WorldWideScience

Sample records for schofield equation based

  1. Predictive equations underestimate resting energy expenditure in female adolescents with phenylketonuria

    Science.gov (United States)

    Quirk, Meghan E.; Schmotzer, Brian J.; Schmotzer, Brian J.; Singh, Rani H.

    2010-01-01

    Resting energy expenditure (REE) is often used to estimate total energy needs. The Schofield equation based on weight and height has been reported to underestimate REE in female children with phenylketonuria (PKU). The objective of this observational, cross-sectional study was to evaluate the agreement of measured REE with predicted REE for female adolescents with PKU. A total of 36 females (aged 11.5-18.7 years) with PKU attending Emory University’s Metabolic Camp (June 2002 – June 2008) underwent indirect calorimetry. Measured REE was compared to six predictive equations using paired Student’s t-tests, regression-based analysis, and assessment of clinical accuracy. The differences between measured and predicted REE were modeled against clinical parameters to determine to if a relationship existed. All six selected equations significantly under predicted measured REE (P< 0.005). The Schofield equation based on weight had the greatest level of agreement, with the lowest mean prediction bias (144 kcal) and highest concordance correlation coefficient (0.626). However, the Schofield equation based on weight lacked clinical accuracy, predicting measured REE within ±10% in only 14 of 36 participants. Clinical parameters were not associated with bias for any of the equations. Predictive equations underestimated measured REE in this group of female adolescents with PKU. Currently, there is no accurate and precise alternative for indirect calorimetry in this population. PMID:20497783

  2. Comparing the measured basal metabolic rates in patients with chronic disorders of consciousness to the estimated basal metabolic rate calculated from common predictive equations.

    Science.gov (United States)

    Xiao, Guizhen; Xie, Qiuyou; He, Yanbin; Wang, Ziwen; Chen, Yan; Jiang, Mengliu; Ni, Xiaoxiao; Wang, Qinxian; Murong, Min; Guo, Yequn; Qiu, Xiaowen; Yu, Ronghao

    2017-10-01

    Accurately predicting the basal metabolic rate (BMR) of patients in a vegetative state (VS) or minimally conscious state (MCS) is critical to proper nutritional therapy, but commonly used equations have not been shown to be accurate. Therefore, we compared the BMR measured by indirect calorimetry (IC) to BMR values estimated using common predictive equations in VS and MCS patients. Body composition variables were measured using the bioelectric impedance analysis (BIA) technique. BMR was measured by IC in 82 patients (64 men and 18 women) with VS or MCS. Patients were classified by body mass index as underweight (BMR was estimated for each group using the Harris-Benedict (H-B), Schofield, or Cunningham equations and compared to the measured BMR using Bland-Altman analyses. For the underweight group, there was a significant difference between the measured BMR values and the estimated BMR values calculated using the H-B, Schofield, and Cunningham equations (p BMR values estimated using the H-B and Cunningham equations were different significantly from the measured BMR (p BMR in the normal-weight group. The Schofield equation showed the best concordance (only 41.5%) with the BMR values measured by IC. None of the commonly used equations to estimate BMR were suitable for the VS or MCS populations. Indirect calorimetry is the preferred way to avoid either over or underestimate of BMR values. Copyright © 2016. Published by Elsevier Ltd.

  3. Resting energy expenditure prediction in recreational athletes of 18-35 years: confirmation of Cunningham equation and an improved weight-based alternative.

    Science.gov (United States)

    ten Haaf, Twan; Weijs, Peter J M

    2014-01-01

    Resting energy expenditure (REE) is expected to be higher in athletes because of their relatively high fat free mass (FFM). Therefore, REE predictive equation for recreational athletes may be required. The aim of this study was to validate existing REE predictive equations and to develop a new recreational athlete specific equation. 90 (53 M, 37 F) adult athletes, exercising on average 9.1 ± 5.0 hours a week and 5.0 ± 1.8 times a week, were included. REE was measured using indirect calorimetry (Vmax Encore n29), FFM and FM were measured using air displacement plethysmography. Multiple linear regression analysis was used to develop a new FFM-based and weight-based REE predictive equation. The percentage accurate predictions (within 10% of measured REE), percentage bias, root mean square error and limits of agreement were calculated. Results: The Cunningham equation and the new weight-based equation REE(kJ / d) = 49.940* weight(kg) + 2459.053* height(m) - 34.014* age(y) + 799.257* sex(M = 1,F = 0) + 122.502 and the new FFM-based equation REE(kJ / d) = 95.272*FFM(kg) + 2026.161 performed equally well. De Lorenzo's equation predicted REE less accurate, but better than the other generally used REE predictive equations. Harris-Benedict, WHO, Schofield, Mifflin and Owen all showed less than 50% accuracy. For a population of (Dutch) recreational athletes, the REE can accurately be predicted with the existing Cunningham equation. Since body composition measurement is not always possible, and other generally used equations fail, the new weight-based equation is advised for use in sports nutrition.

  4. Method of constructing a fundamental equation of state based on a scaling hypothesis

    Science.gov (United States)

    Rykov, V. A.; Rykov, S. V.; Kudryavtseva, I. V.; Sverdlov, A. V.

    2017-11-01

    The work studies the issues associated with the construction of the equation of state (EOS) taking due account of substance behavior in the critical region and associated with the scaling theory of critical phenomena (ST). The authors have developed a new version of the scaling hypothesis; this approach uses the following: a) substance equation of state having a form of a Schofield-Litster-Ho linear model (LM) and b) the Benedek hypothesis. The Benedek hypothesis has found a similar behavior character for a number of properties (isochoric and isobaric heat capacities, isothermal compressibility coefficient) at critical and near-critical isochors in the vicinity of the critical point. A method is proposed to build the fundamental equation of state (FEOS) which satisfies the ST power laws. The FEOS building method is verified by building the equation of state for argon within the state parameters range: up to 1000 MPa in terms of pressure, and from 83.056 К to 13000 К in terms of temperature. The executed comparison with the fundamental equations of state of Stewart-Jacobsen (1989), of Kozlov at al (1996), of Tegeler-Span-Wagner (1999), of has shown that the FEOS describes the known experimental data with an essentially lower error.

  5. Some remarks concerning the equation of state near a critical point

    International Nuclear Information System (INIS)

    Lebrun, J.P.

    1977-01-01

    The thermodynamical scaling hypothesis is referred to in terms of SLsub(2,R) representations. The Josephson-Schofield proposal to avoid non-analyticity on the critical isotherm is shown to conflict with the Lebowitz-Penrose theorem in the one-phase region. One proposes to uniformize the critical region using e.g. Beltrami's equations and derives from the implicit function theorem a simple relation between the exponents (β, delta)

  6. Validity of a population-specific BMR predictive equation for adults from an urban tropical setting.

    Science.gov (United States)

    Wahrlich, Vivian; Teixeira, Tatiana Miliante; Anjos, Luiz Antonio Dos

    2018-02-01

    Basal metabolic rate (BMR) is an important physiologic measure in nutrition research. In many instances it is not measured but estimated by predictive equations. The purpose of this study was to compare measured BMR (BMRm) with estimated BMR (BMRe) obtained by different equations. A convenient sample of 148 (89 women) 20-60 year-old subjects from the metropolitan area of Rio de Janeiro, Brazil participated in the study. BMRm values were measured by an indirect calorimeter and predicted by different equations (Schofield, Henry and Rees, Mifflin-St. Jeor and Anjos. All subjects had their body composition and anthropometric variables also measured. Accuracy of the estimations was established by the percentage of BMRe falling within ±10% of BMRm and bias when the 95% CI of the difference of BMRe and BMRm means did not include zero. Mean BMRm values were 4833.5 (SD 583.3) and 6278.8 (SD 724.0) kJ*day -1 for women and men, respectively. BMRe values were both biased and inaccurate except for values predicted by the Anjos equation. BMR overestimation was approximately 20% for the Schofield equation which was higher comparatively to the Henry and Rees (14.5% and 9.6% for women and men, respectively) and the Mifflin-St. Jeor (approximately 14.0%) equations. BMR estimated by the Anjos equation was unbiased (95% CI = -78.1; 96.3 kJ day -1 for women and -282.6; 30.7 kJ*day -1 for men). Population-specific BMR predictive equations yield unbiased and accurate BMR values in adults from an urban tropical setting. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  7. Comparison of predictive equations for resting energy expenditure among patients with schizophrenia in Japan

    Directory of Open Access Journals (Sweden)

    Sugawara N

    2014-02-01

    Full Text Available Norio Sugawara,1 Norio Yasui-Furukori,1 Tetsu Tomita,1,2 Hanako Furukori,3 Kazutoshi Kubo,1,4 Taku Nakagami,1,4 Sunao Kaneko1 1Department of Neuropsychiatry, Hirosaki University School of Medicine, Hirosaki, 2Department of Psychiatry, Hirosaki-Aiseikai Hospital, Hirosaki, 3Department of Psychiatry, Kuroishi-Akebono Hospital, Kuroishi, 4Department of Psychiatry, Odate Municipal General Hospital, Odate, Japan Background: Recently, a relationship between obesity and schizophrenia has been reported. The prediction of resting energy expenditure (REE is important to determine the energy expenditure of patients with schizophrenia. However, there is a lack of research concerning the most accurate REE predictive equations among Asian patients with schizophrenia. The purpose of the study reported here was to compare the validity of four REE equations for patients with schizophrenia taking antipsychotics. Methods: For this cross-sectional study, we recruited patients (n=110 who had a Diagnostic and Statistical Manual of Mental Disorders, fourth edition, diagnosis of schizophrenia and were admitted to four psychiatric hospitals. The mean (± standard deviation age of these patients was 45.9±13.2 years. Anthropometric measurements (of height, weight, body mass index were taken at the beginning of the study. REE was measured using indirect calorimetry. Comparisons between the measured and estimated REEs from the four equations (Harris–Benedict, Mifflin–St Jeor, Food and Agriculture Organization/World Health Organization/United Nations University, and Schofield were performed using simple linear regression analysis and Bland–Altman analysis. Results: Significant trends were found between the measured and predicted REEs for all four equations (P<0.001, with the Harris–Benedict equation demonstrating the strongest correlation in both men and women (r=0.617, P<0.001. In all participants, Bland–Altman analysis revealed that the Harris–Benedict and

  8. Validity of predictive equations for basal metabolic rate in Japanese adults.

    Science.gov (United States)

    Miyake, Rieko; Tanaka, Shigeho; Ohkawara, Kazunori; Ishikawa-Takata, Kazuko; Hikihara, Yuki; Taguri, Emiko; Kayashita, Jun; Tabata, Izumi

    2011-01-01

    Many predictive equations for basal metabolic rate (BMR) based on anthropometric measurements, age, and sex have been developed, mainly for healthy Caucasians. However, it has been reported that many of these equations, used widely, overestimate BMR not only for Asians, but also for Caucasians. The present study examined the accuracy of several predictive equations for BMR in Japanese subjects. In 365 healthy Japanese male and female subjects, aged 18 to 79 y, BMR was measured in the post-absorptive state using a mask and Douglas bag. Six predictive equations were examined. Total error was used as an index of the accuracy of each equation's prediction. Predicted BMR values by Dietary Reference Intakes for Japanese (Japan-DRI), Adjusted Dietary Reference Intakes for Japanese (Adjusted-DRI), and Ganpule equations were not significantly different from the measured BMR in either sex. On the other hand, Harris-Benedict, Schofield, and Food and Agriculture Organization of the United Nations/World Health Organization/United Nations University equations were significantly higher than the measured BMR in both sexes. The prediction error by Japan-DRI, Adjusted-DRI, and Harris-Benedict equations was significantly correlated with body weight in both sexes. Total error using the Ganpule equation was low in both males and females (125 and 99 kcal/d, respectively). In addition, total error using the Adjusted-DRI equation was low in females (95 kcal/d). Thus, the Ganpule equation was the most accurate in predicting BMR in our healthy Japanese subjects, because the difference between the predicted and measured BMR was relatively small, and body weight had no effect on the prediction error.

  9. Resting Energy Expenditure of Children and Adolescents With Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Martincevic, Inez; Mouzaki, Marialena

    2017-09-01

    The mainstay of treatment for pediatric nonalcoholic fatty liver disease (NAFLD) is lifestyle modification, which includes dietary changes that lead to slow but sustained weight loss or weight stabilization in growing children. Accurate estimation of energy requirements is necessary to achieve this goal. The objective of this study was to assess the accuracy of the most commonly used equations in predicting the resting energy expenditure (REE) of children with NAFLD. This was a retrospective study performed in a single institution. The predictive accuracy of various equations was assessed by comparing their estimates against the measured REE obtained with indirect calorimetry. Accuracy was defined as an estimate within 10% of measured REE. Fifty-six children (70% male; 52% white and 36% Asian) with a median age of 13 years were included. The median measured REE was 1829 kcal/d. Of the equations studied, the Schofield had the smallest average bias (-32 kcal/d; confidence interval, -121 to 56). The Schofield and Molnar equations were the most accurate, providing REE estimates within 10% of measured in 59% of cases. The remaining equations had lower and variable predictive accuracy. The use of adjusted body weight in predictive equations did not improve the predictive accuracy. In a cohort of children and adolescents with NAFLD, the Schofield and Molnar equations performed best in predicting energy expenditure. However, predictive equations were often inaccurate, suggesting that clinicians should interpret their results with caution and consider using indirect calorimetry when available.

  10. BMR in a Brazilian adult probability sample: the Nutrition, Physical Activity and Health Survey.

    Science.gov (United States)

    Anjos, Luiz A; Wahrlich, Vivian; Vasconcellos, Mauricio Tl

    2014-04-01

    To measure BMR in a probability sample of adults from an urban city of Brazil and to compare indirectly measured BMR (BMRi) with BMR predicted from different equations. BMR data were obtained by indirect calorimetry and estimated by different predictive equations (Schofield; Harris and Benedict; Henry and Rees). Anthropometric and body composition measures were also obtained. The Nutrition, Physical Activity and Health Survey (PNAFS), a household survey conducted in Niterói, Rio de Janeiro state, Brazil. Representative sample of 529 adults (aged ≥20 years; 339 females) living in Niterói, Rio de Janeiro state, Brazil. Mean BMRi values were 5839.7 (se 73.9) kJ/d and 4758.1 (se 39.5) kJ/d for men and women, respectively. Predicted BMR by all equations was significantly higher (difference between means and 95% CI did not include zero) than BMRi in both men and women of all ages. Overall bias in BMR (predicted BMR minus BMRi) using the Schofield equations (overestimation of about 20%) was higher than when using the Henry and Rees equations (13% and 16% overestimation for males and females, respectively). The percentage of individuals whose BMR predicted by the Schofield equations fell within 10% of BMRi was very low (7.8% and 14.1% of males nd females, respectively). Current available predictive equations of BMR are not adequate to estimate BMR in Brazilians living in Niterói, Rio de Janeiro, Brazil.

  11. [Study of Basal metabolic rate of 81 young adults aged 20-29 years old in Changsha].

    Science.gov (United States)

    Zhou, X; Mao, D Q; Luo, J Y; Wu, J H; Zhuo, Q; Li, Y M

    2017-07-06

    Objective: To determine the basal metabolic rate (BMR) of young adults aged between 20-29 years old in Changsha. Methods: We recruited volunteers to join in our research project from April to May, 2015. All recruited volunteers must meet the inclusion criteria: aged 20-29 years old, height between 164-180 centimeters in males and 154-167 centimeters in females, in good health condition, and with no habit of regular physical exercise in last year. Finally, 81 qualified volunteers were selected as research objects, including 43 males and 38 females. The BMR, resting lying metabolism rate and resting sitting metabolism rate of the subjects were detected, and the determined BMR was compared with the calculated results: from the adjusted Schofield equation. Results The BMR, resting lying metabolism rate and resting sitting metabolism rate among males were (166.10±22.09), (174.22±24.56), and (179.54±23.35) kJ·m(-2)·h(-1), respectively, which were all higher than those among females were (137.70±20.04), (149.79±19.25), and (167.78±26.02) kJ·m(-2)·h(-1), respectively, ( PBMR of males and females calculated from the adjusted Schofield equation were (160.83±3.93), and (140.29±4.18) kJ·m(-2)·h(-1), respectively, and there was no significantly statistical difference found between the determined BMR and the calculated results from Schofield equation (adjusted) classified by sex, all P values >0.05. Conclusion: The BMR of young adults aged 20-29 years old in Changsha was in the national average level, and the adjusted Schofield equation displayed fine accuracy in predicting BMR of young adults aged 20-29 years old in Changsha.

  12. Taxa metabólica de repouso de ciclistas estimada por equações e obtida por calorimetria indireta Resting metabolic rate of cyclists estimated by mathematical equations and obtained by indirect calorimetry

    Directory of Open Access Journals (Sweden)

    Paula Guedes Cocate

    2009-10-01

    Full Text Available A taxa metabólica de repouso (TMR pode ser determinada por calorimetria indireta (CI. Porém, em função da praticidade, na prática clínica na maioria das vezes esta é estimada por equações de predição, as quais foram desenvolvidas em estudos envolvendo indivíduos não atletas. Apesar de alguns autores terem indicado que tais equações não estimam adequadamente a TMR, estas têm sido bastante utilizadas para calculá-la e prescrever dietas, inclusive para atletas. O objetivo deste estudo foi comparar a TMR determinada por CI com a estimada pelas equações de Harris & Benedict (HB, Schofield, FAO/WHO/UNU e Henry & Rees (HR, em 15 homens ciclistas, de 24,4 ± 3,68 anos, apresentando índice de massa corporal de 21,97 ± 1,46kg/m² e VO2máx de 70,00 ± 5,32mL(kg.min-1. Para comparar a TMR determinada por CI e pelas equações, utilizou-se o tratamento estatístico testes t de Student (variáveis com distribuição normal e de Mann-Whitney (variáveis sem distribuição normal, considerando p The resting metabolic rate (RMR can be determined by indirect calorimetry (IC. However, the clinical estimation of this parameter has been done using mathematical equations, which were developed in studies involving non-athletes. Although some authors have indicated that such equations do not estimate correctly the RMR, they have been constantly used to estimate such parameter and to prescribe diets, including for athletes. The objective of this study was to compare the RMR determined by IC with the ones estimated using the equations proposed by Harris & Benedict (HB, Schofield, FAO/WHO/UNU and Henry & Rees (HR, in 15 male cyclists, aged 24.4±3.68 years, body mass index of 21.97±1.46 kg/m² and VO2max of 70.00±5.32 mL(kg.min-1. Student's t test (when data presented normal distribution and Mann-Whitney (when data did not present normal distribution were used to compare the RMR determined by IC and the ones estimated by the equations. Probability

  13. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation

    International Nuclear Information System (INIS)

    Znojil, Miloslav

    2004-01-01

    Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations

  14. Studies in Aromatic and Amine Nitration.

    Science.gov (United States)

    1980-05-20

    of Commerce, May 1978. 4. J. Hoggett , R. Moodie, F. Penton, and K. Schofield, Nitration and Aromatic Reactivity (Cambridge University Press, 1971). 5...Moodie, K. Schofield, and G. Tobin, J. Chem. Soc., Chem. Comm., 180 (1978); (b) J. Hoggett , R. Moodie, and K. Schofield, Chem. Comm. 605 (1969). 10. (a) S...Lawrence Livermore Laboratories (Received, 5th Februaty 1980; Com. 124.) 42 ’(a) J. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield, in ’Nitration

  15. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed; Zidan, Mohammed A.; Salama, Khaled N.

    2012-01-01

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  16. Fully Digital Chaotic Differential Equation-based Systems And Methods

    KAUST Repository

    Radwan, Ahmed Gomaa Ahmed

    2012-09-06

    Various embodiments are provided for fully digital chaotic differential equation-based systems and methods. In one embodiment, among others, a digital circuit includes digital state registers and one or more digital logic modules configured to obtain a first value from two or more of the digital state registers; determine a second value based upon the obtained first values and a chaotic differential equation; and provide the second value to set a state of one of the plurality of digital state registers. In another embodiment, a digital circuit includes digital state registers, digital logic modules configured to obtain outputs from a subset of the digital shift registers and to provide the input based upon a chaotic differential equation for setting a state of at least one of the subset of digital shift registers, and a digital clock configured to provide a clock signal for operating the digital shift registers.

  17. Existing creatinine-based equations overestimate glomerular filtration rate in Indians.

    Science.gov (United States)

    Kumar, Vivek; Yadav, Ashok Kumar; Yasuda, Yoshinari; Horio, Masaru; Kumar, Vinod; Sahni, Nancy; Gupta, Krishan L; Matsuo, Seiichi; Kohli, Harbir Singh; Jha, Vivekanand

    2018-02-01

    Accurate estimation of glomerular filtration rate (GFR) is important for diagnosis and risk stratification in chronic kidney disease and for selection of living donors. Ethnic differences have required correction factors in the originally developed creatinine-based GFR estimation equations for populations around the world. Existing equations have not been validated in the vegetarian Indian population. We examined the performance of creatinine and cystatin-based GFR estimating equations in Indians. GFR was measured by urinary clearance of inulin. Serum creatinine was measured using IDMS-traceable Jaffe's and enzymatic assays, and cystatin C by colloidal gold immunoassay. Dietary protein intake was calculated by measuring urinary nitrogen appearance. Bias, precision and accuracy were calculated for the eGFR equations. A total of 130 participants (63 healthy kidney donors and 67 with CKD) were studied. About 50% were vegetarians, and the remainder ate meat 3.8 times every month. The average creatinine excretion were 14.7 mg/kg/day (95% CI: 13.5 to 15.9 mg/kg/day) and 12.4 mg/kg/day (95% CI: 11.2 to 13.6 mg/kg/day) in males and females, respectively. The average daily protein intake was 46.1 g/day (95% CI: 43.2 to 48.8 g/day). The mean mGFR in the study population was 51.66 ± 31.68 ml/min/1.73m 2 . All creatinine-based eGFR equations overestimated GFR (p < 0.01 for each creatinine based eGFR equation). However, eGFR by CKD-EPI Cys was not significantly different from mGFR (p = 0.38). The CKD-EPI Cys exhibited lowest bias [mean bias: -3.53 ± 14.70 ml/min/1.73m 2 (95% CI: -0.608 to -0.98)] and highest accuracy (P 30 : 74.6%). The GFR in the healthy population was 79.44 ± 20.19 (range: 41.90-134.50) ml/min/1.73m 2 . Existing creatinine-based GFR estimating equations overestimate GFR in Indians. An appropriately powered study is needed to develop either a correction factor or a new equation for accurate assessment of kidney function in the

  18. A maximum principle for time dependent transport in systems with voids

    International Nuclear Information System (INIS)

    Schofield, S.L.; Ackroyd, R.T.

    1996-01-01

    A maximum principle is developed for the first-order time dependent Boltzmann equation. The maximum principle is a generalization of Schofield's κ(θ) principle for the first-order steady state Boltzmann equation, and provides a treatment of time dependent transport in systems with void regions. The formulation comprises a direct least-squares minimization allied with a suitable choice of bilinear functional, and gives rise to a maximum principle whose functional is free of terms that have previously led to difficulties in treating void regions. (Author)

  19. A new pseudorandom number generator based on a complex number chaotic equation

    International Nuclear Information System (INIS)

    Liu Yang; Tong Xiao-Jun

    2012-01-01

    In recent years, various chaotic equation based pseudorandom number generators have been proposed. However, the chaotic equations are all defined in the real number field. In this paper, an equation is proposed and proved to be chaotic in the imaginary axis. And a pseudorandom number generator is constructed based on the chaotic equation. The alteration of the definitional domain of the chaotic equation from the real number field to the complex one provides a new approach to the construction of chaotic equations, and a new method to generate pseudorandom number sequences accordingly. Both theoretical analysis and experimental results show that the sequences generated by the proposed pseudorandom number generator possess many good properties

  20. Collage-based approaches for elliptic partial differential equations inverse problems

    Science.gov (United States)

    Yodzis, Michael; Kunze, Herb

    2017-01-01

    The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.

  1. Solution of partial differential equations by agent-based simulation

    International Nuclear Information System (INIS)

    Szilagyi, Miklos N

    2014-01-01

    The purpose of this short note is to demonstrate that partial differential equations can be quickly solved by agent-based simulation with high accuracy. There is no need for the solution of large systems of algebraic equations. This method is especially useful for quick determination of potential distributions and demonstration purposes in teaching electromagnetism. (letters and comments)

  2. Splines and their reciprocal-bases in volume-integral equations

    International Nuclear Information System (INIS)

    Sabbagh, H.A.

    1993-01-01

    The authors briefly outline the use of higher-order splines and their reciprocal-bases in discretizing the volume-integral equations of electromagnetics. The discretization is carried out by means of the method of moments, in which the expansion functions are the higher-order splines, and the testing functions are the corresponding reciprocal-basis functions. These functions satisfy an orthogonality condition with respect to the spline expansion functions. Thus, the method is not Galerkin, but the structure of the resulting equations is quite regular, nevertheless. The theory is applied to the volume-integral equations for the unknown current density, or unknown electric field, within a scattering body, and to the equations for eddy-current nondestructive evaluation. Numerical techniques for computing the matrix elements are also given

  3. Dominant height-based height-diameter equations for trees in southern Indiana

    Science.gov (United States)

    John A., Jr. Kershaw; Robert C. Morrissey; Douglass F. Jacobs; John R. Seifert; James B. McCarter

    2008-01-01

    Height-diameter equations are developed based on dominant tree data collected in 1986 in 8- to 17-year-old clearcuts and the phase 2 Forest Inventory and Analysis plots on the Hoosier National Forest in south central Indiana. Two equation forms are explored: the basic, three-parameter Chapman-Richards function, and a modification of the three-parameter equation...

  4. Predictive equation of state method for heavy materials based on the Dirac equation and density functional theory

    Science.gov (United States)

    Wills, John M.; Mattsson, Ann E.

    2012-02-01

    Density functional theory (DFT) provides a formally predictive base for equation of state properties. Available approximations to the exchange/correlation functional provide accurate predictions for many materials in the periodic table. For heavy materials however, DFT calculations, using available functionals, fail to provide quantitative predictions, and often fail to be even qualitative. This deficiency is due both to the lack of the appropriate confinement physics in the exchange/correlation functional and to approximations used to evaluate the underlying equations. In order to assess and develop accurate functionals, it is essential to eliminate all other sources of error. In this talk we describe an efficient first-principles electronic structure method based on the Dirac equation and compare the results obtained with this method with other methods generally used. Implications for high-pressure equation of state of relativistic materials are demonstrated in application to Ce and the light actinides. Sandia National Laboratories is a multi-program laboratory managed andoperated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Comparison of Effects of Soy Oil, Olive Oil, Mct-Lct Based Nutrition Solutions in Parenterally Fed Intensive Care Patients

    Directory of Open Access Journals (Sweden)

    Nurşen Gürsoy

    2012-08-01

    Full Text Available Objective: In this study, we aimed to compare the changes in biochemical parameters and efficacy of nutrition by using parenteral nutrition solutions with different lipid content in critically ill patients. Material and Method: Fourty-five intensive care patients were randomized into three groups to receive either soy bean based (Group 1 or olive oil based (Group 2 or MCT/LCT based (Group 3 nutrition solutions. The calorie requirement was calculated using Schofield equation day. The levels of albumin, total protein, AST, ALT, LDH, GGT, ALP, glucose, triglyceride, cholesterol, LDL, HDL, aPTT, PT, INR, CRP, transferin and prealbumin were measured on days 1, 7 and 14. Results: There was no statistically significant difference between groups according to glucose, liver function tests, triglyceride, cholesterol, LDL, HDL, aPTT, PT, INR levels. CRP and prealbumin were similar within-group and between-group comparisons. In groups II and III, CRP levels decreased while prealbumin levels were increasing. Conclusion: As a conclusion, no difference was found comparing the biochemical parameters and efficacy of nutrition, in ICU patients fed with soy oil, olive oil or MCT/LCT based parenteral nutrition solutions. (Journal of the Turkish Society Intensive Care 2012; 10: 52-8

  6. HAM-Based Adaptive Multiscale Meshless Method for Burgers Equation

    Directory of Open Access Journals (Sweden)

    Shu-Li Mei

    2013-01-01

    Full Text Available Based on the multilevel interpolation theory, we constructed a meshless adaptive multiscale interpolation operator (MAMIO with the radial basis function. Using this operator, any nonlinear partial differential equations such as Burgers equation can be discretized adaptively in physical spaces as a nonlinear matrix ordinary differential equation. In order to obtain the analytical solution of the system of ODEs, the homotopy analysis method (HAM proposed by Shijun Liao was developed to solve the system of ODEs by combining the precise integration method (PIM which can be employed to get the analytical solution of linear system of ODEs. The numerical experiences show that HAM is not sensitive to the time step, and so the arithmetic error is mainly derived from the discrete in physical space.

  7. Modeling of superconductors based on the timedependent Ginsburg-Landau equations

    Science.gov (United States)

    Grishakov, K. S.; Degtyarenko, P. N.; Degtyarenko, N. N.; Elesin, V. F.; Kruglov, V. S.

    2009-11-01

    Results of modeling of superconductor magnetization process based on a numerical solution of the timedependent Ginsburg-Landau equations are presented. Methods of grid approximation of the equations and method of finite elements are used. Two-dimensional patterns of changes in the order parameter and supercurrent distribution in superconductors are calculated and visualized. The main results are in agreement with the well-known representations for type I and II superconductors.

  8. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  9. Plasma balance equations based on orbit theory

    International Nuclear Information System (INIS)

    Lehnert, B.

    1982-01-01

    A set of plasma balance equations is proposed which is based on orbit theory and the particle distribution function, to provide means for theoretical analysis of a number of finite Larmor radius (FLR) phenomena without use of the Vlasov equation. Several important FLR effects originate from the inhomogeneity of an electric field in the plasma. The exact solution of a simple case shows that this inhomogeneity introduces fundamental changes in the physics of the particle motion. Thus, the periodic Larmor motion (gyration) is shifted in frequency and becomes elliptically polarized. Further, the non-periodic guiding-centre drift obtains additional components, part of which are accelerated such as to make the drift orbits intersect the equipotential surfaces of a static electric field. An attempt is finally made to classify the FLR effects, also with the purpose of identifying phenomena which have so far not been investigated. (author)

  10. Individual-based and group-based occupational exposure assessment: some equations to evaluate different strategies.

    NARCIS (Netherlands)

    Tielemans, E.; Kupper, L.L.; Kromhout, H.; Heederik, D.; Houba, R.

    1998-01-01

    Basically, two strategies can be considered for the analysis of hazardous pollutants in the work environment: group-based and individual-based strategies. This paper provides existing and recently derived equations for both strategies describing the influence of several factors on attenuation and on

  11. Stature estimation equations for South Asian skeletons based on DXA scans of contemporary adults.

    Science.gov (United States)

    Pomeroy, Emma; Mushrif-Tripathy, Veena; Wells, Jonathan C K; Kulkarni, Bharati; Kinra, Sanjay; Stock, Jay T

    2018-05-03

    Stature estimation from the skeleton is a classic anthropological problem, and recent years have seen the proliferation of population-specific regression equations. Many rely on the anatomical reconstruction of stature from archaeological skeletons to derive regression equations based on long bone lengths, but this requires a collection with very good preservation. In some regions, for example, South Asia, typical environmental conditions preclude the sufficient preservation of skeletal remains. Large-scale epidemiological studies that include medical imaging of the skeleton by techniques such as dual-energy X-ray absorptiometry (DXA) offer new potential datasets for developing such equations. We derived estimation equations based on known height and bone lengths measured from DXA scans from the Andhra Pradesh Children and Parents Study (Hyderabad, India). Given debates on the most appropriate regression model to use, multiple methods were compared, and the performance of the equations was tested on a published skeletal dataset of individuals with known stature. The equations have standard errors of estimates and prediction errors similar to those derived using anatomical reconstruction or from cadaveric datasets. As measured by the number of significant differences between true and estimated stature, and the prediction errors, the new equations perform as well as, and generally better than, published equations commonly used on South Asian skeletons or based on Indian cadaveric datasets. This study demonstrates the utility of DXA scans as a data source for developing stature estimation equations and offer a new set of equations for use with South Asian datasets. © 2018 Wiley Periodicals, Inc.

  12. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  13. A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver

    KAUST Repository

    Liu, Yang

    2015-10-26

    © 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.

  14. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Science.gov (United States)

    Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem

    2018-01-01

    In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  15. Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.

    Directory of Open Access Journals (Sweden)

    Azmat Ullah

    Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.

  16. Main: 1GP5 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available .Turnbull, R.W.D.Welford, I.J.Clifton, A.G.Prescott, C.J.Schofield R.Wilmouth, J....Turnbull, R.Welford, I.Clifton, A.Prescott, C.Schofield Structure And Mechanism Of Anthocyanidin Synthase Fr

  17. Main: 1GP6 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available urnbull, R.W.D.Welford, I.J.Clifton, A.G.Prescott, C.J.Schofield R.Wilmouth, J.Tu...rnbull, R.Welford, I.Clifton, A.Prescott, C.Schofield Structure And Mechanism Of Anthocyanidin Synthase From

  18. Endangered Species on U.S. Army Installations.

    Science.gov (United States)

    1982-08-01

    OLOKELEANUM x VOTOTICHIUMr VIRIDE /MFSD. x PEUCEDANUM KAIJAIEJSEL x PTERALYXIA, KAUAI x RAUVOLFIA MFLLEPI x HAD x RAUVOLFIA SArJDWICENSIS VAR...HELLERI PLANTS UNnETERMIAED SCHOFIELD BARRACKS# RAUVOLFIA SANOWICENSIS VAR, SUBACUMINATA PLANTS UINDETERMINED SCHOFIELD BARRACKS, *EMYA KAUAIENSIS /HBD

  19. Identifying Cross Curricular Linkages of a Class-Based Walking Challenge: An Exploratory Study

    Science.gov (United States)

    Lapere, David Allen; Mummery, W. Kerry; Yates, Kevin

    2008-01-01

    Adult workplace intervention programs to improve physical activity through wearing personal pedometers and completing team orientated "virtual journeys" have been shown to be useful in enhancing activity levels (Mummery, Schofield, Hinchliffe, Joyner, & Brown, 2006). Similar approaches applied to the school setting have also been…

  20. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-02-01

    The materials and properties investigated for this blanket study are listed. The phenomenological equations and mathematical fits for all materials and properties considered are given. Efforts to develop a swelling equation based on the few experimental data points available for breeder materials are described. The sintering phenomena for ceramics is investigated

  1. Research on the optimal dynamical systems of three-dimensional Navier-Stokes equations based on weighted residual

    Science.gov (United States)

    Peng, NaiFu; Guan, Hui; Wu, ChuiJie

    2016-04-01

    In this paper, the theory of constructing optimal dynamical systems based on weighted residual presented by Wu & Sha is applied to three-dimensional Navier-Stokes equations, and the optimal dynamical system modeling equations are derived. Then the multiscale global optimization method based on coarse graining analysis is presented, by which a set of approximate global optimal bases is directly obtained from Navier-Stokes equations and the construction of optimal dynamical systems is realized. The optimal bases show good properties, such as showing the physical properties of complex flows and the turbulent vortex structures, being intrinsic to real physical problem and dynamical systems, and having scaling symmetry in mathematics, etc.. In conclusion, using fewer terms of optimal bases will approach the exact solutions of Navier-Stokes equations, and the dynamical systems based on them show the most optimal behavior.

  2. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

    DEFF Research Database (Denmark)

    Hattel, Jesper; Hansen, Preben

    1995-01-01

    This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati....... The resulting linear algebraic equations are solved by line-Gauss-Seidel....

  3. Numerical solution of modified differential equations based on symmetry preservation.

    Science.gov (United States)

    Ozbenli, Ersin; Vedula, Prakash

    2017-12-01

    In this paper, we propose a method to construct invariant finite-difference schemes for solution of partial differential equations (PDEs) via consideration of modified forms of the underlying PDEs. The invariant schemes, which preserve Lie symmetries, are obtained based on the method of equivariant moving frames. While it is often difficult to construct invariant numerical schemes for PDEs due to complicated symmetry groups associated with cumbersome discrete variable transformations, we note that symmetries associated with more convenient transformations can often be obtained by appropriately modifying the original PDEs. In some cases, modifications to the original PDEs are also found to be useful in order to avoid trivial solutions that might arise from particular selections of moving frames. In our proposed method, modified forms of PDEs can be obtained either by addition of perturbation terms to the original PDEs or through defect correction procedures. These additional terms, whose primary purpose is to enable symmetries with more convenient transformations, are then removed from the system by considering moving frames for which these specific terms go to zero. Further, we explore selection of appropriate moving frames that result in improvement in accuracy of invariant numerical schemes based on modified PDEs. The proposed method is tested using the linear advection equation (in one- and two-dimensions) and the inviscid Burgers' equation. Results obtained for these tests cases indicate that numerical schemes derived from the proposed method perform significantly better than existing schemes not only by virtue of improvement in numerical accuracy but also due to preservation of qualitative properties or symmetries of the underlying differential equations.

  4. Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations

    KAUST Repository

    Asiri, Sharefa M.

    2016-10-20

    In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear in unknown parameters. The well-posedness of the modulating functions-based solution is proved. The wave and the fifth-order KdV equations are used as examples to show the effectiveness of the proposed method in both noise-free and noisy cases.

  5. CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS

    International Nuclear Information System (INIS)

    Steiner, A. W.; Hempel, M.; Fischer, T.

    2013-01-01

    Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabular form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M ☉ progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star

  6. Exergy analysis on throttle reduction efficiency based on real gas equations

    International Nuclear Information System (INIS)

    Luo, Yuxi; Wang, Xuanyin

    2010-01-01

    This paper proposes an approach to calculate the efficiency of throttling in which the exergy (available energy) is used to evaluate the energy conversion processes. In the exergy calculation for real gases, a difficult part of integration can be removed by judiciously advised thermodynamic paths; the compressibility factor is calculated by using Peng-Robinson (P-R) equation. It is found that the largest deviation between the exergies calculated by the real gas equation and ideal gas assumption is about 1%. Because the exergy is a function of the pressure and temperature, the Joule-Thomson coefficients are used to calculate the temperature changes of throttling, based on the compressibility factors of the Soave-Redlich-Kwong (S-R-K) and P-R equations, and the temperature decreases are compared with those calculated by empirical formula. The result shows that the heat exergy contributes very little in throttling. The simple equation of ideal gas is suggested to calculate the efficiency of throttling for air at atmospheric temperatures.

  7. Optimal harvesting for a predator-prey agent-based model using difference equations.

    Science.gov (United States)

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  8. Integration Processes of Delay Differential Equation Based on Modified Laguerre Functions

    Directory of Open Access Journals (Sweden)

    Yeguo Sun

    2012-01-01

    Full Text Available We propose long-time convergent numerical integration processes for delay differential equations. We first construct an integration process based on modified Laguerre functions. Then we establish its global convergence in certain weighted Sobolev space. The proposed numerical integration processes can also be used for systems of delay differential equations. We also developed a technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed method and coincide well with analysis.

  9. A Comparison between Linear IRT Observed-Score Equating and Levine Observed-Score Equating under the Generalized Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen

    2012-01-01

    In this article, linear item response theory (IRT) observed-score equating is compared under a generalized kernel equating framework with Levine observed-score equating for nonequivalent groups with anchor test design. Interestingly, these two equating methods are closely related despite being based on different methodologies. Specifically, when…

  10. Systems-based decomposition schemes for the approximate solution of multi-term fractional differential equations

    Science.gov (United States)

    Ford, Neville J.; Connolly, Joseph A.

    2009-07-01

    We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.

  11. Fractal-Based Methods and Inverse Problems for Differential Equations: Current State of the Art

    Directory of Open Access Journals (Sweden)

    Herb E. Kunze

    2014-01-01

    Full Text Available We illustrate, in this short survey, the current state of the art of fractal-based techniques and their application to the solution of inverse problems for ordinary and partial differential equations. We review several methods based on the Collage Theorem and its extensions. We also discuss two innovative applications: the first one is related to a vibrating string model while the second one considers a collage-based approach for solving inverse problems for partial differential equations on a perforated domain.

  12. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  13. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  14. Derivation of simplified basic equations of gas-liquid two-phase dispersed flow based on two-fluid model

    International Nuclear Information System (INIS)

    Kataoka, Isao; Tomiyama, Akio

    2004-01-01

    The simplified and physically reasonable basic equations for the gas-liquid dispersed flow were developed based on some appropriate assumptions and the treatment of dispersed phase as isothermal rigid particles. Based on the local instant formulation of mass, momentum and energy conservation of the dispersed flow, time-averaged equations were obtained assuming that physical quantities in the dispersed phase are uniform. These assumptions are approximately valid when phase change rate and/or chemical reaction rate are not so large at gas-liquid interface and there is no heat generation in within the dispersed phase. Detailed discussions were made on the characteristics of obtained basic equations and physical meanings of terms consisting the basic equations. It is shown that, in the derived averaged momentum equation, the terms of pressure gradient and viscous momentum diffusion do not appear and, in the energy equation, the term of molecular thermal diffusion heat flux does not appear. These characteristics of the derived equations were shown to be very consistent concerning the physical interpretation of the gas-liquid dispersed flow. Furthermore, the obtained basic equations are consistent with experiments for the dispersed flow where most of averaged physical quantities are obtained assuming that the distributions of those are uniform within the dispersed phase. Investigation was made on the problem whether the obtained basic equations are well-posed or ill-posed for the initial value problem. The eigenvalues of the simplified mass and momentum equations are calculated for basic equations obtained here and previous two-fluid basic equations with one pressure model. Well-posedness and ill-posedness are judged whether the eigenvalues are real or imaginary. The result indicated the newly developed basic equations always constitute the well-posed initial value problem while the previous two-fluid basic equations based on one pressure model constitutes ill

  15. A multivariate family-based association test using generalized estimating equations : FBAT-GEE

    NARCIS (Netherlands)

    Lange, C; Silverman, SK; Xu, [No Value; Weiss, ST; Laird, NM

    In this paper we propose a multivariate extension of family-based association tests based on generalized estimating equations. The test can be applied to multiple phenotypes and to phenotypic data obtained in longitudinal studies without making any distributional assumptions for the phenotypic

  16. Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations

    KAUST Repository

    Asiri, Sharefa M.; Laleg-Kirati, Taous-Meriem

    2016-01-01

    In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear

  17. Methods for Equating Mental Tests.

    Science.gov (United States)

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  18. Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Vladimir P. Gerdt

    2006-05-01

    Full Text Available In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.

  19. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration of stochastic differential equations. This approach is illustrated with the constructions of new methods of weak order two, in particular, semi-implicit integrators well suited for stiff (meansquare stable) stochastic problems, and implicit integrators that exactly conserve all quadratic first integrals of a stochastic dynamical system. Numerical examples confirm the theoretical results and show the versatility of our methodology.

  20. Materials data base and design equations for the UCLA solid breeder blanket

    International Nuclear Information System (INIS)

    Sharafat, S.; Amodeo, R.; Ghoniem, N.M.

    1986-01-01

    The need for a complete and coherent material data base for fusion reactor systems has been an important issue for some time now. Since the choices for materials used in fusion reactors are becoming more apparent, it is important to be able to quickly access this data to facilitate reactor design. The philosophy of a data base is one of expansion and modification. This will lead to a constantly growing collection of most recently acquired information. Based on this philosophy special care has been given to the structure, the accessibility and ease of modification. The data base is developed primarily for use on Personal Computers (PC's). In Section 10.2. materials and properties investigated for this blanket study are listed. Section 10.3. is a list of phenomenological equations and mathematical fits for all materials and properties considered. Section 10.4. describes the authors efforts to develop a swelling equations based on the few experimental data points available for breeder materials. In Section 10.5. the sintering phenomena for ceramics is investigated

  1. Laser Rate Equation Based Filtering for Carrier Recovery in Characterization and Communication

    DEFF Research Database (Denmark)

    Piels, Molly; Iglesias Olmedo, Miguel; Xue, Weiqi

    2015-01-01

    We formulate a semiconductor laser rate equationbased approach to carrier recovery in a Bayesian filtering framework. Filter stability and the effect of model inaccuracies (unknown or un-useable rate equation coefficients) are discussed. Two potential application areas are explored: laser...... characterization and carrier recovery in coherent communication. Two rate equation based Bayesian filters, the particle filter and extended Kalman filter, are used in conjunction with a coherent receiver to measure frequency noise spectrum of a photonic crystal cavity laser with less than 20 nW of fiber...

  2. Prediction of Pure Component Adsorption Equilibria Using an Adsorption Isotherm Equation Based on Vacancy Solution Theory

    DEFF Research Database (Denmark)

    Marcussen, Lis; Aasberg-Petersen, K.; Krøll, Annette Elisabeth

    2000-01-01

    An adsorption isotherm equation for nonideal pure component adsorption based on vacancy solution theory and the Non-Random-Two-Liquid (NRTL) equation is found to be useful for predicting pure component adsorption equilibria at a variety of conditions. The isotherm equation is evaluated successfully...... adsorption systems, spreading pressure and isosteric heat of adsorption are also calculated....

  3. Estimating Renal Function in the Elderly Malaysian Patients Attending Medical Outpatient Clinic: A Comparison between Creatinine Based and Cystatin-C Based Equations.

    Science.gov (United States)

    Jalalonmuhali, Maisarah; Elagel, Salma Mohamed Abouzriba; Tan, Maw Pin; Lim, Soo Kun; Ng, Kok Peng

    2018-01-01

    To assess the performance of different GFR estimating equations, test the diagnostic value of serum cystatin-C, and compare the applicability of cystatin-C based equation with serum creatinine based equation for estimating GFR (eGFR) in comparison with measured GFR in the elderly Malaysian patients. A cross-sectional study recruiting volunteered patients 65 years and older attending medical outpatient clinic. 51 chromium EDTA ( 51 Cr-EDTA) was used as measured GFR. The predictive capabilities of Cockcroft-Gault equation corrected for body surface area (CGBSA), four-variable Modification of Diet in Renal Disease (4-MDRD), and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations using serum creatinine (CKD-EPIcr) as well as serum cystatin-C (CKD-EPIcys) were calculated. A total of 40 patients, 77.5% male, with mean measured GFR 41.2 ± 18.9 ml/min/1.73 m 2 were enrolled. Mean bias was the smallest for 4-MDRD; meanwhile, CKD-EPIcr had the highest precision and accuracy with lower limit of agreement among other equations. CKD-EPIcys equation did not show any improvement in GFR estimation in comparison to CKD-EPIcr and MDRD. The CKD-EPIcr formula appears to be more accurate and correlates better with measured GFR in this cohort of elderly patients.

  4. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  5. Computations of Wall Distances Based on Differential Equations

    Science.gov (United States)

    Tucker, Paul G.; Rumsey, Chris L.; Spalart, Philippe R.; Bartels, Robert E.; Biedron, Robert T.

    2004-01-01

    The use of differential equations such as Eikonal, Hamilton-Jacobi and Poisson for the economical calculation of the nearest wall distance d, which is needed by some turbulence models, is explored. Modifications that could palliate some turbulence-modeling anomalies are also discussed. Economy is of especial value for deforming/adaptive grid problems. For these, ideally, d is repeatedly computed. It is shown that the Eikonal and Hamilton-Jacobi equations can be easy to implement when written in implicit (or iterated) advection and advection-diffusion equation analogous forms, respectively. These, like the Poisson Laplacian term, are commonly occurring in CFD solvers, allowing the re-use of efficient algorithms and code components. The use of the NASA CFL3D CFD program to solve the implicit Eikonal and Hamilton-Jacobi equations is explored. The re-formulated d equations are easy to implement, and are found to have robust convergence. For accurate Eikonal solutions, upwind metric differences are required. The Poisson approach is also found effective, and easiest to implement. Modified distances are not found to affect global outputs such as lift and drag significantly, at least in common situations such as airfoil flows.

  6. Equating Multidimensional Tests under a Random Groups Design: A Comparison of Various Equating Procedures

    Science.gov (United States)

    Lee, Eunjung

    2013-01-01

    The purpose of this research was to compare the equating performance of various equating procedures for the multidimensional tests. To examine the various equating procedures, simulated data sets were used that were generated based on a multidimensional item response theory (MIRT) framework. Various equating procedures were examined, including…

  7. Comment on the consistency of truncated nonlinear integral equation based theories of freezing

    International Nuclear Information System (INIS)

    Cerjan, C.; Bagchi, B.; Rice, S.A.

    1985-01-01

    We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim--Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions

  8. Fluid flow in porous media using image-based modelling to parametrize Richards' equation.

    Science.gov (United States)

    Cooper, L J; Daly, K R; Hallett, P D; Naveed, M; Koebernick, N; Bengough, A G; George, T S; Roose, T

    2017-11-01

    The parameters in Richards' equation are usually calculated from experimentally measured values of the soil-water characteristic curve and saturated hydraulic conductivity. The complex pore structures that often occur in porous media complicate such parametrization due to hysteresis between wetting and drying and the effects of tortuosity. Rather than estimate the parameters in Richards' equation from these indirect measurements, image-based modelling is used to investigate the relationship between the pore structure and the parameters. A three-dimensional, X-ray computed tomography image stack of a soil sample with voxel resolution of 6 μm has been used to create a computational mesh. The Cahn-Hilliard-Stokes equations for two-fluid flow, in this case water and air, were applied to this mesh and solved using the finite-element method in COMSOL Multiphysics. The upscaled parameters in Richards' equation are then obtained via homogenization. The effect on the soil-water retention curve due to three different contact angles, 0°, 20° and 60°, was also investigated. The results show that the pore structure affects the properties of the flow on the large scale, and different contact angles can change the parameters for Richards' equation.

  9. Local Ray-Based Traveltime Computation Using the Linearized Eikonal Equation

    KAUST Repository

    Almubarak, Mohammed S.

    2013-05-01

    The computation of traveltimes plays a critical role in the conventional implementations of Kirchhoff migration. Finite-difference-based methods are considered one of the most effective approaches for traveltime calculations and are therefore widely used. However, these eikonal solvers are mainly used to obtain early-arrival traveltime. Ray tracing can be used to pick later traveltime branches, besides the early arrivals, which may lead to an improvement in velocity estimation or in seismic imaging. In this thesis, I improved the accuracy of the solution of the linearized eikonal equation by constructing a linear system of equations (LSE) based on finite-difference approximation, which is of second-order accuracy. The ill-conditioned LSE is initially regularized and subsequently solved to calculate the traveltime update. Numerical tests proved that this method is as accurate as the second-order eikonal solver. Later arrivals are picked using ray tracing. These traveltimes are binned to the nearest node on a regular grid and empty nodes are estimated by interpolating the known values. The resulting traveltime field is used as an input to the linearized eikonal algorithm, which improves the accuracy of the interpolated nodes and yields a local ray-based traveltime. This is a preliminary study and further investigation is required to test the efficiency and the convergence of the solutions.

  10. Estimating Renal Function in the Elderly Malaysian Patients Attending Medical Outpatient Clinic: A Comparison between Creatinine Based and Cystatin-C Based Equations

    Directory of Open Access Journals (Sweden)

    Maisarah Jalalonmuhali

    2018-01-01

    Full Text Available Background. To assess the performance of different GFR estimating equations, test the diagnostic value of serum cystatin-C, and compare the applicability of cystatin-C based equation with serum creatinine based equation for estimating GFR (eGFR in comparison with measured GFR in the elderly Malaysian patients. Methods. A cross-sectional study recruiting volunteered patients 65 years and older attending medical outpatient clinic. 51 chromium EDTA (51Cr-EDTA was used as measured GFR. The predictive capabilities of Cockcroft-Gault equation corrected for body surface area (CGBSA, four-variable Modification of Diet in Renal Disease (4-MDRD, and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI equations using serum creatinine (CKD-EPIcr as well as serum cystatin-C (CKD-EPIcys were calculated. Results. A total of 40 patients, 77.5% male, with mean measured GFR 41.2±18.9 ml/min/1.73 m2 were enrolled. Mean bias was the smallest for 4-MDRD; meanwhile, CKD-EPIcr had the highest precision and accuracy with lower limit of agreement among other equations. CKD-EPIcys equation did not show any improvement in GFR estimation in comparison to CKD-EPIcr and MDRD. Conclusion. The CKD-EPIcr formula appears to be more accurate and correlates better with measured GFR in this cohort of elderly patients.

  11. Strong plasma shock structures based on the Navier--Stokes equations

    International Nuclear Information System (INIS)

    Abe, K.

    1975-01-01

    The structure of a plasma collisional shock wave is examined on the basis of the Navier--Stokes equations and simultaneously on the basis of the Fokker--Planck equation. The resultant structures are compared to check the validity of the Navier--Stokes equations applied to the structures of strong shock waves. The Navier--Stokes equations give quite correct structures for weak shock waves. For the strong shock waves, the detailed structures obtained from the Navier--Stokes equations differ from the results of the Fokker--Planck equation, but the shock thicknesses of the two shock waves are in relatively close agreement

  12. Introduction of the Notion of Differential Equations by Modelling Based Teaching

    Science.gov (United States)

    Budinski, Natalija; Takaci, Djurdjica

    2011-01-01

    This paper proposes modelling based learning as a tool for learning and teaching mathematics. The example of modelling real world problems leading to the exponential function as the solution of differential equations is described, as well as the observations about students' activities during the process. The students were acquainted with the…

  13. Prestress Force Identification for Externally Prestressed Concrete Beam Based on Frequency Equation and Measured Frequencies

    Directory of Open Access Journals (Sweden)

    Luning Shi

    2014-01-01

    Full Text Available A prestress force identification method for externally prestressed concrete uniform beam based on the frequency equation and the measured frequencies is developed. For the purpose of the prestress force identification accuracy, we first look for the appropriate method to solve the free vibration equation of externally prestressed concrete beam and then combine the measured frequencies with frequency equation to identify the prestress force. To obtain the exact solution of the free vibration equation of multispan externally prestressed concrete beam, an analytical model of externally prestressed concrete beam is set up based on the Bernoulli-Euler beam theory and the function relation between prestress variation and vibration displacement is built. The multispan externally prestressed concrete beam is taken as the multiple single-span beams which must meet the bending moment and rotation angle boundary conditions, the free vibration equation is solved using sublevel simultaneous method and the semi-analytical solution of the free vibration equation which considered the influence of prestress on section rigidity and beam length is obtained. Taking simply supported concrete beam and two-span concrete beam with external tendons as examples, frequency function curves are obtained with the measured frequencies into it and the prestress force can be identified using the abscissa of the crosspoint of frequency functions. Identification value of the prestress force is in good agreement with the test results. The method can accurately identify prestress force of externally prestressed concrete beam and trace the trend of effective prestress force.

  14. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    Science.gov (United States)

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  15. Bridging the Knowledge Gaps between Richards' Equation and Budyko Equation

    Science.gov (United States)

    Wang, D.

    2017-12-01

    The empirical Budyko equation represents the partitioning of mean annual precipitation into evaporation and runoff. Richards' equation, based on Darcy's law, represents the movement of water in unsaturated soils. The linkage between Richards' equation and Budyko equation is presented by invoking the empirical Soil Conservation Service curve number (SCS-CN) model for computing surface runoff at the event-scale. The basis of the SCS-CN method is the proportionality relationship, i.e., the ratio of continuing abstraction to its potential is equal to the ratio of surface runoff to its potential value. The proportionality relationship can be derived from the Richards' equation for computing infiltration excess and saturation excess models at the catchment scale. Meanwhile, the generalized proportionality relationship is demonstrated as the common basis of SCS-CN method, monthly "abcd" model, and Budyko equation. Therefore, the linkage between Darcy's law and the emergent pattern of mean annual water balance at the catchment scale is presented through the proportionality relationship.

  16. Newtonian nudging for a Richards equation-based distributed hydrological model

    Science.gov (United States)

    Paniconi, Claudio; Marrocu, Marino; Putti, Mario; Verbunt, Mark

    The objective of data assimilation is to provide physically consistent estimates of spatially distributed environmental variables. In this study a relatively simple data assimilation method has been implemented in a relatively complex hydrological model. The data assimilation technique is Newtonian relaxation or nudging, in which model variables are driven towards observations by a forcing term added to the model equations. The forcing term is proportional to the difference between simulation and observation (relaxation component) and contains four-dimensional weighting functions that can incorporate prior knowledge about the spatial and temporal variability and characteristic scales of the state variable(s) being assimilated. The numerical model couples a three-dimensional finite element Richards equation solver for variably saturated porous media and a finite difference diffusion wave approximation based on digital elevation data for surface water dynamics. We describe the implementation of the data assimilation algorithm for the coupled model and report on the numerical and hydrological performance of the resulting assimilation scheme. Nudging is shown to be successful in improving the hydrological simulation results, and it introduces little computational cost, in terms of CPU and other numerical aspects of the model's behavior, in some cases even improving numerical performance compared to model runs without nudging. We also examine the sensitivity of the model to nudging term parameters including the spatio-temporal influence coefficients in the weighting functions. Overall the nudging algorithm is quite flexible, for instance in dealing with concurrent observation datasets, gridded or scattered data, and different state variables, and the implementation presented here can be readily extended to any of these features not already incorporated. Moreover the nudging code and tests can serve as a basis for implementation of more sophisticated data assimilation

  17. Stochastic optimal control, forward-backward stochastic differential equations and the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Wolfgang; Koeppe, Jeanette [Institut fuer Physik, Martin Luther Universitaet, 06099 Halle (Germany); Grecksch, Wilfried [Institut fuer Mathematik, Martin Luther Universitaet, 06099 Halle (Germany)

    2016-07-01

    The standard approach to solve a non-relativistic quantum problem is through analytical or numerical solution of the Schroedinger equation. We show a way to go around it. This way is based on the derivation of the Schroedinger equation from conservative diffusion processes and the establishment of (several) stochastic variational principles leading to the Schroedinger equation under the assumption of a kinematics described by Nelson's diffusion processes. Mathematically, the variational principle can be considered as a stochastic optimal control problem linked to the forward-backward stochastic differential equations of Nelson's stochastic mechanics. The Hamilton-Jacobi-Bellmann equation of this control problem is the Schroedinger equation. We present the mathematical background and how to turn it into a numerical scheme for analyzing a quantum system without using the Schroedinger equation and exemplify the approach for a simple 1d problem.

  18. [New topics regarding equations for GFR estimation based on serum creatinine and cystatin C].

    Science.gov (United States)

    Horio, Masaru

    2014-02-01

    Japanese GFR equations and CKD-EPI equations based on standardized serum creatinine and standardized cystatin C are recommended in recent Japanese CKD guides and KDIGO guidelines for CKD management, respectively. CKD-EPIcreat overestimates GFR in Japanese subjects, probably due to the difference in muscle mass between Japanese and Caucasians. Unlike CKD-EPIcreat, CKD-EPIcys performs well in Japanese subjects, indicating the advantages of using cystatin C as a GFR marker. KDIGO guidelines suggest measuring eGFRcys in adults with eGFRcreat of 45-59 ml/min/1.73 m2 who do not have markers of kidney damage if confirmation of CKD is required. Creatinine is excreted by glomerular filtration, but also secreted by the tubules. Alteration of the tubular secretion of creatinine may influence the performance of GFR equations based on serum creatinine. Multivariate analysis showed that GFR and serum albumin levels were independent parameters affecting the fractional excretion of creatinine (FE-Cr). Alteration of FE-Cr according to the serum albumin levels may be one of the reasons for the bias of GFR equations based on serum creatinine. Low GFR is a risk factor for all-cause and cardiovascular mortality in a general population. However, the relationship between eGFR and the hazard risk of events is different depending on whether cystatin C or creatinine is used to calculate eGFR. The association between eGFRcys and the hazard risk is much stronger compared with eGFRcreat. Cystatin C may be a useful alternative to creatinine for detecting a high risk of complications in a general population and subjects with CKD.

  19. Five-equation and robust three-equation methods for solution verification of large eddy simulation

    Science.gov (United States)

    Dutta, Rabijit; Xing, Tao

    2018-02-01

    This study evaluates the recently developed general framework for solution verification methods for large eddy simulation (LES) using implicitly filtered LES of periodic channel flows at friction Reynolds number of 395 on eight systematically refined grids. The seven-equation method shows that the coupling error based on Hypothesis I is much smaller as compared with the numerical and modeling errors and therefore can be neglected. The authors recommend five-equation method based on Hypothesis II, which shows a monotonic convergence behavior of the predicted numerical benchmark ( S C ), and provides realistic error estimates without the need of fixing the orders of accuracy for either numerical or modeling errors. Based on the results from seven-equation and five-equation methods, less expensive three and four-equation methods for practical LES applications were derived. It was found that the new three-equation method is robust as it can be applied to any convergence types and reasonably predict the error trends. It was also observed that the numerical and modeling errors usually have opposite signs, which suggests error cancellation play an essential role in LES. When Reynolds averaged Navier-Stokes (RANS) based error estimation method is applied, it shows significant error in the prediction of S C on coarse meshes. However, it predicts reasonable S C when the grids resolve at least 80% of the total turbulent kinetic energy.

  20. Perturbation-based moment equation approach for flow in heterogeneous porous media: applicability range and analysis of high-order terms

    International Nuclear Information System (INIS)

    Li Liyong; Tchelepi, Hamdi A.; Zhang Dongxiao

    2003-01-01

    We present detailed comparisons between high-resolution Monte Carlo simulation (MCS) and low-order numerical solutions of stochastic moment equations (SMEs) for the first and second statistical moments of pressure. The objective is to quantify the difference between the predictions obtained from MCS and SME. Natural formations with high permeability variability and large spatial correlation scales are of special interest for underground resources (e.g. oil and water). Consequently, we focus on such formations. We investigated fields with variance of log-permeability, σ Y 2 , from 0.1 to 3.0 and correlation scales (normalized by domain length) of 0.05 to 0.5. In order to avoid issues related to statistical convergence and resolution level, we used 9000 highly resolved realizations of permeability for MCS. We derive exact discrete forms of the statistical moment equations. Formulations based on equations written explicitly in terms of permeability (K-based) and log-transformed permeability (Y-based) are considered. The discrete forms are applicable to systems of arbitrary variance and correlation scales. However, equations governing a particular statistical moment depend on higher moments. Thus, while the moment equations are exact, they are not closed. In particular, the discrete form of the second moment of pressure includes two triplet terms that involve log-permeability (or permeability) and pressure. We combined MCS computations with full discrete SME equations to quantify the importance of the various terms that make up the moment equations. We show that second-moment solutions obtained using a low-order Y-based SME formulation are significantly better than those from K-based formulations, especially when σ Y 2 >1. As a result, Y-based formulations are preferred. The two triplet terms are complex functions of the variance level and correlation length. The importance (contribution) of these triplet terms increases dramatically as σ Y 2 increases above one. We

  1. High Weak Order Methods for Stochastic Differential Equations Based on Modified Equations

    KAUST Repository

    Abdulle, Assyr; Cohen, David; Vilmart, Gilles; Zygalakis, Konstantinos C.

    2012-01-01

    © 2012 Society for Industrial and Applied Mathematics. Inspired by recent advances in the theory of modified differential equations, we propose a new methodology for constructing numerical integrators with high weak order for the time integration

  2. Research on the Collinear Equation Model of Visual Positioning Based on Visible Light Communication

    Directory of Open Access Journals (Sweden)

    Wang Yuqi

    2015-01-01

    Full Text Available A positioning method based on visible light communication is proposed, which receiving visible light information by low-resolution photodiode array and receiving visual information by the front camera of mobile phone. The terminal position is determined by matching spot information provided by photodiode array with visual information and position information provided by visible light communication. A collinear equation model is derived which based on mobile phone front camera. A hardware-in-loop simulation has been conducted to verify the collinear equation. The three-dimensional positioning error is on the level of decimeter. Moreover, the main factors which affect the positioning accuracy are analyzed in order to further improve the positioning accuracy.

  3. A meshless scheme for partial differential equations based on multiquadric trigonometric B-spline quasi-interpolation

    International Nuclear Information System (INIS)

    Gao Wen-Wu; Wang Zhi-Gang

    2014-01-01

    Based on the multiquadric trigonometric B-spline quasi-interpolant, this paper proposes a meshless scheme for some partial differential equations whose solutions are periodic with respect to the spatial variable. This scheme takes into account the periodicity of the analytic solution by using derivatives of a periodic quasi-interpolant (multiquadric trigonometric B-spline quasi-interpolant) to approximate the spatial derivatives of the equations. Thus, it overcomes the difficulties of the previous schemes based on quasi-interpolation (requiring some additional boundary conditions and yielding unwanted high-order discontinuous points at the boundaries in the spatial domain). Moreover, the scheme also overcomes the difficulty of the meshless collocation methods (i.e., yielding a notorious ill-conditioned linear system of equations for large collocation points). The numerical examples that are presented at the end of the paper show that the scheme provides excellent approximations to the analytic solutions. (general)

  4. Unsplit complex frequency shifted perfectly matched layer for second-order wave equation using auxiliary differential equations.

    Science.gov (United States)

    Gao, Yingjie; Zhang, Jinhai; Yao, Zhenxing

    2015-12-01

    The complex frequency shifted perfectly matched layer (CFS-PML) can improve the absorbing performance of PML for nearly grazing incident waves. However, traditional PML and CFS-PML are based on first-order wave equations; thus, they are not suitable for second-order wave equation. In this paper, an implementation of CFS-PML for second-order wave equation is presented using auxiliary differential equations. This method is free of both convolution calculations and third-order temporal derivatives. As an unsplit CFS-PML, it can reduce the nearly grazing incidence. Numerical experiments show that it has better absorption than typical PML implementations based on second-order wave equation.

  5. Numerical solution of the unsteady diffusion-convection-reaction equation based on improved spectral Galerkin method

    Science.gov (United States)

    Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye

    2018-04-01

    The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.

  6. Decomposition and Cross-Product-Based Method for Computing the Dynamic Equation of Robots

    Directory of Open Access Journals (Sweden)

    Ching-Long Shih

    2012-08-01

    Full Text Available This paper aims to demonstrate a clear relationship between Lagrange equations and Newton-Euler equations regarding computational methods for robot dynamics, from which we derive a systematic method for using either symbolic or on-line numerical computations. Based on the decomposition approach and cross-product operation, a computing method for robot dynamics can be easily developed. The advantages of this computing framework are that: it can be used for both symbolic and on-line numeric computation purposes, and it can also be applied to biped systems, as well as some simple closed-chain robot systems.

  7. Simulation of 2D rarefied gas flows based on the numerical solution of the Boltzmann equation

    Science.gov (United States)

    Poleshkin, Sergey O.; Malkov, Ewgenij A.; Kudryavtsev, Alexey N.; Shershnev, Anton A.; Bondar, Yevgeniy A.; Kohanchik, A. A.

    2017-10-01

    There are various methods for calculating rarefied gas flows, in particular, statistical methods and deterministic methods based on the finite-difference solutions of the Boltzmann nonlinear kinetic equation and on the solutions of model kinetic equations. There is no universal method; each has its disadvantages in terms of efficiency or accuracy. The choice of the method depends on the problem to be solved and on parameters of calculated flows. Qualitative theoretical arguments help to determine the range of parameters of effectively solved problems for each method; however, it is advisable to perform comparative tests of calculations of the classical problems performed by different methods and with different parameters to have quantitative confirmation of this reasoning. The paper provides the results of the calculations performed by the authors with the help of the Direct Simulation Monte Carlo method and finite-difference methods of solving the Boltzmann equation and model kinetic equations. Based on this comparison, conclusions are made on selecting a particular method for flow simulations in various ranges of flow parameters.

  8. A Nonlinear Diffusion Equation-Based Model for Ultrasound Speckle Noise Removal

    Science.gov (United States)

    Zhou, Zhenyu; Guo, Zhichang; Zhang, Dazhi; Wu, Boying

    2018-04-01

    Ultrasound images are contaminated by speckle noise, which brings difficulties in further image analysis and clinical diagnosis. In this paper, we address this problem in the view of nonlinear diffusion equation theories. We develop a nonlinear diffusion equation-based model by taking into account not only the gradient information of the image, but also the information of the gray levels of the image. By utilizing the region indicator as the variable exponent, we can adaptively control the diffusion type which alternates between the Perona-Malik diffusion and the Charbonnier diffusion according to the image gray levels. Furthermore, we analyze the proposed model with respect to the theoretical and numerical properties. Experiments show that the proposed method achieves much better speckle suppression and edge preservation when compared with the traditional despeckling methods, especially in the low gray level and low-contrast regions.

  9. Solution of wave-like equation based on Haar wavelet

    Directory of Open Access Journals (Sweden)

    Naresh Berwal

    2012-11-01

    Full Text Available Wavelet transform and wavelet analysis are powerful mathematical tools for many problems. Wavelet also can be applied in numerical analysis. In this paper, we apply Haar wavelet method to solve wave-like equation with initial and boundary conditions known. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations, which involves a finite number or variables. The results and graph show that the proposed way is quite reasonable when compared to exact solution.

  10. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    Science.gov (United States)

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  11. Thermophoresis of a spherical particle: Modeling through moment-based, macroscopic transport equations

    Science.gov (United States)

    Padrino, Juan C.; Sprittles, James; Lockerby, Duncan

    2017-11-01

    Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).

  12. Symmetries of the Euler compressible flow equations for general equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-15

    The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.

  13. Solving Linear Equations by Classical Jacobi-SR Based Hybrid Evolutionary Algorithm with Uniform Adaptation Technique

    OpenAIRE

    Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar

    2013-01-01

    Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...

  14. Sandia equation of state data base: seslan File

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, G.I. [Sandia National Labs., Albuquerque, NM (US); Christian-Frear, T.L. [RE/SPEC Inc., Albuquerque, NM (US)

    1993-06-24

    Sandia National Laboratories maintains several libraries of equation of state tables, in a modified Sesame format, for use in hydrocode calculations and other applications. This report discusses one of those libraries, the seslan file, which contains 78 tables from the Los Alamos equation of state library. Minor changes have been made to these tables, making them more convenient for code users and reducing numerical difficulties that occasionally arise in hydrocode calculations.

  15. Investigating market efficiency through a forecasting model based on differential equations

    Science.gov (United States)

    de Resende, Charlene C.; Pereira, Adriano C. M.; Cardoso, Rodrigo T. N.; de Magalhães, A. R. Bosco

    2017-05-01

    A new differential equation based model for stock price trend forecast is proposed as a tool to investigate efficiency in an emerging market. Its predictive power showed statistically to be higher than the one of a completely random model, signaling towards the presence of arbitrage opportunities. Conditions for accuracy to be enhanced are investigated, and application of the model as part of a trading strategy is discussed.

  16. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  17. Iterative Splitting Methods for Differential Equations

    CERN Document Server

    Geiser, Juergen

    2011-01-01

    Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations. In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential

  18. Experimental evaluation of optimal Vehicle Dynamic Control based on the State Dependent Riccati Equation technique

    NARCIS (Netherlands)

    Alirezaei, M.; Kanarachos, S.A.; Scheepers, B.T.M.; Maurice, J.P.

    2013-01-01

    Development and experimentally evaluation of an optimal Vehicle Dynamic Control (VDC) strategy based on the State Dependent Riccati Equation (SDRE) control technique is presented. The proposed nonlinear controller is based on a nonlinear vehicle model with nonlinear tire characteristics. A novel

  19. A lattice based solution of the collisional Boltzmann equation with applications to microchannel flows

    International Nuclear Information System (INIS)

    Green, B I; Vedula, Prakash

    2013-01-01

    An alternative approach for solution of the collisional Boltzmann equation for a lattice architecture is presented. In the proposed method, termed the collisional lattice Boltzmann method (cLBM), the effects of spatial transport are accounted for via a streaming operator, using a lattice framework, and the effects of detailed collisional interactions are accounted for using the full collision operator of the Boltzmann equation. The latter feature is in contrast to the conventional lattice Boltzmann methods (LBMs) where collisional interactions are modeled via simple equilibrium based relaxation models (e.g. BGK). The underlying distribution function is represented using weights and fixed velocity abscissas according to the lattice structure. These weights are evolved based on constraints on the evolution of generalized moments of velocity according to the collisional Boltzmann equation. It can be shown that the collision integral can be reduced to a summation of elementary integrals, which can be analytically evaluated. The proposed method is validated using studies of canonical microchannel Couette and Poiseuille flows (both body force and pressure driven) and the results are found to be in good agreement with those obtained from conventional LBMs and experiments where available. Unlike conventional LBMs, the proposed method does not involve any equilibrium based approximations and hence can be useful for simulation of highly nonequilibrium flows (for a range of Knudsen numbers) using a lattice framework. (paper)

  20. Gauge-invariant flow equation

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  1. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes

    Science.gov (United States)

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  2. Tokamak plasma shape identification based on the boundary integral equations

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki

    1992-05-01

    A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)

  3. CRPropa 3.1—a low energy extension based on stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Merten, Lukas; Tjus, Julia Becker; Eichmann, Björn [Theoretische Physik IV: Plasma-Astroteilchenphysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany); Fichtner, Horst [Theoretische Physik IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany); Sigl, Günter, E-mail: lukas.merten@rub.de, E-mail: julia.tjus@rub.de, E-mail: hf@tp4.rub.de, E-mail: eiche@tp4.rub.de, E-mail: guenter.sigl@desy.de [II Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2017-06-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ{sub ∥} and perpendicular κ{sub ⊥} diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  4. CRPropa 3.1—a low energy extension based on stochastic differential equations

    International Nuclear Information System (INIS)

    Merten, Lukas; Tjus, Julia Becker; Eichmann, Björn; Fichtner, Horst; Sigl, Günter

    2017-01-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ ∥ and perpendicular κ ⊥ diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  5. CRPropa 3.1—a low energy extension based on stochastic differential equations

    Science.gov (United States)

    Merten, Lukas; Becker Tjus, Julia; Fichtner, Horst; Eichmann, Björn; Sigl, Günter

    2017-06-01

    The propagation of charged cosmic rays through the Galactic environment influences all aspects of the observation at Earth. Energy spectrum, composition and arrival directions are changed due to deflections in magnetic fields and interactions with the interstellar medium. Today the transport is simulated with different simulation methods either based on the solution of a transport equation (multi-particle picture) or a solution of an equation of motion (single-particle picture). We developed a new module for the publicly available propagation software CRPropa 3.1, where we implemented an algorithm to solve the transport equation using stochastic differential equations. This technique allows us to use a diffusion tensor which is anisotropic with respect to an arbitrary magnetic background field. The source code of CRPropa is written in C++ with python steering via SWIG which makes it easy to use and computationally fast. In this paper, we present the new low-energy propagation code together with validation procedures that are developed to proof the accuracy of the new implementation. Furthermore, we show first examples of the cosmic ray density evolution, which depends strongly on the ratio of the parallel κ∥ and perpendicular κ⊥ diffusion coefficients. This dependency is systematically examined as well the influence of the particle rigidity on the diffusion process.

  6. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho; Pyeon, Cheol Ho

    2015-01-01

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r g , E g , t g ) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the neutron sources

  7. An Inverse Source Problem for a One-dimensional Wave Equation: An Observer-Based Approach

    KAUST Repository

    Asiri, Sharefa M.

    2013-05-25

    Observers are well known in the theory of dynamical systems. They are used to estimate the states of a system from some measurements. However, recently observers have also been developed to estimate some unknowns for systems governed by Partial differential equations. Our aim is to design an observer to solve inverse source problem for a one dimensional wave equation. Firstly, the problem is discretized in both space and time and then an adaptive observer based on partial field measurements (i.e measurements taken form the solution of the wave equation) is applied to estimate both the states and the source. We see the effectiveness of this observer in both noise-free and noisy cases. In each case, numerical simulations are provided to illustrate the effectiveness of this approach. Finally, we compare the performance of the observer approach with Tikhonov regularization approach.

  8. Validation of a numerical algorithm based on transformed equations

    International Nuclear Information System (INIS)

    Xu, H.; Barron, R.M.; Zhang, C.

    2003-01-01

    Generally, a typical equation governing a physical process, such as fluid flow or heat transfer, has three types of terms that involve partial derivatives, namely, the transient term, the convective terms and the diffusion terms. The major difficulty in obtaining numerical solutions of these partial differential equations is the discretization of the convective terms. The transient term is usually discretized using the first-order forward or backward differencing scheme. The diffusion terms are usually discretized using the central differencing scheme and no difficulty arises since these terms involve second-order spatial derivatives of the flow variables. The convective terms are non-linear and contain first-order spatial derivatives. The main difference between various numerical algorithms is the discretization of the convective terms. In the present study, an alternative approach to discretizing the governing equations is presented. In this algorithm, the governing equations are first transformed by introducing an exponential function to eliminate the convective terms in the equations. The proposed algorithm is applied to simulate some fluid flows with exact solutions to validate the proposed algorithm. The fluid flows used in this study are a self-designed quasi-fluid flow problem, stagnation in plane flow (Hiemenz flow), and flow between two concentric cylinders. The comparisons with the power-law scheme indicate that the proposed scheme exhibits better performance. (author)

  9. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  10. The multi-order envelope periodic solutions to the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Xiao Yafeng; Xue Haili; Zhang Hongqing

    2011-01-01

    Based on Jacobi elliptic function and the Lame equation, the perturbation method is applied to get the multi-order envelope periodic solutions of the nonlinear Schrodinger equation and cubic nonlinear Schrodinger equation. These multi-order envelope periodic solutions can degenerate into the different envelope solitary solutions. (authors)

  11. Questioning the quantity equation using an agent-based computational model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2000-01-01

    by Stutzel (1954), argues that the functional relationship may as well be negative. Even focusing the money needed to carry out transactions, there is no immediate answer to the question of the functional relationship between trade turnover and money demand. An agent-based computational model is used......In the literature we find two opposing hypotheses relating the volume of money to the volume of transactions or national income. The classic hypothesis, implicitly entailed in the quantity equation, argues that this relation must be positive, while an opposing hypothesis, most strongly presented...

  12. A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation

    Science.gov (United States)

    Oruç, Ömer

    2018-04-01

    In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.

  13. Enthalpy-based equation of state for highly porous materials employing modified soft sphere fluid model

    Science.gov (United States)

    Nayak, Bishnupriya; Menon, S. V. G.

    2018-01-01

    Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.

  14. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem

    2017-01-01

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data

  15. Theoretical Maxwell's Equations, Gauge Field and Their Universality Based on One Conservation Law

    Institute of Scientific and Technical Information of China (English)

    Liu Changmao

    2005-01-01

    The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codifferential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, respectively. The definitions of the divergence and the curl of a 2D surface flux of a tensor are obtained.Maxwell's equations, namely, the construction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field ( or its composition). By the feature of central field ( or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple basing no effect on the sum of forces) are presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.

  16. The adjoint method for general EEG and MEG sensor-based lead field equations

    International Nuclear Information System (INIS)

    Vallaghe, Sylvain; Papadopoulo, Theodore; Clerc, Maureen

    2009-01-01

    Most of the methods for the inverse source problem in electroencephalography (EEG) and magnetoencephalography (MEG) use a lead field as an input. The lead field is the function which relates any source in the brain to its measurements at the sensors. For complex geometries, there is no analytical formula of the lead field. The common approach is to numerically compute the value of the lead field for a finite number of point sources (dipoles). There are several drawbacks: the model of the source space is fixed (a set of dipoles), and the computation can be expensive for as much as 10 000 dipoles. The common idea to bypass these problems is to compute the lead field from a sensor point of view. In this paper, we use the adjoint method to derive general EEG and MEG sensor-based lead field equations. Within a simple framework, we provide a complete review of the explicit lead field equations, and we are able to extend these equations to non-pointlike sensors.

  17. Reactivity of Metal Nitrates.

    Science.gov (United States)

    1982-07-20

    02NOCuOH Any mechanism suggested for the nitration of aromatic systems by titanium(IV) nitrate must take into account the observed similarity, in...occurs. -26- References 1. For recent reviews see (a) R. B. Moodie and K. Schofield, Accounts Chem. Res., 1976, 9, 287; (b) G. A. Olah and S. J. Kuhn...Ithaca, N.Y., 1969, Chapter VI; L. M. Stock, Prog. Phys. Org. Chem., 1976, 12, 21; J. G. Hoggett , R. B. Moodie, J. R. Penton, and K. Schofield

  18. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  19. Inverse scattering transform for the time dependent Schroedinger equation with applications to the KPI equation

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Zhou [Wisconsin Univ., Madison (USA). Dept. of Mathematics

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.).

  20. Inverse scattering transform for the time dependent Schroedinger equation with applications to the KPI equation

    International Nuclear Information System (INIS)

    Zhou Xin

    1990-01-01

    For the direct-inverse scattering transform of the time dependent Schroedinger equation, rigorous results are obtained based on an operator-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution. (orig.)

  1. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  2. Generalized structured component analysis a component-based approach to structural equation modeling

    CERN Document Server

    Hwang, Heungsun

    2014-01-01

    Winner of the 2015 Sugiyama Meiko Award (Publication Award) of the Behaviormetric Society of Japan Developed by the authors, generalized structured component analysis is an alternative to two longstanding approaches to structural equation modeling: covariance structure analysis and partial least squares path modeling. Generalized structured component analysis allows researchers to evaluate the adequacy of a model as a whole, compare a model to alternative specifications, and conduct complex analyses in a straightforward manner. Generalized Structured Component Analysis: A Component-Based Approach to Structural Equation Modeling provides a detailed account of this novel statistical methodology and its various extensions. The authors present the theoretical underpinnings of generalized structured component analysis and demonstrate how it can be applied to various empirical examples. The book enables quantitative methodologists, applied researchers, and practitioners to grasp the basic concepts behind this new a...

  3. Real time quantitative phase microscopy based on single-shot transport of intensity equation (ssTIE) method

    Science.gov (United States)

    Yu, Wei; Tian, Xiaolin; He, Xiaoliang; Song, Xiaojun; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2016-08-01

    Microscopy based on transport of intensity equation provides quantitative phase distributions which opens another perspective for cellular observations. However, it requires multi-focal image capturing while mechanical and electrical scanning limits its real time capacity in sample detections. Here, in order to break through this restriction, real time quantitative phase microscopy based on single-shot transport of the intensity equation method is proposed. A programmed phase mask is designed to realize simultaneous multi-focal image recording without any scanning; thus, phase distributions can be quantitatively retrieved in real time. It is believed the proposed method can be potentially applied in various biological and medical applications, especially for live cell imaging.

  4. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Pyeon, Cheol Ho [Kyoto University, Osaka (Japan)

    2015-10-15

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r{sub g}, E{sub g}, t{sub g}) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the

  5. Solution of the Lorentz-Dirac equation based on a new momentum expression

    CERN Document Server

    Yan, C C

    1998-01-01

    The Lorentz-Dirac equation is solved based on a new momentum expression given by p sup a =1/c sup 2 (u submu p supmu)u sup a +k du sup a /d tau. This new momentum expression is the form proposed by Barut modified to satisfy the condition imposed by Dirac. The solution turns out to be well behaved without violating causality or causing runaway. (author)

  6. Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Yu Jianping; Sun Yongli

    2008-01-01

    This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations

  7. A surface-integral-equation approach to the propagation of waves in EBG-based devices

    NARCIS (Netherlands)

    Lancellotti, V.; Tijhuis, A.G.

    2012-01-01

    We combine surface integral equations with domain decomposition to formulate and (numerically) solve the problem of electromagnetic (EM) wave propagation inside finite-sized structures. The approach is of interest for (but not limited to) the analysis of devices based on the phenomenon of

  8. Numerical Simulation of Freak Waves Based on the Four-Order Nonlinear Schr(o)dinger Equation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun-qiu; ZHANG Ning-chuan; PEI Yu-guo

    2007-01-01

    A numerical wave model based on the modified four-order nonlinear Schrodinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.

  9. Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

    Science.gov (United States)

    Müller, Eike H; Scheichl, Rob; Shardlow, Tony

    2015-04-08

    This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to introduce MLMC for Langevin-type equations with integrators based on operator splitting. We combine this with extrapolation and investigate the use of discrete random variables in place of the Gaussian increments, which is a well-known technique for the weak approximation of SDEs. We show that, for small-noise problems, discrete random variables can lead to an increase in efficiency of almost two orders of magnitude for practical levels of accuracy.

  10. Comparison of renal function assessment by cystatin c and creatinine based equations for e-gfr in type 2 diabetics in different stages of albuminuria

    International Nuclear Information System (INIS)

    Qamar, A.; Ahmad, T.M.; Hayat, A.; Khan, M.A.; Rehman, S. Z.

    2017-01-01

    To compare e-GFR estimated by creatinine or cystatin C based and combined creatinine and cystatin C based equations in type 2 diabetics in different stages of albuminuria. Study Design: Comparative cross-sectional study. Place and Duration of Study: Department of Chemical Pathology, Army Medical College Rawalpindi in collaboration with endocrinology outpatient department Military Hospital Rawalpindi, from Nov 2015 to Nov 2016. Material and Methods: A total of 119 type 2 diabetic subjects of either gender, aged 30- 60 years were enrolled in the study with duration of diabetes less than 15 years and were divided into further sub groups on the basis of degree of albuminuria determined by spot urine albumin to creatinine ratio (uACR). Fifty age matched disease free controls with no history of any systemic disease were also included in the study. Known patients of type 1 diabetes, chronic inflammatory disorders, uncontrolled hypertension, thyroid disease, chronic kidney disease, on lipid lowering drugs, steroids, ACE inhibitors and pregnant ladies were excluded from the study. Serum creatinine serum cystatin C were assessed on fully automated chemistry analyzer selectra. E-GFR was calculated by online GFR calculator by National Kidney Foundation. Comparison of means of e-GFR calculated by various equations was carried out by one way ANOVA and post-hoc Tukey tests. Degree of agreement between various equations for the estimation of GFR was assessed by kappa statistics. A p-value less than 0.05 were considered statistically significant. Results: Mean e-GFR (ml/min/1.73m2) was lowest in cystatin C based CKD-EPI equation (89.56 +- 39.84) followed by combined cystatin C and creatinine based CKD-EPI (92.34 +- 37.88). Values of e-GFR by creatinine based CKD-EPI equation (95.84 +- 27.24), and by creatinine based MDRD equation (105.37 +- 64.98) were both higher. In creatinine based MDRD, equation normo albuminuria and micro albuminuria groups did not show statistically

  11. An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials

    Directory of Open Access Journals (Sweden)

    Jianping Liu

    2016-01-01

    Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.

  12. Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry

    Science.gov (United States)

    Xu, Peiliang

    2018-06-01

    The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking

  13. The Dirac equation for accountants

    International Nuclear Information System (INIS)

    Ord, G.N.

    2006-01-01

    In the context of relativistic quantum mechanics, derivations of the Dirac equation usually take the form of plausibility arguments based on experience with the Schroedinger equation. The primary reason for this is that we do not know what wavefunctions physically represent, so derivations have to rely on formal arguments. There is however a context in which the Dirac equation in one dimension is directly related to a classical generating function. In that context, the derivation of the Dirac equation is an exercise in counting. We provide this derivation here and discuss its relationship to quantum mechanics

  14. AKTIVITAS FISIK, ASUPAN ENERGI DAN STATUS GIZI WANITA PEMETIK TEH DI PTPN VIII BANDUNG, JAWA BARAT

    Directory of Open Access Journals (Sweden)

    Venny Agustiani Mahardikawati

    2012-03-01

    Full Text Available 800x600 Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Quality of human resources is very important to improve productivity. The worker productivity is correlated with nutritional status and health status. The objective of the research is to analyze physical activity, energy intake, nutritional status, of women workers at Tea Plantation PTPN VIII Bandung, West Java. The cross sectional design was used in this study to elaborate physical activity, nutritional status, and productivity of tea picker’s women. The criteria of study sample were tea picker’s women at cluster area of Malabar tea plantation of PTPN VIII Bandung, having infant and they were willing to be interviewed. The total number of 92 women sample was chosen randomly. Primary data consisted of physical activity recall (2x24 hours, food consumption recall (2x24 hours, anthropometry data (weight and height, and productivity (passage of tea sprout. Secondary data were included data of PT Perkebunan Nusantara VIII Bandung, West Java. The result showed that more than a half of samples having active or moderate physical activity level (PAL. The physical activity level of samples during work day (average PAL=1.87 was higher than holiday (average PAL=1.69 (p2362 kcal and 2134 kcal. The average energy adequacy level during workday and day off according to Schofield and Oxford equation were not significantly different, respectively 97,2% and 103,3%. The majority of samples had normal nutritional status, and 30.4% of the sample was overweight. The energy adequacy level according to Schofield and Oxford equation are related to nutritional status of women workers. Keywords: physical activity, energy expenditure, nutritional status, plantation women

  15. Iterative observer based method for source localization problem for Poisson equation in 3D

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-10

    A state-observer based method is developed to solve point source localization problem for Poisson equation in a 3D rectangular prism with available boundary data. The technique requires a weighted sum of solutions of multiple boundary data estimation problems for Laplace equation over the 3D domain. The solution of each of these boundary estimation problems involves writing down the mathematical problem in state-space-like representation using one of the space variables as time-like. First, system observability result for 3D boundary estimation problem is recalled in an infinite dimensional setting. Then, based on the observability result, the boundary estimation problem is decomposed into a set of independent 2D sub-problems. These 2D problems are then solved using an iterative observer to obtain the solution. Theoretical results are provided. The method is implemented numerically using finite difference discretization schemes. Numerical illustrations along with simulation results are provided.

  16. Notes on the infinity Laplace equation

    CERN Document Server

    Lindqvist, Peter

    2016-01-01

    This BCAM SpringerBriefs is a treaty of the Infinity-Laplace Equation, which has inherited many features from the ordinary Laplace Equation, and is based on lectures by the author. The Infinity.Laplace Equation has delightful counterparts to the Dirichlet integral, the mean value property, the Brownian motion, Harnack's inequality, and so on. This "fully non-linear" equation has applications to image processing and to mass transfer problems, and it provides optimal Lipschitz extensions of boundary values.

  17. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  18. Equations based on anthropometry to predict body fat measured by absorptiometry in schoolchildren and adolescents.

    Science.gov (United States)

    Ortiz-Hernández, Luis; Vega López, A Valeria; Ramos-Ibáñez, Norma; Cázares Lara, L Joana; Medina Gómez, R Joab; Pérez-Salgado, Diana

    To develop and validate equations to estimate the percentage of body fat of children and adolescents from Mexico using anthropometric measurements. A cross-sectional study was carried out with 601 children and adolescents from Mexico aged 5-19 years. The participants were randomly divided into the following two groups: the development sample (n=398) and the validation sample (n=203). The validity of previously published equations (e.g., Slaughter) was also assessed. The percentage of body fat was estimated by dual-energy X-ray absorptiometry. The anthropometric measurements included height, sitting height, weight, waist and arm circumferences, skinfolds (triceps, biceps, subscapular, supra-iliac, and calf), and elbow and bitrochanteric breadth. Linear regression models were estimated with the percentage of body fat as the dependent variable and the anthropometric measurements as the independent variables. Equations were created based on combinations of six to nine anthropometric variables and had coefficients of determination (r 2 ) equal to or higher than 92.4% for boys and 85.8% for girls. In the validation sample, the developed equations had high r 2 values (≥85.6% in boys and ≥78.1% in girls) in all age groups, low standard errors (SE≤3.05% in boys and ≤3.52% in girls), and the intercepts were not different from the origin (p>0.050). Using the previously published equations, the coefficients of determination were lower, and/or the intercepts were different from the origin. The equations developed in this study can be used to assess the percentage of body fat of Mexican schoolchildren and adolescents, as they demonstrate greater validity and lower error compared with previously published equations. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Reduced kinetic equations: An influence functional approach

    International Nuclear Information System (INIS)

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  20. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    International Nuclear Information System (INIS)

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  1. Sparse dynamics for partial differential equations.

    Science.gov (United States)

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  2. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman

    2013-10-01

    A method to solve Cauchy Problem for Laplace equation using state observers is proposed. It is known that this problem is ill-posed. The domain under consideration is simple lipschitz in 2 with a hole. The idea is to recover the solution over whole domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace\\'s equation is compuationally robust and accurate. © 2013 IEEE.

  3. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  4. Equations of state for light water

    International Nuclear Information System (INIS)

    Rubin, G.A.; Granziera, M.R.

    1983-01-01

    The equations of state for light water were developed, based on the tables of Keenan and Keyes. Equations are presented, describing the specific volume, internal energy, enthalpy and entropy of saturated steam, superheated vapor and subcooled liquid as a function of pressure and temperature. For each property, several equations are shown, with different precisions and different degress of complexity. (Author) [pt

  5. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  6. Estimating the parameters of stochastic differential equations using a criterion function based on the Kolmogorov-Smirnov statistic

    OpenAIRE

    McDonald, A. David; Sandal, Leif Kristoffer

    1998-01-01

    Estimation of parameters in the drift and diffusion terms of stochastic differential equations involves simulation and generally requires substantial data sets. We examine a method that can be applied when available time series are limited to less than 20 observations per replication. We compare and contrast parameter estimation for linear and nonlinear first-order stochastic differential equations using two criterion functions: one based on a Chi-square statistic, put forward by Hurn and Lin...

  7. Comparison between a serum creatinine-and a cystatin C-based glomerular filtration rate equation in patients receiving amphotericin B.

    Science.gov (United States)

    Karimzadeh, Iman; Khalili, Hossein

    2016-06-06

    Serum cystatin C (Cys C) has a number of advantages over serum creatinine in the evaluation of kidney function. Apart from Cys C level itself, several formulas have also been introduced in different clinical settings for the estimation of glomerular filtration rate (GFR) based upon serum Cys C level. The aim of the present study was to compare a serum Cys C-based equation with Cockcroft-Gault serum creatinine-based formula, both used in the calculation of GFR, in patients receiving amphotericin B. Fifty four adult patients with no history of acute or chronic kidney injury having been planned to receive conventional amphotericin B for an anticipated duration of at least 1 week for any indication were recruited. At three time points during amphotericin B treatment, including days 0, 7, and 14, serum cystatin C as well as creatinine levels were measured. GFR at the above time points was estimated by both creatinine (Cockcroft-Gault) and serum Cys C based equations. There was significant correlation between creatinine-based and Cys C-based GFR values at days 0 (R = 0.606, P = 0.001) and 7 (R = 0.714, P creatinine-and a cystatin C-based glomerular filtration rate equation in patients receiving amphotericin B.

  8. Inverse scattering transform for the time dependent Schrödinger equation with applications to the KPI equation

    Science.gov (United States)

    Zhou, Xin

    1990-03-01

    For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.

  9. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  10. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  11. Exact solutions of nonlinear generalizations of the Klein Gordon and Schrodinger equations

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact solutions of sine Gordon and multiple sine Gordon equations are constructed in terms of solutions of a linear base equation, the Klein Gordon equation and also in terms of nonlinear base equations where the nonlinearity is polynomial in the dependent variable. Further, exact solutions of nonlinear generalizations of the Schrodinger equation and of additional nonlinear generalizations of the Klein Gordon equation are constructed in terms of solutions of linear base equations. Finally, solutions with spherical symmetry, of nonlinear Klein Gordon equations are given. 14 references

  12. A Simple Stochastic Differential Equation with Discontinuous Drift

    DEFF Research Database (Denmark)

    Simonsen, Maria; Leth, John-Josef; Schiøler, Henrik

    2013-01-01

    In this paper we study solutions to stochastic differential equations (SDEs) with discontinuous drift. We apply two approaches: The Euler-Maruyama method and the Fokker-Planck equation and show that a candidate density function based on the Euler-Maruyama method approximates a candidate density...... function based on the stationary Fokker-Planck equation. Furthermore, we introduce a smooth function which approximates the discontinuous drift and apply the Euler-Maruyama method and the Fokker-Planck equation with this input. The point of departure for this work is a particular SDE with discontinuous...

  13. Fast integration-based prediction bands for ordinary differential equation models.

    Science.gov (United States)

    Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel

    2016-04-15

    To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e

  14. Modulating Function-Based Method for Parameter and Source Estimation of Partial Differential Equations

    KAUST Repository

    Asiri, Sharefa M.

    2017-10-08

    Partial Differential Equations (PDEs) are commonly used to model complex systems that arise for example in biology, engineering, chemistry, and elsewhere. The parameters (or coefficients) and the source of PDE models are often unknown and are estimated from available measurements. Despite its importance, solving the estimation problem is mathematically and numerically challenging and especially when the measurements are corrupted by noise, which is often the case. Various methods have been proposed to solve estimation problems in PDEs which can be classified into optimization methods and recursive methods. The optimization methods are usually heavy computationally, especially when the number of unknowns is large. In addition, they are sensitive to the initial guess and stop condition, and they suffer from the lack of robustness to noise. Recursive methods, such as observer-based approaches, are limited by their dependence on some structural properties such as observability and identifiability which might be lost when approximating the PDE numerically. Moreover, most of these methods provide asymptotic estimates which might not be useful for control applications for example. An alternative non-asymptotic approach with less computational burden has been proposed in engineering fields based on the so-called modulating functions. In this dissertation, we propose to mathematically and numerically analyze the modulating functions based approaches. We also propose to extend these approaches to different situations. The contributions of this thesis are as follows. (i) Provide a mathematical analysis of the modulating function-based method (MFBM) which includes: its well-posedness, statistical properties, and estimation errors. (ii) Provide a numerical analysis of the MFBM through some estimation problems, and study the sensitivity of the method to the modulating functions\\' parameters. (iii) Propose an effective algorithm for selecting the method\\'s design parameters

  15. Integrable discretizations of the short pulse equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  16. Some remarks on unilateral matrix equations

    International Nuclear Information System (INIS)

    Cerchiai, Bianca L.; Zumino, Bruno

    2001-01-01

    We briefly review the results of our paper LBNL-46775: We study certain solutions of left-unilateral matrix equations. These are algebraic equations where the coefficients and the unknown are square matrices of the same order, or, more abstractly, elements of an associative, but possibly noncommutative algebra, and all coefficients are on the left. Recently such equations have appeared in a discussion of generalized Born-Infeld theories. In particular, two equations, their perturbative solutions and the relation between them are studied, applying a unified approach based on the generalized Bezout theorem for matrix polynomials

  17. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano; Gomes, Diogo A.; Machado Velho, Roberto

    2017-01-01

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  18. An Adjoint-based Numerical Method for a class of nonlinear Fokker-Planck Equations

    KAUST Repository

    Festa, Adriano

    2017-03-22

    Here, we introduce a numerical approach for a class of Fokker-Planck (FP) equations. These equations are the adjoint of the linearization of Hamilton-Jacobi (HJ) equations. Using this structure, we show how to transfer the properties of schemes for HJ equations to the FP equations. Hence, we get numerical schemes with desirable features such as positivity and mass-preservation. We illustrate this approach in examples that include mean-field games and a crowd motion model.

  19. Fokker-Planck equation in mirror research

    International Nuclear Information System (INIS)

    Post, R.F.

    1983-01-01

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror

  20. Numerical optimization using flow equations

    Science.gov (United States)

    Punk, Matthias

    2014-12-01

    We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.

  1. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  2. Polygons of differential equations for finding exact solutions

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.; Demina, Maria V.

    2007-01-01

    A method for finding exact solutions of nonlinear differential equations is presented. Our method is based on the application of polygons corresponding to nonlinear differential equations. It allows one to express exact solutions of the equation studied through solutions of another equation using properties of the basic equation itself. The ideas of power geometry are used and developed. Our approach has a pictorial interpretation, which is illustrative and effective. The method can be also applied for finding transformations between solutions of differential equations. To demonstrate the method application exact solutions of several equations are found. These equations are: the Korteveg-de Vries-Burgers equation, the generalized Kuramoto-Sivashinsky equation, the fourth-order nonlinear evolution equation, the fifth-order Korteveg-de Vries equation, the fifth-order modified Korteveg-de Vries equation and the sixth-order nonlinear evolution equation describing turbulent processes. Some new exact solutions of nonlinear evolution equations are given

  3. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  4. xRage Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Grove, John W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-16

    The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.

  5. Multi criteria evaluation for universal soil loss equation based on geographic information system

    Science.gov (United States)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  6. Sequent Calculus and Equational Programming

    Directory of Open Access Journals (Sweden)

    Nicolas Guenot

    2015-07-01

    Full Text Available Proof assistants and programming languages based on type theories usually come in two flavours: one is based on the standard natural deduction presentation of type theory and involves eliminators, while the other provides a syntax in equational style. We show here that the equational approach corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A typed functional language is presented, based on a sequent calculus, that we relate to the syntax and internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as rules implementing inductive reasoning and dependent products and sums.

  7. Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Ram, B.; Kriss, V.

    1985-01-01

    Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia

  8. Population stochastic modelling (PSM)--an R package for mixed-effects models based on stochastic differential equations.

    Science.gov (United States)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode; Overgaard, Rune Viig; Madsen, Henrik

    2009-06-01

    The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model development, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 109-141; C.W. Tornøe, R.V. Overgaard, H. Agersø, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8)) (2005) 1247-1258; R.V. Overgaard, N. Jonsson, C.W. Tornøe, H. Madsen, Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm, J. Pharmacokinet. Pharmacodyn. 32 (February(1)) (2005) 85-107; U. Picchini, S. Ditlevsen, A. De Gaetano, Maximum likelihood estimation of a time-inhomogeneous stochastic differential model of glucose dynamics, Math. Med. Biol. 25 (June(2)) (2008) 141-155]. PK/PD models are traditionally based ordinary differential equations (ODEs) with an observation link that incorporates noise. This state-space formulation only allows for observation noise and not for system noise. Extending to SDEs allows for a Wiener noise component in the system equations. This additional noise component enables handling of autocorrelated residuals originating from natural variation or systematic model error. Autocorrelated residuals are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE(1) approximation to the population likelihood which is generated from the individual likelihoods that are approximated using the Extended Kalman Filter's one-step predictions.

  9. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  10. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  11. Weight loss is coupled with improvements to affective state in obese participants engaged in behavior change therapy based on incremental, self-selected "small changes".

    Science.gov (United States)

    Paxman, Jenny R; Hall, Anna C; Harden, Charlotte J; O'Keeffe, Jean; Simper, Trevor N

    2011-05-01

    The aim of this study was to investigate the effects of a group behavior change intervention involving self-selected, contextualized, and mediated goal setting on anthropometric, affective, and dietary markers of health. It was hypothesized that the intervention would elicit changes consistent with accepted health recommendations for obese individuals. A rolling program of 12-week "Small Changes" interventions during 24 months recruited 71 participants; each program accommodated 10 to 13 adults (body mass index [BMI] ≥ 30 kg/m²). Fifty-eight participants completed Small Changes. Repeated measures were made at baseline, 6 and 12 weeks. Anthropometric measures included height and weight (to calculate BMI), body composition, waist circumference, and blood pressure. Affective state was monitored using relevant validated questionnaires. Dietary assessment used 3-day household measures food diaries with Schofield equations to monitor underreporting. Relevant blood measures were recorded throughout. Across the measurement period, Small Changes elicited a significant reduction in body weight (baseline, 102.95 ± 15.47 vs 12 weeks 100.09 ± 16.01 kg, P framing the future of weight management. Long-term follow-up of Small Changes is warranted. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Generalization of Einstein's gravitational field equations

    Science.gov (United States)

    Moulin, Frédéric

    2017-12-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.

  13. Comparison of equations for predicting energy expenditure from accelerometer counts in children

    DEFF Research Database (Denmark)

    Nilsson, A; Brage, S; Riddoch, C

    2008-01-01

    calorimeter-based (CAL) equation (mixture of activities). Predicted physical activity energy expenditure (PAEE) was the main outcome variable. In comparison with DLW-predicted PAEE, both laboratory-derived equations significantly (PPAEE by 17% and 83%, respectively, when based on a 24-h...... prediction, while the TM equation significantly (PPAEE by 46%, when based on awake time only. In contrast, the CAL equation agreed better with the DLW equation under the awake time assumption. Predicted PAEE differ substantially between equations, depending on time-frame assumptions......, and interpretations of average levels of PAEE in children from available equations should be made with caution. Further development of equations applicable to free-living scenarios is needed....

  14. Parameter Estimation for Partial Differential Equations by Collage-Based Numerical Approximation

    Directory of Open Access Journals (Sweden)

    Xiaoyan Deng

    2009-01-01

    into a minimization problem of a function of several variables after the partial differential equation is approximated by a differential dynamical system. Then numerical schemes for solving this minimization problem are proposed, including grid approximation and ant colony optimization. The proposed schemes are applied to a parameter estimation problem for the Belousov-Zhabotinskii equation, and the results show that the proposed approximation method is efficient for both linear and nonlinear partial differential equations with respect to unknown parameters. At worst, the presented method provides an excellent starting point for traditional inversion methods that must first select a good starting point.

  15. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure.

    Science.gov (United States)

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D; Macdougall, Iain C; Ponikowski, Piotr; Lainscak, Mitja

    2015-12-01

    To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P=0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P=0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number: NCT01829880.

  16. Multi-dimensional upwinding-based implicit LES for the vorticity transport equations

    Science.gov (United States)

    Foti, Daniel; Duraisamy, Karthik

    2017-11-01

    Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.

  17. Partial differential equation-based localization of a monopole source from a circular array.

    Science.gov (United States)

    Ando, Shigeru; Nara, Takaaki; Levy, Tsukassa

    2013-10-01

    Wave source localization from a sensor array has long been the most active research topics in both theory and application. In this paper, an explicit and time-domain inversion method for the direction and distance of a monopole source from a circular array is proposed. The approach is based on a mathematical technique, the weighted integral method, for signal/source parameter estimation. It begins with an exact form of the source-constraint partial differential equation that describes the unilateral propagation of wide-band waves from a single source, and leads to exact algebraic equations that include circular Fourier coefficients (phase mode measurements) as their coefficients. From them, nearly closed-form, single-shot and multishot algorithms are obtained that is suitable for use with band-pass/differential filter banks. Numerical evaluation and several experimental results obtained using a 16-element circular microphone array are presented to verify the validity of the proposed method.

  18. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Science.gov (United States)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP3) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  19. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    International Nuclear Information System (INIS)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP 3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP 3 ) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions

  20. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    Science.gov (United States)

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  1. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  2. Chemical and physical FET-based sensors or variations on an equation

    NARCIS (Netherlands)

    Olthuis, Wouter

    2005-01-01

    This paper exposes the continuous thread of Bergveld’s work: the model equation of the field-effect transistor (FET) derived and repeated in the theoretical section. Zooming in on some of the variables of this equation leads us to several of his important projects. A short description and typical

  3. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  4. Nonlinear Poisson equation for heterogeneous media.

    Science.gov (United States)

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations

    International Nuclear Information System (INIS)

    Chen Yong; Wang Qi; Li Biao

    2005-01-01

    Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally

  6. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

    Science.gov (United States)

    Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

    2015-04-01

    This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

  7. Iohexol clearance is superior to creatinine-based renal function estimating equations in detecting short-term renal function decline in chronic heart failure

    Science.gov (United States)

    Cvan Trobec, Katja; Kerec Kos, Mojca; von Haehling, Stephan; Anker, Stefan D.; Macdougall, Iain C.; Ponikowski, Piotr; Lainscak, Mitja

    2015-01-01

    Aim To compare the performance of iohexol plasma clearance and creatinine-based renal function estimating equations in monitoring longitudinal renal function changes in chronic heart failure (CHF) patients, and to assess the effects of body composition on the equation performance. Methods Iohexol plasma clearance was measured in 43 CHF patients at baseline and after at least 6 months. Simultaneously, renal function was estimated with five creatinine-based equations (four- and six-variable Modification of Diet in Renal Disease, Cockcroft-Gault, Cockcroft-Gault adjusted for lean body mass, Chronic Kidney Disease Epidemiology Collaboration equation) and body composition was assessed using bioimpedance and dual-energy x-ray absorptiometry. Results Over a median follow-up of 7.5 months (range 6-17 months), iohexol clearance significantly declined (52.8 vs 44.4 mL/[min ×1.73 m2], P = 0.001). This decline was significantly higher in patients receiving mineralocorticoid receptor antagonists at baseline (mean decline -22% of baseline value vs -3%, P = 0.037). Mean serum creatinine concentration did not change significantly during follow-up and no creatinine-based renal function estimating equation was able to detect the significant longitudinal decline of renal function determined by iohexol clearance. After accounting for body composition, the accuracy of the equations improved, but not their ability to detect renal function decline. Conclusions Renal function measured with iohexol plasma clearance showed relevant decline in CHF patients, particularly in those treated with mineralocorticoid receptor antagonists. None of the equations for renal function estimation was able to detect these changes. ClinicalTrials.gov registration number NCT01829880 PMID:26718759

  8. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  9. Nonlinear Electrostatic Wave Equations for Magnetized Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans

    1984-01-01

    The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....

  10. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  11. Semigroup methods for evolution equations on networks

    CERN Document Server

    Mugnolo, Delio

    2014-01-01

    This concise text is based on a series of lectures held only a few years ago and originally intended as an introduction to known results on linear hyperbolic and parabolic equations.  Yet the topic of differential equations on graphs, ramified spaces, and more general network-like objects has recently gained significant momentum and, well beyond the confines of mathematics, there is a lively interdisciplinary discourse on all aspects of so-called complex networks. Such network-like structures can be found in virtually all branches of science, engineering and the humanities, and future research thus calls for solid theoretical foundations.      This book is specifically devoted to the study of evolution equations – i.e., of time-dependent differential equations such as the heat equation, the wave equation, or the Schrödinger equation (quantum graphs) – bearing in mind that the majority of the literature in the last ten years on the subject of differential equations of graphs has been devoted to ellip...

  12. Perturbation theory for continuous stochastic equations

    International Nuclear Information System (INIS)

    Chechetkin, V.R.; Lutovinov, V.S.

    1987-01-01

    The various general perturbational schemes for continuous stochastic equations are considered. These schemes have many analogous features with the iterational solution of Schwinger equation for S-matrix. The following problems are discussed: continuous stochastic evolution equations for probability distribution functionals, evolution equations for equal time correlators, perturbation theory for Gaussian and Poissonian additive noise, perturbation theory for birth and death processes, stochastic properties of systems with multiplicative noise. The general results are illustrated by diffusion-controlled reactions, fluctuations in closed systems with chemical processes, propagation of waves in random media in parabolic equation approximation, and non-equilibrium phase transitions in systems with Poissonian breeding centers. The rate of irreversible reaction X + X → A (Smoluchowski process) is calculated with the use of general theory based on continuous stochastic equations for birth and death processes. The threshold criterion and range of fluctuational region for synergetic phase transition in system with Poissonian breeding centers are also considered. (author)

  13. Removal of Invasive Fire-Prone Grasses to Increase Training Lands in the Pacific

    Science.gov (United States)

    2008-09-01

    Boone Kauffman. U.S. Forest Service. Pacific Northwest Research Center. Hilo . Hawaii . SWCA, Inc. 39 SWCA also acknowledges Amy Brown Curtis...Marine Corps Base Hawaii (MCBH), Marine Corps Training Area Bellows (MCTAB), Army installations Makua Valley, Schofield Barracks, Pohakuloa Training...Area, the Hawaii Army National Guard facility at Diamond Head Crater, and at the Naval Magazine on the Island of Guam. Invasive, fire-prone

  14. A Kohn–Sham equation solver based on hexahedral finite elements

    International Nuclear Information System (INIS)

    Fang Jun; Gao Xingyu; Zhou Aihui

    2012-01-01

    We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C 60 , C 120 , and C 275 H 172 . It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.

  15. FDTD for Hydrodynamic Electron Fluid Maxwell Equations

    Directory of Open Access Journals (Sweden)

    Yingxue Zhao

    2015-05-01

    Full Text Available In this work, we develop a numerical method for solving the three dimensional hydrodynamic electron fluid Maxwell equations that describe the electron gas dynamics driven by an external electromagnetic wave excitation. Our numerical approach is based on the Finite-Difference Time-Domain (FDTD method for solving the Maxwell’s equations and an explicit central finite difference method for solving the hydrodynamic electron fluid equations containing both electron density and current equations. Numerical results show good agreement with the experiment of studying the second-harmonic generation (SHG from metallic split-ring resonator (SRR.

  16. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  17. Filters in topology optimization based on Helmholtz‐type differential equations

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Sigmund, Ole

    2011-01-01

    The aim of this paper is to apply a Helmholtz‐type partial differential equation as an alternative to standard density filtering in topology optimization problems. Previously, this approach has been successfully applied as a sensitivity filter. The usual filtering techniques in topology...... from the neighbor subdomains is an expensive operation. The proposed filter technique requires only mesh information necessary for the finite element discretization of the problem. The main idea is to define the filtered variable implicitly as a solution of a Helmholtz‐type differential equation...

  18. Electromagnetic equations based on the law of Biot and Savart

    International Nuclear Information System (INIS)

    Yan, C.-C.

    1983-01-01

    The law of Biot and Savart is given some interpretations that may be of some help in presenting the law. Some possible consequences and the whole set of Maxwell-Lorentz equations are shown to be derivable from the law of Biot and Savart. It is pointed out that the failure or success of deriving the set of Maxwell-Lorentz equation from the law of Biot and Savart is intimately connected to the basic ideas of the theory of special relativity of Einstein. (Author) [pt

  19. Equation-free analysis of agent-based models and systematic parameter determination

    Science.gov (United States)

    Thomas, Spencer A.; Lloyd, David J. B.; Skeldon, Anne C.

    2016-12-01

    Agent based models (ABM)s are increasingly used in social science, economics, mathematics, biology and computer science to describe time dependent systems in circumstances where a description in terms of equations is difficult. Yet few tools are currently available for the systematic analysis of ABM behaviour. Numerical continuation and bifurcation analysis is a well-established tool for the study of deterministic systems. Recently, equation-free (EF) methods have been developed to extend numerical continuation techniques to systems where the dynamics are described at a microscopic scale and continuation of a macroscopic property of the system is considered. To date, the practical use of EF methods has been limited by; (1) the over-head of application-specific implementation; (2) the laborious configuration of problem-specific parameters; and (3) large ensemble sizes (potentially) leading to computationally restrictive run-times. In this paper we address these issues with our tool for the EF continuation of stochastic systems, which includes algorithms to systematically configuration problem specific parameters and enhance robustness to noise. Our tool is generic and can be applied to any 'black-box' simulator and determines the essential EF parameters prior to EF analysis. Robustness is significantly improved using our convergence-constraint with a corrector-repeat (C3R) method. This algorithm automatically detects outliers based on the dynamics of the underlying system enabling both an order of magnitude reduction in ensemble size and continuation of systems at much higher levels of noise than classical approaches. We demonstrate our method with application to several ABM models, revealing parameter dependence, bifurcation and stability analysis of these complex systems giving a deep understanding of the dynamical behaviour of the models in a way that is not otherwise easily obtainable. In each case we demonstrate our systematic parameter determination stage for

  20. On the reduction of the multidimensional stationary Schroedinger equation to a first-order equation and its relation to the pseudoanalytic function theory

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Vladislav V [Departmento de Telecomunicaciones, SEPI, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, CP 07738 Mexico DF (Mexico)

    2005-01-28

    Given a particular solution of a one-dimensional stationary Schroedinger equation this equation of second order can be reduced to a first-order linear ordinary differential equation. This is done with the aid of an auxiliary Riccati differential equation. In the present work we show that the same fact is true in a multidimensional situation also. For simplicity we consider the case of two or three independent variables. One particular solution of the stationary Schroedinger equation allows us to reduce this second-order equation to a linear first-order quaternionic differential equation. As in the one-dimensional case this is done with the aid of an auxiliary quaternionic Riccati equation. The resulting first-order quaternionic equation is equivalent to the static Maxwell system and is closely related to the Dirac equation. In the case of two independent variables it is the well-known Vekua equation from theory of pseudoanalytic (or generalized analytic) functions. Nevertheless, we show that even in this case it is very useful to consider not only complex valued functions, solutions of the Vekua equation, but complete quaternionic functions. In this way the first-order quaternionic equation represents two separate Vekua equations, one of which gives us solutions of the Schroedinger equation and the other one can be considered as an auxiliary equation of a simpler structure. Moreover for the auxiliary equation we always have the corresponding Bers generating pair (F, G), the base of the Bers theory of pseudoanalytic functions, and what is very important, the Bers derivatives of solutions of the auxiliary equation give us solutions of the main Vekua equation and as a consequence of the Schroedinger equation. Based on this fact we obtain an analogue of the Cauchy integral theorem for solutions of the stationary Schroedinger equation. Other results from theory of pseudoanalytic functions can be written for solutions of the Schroedinger equation. Moreover, for an ample

  1. A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints

    Science.gov (United States)

    Li, Jinquan; Feng, Shuang; Mi, Honghai

    In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.

  2. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  3. A general comparison theorem for backward stochastic differential equations

    OpenAIRE

    Cohen, Samuel N.; Elliott, Robert J.; Pearce, Charles E. M.

    2010-01-01

    A useful result when dealing with backward stochastic differential equations is the comparison theorem of Peng (1992). When the equations are not based on Brownian motion, the comparison theorem no longer holds in general. In this paper we present a condition for a comparison theorem to hold for backward stochastic differential equations based on arbitrary martingales. This theorem applies to both vector and scalar situations. Applications to the theory of nonlinear expectat...

  4. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    Science.gov (United States)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  5. Correction of the calculation of beam loading based in the RF power diffusion equation

    International Nuclear Information System (INIS)

    Silva, R. da.

    1980-01-01

    It is described an empirical correction based upon experimental datas of others authors in ORELA, GELINA and SLAC accelerators, to the calculation of the energy loss due to the beam loading effect as stated by the RF power diffusion equation theory an accelerating structure. It is obtained a dependence of this correction with the electron pulse full width half maximum, but independent of the electron energy. (author) [pt

  6. Final state dipole showers and the DGLAP equation

    International Nuclear Information System (INIS)

    Nagy, Zoltan; Soper, Davison E.

    2009-01-01

    We study a parton shower description, based on a dipole picture, of the final state in electron-positron annihilation. In such a shower, the distribution function describing the inclusive probability to find a quark with a given energy depends on the shower evolution time. Starting from the exclusive evolution equation for the shower, we derive an equation for the evolution of the inclusive quark energy distribution in the limit of strong ordering in shower evolution time of the successive parton splittings. We find that, as expected, this is the DGLAP equation. This paper is a response to a recent paper of Dokshitzer and Marchesini that raised troubling issues about whether a dipole based shower could give the DGLAP equation for the quark energy distribution.

  7. Development of kinetics equations from the Boltzmann equation; Etablissement des equations de la cinetique a partir de l'equation de Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Plas, R.

    1962-07-01

    The author reports a study on kinetics equations for a reactor. He uses the conventional form of these equations but by using a dynamic multiplication factor. Thus, constants related to delayed neutrons are not modified by efficiency factors. The author first describes the theoretic kinetic operation of a reactor and develops the associated equations. He reports the development of equations for multiplication factors.

  8. Hybrid radiosity-SP{sub 3} equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Zhang, Qitan; Yang, Defu; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-01-14

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP{sub 3} equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP{sub 3}) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  9. Subchannel analysis program for boiling water reactor fuel bundles based on five conservation equations of two-phase flow

    International Nuclear Information System (INIS)

    Bessho, Y.; Uchikawa, S.

    1985-01-01

    A subchannel analysis program, MENUETT, is developed for evaluation of thermal-hydraulic characteristics in boiling water reactor fuel bundles. This program is based on five conservation equations of two-phase flow with the drift-flux correlation. The cross flows are calculated separately for liquid and vapor phases from the lateral momentum conservation equation. The effects of turbulent mixing and void drift are accounted for in the program. The conservation equations are implicitly differentiated with the convective terms by the donor-cell method, and are solved iteratively in the axial and lateral directions. Data of the 3 X 3 rod bundle experiments are used for program verification. The lateral distributions of equilibrium quality and mass flow rate at the bundle exit calculated by the program compare satisfactorily with the experimental results

  10. Equations of macrotransport in reactor fuel assemblies

    International Nuclear Information System (INIS)

    Sorokin, A.P.; Zhukov, A.V.; Kornienko, Yu.N.; Ushakov, P.A.

    1986-01-01

    The rigorous statement of equations of macrotransport is obtained. These equations are bases for channel-by-channel methods of thermohydraulic calculations of reactor fuel assemblies within the scope of the model of discontinuous multiphase coolant flow (including chemical reactions); they also describe a wide range of problems on thermo-physical reactor fuel assembly justification. It has been carried out by smoothing equations of mass, momentum and enthalpy transfer in cross section of each phase of the elementary fuel assembly subchannel. The equation for cross section flows is obtaind by smoothing the equation of momentum transfer on the interphase. Interaction of phases on the channel boundary is described using the Stanton number. The conclusion is performed using the generalized equation of substance transfer. The statement of channel-by-channel method without the scope of homogeneous flow model is given

  11. Scattering integral equations and four nucleon problem

    International Nuclear Information System (INIS)

    Narodetskii, I.M.

    1980-01-01

    Existing results from the application of integral equation technique to the four-nucleon bound states and scattering are reviewed. The first numerical calculations of the four-body integral equations have been done ten years ago. Yet, it is still widely believed that these equations are too complicated to solve numerically. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. The presentation is based on the quasiparticle approach. This permits a simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt method of the Fredholm integral equation theory. The first part of this review contains a detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the kernel of the four-body equations. The second part contains the discussion of the four-body quasiparticle equations and of the resed forullts obtain bound states and scattering

  12. Solution of the Burgers Equation in the Time Domain

    Directory of Open Access Journals (Sweden)

    M. Bednařík

    2002-01-01

    Full Text Available This paper deals with a theoretical description of the propagation of a finite amplitude acoustic waves. The theory based on the homogeneous Burgers equation of the second order of accuracy is presented here. This equation takes into account both nonlinear effects and dissipation. The method for solving this equation, using the well-known Cole-Hopf transformation, is presented. Two methods for numerical solution of these equations in the time domain are presented. The first is based on the simple Simpson method, which is suitable for smaller Goldberg numbers. The second uses the more advanced saddle point method, and is appropriate for large Goldberg numbers.

  13. Macroscopic balance equations for two-phase flow models

    International Nuclear Information System (INIS)

    Hughes, E.D.

    1979-01-01

    The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)

  14. Construction of Interval Wavelet Based on Restricted Variational Principle and Its Application for Solving Differential Equations

    OpenAIRE

    Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin

    2008-01-01

    Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.

  15. International Conference on Differential and Difference Equations with Applications

    CERN Document Server

    Došlá, Zuzana; Došlý, Ondrej; Kloeden, Peter

    2016-01-01

    Aimed at the community of mathematicians working on ordinary and partial differential equations, difference equations, and functional equations, this book contains selected papers based on the presentations at the International Conference on Differential and Difference Equations and Applications (ICDDEA) 2015, dedicated to the memory of Professor Georg Sell. Contributions include new trends in the field of differential and difference equations, applications of differential and difference equations, as well as high-level survey results. The main aim of this recurring conference series is to promote, encourage, cooperate, and bring together researchers in the fields of differential and difference equations. All areas of differential and difference equations are represented, with special emphasis on applications.

  16. Integrable semi-discretizations of the reduced Ostrovsky equation

    International Nuclear Information System (INIS)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2015-01-01

    Based on our previous work on the reduced Ostrovsky equation (J. Phys. A: Math. Theor. 45 355203), we construct its integrable semi-discretizations. Since the reduced Ostrovsky equation admits two alternative representations, one being its original form, the other the differentiated form (the short wave limit of the Degasperis–Procesi equation) two semi-discrete analogues of the reduced Ostrovsky equation are constructed possessing the same N-loop soliton solution. The relationship between these two versions of semi-discretizations is also clarified. (paper)

  17. Preconditioners based on windowed Fourier frames applied to elliptic partial differential equations

    NARCIS (Netherlands)

    Bhowmik, S.K.; Stolk, C.C.

    2011-01-01

    We investigate the application of windowed Fourier frames to the numerical solution of partial differential equations, focussing on elliptic equations. The action of a partial differential operator (PDO) on a windowed plane wave is close to a multiplication, where the multiplication factor is given

  18. Stochastic analysis of complex reaction networks using binomial moment equations.

    Science.gov (United States)

    Barzel, Baruch; Biham, Ofer

    2012-09-01

    The stochastic analysis of complex reaction networks is a difficult problem because the number of microscopic states in such systems increases exponentially with the number of reactive species. Direct integration of the master equation is thus infeasible and is most often replaced by Monte Carlo simulations. While Monte Carlo simulations are a highly effective tool, equation-based formulations are more amenable to analytical treatment and may provide deeper insight into the dynamics of the network. Here, we present a highly efficient equation-based method for the analysis of stochastic reaction networks. The method is based on the recently introduced binomial moment equations [Barzel and Biham, Phys. Rev. Lett. 106, 150602 (2011)]. The binomial moments are linear combinations of the ordinary moments of the probability distribution function of the population sizes of the interacting species. They capture the essential combinatorics of the reaction processes reflecting their stoichiometric structure. This leads to a simple and transparent form of the equations, and allows a highly efficient and surprisingly simple truncation scheme. Unlike ordinary moment equations, in which the inclusion of high order moments is prohibitively complicated, the binomial moment equations can be easily constructed up to any desired order. The result is a set of equations that enables the stochastic analysis of complex reaction networks under a broad range of conditions. The number of equations is dramatically reduced from the exponential proliferation of the master equation to a polynomial (and often quadratic) dependence on the number of reactive species in the binomial moment equations. The aim of this paper is twofold: to present a complete derivation of the binomial moment equations; to demonstrate the applicability of the moment equations for a representative set of example networks, in which stochastic effects play an important role.

  19. Computational Diffusion Magnetic Resonance Imaging Based on Time-Dependent Bloch NMR Flow Equation and Bessel Functions.

    Science.gov (United States)

    Awojoyogbe, Bamidele O; Dada, Michael O; Onwu, Samuel O; Ige, Taofeeq A; Akinwande, Ninuola I

    2016-04-01

    Magnetic resonance imaging (MRI) uses a powerful magnetic field along with radio waves and a computer to produce highly detailed "slice-by-slice" pictures of virtually all internal structures of matter. The results enable physicians to examine parts of the body in minute detail and identify diseases in ways that are not possible with other techniques. For example, MRI is one of the few imaging tools that can see through bones, making it an excellent tool for examining the brain and other soft tissues. Pulsed-field gradient experiments provide a straightforward means of obtaining information on the translational motion of nuclear spins. However, the interpretation of the data is complicated by the effects of restricting geometries as in the case of most cancerous tissues and the mathematical concept required to account for this becomes very difficult. Most diffusion magnetic resonance techniques are based on the Stejskal-Tanner formulation usually derived from the Bloch-Torrey partial differential equation by including additional terms to accommodate the diffusion effect. Despite the early success of this technique, it has been shown that it has important limitations, the most of which occurs when there is orientation heterogeneity of the fibers in the voxel of interest (VOI). Overcoming this difficulty requires the specification of diffusion coefficients as function of spatial coordinate(s) and such a phenomenon is an indication of non-uniform compartmental conditions which can be analyzed accurately by solving the time-dependent Bloch NMR flow equation analytically. In this study, a mathematical formulation of magnetic resonance flow sequence in restricted geometry is developed based on a general second order partial differential equation derived directly from the fundamental Bloch NMR flow equations. The NMR signal is obtained completely in terms of NMR experimental parameters. The process is described based on Bessel functions and properties that can make it

  20. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.

    Science.gov (United States)

    Thamareerat, N; Luadsong, A; Aschariyaphotha, N

    2016-01-01

    In this paper, we present a numerical scheme used to solve the nonlinear time fractional Navier-Stokes equations in two dimensions. We first employ the meshless local Petrov-Galerkin (MLPG) method based on a local weak formulation to form the system of discretized equations and then we will approximate the time fractional derivative interpreted in the sense of Caputo by a simple quadrature formula. The moving Kriging interpolation which possesses the Kronecker delta property is applied to construct shape functions. This research aims to extend and develop further the applicability of the truly MLPG method to the generalized incompressible Navier-Stokes equations. Two numerical examples are provided to illustrate the accuracy and efficiency of the proposed algorithm. Very good agreement between the numerically and analytically computed solutions can be observed in the verification. The present MLPG method has proved its efficiency and reliability for solving the two-dimensional time fractional Navier-Stokes equations arising in fluid dynamics as well as several other problems in science and engineering.

  1. Systematic homogenization and self-consistent flux and pin power reconstruction for nodal diffusion methods. 1: Diffusion equation-based theory

    International Nuclear Information System (INIS)

    Zhang, H.; Rizwan-uddin; Dorning, J.J.

    1995-01-01

    A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation

  2. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  3. WE-AB-207A-02: John’s Equation Based Consistency Condition and Incomplete Projection Restoration Upon Circular Orbit CBCT

    International Nuclear Information System (INIS)

    Ma, J; Qi, H; Wu, S; Xu, Y; Zhou, L; Yan, H

    2016-01-01

    Purpose: In transmitted X-ray tomography imaging, projections are sometimes incomplete due to a variety of reasons, such as geometry inaccuracy, defective detector cells, etc. To address this issue, we have derived a direct consistency condition based on John’s Equation, and proposed a method to effectively restore incomplete projections based on this consistency condition. Methods: Through parameter substitutions, we have derived a direct consistency condition equation from John’s equation, in which the left side is only projection derivative of view and the right side is projection derivative of other geometrical parameters. Based on this consistency condition, a projection restoration method is proposed, which includes five steps: 1) Forward projecting reconstructed image and using linear interpolation to estimate the incomplete projections as the initial result; 2) Performing Fourier transform on the projections; 3) Restoring the incomplete frequency data using the consistency condition equation; 4) Performing inverse Fourier transform; 5) Repeat step 2)∼4) until our criteria is met to terminate the iteration. Results: A beam-blocking-based scatter correction case and a bad-pixel correction case were used to demonstrate the efficacy and robustness of our restoration method. The mean absolute error (MAE), signal noise ratio (SNR) and mean square error (MSE) were employed as our evaluation metrics of the reconstructed images. For the scatter correction case, the MAE is reduced from 63.3% to 71.7% with 4 iterations. Compared with the existing Patch’s method, the MAE of our method is further reduced by 8.72%. For the bad-pixel case, the SNR of the reconstructed image by our method is increased from 13.49% to 21.48%, with the MSE being decreased by 45.95%, compared with linear interpolation method. Conclusion: Our studies have demonstrated that our restoration method based on the new consistency condition could effectively restore the incomplete projections

  4. Cauchy problem for Laplace equation: An observer based approach

    KAUST Repository

    Majeed, Muhammad Usman; Zayane-Aissa, Chadia; Laleg-Kirati, Taous Meriem

    2013-01-01

    domain from the observations on outer boundary. Proposed approach adapts one of the space variables as a time variable. The observer developed to solve Cauchy problem for the Laplace's equation is compuationally robust and accurate. © 2013 IEEE.

  5. Fermion unification model based on the intrinsic SU(8 symmetry of a generalized Dirac equation

    Directory of Open Access Journals (Sweden)

    Eckart eMarsch

    2015-10-01

    Full Text Available A natural generalization of the original Dirac spinor into a multi-component spinor is achieved, which corresponds to the single lepton and the three quarks of the first family of the standard model of elementary particle physics. Different fermions result from similarity transformations of the Dirac equation, but apparently there can be no more fermions according to the maximal multiplicity revealed in this study. Rotations in the fermion state space are achieved by the unitary generators of the U(1 and the SU(3 groups, corresponding to quantum electrodynamics (QED based on electric charge and chromodynamics (QCD based on colour charge. In addition to hypercharge the dual degree of freedom of hyperspin emerges, which occurs due to the duplicity implied by the two related (Weyl and Dirac representations of the Dirac equation. This yields the SU(2 symmetry of the weak interaction, which can be married to U(1 to generate the unified electroweak interaction as in the standard model. Therefore, the symmetry group encompassing all the three groups mentioned above is SU(8, which can accommodate and unify the observed eight basic stable fermions.

  6. Relationship between dilatancy, stresses and plastic dissipation in a granular material with rigid grains

    Science.gov (United States)

    Evesque, Pierre; Stefani, Christian

    1991-11-01

    By considering a drained cohesionless granular sample made up of rigid grains and submitted to a triaxial test, we derive an equation relating the dilatancy K, the deviatoric stress q and the confining pressure p to the energy losses D_plastic due to plastic yielding. We demonstrate that the system is contracting (K le 0) at q = 0, when q is increasing and that spontaneous uncontrolled yielding begins occurring when dilatancy K is maximum. We also demonstrate the existence of the characteristic state introduced by Luong and Habib and the existence of the critical state of Schofield and Wroth. Finally, we give a method to determine the plastic losses during a triaxial cell test using the experimental data. En utilisant un postulat de reproductibilité des essais triaxiaux et une relation liant l'énergie dissipée, la dilatance K et les contraintes imposées à un échantillon, on démontre qu'un matériau granulaire ne peut que se contracter après avoir subi une contrainte de confinement isotrope (i.e. q = 0), que la rupture spontanée a lieu après un maximum de dilatance, qu'il existe un état caractéristique (au sens de Luong et Habib) et qu'il existe un état “ critique ” (au sens de Schofield et Wroth). Nous donnons de plus une méthode pour estimer la dissipation-plastique durant un essai triaxial à partir des résultats expérimentaux.

  7. Bounded solutions for fuzzy differential and integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es

    2006-03-01

    We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.

  8. New traveling wave solutions to AKNS and SKdV equations

    International Nuclear Information System (INIS)

    Ozer, Teoman

    2009-01-01

    We analyze the traveling wave solutions of Ablowitz-Kaup-Newell-Segur (AKNS) and Schwarz-Korteweg-de Vries (SKdV) equations. As the solution method for differential equations we consider the improved tanh approach. This approach provides to transform the partial differential equation into the ordinary differential equation and then obtain the new families of exact solutions based on the solutions of the Riccati equation. The different values of the coefficients of the Riccati equation allow us to obtain new type of traveling wave solutions to AKNS and SKdV equations.

  9. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi; Alkhalifah, Tariq Ali

    2016-01-01

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex

  10. Abundant Interaction Solutions of Sine-Gordon Equation

    Directory of Open Access Journals (Sweden)

    DaZhao Lü

    2012-01-01

    Full Text Available With the help of computer symbolic computation software (e.g., Maple, abundant interaction solutions of sine-Gordon equation are obtained by means of a constructed Wronskian form expansion method. The method is based upon the forms and structures of Wronskian solutions of sine-Gordon equation, and the functions used in the Wronskian determinants do not satisfy linear partial differential equations. Such interaction solutions are difficultly obtained via other methods. And the method can be automatically carried out in computer.

  11. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  12. ON ASYMTOTIC APPROXIMATIONS OF FIRST INTEGRALS FOR DIFFERENTIAL AND DIFFERENCE EQUATIONS

    Directory of Open Access Journals (Sweden)

    W.T. van Horssen

    2007-04-01

    Full Text Available In this paper the concept of integrating factors for differential equations and the concept of invariance factors for difference equations to obtain first integrals or invariants will be presented. It will be shown that all integrating factors have to satisfya system of partial differential equations, and that all invariance factors have to satisfy a functional equation. In the period 1997-2001 a perturbation method based on integrating vectors was developed to approximate first integrals for systems of ordinary differential equations. This perturbation method will be reviewed shortly. Also in the paper the first results in the development of a perturbation method for difference equations based on invariance factors will be presented.

  13. Measurement of energy expenditure in healthy male adults using [14C] bicarbonate

    International Nuclear Information System (INIS)

    Luscombe, N.; Tsopelas, C.; Kirkwood, I.; Bellon, M.; Wittert, G.; Royal Adelaide Hospital, Adelaide, SA

    2003-01-01

    Full text: The use of double-labelled water (3HH 18 O) to measure total energy expenditure (TEE) in free-living humans is expensive and requires access to a mass spectrometer. A 48-hour infusion of [ 14 C]-bicarbonate with the measurement of [ 14 C]-carbon dioxide ( 14 CO 2 ) after urease digestion of the urine, has been shown to produce comparable results to whole body calorimetry. We have used [ 14 C]-bicarbonate to measure TEE and determined (i) it's comparability with the Schofield equation and (ii) the reproducibility of repeated measurements within an individual. On two occasions ∼ 14 days apart, measurements of TEE, resting metabolic rate (RMR), respiratory quotient (RQ), energy intake, food quotient (FQ) and physical activity were made in eight healthy men (age 50 ± 3 yrs, wt 79 ± 3 kg, BMI 26 ± 1 kg/m2, fat mass 22.7 ± 2.5 kg, lean mass 56.5 ± 2.4 kg). Samples of each subjects' urine (collected for two consecutive 24 hour periods) were assayed in triplicate. RMR and RQ were determined by indirect calorimetry. Diet and activity patterns were recorded for four days during the infusion, and were analysed to determine energy intake and activity levels. There were no significant differences in any of the variables on the two study days. Data are expressed as mean ± SE. The coefficient of variation (CV) for the 14 CO 2 assay (within-assay CV) was 4.1 ± 0.4% (range 1.7 - 7.5%). The variation for the subjects between study days was 5.1 ± 0.9% (range 0.9 - 9.2%). TEE measured by 14 CO 2 (16,200 ± 780 KJ/day; range 13,400 - 19,387 KJ/day) was greater (14.7 ± 9% (% mean absolute difference ranged from -24.6 to 0.8%)) than the Schofield estimate of TEE (13,800 ± 710 KJ/day; range 12,100-15,500 KJ/day); the group means were significantly different (95% limits of agreement, T = 3.8, P = 0.007). Energy intake was 10,700 ± 535 KJ/day (range 7,970 - 12,600 KJ/day). Fasting RQ was 0.81 ± 0.01 (range 0.78 - 0.88), FQ was 0.84 ± 0.01 (range 0.78 - 0.87), and

  14. Thermodynamic quantities for the Klein–Gordon equation

    Indian Academy of Sciences (India)

    We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverselinear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation.We use a method based on the Euler–MacLaurin formula to analytically compute thethermal ...

  15. Improving the Bandwidth Selection in Kernel Equating

    Science.gov (United States)

    Andersson, Björn; von Davier, Alina A.

    2014-01-01

    We investigate the current bandwidth selection methods in kernel equating and propose a method based on Silverman's rule of thumb for selecting the bandwidth parameters. In kernel equating, the bandwidth parameters have previously been obtained by minimizing a penalty function. This minimization process has been criticized by practitioners…

  16. Consistent three-equation model for thin films

    Science.gov (United States)

    Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul

    2017-11-01

    Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.

  17. Decomposition of a hierarchy of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Geng Xianguo

    2003-01-01

    The generalized Hamiltonian structures for a hierarchy of nonlinear evolution equations are established with the aid of the trace identity. Using the nonlinearization approach, the hierarchy of nonlinear evolution equations is decomposed into a class of new finite-dimensional Hamiltonian systems. The generating function of integrals and their generator are presented, based on which the finite-dimensional Hamiltonian systems are proved to be completely integrable in the Liouville sense. As an application, solutions for the hierarchy of nonlinear evolution equations are reduced to solving the compatible Hamiltonian systems of ordinary differential equations

  18. Nodal spectrum method for solving neutron diffusion equation

    International Nuclear Information System (INIS)

    Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.

    1999-01-01

    Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations

  19. Approximate variational solutions of the Grad-Shafranov equation

    International Nuclear Information System (INIS)

    Ludwig, G.O.

    2001-01-01

    Approximate solutions of the Grad-Schlueter-Shafranov equation based on variational methods are developed. The power series solutions of the Euler-Lagrange equations for equilibrium are compared with direct variational results for a low aspect ratio tokamak equilibrium. (author)

  20. Novel thermal efficiency-based model for determination of thermal conductivity of membrane distillation membranes

    International Nuclear Information System (INIS)

    Vanneste, Johan; Bush, John A.; Hickenbottom, Kerri L.; Marks, Christopher A.; Jassby, David

    2017-01-01

    Development and selection of membranes for membrane distillation (MD) could be accelerated if all performance-determining characteristics of the membrane could be obtained during MD operation without the need to recur to specialized or cumbersome porosity or thermal conductivity measurement techniques. By redefining the thermal efficiency, the Schofield method could be adapted to describe the flux without prior knowledge of membrane porosity, thickness, or thermal conductivity. A total of 17 commercially available membranes were analyzed in terms of flux and thermal efficiency to assess their suitability for application in MD. The thermal-efficiency based model described the flux with an average %RMSE of 4.5%, which was in the same range as the standard deviation on the measured flux. The redefinition of the thermal efficiency also enabled MD to be used as a novel thermal conductivity measurement device for thin porous hydrophobic films that cannot be measured with the conventional laser flash diffusivity technique.

  1. Prediction Equations of Energy Expenditure in Chinese Youth Based on Step Frequency during Walking and Running

    Science.gov (United States)

    Sun, Bo; Liu, Yu; Li, Jing Xian; Li, Haipeng; Chen, Peijie

    2013-01-01

    Purpose: This study set out to examine the relationship between step frequency and velocity to develop a step frequency-based equation to predict Chinese youth's energy expenditure (EE) during walking and running. Method: A total of 173 boys and girls aged 11 to 18 years old participated in this study. The participants walked and ran on a…

  2. Constitutive equations for discrete electromagnetic problems over polyhedral grids

    International Nuclear Information System (INIS)

    Codecasa, Lorenzo; Trevisan, Francesco

    2007-01-01

    In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field

  3. Statistically and Computationally Efficient Estimating Equations for Large Spatial Datasets

    KAUST Repository

    Sun, Ying; Stein, Michael L.

    2014-01-01

    For Gaussian process models, likelihood based methods are often difficult to use with large irregularly spaced spatial datasets, because exact calculations of the likelihood for n observations require O(n3) operations and O(n2) memory. Various approximation methods have been developed to address the computational difficulties. In this paper, we propose new unbiased estimating equations based on score equation approximations that are both computationally and statistically efficient. We replace the inverse covariance matrix that appears in the score equations by a sparse matrix to approximate the quadratic forms, then set the resulting quadratic forms equal to their expected values to obtain unbiased estimating equations. The sparse matrix is constructed by a sparse inverse Cholesky approach to approximate the inverse covariance matrix. The statistical efficiency of the resulting unbiased estimating equations are evaluated both in theory and by numerical studies. Our methods are applied to nearly 90,000 satellite-based measurements of water vapor levels over a region in the Southeast Pacific Ocean.

  4. Statistically and Computationally Efficient Estimating Equations for Large Spatial Datasets

    KAUST Repository

    Sun, Ying

    2014-11-07

    For Gaussian process models, likelihood based methods are often difficult to use with large irregularly spaced spatial datasets, because exact calculations of the likelihood for n observations require O(n3) operations and O(n2) memory. Various approximation methods have been developed to address the computational difficulties. In this paper, we propose new unbiased estimating equations based on score equation approximations that are both computationally and statistically efficient. We replace the inverse covariance matrix that appears in the score equations by a sparse matrix to approximate the quadratic forms, then set the resulting quadratic forms equal to their expected values to obtain unbiased estimating equations. The sparse matrix is constructed by a sparse inverse Cholesky approach to approximate the inverse covariance matrix. The statistical efficiency of the resulting unbiased estimating equations are evaluated both in theory and by numerical studies. Our methods are applied to nearly 90,000 satellite-based measurements of water vapor levels over a region in the Southeast Pacific Ocean.

  5. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    Science.gov (United States)

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  6. Novel Equations for Estimating Lean Body Mass in Peritoneal Dialysis Patients.

    Science.gov (United States)

    Dong, Jie; Li, Yan-Jun; Xu, Rong; Yang, Zhi-Kai; Zheng, Ying-Dong

    2015-12-01

    ♦ To develop and validate equations for estimating lean body mass (LBM) in peritoneal dialysis (PD) patients. ♦ Two equations for estimating LBM, one based on mid-arm muscle circumference (MAMC) and hand grip strength (HGS), i.e., LBM-M-H, and the other based on HGS, i.e., LBM-H, were developed and validated with LBM obtained by dual-energy X-ray absorptiometry (DEXA). The developed equations were compared to LBM estimated from creatinine kinetics (LBM-CK) and anthropometry (LBM-A) in terms of bias, precision, and accuracy. The prognostic values of LBM estimated from the equations in all-cause mortality risk were assessed. ♦ The developed equations incorporated gender, height, weight, and dialysis duration. Compared to LBM-DEXA, the bias of the developed equations was lower than that of LBM-CK and LBM-A. Additionally, LBM-M-H and LBM-H had better accuracy and precision. The prognostic values of LBM in all-cause mortality risk based on LBM-M-H, LBM-H, LBM-CK, and LBM-A were similar. ♦ Lean body mass estimated by the new equations based on MAMC and HGS was correlated with LBM obtained by DEXA and may serve as practical surrogate markers of LBM in PD patients. Copyright © 2015 International Society for Peritoneal Dialysis.

  7. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  8. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Pituk Mihály

    2007-01-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  9. All-optical differential equation solver with constant-coefficient tunable based on a single microring resonator.

    Science.gov (United States)

    Yang, Ting; Dong, Jianji; Lu, Liangjun; Zhou, Linjie; Zheng, Aoling; Zhang, Xinliang; Chen, Jianping

    2014-07-04

    Photonic integrated circuits for photonic computing open up the possibility for the realization of ultrahigh-speed and ultra wide-band signal processing with compact size and low power consumption. Differential equations model and govern fundamental physical phenomena and engineering systems in virtually any field of science and engineering, such as temperature diffusion processes, physical problems of motion subject to acceleration inputs and frictional forces, and the response of different resistor-capacitor circuits, etc. In this study, we experimentally demonstrate a feasible integrated scheme to solve first-order linear ordinary differential equation with constant-coefficient tunable based on a single silicon microring resonator. Besides, we analyze the impact of the chirp and pulse-width of input signals on the computing deviation. This device can be compatible with the electronic technology (typically complementary metal-oxide semiconductor technology), which may motivate the development of integrated photonic circuits for optical computing.

  10. Generalization of the Knizhnik-Zamolodchikov-equations

    International Nuclear Information System (INIS)

    Alekseev, A.Yu.; Recknagel, A.; Schomerus, V.

    1996-09-01

    In this letter we introduce a generalization of the Knizhnik-Zamolodchikov equations from affine Lie algebras to a wide class of conformal field theories (not necessarily rational). The new equations describe correlation functions of primary fields and of a finite number of their descendents. Our proposal is based on Nahm's concept of small spaces which provide adequate substitutes for the lowest energy subspaces in modules of affine Lie algebras. We explain how to construct the first order differential equations and investigate properties of the associated connections, thereby preparing the grounds for an analysis of quantum symmetries. The general considerations are illustrated in examples of Virasoro minimal models. (orig.)

  11. Constitutive Equation with Varying Parameters for Superplastic Flow Behavior

    Science.gov (United States)

    Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui

    2014-03-01

    In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.

  12. Explicit solutions of two nonlinear dispersive equations with variable coefficients

    International Nuclear Information System (INIS)

    Lai Shaoyong; Lv Xiumei; Wu Yonghong

    2008-01-01

    A mathematical technique based on an auxiliary equation and the symbolic computation system Matlab is developed to construct the exact solutions for a generalized Camassa-Holm equation and a nonlinear dispersive equation with variable coefficients. It is shown that the variable coefficients of the derivative terms in the equations cause the qualitative change in the physical structures of the solutions

  13. What drives technology-based distractions? A structural equation model on social-psychological factors of technology-based driver distraction engagement.

    Science.gov (United States)

    Chen, Huei-Yen Winnie; Donmez, Birsen

    2016-06-01

    With the proliferation of new mobile and in-vehicle technologies, understanding the motivations behind a driver's voluntary engagement with such technologies is crucial from a safety perspective, yet is complex. Previous literature either surveyed a large number of distractions that may be diverse, or too focuses on one particular activity, such as cell phone use. Further, earlier studies about social-psychological factors underlying driver distraction tend to focus on one or two factors in-depth, and those that examine a more comprehensive set of factors are often limited in their analyses methods. The present work considers a wide array of social-psychological factors within a structural equation model to predict their influence on a focused set of technology-based distractions. A better understanding of these facilitators can enhance the design of distraction mitigation strategies. We analysed survey responses about three technology-based driver distractions: holding phone conversations, manually interacting with cell phones, and adjusting the settings of in-vehicle technology, as well as responses on five social-psychological factors: attitude, descriptive norm, injunctive norm, technology inclination, and a risk/sensation seeking personality. Using data collected from 525 drivers (ages: 18-80), a structural equation model was built to analyse these social-psychological factors as latent variables influencing self-reported engagement in these three technology-based distractions. Self-reported engagement in technology-based distractions was found to be largely influenced by attitudes about the distractions. Personality and social norms also played a significant role, but technology inclination did not. A closer look at two age groups (18-30 and 30+) showed that the effect of social norms, especially of injunctive norm (i.e., perceived approvals), was less prominent in the 30+ age group, while personality remained a significant predictor for the 30+ age group but

  14. A generalization of the simplest equation method and its application to (3+1)-dimensional KP equation and generalized Fisher equation

    International Nuclear Information System (INIS)

    Zhao, Zhonglong; Zhang, Yufeng; Han, Zhong; Rui, Wenjuan

    2014-01-01

    In this paper, the simplest equation method is used to construct exact traveling solutions of the (3+1)-dimensional KP equation and generalized Fisher equation. We summarize the main steps of the simplest equation method. The Bernoulli and Riccati equation are used as simplest equations. This method is straightforward and concise, and it can be applied to other nonlinear partial differential equations

  15. Thermodynamically Based Equation of State for Shock Wave Studies : Application to the Design of Experiments on Tin

    International Nuclear Information System (INIS)

    Buy, Francois; Voltz, Christophe; Llorca, Fabrice

    2006-01-01

    This work is devoted to the evaluation of complex behavior of metals under shock wave loading. It presents a methodology for the design of specific experiments performed for validation of models and the evaluation of a multiphase equation of state for tin. This material has been selected because of the numerous works completed during the past years on its equation of state. We focus on the solid diagram which presents two solid phases. A thermodynamically based equation of state is developed which gives the opportunity to search for singularities which could be activated under particular shock wave loading. In the temperature -- pressure diagram, the superimposed Hugoniot and release paths make apparent a double shock, release shock configurations. We propose the design and the VISAR results of a calibrated shock -- reshock test for investigating the validity and the efficiency of the model for predicting the thermodynamical state of tin (phases mixing, temperature...). Comparison between numerical and experimental data shows the good accuracy of the results given by the EOS

  16. Asymptotic Expansions for Higher-Order Scalar Difference Equations

    Directory of Open Access Journals (Sweden)

    Ravi P. Agarwal

    2007-04-01

    Full Text Available We give an asymptotic expansion of the solutions of higher-order Poincaré difference equation in terms of the characteristic solutions of the limiting equation. As a consequence, we obtain an asymptotic description of the solutions approaching a hyperbolic equilibrium of a higher-order nonlinear difference equation with sufficiently smooth nonlinearity. The proof is based on the inversion formula for the z -transform and the residue theorem.

  17. Similarity Solutions for Multiterm Time-Fractional Diffusion Equation

    OpenAIRE

    Elsaid, A.; Abdel Latif, M. S.; Maneea, M.

    2016-01-01

    Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on ...

  18. Coupling Integrable Couplings of an Equation Hierarchy

    International Nuclear Information System (INIS)

    Wang Hui; Xia Tie-Cheng

    2013-01-01

    Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)

  19. Non-probabilistic solutions of imprecisely defined fractional-order diffusion equations

    International Nuclear Information System (INIS)

    Chakraverty, S.; Tapaswini, Smita

    2014-01-01

    The fractional diffusion equation is one of the most important partial differential equations (PDEs) to model problems in mathematical physics. These PDEs are more practical when those are combined with uncertainties. Accordingly, this paper investigates the numerical solution of a non-probabilistic viz. fuzzy fractional-order diffusion equation subjected to various external forces. A fuzzy diffusion equation having fractional order 0 < α ≤ 1 with fuzzy initial condition is taken into consideration. Fuzziness appearing in the initial conditions is modelled through convex normalized triangular and Gaussian fuzzy numbers. A new computational technique is proposed based on double parametric form of fuzzy numbers to handle the fuzzy fractional diffusion equation. Using the single parametric form of fuzzy numbers, the original fuzzy diffusion equation is converted first into an interval-based fuzzy differential equation. Next, this equation is transformed into crisp form by using the proposed double parametric form of fuzzy numbers. Finally, the same is solved by Adomian decomposition method (ADM) symbolically to obtain the uncertain bounds of the solution. Computed results are depicted in terms of plots. Results obtained by the proposed method are compared with the existing results in special cases. (general)

  20. Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.

    Science.gov (United States)

    Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin

    2018-01-08

    We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.

  1. Approximate equations at breaking for nearshore wave transformation coefficients

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.; SanilKumar, V.

    Based on small amplitude wave theory approximate equations are evaluated for determining the coefficients of shoaling, refraction, bottom friction, bottom percolation and viscous dissipation at breaking. The results obtainEd. by these equations...

  2. Radar equations for modern radar

    CERN Document Server

    Barton, David K

    2012-01-01

    Based on the classic Radar Range-Performance Analysis from 1980, this practical volume extends that work to ensure applicability of radar equations to the design and analysis of modern radars. This unique book helps you identify what information on the radar and its environment is needed to predict detection range. Moreover, it provides equations and data to improve the accuracy of range calculations. You find detailed information on propagation effects, methods of range calculation in environments that include clutter, jamming and thermal noise, as well as loss factors that reduce radar perfo

  3. Generalization of Einstein's gravitational field equations

    International Nuclear Information System (INIS)

    Moulin, Frederic

    2017-01-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  4. Generalization of Einstein's gravitational field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)

    2017-12-15

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  5. On geometric approach to Lie symmetries of differential-difference equations

    International Nuclear Information System (INIS)

    Li Hongjing; Wang Dengshan; Wang Shikun; Wu Ke; Zhao Weizhong

    2008-01-01

    Based upon Cartan's geometric formulation of differential equations, Harrison and Estabrook proposed a geometric approach for the symmetries of differential equations. In this Letter, we extend Harrison and Estabrook's approach to analyze the symmetries of differential-difference equations. The discrete exterior differential technique is applied in our approach. The Lie symmetry of (2+1)-dimensional Toda equation is investigated by means of our approach

  6. Equation Discovery for Financial Forcasting in Context of Islamic Banking

    Institute of Scientific and Technical Information of China (English)

    Amer Alzaidi; Dimitar Kazakov

    2010-01-01

    This paper describes an equation discovery approach based on machine leamng using LAGdtAMGE as an equation discovery tool,with two sources of input,a dataset and model presented in context-free gammar.The approach is searching a large range of potential equations by a specific model.The parameters of the equation are fitted to find the best equations.The The experiments are illustratedwith commodity prices from the London Metal Exchange for the period of January-October 2009.The outputs of the experiments are a large number of equations;same of the equations display that the predicted rakes are following the market trends in perfect patterns.

  7. The exact solutions and approximate analytic solutions of the (2 + 1)-dimensional KP equation based on symmetry method.

    Science.gov (United States)

    Gai, Litao; Bilige, Sudao; Jie, Yingmo

    2016-01-01

    In this paper, we successfully obtained the exact solutions and the approximate analytic solutions of the (2 + 1)-dimensional KP equation based on the Lie symmetry, the extended tanh method and the homotopy perturbation method. In first part, we obtained the symmetries of the (2 + 1)-dimensional KP equation based on the Wu-differential characteristic set algorithm and reduced it. In the second part, we constructed the abundant exact travelling wave solutions by using the extended tanh method. These solutions are expressed by the hyperbolic functions, the trigonometric functions and the rational functions respectively. It should be noted that when the parameters are taken as special values, some solitary wave solutions are derived from the hyperbolic function solutions. Finally, we apply the homotopy perturbation method to obtain the approximate analytic solutions based on four kinds of initial conditions.

  8. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  9. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  10. New types of exact solutions for a breaking soliton equation

    International Nuclear Information System (INIS)

    Mei Jianqin; Zhang Hongqing

    2004-01-01

    In this paper based on a system of Riccati equations, we present a newly generally projective Riccati equation expansion method and its algorithm, which can be used to construct more new exact solutions of nonlinear differential equations in mathematical physics. A typical breaking soliton equation is chosen to illustrate our algorithm such that more families of new exact solutions are obtained, which contain soliton-like solutions and periodic solutions. This algorithm can also be applied to other nonlinear differential equations

  11. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  12. Temperature waves and the Boltzmann kinetic equation for phonons

    International Nuclear Information System (INIS)

    Urushev, D.; Borisov, M.; Vavrek, A.

    1988-01-01

    The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs

  13. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  14. Computer Applications in Balancing Chemical Equations.

    Science.gov (United States)

    Kumar, David D.

    2001-01-01

    Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)

  15. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  16. FMTLxLyLz DIMENSIONAL EQUAT DIMENSIONAL EQUATION ...

    African Journals Online (AJOL)

    eobe

    plant made of 12mm thick steel plate was used in de steel plate ... water treatment plant. ... ameters affecting filtration processes were used to derive an equation usin ..... system. However, in deriving the equation onl terms are incorporated.

  17. Multi-symplectic Preissmann methods for generalized Zakharov-Kuznetsov equation

    International Nuclear Information System (INIS)

    Wang Junjie; Yang Kuande; Wang Liantang

    2012-01-01

    Generalized Zakharov-Kuznetsov equation, a typical nonlinear wave equation, was studied based on the multi-symplectic theory in Hamilton space. The multi-symplectic formulations of generalized Zakharov-Kuznetsov equation with several conservation laws are presented. The multi-symplectic Preissmann method is used to discretize the formulations. The numerical experiment is given, and the results verify the efficiency of the multi-symplectic scheme. (authors)

  18. Exp-function method for solving fractional partial differential equations.

    Science.gov (United States)

    Zheng, Bin

    2013-01-01

    We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

  19. Prolongation Structure of Semi-discrete Nonlinear Evolution Equations

    International Nuclear Information System (INIS)

    Bai Yongqiang; Wu Ke; Zhao Weizhong; Guo Hanying

    2007-01-01

    Based on noncommutative differential calculus, we present a theory of prolongation structure for semi-discrete nonlinear evolution equations. As an illustrative example, a semi-discrete model of the nonlinear Schroedinger equation is discussed in terms of this theory and the corresponding Lax pairs are also given.

  20. Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable

    Energy Technology Data Exchange (ETDEWEB)

    Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)

  1. Students’ difficulties in solving linear equation problems

    Science.gov (United States)

    Wati, S.; Fitriana, L.; Mardiyana

    2018-03-01

    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  2. Stability theory for dynamic equations on time scales

    CERN Document Server

    Martynyuk, Anatoly A

    2016-01-01

    This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems. In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Ma...

  3. equate: An R Package for Observed-Score Linking and Equating

    Directory of Open Access Journals (Sweden)

    Anthony D. Albano

    2016-10-01

    Full Text Available The R package equate contains functions for observed-score linking and equating under single-group, equivalent-groups, and nonequivalent-groups with anchor test(s designs. This paper introduces these designs and provides an overview of observed-score equating with details about each of the supported methods. Examples demonstrate the basic functionality of the equate package.

  4. Developing A New Predictive Dispersion Equation Based on Tidal Average (TA) Condition in Alluvial Estuaries

    Science.gov (United States)

    Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.

    2014-05-01

    Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt

  5. UNIFIED MODELS OF ELEMENTS OF POWER SUPPLY SYSTEMS BASED ON EQUATIONS IN PHASE COORDINATES

    Directory of Open Access Journals (Sweden)

    Yu.N. Vepryk

    2015-12-01

    Full Text Available Purpose. The models of electrical machines in the phase coordinates, the universal algorithm for the simulation of separate elements in a d-q coordinates system and in a phase-coordinates system are proposed. Methodology. Computer methods of investigation of transients in electrical systems are based on a compilation of systems of differential equations and their numerical integration solution methods. To solve differential equations an implicit method of numerical integration was chosen. Because it provides to complete structural simulation possibility: firstly developing models of separate elements and then forming a model of the complex system. For the mathematical simulation of electromagnetic transients in the elements of the electrical systems has been accepted the implicit Euler-Cauchy method, because it provides a higher precision and stability of the computing processes. Results. In developing the model elements identified two groups of elements: - Static elements and electrical machines in the d-q coordinates; - Rotating electrical machines in phase coordinates. As an example, the paper provides a model of synchronous and asynchronous electric machines in the d-q coordinates system and the phase coordinate system. The generalization algorithm and the unified notation form of equations of elements of an electrical system are obtained. It provides the possibility of using structural methods to develop a mathematical model of power systems under transient conditions. Practical value. In addition, the using of a computer model allows to implement multivariant calculations for research and study of factors affecting the quantitative characteristics of the transients.

  6. The respiratory system in equations

    CERN Document Server

    Maury, Bertrand

    2013-01-01

    The book proposes an introduction to the mathematical modeling of the respiratory system. A detailed introduction on the physiological aspects makes it accessible to a large audience without any prior knowledge on the lung. Different levels of description are proposed, from the lumped models with a small number of parameters (Ordinary Differential Equations), up to infinite dimensional models based on Partial Differential Equations. Besides these two types of differential equations, two chapters are dedicated to resistive networks, and to the way they can be used to investigate the dependence of the resistance of the lung upon geometrical characteristics. The theoretical analysis of the various models is provided, together with state-of-the-art techniques to compute approximate solutions, allowing comparisons with experimental measurements. The book contains several exercises, most of which are accessible to advanced undergraduate students.

  7. Optical solver for a system of ordinary differential equations based on an external feedback assisted microring resonator.

    Science.gov (United States)

    Hou, Jie; Dong, Jianji; Zhang, Xinliang

    2017-06-15

    Systems of ordinary differential equations (SODEs) are crucial for describing the dynamic behaviors in various systems such as modern control systems which require observability and controllability. In this Letter, we propose and experimentally demonstrate an all-optical SODE solver based on the silicon-on-insulator platform. We use an add/drop microring resonator to construct two different ordinary differential equations (ODEs) and then introduce two external feedback waveguides to realize the coupling between these ODEs, thus forming the SODE solver. A temporal coupled mode theory is used to deduce the expression of the SODE. A system experiment is carried out for further demonstration. For the input 10 GHz NRZ-like pulses, the measured output waveforms of the SODE solver agree well with the calculated results.

  8. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    KAUST Repository

    Zheng, Xiang

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors. © 2015 Elsevier Inc.

  9. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    Science.gov (United States)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  10. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    International Nuclear Information System (INIS)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-01-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors

  11. A practical course in differential equations and mathematical modeling

    CERN Document Server

    Ibragimov , Nail H

    2009-01-01

    A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author's own theoretical developments. The book which aims to present new mathematical curricula based on symmetry and invariance principles is tailored to develop analytic skills and working knowledge in both classical and Lie's methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundame

  12. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    Science.gov (United States)

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  13. Reference population equations using peak expiratory flow meters ...

    African Journals Online (AJOL)

    Many formulae for predicting lung function values for Nigerians have been produced by a lot of investigators. The same principle but different statistical methods were adopted by different authors in generating these equations, hence the variability observed among these formulae. Most equations in current use are based on ...

  14. Insights: A New Method to Balance Chemical Equations.

    Science.gov (United States)

    Garcia, Arcesio

    1987-01-01

    Describes a method designed to balance oxidation-reduction chemical equations. Outlines a method which is based on changes in the oxidation number that can be applied to both molecular reactions and ionic reactions. Provides examples and delineates the steps to follow for each type of equation balancing. (TW)

  15. Exact Solutions to a Combined sinh-cosh-Gordon Equation

    International Nuclear Information System (INIS)

    Wei Long

    2010-01-01

    Based on a transformed Painleve property and the variable separated ODE method, a function transformation method is proposed to search for exact solutions of some partial differential equations (PDEs) with hyperbolic or exponential functions. This approach provides a more systematical and convenient handling of the solution process of this kind of nonlinear equations. Its key point is to eradicate the hyperbolic or exponential terms by a transformed Painleve property and reduce the given PDEs to a variable-coefficient ordinary differential equations, then we seek for solutions to the resulting equations by some methods. As an application, exact solutions for the combined sinh-cosh-Gordon equation are formally derived. (general)

  16. Boltzmann equation and hydrodynamics beyond Navier-Stokes.

    Science.gov (United States)

    Bobylev, A V

    2018-04-28

    We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  17. Regularized Fractional Power Parameters for Image Denoising Based on Convex Solution of Fractional Heat Equation

    Directory of Open Access Journals (Sweden)

    Hamid A. Jalab

    2014-01-01

    Full Text Available The interest in using fractional mask operators based on fractional calculus operators has grown for image denoising. Denoising is one of the most fundamental image restoration problems in computer vision and image processing. This paper proposes an image denoising algorithm based on convex solution of fractional heat equation with regularized fractional power parameters. The performances of the proposed algorithms were evaluated by computing the PSNR, using different types of images. Experiments according to visual perception and the peak signal to noise ratio values show that the improvements in the denoising process are competent with the standard Gaussian filter and Wiener filter.

  18. A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments

    Directory of Open Access Journals (Sweden)

    Ayşe Betül Koç

    2014-01-01

    Full Text Available A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods.

  19. A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations

    Science.gov (United States)

    Piatkowski, Marian; Müthing, Steffen; Bastian, Peter

    2018-03-01

    In this paper we consider discontinuous Galerkin (DG) methods for the incompressible Navier-Stokes equations in the framework of projection methods. In particular we employ symmetric interior penalty DG methods within the second-order rotational incremental pressure correction scheme. The major focus of the paper is threefold: i) We propose a modified upwind scheme based on the Vijayasundaram numerical flux that has favourable properties in the context of DG. ii) We present a novel postprocessing technique in the Helmholtz projection step based on H (div) reconstruction of the pressure correction that is computed locally, is a projection in the discrete setting and ensures that the projected velocity satisfies the discrete continuity equation exactly. As a consequence it also provides local mass conservation of the projected velocity. iii) Numerical results demonstrate the properties of the scheme for different polynomial degrees applied to two-dimensional problems with known solution as well as large-scale three-dimensional problems. In particular we address second-order convergence in time of the splitting scheme as well as its long-time stability.

  20. Method for the determination of the equation of state of advanced fuels based on the properties of normal fluids

    International Nuclear Information System (INIS)

    Hecht, M.J.; Catton, I.; Kastenberg, W.E.

    1976-12-01

    An equation of state based on the properties of normal fluids, the law of rectilinear averages, and the second law of thermodynamics can be derived for advanced LMFBR fuels on the basis of the vapor pressure, enthalpy of vaporization, change in heat capacity upon vaporization, and liquid density at the melting point. The method consists of estimating an equation of state by means of the law of rectilinear averages and the second law of thermodynamics, integrating by means of the second law until an instability is reached, and then extrapolating by means of a self-consistent estimation of the enthalpy of vaporization

  1. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    Science.gov (United States)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  2. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  3. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  4. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  5. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  6. An integral equation-based numerical solver for Taylor states in toroidal geometries

    Science.gov (United States)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  7. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation

    KAUST Repository

    Aldoghaither, Abeer

    2015-12-01

    In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton\\'s iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.

  8. Modulating Functions Based Algorithm for the Estimation of the Coefficients and Differentiation Order for a Space-Fractional Advection-Dispersion Equation

    KAUST Repository

    Aldoghaither, Abeer; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem

    2015-01-01

    In this paper, a new method, based on the so-called modulating functions, is proposed to estimate average velocity, dispersion coefficient, and differentiation order in a space-fractional advection-dispersion equation, where the average velocity and the dispersion coefficient are space-varying. First, the average velocity and the dispersion coefficient are estimated by applying the modulating functions method, where the problem is transformed into a linear system of algebraic equations. Then, the modulating functions method combined with a Newton's iteration algorithm is applied to estimate the coefficients and the differentiation order simultaneously. The local convergence of the proposed method is proved. Numerical results are presented with noisy measurements to show the effectiveness and robustness of the proposed method. It is worth mentioning that this method can be extended to general fractional partial differential equations.

  9. Quantum hydrodynamics and nonlinear differential equations for degenerate Fermi gas

    International Nuclear Information System (INIS)

    Bettelheim, Eldad; Abanov, Alexander G; Wiegmann, Paul B

    2008-01-01

    We present new nonlinear differential equations for spacetime correlation functions of Fermi gas in one spatial dimension. The correlation functions we consider describe non-stationary processes out of equilibrium. The equations we obtain are integrable equations. They generalize known nonlinear differential equations for correlation functions at equilibrium [1-4] and provide vital tools for studying non-equilibrium dynamics of electronic systems. The method we developed is based only on Wick's theorem and the hydrodynamic description of the Fermi gas. Differential equations appear directly in bilinear form. (fast track communication)

  10. Symmetrized neutron transport equation and the fast Fourier transform method

    International Nuclear Information System (INIS)

    Sinh, N.Q.; Kisynski, J.; Mika, J.

    1978-01-01

    The differential equation obtained from the neutron transport equation by the application of the source iteration method in two-dimensional rectangular geometry is transformed into a symmetrized form with respect to one of the angular variables. The discretization of the symmetrized equation leads to finite difference equations based on the five-point scheme and solved by use of the fast Fourier transform method. Possible advantages of the approach are shown on test calculations

  11. A Gradient Based Iterative Solutions for Sylvester Tensor Equations

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2013-01-01

    proposed by Ding and Chen, 2005, and by using tensor arithmetic concepts, an iterative algorithm and its modification are established to solve the Sylvester tensor equation. Convergence analysis indicates that the iterative solutions always converge to the exact solution for arbitrary initial value. Finally, some examples are provided to show that the proposed algorithms are effective.

  12. On a functional equation related to the intermediate long wave equation

    International Nuclear Information System (INIS)

    Hone, A N W; Novikov, V S

    2004-01-01

    We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)

  13. Advanced diffusion model in compacted bentonite based on modified Poisson-Boltzmann equations

    International Nuclear Information System (INIS)

    Yotsuji, K.; Tachi, Y.; Nishimaki, Y.

    2012-01-01

    Document available in extended abstract form only. Diffusion and sorption of radionuclides in compacted bentonite are the key processes in the safe geological disposal of radioactive waste. JAEA has developed the integrated sorption and diffusion (ISD) model for compacted bentonite by coupling the pore water chemistry, sorption and diffusion processes in consistent way. The diffusion model accounts consistently for cation excess and anion exclusion in narrow pores in compacted bentonite by the electric double layer (EDL) theory. The firstly developed ISD model could predict the diffusivity of the monovalent cation/anion in compacted bentonite as a function of dry density. This ISD model was modified by considering the visco-electric effect, and applied for diffusion data for various radionuclides measured under wide range of conditions (salinity, density, etc.). This modified ISD model can give better quantitative agreement with diffusion data for monovalent cation/anion, however, the model predictions still disagree with experimental data for multivalent cation and complex species. In this study we extract the additional key factors influencing diffusion model in narrow charged pores, and the effects of these factors were investigated to reach a better understanding of diffusion processes in compacted bentonite. We investigated here the dielectric saturation effect and the excluded volume effect into the present ISD model and numerically solved these modified Poisson-Boltzmann equations. In the vicinity of the negatively charged clay surfaces, it is necessary to evaluate concentration distribution of electrolytes considering the dielectric saturation effects. The Poisson-Boltzmann (P-B) equation coupled with the dielectric saturation effects was solved numerically by using Runge-Kutta and Shooting methods. Figure 1(a) shows the concentration distributions of Na + as numerical solutions of the modified and original P-B equations for 0.01 M pore water, 800 kg m -3

  14. Effective field equations for expectation values

    International Nuclear Information System (INIS)

    Jordan, R.D.

    1986-01-01

    We discuss functional methods which allow calculation of expectation values, rather than the usual in-out amplitudes, from a path integral. The technique, based on Schwinger's idea of summing over paths which go from the past to the future and then back to the past, provides effective field equations satisfied by the expectation value of the field. These equations are shown to be real and causal for a general theory up to two-loop order, and unitarity is checked to this order. These methods are applied to a simple quantum-mechanical example to illustrate the differences between the new formalism and the standard theory. When applied to the gravitational field, the new effective field equations should be useful for studies of quantum cosmology

  15. Some New Integrable Equations from the Self-Dual Yang-Mills Equations

    International Nuclear Information System (INIS)

    Ivanova, T.A.; Popov, A.D.

    1994-01-01

    Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs

  16. 77 FR 35417 - Center for Scientific Review; Notice of Closed Meetings

    Science.gov (United States)

    2012-06-13

    .... Place: St. Gregory Hotel, 2033 M Street NW., Washington, DC 20036. Contact Person: Geoffrey G Schofield... applications. Place: Hyatt Regency Bethesda, One Bethesda Metro Center, 7400 Wisconsin Avenue, Bethesda, MD...

  17. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  18. Development of bioelectrical impedance analysis-based equations for estimation of body composition in postpartum rural Bangladeshi women.

    Science.gov (United States)

    Shaikh, Saijuddin; Schulze, Kerry J; Kurpad, Anura; Ali, Hasmot; Shamim, Abu Ahmed; Mehra, Sucheta; Wu, Lee S-F; Rashid, Mahbubar; Labrique, Alain B; Christian, Parul; West, Keith P

    2013-02-28

    Equations for predicting body composition from bioelectrical impedance analysis (BIA) parameters are age-, sex- and population-specific. Currently there are no equations applicable to women of reproductive age in rural South Asia. Hence, we developed equations for estimating total body water (TBW), fat-free mass (FFM) and fat mass in rural Bangladeshi women using BIA, with ²H₂O dilution as the criterion method. Women of reproductive age, participating in a community-based placebo-controlled trial of vitamin A or β-carotene supplementation, were enrolled at 19·7 (SD 9·3) weeks postpartum in a study to measure body composition by ²H₂O dilution and impedance at 50 kHz using multi-frequency BIA (n 147), and resistance at 50 kHz using single-frequency BIA (n 82). TBW (kg) by ²H2O dilution was used to derive prediction equations for body composition from BIA measures. The prediction equation was applied to resistance measures obtained at 13 weeks postpartum in a larger population of postpartum women (n 1020). TBW, FFM and fat were 22·6 (SD 2·7), 30·9 (SD 3·7) and 10·2 (SD 3·8) kg by ²H₂O dilution. Height²/impedance or height²/resistance and weight provided the best estimate of TBW, with adjusted R² 0·78 and 0·76, and with paired absolute differences in TBW of 0·02 (SD 1·33) and 0·00 (SD 1·28) kg, respectively, between BIA and ²H₂O. In the larger sample, values for TBW, FFM and fat were 23·8, 32·5 and 10·3 kg, respectively. BIA can be an important tool for assessing body composition in women of reproductive age in rural South Asia where poor maternal nutrition is common.

  19. Hot electrons in superlattices: quantum transport versus Boltzmann equation

    DEFF Research Database (Denmark)

    Wacker, Andreas; Jauho, Antti-Pekka; Rott, S.

    1999-01-01

    A self-consistent solution of the transport equation is presented for semiconductor superlattices within different approaches: (i) a full quantum transport model based on nonequilibrium Green functions, (ii) the semiclassical Boltzmann equation for electrons in a miniband, and (iii) Boltzmann...

  20. Differential equations, mechanics, and computation

    CERN Document Server

    Palais, Richard S

    2009-01-01

    This book provides a conceptual introduction to the theory of ordinary differential equations, concentrating on the initial value problem for equations of evolution and with applications to the calculus of variations and classical mechanics, along with a discussion of chaos theory and ecological models. It has a unified and visual introduction to the theory of numerical methods and a novel approach to the analysis of errors and stability of various numerical solution algorithms based on carefully chosen model problems. While the book would be suitable as a textbook for an undergraduate or elementary graduate course in ordinary differential equations, the authors have designed the text also to be useful for motivated students wishing to learn the material on their own or desiring to supplement an ODE textbook being used in a course they are taking with a text offering a more conceptual approach to the subject.

  1. Introductory course on differential equations

    CERN Document Server

    Gorain, Ganesh C

    2014-01-01

    Introductory Course on DIFFERENTIAL EQUATIONS provides an excellent exposition of the fundamentals of ordinary and partial differential equations and is ideally suited for a first course of undergraduate students of mathematics, physics and engineering. The aim of this book is to present the elementary theories of differential equations in the forms suitable for use of those students whose main interest in the subject are based on simple mathematical ideas. KEY FEATURES: Discusses the subject in a systematic manner without sacrificing mathematical rigour. A variety of exercises drill the students in problem solving in view of the mathematical theories explained in the book. Worked out examples illustrated according to the theories developed in the book with possible alternatives. Exhaustive collection of problems and the simplicity of presentation differentiate this book from several others. Material contained will help teachers as well as aspiring students of different competitive examinations.

  2. Neural network based online simultaneous policy update algorithm for solving the HJI equation in nonlinear H∞ control.

    Science.gov (United States)

    Wu, Huai-Ning; Luo, Biao

    2012-12-01

    It is well known that the nonlinear H∞ state feedback control problem relies on the solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that has proven to be impossible to solve analytically. In this paper, a neural network (NN)-based online simultaneous policy update algorithm (SPUA) is developed to solve the HJI equation, in which knowledge of internal system dynamics is not required. First, we propose an online SPUA which can be viewed as a reinforcement learning technique for two players to learn their optimal actions in an unknown environment. The proposed online SPUA updates control and disturbance policies simultaneously; thus, only one iterative loop is needed. Second, the convergence of the online SPUA is established by proving that it is mathematically equivalent to Newton's method for finding a fixed point in a Banach space. Third, we develop an actor-critic structure for the implementation of the online SPUA, in which only one critic NN is needed for approximating the cost function, and a least-square method is given for estimating the NN weight parameters. Finally, simulation studies are provided to demonstrate the effectiveness of the proposed algorithm.

  3. Hojman's theorem of the third-order ordinary differential equation

    International Nuclear Information System (INIS)

    Hong-Sheng, Lü; Hong-Bin, Zhang; Shu-Long, Gu

    2009-01-01

    This paper extends Hojman's conservation law to the third-order differential equation. A new conserved quantity is constructed based on the Lie group of transformation generators of the equations of motion. The generators contain variations of the time and generalized coordinates. Two independent non-trivial conserved quantities of the third-order ordinary differential equation are obtained. A simple example is presented to illustrate the applications of the results. (general)

  4. New variable separation approach: application to nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Zhang Shunli; Lou, S Y; Qu Changzheng

    2003-01-01

    The concept of the derivative-dependent functional separable solution (DDFSS), as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the DDFSS is obtained and some exact solutions to the resulting equations are described

  5. Variational iteration method for solving coupled-KdV equations

    International Nuclear Information System (INIS)

    Assas, Laila M.B.

    2008-01-01

    In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations

  6. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  7. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    Science.gov (United States)

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  8. The equationally-defined commutator a study in equational logic and algebra

    CERN Document Server

    Czelakowski, Janusz

    2015-01-01

    This monograph introduces and explores the notions of a commutator equation and the equationally-defined commutator from the perspective of abstract algebraic logic.  An account of the commutator operation associated with equational deductive systems is presented, with an emphasis placed on logical aspects of the commutator for equational systems determined by quasivarieties of algebras.  The author discusses the general properties of the equationally-defined commutator, various centralization relations for relative congruences, the additivity and correspondence properties of the equationally-defined commutator, and its behavior in finitely generated quasivarieties. Presenting new and original research not yet considered in the mathematical literature, The Equationally-Defined Commutator will be of interest to professional algebraists and logicians, as well as graduate students and other researchers interested in problems of modern algebraic logic.

  9. Multi-matrix loop equations: algebraic and differential structures and an approximation based on deformation quantization

    International Nuclear Information System (INIS)

    Krishnaswami, Govind S.

    2006-01-01

    Large-N multi-matrix loop equations are formulated as quadratic difference equations in concatenation of gluon correlations. Though non-linear, they involve highest rank correlations linearly. They are underdetermined in many cases. Additional linear equations for gluon correlations, associated to symmetries of action and measure are found. Loop equations aren't differential equations as they involve left annihilation, which doesn't satisfy the Leibnitz rule with concatenation. But left annihilation is a derivation of the commutative shuffle product. Moreover shuffle and concatenation combine to define a bialgebra. Motivated by deformation quantization, we expand concatenation around shuffle in powers of q, whose physical value is 1. At zeroth order the loop equations become quadratic PDEs in the shuffle algebra. If the variation of the action is linear in iterated commutators of left annihilations, these quadratic PDEs linearize by passage to shuffle reciprocal of correlations. Remarkably, this is true for regularized versions of the Yang-Mills, Chern-Simons and Gaussian actions. But the linear equations are underdetermined just as the loop equations were. For any particular solution, the shuffle reciprocal is explicitly inverted to get the zeroth order gluon correlations. To go beyond zeroth order, we find a Poisson bracket on the shuffle algebra and associative q-products interpolating between shuffle and concatenation. This method, and a complementary one of deforming annihilation rather than product are shown to give over and underestimates for correlations of a gaussian matrix model

  10. Standardization of equations for radiochemical calculations

    International Nuclear Information System (INIS)

    Danahy, R.J.; Dugan, T.A.; Tomlinson, F.K.; Jones, H.W.

    1994-01-01

    In mid 1993, the Fernald Environmental Restoration Management Corporation (FERMCO), with USEPA approval implemented a project quality assurance plan containing performance-based specifications for radiochemical sample analyses conducted in support of the Fernald site remediation activities. FERMCO's initial approach to acquiring performance-based radioanalytical services was to provide limited guidance regarding equations for computation of the quantities required in each analysis report. It became evident that there was a significant divergence of opinion on how to compute some very basic radiochemical quantities. The use of a standardized set of equations was needed in order to ensure comparability of data from different laboratories. In a remediation project of this magnitude, use of multiple laboratories is a virtual necessity. Consequently comparability of data becomes an extremely important issue. A critical issue in the Remedial Investigation/Feasibility Study (RI/FS) phase of the dean up project is to avoid the occurrence of excessive false positive sample results. Such results could lead to unnecessary clean up and significant additional cost. This paper describes the specific formulas FERMCO is currently using to define such quantities as net sample count rate, sample radionuclide concentration, radiometric tracer and gravimetric carrier recovery. Equations have also been produced to define the uncertainty in each of the above quantities. Equations for the Total Propagated Uncertainty (TPU) and for a sample-specific Minimum Detectable Concentration (MDC) have also been specified. Generalized equations have been reformulated to address the specific conditions which apply to the analysis of FERMCO samples. In particular, FERMCO requires results which have been corrected for the radioactivity in the blank while in other instances, sample results without blank correction are required

  11. Interpreting experimental data on egg production--applications of dynamic differential equations.

    Science.gov (United States)

    France, J; Lopez, S; Kebreab, E; Dijkstra, J

    2013-09-01

    This contribution focuses on applying mathematical models based on systems of ordinary first-order differential equations to synthesize and interpret data from egg production experiments. Models based on linear systems of differential equations are contrasted with those based on nonlinear systems. Regression equations arising from analytical solutions to linear compartmental schemes are considered as candidate functions for describing egg production curves, together with aspects of parameter estimation. Extant candidate functions are reviewed, a role for growth functions such as the Gompertz equation suggested, and a function based on a simple new model outlined. Structurally, the new model comprises a single pool with an inflow and an outflow. Compartmental simulation models based on nonlinear systems of differential equations, and thus requiring numerical solution, are next discussed, and aspects of parameter estimation considered. This type of model is illustrated in relation to development and evaluation of a dynamic model of calcium and phosphorus flows in layers. The model consists of 8 state variables representing calcium and phosphorus pools in the crop, stomachs, plasma, and bone. The flow equations are described by Michaelis-Menten or mass action forms. Experiments that measure Ca and P uptake in layers fed different calcium concentrations during shell-forming days are used to evaluate the model. In addition to providing a useful management tool, such a simulation model also provides a means to evaluate feeding strategies aimed at reducing excretion of potential pollutants in poultry manure to the environment.

  12. Use of chemistry software to teach and assess model-based reaction and equation knowledge

    Directory of Open Access Journals (Sweden)

    Kevin Pyatt

    2014-12-01

    Full Text Available This study investigated the challenges students face when learning chemical reactions in a first-year chemistry course and the effectiveness of a curriculum and software implementation that was used to teach and assess student understanding of chemical reactions and equations. This study took place over a two year period in a public suburban high-school, in southwestern USA. Two advanced placement (AP chemistry classes participated, referred to here as study group A (year 1, N = 14; and study group B (year 2, N = 21. The curriculum for a first-year chemistry course (group A was revised to include instruction on reaction-types. The second year of the study involved the creation and implementation of a software solution which promoted mastery learning of reaction-types. Students in both groups benefited from the reaction-type curriculum and achieved proficiency in chemical reactions and equations.  The findings suggest there was an added learning benefit to using the reaction-type software solution. This study also found that reaction knowledge was a moderate to strong predictor of chemistry achievement. Based on regression analysis, reaction knowledge significantly predicted chemistry achievement for both groups.

  13. Oscillation of a class of fractional differential equations with damping term.

    Science.gov (United States)

    Qin, Huizeng; Zheng, Bin

    2013-01-01

    We investigate the oscillation of a class of fractional differential equations with damping term. Based on a certain variable transformation, the fractional differential equations are converted into another differential equations of integer order with respect to the new variable. Then, using Riccati transformation, inequality, and integration average technique, some new oscillatory criteria for the equations are established. As for applications, oscillation for two certain fractional differential equations with damping term is investigated by the use of the presented results.

  14. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  15. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  16. A new RBF-Trefftz meshless method for partial differential equations

    International Nuclear Information System (INIS)

    Cao Leilei; Zhao Ning; Qin Qinghua

    2010-01-01

    Based on the radial basis functions (RBF) and T-Trefftz solution, this paper presents a new meshless method for numerically solving various partial differential equation systems. First, the analog equation method (AEM) is used to convert the original patial differential equation to an equivalent Poisson's equation. Then, the radial basis functions (RBF) are employed to approxiamate the inhomogeneous term, while the homogeneous solution is obtained by linear combination of a set of T-Trefftz solutions. The present scheme, named RBF-Trefftz has the advantage over the fundamental solution (MFS) method due to the use of nonsingular T-Trefftz solution rather than singular fundamental solutions, so it does not require the artificial boundary. The application and efficiency of the proposed method are validated through several examples which include different type of differential equations, such as Laplace equation, Hellmholtz equation, convectin-diffusion equation and time-dependent equation.

  17. Two-level method for unsteady Navier-Stokes equations based on a new projection

    International Nuclear Information System (INIS)

    Hou Yanren; Li Kaitai

    2004-12-01

    A two-level algorithm for the two dimensional unsteady Navier-Stokes equations based on a new projection is proposed and investigated. The approximate solution is solved as a sum of a large eddy component and a small eddy component, which are in the sense of the new projection, constructed in this paper. These two terms advance in time explicitly. Actually, the new algorithm proposed here can be regarded as a sort of postprocessing algorithm for the standard Galerkin method (SGM). The large eddy part is solved by SGM in the usual L 2 -based large eddy subspace while the small eddy part (the correction part) is obtained in its complement subspace in the sense of the new projection. The stability analysis indicates the improvement of the stability comparing with SGM of the same scale, and the L 2 -error estimate shows that the scheme can improve the accuracy of SGM approximation for half order. We also propose a numerical implementation based on Lagrange multiplier for this two-level algorithm. (author)

  18. Controllability and Stabilization of Bilinear and Semilinear Partial Differential Equations

    DEFF Research Database (Denmark)

    Krishnaswamy, Vijayaraghavan

    The topic of the thesis is the investigation of the question of controllability of weakly nonlinear partial differntial equations. The method is based on the Hilbert Uniqueness Method.......The topic of the thesis is the investigation of the question of controllability of weakly nonlinear partial differntial equations. The method is based on the Hilbert Uniqueness Method....

  19. Hugoniot-based equations of state for two filled EPDM rubbers

    Science.gov (United States)

    Pacheco, Adam; Dattelbaum, Dana; Orler, E.; Gustavsen, R.

    2013-06-01

    The shock response of silica filled and Kevlar filled ethylene-propylene-diene (EPDM) rubbers was studied using gas gun-driven plate impact experiments. Both materials are proprietary formulations made by Kirkhill-TA, Brea CA USA, and are used for ablative internal rocket motor insulation. Two types of experiments were performed. In the first, the filled-EPDM sample was mounted on the front of the projectile and impacted a Lithium Fluoride (LiF) window. The Hugoniot state was determined from the measured projectile velocity, the EPDM/LiF interface velocity (measured using VISAR) and impedance matching to LiF. In the second type of experiment, electromagnetic particle velocity gauges were embedded between layers of filled-EPDM. These provided in situ particle velocity and shock velocity measurements. Experiments covered a pressure range of 0.34 - 14 GPa. Hugoniot-based equations of state were obtained for both materials, and will be compared to those of other filled elastomers such as silica-filled polydimethylsiloxane and adiprene. Work performed while at Los Alamos National Laboratory.

  20. ALLOMETRIC EQUATIONS FOR ESTIMATING ABOVEGROUND BIOMASS IN PAPUA TROPICAL FOREST

    Directory of Open Access Journals (Sweden)

    Sandhi Imam Maulana

    2014-10-01

    Full Text Available Allometric equations can be used to estimate biomass and carbon stock of  the forest. However, so far the allometric equations for commercial species in Papua tropical forests have not been appropriately developed. In this research, allometric equations are presented based on the genera of  commercial species. Few equations have been developed for the commercial species of  Intsia, Pometia, Palaquium and Vatica genera and an equation of  a mix of  these genera. The number of  trees sampled in this research was 49, with diameters (1.30 m above-ground or above buttresses ranging from 5 to 40 cm. Destructive sampling was used to collect the samples where Diameter at Breast Height (DBH and Wood Density (WD were used as predictors for dry weight of  Total Above-Ground Biomass (TAGB. Model comparison and selection were based on the values of  F-statistics, R-sq, R-sq (adj, and average deviation. Based on these statistical indicators, the most suitable model for Intsia, Pometia, Palaquium and Vatica genera respectively are Log(TAGB = -0.76 + 2.51Log(DBH, Log(TAGB = -0.84 + 2.57Log(DBH, Log(TAGB = -1.52 + 2.96Log(DBH, and Log(TAGB = -0.09 + 2.08Log(DBH. Additional explanatory variables such as Commercial Bole Height (CBH do not really increase the indicators’ goodness of  fit for the equation. An alternative model to incorporate wood density should  be considered for estimating the above-ground biomass for mixed genera. Comparing the presented mixed-genera equation; Log(TAGB = 0.205 + 2.08Log(DBH + 1.75Log(WD, R-sq: 97.0%, R-sq (adj: 96.9%, F statistics 750.67, average deviation: 3.5%; to previously published datashows that this local species specific equation differs substantially from previously published equations and this site-specific equation is  considered to give a better estimation of  biomass.

  1. Five-dimensional Monopole Equation with Hedge-Hog Ansatz and Abel's Differential Equation

    OpenAIRE

    Kihara, Hironobu

    2008-01-01

    We review the generalized monopole in the five-dimensional Euclidean space. A numerical solution with the Hedge-Hog ansatz is studied. The Bogomol'nyi equation becomes a second order autonomous non-linear differential equation. The equation can be translated into the Abel's differential equation of the second kind and is an algebraic differential equation.

  2. Integral-equation based methods for parameter estimation in output pulses of radiation detectors: Application in nuclear medicine and spectroscopy

    Science.gov (United States)

    Mohammadian-Behbahani, Mohammad-Reza; Saramad, Shahyar

    2018-04-01

    Model based analysis methods are relatively new approaches for processing the output data of radiation detectors in nuclear medicine imaging and spectroscopy. A class of such methods requires fast algorithms for fitting pulse models to experimental data. In order to apply integral-equation based methods for processing the preamplifier output pulses, this article proposes a fast and simple method for estimating the parameters of the well-known bi-exponential pulse model by solving an integral equation. The proposed method needs samples from only three points of the recorded pulse as well as its first and second order integrals. After optimizing the sampling points, the estimation results were calculated and compared with two traditional integration-based methods. Different noise levels (signal-to-noise ratios from 10 to 3000) were simulated for testing the functionality of the proposed method, then it was applied to a set of experimental pulses. Finally, the effect of quantization noise was assessed by studying different sampling rates. Promising results by the proposed method endorse it for future real-time applications.

  3. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  4. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  5. Exact, multiple soliton solutions of the double sine Gordon equation

    International Nuclear Information System (INIS)

    Burt, P.B.

    1978-01-01

    Exact, particular solutions of the double sine Gordon equation in n dimensional space are constructed. Under certain restrictions these solutions are N solitons, where N <= 2q - 1 and q is the dimensionality of space-time. The method of solution, known as the base equation technique, relates solutions of nonlinear partial differential equations to solutions of linear partial differential equations. This method is reviewed and its applicability to the double sine Gordon equation shown explicitly. The N soliton solutions have the remarkable property that they collapse to a single soliton when the wave vectors are parallel. (author)

  6. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    Science.gov (United States)

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  7. Structural equation modelling based data fusion for technology forecasting: A generic framework

    CSIR Research Space (South Africa)

    Staphorst, L

    2013-07-01

    Full Text Available to explain the variations in independent variables as functions (commonly referred to regression functions) of variations in dependent variables [13]. With this knowledge it is then possible to perform prediction and forecasting of the values that dependent....G.; “A General Method for Estimating a Linear Structural Equation System,” in Structural Equation Models in the Social Sciences, eds.: A.S. Goldberger and O. D. Duncan, New York: Seminar, 1973. [15] Steinberg, A.N. and Rogova, G.; "Situation...

  8. New Formulation of the Governing Equations for Analyzing Outrigger Structures

    International Nuclear Information System (INIS)

    Er, G.-K.

    2010-01-01

    In this paper, an easily comprehensible solution procedure is proposed for the analysis of outrigger-braced structures. The idea is based on the compatibility of the columns' axial deformation. The unknowns are selected to be the axial forces in the columns. The resulted governing equations and the equations for the optimum analysis of the outrigger locations are different from the conventional ones, but numerical analysis shows that the results obtained with the new equations are same as those obtained with conventional equations. The relations between the new equations and the conventional ones are also figured out. The new procedure of formulating the governing equations can be easily extended to more complicated cases of outrigger-braced structures.

  9. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  10. PolyRES: A polygon-based Richards equation solver

    International Nuclear Information System (INIS)

    Hills, R.G.

    1995-12-01

    This document describes the theory, implementation, and use of a software package designed to solve the transient, two-dimensional, Richards equation for water flow in unsaturated-saturated soils. This package was specifically designed to model complex geometries with minimal input from the user and to simulate groundwater flow related to assessment of low-level radioactive waste disposal sites and engineered facilities. The spatial variation of the hydraulic properties can be defined across individual polygon-shaped subdomains, called objects. These objects combine to form a polygon-shaped model domain. Each object can have its own distribution of hydraulic parameters. The resulting model domain and polygon-shaped internal objects are mapped onto a rectangular, finite-volume, computational grid by a preprocessor. This allows the user to specify model geometry independently of the underlying grid and greatly simplifies user input for complex geometries. In addition, this approach significantly reduces the computational requirements since complex geometries are actually modeled on a rectangular grid. This results in well-structured, finite difference-like systems of equations that require minimal storage and are very efficient to solve. The documentation for this software package includes a user's manual, a detailed description of the underlying theory, and a detailed discussion of program flow. Several example problems are presented that show the use and features of the software package. The water flow predictions for several of these example problems are compared to those of another algorithm to test for prediction equivalency

  11. Similarity Solutions for Multiterm Time-Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Elsaid

    2016-01-01

    Full Text Available Similarity method is employed to solve multiterm time-fractional diffusion equation. The orders of the fractional derivatives belong to the interval (0,1] and are defined in the Caputo sense. We illustrate how the problem is reduced from a multiterm two-variable fractional partial differential equation to a multiterm ordinary fractional differential equation. Power series solution is obtained for the resulting ordinary problem and the convergence of the series solution is discussed. Based on the obtained results, we propose a definition for a multiterm error function with generalized coefficients.

  12. Fourier rebinning and consistency equations for time-of-flight PET planograms.

    Science.gov (United States)

    Li, Yusheng; Defrise, Michel; Matej, Samuel; Metzler, Scott D

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John's equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations and the Fourier-John equation, which are the duals of the consistency equations and John's equation, respectively. We then solve the Fourier consistency equations and Fourier-John equation using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms

  13. The forward and inverse problem in tissue optics based on the radiative transfer equation: A brief review

    International Nuclear Information System (INIS)

    Klose, Alexander D.

    2010-01-01

    This note serves as an introduction to two papers by Klose et al. and provides a brief review of the latest developments in optical tomography of scattering tissue. We discuss advancements made in solving the forward model for light propagation based on the radiative transfer equation, in reconstructing scattering and absorption cross sections of tissue, and in molecular imaging of luminescent sources.

  14. A novel method to solve functional differential equations

    International Nuclear Information System (INIS)

    Tapia, V.

    1990-01-01

    A method to solve differential equations containing the variational operator as the derivation operation is presented. They are called variational differential equations (VDE). The solution to a VDE should be a function containing the derivatives, with respect to the base space coordinates, of the fields up to a generic order s: a s-th-order function. The variational operator doubles the order of the function on which it acts. Therefore, in order to make compatible the orders of the different terms appearing in a VDE, the solution should be a function containing the derivatives of the fields at all orders. But this takes us again back to the functional methods. In order to avoid this, one must restrict the considerations, in the case of second-order VDEs, to the space of s-th-order functions on which the variational operator acts transitively. These functions have been characterized for a one-dimensional base space for the first- and second-order cases. These functions turn out to be polynomial in the highest-order derivatives of the fields with functions of the lower-order derivatives as coefficients. Then VDEs reduce to a system of coupled partial differential equations for the coefficients above mentioned. The importance of the method lies on the fact that the solutions to VDEs are in a one-to-one correspondence with the solutions of functional differential equations. The previous method finds direct applications in quantum field theory, where the Schroedinger equation plays a central role. Since the Schroedinger equation is reduced to a system of coupled partial differential equations, this provides a nonperturbative scheme for quantum field theory. As an example, the massless scalar field is considered

  15. New Equating Methods and Their Relationships with Levine Observed Score Linear Equating under the Kernel Equating Framework

    Science.gov (United States)

    Chen, Haiwen; Holland, Paul

    2010-01-01

    In this paper, we develop a new curvilinear equating for the nonequivalent groups with anchor test (NEAT) design under the assumption of the classical test theory model, that we name curvilinear Levine observed score equating. In fact, by applying both the kernel equating framework and the mean preserving linear transformation of…

  16. Reduced minimax filtering by means of differential-algebraic equations

    NARCIS (Netherlands)

    V. Mallet; S. Zhuk (Sergiy)

    2011-01-01

    htmlabstractA reduced minimax state estimation approach is proposed for high-dimensional models. It is based on the reduction of the ordinary differential equation with high state space dimension to the low-dimensional Differential-Algebraic Equation (DAE) and on the subsequent application of the

  17. Gaussian-windowed frame based method of moments formulation of surface-integral-equation for extended apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shlivinski, A., E-mail: amirshli@ee.bgu.ac.il [Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Lomakin, V., E-mail: vlomakin@eng.ucsd.edu [Department of Electrical and Computer Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-03-01

    Scattering or coupling of electromagnetic beam-field at a surface discontinuity separating two homogeneous or inhomogeneous media with different propagation characteristics is formulated using surface integral equation, which are solved by the Method of Moments with the aid of the Gabor-based Gaussian window frame set of basis and testing functions. The application of the Gaussian window frame provides (i) a mathematically exact and robust tool for spatial-spectral phase-space formulation and analysis of the problem; (ii) a system of linear equations in a transmission-line like form relating mode-like wave objects of one medium with mode-like wave objects of the second medium; (iii) furthermore, an appropriate setting of the frame parameters yields mode-like wave objects that blend plane wave properties (as if solving in the spectral domain) with Green's function properties (as if solving in the spatial domain); and (iv) a representation of the scattered field with Gaussian-beam propagators that may be used in many large (in terms of wavelengths) systems.

  18. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  19. New derivation of quantum equations from classical stochastic arguments

    OpenAIRE

    Bergeron, H.

    2003-01-01

    In a previous article [H. Bergeron, J. Math. Phys. 42, 3983 (2001)], we presented a method to obtain a continuous transition from classical to quantum mechanics starting from the usual phase space formulation of classical mechanics. This procedure was based on a Koopman-von Neumann approach where classical equations are reformulated into a quantumlike form. In this article, we develop a different derivation of quantum equations, based on purely classical stochastic arguments, taking some elem...

  20. JRHR Vol 8 No 1

    African Journals Online (AJOL)

    USER

    effective teaching and learning of religious education in contemporary ... As human beings continue to live in groups, social problems become inevitable. ... development, hence Schofield (1972) regards moral as “behavior and adjective.

  1. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  2. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  3. Density-based Monte Carlo filter and its applications in nonlinear stochastic differential equation models.

    Science.gov (United States)

    Huang, Guanghui; Wan, Jianping; Chen, Hui

    2013-02-01

    Nonlinear stochastic differential equation models with unobservable state variables are now widely used in analysis of PK/PD data. Unobservable state variables are usually estimated with extended Kalman filter (EKF), and the unknown pharmacokinetic parameters are usually estimated by maximum likelihood estimator. However, EKF is inadequate for nonlinear PK/PD models, and MLE is known to be biased downwards. A density-based Monte Carlo filter (DMF) is proposed to estimate the unobservable state variables, and a simulation-based M estimator is proposed to estimate the unknown parameters in this paper, where a genetic algorithm is designed to search the optimal values of pharmacokinetic parameters. The performances of EKF and DMF are compared through simulations for discrete time and continuous time systems respectively, and it is found that the results based on DMF are more accurate than those given by EKF with respect to mean absolute error. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Nielsen number and differential equations

    Directory of Open Access Journals (Sweden)

    Andres Jan

    2005-01-01

    Full Text Available In reply to a problem of Jean Leray (application of the Nielsen theory to differential equations, two main approaches are presented. The first is via Poincaré's translation operator, while the second one is based on the Hammerstein-type solution operator. The applicability of various Nielsen theories is discussed with respect to several sorts of differential equations and inclusions. Links with the Sharkovskii-like theorems (a finite number of periodic solutions imply infinitely many subharmonics are indicated, jointly with some further consequences like the nontrivial -structure of solutions of initial value problems. Some illustrating examples are supplied and open problems are formulated.

  5. Determination of source terms in a degenerate parabolic equation

    International Nuclear Information System (INIS)

    Cannarsa, P; Tort, J; Yamamoto, M

    2010-01-01

    In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation

  6. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  7. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    Science.gov (United States)

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  8. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  9. A differential equation for the Generalized Born radii.

    Science.gov (United States)

    Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro

    2013-06-28

    The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.

  10. Algorithmic Verification of Linearizability for Ordinary Differential Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-07-19

    For a nonlinear ordinary differential equation solved with respect to the highest order derivative and rational in the other derivatives and in the independent variable, we devise two algorithms to check if the equation can be reduced to a linear one by a point transformation of the dependent and independent variables. The first algorithm is based on a construction of the Lie point symmetry algebra and on the computation of its derived algebra. The second algorithm exploits the differential Thomas decomposition and allows not only to test the linearizability, but also to generate a system of nonlinear partial differential equations that determines the point transformation and the coefficients of the linearized equation. The implementation of both algorithms is discussed and their application is illustrated using several examples.

  11. Approximate Solution of LR Fuzzy Sylvester Matrix Equations

    Directory of Open Access Journals (Sweden)

    Xiaobin Guo

    2013-01-01

    Full Text Available The fuzzy Sylvester matrix equation AX~+X~B=C~ in which A,B are m×m and n×n crisp matrices, respectively, and C~ is an m×n LR fuzzy numbers matrix is investigated. Based on the Kronecker product of matrices, we convert the fuzzy Sylvester matrix equation into an LR fuzzy linear system. Then we extend the fuzzy linear system into two systems of linear equations according to the arithmetic operations of LR fuzzy numbers. The fuzzy approximate solution of the original fuzzy matrix equation is obtained by solving the crisp linear systems. The existence condition of the LR fuzzy solution is also discussed. Some examples are given to illustrate the proposed method.

  12. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  13. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  14. Precision measurement of refractive index of air based on laser synthetic wavelength interferometry with Edlén equation estimation.

    Science.gov (United States)

    Yan, Liping; Chen, Benyong; Zhang, Enzheng; Zhang, Shihua; Yang, Ye

    2015-08-01

    A novel method for the precision measurement of refractive index of air (n(air)) based on the combining of the laser synthetic wavelength interferometry with the Edlén equation estimation is proposed. First, a n(air_e) is calculated from the modified Edlén equation according to environmental parameters measured by low precision sensors with an uncertainty of 10(-6). Second, a unique integral fringe number N corresponding to n(air) is determined based on the calculated n(air_e). Then, a fractional fringe ε corresponding to n(air) with high accuracy can be obtained according to the principle of fringe subdivision of laser synthetic wavelength interferometry. Finally, high accurate measurement of n(air) is achieved according to the determined fringes N and ε. The merit of the proposed method is that it not only solves the problem of the measurement accuracy of n(air) being limited by the accuracies of environmental sensors, but also avoids adopting complicated vacuum pumping to measure the integral fringe N in the method of conventional laser interferometry. To verify the feasibility of the proposed method, comparison experiments with Edlén equations in short time and in long time were performed. Experimental results show that the measurement accuracy of n(air) is better than 2.5 × 10(-8) in short time tests and 6.2 × 10(-8) in long time tests.

  15. Comparison of equations for dosing of medications in renal impairment.

    Science.gov (United States)

    Khanal, Aarati; Peterson, Gregory M; Jose, Matthew D; Castelino, Ronald L

    2017-06-01

    The aim of this study is to determine the concordance among the Cockcroft-Gault, the Modification of Diet in Renal Disease and the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations in hypothetical dosing of renally cleared medications. A total of 2163 patients prescribed at least one of the 31 renally cleared drugs under review were included in the study. Kidney function was estimated using the three equations. We compared actual prescribed dosages of the same drug with recommended dosages based on the kidney function as calculated by each of the equations and applying dosing recommendations in the Australian Medicines Handbook. There was a significant difference in the kidney function values estimated from the three equations (P < 0.001). Despite the good overall agreement in renal drug dosing, we found selected but potentially important discrepancies among the doses rendered from the equations. The CKD-EPI equation non-normalized for body surface area had a greater rate of concordance with the Cockcroft-Gault equation than the Modification of Diet in Renal Disease equation for renal drug dosing. There is need for a long-term multi-centre study in a diverse population to define the clinical effects of the discrepancies among the equations for drug dosing. Given the greater concordance of the non-normalized CKD-EPI equation with the Cockcroft-Gault equation for dosing, the recommendation by Kidney Health Australia and the United States National Kidney Disease Education Program that 'dosing based on either eCrCl or an eGFR with body surface area normalization removed are acceptable' seems suitable and practicable for the purpose of dosing of non-critical drugs in the primary care setting. © 2016 Asian Pacific Society of Nephrology.

  16. How the 2SLS/IV estimator can handle equality constraints in structural equation models: a system-of-equations approach.

    Science.gov (United States)

    Nestler, Steffen

    2014-05-01

    Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.

  17. Causal interpretation of stochastic differential equations

    DEFF Research Database (Denmark)

    Sokol, Alexander; Hansen, Niels Richard

    2014-01-01

    We give a causal interpretation of stochastic differential equations (SDEs) by defining the postintervention SDE resulting from an intervention in an SDE. We show that under Lipschitz conditions, the solution to the postintervention SDE is equal to a uniform limit in probability of postintervention...... structural equation models based on the Euler scheme of the original SDE, thus relating our definition to mainstream causal concepts. We prove that when the driving noise in the SDE is a Lévy process, the postintervention distribution is identifiable from the generator of the SDE....

  18. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  19. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  20. Numerical Simulation of the Interaction between Phosphorus and Sediment Based on the Modified Langmuir Equation

    Directory of Open Access Journals (Sweden)

    Pengjie Hu

    2018-06-01

    Full Text Available Phosphorus is the primary factor that limits eutrophication of surface waters in aquatic environments. Sediment particles have a strong affinity to phosphorus due to the high specific surface areas and surface active sites. In this paper, a numerical model containing hydrodynamics, sediment, and phosphorus module based on improved Langmuir equation is established, where the processes of adsorption and desorption are considered. Through the statistical analysis of the physical experiment data, the fitting formulas of two important parameters in the Langmuir equation are obtained, which are the adsorption coefficient, ka, and the ratio k between the adsorption coefficient and the desorption coefficient. In order to simulate the experimental flume and get a constant and uniform water flow, a periodical numerical flume is built by adding a streamwise body force, Fx. The adsorbed phosphorus by sediment and the dissolved phosphorus in the water are separately added into the Advection Diffusion equation as a source term to simulate the interaction between them. The result of the numerical model turns out to be well matched with that of the physical experiment and can thus provide the basis for further analysis. With the application of the numerical model to some new and relative cases, the conclusion will be drawn through an afterwards analysis. The concentration of dissolved phosphorus proves to be unevenly distributed along the depth and the maximum value approximately appears in the 3/4 water depth because both the high velocity in the top layer and the high turbulence intensity in the bottom layer can promote sediment adsorption on phosphorus.

  1. Moving interfaces and quasilinear parabolic evolution equations

    CERN Document Server

    Prüss, Jan

    2016-01-01

    In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions...

  2. Best lung function equations for the very elderly selected by survival analysis

    DEFF Research Database (Denmark)

    Miller, Martin R; Thinggaard, Mikael; Christensen, Kaare

    2014-01-01

    We evaluated which equations best predicted the lung function of a cohort of nonagenarians based on which best accounted for subsequent survival.In 1998, we measured lung function, grip strength and dementia score (Mini Mental State Examination (MMSE)) in a population-based sample of 2262 Danes...... with a hazard ratio for death of 1, 1.16, 1.32 and 1.60 respectively, compared with equations derived with the inclusion of elderly subjects.We conclude that extrapolating from NHANES III equations to predict lung function in nonagenarians gave better survival predictions from spirometry than when employing...... equations derived using very elderly subjects with possible selection bias. These findings can help inform how future lung function equations for the elderly are derived....

  3. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Zayadeh, Raphael

    2013-12-15

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is

  4. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    International Nuclear Information System (INIS)

    Zayadeh, Raphael

    2013-12-01

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is the two

  5. Iterative solutions of finite difference diffusion equations

    International Nuclear Information System (INIS)

    Menon, S.V.G.; Khandekar, D.C.; Trasi, M.S.

    1981-01-01

    The heterogeneous arrangement of materials and the three-dimensional character of the reactor physics problems encountered in the design and operation of nuclear reactors makes it necessary to use numerical methods for solution of the neutron diffusion equations which are based on the linear Boltzmann equation. The commonly used numerical method for this purpose is the finite difference method. It converts the diffusion equations to a system of algebraic equations. In practice, the size of this resulting algebraic system is so large that the iterative methods have to be used. Most frequently used iterative methods are discussed. They include : (1) basic iterative methods for one-group problems, (2) iterative methods for eigenvalue problems, and (3) iterative methods which use variable acceleration parameters. Application of Chebyshev theorem to iterative methods is discussed. The extension of the above iterative methods to multigroup neutron diffusion equations is also considered. These methods are applicable to elliptic boundary value problems in reactor design studies in particular, and to elliptic partial differential equations in general. Solution of sample problems is included to illustrate their applications. The subject matter is presented in as simple a manner as possible. However, a working knowledge of matrix theory is presupposed. (M.G.B.)

  6. Constitutive equations for Zr1Nb. II

    International Nuclear Information System (INIS)

    Novak, J.

    1986-01-01

    Based on existing knowledge and constitutive equations for non-irradiated material, constitutive equations were written for Zr1Nb irradiated at 573 K at deformation in the direction of forming. Constitutive equations express the following material characteristics: dependence of shear strength on fast neutron fluence, superposition of deformation hardening and subsequent radiation hardening, the effect of stress on deformation rate, and for fluences above ca. 10 24 n.m -2 (E>1 MeV) the course of the deformation curve for various fluence levels. The values apply for temperatures and rates of deformation which are characteristic of transient processes during changes in the power output of fuel elements of pressurized water reactors. (J.B.)

  7. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  8. Comparative analysis of the influence of creep of concrete composite beams of steel - concrete model based on Volterra integral equation

    Directory of Open Access Journals (Sweden)

    Partov Doncho

    2017-01-01

    Full Text Available The paper presents analysis of the stress-strain behaviour and deflection changes due to creep in statically determinate composite steel-concrete beam according to EUROCODE 2, ACI209R-92 and Gardner&Lockman models. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann - Volterra for the concrete part considering the above mentioned models. On the basis of the theory of viscoelastic body of Maslov-Arutyunian-Trost-Zerna-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time 't', two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernel function in the integral equation is presented. Example with the model proposed is investigated.

  9. The equations of motion of a secularly precessing elliptical orbit

    Science.gov (United States)

    Casotto, S.; Bardella, M.

    2013-01-01

    The equations of motion of a secularly precessing ellipse are developed using time as the independent variable. The equations are useful when integrating numerically the perturbations about a reference trajectory which is subject to secular perturbations in the node, the argument of pericentre and the mean motion. Usually this is done in connection with Encke's method to ensure minimal rectification frequency. Similar equations are already available in the literature, but they are either given based on the true anomaly as the independent variable or in mixed mode with respect to time through the use of a supporting equation to track the anomaly. The equations developed here form a complete and independent set of six equations in time. Reformulations both of Escobal's and Kyner and Bennett's equations are also provided which lead to a more concise form.

  10. Comparative Performance of Creatinine-Based Estimated Glomerular Filtration Rate Equations in the Malays: A Pilot Study in Tertiary Hospital in Malaysia

    Directory of Open Access Journals (Sweden)

    Maisarah Jalalonmuhali

    2017-01-01

    Full Text Available Aim. To validate the accuracy of estimated glomerular filtration rate (eGFR equations in Malay population attending our hospital in comparison with radiolabeled measured GFR. Methods. A cross-sectional study recruiting volunteered patients in the outpatient setting. Chromium EDTA (51Cr-EDTA was used as measured GFR. The predictive capabilities of Cockcroft-Gault equation corrected for body surface area (CGBSA, four-variable Modification of Diet in Renal Disease (4-MDRD, and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI equations were calculated. Results. A total of 51 subjects were recruited with mean measured GFR 42.04 (17.70–111.10 ml/min/1.73 m2. Estimated GFR based on CGBSA, 4-MDRD, and CKD-EPI were 40.47 (16.52–115.52, 35.90 (14.00–98.00, and 37.24 (14.00–121.00, respectively. Higher accuracy was noted in 4-MDRD equations throughout all GFR groups except for subgroup of GFR ≥ 60 ml/min/1.73 m2 where CGBSA was better. Conclusions. The 4-MDRD equation seems to perform better in estimating GFR in Malay CKD patients generally and specifically in the subgroup of GFR < 60 ml/min/1.73 m2 and both BMI subgroups.

  11. Linking Resource-Based Strategies to Customer-Focused Performance for Professional Services: A Structural Equation Modelling Approach

    Directory of Open Access Journals (Sweden)

    Ming-Lu Wu

    2013-12-01

    Full Text Available This paper links professional service firms’ resource-based strategies to their customer-focused performance for formulating service quality improvement priorities. The research applies the structural equation modelling approach to survey data from Hong Kong construction consultants to test some hypotheses. The study validates the various measures of firms’ resource-based strategies and customer-focused performance and bridges the gaps in firms’ organizational learning, core competences and customer-focused performance mediated by their strategic flexibility. The research results have practical implications for professional service firms to deploy resources appropriately to first enhance different competences and then improve customerfocused performance using their different competences.

  12. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  13. Modeling for cardiac excitation propagation based on the Nernst-Planck equation and homogenization.

    Science.gov (United States)

    Okada, Jun-ichi; Sugiura, Seiryo; Hisada, Toshiaki

    2013-06-01

    The bidomain model is a commonly used mathematical model of the electrical properties of the cardiac muscle that takes into account the anisotropy of both the intracellular and extracellular spaces. However, the equations contain self-contradiction such that the update of ion concentrations does not consider intracellular or extracellular ion movements due to the gradient of electric potential and the membrane charge as capacitive currents in spite of the fact that those currents are taken into account in forming Kirchhoff's first law. To overcome this problem, we start with the Nernst-Planck equation, the ionic conservation law, and the electroneutrality condition at the cellular level, and by introducing a homogenization method and assuming uniformity of variables at the microscopic scale, we derive rational bidomain equations at the macroscopic level.

  14. A Sequential, Implicit, Wavelet-Based Solver for Multi-Scale Time-Dependent Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Donald A. McLaren

    2013-04-01

    Full Text Available This paper describes and tests a wavelet-based implicit numerical method for solving partial differential equations. Intended for problems with localized small-scale interactions, the method exploits the form of the wavelet decomposition to divide the implicit system created by the time-discretization into multiple smaller systems that can be solved sequentially. Included is a test on a basic non-linear problem, with both the results of the test, and the time required to calculate them, compared with control results based on a single system with fine resolution. The method is then tested on a non-trivial problem, its computational time and accuracy checked against control results. In both tests, it was found that the method requires less computational expense than the control. Furthermore, the method showed convergence towards the fine resolution control results.

  15. Equation-based model for the stock market.

    Science.gov (United States)

    Xavier, Paloma O C; Atman, A P F; de Magalhães, A R Bosco

    2017-09-01

    We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.

  16. Equation-based model for the stock market

    Science.gov (United States)

    Xavier, Paloma O. C.; Atman, A. P. F.; de Magalhães, A. R. Bosco

    2017-09-01

    We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.

  17. Test Score Equating Using Discrete Anchor Items versus Passage-Based Anchor Items: A Case Study Using "SAT"® Data. Research Report. ETS RR-14-14

    Science.gov (United States)

    Liu, Jinghua; Zu, Jiyun; Curley, Edward; Carey, Jill

    2014-01-01

    The purpose of this study is to investigate the impact of discrete anchor items versus passage-based anchor items on observed score equating using empirical data.This study compares an "SAT"® critical reading anchor that contains more discrete items proportionally, compared to the total tests to be equated, to another anchor that…

  18. Rational approximations to solutions of linear differential equations.

    Science.gov (United States)

    Chudnovsky, D V; Chudnovsky, G V

    1983-08-01

    Rational approximations of Padé and Padé type to solutions of differential equations are considered. One of the main results is a theorem stating that a simultaneous approximation to arbitrary solutions of linear differential equations over C(x) cannot be "better" than trivial ones implied by the Dirichlet box principle. This constitutes, in particular, the solution in the linear case of Kolchin's problem that the "Roth's theorem" holds for arbitrary solutions of algebraic differential equations. Complete effective proofs for several valuations are presented based on the Wronskian methods and graded subrings of Picard-Vessiot extensions.

  19. Studies on Microwave Heated Drying-rate Equations of Foods

    OpenAIRE

    呂, 聯通; 久保田, 清; 鈴木, 寛一; 岡崎, 尚; 山下, 洋右

    1990-01-01

    In order to design various microwave heated drying apparatuses, we must take drying-rate equations which are based on simple drying-rate models. In a previous paper (KUBOTA, et al., 1990), we have studied a convenient microwave heated drying instrument, and studied the simple drying-rate equations of potato and so on by using the simple empirical rate equations that have been reported in previous papers (KUBOTA, 1979-1, 1979-2). In this paper, we studied the microwave drying rate of the const...

  20. Undergraduate Students' Mental Operations in Systems of Differential Equations

    Science.gov (United States)

    Whitehead, Karen; Rasmussen, Chris

    2003-01-01

    This paper reports on research conducted to understand undergraduate students' ways of reasoning about systems of differential equations (SDEs). As part of a semester long classroom teaching experiment in a first course in differential equations, we conducted task-based interviews with six students after their study of first order differential…

  1. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  2. ECONOMETRIC APPROACH TO DIFFERENCE EQUATIONS MODELING OF EXCHANGE RATES CHANGES

    Directory of Open Access Journals (Sweden)

    Josip Arnerić

    2010-12-01

    Full Text Available Time series models that are commonly used in econometric modeling are autoregressive stochastic linear models (AR and models of moving averages (MA. Mentioned models by their structure are actually stochastic difference equations. Therefore, the objective of this paper is to estimate difference equations containing stochastic (random component. Estimated models of time series will be used to forecast observed data in the future. Namely, solutions of difference equations are closely related to conditions of stationary time series models. Based on the fact that volatility is time varying in high frequency data and that periods of high volatility tend to cluster, the most successful and popular models in modeling time varying volatility are GARCH type models and their variants. However, GARCH models will not be analyzed because the purpose of this research is to predict the value of the exchange rate in the levels within conditional mean equation and to determine whether the observed variable has a stable or explosive time path. Based on the estimated difference equation it will be examined whether Croatia is implementing a stable policy of exchange rates.

  3. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  4. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  5. New method for solving three-dimensional Schroedinger equation

    International Nuclear Information System (INIS)

    Melezhik, V.S.

    1992-01-01

    A new method is developed for solving the multidimensional Schroedinger equation without the variable separation. To solve the Schroedinger equation in a multidimensional coordinate space X, a difference grid Ω i (i=1,2,...,N) for some of variables, Ω, from X={R,Ω} is introduced and the initial partial-differential equation is reduced to a system of N differential-difference equations in terms of one of the variables R. The arising multi-channel scattering (or eigenvalue) problem is solved by the algorithm based on a continuous analog of the Newton method. The approach has been successfully tested for several two-dimensional problems (scattering on a nonspherical potential well and 'dipole' scatterer, a hydrogen atom in a homogenous magnetic field) and for a three-dimensional problem of the helium-atom bound states. (author)

  6. Complete factorisation and analytic solutions of generalized Lotka-Volterra equations

    Science.gov (United States)

    Brenig, L.

    1988-11-01

    It is shown that many systems of nonlinear differential equations of interest in various fields are naturally imbedded in a new family of differential equations. This family is invariant under nonlinear transformations based on the concept of matrix power of a vector. Each equation belonging to that family can be brought into a factorized canonical form for which integrable cases can be easily identified and solutions can be found by quadratures.

  7. New exact solutions of the Einstein—Maxwell equations for magnetostatic fields

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R.K.

    2012-01-01

    The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein—Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions

  8. Extended sine-Gordon Equation Method and Its Application to Maccari's System

    International Nuclear Information System (INIS)

    Song Lina; Zhang Hongqing

    2005-01-01

    An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.

  9. Peakons, solitary patterns and periodic solutions for generalized Camassa-Holm equations

    International Nuclear Information System (INIS)

    Zheng Yin; Lai Shaoyong

    2008-01-01

    This Letter deals with a generalized Camassa-Holm equation and a nonlinear dispersive equation by making use of a mathematical technique based on using integral factors for solving differential equations. The peakons, solitary patterns and periodic solutions are expressed analytically under various circumstances. The conditions that cause the qualitative change in the physical structures of the solutions are highlighted

  10. Discrete systems related to the sixth Painleve equation

    International Nuclear Information System (INIS)

    Ramani, A; Ohta, Y; Grammaticos, B

    2006-01-01

    We present discrete Painleve equations which can be obtained as contiguity relations of the solutions of the continuous Painleve VI. The derivation is based on the geometry of the affine Weyl group D (1) 4 associated with the bilinear formalism. As an offshoot we also present the contiguity relations of the solutions of the Bureau-Ablowitz-Fokas equation, which is a Miura transformed, 'modified', P VI

  11. Reliable Quantification of the Potential for Equations Based on Spot Urine Samples to Estimate Population Salt Intake

    DEFF Research Database (Denmark)

    Huang, Liping; Crino, Michelle; Wu, Jason Hy

    2016-01-01

    to a standard format. Individual participant records will be compiled and a series of analyses will be completed to: (1) compare existing equations for estimating 24-hour salt intake from spot urine samples with 24-hour urine samples, and assess the degree of bias according to key demographic and clinical......BACKGROUND: Methods based on spot urine samples (a single sample at one time-point) have been identified as a possible alternative approach to 24-hour urine samples for determining mean population salt intake. OBJECTIVE: The aim of this study is to identify a reliable method for estimating mean...... population salt intake from spot urine samples. This will be done by comparing the performance of existing equations against one other and against estimates derived from 24-hour urine samples. The effects of factors such as ethnicity, sex, age, body mass index, antihypertensive drug use, health status...

  12. Thermodynamic quantities for the Klein–Gordon equation with a ...

    Indian Academy of Sciences (India)

    2017-02-01

    Feb 1, 2017 ... Abstract. We study some thermodynamic quantities for the Klein–Gordon equation with a linear plus inverse- linear, scalar potential. We obtain the energy eigenvalues with the help of the quantization rule from the biconfluent Heun's equation. We use a method based on the Euler–MacLaurin formula to ...

  13. A connection between the Einstein and Yang-Mills equations

    International Nuclear Information System (INIS)

    Mason, L.J.; Newman, E.T.

    1989-01-01

    It is our purpose here to show an unusual relationship between the Einstein equations and the Yang-Mills equations. We give a correspondence between solutions of the self-dual Einstein vacuum equations and the self-dual Yang-Mills equations with a special choice of gauge group. The extension of the argument to the full Yang-Mills equations yields Einstein's unified equations. We try to incorporate the full Einstein vacuum equations, but the approach is incomplete. We first consider Yang-Mills theory for an arbitrary Lie-algebra with the condition that the connection 1-form and curvature are constant on Minkowski space. This leads to a set of algebraic equations on the connection components. We then specialize the Lie-algebra to be the (infinite dimensional) Lie algebra of a group of diffeomorphisms of some manifold. The algebraic equations then become differential equations for four vector fields on the manifold on which the diffeomorphisms act. In the self-dual case, if we choose the connection components from the Lie-algebra of the volume preserving 4-dimensional diffeomorphism group, the resulting equations are the same as those obtained by Ashtekar, Jacobsen and Smolin, in their remarkable simplification of the self-dual Einstein vacuum equations. (An alternative derivation of the same equations begins with the self-dual Yang-Mills connection now depending only on the time, then choosing the Lie-algebra as that of the volume preserving 3-dimensional diffeomorphisms). When the reduced full Yang-Mills equations are used in the same context, we get Einstein's equations for his unified theory based on absolute parallelism. To incorporate the full Einstein vacuum equations we use as the Lie group the semi-direct product of the diffeomorphism group of a 4-dimensional manifold with the group of frame rotations of an SO(1, 3) bundle over the 4-manifold. This last approach, however, yields equations more general than the vacuum equations. (orig.)

  14. How to obtain the covariant form of Maxwell's equations from the continuity equation

    International Nuclear Information System (INIS)

    Heras, Jose A

    2009-01-01

    The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations

  15. Integration of Schwinger equation for (φ* φ)d2 theory

    International Nuclear Information System (INIS)

    Rochev, V.E.

    1993-01-01

    A general solution for the Schwinger equation for the generating functional of the complex scalar field theory with (φ * φ) d 2 interaction has been constructed. The method is based on the reduction of the order of this equation using the particular solution

  16. Theory of nanolaser devices: Rate equation analysis versus microscopic theory

    DEFF Research Database (Denmark)

    Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels

    2013-01-01

    A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...

  17. Spatial evolution equation of wind wave growth

    Institute of Scientific and Technical Information of China (English)

    WANG; Wei; (王; 伟); SUN; Fu; (孙; 孚); DAI; Dejun; (戴德君)

    2003-01-01

    Based on the dynamic essence of air-sea interactions, a feedback type of spatial evolution equation is suggested to match reasonably the growing process of wind waves. This simple equation involving the dominant factors of wind wave growth is able to explain the transfer of energy from high to low frequencies without introducing the concept of nonlinear wave-wave interactions, and the results agree well with observations. The rate of wave height growth derived in this dissertation is applicable to both laboratory and open sea, which solidifies the physical basis of using laboratory experiments to investigate the generation of wind waves. Thus the proposed spatial evolution equation provides a new approach for the research on dynamic mechanism of air-sea interactions and wind wave prediction.

  18. Estimating glomerular filtration rate (GFR) in children. The average between a cystatin C- and a creatinine-based equation improves estimation of GFR in both children and adults and enables diagnosing Shrunken Pore Syndrome.

    Science.gov (United States)

    Leion, Felicia; Hegbrant, Josefine; den Bakker, Emil; Jonsson, Magnus; Abrahamson, Magnus; Nyman, Ulf; Björk, Jonas; Lindström, Veronica; Larsson, Anders; Bökenkamp, Arend; Grubb, Anders

    2017-09-01

    Estimating glomerular filtration rate (GFR) in adults by using the average of values obtained by a cystatin C- (eGFR cystatin C ) and a creatinine-based (eGFR creatinine ) equation shows at least the same diagnostic performance as GFR estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparison of eGFR cystatin C and eGFR creatinine plays a pivotal role in the diagnosis of Shrunken Pore Syndrome, where low eGFR cystatin C compared to eGFR creatinine has been associated with higher mortality in adults. The present study was undertaken to elucidate if this concept can also be applied in children. Using iohexol and inulin clearance as gold standard in 702 children, we studied the diagnostic performance of 10 creatinine-based, 5 cystatin C-based and 3 combined cystatin C-creatinine eGFR equations and compared them to the result of the average of 9 pairs of a eGFR cystatin C and a eGFR creatinine estimate. While creatinine-based GFR estimations are unsuitable in children unless calibrated in a pediatric or mixed pediatric-adult population, cystatin C-based estimations in general performed well in children. The average of a suitable creatinine-based and a cystatin C-based equation generally displayed a better diagnostic performance than estimates obtained by equations using only one of these analytes or by complex equations using both analytes. Comparing eGFR cystatin and eGFR creatinine may help identify pediatric patients with Shrunken Pore Syndrome.

  19. Stabilization analysis of Euler-Bernoulli beam equation with locally distributed disturbance

    Directory of Open Access Journals (Sweden)

    Pengcheng HAN

    2017-12-01

    Full Text Available In order to enrich the system stability theory of the control theories, taking Euler-Bernoulli beam equation as the research subject, the stability of Euler-Bernoulli beam equation with locally distributed disturbance is studied. A feedback controller based on output is designed to reduce the effects of the disturbances. The well-posedness of the nonlinear closed-loop system is investigated by the theory of maximal monotone operator, namely the existence and uniqueness of solutions for the closed-loop system. An appropriate state space is established, an appropriate inner product is defined, and a non-linear operator satisfying this state space is defined. Then, the system is transformed into the form of evolution equation. Based on this, the existence and uniqueness of solutions for the closed-loop system are proved. The asymptotic stability of the system is studied by constructing an appropriate Lyapunov function, which proves the asymptotic stability of the closed-loop system. The result shows that designing proper anti-interference controller is the foundation of investigating the system stability, and the research of the stability of Euler-bernoulli beam equation with locally distributed disturbance can prove the asymptotic stability of the system. This method can be extended to study the other equations such as wave equation, Timoshenko beam equation, Schrodinger equation, etc.

  20. A numerical method to solve the 1D and the 2D reaction diffusion equation based on Bessel functions and Jacobian free Newton-Krylov subspace methods

    Science.gov (United States)

    Parand, K.; Nikarya, M.

    2017-11-01

    In this paper a novel method will be introduced to solve a nonlinear partial differential equation (PDE). In the proposed method, we use the spectral collocation method based on Bessel functions of the first kind and the Jacobian free Newton-generalized minimum residual (JFNGMRes) method with adaptive preconditioner. In this work a nonlinear PDE has been converted to a nonlinear system of algebraic equations using the collocation method based on Bessel functions without any linearization, discretization or getting the help of any other methods. Finally, by using JFNGMRes, the solution of the nonlinear algebraic system is achieved. To illustrate the reliability and efficiency of the proposed method, we solve some examples of the famous Fisher equation. We compare our results with other methods.

  1. A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion

    Directory of Open Access Journals (Sweden)

    Tagade Piyush M.

    2017-06-01

    Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

  2. Vector domain decomposition schemes for parabolic equations

    Science.gov (United States)

    Vabishchevich, P. N.

    2017-09-01

    A new class of domain decomposition schemes for finding approximate solutions of timedependent problems for partial differential equations is proposed and studied. A boundary value problem for a second-order parabolic equation is used as a model problem. The general approach to the construction of domain decomposition schemes is based on partition of unity. Specifically, a vector problem is set up for solving problems in individual subdomains. Stability conditions for vector regionally additive schemes of first- and second-order accuracy are obtained.

  3. A generalized simplest equation method and its application to the Boussinesq-Burgers equation.

    Science.gov (United States)

    Sudao, Bilige; Wang, Xiaomin

    2015-01-01

    In this paper, a generalized simplest equation method is proposed to seek exact solutions of nonlinear evolution equations (NLEEs). In the method, we chose a solution expression with a variable coefficient and a variable coefficient ordinary differential auxiliary equation. This method can yield a Bäcklund transformation between NLEEs and a related constraint equation. By dealing with the constraint equation, we can derive infinite number of exact solutions for NLEEs. These solutions include the traveling wave solutions, non-traveling wave solutions, multi-soliton solutions, rational solutions, and other types of solutions. As applications, we obtained wide classes of exact solutions for the Boussinesq-Burgers equation by using the generalized simplest equation method.

  4. On Approximate Solutions of Functional Equations in Vector Lattices

    Directory of Open Access Journals (Sweden)

    Bogdan Batko

    2014-01-01

    Full Text Available We provide a method of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz space (algebra. The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will be applied to prove the stability of an alternative Cauchy functional equation F(x+y+F(x+F(y≠0⇒F(x+y=F(x+F(y in Riesz spaces, the Cauchy equation with squares F(x+y2=(F(x+F(y2 in f-algebras, and the quadratic functional equation F(x+y+F(x-y=2F(x+2F(y in Riesz spaces.

  5. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  6. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Science.gov (United States)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.

    2018-03-01

    We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  7. Application of the Poisson-Nernst-Planck equations to the migration test

    DEFF Research Database (Denmark)

    Krabbenhøft, Kristian; Krabbenhøft, Jørgen

    2008-01-01

    The Poisson-Nernst-Planck (PNP) equations are applied to model the migration test. A detailed analysis of the equations is presented and the effects of a number of common, simplifying assumptions are quantified. In addition, closed-form solutions for the effective chloride diffusivity based...... on the full PNP equations are derived, a number of experiments are analyzed in detail, and a new, truly accelerated migration test is proposed. Finally, we present a finite element procedure for numerical solution of the PNP equations....

  8. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  9. Shock-wave structure based on the Navier-Stokes-Fourier equations

    Science.gov (United States)

    Uribe, F. J.; Velasco, R. M.

    2018-04-01

    We use the Navier-Stokes-Fourier constitutive equations to study plane shock waves in dilute gases. It is shown that the experimental information on the normalized density profiles can be fit by using the so-called soft sphere model, in which the viscosity and thermal conductivity are proportional to a power of the temperature.

  10. Elliptic and solitary wave solutions for Bogoyavlenskii equations system, couple Boiti-Leon-Pempinelli equations system and Time-fractional Cahn-Allen equation

    Directory of Open Access Journals (Sweden)

    Mostafa M.A. Khater

    Full Text Available In this article and for the first time, we introduce and describe Khater method which is a new technique for solving nonlinear partial differential equations (PDEs.. We apply this method for each of the following models Bogoyavlenskii equation, couple Boiti-Leon-Pempinelli system and Time-fractional Cahn-Allen equation. Khater method is very powerful, Effective, felicitous and fabulous method to get exact and solitary wave solution of (PDEs.. Not only just like that but it considers too one of the general methods for solving that kind of equations since it involves some methods as we will see in our discuss of the results. We make a comparison between the results of this new method and another method. Keywords: Bogoyavlenskii equations system, Couple Boiti-Leon-Pempinelli equations system, Time-fractional Cahn-Allen equation, Khater method, Traveling wave solutions, Solitary wave solutions

  11. Application of Monte Carlo method to solving boundary value problem of differential equations

    International Nuclear Information System (INIS)

    Zuo Yinghong; Wang Jianguo

    2012-01-01

    This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)

  12. Journal: A Review of Some Tracer-Test Design Equations for ...

    Science.gov (United States)

    Determination of necessary tracer mass, initial sample-collection time, and subsequent sample-collection frequency are the three most difficult aspects to estimate for a proposed tracer test prior to conducting the tracer test. To facilitate tracer-mass estimation, 33 mass-estimation equations are reviewed here, 32 of which were evaluated using previously published tracer-test design examination parameters. Comparison of the results produced a wide range of estimated tracer mass, but no means is available by which one equation may be reasonably selected over the others. Each equation produces a simple approximation for tracer mass. Most of the equations are based primarily on estimates or measurements of discharge, transport distance, and suspected transport times. Although the basic field parameters commonly employed are appropriate for estimating tracer mass, the 33 equations are problematic in that they were all probably based on the original developers' experience in a particular field area and not necessarily on measured hydraulic parameters or solute-transport theory. Suggested sampling frequencies are typically based primarily on probable transport distance, but with little regard to expected travel times. This too is problematic in that tends to result in false negatives or data aliasing. Simulations from the recently developed efficient hydrologic tracer-test design methodology (EHTD) were compared with those obtained from 32 of the 33 published tracer-

  13. Discrete Symmetries Analysis and Exact Solutions of the Inviscid Burgers Equation

    Directory of Open Access Journals (Sweden)

    Hongwei Yang

    2012-01-01

    Full Text Available We discuss the Lie point symmetries and discrete symmetries of the inviscid Burgers equation. By employing the Lie group method of infinitesimal transformations, symmetry reductions and similarity solutions of the governing equation are given. Based on discrete symmetries analysis, two groups of discrete symmetries are obtained, which lead to new exact solutions of the inviscid Burgers equation.

  14. Extension of Gibbs-Duhem equation including influences of external fields

    Science.gov (United States)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  15. Fourier rebinning and consistency equations for time-of-flight PET planograms

    International Nuclear Information System (INIS)

    Li, Yusheng; Matej, Samuel; Metzler, Scott D; Defrise, Michel

    2016-01-01

    Due to the unique geometry, dual-panel PET scanners have many advantages in dedicated breast imaging and on-board imaging applications since the compact scanners can be combined with other imaging and treatment modalities. The major challenges of dual-panel PET imaging are the limited-angle problem and data truncation, which can cause artifacts due to incomplete data sampling. The time-of-flight (TOF) information can be a promising solution to reduce these artifacts. The TOF planogram is the native data format for dual-panel TOF PET scanners, and the non-TOF planogram is the 3D extension of linogram. The TOF planograms is five-dimensional while the objects are three-dimensional, and there are two degrees of redundancy. In this paper, we derive consistency equations and Fourier-based rebinning algorithms to provide a complete understanding of the rich structure of the fully 3D TOF planograms. We first derive two consistency equations and John’s equation for 3D TOF planograms. By taking the Fourier transforms, we obtain two Fourier consistency equations (FCEs) and the Fourier–John equation (FJE), which are the duals of the consistency equations and John’s equation, respectively. We then solve the FCEs and FJE using the method of characteristics. The two degrees of entangled redundancy of the 3D TOF data can be explicitly elicited and exploited by the solutions along the characteristic curves. As the special cases of the general solutions, we obtain Fourier rebinning and consistency equations (FORCEs), and thus we obtain a complete scheme to convert among different types of PET planograms: 3D TOF, 3D non-TOF, 2D TOF and 2D non-TOF planograms. The FORCEs can be used as Fourier-based rebinning algorithms for TOF-PET data reduction, inverse rebinnings for designing fast projectors, or consistency conditions for estimating missing data. As a byproduct, we show the two consistency equations are necessary and sufficient for 3D TOF planograms. Finally, we give

  16. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Vitanov Nikolay K.

    2018-03-01

    Full Text Available We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  17. Vandenõud kõikjal / Reet Hiiemäe

    Index Scriptorium Estoniae

    Hiiemäe, Reet

    2004-01-01

    Tutvustus: Barkun, Michael. A Culture of Conspiracy : Apocalyptic Visions in Contemporary America. Berkeley, LA : University of California Press, 2003 ; Schofield Clark, Lynn. From Angels to Aliens : teenagers, media and the supernatural. Oxford, NY : Oxford University, 2003

  18. Pasture improvement in Malawi: the introduction of legumes into ...

    African Journals Online (AJOL)

    ; S. guyanensis cv. Schofield, S. humilis cv. Queensland Grown, S. humilis cv. Costal Early, S. humilis (BPI 404) and Lotononis bainessi cv. Miles. Eleven principles of legume introduction into grazing systems are discussed. Keywords: pasture ...

  19. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  20. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  1. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  2. Transforming parts of a differential equations system to difference equations as a method for run-time savings in NONMEM.

    Science.gov (United States)

    Petersson, K J F; Friberg, L E; Karlsson, M O

    2010-10-01

    Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.

  3. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  4. An analytical solution to the shielding of Co 60 teletherapy rooms based on a semiempirical equation of photon attenuation

    International Nuclear Information System (INIS)

    Saez, D.G.; Hernandez, L.; Borroto, M.; Figueredo, M.

    1996-01-01

    A semiempirical equation of polynomial-exponential type is presented to describe the transmission data of Co-60 gamma radiation in finite materials of concrete and lead. This equation and the expression obtained for the relationship of scatter-to-incident exposure made easy the developing in computer of an analytical solution for shielding calculations of Co 60 teletherapy rooms, based on the procedures of the NCRP 49 and Simpkin's method. The standard error in the estimation of parameters is less than 1.7 % except for the attenuation of 150 'o' scattered radiation in concrete that resulted in 6.3 % for one of them. The shielding calculations were compared with the data in NCRP 49 for the same conditions with a correlation better than 99 %

  5. Point kinetics equations for subcritical systems based on the importance function associated to an external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2015-01-01

    Highlights: • We define the new function importance. • We calculate the kinetic parameters Λ, β, Γ and Q to: 0.95, 0.96, 0.97, 0.98 and 0.99. • We compared the results with those obtained by the main important functions. • We found that the calculated kinetic parameters are physically consistent. - Abstract: This paper aims to determine the parameters for a new set of equations of point kinetic subcritical systems, based on the concept of importance of Heuristic Generalized Perturbation Theory (HGPT). The importance function defined here is related to both the subcriticality and the external neutron source worth (which keeps the system at steady state). The kinetic parameters defined in this work are compared with the corresponding parameters when adopting the importance functions proposed by Gandini and Salvatores (2002), Dulla et al. (2006) and Nishihara et al. (2003). Furthermore, the point kinetics equations developed here are solved for two different transients, considering the parameters obtained with different importance functions. The results collected show that there is a similar behavior of the solution of the point kinetics equations, when used with the parameters obtained by the importance functions proposed by Gandini and Salvatores (2002) and Dulla et al. (2006), specially near the criticality. However, this is not verified as the system gets farther from criticality

  6. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  7. An Auxiliary Equation for the Bellman Equation in a One-Dimensional Ergodic Control

    International Nuclear Information System (INIS)

    Fujita, Y.

    2001-01-01

    In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples

  8. Molecular-based Equation of State for TIP4P Water

    Czech Academy of Sciences Publication Activity Database

    Jirsák, Jan; Nezbeda, Ivo

    2007-01-01

    Roč. 136, č. 3 (2007), s. 310-316 ISSN 0167-7322 R&D Projects: GA AV ČR 1ET400720409; GA AV ČR IAA4072303 Institutional research plan: CEZ:AV0Z40720504 Keywords : equation of state * perturbation theory * primitive models Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.982, year: 2007

  9. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    J.G. Verwer (Jan); M.A. Botchev

    2008-01-01

    htmlabstractNumerical integration of Maxwell''s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction

  10. Gas-evolution oscillators. 10. A model based on a delay equation

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Eli, K.; Noyes, R.M. [Univ. of Oregon, Eugene, OR (United States)

    1992-09-17

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas.

  11. Gas-evolution oscillators. 10. A model based on a delay equation

    International Nuclear Information System (INIS)

    Bar-Eli, K.; Noyes, R.M.

    1992-01-01

    This paper develops a simplified method to model the behavior of a gas-evolution oscillator with two differential delay equations in two unknowns consisting of the population of dissolved molecules in solution and the pressure of the gas

  12. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  13. Multicomponent fluid flow analysis using a new set of conservation equations

    International Nuclear Information System (INIS)

    Kamali, Reza; Emdad, Homayoon; Alishahi, Mohammad M

    2008-01-01

    In this work hydrodynamics of multicomponent ideal gas mixtures have been studied. Starting from the kinetic equations, the Eulerian approach is used to derive a new set of conservation equations for the multicomponent system where each component may have different velocity and kinetic temperature. The equations are based on the Grad's method of moment derived from the kinetic model in a relaxation time approximation (RTA). Based on this model which contains separate equation sets for each component of the system, a computer code has been developed for numerical computation of compressible flows of binary gas mixture in generalized curvilinear boundary conforming coordinates. Since these equations are similar to the Navier-Stokes equations for the single fluid systems, the same numerical methods are applied to these new equations. The Roe's numerical scheme is used to discretize the convective terms of governing fluid flow equations. The prepared algorithm and the computer code are capable of computing and presenting flow fields of each component of the system separately as well as the average flow field of the multicomponent gas system as a whole. Comparison of the present code results with those of a more common algorithm based on the mixture theory in a supersonic converging-diverging nozzle provides the validation of the present formulation. Afterwards, a more involved nozzle cooling problem with a binary ideal gas (helium-xenon) is chosen to compare the present results with those of the ordinary mixture theory. The present model provides the details of the flow fields of each component separately which is not available otherwise. It is also shown that the separate fluids treatment, such as the present study, is crucial when considering time scales on the order of (or shorter than) the intercollisions relaxation times.

  14. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Reduction of lattice equations to the Painlevé equations: PIV and PV

    Science.gov (United States)

    Nakazono, Nobutaka

    2018-02-01

    In this paper, we construct a new relation between Adler-Bobenko-Suris equations and Painlevé equations. Moreover, using this connection we construct the difference-differential Lax representations of the fourth and fifth Painlevé equations.

  17. Optimal control of compressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Ito, K.; Ravindran, S.S.

    1994-01-01

    Optimal control for the viscous incompressible flows, which are governed by incompressible Navier-Stokes equations, has been the subject of extensive study in recent years, see, e.g., [AT], [GHS], [IR], and [S]. In this paper we consider the optimal control of compressible isentropic Navier-Stokes equations. We develop the weak variational formulation and discuss the existence and necessary optimality condition characterizing the optimal control. A numerical method based on the mixed-finite element method is also discussed to compute the control and numerical results are presented

  18. Electromagnetic Field Analysis of an Electric Dipole Antenna Based on a Surface Integral Equation in Multilayered Dissipative Media

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2017-07-01

    Full Text Available In this paper, a novel method based on the Poggio–Miller–Chang-Harrington–Wu–Tsai (PMCHWT integral equation is presented to study the electromagnetic fields excited by vertical or horizontal electric dipoles in the presence of a layered region which consists of K-layered dissipative media and the air above. To transform the continuous integral equation into a block tridiagonal matrix with the feature of convenient solution, the Rao–Wilton–Glisson (RWG functions are introduced as expansion and testing functions. The electromagnetic fields excited by an electric dipole are calculated and compared with the available results, where the electric dipole antenna is buried in the non-planar air–sea–seabed, air–rock–earth–mine, and multilayered sphere structures. The analysis and computations demonstrate that the method exhibits high accuracy and solving performance in the near field propagation region.

  19. New Numerical Solution of von Karman Equation of Lengthwise Rolling

    Directory of Open Access Journals (Sweden)

    Rudolf Pernis

    2015-01-01

    Full Text Available The calculation of average material contact pressure to rolls base on mathematical theory of rolling process given by Karman equation was solved by many authors. The solutions reported by authors are used simplifications for solution of Karman equation. The simplifications are based on two cases for approximation of the circular arch: (a by polygonal curve and (b by parabola. The contribution of the present paper for solution of two-dimensional differential equation of rolling is based on description of the circular arch by equation of a circle. The new term relative stress as nondimensional variable was defined. The result from derived mathematical models can be calculated following variables: normal contact stress distribution, front and back tensions, angle of neutral point, coefficient of the arm of rolling force, rolling force, and rolling torque during rolling process. Laboratory cold rolled experiment of CuZn30 brass material was performed. Work hardening during brass processing was calculated. Comparison of theoretical values of normal contact stress with values of normal contact stress obtained from cold rolling experiment was performed. The calculations were not concluded with roll flattening.

  20. The Appell transformation for the paraxial wave equation

    International Nuclear Information System (INIS)

    Torre, A

    2011-01-01

    Some issues related to the 1D heat equation are revisited and framed within the context of the free-space paraxial propagation, formally accounted for by the 2D paraxial wave equation. In particular, the Appell transformation, which is well known in the theory of the heat equation, is reformulated in optical terms, and accordingly interpreted in the light of the propagation of given source functions, which are in a definite relation with the source functions of the original wavefunctions. Basic to the discussion is the Lie-algebra-based approach, as developed in a series of seminal papers by Kalnins, Miller and Boyer, to evolutionary-type equations, ruled by Hamiltonian operators underlying a harmonic oscillator-like symmetry algebra. Indeed, both the heat equation and the paraxial wave equation are particular cases of this kind of equation. When interpreting such an approach in terms of the propagation of assigned 'source' functions, the transformations between wavefunctions may be traced back to definite relations between the respective source functions. Thus, the optical Appell transformation is seen to be a manifestation of the correspondence between wavefunctions generated by eigenstates of operators, which are linked through a Fourier-similarity transformation. As a mere consequence, one can introduce the fractional Appell transformation, thus displaying a family of symmetry transformations parameterized by a continuous parameter

  1. Discrete coupled derivative nonlinear Schroedinger equations and their quasi-periodic solutions

    International Nuclear Information System (INIS)

    Geng Xianguo; Su Ting

    2007-01-01

    A hierarchy of nonlinear differential-difference equations associated with a discrete isospectral problem is proposed, in which a typical differential-difference equation is a discrete coupled derivative nonlinear Schroedinger equation. With the help of the nonlinearization of the Lax pairs, the hierarchy of nonlinear differential-difference equations is decomposed into a new integrable symplectic map and a class of finite-dimensional integrable Hamiltonian systems. Based on the theory of algebraic curve, the Abel-Jacobi coordinates are introduced to straighten out the corresponding flows, from which quasi-periodic solutions for these differential-difference equations are obtained resorting to the Riemann-theta functions. Moreover, a (2+1)-dimensional discrete coupled derivative nonlinear Schroedinger equation is proposed and its quasi-periodic solutions are derived

  2. Fractional Bhatnagar-Gross-Krook kinetic equation

    Science.gov (United States)

    Goychuk, Igor

    2017-11-01

    The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.

  3. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  4. Calculations of reactivity based in the solution of the Neutron transport equation in X Y geometry and Lineal perturbation theory

    International Nuclear Information System (INIS)

    Valle G, E. del; Mugica R, C.A.

    2005-01-01

    In our country, in last congresses, Gomez et al carried out reactivity calculations based on the solution of the diffusion equation for an energy group using nodal methods in one dimension and the TPL approach (Lineal Perturbation Theory). Later on, Mugica extended the application to the case of multigroup so much so much in one as in two dimensions (X Y geometry) with excellent results. Presently work is carried out similar calculations but this time based on the solution of the neutron transport equation in X Y geometry using nodal methods and again the TPL approximation. The idea is to provide a calculation method that allows to obtain in quick form the reactivity solving the direct problem as well as the enclosed problem of the not perturbed problem. A test problem for the one that results are provided for the effective multiplication factor is described and its are offered some conclusions. (Author)

  5. Partial differential equation-based approach for empirical mode decomposition: application on image analysis.

    Science.gov (United States)

    Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques

    2012-09-01

    The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.

  6. Solution of the two- dimensional heat equation for a rectangular plate

    Directory of Open Access Journals (Sweden)

    Nurcan BAYKUŞ SAVAŞANERİL

    2015-11-01

    Full Text Available Laplace equation is a fundamental equation of applied mathematics. Important phenomena in engineering and physics, such as steady-state temperature distribution, electrostatic potential and fluid flow, are modeled by means of this equation. The Laplace equation which satisfies boundary values is known as the Dirichlet problem. The solutions to the Dirichlet problem form one of the most celebrated topics in the area of applied mathematics. In this study, a novel method is presented for the solution of two-dimensional heat equation for a rectangular plate. In this alternative method, the solution function of the problem is based on the Green function, and therefore on elliptic functions.

  7. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  8. Every Equation Tells a Story: Using Equation Dictionaries in Introductory Geophysics

    Science.gov (United States)

    Caplan-Auerbach, Jacqueline

    2009-01-01

    Many students view equations as a series of variables and operators into which numbers should be plugged rather than as representative of a physical process. To solve a problem they may simply look for an equation with the correct variables and assume it meets their needs, rather than selecting an equation that represents the appropriate physical…

  9. Solving the Helmholtz equation in conformal mapped ARROWstructures using homotopy perturbation method

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

    2011-01-01

    . The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution......The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method...

  10. A high order solver for the unbounded Poisson equation

    DEFF Research Database (Denmark)

    Hejlesen, Mads Mølholm; Rasmussen, Johannes Tophøj; Chatelain, Philippe

    2013-01-01

    . The method is extended to directly solve the derivatives of the solution to Poissonʼs equation. In this way differential operators such as the divergence or curl of the solution field can be solved to the same high order convergence without additional computational effort. The method, is applied......A high order converging Poisson solver is presented, based on the Greenʼs function solution to Poissonʼs equation subject to free-space boundary conditions. The high order convergence is achieved by formulating regularised integration kernels, analogous to a smoothing of the solution field...... and validated, however not restricted, to the equations of fluid mechanics, and can be used in many applications to solve Poissonʼs equation on a rectangular unbounded domain....

  11. Fundamental equations for two-phase flow. Part 1: general conservation equations. Part 2: complement and remarks; Equations fondamentales des ecoulements diphasiques. Premiere partie: equations generales de conservation. Deuxieme partie: complements et remarques

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J M [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-12-01

    This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental

  12. Fundamental equations for two-phase flow. Part 1: general conservation equations. Part 2: complement and remarks; Equations fondamentales des ecoulements diphasiques. Premiere partie: equations generales de conservation. Deuxieme partie: complements et remarques

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J.M. [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-12-01

    This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental

  13. Interpolation problem for the solutions of linear elasticity equations based on monogenic functions

    Science.gov (United States)

    Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii

    2017-11-01

    Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.

  14. Structure and properties of Hughston's stochastic extension of the Schroedinger equation

    International Nuclear Information System (INIS)

    Adler, Stephen L.; Horwitz, Lawrence P.

    2000-01-01

    Hughston has recently proposed a stochastic extension of the Schroedinger equation, expressed as a stochastic differential equation on projective Hilbert space. We derive new projective Hilbert space identities, which we use to give a general proof that Hughston's equation leads to state vector collapse to energy eigenstates, with collapse probabilities given by the quantum mechanical probabilities computed from the initial state. We discuss the relation of Hughston's equation to earlier work on norm-preserving stochastic equations, and show that Hughston's equation can be written as a manifestly unitary stochastic evolution equation for the pure state density matrix. We discuss the behavior of systems constructed as direct products of independent subsystems, and briefly address the question of whether an energy-based approach, such as Hughston's, suffices to give an objective interpretation of the measurement process in quantum mechanics. (c) 2000 American Institute of Physics

  15. Equating TIMSS Mathematics Subtests with Nonlinear Equating Methods Using NEAT Design: Circle-Arc Equating Approaches

    Science.gov (United States)

    Ozdemir, Burhanettin

    2017-01-01

    The purpose of this study is to equate Trends in International Mathematics and Science Study (TIMSS) mathematics subtest scores obtained from TIMSS 2011 to scores obtained from TIMSS 2007 form with different nonlinear observed score equating methods under Non-Equivalent Anchor Test (NEAT) design where common items are used to link two or more test…

  16. Multiscale functions, scale dynamics, and applications to partial differential equations

    Science.gov (United States)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  17. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    Verwer, J.G.; Bochev, Mikhail A.

    Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference

  18. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    J.G. Verwer (Jan); M.A. Botchev

    2009-01-01

    textabstractNumerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit –

  19. Integral equation hierarchy for continuum percolation

    International Nuclear Information System (INIS)

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  20. Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions

    International Nuclear Information System (INIS)

    Lin, Hongxia; Du, Lili

    2013-01-01

    In this paper, we give some new global regularity criteria for three-dimensional incompressible magnetohydrodynamics (MHD) equations. More precisely, we provide some sufficient conditions in terms of the derivatives of the velocity or pressure, for the global regularity of strong solutions to 3D incompressible MHD equations in the whole space, as well as for periodic boundary conditions. Moreover, the regularity criterion involving three of the nine components of the velocity gradient tensor is also obtained. The main results generalize the recent work by Cao and Wu (2010 Two regularity criteria for the 3D MHD equations J. Diff. Eqns 248 2263–74) and the analysis in part is based on the works by Cao C and Titi E (2008 Regularity criteria for the three-dimensional Navier–Stokes equations Indiana Univ. Math. J. 57 2643–61; 2011 Gobal regularity criterion for the 3D Navier–Stokes equations involving one entry of the velocity gradient tensor Arch. Rational Mech. Anal. 202 919–32) for 3D incompressible Navier–Stokes equations. (paper)

  1. Coupled equations for Kähler metrics and Yang-Mills connections

    DEFF Research Database (Denmark)

    Garcia Fernandez, Mario; Alvarez-Consul, Luis; Garcia-Prada, Oscar

    2012-01-01

    We study equations on a principal bundle over a compact complex manifold coupling connections on the bundle with K¨ahler structures in the base. These equations generalize the conditions of constant scalar curvature for a K¨ahler metric and Hermite– Yang–Mills for a connection. We provide a moment...

  2. Stochastic partial differential equations an introduction

    CERN Document Server

    Liu, Wei

    2015-01-01

    This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and t...

  3. Minimally coupled N-particle scattering integral equations

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1977-01-01

    A concise formalism is developed which permits the efficient representation and generalization of several known techniques for deriving connected-kernel N-particle scattering integral equations. The methods of Kouri, Levin, and Tobocman and Bencze and Redish which lead to minimally coupled integral equations are of special interest. The introduction of channel coupling arrays is characterized in a general manner and the common base of this technique and that of the so-called channel coupling scheme is clarified. It is found that in the Bencze-Redish formalism a particular coupling array has a crucial function but one different from that of the arrays employed by Kouri, Levin, and Tobocman. The apparent dependence of the proof of the minimality of the Bencze-Redish integral equations upon the form of the inhomogeneous term in these equations is eliminated. This is achieved by an investigation of the full (nonminimal) Bencze-Redish kernel. It is shown that the second power of this operator is connected, a result which is needed for the full applicability of the Bencze-Redish formalism. This is used to establish the relationship between the existence of solutions to the homogeneous form of the minimal equations and eigenvalues of the full Bencze-Redish kernel

  4. Nonlinear heat conduction equations with memory: Physical meaning and analytical results

    Science.gov (United States)

    Artale Harris, Pietro; Garra, Roberto

    2017-06-01

    We study nonlinear heat conduction equations with memory effects within the framework of the fractional calculus approach to the generalized Maxwell-Cattaneo law. Our main aim is to derive the governing equations of heat propagation, considering both the empirical temperature-dependence of the thermal conductivity coefficient (which introduces nonlinearity) and memory effects, according to the general theory of Gurtin and Pipkin of finite velocity thermal propagation with memory. In this framework, we consider in detail two different approaches to the generalized Maxwell-Cattaneo law, based on the application of long-tail Mittag-Leffler memory function and power law relaxation functions, leading to nonlinear time-fractional telegraph and wave-type equations. We also discuss some explicit analytical results to the model equations based on the generalized separating variable method and discuss their meaning in relation to some well-known results of the ordinary case.

  5. Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit

    International Nuclear Information System (INIS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2015-01-01

    Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form V(|ϕ| 2 ). We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrodinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c → +∞. (paper)

  6. Approximate solution of the transport equation by methods of Galerkin type

    International Nuclear Information System (INIS)

    Pitkaranta, J.

    1977-01-01

    Questions of the existence, uniqueness, and convergence of approximate solutions of transport equations by methods of the Galerkin type (where trial and weighting functions are the same) are discussed. The results presented do not exclude the infinite-dimensional case. Two strategies can be followed in the variational approximation of the transport operator: one proceeds from the original form of the transport equation, while the other is based on the partially symmetrized equation. Both principles are discussed in this paper. The transport equation is assumed in a discretized multigroup form

  7. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    Science.gov (United States)

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    meeting with the name `Symmetries and Integrability of Discrete Equations (SIDE)' was held in Estérel, Québec, Canada. This was organized by D Levi, P Winternitz and L Vinet. After the success of the first meeting the scientific community decided to hold bi-annual SIDE meetings. They were held in 1996 at the University of Kent (UK), 1998 in Sabaudia (Italy), 2000 at the University of Tokyo (Japan), 2002 in Giens (France), 2004 in Helsinki (Finland) and in 2006 at the University of Melbourne (Australia). In 2008 the SIDE 8 meeting was again organized near Montreal, in Ste-Adèle, Québec, Canada. The SIDE 8 International Advisory Committee (also the SIDE steering committee) consisted of Frank Nijhoff, Alexander Bobenko, Basil Grammaticos, Jarmo Hietarinta, Nalini Joshi, Decio Levi, Vassilis Papageorgiou, Junkichi Satsuma, Yuri Suris, Claude Vialet and Pavel Winternitz. The local organizing committee consisted of Pavel Winternitz, John Harnad, Véronique Hussin, Decio Levi, Peter Olver and Luc Vinet. Financial support came from the Centre de Recherches Mathématiques in Montreal and the National Science Foundation (through the University of Minnesota). Proceedings of the first three SIDE meetings were published in the LMS Lecture Note series. Since 2000 the emphasis has been on publishing selected refereed articles in response to a general call for papers issued after the conference. This allows for a wider author base, since the call for papers is not restricted to conference participants. The SIDE topics thus are represented in special issues of Journal of Physics A: Mathematical and General 34 (48) and Journal of Physics A: Mathematical and Theoretical, 40 (42) (SIDE 4 and SIDE 7, respectively), Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2) (SIDE 5 and SIDE 6 respectively). The SIDE 8 meeting was organized around several topics and the contributions to this special issue reflect the diversity presented during the meeting. The papers

  8. Development of equations, based on milk intake, to predict starter feed intake of preweaned dairy calves.

    Science.gov (United States)

    Silva, A L; DeVries, T J; Tedeschi, L O; Marcondes, M I

    2018-04-16

    There is a lack of studies that provide models or equations capable of predicting starter feed intake (SFI) for milk-fed dairy calves. Therefore, a multi-study analysis was conducted to identify variables that influence SFI, and to develop equations to predict SFI in milk-fed dairy calves up to 64 days of age. The database was composed of individual data of 176 calves from eight experiments, totaling 6426 daily observations of intake. The information collected from the studies were: birth BW (kg), SFI (kg/day), fluid milk or milk replacer intake (MI; l/day), sex (male or female), breed (Holstein or Holstein×Gyr crossbred) and age (days). Correlations between SFI and the quantitative variables MI, birth BW, metabolic birth BW, fat intake, CP intake, metabolizable energy intake, and age were calculated. Subsequently, data were graphed, and based on a visual appraisal of the pattern of the data, an exponential function was chosen. Data were evaluated using a meta-analysis approach to estimate fixed and random effects of the experiments using nonlinear mixed coefficient statistical models. A negative correlation between SFI and MI was observed (r=-0.39), but age was positively correlated with SFI (r=0.66). No effect of liquid feed source (milk or milk replacer) was observed in developing the equation. Two equations, significantly different for all parameters, were fit to predict SFI for calves that consume less than 5 (SFI5) l/day of milk or milk replacer: ${\\rm SFI}_{{\\,\\lt\\,5}} {\\equals}0.1839_{{\\,\\pm\\,0.0581}} {\\times}{\\rm MI}{\\times}{\\rm exp}^{{\\left( {\\left( {0.0333_{{\\,\\pm\\,0.0021 }} {\\minus}0.0040_{{\\,\\pm\\,0.0011}} {\\times}{\\rm MI}} \\right){\\times}\\left( {{\\rm A}{\\minus}{\\rm }\\left( {0.8302_{{\\,\\pm\\,0.5092}} {\\plus}6.0332_{{\\,\\pm\\,0.3583}} {\\times}{\\rm MI}} \\right)} \\right)} \\right)}} {\\minus}\\left( {0.12{\\times}{\\rm MI}} \\right)$ ; ${\\rm SFI}_{{\\,\\gt\\,5}} {\\equals}0.1225_{{\\,\\pm\\,0.0005 }} {\\times

  9. Solving polynomial differential equations by transforming them to linear functional-differential equations

    OpenAIRE

    Nahay, John Michael

    2008-01-01

    We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

  10. Darboux transformations for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2012-01-01

    We construct a Darboux transformation for (1+2)-dimensional Fokker-Planck equations with constant diffusion matrix. Our transformation is based on the two-dimensional supersymmetry formalism for the Schrödinger equation. The transformed Fokker-Planck equation and its solutions are obtained in explicit form.

  11. Lorentz-force equations as Heisenberg equations for a quantum system in the euclidean space

    International Nuclear Information System (INIS)

    Rodriguez D, R.

    2007-01-01

    In an earlier work, the dynamic equations for a relativistic charged particle under the action of electromagnetic fields were formulated by R. Yamaleev in terms of external, as well as internal momenta. Evolution equations for external momenta, the Lorentz-force equations, were derived from the evolution equations for internal momenta. The mapping between the observables of external and internal momenta are related by Viete formulae for a quadratic polynomial, the characteristic polynomial of the relativistic dynamics. In this paper we show that the system of dynamic equations, can be cast into the Heisenberg scheme for a four-dimensional quantum system. Within this scheme the equations in terms of internal momenta play the role of evolution equations for a state vector, whereas the external momenta obey the Heisenberg equation for an operator evolution. The solutions of the Lorentz-force equation for the motion inside constant electromagnetic fields are presented via pentagonometric functions. (Author)

  12. An acoustic eikonal equation for attenuating VTI media

    KAUST Repository

    Hao, Qi

    2016-09-06

    We present an acoustic eikonal equation governing the complex-valued travel time of P-waves in attenuating, transversely isotropic media with a vertical symmetry axis (VTI). This equation is based on the assumption that the Pwave complex-valued travel time is independent of the Swave velocity parameter v in Thomsen\\'s notation and the attenuation coefficient A in the Thomsen-type notation for attenuating VTI media. We combine perturbation theory and Shanks transform to develop practical approximations to the attenuating acoustic eikonal equation, capable of admitting analytical description of the attenuation in homogeneous media. For a horizontal, attenuating VTI layer, we also derive non-hyperbolic approximations for the real and imaginary parts of the complex-valued reflection travel time.

  13. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  14. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  15. Stable multi-domain spectral penalty methods for fractional partial differential equations

    Science.gov (United States)

    Xu, Qinwu; Hesthaven, Jan S.

    2014-01-01

    We propose stable multi-domain spectral penalty methods suitable for solving fractional partial differential equations with fractional derivatives of any order. First, a high order discretization is proposed to approximate fractional derivatives of any order on any given grids based on orthogonal polynomials. The approximation order is analyzed and verified through numerical examples. Based on the discrete fractional derivative, we introduce stable multi-domain spectral penalty methods for solving fractional advection and diffusion equations. The equations are discretized in each sub-domain separately and the global schemes are obtained by weakly imposed boundary and interface conditions through a penalty term. Stability of the schemes are analyzed and numerical examples based on both uniform and nonuniform grids are considered to highlight the flexibility and high accuracy of the proposed schemes.

  16. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  17. New exact solutions to MKDV-Burgers equation and (2 + 1)-dimensional dispersive long wave equation via extended Riccati equation method

    International Nuclear Information System (INIS)

    Kong Cuicui; Wang Dan; Song Lina; Zhang Hongqing

    2009-01-01

    In this paper, with the aid of symbolic computation and a general ansaetz, we presented a new extended rational expansion method to construct new rational formal exact solutions to nonlinear partial differential equations. In order to illustrate the effectiveness of this method, we apply it to the MKDV-Burgers equation and the (2 + 1)-dimensional dispersive long wave equation, then several new kinds of exact solutions are successfully obtained by using the new ansaetz. The method can also be applied to other nonlinear partial differential equations.

  18. A moving mesh finite difference method for equilibrium radiation diffusion equations

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaobo, E-mail: xwindyb@126.com [Department of Mathematics, College of Science, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Huang, Weizhang, E-mail: whuang@ku.edu [Department of Mathematics, University of Kansas, Lawrence, KS 66045 (United States); Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn [School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, Xiamen University, Xiamen, Fujian 361005 (China)

    2015-10-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.

  19. A moving mesh finite difference method for equilibrium radiation diffusion equations

    International Nuclear Information System (INIS)

    Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian

    2015-01-01

    An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation

  20. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.