investigation using the human model. These parameters, which included antibody affinity for nicotine, antibody cross-reactivity with cotinine, and antibody concentration, were broken down into different, clinically-derived in silico treatment levels and fed into the human PBPK model. Model predictions suggested that all three parameters, in addition to smoking status, have a sizable impact on anti-nicotine antibodies' ability to prevent nicotine from entering the brain and that the antibodies elicited by current human vaccines do not have sufficient binding characteristics to reduce brain nicotine concentrations. If the antibody binding characteristics achieved in animal studies can similarly be achieved in human studies, however, nicotine vaccine efficacy in terms of brain nicotine concentration reduction is predicted to meet threshold values for alleviating nicotine dependence. - Highlights: • Modelling of nicotine disposition in the presence of anti-nicotine antibodies • Key vaccine efficacy factors are evaluated in silico in rats and in humans. • Model predicts insufficient antibody binding in past human nicotine vaccines. • Improving immunogenicity and antibody specificity may lead to vaccine success.

  20. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin

    NARCIS (Netherlands)

    Wu, Guangxi; Zhao, He; Li, Chenhao; Rajapakse, Menaka Priyadarsani; Wong, Wing Cheong; Xu, Jun; Saunders, Charles W; Reeder, Nancy L; Reilman, Raymond A; Scheynius, Annika; Sun, Sheng; Billmyre, Blake Robert; Li, Wenjun; Averette, Anna Floyd; Mieczkowski, Piotr; Heitman, Joseph; Theelen, Bart; Schröder, Markus S; De Sessions, Paola Florez; Butler, Geraldine; Maurer-Stroh, Sebastian; Boekhout, Teun; Nagarajan, Niranjan; Dawson, Thomas L

    2015-01-01

    Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are

  1. Regulatory Physiology

    Science.gov (United States)

    Lane, Helen W.; Whitson, Peggy A.; Putcha, Lakshmi; Baker, Ellen; Smith, Scott M.; Stewart, Karen; Gretebeck, Randall; Nimmagudda, R. R.; Schoeller, Dale A.; Davis-Street, Janis

    1999-01-01

    As noted elsewhere in this report, a central goal of the Extended Duration Orbiter Medical Project (EDOMP) was to ensure that cardiovascular and muscle function were adequate to perform an emergency egress after 16 days of spaceflight. The goals of the Regulatory Physiology component of the EDOMP were to identify and subsequently ameliorate those biochemical and nutritional factors that deplete physiological reserves or increase risk for disease, and to facilitate the development of effective muscle, exercise, and cardiovascular countermeasures. The component investigations designed to meet these goals focused on biochemical and physiological aspects of nutrition and metabolism, the risk of renal (kidney) stone formation, gastrointestinal function, and sleep in space. Investigations involved both ground-based protocols to validate proposed methods and flight studies to test those methods. Two hardware tests were also completed.

  2. Mathematical physiology

    CERN Document Server

    Sneyd, James

    2009-01-01

    There has been a long history of interaction between mathematics and physiology. This book looks in detail at a wide selection of mathematical models in physiology, showing how physiological problems can be formulated and studied mathematically, and how such models give rise to interesting and challenging mathematical questions. With its coverage of many recent models it gives an overview of the field, while many older models are also discussed, to put the modern work in context. In this second edition the coverage of basic principles has been expanded to include such topics as stochastic differential equations, Markov models and Gibbs free energy, and the selection of models has also been expanded to include some of the basic models of fluid transport, respiration/perfusion, blood diseases, molecular motors, smooth muscle, neuroendrocine cells, the baroreceptor loop, turboglomerular oscillations, blood clotting and the retina. Owing to this extensive coverage, the second edition is published in two volumes. ...

  3. The Freshman Nine: Helping High School Freshmen Be Successful in AP Human Geography

    Science.gov (United States)

    Garner, Jennifer

    2012-01-01

    Teaching AP Human Geography to freshmen seems like a daunting task and while there are many arguments both for and against offering the course to freshmen, for many teachers it is reality. In this article, the author offers nine tips to help high school freshmen be successful in the course and on the AP exam.

  4. Exploring School Ethos: An Investigation of Children's Human Rights in Two Secondary Institutions in Hong Kong

    Science.gov (United States)

    Lo, Yan Lam; Leung, Yan Wing; Yuen, Wai Wa

    2015-01-01

    From 2009 to 2011, the authors launched the Basic Law Education Project: Education for Human Rights and the Rule of Law in Hong Kong. This article focuses on a subset of the overarching data-set and discusses the findings that resulted from a comparative analysis of two participating schools. A survey was deployed to assess the extent to which a…

  5. Schools as Travel Agencies: Helping People to Move Up, Down, and Sideways Through Human Culture.

    Science.gov (United States)

    Anderson, Lee F.

    The three major objectives of intercultural education are to help people effectively manage encounters among culturally different individuals, competently move in and out of culturally diverse settings, and skillfully utilize resources of human culture in creating new settings. At present, schools and the social studies profession are not…

  6. The Role and Purposes of Public Schools and Religious Fundamentalism: An International Human Rights Law Perspective

    Science.gov (United States)

    Hodgson, Douglas Charles

    2012-01-01

    The question of what are today the legitimate and proper role and purposes of public schools can only be answered by a close examination and analysis of the human right to education which has been developed by such international organizations as the United Nations and the United Nations Educational, Scientific and Cultural Organization, and by…

  7. Using "Competing Visions of Human Rights" in an International IB World School

    Science.gov (United States)

    Tolley, William J.

    2013-01-01

    William Tolley, a teaching fellow with the Choices Program, is the Learning and Innovation Coach and head of history at the International School of Curitiba, Brazil (IB). He writes in this article that he has found that the "Competing Visions of Human Rights" teaching unit, developed by Brown University's Choices Program, provides a…

  8. Human Resource Management Strategies and Teacher's Efficiency within Schools: A Co-Relational Study

    Science.gov (United States)

    Hashmi, Kiran

    2014-01-01

    The aim of the paper is to study Human Resource Management and Development (HRMD) strategies and their effect on teachers' efficiency within the Catholic Board of Education (CBE) schools of Pakistan whose teachers are graduates in educational leadership courses from a private teacher education institutes in Karachi. The study endeavored to build a…

  9. Schools, Animals, and Kids. Orientation to the Humanities (Latin), Part 3: 7500.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    In an effort to orient the student of Latin to the humanities, a series of three quinmester courses focus on various aspects of life of a Roman family in the first century A. D. The third part of the trilogy, to be used independently or in sequence, concentrates on the telling of time by day and year, all about schools, animals, and gladiatorial…

  10. Physiological pseudomyopia.

    Science.gov (United States)

    Jones, R

    1990-08-01

    Objective refraction through plus fogging lenses and base-in prisms revealed that normally accommodation is not completely relaxed when the stimulus to accommodation is zero. The myopic shift in the refractive error due to this focus error of accommodation was defined as physiological pseudomyopia. Two previously established features of accommodation are responsible for this behavior: (1) accommodation acts as a proportional control system for steady-state responses; and (2) the rest focus of accommodation is nonzero. It is proposed that the hyperopic shift in refraction observed in cycloplegia is the result of elimination of physiological pseudomyopia.

  11. Awareness and knowledge about human papillomavirus among high school students in China.

    Science.gov (United States)

    Tang, Shuang-yang; Liu, Zhi-hua; Li, Le; Cai, Heng-ling; Wan, Yan-ping

    2014-01-01

    To investigate awareness and knowledge of human papillomavirus (HPV) infection among high school students and to provide a basis for health education on HPV infection for high school students in China. A questionnaire on HPV awareness and knowledge was administered to 900 high school students in Xiangtan City of Hunan Province in China by layer cluster sampling. A total of 848 anonymous valid questionnaires were received from volunteers who completed the questionnaire correctly. Only 10.1% had heard of HPV, and of those only 18.6% knew that HPV could lead to cervical cancer. Single factor analysis indicated that home address, age, grade, academic achievement, sex history, gender, father's education level and mother's education level were impact factors for HPV knowledge of high school students. Multiple regression analysis showed 4 independent risk factors associated with HPV knowledge: academic achievement, sex history, gender, and mother's education level. The limited knowledge came primarily from television and radio broadcasts (59.3%), the Internet (57.0%), parents (25.6%), medical workers (20.9%), and teachers (18.6%). High school students lack HPV knowledge, which is affected by multiple factors. Targeted health education of all sorts must be provided. Both schools and families are responsible for reinforcing HPV education provided to high school students.

  12. Physiology Flies with Time.

    Science.gov (United States)

    Sehgal, Amita

    2017-11-30

    The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Human plasma concentrations of tolbutamide and acetaminophen extrapolated from in vivo animal pharmacokinetics using in vitro human hepatic clearances and simple physiologically based pharmacokinetic modeling for radio-labeled microdose clinical studies

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Kunikane, Eriko; Nishiyama, Sayako; Murayama, Norie; Shimizu, Makiko; Sugiyama, Yuichi; Chiba, Koji; Ikeda, Toshihiko

    2015-01-01

    The aim of the current study was to extrapolate the pharmacokinetics of drug substances orally administered in humans from rat pharmacokinetic data using tolbutamide and acetaminophen as model compounds. Adjusted animal biomonitoring equivalents from rat studies based on reported plasma concentrations were scaled to human biomonitoring equivalents using known species allometric scaling factors. In this extrapolation, in vitro metabolic clearance data were obtained using liver preparations. Rates of tolbutamide elimination were roughly similar in rat and human liver microsome experiments, but acetaminophen elimination by rat liver microsomes and cytosolic preparations showed a tendency to be faster than those in humans. Using a simple physiologically based pharmacokinetic (PBPK) model, estimated human plasma concentrations of tolbutamide and acetaminophen were consistent with reported concentrations. Tolbutamide cleared in a roughly similar manner in humans and rats, but medical-dose levels of acetaminophen cleared (dependent on liver metabolism) more slowly from plasma in humans than it did in rats. The data presented here illustrate how pharmacokinetic data in combination with a simple PBPK model can be used to assist evaluations of the pharmacological/toxicological potential of new drug substances and for estimating human radiation exposures from radio-labeled drugs when planning human studies. (author)

  14. SATISFACTION OF HUMAN RESOURCES IN SECONDARY SCHOOLS FROM ROMANIAN RURAL AREAS

    Directory of Open Access Journals (Sweden)

    Cristian Stefanescu

    2017-06-01

    Full Text Available Organization’s human resource is often called the "most valuable asset", although it does not appear in the organization’s accounts. Organization's success depends on the way in which its members implement its objectives; therefore the satisfaction of human resources is crucial for achieving good results in the organization. In this work, we conducted an analysis of the particularities of human resource management in secondary education area and an empirical study on the satisfaction of human resources in a typical rural Romanian schools. It is imperative for Romania to adopt a strategy to improve the education system in order to include new approaches of organizational governance and human resources management so that human resources within the education system have a high degree of satisfaction from the work performed.

  15. The Journey of a Sandwich: Computer-Based Laboratory Experiments about the Human Digestive System in High School Biology Teaching

    Science.gov (United States)

    Sorgo, Andrej; Hajdinjak, Zdravka; Briski, Darko

    2008-01-01

    Teaching high school students about the digestive system can be a challenge for a teacher when s/he wants to overcome rote learning of facts without a deeper understanding of the physiological processes inside the alimentary tract. A series of model experiments illustrating the journey of a sandwich was introduced into teaching high school…

  16. Exercise physiology

    DEFF Research Database (Denmark)

    Kiens, Bente; Richter, Erik; Wojtaszewski, Jørgen

    2014-01-01

    The passing of Professor Bengt Saltin on September 12, 2014 truly marks the end of an era. As editor of the Journal of Applied Physiology and one of Bengt’s many collaborators and colleagues, I wanted the Journal to celebrate his many seminal contributions by means of an Editorial. Professor Bent...

  17. Physiological neuronal decline in healthy aging human brain - An in vivo study with MRI and short echo-time whole-brain (1)H MR spectroscopic imaging.

    Science.gov (United States)

    Ding, Xiao-Qi; Maudsley, Andrew A; Sabati, Mohammad; Sheriff, Sulaiman; Schmitz, Birte; Schütze, Martin; Bronzlik, Paul; Kahl, Kai G; Lanfermann, Heinrich

    2016-08-15

    Knowledge of physiological aging in healthy human brain is increasingly important for neuroscientific research and clinical diagnosis. To investigate neuronal decline in normal aging brain eighty-one healthy subjects aged between 20 and 70years were studied with MRI and whole-brain (1)H MR spectroscopic imaging. Concentrations of brain metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), myo-inositol (mI), and glutamine+glutamate (Glx) in ratios to internal water, and the fractional volumes of brain tissue were estimated simultaneously in eight cerebral lobes and in cerebellum. Results demonstrated that an age-related decrease in gray matter volume was the largest contribution to changes in brain volume. Both lobar NAA and the fractional volume of gray matter (FVGM) decreased with age in all cerebral lobes, indicating that the decreased NAA was predominantly associated with decreased gray matter volume and neuronal density or metabolic activity. In cerebral white matter Cho, tCr, and mI increased with age in association with increased fractional volume, showing altered cellular membrane turn-over, energy metabolism, and glial activity in human aging white matter. In cerebellum tCr increased while brain tissue volume decreased with age, showing difference to cerebral aging. The observed age-related metabolic and microstructural variations suggest that physiological neuronal decline in aging human brain is associated with a reduction of gray matter volume and neuronal density, in combination with cellular aging in white matter indicated by microstructural alterations and altered energy metabolism in the cerebellum. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effectiveness of Health Education Teachers and School Nurses Teaching Sexually Transmitted Infections/Human Immunodeficiency Virus Prevention Knowledge and Skills in High School

    Science.gov (United States)

    Borawski, Elaine A.; Tufts, Kimberly Adams; Trapl, Erika S.; Hayman, Laura L.; Yoder, Laura D.; Lovegreen, Loren D.

    2015-01-01

    Background: We examined the differential impact of a well-established human immunodeficiency virus (HIV)/sexually transmitted infections (STIs) curriculum, Be Proud! Be Responsible!, when taught by school nurses and health education classroom teachers within a high school curricula. Methods: Group-randomized intervention study of 1357 ninth and…

  19. Survey of Australian schools of nursing use of human patient (mannequin) simulation.

    Science.gov (United States)

    McGarry, Denise Elizabeth; Cashin, Andrew; Fowler, Cathrine

    2014-11-01

    Rapid adoption of high-fidelity human patient (mannequin) simulation has occurred in Australian Schools of Nursing in recent years, as it has internationally. This paper reports findings from a 2012 online survey of Australian Schools of Nursing and builds on findings of earlier studies. The survey design allowed direct comparison with a previous study from the USA but limited its scope to the pre-registration (pre-service Bachelor of Nursing) curriculum. It also included extra mental health specific questions. Australian patterns of adoption and application of high-fidelity human patient (mannequin) simulation in the pre-registration nursing curriculum share features with experiences reported in previous US and Australian surveys. A finding of interest in this survey was a small number of Schools of Nursing that reported no current use of high-fidelity human patient (mannequin) simulation and no plans to adopt it, in spite of a governmental capital funding support programme. In-line with prior surveys, mental health applications were meagre. There is an absence of clearly articulated learning theory underpinnings in the use of high-fidelity human patient (mannequin) simulation generally. It appears the first stage of implementation of high-fidelity human patient (mannequin) simulation into the pre-registration nursing curriculum has occurred and the adoption of this pedagogy is entering a new phase.

  20. Procedures of Exercise Physiology Laboratories

    Science.gov (United States)

    Bishop, Phillip A.; Fortney, Suzanne; Greenisen, Michael; Siconolfi, Steven F.; Bamman, Marcas M.; Moore, Alan D., Jr.; Squires, William

    1998-01-01

    This manual describes the laboratory methods used to collect flight crew physiological performance data at the Johnson Space Center. The Exercise Countermeasures Project Laboratory is a standard physiology laboratory; only the application to the study of human physiological adaptations to spaceflight is unique. In the absence of any other recently published laboratory manual, this manual should be a useful document staffs and students of other laboratories.

  1. Open-Box Muscle-Computer Interface: Introduction to Human-Computer Interactions in Bioengineering, Physiology, and Neuroscience Courses

    Science.gov (United States)

    Landa-Jiménez, M. A.; González-Gaspar, P.; Pérez-Estudillo, C.; López-Meraz, M. L.; Morgado-Valle, C.; Beltran-Parrazal, L.

    2016-01-01

    A Muscle-Computer Interface (muCI) is a human-machine system that uses electromyographic (EMG) signals to communicate with a computer. Surface EMG (sEMG) signals are currently used to command robotic devices, such as robotic arms and hands, and mobile robots, such as wheelchairs. These signals reflect the motor intention of a user before the…

  2. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    Science.gov (United States)

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  3. Time course of physiological and psychological responses in humans during a 20-day severe-cold-acclimation programme.

    Directory of Open Access Journals (Sweden)

    Marius Brazaitis

    Full Text Available The time course of physiological and psychological markers during cold acclimation (CA was explored. The experiment included 17 controlled (i.e., until the rectal temperature reached 35.5°C or 170 min had elapsed; for the CA-17 session, the subjects (n = 14 were immersed in water for the same amount of time as that used in the CA-1 session head-out water immersions at a temperature of 14°C over 20 days. The data obtained in this study suggest that the subjects exhibited a thermoregulatory shift from peripheral-to-central to solely central input thermoregulation, as well as from shivering to non-shivering thermogenesis throughout the CA. In the first six CA sessions, a hypothermic type of acclimation was found; further CA (CA-7 to CA-16 led to a transitional shift to a hypothermic-insulative type of acclimation. Interestingly, when the subjects were immersed in water for the same time as that used in the CA-1 session (CA-17, the CA led to a hypothermic type of acclimation. The presence of a metabolic type of thermogenesis was evident only under thermoneutral conditions. Cold-water immersion decreased the concentration of cold-stress markers, reduced the activity of the innate immune system, suppressed specific immunity to a lesser degree and yielded less discomfort and cold sensation. We found a negative correlation between body mass index and Δ metabolic heat production before and after CA.

  4. Physiologically-Relevant Modes of Membrane Interactions by the Human Antimicrobial Peptide, LL-37, Revealed by SFG Experiments

    Science.gov (United States)

    Ding, Bei; Soblosky, Lauren; Nguyen, Khoi; Geng, Junqing; Yu, Xinglong; Ramamoorthy, Ayyalusamy; Chen, Zhan

    2013-05-01

    Antimicrobial peptides (AMPs) could become the next generation antibiotic compounds which can overcome bacterial resistance by disrupting cell membranes and it is essential to determine the factors underlying its mechanism of action. Although high-resolution NMR and other biological studies have provided valuable insights, it has been a major challenge to follow the AMP-membrane interactions at physiologically-relevant low peptide concentrations. In this study, we demonstrate a novel approach to overcome this major limitation by performing Sum Frequency Generation (SFG) vibrational spectroscopic experiments on lipid bilayers containing an AMP, LL-37. Our results demonstrate the power of SFG to study non-linear helical peptides and also infer that lipid-peptide interaction and the peptide orientation depend on the lipid membrane composition. The observed SFG signal changes capture the aggregating process of LL-37 on membrane. In addition, our SFG results on cholesterol-containing lipid bilayers indicate the inhibition effect of cholesterol on peptide-induced membrane permeation process.

  5. Importance of Physical and Physiological Parameters in Simulated Particle Transport in the Alveolar Zone of the Human Lung

    Directory of Open Access Journals (Sweden)

    Dogan Ciloglu

    2017-01-01

    Full Text Available The trajectory and deposition efficiency of micron-sized (1–5 µm particles, inhaled into the pulmonary system, are accurately determined with the aid of a newly developed model and modified simulation techniques. This alveolar model, which has a simple but physiologically appropriate geometry, and the utilized fluid structure interaction (FSI methods permit the precise simulation of tissue wall deformation and particle fluid interactions. The relation between tissue movement and airflow in the alveolated duct is solved by a two-way fluid structure interaction simulation technique, using ANSYS Workbench (Release 16.0, ANSYS INC., Pittsburgh, PA, USA, 2015. The dynamic transport of particles and their deposition are investigated as a function of aerodynamic particle size, tissue visco-elasticity, tidal breathing period, gravity orientation and particle–fluid interactions. It is found that the fluid flows and streamlines differ between the present flexible model and rigid models, and the two-way coupling particle trajectories vary relative to one-way particle coupling. In addition, the results indicate that modelling the two-way coupling particle system is important because the two-way discrete phase method (DPM approach despite its complexity provides more extensive particle interactions and is more reliable than transport results from the one-way DPM approach. The substantial difference between the results of the two approaches is likely due to particle–fluid interactions, which re-suspend the sediment particles in the airway stream and hence pass from the current generation.

  6. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Al-Subeihi, Ala' A.A., E-mail: subeihi@yahoo.com [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); BEN-HAYYAN-Aqaba International Laboratories, Aqaba Special Economic Zone Authority (ASEZA), P. O. Box 2565, Aqaba 77110 (Jordan); Alhusainy, Wasma; Kiwamoto, Reiko; Spenkelink, Bert [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); Bladeren, Peter J. van [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands); Nestec S.A., Avenue Nestlé 55, 1800 Vevey (Switzerland); Rietjens, Ivonne M.C.M.; Punt, Ans [Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen (Netherlands)

    2015-03-01

    The present study aims at predicting the level of formation of the ultimate carcinogenic metabolite of methyleugenol, 1′-sulfooxymethyleugenol, in the human population by taking variability in key bioactivation and detoxification reactions into account using Monte Carlo simulations. Depending on the metabolic route, variation was simulated based on kinetic constants obtained from incubations with a range of individual human liver fractions or by combining kinetic constants obtained for specific isoenzymes with literature reported human variation in the activity of these enzymes. The results of the study indicate that formation of 1′-sulfooxymethyleugenol is predominantly affected by variation in i) P450 1A2-catalyzed bioactivation of methyleugenol to 1′-hydroxymethyleugenol, ii) P450 2B6-catalyzed epoxidation of methyleugenol, iii) the apparent kinetic constants for oxidation of 1′-hydroxymethyleugenol, and iv) the apparent kinetic constants for sulfation of 1′-hydroxymethyleugenol. Based on the Monte Carlo simulations a so-called chemical-specific adjustment factor (CSAF) for intraspecies variation could be derived by dividing different percentiles by the 50th percentile of the predicted population distribution for 1′-sulfooxymethyleugenol formation. The obtained CSAF value at the 90th percentile was 3.2, indicating that the default uncertainty factor of 3.16 for human variability in kinetics may adequately cover the variation within 90% of the population. Covering 99% of the population requires a larger uncertainty factor of 6.4. In conclusion, the results showed that adequate predictions on interindividual human variation can be made with Monte Carlo-based PBK modeling. For methyleugenol this variation was observed to be in line with the default variation generally assumed in risk assessment. - Highlights: • Interindividual human differences in methyleugenol bioactivation were simulated. • This was done using in vitro incubations, PBK modeling

  7. Evaluation of the interindividual human variation in bioactivation of methyleugenol using physiologically based kinetic modeling and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Al-Subeihi, Ala' A.A.; Alhusainy, Wasma; Kiwamoto, Reiko; Spenkelink, Bert; Bladeren, Peter J. van; Rietjens, Ivonne M.C.M.; Punt, Ans

    2015-01-01

    The present study aims at predicting the level of formation of the ultimate carcinogenic metabolite of methyleugenol, 1′-sulfooxymethyleugenol, in the human population by taking variability in key bioactivation and detoxification reactions into account using Monte Carlo simulations. Depending on the metabolic route, variation was simulated based on kinetic constants obtained from incubations with a range of individual human liver fractions or by combining kinetic constants obtained for specific isoenzymes with literature reported human variation in the activity of these enzymes. The results of the study indicate that formation of 1′-sulfooxymethyleugenol is predominantly affected by variation in i) P450 1A2-catalyzed bioactivation of methyleugenol to 1′-hydroxymethyleugenol, ii) P450 2B6-catalyzed epoxidation of methyleugenol, iii) the apparent kinetic constants for oxidation of 1′-hydroxymethyleugenol, and iv) the apparent kinetic constants for sulfation of 1′-hydroxymethyleugenol. Based on the Monte Carlo simulations a so-called chemical-specific adjustment factor (CSAF) for intraspecies variation could be derived by dividing different percentiles by the 50th percentile of the predicted population distribution for 1′-sulfooxymethyleugenol formation. The obtained CSAF value at the 90th percentile was 3.2, indicating that the default uncertainty factor of 3.16 for human variability in kinetics may adequately cover the variation within 90% of the population. Covering 99% of the population requires a larger uncertainty factor of 6.4. In conclusion, the results showed that adequate predictions on interindividual human variation can be made with Monte Carlo-based PBK modeling. For methyleugenol this variation was observed to be in line with the default variation generally assumed in risk assessment. - Highlights: • Interindividual human differences in methyleugenol bioactivation were simulated. • This was done using in vitro incubations, PBK modeling

  8. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    Science.gov (United States)

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  9. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    Science.gov (United States)

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  10. Development of a Combined In Vitro Physiologically Based Kinetic (PBK) and Monte Carlo Modelling Approach to Predict Interindividual Human Variation in Phenol-Induced Developmental Toxicity.

    Science.gov (United States)

    Strikwold, Marije; Spenkelink, Bert; Woutersen, Ruud A; Rietjens, Ivonne M C M; Punt, Ans

    2017-06-01

    With our recently developed in vitro physiologically based kinetic (PBK) modelling approach, we could extrapolate in vitro toxicity data to human toxicity values applying PBK-based reverse dosimetry. Ideally information on kinetic differences among human individuals within a population should be considered. In the present study, we demonstrated a modelling approach that integrated in vitro toxicity data, PBK modelling and Monte Carlo simulations to obtain insight in interindividual human kinetic variation and derive chemical specific adjustment factors (CSAFs) for phenol-induced developmental toxicity. The present study revealed that UGT1A6 is the primary enzyme responsible for the glucuronidation of phenol in humans followed by UGT1A9. Monte Carlo simulations were performed taking into account interindividual variation in glucuronidation by these specific UGTs and in the oral absorption coefficient. Linking Monte Carlo simulations with PBK modelling, population variability in the maximum plasma concentration of phenol for the human population could be predicted. This approach provided a CSAF for interindividual variation of 2.0 which covers the 99th percentile of the population, which is lower than the default safety factor of 3.16 for interindividual human kinetic differences. Dividing the dose-response curve data obtained with in vitro PBK-based reverse dosimetry, with the CSAF provided a dose-response curve that reflects the consequences of the interindividual variability in phenol kinetics for the developmental toxicity of phenol. The strength of the presented approach is that it provides insight in the effect of interindividual variation in kinetics for phenol-induced developmental toxicity, based on only in vitro and in silico testing. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Dopamine in human follicular fluid is associated with cellular uptake and metabolism-dependent generation of reactive oxygen species in granulosa cells: implications for physiology and pathology.

    Science.gov (United States)

    Saller, S; Kunz, L; Berg, D; Berg, U; Lara, H; Urra, J; Hecht, S; Pavlik, R; Thaler, C J; Mayerhofer, A

    2014-03-01

    periovulatory follicular phase. The full functional importance of DA-induced ROS in small follicles and other compartments of the ovary, especially in PCOS samples, remains to be shown. The results identify DA as a factor in the human ovary, which, via ROS generation, could play a role in ovarian physiology and pathology. The results obtained in samples from women with PCOS suggest the involvement of DA, acting via ROS, in this condition. This work was supported by a grant from DFG MA1080/17-3 and in part MA1080/19-1. There are no competing interests.

  12. Human rights values or cultural values? Pursuing values to maintain positive discipline in multicultural schools

    Directory of Open Access Journals (Sweden)

    Petro du Preez

    2010-01-01

    Full Text Available Discussions on discipline in education often accentuate corporal punishment or measures to infuse moral fibre. In addition, many authors argue that inculcating a particular value system can promote discipline in schools. This could however be profoundly problematic in the light of the Constitution. We argue that positive discipline in multicultural school environments needs to be based in part on human rights values that are neither solely universally interpreted nor particularistically interpreted. We report on the data generated at a research workshop held as the final dissemination process of a four-year international research project entitled "Understanding human rights through different belief systems: intercultural and interreligious dialogue". Dialogue was chosen as a form of data gathering since it is more spontaneous than conventional questioning techniques and can thus generate more naturally occurring data to strengthen the outcomes of the project. It appears that some teachers believe discipline can only be maintained through the elevation of cultural values (particularism. We argue that schools should start negotiating, at the most basic level, the values, including emancipatory, human rights values, and cultural values, which could underpin positive discipline in multicultural schools. Drawing solely on cultural values is not only unlikely to solve the problem of discipline, but could also undermine the efforts to transform our diverse, democratic society.

  13. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    Science.gov (United States)

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Overexpression of human and fly frataxins in Drosophila provokes deleterious effects at biochemical, physiological and developmental levels.

    Directory of Open Access Journals (Sweden)

    Juan A Navarro

    Full Text Available BACKGROUND: Friedreich's ataxia (FA, the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN and fly (FH frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE: Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.

  15. Physiological Mechanisms Mediating the Coupling between Heart Period and Arterial Pressure in Response to Postural Changes in Humans.

    Science.gov (United States)

    Silvani, Alessandro; Calandra-Buonaura, Giovanna; Johnson, Blair D; van Helmond, Noud; Barletta, Giorgio; Cecere, Anna G; Joyner, Michael J; Cortelli, Pietro

    2017-01-01

    The upright posture strengthens the coupling between heart period (HP) and systolic arterial pressure (SAP) consistently with a greater contribution of the arterial baroreflex to cardiac control, while paradoxically decreasing cardiac baroreflex sensitivity (cBRS). To investigate the physiological mechanisms that mediate the coupling between HP and SAP in response to different postures, we analyzed the cross-correlation functions between low-frequency HP and SAP fluctuations and estimated cBRS with the sequence technique in healthy male subjects during passive head-up tilt test (HUTT, n = 58), during supine wakefulness, supine slow-wave sleep (SWS), and in the seated and active standing positions ( n = 8), and during progressive loss of 1 L blood ( n = 8) to decrease central venous pressure in the supine position. HUTT, SWS, the seated, and the standing positions, but not blood loss, entailed significant increases in the positive correlation between HP and the previous SAP values, which is the expected result of arterial baroreflex control, compared with baseline recordings in the supine position during wakefulness. These increases were mirrored by increases in the low-frequency variability of SAP in each condition but SWS. cBRS decreased significantly during HUTT, in the seated and standing positions, and after blood loss compared with baseline during wakefulness. These decreases were mirrored by decreases in the RMSSD index, which reflects cardiac vagal modulation. These results support the view that the cBRS decrease associated with the upright posture is a byproduct of decreased cardiac vagal modulation, triggered by the arterial baroreflex in response to central hypovolemia. Conversely, the greater baroreflex contribution to cardiac control associated with upright posture may be explained, at least in part, by enhanced fluctuations of SAP, which elicit a more effective entrainment of HP fluctuations by the arterial baroreflex. These SAP fluctuations may result

  16. Environmental physiology

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include: the effects of environmental pollutants on homeostasis of the hematopoietic system; pollutant effects on steroid metabolism; pollutant effects on pulmonary macrophages; effects of toxic gases on lung cells; the development of immunological methods for assessing lung damage at the cellular level; the response of erythropoietin concentration to various physiological changes; and the study of actinide metabolism in monkey skeletons

  17. Towards Individualized Physiology Lecturing in Africa

    African Journals Online (AJOL)

    Dr Olaleye Samuel

    1 (1): 13 - 16. Journal of African Association of Physiological Sciences ... import from validated text format question series and seamless use of any computer program or internet .... Silverthorn D U, Human Physiology, an Integrated. Approach ...

  18. Physiological Parameters Database for Older Adults

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Physiological Parameters Database for Older Adults is available for download and contains physiological parameters values for healthy older human adults (age 60...

  19. Bioactive reagents used in mesotherapy for skin rejuvenation in vivo induce diverse physiological processes in human skin fibroblasts in vitro- a pilot study.

    Science.gov (United States)

    Jäger, Claudia; Brenner, Christiane; Habicht, Jüri; Wallich, Reinhard

    2012-01-01

    The promise of mesotherapy is maintenance and/or recovery of a youthful skin with a firm, bright and moisturized texture. Currently applied medications employ microinjections of hyaluronic acid, vitamins, minerals and amino acids into the superficial layer of the skin. However, the molecular and cellular processes underlying mesotherapy are still elusive. Here we analysed the effect of five distinct medication formulas on pivotal parameters involved in skin ageing, that is collagen expression, cell proliferation and morphological changes using normal human skin fibroblast cultures in vitro. Whereas in the presence of hyaluronic acid, NCTF135(®) and NCTF135HA(®) , cell proliferation was comparable to control cultures; however, with higher expression of collagen type-1, matrix metalloproteinase-1 and tissue inhibitor of matrix metalloproteinase-1, addition of Soluvit(®) N and Meso-BK led to apoptosis and/or necrosis of human fibroblasts. The data indicate that bioactive reagents currently applied for skin rejuvenation elicit strikingly divergent physiological processes in human skin fibroblast in vitro. © 2011 John Wiley & Sons A/S.

  20. An efficient deletion mutant packaging system for defective herpes simplex virus vectors: Potential applications to human gene therapy and neuronal physiology

    International Nuclear Information System (INIS)

    Geller, A.I.; Keyomarsi, K.; Bryan, J.; Pardee, A.B.

    1990-01-01

    The authors have previously described a defective herpes simplex virus (HSV-1) vector system that permits that introduction of virtually any gene into nonmitotic cells. pHSVlac, the prototype vector, stably expresses Escherichia coli β-galactosidase from a constitutive promoter in many human cell lines, in cultured rat neurons from throughout the nervous system, and in cells in the adult rat brain. HSV-1 vectors expressing other genes may prove useful for studying neuronal physiology or performing human gene therapy for neurological diseases, such as Parkinson disease or brain tumors. A HSV-1 temperature-sensitive (ts) mutant, ts K, has been used as helper virus; ts mutants revert to wild type. In contrast, HSV-1 deletion mutants essentially cannot revert to wild type; therefore, use of a deletion mutant as helper virus might permit human gene therapy with HSV-1 vectors. They now report an efficient packaging system for HSV-1 VECTORS USING A DELETION MUTANT, d30EBA, as helper virus; virus is grown on the complementing cell line M64A. pHSVlac virus prepared using the deletion mutant packaging system stably expresses β-galactosidase in cultured rat sympathetic neurons and glia. Both D30EBA and ts K contain a mutation in the IE3 gene of HSV-1 strain 17 and have the same phenotype; therefore, changing the helper virus from ts K to D30EBA does not alter the host range or other properties of the HSV-1 vector system

  1. 'It's a logistical nightmare!' Recommendations for optimising human papillomavirus school-based vaccination experience.

    Science.gov (United States)

    Robbins, Spring Chenoa Cooper; Bernard, Diana; McCaffery, Kirsten; Skinner, S Rachel

    2010-09-01

    To date, no published studies examine procedural factors of the school-based human papillomavirus (HPV) vaccination program from the perspective of those involved. This study examines the factors that were perceived to impact optimal vaccination experience. Schools across Sydney were selected to reflect a range of vaccination coverage at the school level and different school types to ensure a range of experiences. Semi-structured focus groups were conducted with girls; and one-on-one interviews were undertaken with parents, teachers and nurses until saturation of data in all emergent themes was reached. Focus groups and interviews explored participants' experiences in school-based HPV vaccination. Transcripts were analysed, letting themes emerge. Themes related to participants' experience of the organisational, logistical and procedural aspects of the vaccination program and their perceptions of an optimal process were organised into two categories: (1) preparation for the vaccination program and (2) vaccination day strategies. In (1), themes emerged regarding commitment to the process from those involved, planning time and space for vaccinations, communication within and between agencies, and flexibility. In (2), themes included vaccinating the most anxious girls first, facilitating peer support, use of distraction techniques, minimising waiting time girls, and support staff. A range of views exists on what constitutes an optimal school-based program. Several findings were identified that should be considered in the development of guidelines for implementing school-based programs. Future research should evaluate how different approaches to acquiring parental consent, and the use of anxiety and fear reduction strategies impact experience and uptake in the school-based setting.

  2. Puzzle-based versus traditional lecture: comparing the effects of pedagogy on academic performance in an undergraduate human anatomy and physiology II lab.

    Science.gov (United States)

    Stetzik, Lucas; Deeter, Anthony; Parker, Jamie; Yukech, Christine

    2015-06-23

    A traditional lecture-based pedagogy conveys information and content while lacking sufficient development of critical thinking skills and problem solving. A puzzle-based pedagogy creates a broader contextual framework, and fosters critical thinking as well as logical reasoning skills that can then be used to improve a student's performance on content specific assessments. This paper describes a pedagogical comparison of traditional lecture-based teaching and puzzle-based teaching in a Human Anatomy and Physiology II Lab. Using a single subject/cross-over design half of the students from seven sections of the course were taught using one type of pedagogy for the first half of the semester, and then taught with a different pedagogy for the second half of the semester. The other half of the students were taught the same material but with the order of the pedagogies reversed. Students' performance on quizzes and exams specific to the course, and in-class assignments specific to this study were assessed for: learning outcomes (the ability to form the correct conclusion or recall specific information), and authentic academic performance as described by (Am J Educ 104:280-312, 1996). Our findings suggest a significant improvement in students' performance on standard course specific assessments using a puzzle-based pedagogy versus a traditional lecture-based teaching style. Quiz and test scores for students improved by 2.1 and 0.4% respectively in the puzzle-based pedagogy, versus the traditional lecture-based teaching. Additionally, the assessments of authentic academic performance may only effectively measure a broader conceptual understanding in a limited set of contexts, and not in the context of a Human Anatomy and Physiology II Lab. In conclusion, a puzzle-based pedagogy, when compared to traditional lecture-based teaching, can effectively enhance the performance of students on standard course specific assessments, even when the assessments only test a limited

  3. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect?

    Science.gov (United States)

    Doré, Joël; Multon, Marie-Christine; Béhier, Jehan-Michel

    2017-02-01

    From the moment of birth, each human being builds a microbe-host symbiosis which is key for the preservation of its health and well-being. This personal symbiotic coexistence is the result of progressive enrichments in microorganism diversity through external supplies. This diversity is nowadays massively overthrown by drastic changes related to clinical practice in birth management, environmental exposure, nutrition and healthcare behaviors. The last two generations have been the frame of massive modifications in life and food habits, with people being more and more sedentary, overfed and permeated with drugs and pollutants. We are now able to measure the impact of these changes on the gut microbiota diversity. Concomitantly, these modifications of lifestyle were associated with a dramatic increase in incidence of immune-mediated diseases including metabolic, allergic and inflammatory diseases and most likely neurodegenerative and psychiatric disorders. Microbiota is becoming a hot topic in the scientific community and in the mainstream media. The number of scientific publications increased by up to a factor three over the last five years, with gastrointestinal and metabolic diseases being the most productive areas. In the intellectual property landscape, the patent families on microbiota have more than doubled in the meantime. In parallel, funding either from National Institutes (e.g. from NIH which funds research mainly in the field of allergies, infections, cancer and cardiovascular diseases, from the White House which launched the national microbiome initiative) or by pharmaceutical companies follow the same trend, showing a boost and a strong support in the research field on microbiota. All major health players are investing in microbiome research as shown by the number of deals signed and by funding during 2015. The Giens round table addressed how the medicine of tomorrow, considering human beings as a human-microbe symbiotic supraorganism, could leverage

  4. Growth, development, reproduction, physiological and behavioural studies on living organisms, human adults and children exposed to radiation from video displays

    International Nuclear Information System (INIS)

    Laverdure, A.M.; Surbeck, J.; North, M.O.; Tritto, J.

    2001-01-01

    Various living organisms, human workers and children were tested for any biological action resulting from exposure to radiation from video display terminals (VDTs). VDTs were powered by a 50-Hz alternating voltage of 220 V. Measured electric and magnetic fields were 13 V/M and 50 nT, respectively. Living organisms were maintained under their normal breeding conditions and control values were obtained before switching on the VDT. Various effects related to the irradiation time were demonstrated, i.e. growth delay in algae and Drosophila, a body weight deficiency in rats, abnormal peaks of mortality in Daphnia and Drosophila, teratological effects in chick embryos and behavioural disturbances in rats. The embryonic and neonatal periods showed a high sensitivity to the VDT radiation. In humans, after 4 h of working in front of a VDT screen, an increase in tiredness and a decrease in the resistance of the immune system were observed in workers. In prepubertal children, 20 min of exposure were sufficient to induce neuropsychological disturbances; pre-pubertal young people appear to be particularly sensitive to the effect of the radiation. In human testicular biopsies cultured in vitro for 24 h in front of a VDT screen, mitotic and meiotic disturbances, the appearance of degeneration in some aspects of the cells and significant disorganisation of the seminiferous tubules were demonstrated and related to modification of the metabolism of the sample. An experimental apparatus has been developed and tested that aims to prevent the harm from VDT radiation. Known commercially as the 'emf-Bioshield', it ensures effective protection against harmful biological effects of VDT radiation. (author)

  5. Metabolism: The Physiological Power-Generating Process: A History of Methods to Test Human Beings' \\"Vital Capacity\\" [Retrospectroscope].

    Science.gov (United States)

    Johnston, Richard; Valentinuzzi, Max E

    2016-01-01

    A previous "Retrospectroscope" note, published early in 2014, dealt with spirometry: it described many apparatuses used to measure the volume of inhaled and exhaled air that results from breathing [1]. Such machines, when adequately modified, are also able to measure the rate at which work is produced (specifically by an animal or a human being). Metabolism in that sense is the term used by physiologists and physicians, a word that in Greek, metabolismos, means "change" or "overthrow," in the sense of breaking down material, as in burning some stuff.

  6. Effects of Yoga and Pranayama on Human Reaction Time and Certain Physiological Parameters in Normal and Obesity College Male Students

    OpenAIRE

    S. Sivasankar; Dr.V.Vallimurugan

    2017-01-01

    Yoga is a process of gaining control over the mind, as defined by Patanjali. Stress has been implicated as one of the major causes of essential obesity. Yoga works on every cell of the body. Yoga influences body as well as controls the stress in the individual. An index of the processing ability of central nervous system and a simple means of determining sensory-motor performance is referred to as reaction time (RT). It has been proclaimed that human performance including central neural proce...

  7. Application of physiologically based pharmacokinetic modeling in predicting drug–drug interactions for sarpogrelate hydrochloride in humans

    Directory of Open Access Journals (Sweden)

    Min JS

    2016-09-01

    Full Text Available Jee Sun Min,1 Doyun Kim,1 Jung Bae Park,1 Hyunjin Heo,1 Soo Hyeon Bae,2 Jae Hong Seo,1 Euichaul Oh,1 Soo Kyung Bae1 1Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 2Department of Pharmacology, College of Medicine, The Catholic University of Korea, Seocho-gu, Seoul, South Korea Background: Evaluating the potential risk of metabolic drug–drug interactions (DDIs is clinically important. Objective: To develop a physiologically based pharmacokinetic (PBPK model for sarpogrelate hydrochloride and its active metabolite, (R,S-1-{2-[2-(3-methoxyphenylethyl]-phenoxy}-3-(dimethylamino-2-propanol (M-1, in order to predict DDIs between sarpogrelate and the clinically relevant cytochrome P450 (CYP 2D6 substrates, metoprolol, desipramine, dextromethorphan, imipramine, and tolterodine. Methods: The PBPK model was developed, incorporating the physicochemical and pharmacokinetic properties of sarpogrelate hydrochloride, and M-1 based on the findings from in vitro and in vivo studies. Subsequently, the model was verified by comparing the predicted concentration-time profiles and pharmacokinetic parameters of sarpogrelate and M-1 to the observed clinical data. Finally, the verified model was used to simulate clinical DDIs between sarpogrelate hydrochloride and sensitive CYP2D6 substrates. The predictive performance of the model was assessed by comparing predicted results to observed data after coadministering sarpogrelate hydrochloride and metoprolol. Results: The developed PBPK model accurately predicted sarpogrelate and M-1 plasma concentration profiles after single or multiple doses of sarpogrelate hydrochloride. The simulated ratios of area under the curve and maximum plasma concentration of metoprolol in the presence of sarpogrelate hydrochloride to baseline were in good agreement with the observed ratios. The predicted fold-increases in the area under the curve ratios of metoprolol

  8. Physiology for engineers applying engineering methods to physiological systems

    CERN Document Server

    Chappell, Michael

    2016-01-01

    This book provides an introduction to qualitative and quantitative aspects of human physiology. It looks at biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, including electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text there are introductions to measuring and quantifying physiological processes using both signal and imaging technologies. Physiology for Engineers describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, the electrical and mechanical activity of the heart and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reacti...

  9. The Importance of the Ionic Product for Water to Understand the Physiology of the Acid-Base Balance in Humans

    Directory of Open Access Journals (Sweden)

    María M. Adeva-Andany

    2014-01-01

    Full Text Available Human plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions. In addition, the ionic product for water has to be constant. Therefore, the plasma concentration of hydrogen ions depends on the plasma ionic composition. Variations in the concentration of plasma ions that alter the relative proportion of anions and cations predictably lead to a change in the plasma concentration of hydrogen ions by driving adaptive adjustments in water ionization that allow plasma electroneutrality while maintaining constant the ionic product for water. The accumulation of plasma anions out of proportion of cations induces an electrical imbalance compensated by a fall of hydroxide ions that brings about a rise in hydrogen ions (acidosis. By contrast, the deficiency of chloride relative to sodium generates plasma alkalosis by increasing hydroxide ions. The adjustment of plasma bicarbonate concentration to these changes is an important compensatory mechanism that protects plasma pH from severe deviations.

  10. Physiological Aβ Concentrations Produce a More Biomimetic Representation of the Alzheimer's Disease Phenotype in iPSC Derived Human Neurons.

    Science.gov (United States)

    Berry, Bonnie J; Smith, Alec S T; Long, Christopher J; Martin, Candace C; Hickman, James J

    2018-05-22

    Alzheimer's disease (AD) is characterized by slow, progressive neurodegeneration leading to severe neurological impairment, but current drug development efforts are limited by the lack of robust, human-based disease models. Amyloid-β (Aβ) is known to play an integral role in AD progression as it has been shown to interfere with neurological function. However, studies into AD pathology commonly apply Aβ to neurons for short durations at nonphysiological concentrations to induce an exaggerated dysfunctional phenotype. Such methods are unlikely to elucidate early stage disease dysfunction, when treatment is still possible, since damage to neurons by these high concentrations is extensive. In this study, we investigated chronic, pathologically relevant Aβ oligomer concentrations to induce an electrophysiological phenotype that is more representative of early AD progression compared to an acute high-dose application in human cortical neurons. The high, acute oligomer dose resulted in severe neuronal toxicity as well as upregulation of tau and phosphorylated tau. Chronic, low-dose treatment produced significant functional impairment without increased cell death or accumulation of tau protein. This in vitro phenotype more closely mirrors the status of early stage neural decline in AD pathology and could provide a valuable tool to further understanding of early stage AD pathophysiology and for screening potential therapeutic compounds.

  11. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle.

    Science.gov (United States)

    Treebak, Jonas T; Pehmøller, Christian; Kristensen, Jonas M; Kjøbsted, Rasmus; Birk, Jesper B; Schjerling, Peter; Richter, Erik A; Goodyear, Laurie J; Wojtaszewski, Jørgen F P

    2014-01-15

    We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/β2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.

  12. Humans on the International Space Station-How Research, Operations, and International Collaboration are Leading to New Understanding of Human Physiology and Performance in Microgravity

    Science.gov (United States)

    Ronbinson, Julie A.; Harm, Deborah L.

    2009-01-01

    As the International Space Station (ISS) nears completion, and full international utilization is achieved, we are at a scientific crossroads. ISS is the premier location for research aimed at understanding the effects of microgravity on the human body. For applications to future human exploration, it is key for validation, quantification, and mitigation of a wide variety of spaceflight risks to health and human performance. Understanding and mitigating these risks is the focus of NASA s Human Research Program. However, NASA s approach to defining human research objectives is only one of many approaches within the ISS international partnership (including Roscosmos, the European Space Agency, the Canadian Space Agency, and the Japan Aerospace Exploration Agency). Each of these agencies selects and implements their own ISS research, with independent but related objectives for human and life sciences research. Because the science itself is also international and collaborative, investigations that are led by one ISS partner also often include cooperative scientists from around the world. The operation of the ISS generates significant additional data that is not directly linked to specific investigations. Such data comes from medical monitoring of crew members, life support and radiation monitoring, and from the systems that have been implemented to protect the health of the crew (such as exercise hardware). We provide examples of these international synergies in human research on ISS and highlight key early accomplishments that derive from these broad interfaces. Taken as a whole, the combination of diverse research objectives, operational data, international sharing of research resources on ISS, and scientific collaboration provide a robust research approach and capability that no one partner could achieve alone.

  13. Comparison of the physiological properties of human periodontal-masseteric reflex evoked by incisor and canine stimulation

    Directory of Open Access Journals (Sweden)

    Hiroko eOhmori

    2012-06-01

    Full Text Available Introduction: The present study was designed to clarify whether the bilateral cooperation in the human periodontal-masseteric reflex (PMR differs between central incisors and canines. Methods: Surface array electrodes were placed on the bilateral masseter muscles to simultaneously record the firing activities of single motor units from both sides in 7 healthy adults. During light clenching, mechanical stimulation was applied to the right maxillary central incisor and canine to evoke the PMR. Unitary activity was plotted with respect to the background activity and firing frequency. The slope of the regression line (sRL and the correlation coefficient (CC between the central incisor and canine and the lateral differences between these values were compared. Results: There were significant differences in the sRL and CC, as well as lateral differences, between the central incisor- and canine-driven PMR. Discussion: These results suggest that the PMR differs depending on both the tooth position and laterality.

  14. Physiology and physiopathology of central type Benzodiazepine receptors: Study in the monkey and in human brain using positron emission tomography

    International Nuclear Information System (INIS)

    Hantraye, P.

    1987-01-01

    A new non-invasive technique that allows to study in a living subject central type benzodiazepine receptors is developed. A combined approach is applied using a specific positron-emitting radiotracer for the in vivo labelling of the receptors and positron emission tomography allowing, by external detection, a quantitative determination of tissue radioactivity. The radioligand used for the in vivo labelling of benzodiazepine receptors is the antagonist RO 15-1788 labelled with carbon 11. The various stages of the study are described: in vivo characterization in the monkey of central type benzodiazepine receptors; characterization of central type benzodiazepine receptors in human brain using selective molecules for the BZ1 benzodiazepine subclass; demonstration of the heterogeneity of central type benzodiazepine receptors in the brain; study of pathological alteration of benzodiazepine receptors in experimental epilepsy [fr

  15. Extraocular light via the ear canal does not acutely affect human circadian physiology, alertness and psychomotor vigilance performance.

    Science.gov (United States)

    Bromundt, Vivien; Frey, Sylvia; Odermatt, Jonas; Cajochen, Christian

    2014-04-01

    We aimed at testing potential effects of extraocular bright light via the ear canals on human evening melatonin levels, sleepiness and psychomotor vigilance performance. Twenty healthy young men and women (10/10) kept a regular sleep-wake cycle during the 2-week study. The volunteers reported to the laboratory on three evenings, 2 h 15 min before usual bedtime, on average at 21:45 h. They were exposed to three different light conditions, each lasting for 12 min: extraocular bright light via the ear canal, ocular bright light as an active control condition and a control condition (extraocular light therapy device with completely blacked out LEDs). The timing of exposure was on average from 22:48 to 23:00 h. During the 2-h protocol, saliva samples were collected in 15-min intervals for melatonin assays along with subjective sleepiness ratings, and the volunteers performed a 10-min visual psychomotor vigilance task (PVT) prior to and after each light condition. The evening melatonin rise was significantly attenuated after the 12-min ocular bright light exposure while no significant changes were observed after the extraocular bright light and sham light condition. Subjective sleepiness decreased immediately over a short period only after ocular light exposure. No significant differences were observed for mean reaction times and the number of lapses for the PVT between the three light conditions. We conclude that extraocular transcranial light exposure in the late evening does not suppress melatonin, reduce subjective sleepiness or improve performance, and therefore, does not acutely influence the human circadian timing system.

  16. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin.

    Science.gov (United States)

    Wu, Guangxi; Zhao, He; Li, Chenhao; Rajapakse, Menaka Priyadarsani; Wong, Wing Cheong; Xu, Jun; Saunders, Charles W; Reeder, Nancy L; Reilman, Raymond A; Scheynius, Annika; Sun, Sheng; Billmyre, Blake Robert; Li, Wenjun; Averette, Anna Floyd; Mieczkowski, Piotr; Heitman, Joseph; Theelen, Bart; Schröder, Markus S; De Sessions, Paola Florez; Butler, Geraldine; Maurer-Stroh, Sebastian; Boekhout, Teun; Nagarajan, Niranjan; Dawson, Thomas L

    2015-11-01

    Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi) that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64) with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741) were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.

  17. Genus-Wide Comparative Genomics of Malassezia Delineates Its Phylogeny, Physiology, and Niche Adaptation on Human Skin.

    Directory of Open Access Journals (Sweden)

    Guangxi Wu

    2015-11-01

    Full Text Available Malassezia is a unique lipophilic genus in class Malasseziomycetes in Ustilaginomycotina, (Basidiomycota, fungi that otherwise consists almost exclusively of plant pathogens. Malassezia are typically isolated from warm-blooded animals, are dominant members of the human skin mycobiome and are associated with common skin disorders. To characterize the genetic basis of the unique phenotypes of Malassezia spp., we sequenced the genomes of all 14 accepted species and used comparative genomics against a broad panel of fungal genomes to comprehensively identify distinct features that define the Malassezia gene repertoire: gene gain and loss; selection signatures; and lineage-specific gene family expansions. Our analysis revealed key gene gain events (64 with a single gene conserved across all Malassezia but absent in all other sequenced Basidiomycota. These likely horizontally transferred genes provide intriguing gain-of-function events and prime candidates to explain the emergence of Malassezia. A larger set of genes (741 were lost, with enrichment for glycosyl hydrolases and carbohydrate metabolism, concordant with adaptation to skin's carbohydrate-deficient environment. Gene family analysis revealed extensive turnover and underlined the importance of secretory lipases, phospholipases, aspartyl proteases, and other peptidases. Combining genomic analysis with a re-evaluation of culture characteristics, we establish the likely lipid-dependence of all Malassezia. Our phylogenetic analysis sheds new light on the relationship between Malassezia and other members of Ustilaginomycotina, as well as phylogenetic lineages within the genus. Overall, our study provides a unique genomic resource for understanding Malassezia niche-specificity and potential virulence, as well as their abundance and distribution in the environment and on human skin.

  18. A Case Study Optimizing Human Resources in Rwanda's First Dental School: Three Innovative Management Tools.

    Science.gov (United States)

    Hackley, Donna M; Mumena, Chrispinus H; Gatarayiha, Agnes; Cancedda, Corrado; Barrow, Jane R

    2018-06-01

    Harvard School of Dental Medicine, University of Maryland School of Dentistry, and the University of Rwanda (UR) are collaborating to create Rwanda's first School of Dentistry as part of the Human Resources for Health (HRH) Rwanda initiative that aims to strengthen the health care system of Rwanda. The HRH oral health team developed three management tools to measure progress in systems-strengthening efforts: 1) the road map is an operations plan for the entire dental school and facilitates delivery of the curriculum and management of human and material resources; 2) each HRH U.S. faculty member develops a work plan with targeted deliverables for his or her rotation, which is facilitated with biweekly flash reports that measure progress and keep the faculty member focused on his or her specific deliverables; and 3) the redesigned HRH twinning model, changed from twinning of an HRH faculty member with a single Rwandan faculty member to twinning with multiple Rwandan faculty members based on shared academic interests and goals, has improved efficiency, heightened engagement of the UR dental faculty, and increased the impact of HRH U.S. faculty members. These new tools enable the team to measure its progress toward the collaborative's goals and understand the successes and challenges in moving toward the planned targets. The tools have been valuable instruments in fostering discussion around priorities and deployment of resources as well as in developing strong relationships, enabling two-way exchange of knowledge, and promoting sustainability.

  19. Provision of Human Capital by Business Schools of Pakistan: A Need for the Sustainability of the Pakistani Banking Sector

    Science.gov (United States)

    Nauman, Sarwat; Hussain, Nasreen

    2017-01-01

    Economic growth of Pakistan through the banking sector relies heavily on the human capital dispensed to them by the Pakistani business schools. A conceptual model of the continuous improvement cycle for building human capital is developed through a literature review, with the aim of helping to generate human capital. Six semistructured interviews…

  20. Occupational physiology

    CERN Document Server

    Toomingas, Allan; Tornqvist, Ewa Wigaeus

    2011-01-01

    In a clear and accessible presentation, Occupational Physiology focuses on important issues in the modern working world. Exploring major public health problems-such as musculoskeletal disorders and stress-this book explains connections between work, well-being, and health based on up-to-date research in the field. It provides useful methods for risk assessment and guidelines on arranging a good working life from the perspective of the working individual, the company, and society as a whole.The book focuses on common, stressful situations in different professions. Reviewing bodily demands and r

  1. HUMAN DEVELOPMENT, COGNITION AND SCHOOL EDUCATION: REFLECTIONS BELOW THE HISTORICAL-CULTURAL APPROACH

    Directory of Open Access Journals (Sweden)

    Solange Maria Alves

    2016-07-01

    Full Text Available This text is fruit of studies, reflections and dialogues developed with graduate and post-graduate students inteaching and research coordinated by me, allocated in the research group: Human Development, Culture and Education, in rows : Language, Learning and Development and Imaginary Production and Creative Education. Over several years, the task of educational coordinating processes of teaching and research, allowed the construction of synthesis (always provisional, presented here. Having as a foundation the historic-cultural theory of Vygotsky and collaborators, the text reflects about human development, cognition and school education, pursuing the thesis that cognition is human development. To do this, search, in theoretical foundations of historical-cultural conception, the key elements that explain the process by which the biological becomes socio-historical, it takes up more carefully in the explicit about Vygotsky translates as plans or genetic fields of human development, increase the reflection articulating the categories: labor and language.

  2. Development of an ex vivo retention model simulating bioadhesion in the oral cavity using human saliva and physiologically relevant irrigation media.

    Science.gov (United States)

    Madsen, Katrine D; Sander, Camilla; Baldursdottir, Stefania; Pedersen, Anne Marie L; Jacobsen, Jette

    2013-05-20

    In recent years, there has been a particular interest in bioadhesive formulations for oromucosal drug delivery as this may promote prolonged local therapy and enhanced systemic effect. Saliva plays a vital role in oromucosal drug absorption by dissolving the drug and presenting it to the mucosal surface. However, the rheological, chemical, and interfacial properties of this complex biological fluid may strongly affect the adhesion of bioadhesive formulations. There is a need for well characterized in vitro models to assess the bioadhesive properties of oral dosage forms for administration in the oral cavity. Thus we aimed at developing an advanced ex vivo buccal retention model, with focus on choosing a physiologically relevant irrigation media closely resembling human saliva. Spray dried chitosan microparticles containing metformin hydrochloride as an example of a small hydrophilic drug, were employed as bioadhesive formulations. Chewing-stimulated human whole saliva was collected and characterized for use in retention studies in comparison with four artificial irrigation media; phosphate buffer, Saliva Orthana(®), porcine gastric mucin base media (PGM3), and xanthan gum based media (XG2). Retention of metformin, applied as spray dried microparticles on porcine buccal mucosa, greatly depended on the characteristics of the irrigation media. When rheology of the irrigation media was examined, changes in retention profiles could be interpreted, as irrigation media containing mucin and xanthan gum possessed a higher viscosity than phosphate buffer, which led to longer retention of the drug due to better hydration of the mucosa and the spray dried microparticles. Metformin retention profiles were comparable when human saliva, Saliva Orthana(®), or PGM3 were used as irrigation media. Moreover, PGM3 displayed physico-chemical properties closest to those of human saliva with regard to pH, protein content and surface tension. Saliva Orthana(®) and PGM3 are therefore

  3. Human stefin B normal and patho-physiological role: molecular and cellular aspects of amyloid-type aggregation of certain EPM1 mutants.

    Directory of Open Access Journals (Sweden)

    Mira ePolajnar

    2012-08-01

    Full Text Available Epilepsies are characterised by abnormal electrophysiological activity of the brain. Among various types of inherited epilepsies different epilepsy syndromes, among them progressive myoclonus epilepsies with features of ataxia and neurodegeneration, are counted. The progressive myoclonus epilepsy of type 1 (EPM1, also known as Unverricht-Lundborg disease presents with features of cerebellar atrophy and increased oxidative stress. It has been found that EPM1 is caused by mutations in human cystatin B gene (human stefin B. We first describe the role of protein aggregation in other neurodegenerative conditions. Protein aggregates appear intraneurally but are also excreted, such as is the case with senile plaques of amyloid- β (Aβ that accumulate in the brain parenchyma and vessel walls. A common characteristic of such diseases is the change of the protein conformation towards β secondary structure that accounts for the strong tendency of such proteins to aggregate and form amyloid fibrils. Second, we describe the patho-physiology of EPM1 and the normal and aberrant roles of stefin B in a mouse model of the disease. Furthermore, we discuss how the increased protein aggregation observed with some of the mutants of human stefin B may relate to the neurodegeneration that occurs in rare EPM1 patients. Our hypothesis (Ceru et al., 2005 states that some of the EPM1 mutants of human stefin B may undergo aggregation in neural cells, thus gaining additional toxic function (apart from loss of normal function. Our in vitro experiments thus far have confirmed that 4 mutants undergo increased aggregation relative to the wild-type protein. It has been shown that the R68X mutant forms amyloid-fibrils very rapidly, even at neutral pH and forms perinuclear inclusions, whereas the G4R mutant exhibits a prolonged lag phase, during which the toxic prefibrillar aggregates accumulate and are scattered more diffusely over the cytoplasm. Initial experiments on the G50E

  4. The introduction of medical humanities in the undergraduate curriculum of Greek medical schools: challenge and necessity.

    Science.gov (United States)

    Batistatou, A; Doulis, E A; Tiniakos, D; Anogiannaki, A; Charalabopoulos, K

    2010-10-01

    Medical humanities is a multidisciplinary field, consisting of humanities (theory of literature and arts, philosophy, ethics, history and theology), social sciences (anthropology, psychology and sociology) and arts (literature, theater, cinema, music and visual arts), integrated in the undergraduate curriculum of Medical schools. The aim of the present study is to discuss medical humanities and support the necessity of introduction of a medical humanities course in the curriculum of Greek medical schools. Through the relevant Pub-Med search as well as taking into account various curricula of medical schools, it is evident that medical education today is characterized by acquisition of knowledge and skills and development of medical values and attitudes. Clinical observation with the recognition of key data and patterns in the collected information, is crucial in the final medical decision, i.e. in the complex process, through which doctors accumulate data, reach conclusions and decide on therapy. All sciences included in medical humanities are important for the high quality education of future doctors. The practice of Medicine is in large an image-related science. The history of anatomy and art are closely related, already from the Renaissance time. Studies have shown that attendance of courses on art critics improves the observational skills of medical students. Literature is the source of information about the nature and source of human emotions and behavior and of narratives of illness, and increases imagination. Philosophy aids in the development of analytical and synthetical thinking. Teaching of history of medicine develops humility and aids in avoiding the repetition of mistakes of the past, and quite often raises research and therapeutic skepticism. The comprehension of medical ethics and professional deontology guides the patient-doctor relationship, as well as the relations between physicians and their colleagues. The Medical Humanities course, which is

  5. A Physiological and Psychometric Evaluation of Human Subconscious Visual Response and Its Application in Health Promoting Lighting

    Science.gov (United States)

    Vartanian, Garen V.

    Subconscious vision is a recent focus of the vision science community, brought on by the discovery of a previously unknown photoreceptor in the retina dedicated to driving non-image-forming responses, intrinsically photosensitive retinal ganglion cells (ipRGCs). In addition to accepting inputs from rod and cone photoreceptors, ipRGCs contain their own photopigment, melanopsin, and are considered true photoreceptors. ipRGCs drive various non-image-forming photoresponses, including circadian photoentrainment, melatonin suppression, and pupil constriction. In order to understand more about ipRGC function in humans, we studied its sensitivity to light stimuli in the evening and day. First, we measured the sensitivity threshold of melatonin suppression at night. Using a protocol that enhances data precision, we have found the threshold for human melatonin suppression to be two orders of magnitude lower than previously reported. This finding has far-reaching implications since there is mounting evidence that nocturnal activation of the circadian system can be harmful. Paradoxically, ipRGCs are understimulated during the day. Optimizing daytime non-image-forming photostimulation has health benefits, such as increased alertness, faster reaction times, better sleep quality, and treatment of depression. In order to enhance ipRGC excitation, we aimed to circumvent adaptation (i.e. desensitization) of the photoresponse by using flickering instead of steady light. We find that properly timed flickering light enhances pupillary light reflex significantly when compared to steady light with 9-fold more energy density. Employing our findings, a new form of LED light is proposed to enhance subconscious visual responses at a typical indoor illuminance level. Using the silent substitution technique, a melanopsin-selective flicker is introduced into the light. A linear optimization algorithm is used to maximize the contrast of the subconscious, melanopsin-based response function while

  6. The Effects Of An Exercise Physiology Program on Physical Fitness Variables, Body Satisfaction, and Physiology Knowledge.

    Science.gov (United States)

    Perry, Arlette C.; Rosenblatt, Evelyn S.; Kempner, Lani; Feldman, Brandon B.; Paolercio, Maria A.; Van Bemden, Angie L.

    2002-01-01

    Examined the effects of an exercise physiology program on high school students' physical fitness, body satisfaction, and physiology knowledge. Intervention students received exercise physiology theory and active aerobic and resistance exercise within their biology course. Data from student surveys and measurements indicated that the integrated…

  7. Modulation of plasma N-acylethanolamine levels and physiological parameters by dietary fatty acid composition in humans.

    Science.gov (United States)

    Jones, Peter J H; Lin, Lin; Gillingham, Leah G; Yang, Haifeng; Omar, Jaclyn M

    2014-12-01

    N-Acylethanolamines (NAEs) are endogenous lipid-signaling molecules involved in satiety and energetics; however, how diet impacts circulating NAE concentrations and their downstream metabolic actions in humans remains unknown. Objectives were to examine effects of diets enriched with high-oleic canola oil (HOCO) or HOCO blended with flaxseed oil (FXCO), compared with a Western diet (WD), on plasma NAE levels and the association with energy expenditure and substrate oxidation. Using a randomized controlled crossover design, 36 hypercholesterolemic participants consumed three isoenergetic diets for 28 days, each containing 36% energy from fat, of which 70% was HOCO, FXCO, or WD. Ultra-performance liquid chromatography-MS/MS was used to measure plasma NAE levels and indirect calorimetry to assess energy expenditure and substrate oxidation. After 28 days, compared with WD, plasma oleoylethanolamide (OEA) and alpha-linolenoyl ethanolamide (ALEA) levels were significantly increased in response to HOCO and FXCO (P = 0.002, P < 0.001), respectively. Correlation analysis demonstrated an inverse association between plasma OEA levels and percent body fat (r = -0.21, P = 0.04), and a positive association was observed between the plasma arachidonoyl ethanolamide (AEA)/OEA ratio and android:gynoid fat (r = 0.23, P = 0.02), respectively. Results suggest that plasma NAE levels are upregulated via their dietary lipid substrates and may modulate regional and total fat mass through lipid-signaling mechanisms. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two.

    Science.gov (United States)

    MacInnis, Martin J; McGlory, Chris; Gibala, Martin J; Phillips, Stuart M

    2017-06-01

    Direct sampling of human skeletal muscle using the needle biopsy technique can facilitate insight into the biochemical and histological responses resulting from changes in exercise or feeding. However, the muscle biopsy procedure is invasive, and analyses are often expensive, which places pragmatic restraints on sample sizes. The unilateral exercise model can serve to increase statistical power and reduce the time and cost of a study. With this approach, 2 limbs of a participant are randomized to 1 of 2 treatments that can be applied almost concurrently or sequentially depending on the nature of the intervention. Similar to a typical repeated measures design, comparisons are made within participants, which increases statistical power by reducing the amount of between-person variability. A washout period is often unnecessary, reducing the time needed to complete the experiment and the influence of potential confounding variables such as habitual diet, activity, and sleep. Variations of the unilateral exercise model have been employed to investigate the influence of exercise, diet, and the interaction between the 2, on a wide range of variables including mitochondrial content, capillary density, and skeletal muscle hypertrophy. Like any model, unilateral exercise has some limitations: it cannot be used to study variables that potentially transfer across limbs, and it is generally limited to exercises that can be performed in pairs of treatments. Where appropriate, however, the unilateral exercise model can yield robust, well-controlled investigations of skeletal muscle responses to a wide range of interventions and conditions including exercise, dietary manipulation, and disuse or immobilization.

  9. Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    Ruyin Cao

    Full Text Available Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD study of the human adenosine receptor type 2A (hA(2AR in complex with caffeine--a system of high neuro-pharmacological relevance--within different membrane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8 depends on membrane contents. Most importantly, the distinct cholesterol binding into the cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in central nervous system, often neglected in X-ray determination of membrane proteins, affects the population of the ligand binding poses. We conclude that including a correct description of neuronal membranes may be very important for computer-aided design of ligands targeting hA(2AR and possibly other GPCRs.

  10. Application of carbon-11 labelled nicotine in the measurement of human cerebral blood flow and other physiological parameters

    International Nuclear Information System (INIS)

    Yokoi, Fuji; Hayashi, Tokishi; Iio, Masaaki; Hara, Toshihiko

    1993-01-01

    Using positron emission tomography (PET), we measured the regional cerebral blood flow (rCBF) in five normal human subjects after intravenous injection of carbon-11 labelled (R)nicotine. The rCBF of the same subjects was measured by PET using the C 15 O 2 inhalation steady-state method. The distribution of 11 C activity in the brain after injection of 11 C-(R)nicotine was almost equivalent to the CBF image obtaines with C 15 O 2 inhalation steady-state method. The kinetics of 11 C-(R)nicotine in the brain was analysed using a two-compartment model consisting of vascular and brain tissue compartments. The rCBF values obtained with 11 C-(R)nicotine were higher than with C 15 O 2 gas. It is possible that the relatively long fixed distribution of 11 C-(R)nicotine with a short uptake period allows stimulation studies by measurement of CBF to be performed with better photon flux and a longer imaging time than are possible with H 2 15 O. (orig.)

  11. Aqueous extracts and polysaccharides from Marshmallow roots (Althea officinalis L.): cellular internalisation and stimulation of cell physiology of human epithelial cells in vitro.

    Science.gov (United States)

    Deters, Alexandra; Zippel, Janina; Hellenbrand, Nils; Pappai, Dirk; Possemeyer, Cathleen; Hensel, Andreas

    2010-01-08

    Aqueous extracts from the roots of Althea officinalis L. (Malvaceae) are widely used for treatment of irritated mucosa. The clinical proven effects are related to the presence of bioadhesive and mucilaginous polysaccharides from the rhamnogalacturonan type, leading to the physical formation of mucin-like on top of the irritated tissues. No data are available if the extracts or the polysaccharides from these extract exert an active influence on mucosal or connective tissue cells, in order to initiated changes in cell physiology, useful for better tissue regeneration. In vitro investigations of aqueous A. officinalis extract AE and raw polysaccharides (RPS) on epithelial KB cells and primary dermal human fibroblasts (pNHF) using WST1 vitality test and BrdU proliferation ELISA. Gene expression analysis by microarray from KB cells. Internalisation studies of polysaccharides were performed by laser scanning microscopy. AE (1, 10 microg/mL) had stimulating effect on cell viability and proliferation of epithelial KB cells. RPS (1, 10 microg/mL) stimulated cell vitality of epithelial cells significantly without triggering the cells into higher proliferation status. Neither AE nor RPS had any effect on fibroblasts. FITC-labeled RPS was shown to be internalised into epithelial cells, but not into fibroblasts. FITC-RPS was shown to form bioadhesive layers on the cell surface of dermal fibroblasts. Microarray analysis indicated an up-regulation of genes related to cell adhesion proteins, growth regulators, extracellular matrix, cytokine release and apoptosis. Aqueous extracts and polysaccharides from the roots of A. officinalis are effective stimulators of cell physiology of epithelial cells which can prove the traditional use of Marshmallow preparations for treatment of irritated mucous membranes within tissue regeneration. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. How can schools and teachers benefit from Human Resources Management? Conceptualising HRM from content and process perspectives

    NARCIS (Netherlands)

    Runhaar, P.R.

    2017-01-01

    The necessity for schools to implement human resources management (HRM) is increasingly acknowledged. Specifically, HRM holds the potential of increasing student outcomes through the increased involvement, empowerment and motivation of teachers. In educational literature, however, little empirical

  13. Coming of Age of Human Biology: A Study of the Birth and Growth of a Subject in the School Curriculum.

    Science.gov (United States)

    Denny, M.

    1983-01-01

    Human biology is a school subject whose utilitarian/pedagogical traditions enjoy support at the School Certificate level but whose academic tradition is under threat at the General Certificate of Education level. An interpretation of the issues involved are discussed in terms of the subject's historical background. (JN)

  14. Incorporating Human Rights into the Sustainability Agenda: A Commentary on "Corporate Responsibility to Respect Human Rights and Business Schools' Responsibility to Teach It"

    Science.gov (United States)

    Andrew, Jane

    2013-01-01

    In her commentary of McPhail's 2013 article "Corporate Responsibility to Respect Human Rights and Business Schools' Responsibility to Teach It: Incorporating Human Rights into the Sustainability Agenda," Jane Andrew begins by highlighting a number of McPhail's primary arguments. She points out that McPhail sets out to achieve two things…

  15. Physiological Monitoring in Diving Mammals

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Physiological Monitoring in Diving Mammals Andreas...825-2025 email: andreas.fahlman@tamucc.edu Peter L. Tyack School of Biology Sea Mammal Research Unit Scottish Oceans Institute...OBJECTIVES This project is separated into three aims: Aim 1: Develop a new generation of tags/data logger for marine mammals that will

  16. Galen and the beginnings of Western physiology.

    Science.gov (United States)

    West, John B

    2014-07-15

    Galen (129-c. 216 AD) was a key figure in the early development of Western physiology. His teachings incorporated much of the ancient Greek traditions including the work of Hippocrates and Aristotle. Galen himself was a well-educated Greco-Roman physician and physiologist who at one time was a physician to the gladiators in Pergamon. Later he moved to Rome, where he was associated with the Roman emperors Marcus Aurelius and Lucius Verus. The Galenical school was responsible for voluminous writings, many of which are still extant. One emphasis was on the humors of the body, which were believed to be important in disease. Another was the cardiopulmonary system, including the belief that part of the blood from the right ventricle could enter the left through the interventricular septum. An extraordinary feature of these teachings is that they dominated thinking for some 1,300 years and became accepted as dogma by both the State and Church. One of the first anatomists to challenge the Galenical teachings was Andreas Vesalius, who produced a magnificent atlas of human anatomy in 1543. At about the same time Michael Servetus described the pulmonary transit of blood, but he was burned at the stake for heresy. Finally, with William Harvey and others in the first part of the 17th century, the beginnings of modern physiology emerged with an emphasis on hypotheses and experimental data. Nevertheless, vestiges of Galen's teaching survived into the 19th century. Copyright © 2014 the American Physiological Society.

  17. Lack of school requirements and clinician recommendations for human papillomavirus vaccination

    Directory of Open Access Journals (Sweden)

    Linda M. Niccolai

    2018-04-01

    Full Text Available Background: A strong recommendation from a clinician is one of the best predictors of human papillomavirus (HPV vaccination among adolescents, yet many clinicians do not provide effective recommendations. The objective of this study was to understand how the lack of school entry requirements for HPV vaccination influences clinicians’ recommendations. Design and Methods: Semi-structured interviews with a purposive sample of 32 clinicians were conducted in 2015 in Connecticut USA. Data were analysed using an iterative thematic approach in 2016-2017. Results: Many clinicians described presenting HPV vaccination as optional or non-urgent because it is not required for school entry. This was noted to be different from how other required vaccines were discussed. Even strong recommendations were often qualified by statements about the lack of requirements. Furthermore, lack of requirements was often raised initially by clinicians and not by parents. Many clinicians agreed that requirements would simplify the recommendation, but that parents may not agree with requirements. Personal opinions about school entry requirements were mixed. Conclusions: The current lack of school entry requirements for HPV vaccination is an important influence on clinicians’ recommendations that are often framed as optional or non-urgent. Efforts are needed to strengthen the quality of clinicians’ recommendations in a way that remains strong and focused on disease prevention yet uncoupled from the lack of requirements that may encourage delays. Additionally, greater support for requirements among clinicians may be needed to successfully enact requirements in the future.

  18. Physiological responses to hypothermia.

    Science.gov (United States)

    Wood, Thomas; Thoresen, Marianne

    2015-04-01

    Therapeutic hypothermia is the only treatment currently recommended for moderate or severe encephalopathy of hypoxic‒ischaemic origin in term neonates. Though the effects of hypothermia on human physiology have been explored for many decades, much of the data comes from animal or adult studies; the latter originally after accidental hypothermia, followed by application of controlled hypothermia after cardiac arrest or trauma, or during cardiopulmonary bypass. Though this work is informative, the effects of hypothermia on neonatal physiology after perinatal asphyxia must be considered in the context of a prolonged hypoxic insult that has already induced a number of significant physiological sequelae. This article reviews the effects of therapeutic hypothermia on respiratory, cardiovascular, and metabolic parameters, including glycaemic control and feeding requirements. The potential pitfalls of blood‒gas analysis and overtreatment of physiological changes in cardiovascular parameters are also discussed. Finally, the effects of hypothermia on drug metabolism are covered, focusing on how the pharmacokinetics, pharmacodynamics, and dosing requirements of drugs frequently used in neonatal intensive care may change during therapeutic hypothermia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A home-school-doctor model to break the barriers for uptake of human papillomavirus vaccine.

    Science.gov (United States)

    Lee, Albert; Wong, Martin C S; Chan, Tracy T; Chan, Paul K S

    2015-09-21

    A high coverage of human papillomavirus (HPV) vaccination is required to achieve a clinically significant reduction in disease burden. Countries implementing free-of-charge national vaccination program for adolescent girls are still challenged by the sub-optimal uptake rate. Voluntary on-site school-based mass vaccination programs have demonstrated high coverage. Here, we tested whether this could be an option for countries without a government-supported vaccination program as in Hong Kong. A Home-School-Doctor model was evolved based on extensive literature review of various health promotion models together with studies on HPV vaccination among adolescent girls. The outcome measure was uptake of vaccination. Factors associated with the outcome were measured by validated surveys in which 4,631 students from 24 school territory wide participated. Chi-square test was used to analyze association between the categorical variables and the outcome. Multivariate analysis was performed to identify independent variables associated with the outcome with vaccine group as case and non-vaccine group as control. In multivariate analysis, parental perception of usefulness of the Home-School-Doctor model had a very high odds ratio for uptake of HPV vaccination (OR 26.6, 95% CI 16.4, 41.9). Paying a reasonable price was another independent factor associated with increased uptake (OR 1.71, 95% CI 1.39, 2.1 for those with parents willing to pay US$125-250 for vaccination). For parents and adolescents who were not sure where to get vaccination, this model was significantly associated with improved uptake rate (OR 1.66, 95% CI 1.23, 2.23). Concerns with side effects of vaccine (OR 0.70, 95% CI 0.55, 0.88), allowing daughters to make their own decisions (OR 0.49, 95% CI 0.38, 0.64) and not caring much about daughters' social life (95% CI 0.45, 0.92) were factors associated with a lower uptake. The findings of this study have added knowledge on how a school-based vaccination program

  20. The challenge of non-invasive cognitive physiology of the human brain: how to negotiate the irrelevant background noise without spoiling the recorded data through electronic averaging.

    Science.gov (United States)

    Tomberg, C; Desmedt, J E

    1999-07-29

    Brain mechanisms involved in selective attention in humans can be studied by measures of regional blood flow and metabolism (by positron emission tomography) which help identify the various locations with enhanced activities over a period of time of seconds. The physiological measures provided by scalp-recorded brain electrical potentials have a better resolution (milliseconds) and can reveal the actual sequences of distinct neural events and their precise timing. We studied selective attention to sensory inputs from fingers because the brain somatic representations are deployed over the brain convexity under the scalp thereby making it possible to assess distinct stages of cortical processing and representation through their characteristic scalp topographies. In the electrical response to a finger input attended by the subject, the well-known P300 manifests a widespread inhibitory mechanism which is released after a target stimulus has been identified. P300 is preceded by distinct cognitive electrogeneses such as P40, P100 and N140 which can be differentiated from the control (obligatory) profile by superimposition or electronic subtraction. The first cortical response N20 is stable across conditions, suggesting that the first afferent thalamocortical volley is not affected by selective attention. At the next stage of modality-specific cortex in which the sensory features are processed and represented, responses were enhanced (cognitive P40) only a very few milliseconds after arrival of the afferent volley at the cortex, thus documenting a remarkable precocity of attention gain control in the somatic modality. The physiology of selective attention also provides useful cues in relation to non-target inputs which the subject must differentiate in order to perform the task. When having to tell fingers apart, the brain strategy for non-target fingers is not to inhibit or filter them out, but rather to submit their input to several processing operations that are

  1. Space Physiology within an Exercise Physiology Curriculum

    Science.gov (United States)

    Carter, Jason R.; West, John B.

    2013-01-01

    Compare and contrast strategies remain common pedagogical practices within physiological education. With the support of an American Physiological Society Teaching Career Enhancement Award, we have developed a junior- or senior-level undergraduate curriculum for exercise physiology that compares and contrasts the physiological adaptations of…

  2. Opposing discourses? Do the two cultural paradigms - natural science and humanities - exist in our school?

    DEFF Research Database (Denmark)

    Høyen, Marianne; Mumiah, Rasmusen

    the humanities and natural sciences influence the newly educated teachers’ understanding of the teaching profession. From earlier research on teachers in natural science subjects it became clear that teachers from the two major areas are in conflict. Mutual understanding is lacking; the organization...... of the consequences was that teacher students today must choose between to teach either language and literature or maths and therefore, and as a consequence, early in their studies choose between the main areas of culture and nature. Starting from this basis, we want to see if, and in which ways, perspectives from...... of the school day gives priority to cultural subjects; the physical design of the school implies that natural science subjects are of a special kind. and consequently teachers within cultural subjects appear to regard natural science subjects as peripheral educationally to pupils development. Our starting point...

  3. The physiological basis of Glottal electromagnetic micropower sensors (GEMS) and their use in defining an excitation function for the human vocal tract

    Science.gov (United States)

    Burnett, Gregory Clell

    1999-10-01

    The definition, use, and physiological basis of Glottal Electromagnetic Micropower Sensors (GEMS) is presented. These sensors are a new type of low power (excitation function for the human vocal tract. For the first time, an excitation function may be calculated in near real time using a noninvasive procedure. Several experiments and models are presented to demonstrate that the GEMS signal is representative of the motion of the subglottal posterior wall of the trachea as it vibrates in response to the pressure changes caused by the folds as they modulate the airflow supplied by the lungs. The vibrational properties of the tracheal wall are modeled using a lumped-element circuit model. Taking the output of the vocal tract to be the audio pressure captured by a microphone and the input to be the subglottal pressure, the transfer function of the vocal tract (including the nasal cavities) can be approximated every 10-30 milliseconds using an autoregressive moving-average model. Unlike the currently utilized method of transfer function approximation, this new method only involves noninvasive GEMS measurements and digital signal processing and does not demand the difficult task of obtaining precise physical measurements of the tract and subsequent estimation of the transfer function using its cross-sectional area. The ability to measure the physical motion of the trachea enables a significant number of potential applications, ranging from very accurate pitch detection to speech synthesis, speaker verification, and speech recognition.

  4. Prediction of Deoxypodophyllotoxin Disposition in Mouse, Rat, Monkey and Dog by Physiologically-based Pharmacokinetic Model and the Extrapolation to Human

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2016-12-01

    Full Text Available Deoxypodophyllotoxin (DPT is a potential anti-tumor candidate prior to its clinical phase. The aim of the study was to develop a physiologically-based pharmacokinetic (PBPK model consisting of 13 tissue compartments to predict DPT disposition in mouse, rat, monkey and dog based on in vitro and in silico inputs. Since large interspecies difference was found in unbound fraction of DPT in plasma, we assumed that Kt:pl,u (unbound tissue-to-plasma concentration ratio was identical across species. The predictions of our model were then validated by in vivo data of corresponding preclinical species, along with visual predictive checks. Reasonable matches were found between observed and predicted plasma concentrations and pharmacokinetic parameters in all four animal species. The prediction in the related seven tissues of mouse was also desirable. We also attempted to predict human pharmacokinetic profile by both the developed PBPK model and interspecies allometric scaling across mouse, rat and monkey, while dog was excluded from the scaling. The two approaches reached similar results. We hope the study will help in the efficacy and safety assessment of DPT in future clinical studies and provide a reference to the preclinical screening of similar compounds by PBPK model.

  5. The implementation of clay modeling and rat dissection into the human anatomy and physiology curriculum of a large urban community college.

    Science.gov (United States)

    Haspel, Carol; Motoike, Howard K; Lenchner, Erez

    2014-01-01

    After a considerable amount of research and experimentation, cat dissection was replaced with rat dissection and clay modeling in the human anatomy and physiology laboratory curricula at La Guardia Community College (LAGCC), a large urban community college of the City University of New York (CUNY). This article describes the challenges faculty overcame and the techniques used to solve them. Methods involved were: developing a laboratory manual in conjunction with the publisher, holding training sessions for faculty and staff, the development of instructional outlines for students and lesson plans for faculty, the installation of storage facilities to hold mannequins instead of cat specimens, and designing mannequin clean-up techniques that could be used by more than one thousand students each semester. The effectiveness of these curricular changes was assessed by examining student muscle practical examination grades and the responses of faculty and students to questionnaires. The results demonstrated that the majority of faculty felt prepared to teach using clay modeling and believed the activity was effective in presenting lesson content. Students undertaking clay modeling had significantly higher muscle practical examination grades than students undertaking cat dissection, and the majority of students believed that clay modeling was an effective technique to learn human skeletal, respiratory, and cardiovascular anatomy, which included the names and locations of blood vessels. Furthermore, the majority of students felt that rat dissection helped them learn nervous, digestive, urinary, and reproductive system anatomy. Faculty experience at LAGCC may serve as a resource to other academic institutions developing new curricula for large, on-going courses. © 2013 American Association of Anatomists.

  6. Intraoperative engineering of osteogenic grafts combining freshly harvested, human adipose-derived cells and physiological doses of bone morphogenetic protein-2

    Directory of Open Access Journals (Sweden)

    A Mehrkens

    2012-09-01

    Full Text Available Engineered osteogenic constructs for bone repair typically involve complex and costly processes for cell expansion. Adipose tissue includes mesenchymal precursors in large amounts, in principle allowing for an intraoperative production of osteogenic grafts and their immediate implantation. However, stromal vascular fraction (SVF cells from adipose tissue were reported to require a molecular trigger to differentiate into functional osteoblasts. The present study tested whether physiological doses of recombinant human BMP-2 (rhBMP-2 could induce freshly harvested human SVF cells to generate ectopic bone tissue. Enzymatically dissociated SVF cells from 7 healthy donors (1 x 106 or 4 x 106 were immediately embedded in a fibrin gel with or without 250 ng rhBMP-2, mixed with porous silicated calcium-phosphate granules (Actifuse®, Apatech (final construct size: 0.1 cm3 and implanted ectopically for eight weeks in nude mice. In the presence of rhBMP-2, SVF cells not only supported but directly contributed to the formation of bone ossicles, which were not observed in control cell-free, rhBMP-2 loaded implants. In vitro analysis indicated that rhBMP-2 did not involve an increase in the percentage of SVF cells recruited to the osteogenic lineage, but rather induced a stimulation of the osteoblastic differentiation of the committed progenitors. These findings confirm the feasibility of generating fully osteogenic grafts using an easily accessible autologous cell source and low amounts of rhBMP-2, in a timing compatible with an intraoperative schedule. The study warrants further investigation at an orthotopic site of implantation, where the delivery of rhBMP-2 could be bypassed thanks to the properties of the local milieu.

  7. Effectiveness of health education teachers and school nurses teaching sexually transmitted infections/human immunodeficiency virus prevention knowledge and skills in high school.

    Science.gov (United States)

    Borawski, Elaine A; Tufts, Kimberly Adams; Trapl, Erika S; Hayman, Laura L; Yoder, Laura D; Lovegreen, Loren D

    2015-03-01

    We examined the differential impact of a well-established human immunodeficiency virus (HIV)/sexually transmitted infections (STIs) curriculum, Be Proud! Be Responsible!, when taught by school nurses and health education classroom teachers within a high school curricula. Group-randomized intervention study of 1357 ninth and tenth grade students in 10 schools. Twenty-seven facilitators (6 nurses, 21 teachers) provided programming; nurse-led classrooms were randomly assigned. Students taught by teachers were more likely to report their instructor to be prepared, comfortable with the material, and challenged them to think about their health than students taught by a school nurse. Both groups reported significant improvements in HIV/STI/condom knowledge immediately following the intervention, compared to controls. Yet, those taught by school nurses reported significant and sustained changes (up to 12 months after intervention) in attitudes, beliefs, and efficacy, whereas those taught by health education teachers reported far fewer changes, with sustained improvement in condom knowledge only. Both classroom teachers and school nurses are effective in conveying reproductive health information to high school students; however, teaching the technical (eg, condom use) and interpersonal (eg, negotiation) skills needed to reduce high-risk sexual behavior may require a unique set of skills and experiences that health education teachers may not typically have. © 2015, American School Health Association.

  8. Some Recent Advances in Plant Physiology

    Science.gov (United States)

    Stafford, G. A.

    1972-01-01

    A popular review of plant physiological research, emphasizing those apsects of plant metabolism where there has been a recent shift in emphasis that is not yet reflected in secondary school advanced texts. (AL)

  9. High School Students' Written Argumentation Qualities with Problem-Based Computer-Aided Material (PBCAM) Designed about Human Endocrine System

    Science.gov (United States)

    Vekli, Gülsah Sezen; Çimer, Atilla

    2017-01-01

    This study investigated development of students' scientific argumentation levels in the applications made with Problem-Based Computer-Aided Material (PBCAM) designed about Human Endocrine System. The case study method was used: The study group was formed of 43 students in the 11th grade of the science high school in Rize. Human Endocrine System…

  10. Between Rights and Realities: Human Rights Education for Immigrant and Refugee Youth in an Urban Public High School

    Science.gov (United States)

    Bajaj, Monisha; Canlas, Melissa; Argenal, Amy

    2017-01-01

    This article presents data from a two-year ethnographic case study to explore how immigrant and refugee youth in the United States made sense of participation in a weekly human rights club after school. Three types of student responses to human rights education are exemplified through the profiles of students. The article offers new insights on…

  11. A Rejoinder to Commentaries on "Corporate Responsibility to Respect Human Rights and Business Schools' Responsibility to Teach It"

    Science.gov (United States)

    McPhail, Ken

    2013-01-01

    Encouragingly, Professors Andrew and Everett broadly agree with McPhail (2013) that the emerging business and human rights discourse could add to our critical understanding of sustainability and, as such, should have a place within business schools' curricula. Professor Everett, however, cautions that the potential of the business and human rights…

  12. Human parvovirus B19-induced anaemia in pre-school children in Ilorin, Nigeria

    Science.gov (United States)

    Agbede, Olajide O.; Omoare, Adesuyi A.; Ernest, Samuel K.

    2018-01-01

    Sera collected from 57 anaemic and 115 non-anaemic age-matched pre-school children in Ilorin, Nigeria, between November 2014 and December 2015 were assayed for human parvovirus B19-specific IgM antibodies by using the enzyme linked immunosorbent assay technique. A total of 17 (29.8%) anaemic children and 18 (15.7%) non-anaemic children were positive for parvovirus B19 infection. Infection with parvovirus B19 is common in this population, and screening for the virus during differential diagnosis is recommended. PMID:29850435

  13. New Roles Assigned to the α1–β1 (and α2–β2 Interface of the Human Hemoglobin Molecule from Physiological to Cellular

    Directory of Open Access Journals (Sweden)

    Yoshiaki Sugawara

    2011-11-01

    Full Text Available Cellular life is reliant upon rapid and efficient responses to internal and external conditions. The basic molecular events associated with these processes are the structural transitions of the proteins (structural protein allostery involved. From this view, the human hemoglobin (Hb molecule (α2β2 holds a special position in this field. Hb has two types of αβ interface (i.e., α1β1 [and α2β2] and α1β2 [and α2β1]. The latter α1–β2 (and α2–β1 interface is known to be associated with cooperative O2 binding, and exhibits principal roles if the molecule goes from its deoxy to oxy quaternary structure. However, the role of the former α1–β1 (and α2–β2 interface has been unclear for a long time. In this regard, important and intriguing observations have been accumulating. A new role was attributed first as stabilizing the HbO2 tetramer against acidic autoxidation. That is, the α1–β1 (and α2–β2 interface produces a conformational constraint in the β chain whereby the distal (E7 histidine (His residue is tilted slightly away from the bound O2 so as to prevent proton-catalyzed displacement of O2– by a solvent water molecule. The β chains thus acquire pH-dependent delayed autoxidation in the HbO2 tetramer. The next role was suggested by our studies searching for similar phenomena in normal human erythrocytes under mild heating. Tilting of the distal (E7 His in turn triggered degradation of the Hb molecule to hemichrome, and subsequent clustering of Heinz bodies within the erythrocyte. As Heinz body-containing red cells become trapped in the spleen, it was demonstrated that the α1–β1 (and α2–β2 interface may exert delicate control of the fate (removal of its own erythrocyte. Herein we review and summarize the related results and current interpretation of the oxidative behavior of human Hb, emphasizing the correlation between hemichrome emergence and Heinz-body formation, and specifically discuss the new roles

  14. Writing, self-reflection, and medical school performance: the Human Context of Health Care.

    Science.gov (United States)

    Stephens, Mark B; Reamy, Brian V; Anderson, Denise; Olsen, Cara; Hemmer, Paul A; Durning, Steven J; Auster, Simon

    2012-09-01

    Finding ways to improve communication and self-reflection skills is an important element of medical education and continuing professional development. This study examines the relationship between self-reflection and educational outcomes. We correlate performance in a preclinical course that focuses on self-reflection as it relates to contextual elements of patient care (Human Context of Health Care), with educational measures such as overall grade point average, clinical clerkship scores, and Medical College Admission Test (MCAT) scores. Student performance in Human Context of Health Care correlated with MCAT-Verbal scores, MCAT-writing sample scores, clerkship grades, and overall medical school grade point average (R = 0.3; p self-reflection skills are often neglected in undergraduate medical curricula. Our findings suggest that these skills are important and correlate with recognized long-term educational outcomes.

  15. FORMATION OF THE HUMAN CAPITAL IN MODEL OF INTEGRATION OF HIGH SCHOOL SCIENCE IN INDUSTRY

    Directory of Open Access Journals (Sweden)

    Sergey N. Mityakov

    2013-01-01

    Full Text Available Analyzed the problems of reproduction of human resources in the scientific and educational cooperation and collaboration of university research with industry. Proposed a model integration high school science to industry of the region, including the internal and external levels. On the internal level, proposed a scheme of transfer technology in a technical university, where the formation of human capital is produced in two related areas: training of competitive labor market specialists with higher education, as well as consolidation in the universities of highly qualified personnel. On the external level, proposed creation of an integrated research and education production cluster, which brings together the personnel and technological capabilities of the industrial region.

  16. The Geneva University Global Health and Human Rights Summer School: A 5-Year Intercultural Collaborative Experience.

    Science.gov (United States)

    Chastonay, Philippe; Mpinga, Emmanuel K

    2018-01-01

    Education and training in human rights has been set as a priority by the United Nations. Health and human rights are closely related. Training professionals from various backgrounds in human rights might ultimately contribute to improve the health of individuals and communities. We present the 5 years' experience with a 3-week residential Global Health and Human Rights Course developed at the University of Geneva and implemented with the support/participation of international organizations (IOs) and non-governmental organizations active in the health and human rights sector. Over the years, roughly 150 students from 43 nationalities, with many different educational backgrounds, attended the course. The male/female ratio was 1/5. The adopted educational approach was multifold and comprised lectures from academics and experts with field experience, group work, individual case studies, journal clubs, and site visits. Evaluation data show that site visits at IOs were highly appreciated as well as networking opportunities among students, with academics and experts with field experience. The variety of topics discussed was, at times, "too much"; yet, it allowed students to measure the extent of the challenges the field is facing. The adopted active learning approach facilitated the exchange of experiences among students and allowed them to get acquainted with different cultural sensitivities. The Global Health and Human Rights Summer-School of the University of Geneva allowed its participants, coming from all over the world, to identify challenges of the interlinked fields of health and human rights, reflect upon their underlying causes, and imagine possible solutions. Sharing our experience will hopefully help passionate educators around the world to develop similar programs.

  17. The Geneva University Global Health and Human Rights Summer School: A 5-Year Intercultural Collaborative Experience

    Directory of Open Access Journals (Sweden)

    Philippe Chastonay

    2018-05-01

    Full Text Available Education and training in human rights has been set as a priority by the United Nations. Health and human rights are closely related. Training professionals from various backgrounds in human rights might ultimately contribute to improve the health of individuals and communities. We present the 5 years’ experience with a 3-week residential Global Health and Human Rights Course developed at the University of Geneva and implemented with the support/participation of international organizations (IOs and non-governmental organizations active in the health and human rights sector. Over the years, roughly 150 students from 43 nationalities, with many different educational backgrounds, attended the course. The male/female ratio was 1/5. The adopted educational approach was multifold and comprised lectures from academics and experts with field experience, group work, individual case studies, journal clubs, and site visits. Evaluation data show that site visits at IOs were highly appreciated as well as networking opportunities among students, with academics and experts with field experience. The variety of topics discussed was, at times, “too much”; yet, it allowed students to measure the extent of the challenges the field is facing. The adopted active learning approach facilitated the exchange of experiences among students and allowed them to get acquainted with different cultural sensitivities. The Global Health and Human Rights Summer-School of the University of Geneva allowed its participants, coming from all over the world, to identify challenges of the interlinked fields of health and human rights, reflect upon their underlying causes, and imagine possible solutions. Sharing our experience will hopefully help passionate educators around the world to develop similar programs.

  18. Possibilities and limits of Art teacher education and school artistic education from the humanizing perspective

    Directory of Open Access Journals (Sweden)

    Maria José Dozza Subtil

    2016-09-01

    Full Text Available This paper presents reflections on initial education of Art teachers, prioritized knowledge in the curriculum and demands of school artistic practice, resulting from research performed with teachers from Parana State Public Network (Brazil, especially graduates with Music Teaching Degrees. Questions on education in Teaching Degrees are addressed - musical practice, pedagogical studies, training and relationship with the school, strengths and weaknesses of the curriculum and school artistic practice - planning, content and methodologies, demands of students and managers for Art classes. The purpose of this analysis was to collate education by teachers whilst adhering to school‟s demands, to discuss the challenges of teaching work in Art/Music in relation to different determinants that constitute it. Among other problems, data shows the difficulties for teachers in planning from the determinations of the Diretrizes Curriculares Estaduais - DCE (2009 (State Curricular Guidelines, which proposes actions within all artistic fields Music, Theater, Dance and Visual Arts and the effective practice with a view to the specific education in Music and Visual Arts Teaching Degrees. The resulting answers enabled problematization of the relationship between theory and practice of education/work of these teachers and pointed to the contradiction between artistic education as a pragmatic activity and the potentiality of aesthetic and humanizing education proclaimed by the Marxist perspective.

  19. Physiologically based pharmacokinetic modeling of human exposure to perfluorooctanoic acid suggests historical non drinking-water exposures are important for predicting current serum concentrations.

    Science.gov (United States)

    Worley, Rachel Rogers; Yang, Xiaoxia; Fisher, Jeffrey

    2017-09-01

    Manufacturing of perfluorooctanoic acid (PFOA), a synthetic chemical with a long half-life in humans, peaked between 1970 and 2002, and has since diminished. In the United States, PFOA is detected in the blood of >99% of people tested, but serum concentrations have decreased since 1999. Much is known about exposure to PFOA in drinking water; however, the impact of non-drinking water PFOA exposure on serum PFOA concentrations is not well characterized. The objective of this research is to apply physiologically based pharmacokinetic (PBPK) modeling and Monte Carlo analysis to evaluate the impact of historic non-drinking water PFOA exposure on serum PFOA concentrations. In vitro to in vivo extrapolation was utilized to inform descriptions of PFOA transport in the kidney. Monte Carlo simulations were incorporated to evaluate factors that account for the large inter-individual variability of serum PFOA concentrations measured in individuals from North Alabama in 2010 and 2016, and the Mid-Ohio River Valley between 2005 and 2008. Predicted serum PFOA concentrations were within two-fold of experimental data. With incorporation of Monte Carlo simulations, the model successfully tracked the large variability of serum PFOA concentrations measured in populations from the Mid-Ohio River Valley. Simulation of exposure in a population of 45 adults from North Alabama successfully predicted 98% of individual serum PFOA concentrations measured in 2010 and 2016, respectively, when non-drinking water ingestion of PFOA exposure was included. Variation in serum PFOA concentrations may be due to inter-individual variability in the disposition of PFOA and potentially elevated historical non-drinking water exposures. Published by Elsevier Inc.

  20. Providing context for a medical school basic science curriculum: The importance of the humanities.

    Science.gov (United States)

    Thompson, Britta M; Vannatta, Jerry B; Scobey, Laura E; Fergeson, Mark; Humanities Research Group; Crow, Sheila M

    2016-01-01

    To increase students' understanding of what it means to be a physician and engage in the everyday practice of medicine, a humanities program was implemented into the preclinical curriculum of the medical school curriculum. The purpose of our study was to determine how medical students' views of being a doctor evolved after participating in a required humanities course. Medical students completing a 16-clock hour humanities course from 10 courses were asked to respond to an open-ended reflection question regarding changes, if any, of their views of being a doctor. The constant comparative method was used for coding; triangulation and a variety of techniques were used to provide evidence of validity of the analysis. A majority of first- and second-year medical students (rr = 70%) replied, resulting in 100 pages of text. A meta-theme of Contextualizing the Purpose of Medicine and three subthemes: the importance of Treating Patients Rather than a Disease, Understanding Observation Skills are Important, and Recognizing that Doctors are Fallible emerged from the data. Results suggest that requiring humanities as part of the required preclinical curriculum can have a positive influence on medical students and act as a bridge to contextualize the purpose of medicine.